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Abstract

For Sinai’s walk (Xk ) we show that the empirical measure of the environment
seen from the particle (ω̄k ) = (ω(Xk + x), x ∈ Z ) converges in law to some ran-
dom measure S∞, explicitly given in terms of the infinite valley Ṽ , defined in
Golosov (1984). As a consequence an ‘in law’ ergodic theorem holds:

1

n

n∑
k=1

F (ω̄k )
L−→

∫

Ω
F dS∞ .

This allows some extensions to the recurrent case of the ‘environment method’
of Kozlov and Molchanov (1984). In particular, we show the LLN and the CLT
with the convergence to a mixture of Gaussians for

∑n
k=1 f (ω(Xk ), Xk+1 −Xk ).

The new ingredient is the convergence in distribution in ℓ1 of the sequence
(exp− (V (bn +x)−V (bn)) ; x ∈ Z)n where bn is the bottom of the main valley
of the potential V , to (exp−Ṽ (x), x ∈ Z). Whereas the finite dimensional con-
vergence here is known since Golosov (1984) and Bertoin (1993), the tightness
result is new and relies on new estimations of the growth of the random walk
conditioned to stay positive.
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1. Introduction, assumptions and main results

1.1. Model

Let ω = {ω(x); x ∈Z} be a collection of i.i.d. random variables taking val-
ues in [0,1]. Denote Ω := [0,1]Z, P the distribution of ω on (Ω,B(Ω)) and E

the expectation under this law. For fixed ω ∈ Ω, let X = (Xk )k∈N be the time-
homogeneous Markov chain onZ+ with transition function pω given by pω(0,1) =
1, and for all x ∈Z∗

+,

pω(x, y) =




ω(x) if y = x +1,
1−ω(x) if y = x −1,
0 otherwise.

For x ∈ Z+ and fixed ω ∈ Ω, we denote by Pω
x the law on (ZN+,B(ZN+)) of the

Markov chain X starting from x. This is the quenched law of X . The annealed
law of the couple (ω, X ) is the probability measure P := Px on (Ω×ZN+,B(Ω)⊗
B(ZN+)) defined for all x ∈Z+ and all F ∈B(Ω) and G ∈B(ZN+) by

Px(F ×G) =
∫

F
Pω

x (G)P(dω).

We write Eω
x and E for the corresponding quenched and annealed expectations,

respectively. For simplicity and following Golosov (1984) and Gantert et al.
(2010), we consider the walk on the positive integers reflected at 0, but we need
the environment to be defined on Z to introduce later the infinite valley of the
potential.

Denote, for x ∈Z,

ρx = 1−ω(x)

ω(x)
. (1)

It was shown in Solomon (1975) that when

E logρ0 = 0, (2)

for P-almost all ω the Markov chain X is recurrent, otherwise the walk is tran-
sient. This paper focuses on the recurrent case, hence (2) will be in force for all
our results.
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1.2. Motivation: Method of the environment viewed from the particle.

For ω ∈ Ω and x ∈ Z, denote by Tx the shift operator Tx : Ω → Ω, which
translates the environment by the vector x, i.e.

∀y ∈Z, (Txω)(y) =ω(x + y).

The environment seen from the particle is theΩ-valued process (ω̄k ) given by

ω̄k = TXkω , k ∈N .

It is well known since Kozlov and Molchanov (1984) that (ω̄k ,k ≥ 0) is a
Markov chain (with respect to both P and Pω

0 ), with the transition kernel

R(ω,dω′) =ω(0)δT1ω(dω′)+ (1−ω(0))δT−1ω(dω′). (3)

The state space of this Markov chain is very complex, however, in the transient
ballistic case, which is characterized in (Solomon (1975)) by the linear speed of
escape of the walk to infinity, namely

Xn/n → v = (1−Eρ0)/(1+Eρ0), (4)

Kozlov and Molchanov (1984) showed that there exists a unique invariant prob-
abilityQ for the kernel R, which is absolutely continuous with respect toP, with
an explicit density

p = dQ/dP= v(1+ρ0)

(
1+

∞∑
x=1

x∏
j=1

ρ j

)
(5)

(see Molchanov (1994) p.273 or Theorem 1.2 in Sznitman (2002)). In particular,
Birkhoff’s a.s. ergodic theorem applies and gives for allQ- integrable F

1

n

n∑
k=1

F (ω̄k )−→
∫

Ω
F (ω)p(ω)P(dω) P−a.s. (6)

This constitutes the basis of the ‘method of the environment viewed from the
particle’. To recall it briefly, let us sketch the proof of Solomon’s result (4) on
the asymptotic velocity for the ballistic random walk. Let ∆Xn := Xn+1 − Xn ,
Fn =σ{∆X0, . . . ,∆Xn , ω(X0), . . . ,ω(Xn+1)}. We can write the classical martingale
differences decomposition:

Xn/n = 1

n

n∑
k=1

[∆Xk −E(∆Xk |Fk−1)]+1/n
n∑

k=1
E(∆Xk |Fk−1). (7)
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The first sum in (7) is composed of centered, uncorrelated terms, hence it tends
to zero in L2 and, using the martingale’s convergence, even a.s. Moreover, since

E(∆Xk |Fk−1) =ω(Xk )−1(1−ω(Xk )) = 2ω̄k (0)−1,

for the second term of (7) we can apply Birkhoff’s theorem (6) and get

1

n

n∑
k=1

E(∆Xk |Fk−1) = 1/n
n∑

k=1
(2ω̄k (0)−1) −→

∫

Ω
(2ω(0)−1)p(ω)P(dω) = v a.s.

For further illustration of this method see Sznitman (2002), Zeitouni (2004) and
L.V.Bogachev (2006).

In this work we are interested in the limits of additive functionals of the
environment’s chain in the recurrent case and our main result, Theorem(1.1),
shows that under (2)

1

n

n∑
k=1

F (ω̄k )
L−→

∫

Ω
F dS∞ , (8)

where S∞ is a random probability measure on Ω, defined precisely in (20).
This ‘in law’ ergodic theorem allows us to extend in a certain sense the envi-
ronment’s method to the recurrent case. In particular, let f be bounded and

S f
n :=

n∑
k=1

f (ω(Xk ),∆Xk ).

As we have

E[ f (ω(Xk ),∆Xk )|Fk−1)] = f (ω(Xk ),1)ω(Xk )+ f (ω(Xk ),−1)(1−ω(Xk ))

we can represent S f
n as in (7):

S f
n = Mn + An ,

where

Mn =
n∑

k=1

(
f (ω(Xk ),∆Xk )−E[ f (ω(Xk ),∆Xk )|Fk−1)]

)

is a martingale and An is an additive functional of the environment seen from
the particle, to which we can apply the convergence (8). In Section (5), using
this method, we show a LLN and a CLT with the convergence to a mixture of

normal laws for S f
n . The sums of the form S f

n arise in particular in the study of
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the limit distribution of the Maximum Likelihood Estimator (MLE) of the law
of the environment. The consistency and the asymptotic normality of MLE in
the ballistic and sub-ballistic cases were studied in Comets et al. (2014) and Fal-
connet et al. (2013) and Falconnet et al. (2014). The consistency in the recurrent
case, when the law of the environment has finite support, was shown in Comets
et al. (2016). Finding the limit distribution of the MLE in this last case requires
the knowledge of the limit behaviour of the score function, i.e. the derivative of
the likelihood, and this last function depends on the functionals of the form

n∑
k=1

1(ω(Xk ) = a)1(∆Xk = 1), (9)

where a is a given point of the support of ωx . The functional (9) represents the
total number of steps to the right from the sites where the environment is equal
to a. In Section 5, relying on our result (8), we give the limit behavior and the
fluctuations of such functionals. Note also that despite the fact that (8) gives
only an ‘in law’ version of the ergodic theorem, in many examples the limit in
(8) is deterministic, hence the convergence (8) actually holds in probability. We
give such examples in Section (5).

To define precisely the limit random measure S∞ we need to introduce the
notion of the potential and of the infinite valley.

1.3. Potential and infinite valley

Let ρx , x ∈Z be given by (1) and define the potential V = {V (x) : x ∈Z} by

V (x) =





∑x
y=1 logρy if x > 0,

0 if x = 0,
−∑0

y=x+1 logρy if x < 0.
(10)

Then, V is a (double-sided) random walk, an example of a realisation of V can
be seen on Figure 1. It is easy to see that the measure µ defined as

µ(0) = 1, µ(x) = exp[−V (x −1)]+exp[−V (x)], x ∈Z∗
+, (11)

is a reversible and invariant measure for the Markov chain X under quenched
law. Define the right border cn of the ‘valley’ with depth logn + (logn)1/2 as the
random variable

cn = min
{

x ≥ 0 : V (x)− min
0≤y≤x

V (y) ≥ logn + (logn)1/2}, (12)
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V (x)

x

bn

cn

logn +
√

logn

1

Figure 1: Example of potential derived from a Temkin random environment with parameter
a = 0.3. Simulation with n = 1000.

and the bottom bn of the valley as

bn = min
{

x ≥ 0 : V (x) = min
0≤y≤cn

V (y)
}
. (13)

Figure 1 shows a representation of bn and cn for recurrent Temkin random
environment with parameter a = 0.3. Namely, the environment’s law here is
P(ωx = a) = P(ωx = 1− a) = 1/2. The salient probabilistic feature of the recur-
rent RWRE is the strong localization revealed by Sinaı̆ (1982). Considered on
the spatial scale ln2 n the RWRE becomes localized near bn . We are interested
in the shape of the valley (0,bn ,cn) when n tends to infinity and we recall the
concept of infinite valley introduced by Golosov (1984).

Let Ṽ = {Ṽ (x) : x ∈ Z} be a collection of random variables distributed as
V conditioned to stay positive for any negative x, and non-negative for any
non negative x. Such events having probability zero, a formal definition uses
Doob’s h-transform (see Golosov (1984)[ Lemma 4], Bertoin (1993)). It is known
(Golosov (1984), pp. 494-495) that

∑
x∈Z

exp
(−Ṽ (x)

)<∞. (14)

(Ṽ (x), x ∈Z) is the so-called infinite valley, introduced in Golosov (1984).
Let ω̃= {ω̃(x), x ∈Z} be the environment of the walk in the infinite valley:

ω̃(x) = exp[−Ṽ (x)]

exp[−Ṽ (x)]+exp[−Ṽ (x −1)]
, x ∈Z. (15)
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Let ν̃ be a probability measure on Z defined by

ν̃(x) = exp[−Ṽ (x −1)]+exp[−Ṽ (x)]

2
∑

z∈Zexp[−Ṽ (z)]
, x ∈Z. (16)

Thanks to (14) the probability measure (16) is well defined, and is a stationary
(and reversible) distribution of the random walk in in the ‘infinite valley’, i.e.
the walk governed by the environment ω̃.

1.4. Assumptions and main results

Assumption I. E logρ0 = 0 and V(logρ0) > 0.

Under Assumption (I) for P-almost ω the Markov chain X is recurrent.

Assumption II. P(δ0 ≤ω(0) ≤ 1−δ0) = 1 for some δ0 ∈ (0,1).

The assumption (II) is technical and commonly admitted.
We are interested in the limit behavior of additive functionals of the envi-

ronment’s chain (ω̄k ). The empirical law Sn of this chain, defined as

Sn = 1

n

n∑
k=1

δωk
, (17)

allows to represent Birkhoff sums of F :Ω→R along the chain as an integral

1

n

n∑
k=1

F (ω̄k ) =
∫

Ω
F dSn .

Define for n ∈N and x ∈Z, the local time of the walk at the position x as

ξ(n, x) =
n∑

k=1
1{Xk = x}. (18)

Note that the empirical law (17) of the environment seen from the walker can
be expressed using the local times as

Sn =
∑
x∈Z

ξ(n, x)

n
δTxω . (19)

Let S∞ be a random measure onΩ given by

S∞ :=
∑
x∈Z

ν̃(x)δTx ω̃ , (20)
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where ν̃(x) and ω̃ are given respectively by (16) and (15) and denote the station-
ary distribution of the walk and the environment in the infinite valley. Provide
Ω := [0,1]Z with the distance of the infinite product given by

d(ω,ω′) =
∑
x∈Z

2−|x||ω(x)−ω′(x)|. (21)

Theorem 1.1. Under Assumptions I and II the empirical law of the environment
seen from the walker converges in distribution, as n →∞:

Sn
L−→S∞ (22)

in the space P (Ω) equipped with the topology of the weak convergence of proba-
bility measures. As a consequence, for every bounded and continuous F :Ω→R,

1

n

n∑
k=1

F (ω̄k )
L−→

∫

Ω
F dS∞ .

Note that in particular, for every m ∈ N and g : [0,1]2m+1 → R, continuous
and bounded,

1

n

n∑
k=1

g (ω(Xk −m), . . . ,ω(Xk +m))
L−→

∑
x∈Z

g (ω̃(x −m), . . . ,ω̃(x +m))ν̃(x) .

The simplest example is given by f : [0,1] →R, continuous and bounded:

1

n

n∑
k=1

f (ω(Xk ))
L−→

∑
x∈Z

f (ω̃(x))ν̃(x) .

Denote by E the expectation with respect to the law of Ṽ = (Ṽ (x))x∈Z and let us
defineQ ∈P (Ω) by

∫

Ω
F dQ= E

[∫

Ω
F dS∞

]
=

∑
x∈Z

E
[
ν̃(x)F (Txω̃)

]
, (23)

for bounded F :Ω→R. We can viewQ as the E -expectation of S∞.

Proposition 1.2. The probability Q is invariant and reversible for the Markov
chain (ω̄k ,k ≥ 0) inΩ. The measures P andQ are mutually singular.
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As we mentioned in Section (1.2) , the invariant probability of the environ-
ment’s chain in the ballistic case (5) is absolutely continuous with respect to
the law of the environment P, see (Molchanov, 1994, P. 273). To the best of our
knowledge, the one we find here is the first one to be obtained as a limit in the
case of zero velocity, and it is singular with respect to P.

The proof of Theorem (1.1) is partially inspired by the paper of Gantert et al.
(2010) concerning the convergence in distribution of the centered local times
(ξ(n,bn+x)

n , x ∈ Z) to (ν̃(x), x ∈ Z). Based on the observation (see Sinaı̆ (1982),
Zeitouni (2004)), that at each single site around the bottom bn the walk spends
an asymptotically positive amount of time proportional to the weight of the site
with respect to the invariant measure, these local times, similarly to Gantert
et al. (2010), can be approximated in probability by the normalized invariant
measure of the walk µ, given by (11). So finally the question of the convergence
of the empirical measure Sn (19) can be reduced to the question of the conver-
gence in distribution to

(
exp−Ṽ (x) ; x ∈Z)

of the sequence of random vectors
(Ξn) given by

Ξn = (
exp[−(V (bn +x)−V (bn))]1{−bn ,...,cn−bn−1}(x) ; x ∈Z)

(24)

in the space ℓ1 = {(ℓ(x), x ∈Z;
∑

x∈Z |ℓ(x)| <∞}. Note that the fidi convergence
here is known since Golosov (1984), Bertoin (1993), but the fact that the se-
quence (Ξn) is tight in ℓ1, proved in Theorem 1.4, is new. Showing this tight-
ness boils down to showing that the potential’s increments grow fast enough
when x → ±∞. This is done in Proposition 1.3 bellow. This result continues
a series of papers about the random walk conditioned to stay positive, as the
increments on the right of bn have the same law that V , conditioned to reach
logn+

√
logn before 0−. These subjects were actively studied in the nineties, see

Bertoin (1993), Bertoin and Donney (1994), Tanaka (1989), Ritter (1981). Most
of these papers deal with the convergence of finite dimensional distributions,
or study the law of the limit walk, but as the size of the main valley tends to the
infinity, the fidi convergence is not sufficient here. Proposition 1.3 is a key new
technical result of the paper. Note that the tightness of (Ξn) is also needed in
Gantert et al. (2010), but is missing there. Hence together with Proposition 1.3
Theorem 1.4 completes the proof of Theorem 1.2 of Gantert et al. (2010).

Proposition 1.3. Suppose that Assumptions (I) and(II) are satisfied. Then the
following holds:

i) For all η ∈]0,1/2[ and δ> 0,

lim
K→+∞

liminf
n→∞ P

(
V (bn +x)−V (bn) ≥ δxη, ∀x ∈ �K ,cn −bn�

)= 1.
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ii) Moreover,

lim
K→+∞

liminf
n→∞ P

(
V (bn −x)−V (bn) ≥ 2log x, ∀x ∈ �K ,bn�

)= 1.

This proposition is proven in Section (3). Denote by PΞn the law of Ξn on
(ℓ1,∥ ·∥1).

Theorem 1.4. Suppose that Assumptions (I) and (II) are satisfied. Then the se-
quence PΞn is relatively compact in (ℓ1,∥ · ∥1). As a consequence, the sequence
PΞn converges weakly to the law of {exp[−Ṽ (x)] ; x ∈Z} in (ℓ1,B(ℓ1)).

1.5. Structure of the paper

Section 2 is devoted to the proof of Theorem 1.1. Section 3 deals with the
properties of the random walk conditioned to stay positive. Here we prove the
main new technical ingredient, Proposition 1.3, and the tightness result, Theo-
rem 1.4. Section 4 deals with the properties of the invariant measure of the en-
vironment’s chain, Proposition 1.2. In Section5 we show how the environment’s
method can be deduced from Theorem1.1. There we prove the LLN, Proposi-
tion (5.1), and the convergence to the mixture of Gaussian laws, Proposition
5.2, for normalized sums

∑n
k=1 f (ω(Xk ),∆Xk ). Finally Supplementary material,

Section 6 contains the proof of an important auxiliary result, Proposition 2.1,
which gives an approximation in probability of an additive functional of the
environment’s chain by a functional depending only on the environment.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof is based on
the approximation in probability of an additive functional of the environment’s
chain by a functional depending on the environment only, which is the content
of Subsection 6, Proposition 2.1. Then in Subsection 2.2 we give the proof of
Theorem 1.1, explaining its main steps.

2.1. Approximation in probability of
∫
ΩF dSn .

Let X̃n = (X̃ n
t )t∈N be the Markov chain with value in {0, . . . ,cn}, reflected in 0

and cn and with transition given by

p̃ω,n(x, x +1) =ωx , p̃ω,n(x, x −1) = 1−ωx ; ∀x ∈ {1, . . . ,cn −1}.
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For x ∈ {0, . . . ,cn} we denote by P̃ω,n
x the law of this chain starting from x. The

idea of the proof of Theorem 1.1 consists in considering the original walk X
only after it reaches bn and before it exits [0,cn], i.e. to replace X with X̃n , since
on the time interval [0,n] it turns out to be a good approximation in probability.
The advantage to work with X̃n is in the fact that it is irreducible, positively re-
current with the invariant probability µn defined by (29). As a consequence the
decomposition on the i.i.d. cycles between successive visits of a given state can
be used to obtain the deviation of an additive functional, as well as some well
known formulas linking the invariant probability and the expectation of hitting
times. The idea to replace X by X̃n is borrowed from Gantert et al. (2010), but
the use of this idea, namely trough the life-cycles decomposition, is different.

Proposition 2.1. Let Sn be given by (19) and Σn by (30). For any continuous
F : [0,1]2m+1 →R and all ε> 0 we have

P (|Sn(F )−Σn(F )| > ε) → 0.

The proof of Proposition 2.1 is given in Supplementary material, Section 6.

2.2. Proof of Theorem 1.1

Proof. Recall that E denotes the expectation with respect to the law of Ṽ . By
definition, claim (22) is equivalent to

lim
n→∞EG(Sn) = EG(S∞) (25)

for all bounded continuous G : P (Ω) → R. We first observe that it is sufficient
to prove (25) for all G of the form

G(S ) =
n∑

l=1

(∫

Ω
F1dS × . . .×

∫

Ω
Fl dS

)
, S ∈P (Ω) (26)

with arbitrary integers n, m, l and continuous Fk : [0,1]2m+1 → R (1 ≤ k ≤ l ).
Indeed, with d defined by (21) (Ω,d) is a compact separable metric space and
hence (P (Ω),ρ), endowed with the Prohorov metric ρ, is a compact separable
metric space too. The set G of functions G of the form (26) is an algebra of con-
tinuous functions on the compact metric space P (Ω) which contains constant
functions and separates the points. By Stone-Weierstrass Theorem, this set is
dense in the space C (P (Ω);R) for the supremum norm, and then it suffices to
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prove (25) for such G . This, in turn, is equivalent to prove the following conver-
gence in distribution:

(∫

Ω
F1dSn , . . . ,

∫

Ω
Fl dSn

)
L−→

(∫

Ω
F1dS∞, . . . ,

∫

Ω
Fl dS∞

)
. (27)

Using the Cramer-Wold device (27) is equivalent to

∀(t1, . . . tl ) ∈Rl ,
l∑

i=1
ti

∫

Ω
Fi dSn

L−→
l∑

i=1
ti

∫

Ω
Fi dS∞,

and finally, as
∑l

i=1 ti Fi is a continuous function on Ω, depending only on a
finite number of coordinates, we only need to prove that

∀m ∈N∗, ∀F ∈Cb([0,1]2m+1),
∫

Ω
F dSn

law−→
∫

Ω
F dS∞. (28)

Below we give the proof of (28), which is separated in 3 main steps.

Step 1. Approximation in probability of
∫
ΩF dSn .

For F as in (28), using (18) and (19) we can write Sn(F ) in the ‘spatial’ form

Sn(F ) =
∑
x∈Z

F (Txω)
ξ(n, x)

n
=

∑
x∈Z

F (ω(−m +x), . . . ,ω(m +x))
ξ(n, x)

n
.

Fix n ∈N∗ and denote µn =µωn the random probability measure on Z+, s.t.

µn(x) :=





1
Zn

(
e−V (x) +e−V (x−1)

)
if 0 < x < cn ,

1
Zn

if x = 0,
1

Zn
e−V (cn−1) if x = cn ,

0 if x ∉ {0, . . . ,cn},

(29)

where Zn = 2
∑cn−1

x=0 e−V (x), and cn and V are respectively defined by (12) and

(10). The local times ξ(n,x)
n , x ∈ Z+ can be approached in probability by the

quantities µn(x), x ∈ Z+ . This argument was found by Gantert et al. (2010).
Here we show that more generally, the additive functional Sn(F ) can be ap-
proached in probability by Σn(F ) = ∫

ΩF dΣn with

Σn =
∑

x∈Z
µn(x)δTxω . (30)

12



Proposition 2.1 states that ∀ε> 0,

P (|Sn(F )−Σn(F )| > ε) → 0. (31)

Note that Sn depends on the walk and on the environment, whereas Σn de-
pends only on the environment. The next two steps allow to show the conver-

gence in law: Σn(F )
L−→S∞(F ).

Step 2. Expressing Σn(F ) as a continuous function of a weakly convergent se-
quence.
Note that

Σn(F ) =
∑
x∈Z

F (Txω)µn(x) =
∑
x∈Z

F (Tbn+xω)µn(bn +x).

Remember that we denoted Ξn the random element in ℓ1 given by:

Ξn := {
exp[−(V (bn +x)−V (bn))]1{−bn ,...,cn−bn−1}(x) ; x ∈Z }.

Bothµn(bn+x) andω(bn+x) : x =−bn , . . . ,cn−bn−1 can be expressed in terms
of Ξn :

µn(bn +x) =Ξn(x)+Ξn(x −1)

2
∑

y∈ZΞn(y)
,

and

ω(bn +x) = Ξn(x)

Ξn(x)+Ξn(x −1)
.

Thus, Σn(F ) = HF (Ξn) where HF : ℓ1 → R is continuous. In Theorem 1.4 we
showed that the distribution ofΞn converges weakly to that of {exp[−Ṽ (x)] ; x ∈
Z} in this space. Together with the continuity on ℓ1 ofΣn(F ) = HF (Ξn) that gives
the convergence in law

Σn(F )
L−→S∞(F ). (32)

Step 3. Conclusion: Using (31) and (32) we conclude that Sn(F )
L−→ S∞(F ).

This ends the proof of Theorem 1.1.
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3. Random walk conditioned to stay positive and weak convergence to the
infinite valley

In this section we prove Proposition 1.3 and Theorem 1.4. Note that the idea
of the proof of i i ) is the decomposition of the dynamic on the i.i.d. cycles cor-
responding to the strict descending ladders, whereas the proof of i ) is partialy
inspired by Ritter (1981).

3.1. Proof of of Proposition 1.3

Proof. We start by proving i i ). Let T0 := 0 and for all ℓ ∈N∗, put

Tℓ+1 := inf{y > Tℓ, V (y) <V (Tℓ)}.

The sequence (Tℓ)ℓ∈N is the sequence of the strict descending ladder epochs of
V. Let

eℓ = ((V (z)−V (Tℓ−1)), Tℓ−1 ≤ z < Tℓ), ℓ ∈N∗.

Using the strong Markov property of V , the sequence of excursions (eℓ), ℓ ∈N∗

is an i.i.d. sequence. Let N (n) be a random time, such that bn defined by (13)
satisfies bn = TN (n). Namely, setting as previously Ln := logn +

√
logn, we have

following Golosov (1984) p.492,

N (n) := inf{ℓ ∈N∗; max{V (z)−V (Tℓ−1); Tℓ−1 ≤ z < Tℓ} ≥ Ln}.

Due to the independence and the equidistribution of the excursions (eℓ), ℓ ∈
N∗, the random variable N (n) is geometrically distributed with the parameter

pn :=P(τLn < τ0−), where (33)

τLn := inf{z > 0, V (z) ≥ Ln} and τ0− := inf{z > 0; V (z) < 0}.

Denote also
τℓ0− := τ0− ◦θTℓ and τℓLn

:= τLn ◦θTℓ .

With this notation τ0
0− := τ0− and τ0

Ln
:= τLn . We also denote σℓ := Tℓ−Tℓ−1 and

Hℓ := V (Tℓ)−V (Tℓ−1) respectively the length and the high of the ℓ-th ladder.
Let K ∈N∗ and

C (K ,n) : = {∀x = K , . . . ,bn , V (bn −x)−V (bn) ≥ 2log x}

= {∀y = 0, . . . ,bn −K , V (y)−V (bn) ≥ 2log |y −bn |}.
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Keeping in mind the relation bn = TN (n), we can observe that

C (K ,n) = (34)

{∀ℓ= 0, . . . N (n)−1; |Tℓ−TN (n)| ≥ K ; V (Tℓ)−V (TN (n)) ≥ 2log |Tℓ−TN (n)|}

Indeed, let ℓ(y) ∈N be the number of ladder excursions containing y , i.e.
Tℓ(y) ≤ y < Tℓ(y)+1, then using the fact that the function x → 2log x is increasing
on R+, V (y) ≥ V (Tℓ(y)) and V (Tℓ)−V (TN (n)) ≥ 2log |Tℓ−TN (n)| for all ℓ ∈N, we
have

V (y)−V (TN (n)) =V (y)−V (Tℓ(y))+V (Tℓ(y))−V (TN (n)) ≥
2log |Tℓ(y) −TN (n)| ≥ 2log |y −TN (n)|.

Which proves (34).
Now we can write:

P(C c (K ,n)) =
∞∑

N=1
P(∃ℓ= 0, . . . , N −1, TN −Tℓ ≥ K , V (Tℓ)−V (TN ) < 2log |Tℓ−TN |; N (n) = N ) ≤

M∑
N=1

P(N (n) = N )+
∞∑

N=M+1
P(∃m = 1, . . . , M , TN −TN−m ≥ K ; N (n) = N )+

∞∑
N=M+1

P(∃m = M +1, . . . , N , TN −TN−m ≥ exp
1

2
(V (TN )−V (TN−m)) ; N (n) = N ) :=

S1(n, M)+S2(K ,n, M)+S3(n, M).

Here in the third line we denoted m = N −ℓ the number of ‘ladder’ between TN

and Tℓ, and the auxiliary M ∈N∗ will be choosen later. We obviously have

S1(n, M) =
M∑

N=1
(1−pn)N−1pn ∼ M pn → 0 if n →∞. (35)

For the second sum we can write

S2(K ,n, M) :=
∞∑

N=M+1
P(∃m = 1, . . . , M , TN −TN−m ≥ K ; N (n) = N ) ≤

∞∑
N=M+1

P(TN −TN−M ≥ K ; N (n) = N ) =
∞∑

N=M+1
P(σN−M+1 + . . .+σN ≥ K ; N (n) = N ) ≤

∞∑
N=M+1

N∑
ℓ=N−M+1

P(σℓ ≥ K /M ; N (n) = N ).
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The event {N (n) = N } can be written as

{N (n) = N } = {τ1
0− < τ1

Ln
; . . . ;τN−1

0− < τN−1
Ln

;τN
0− > τN

Ln
}.

Let cSp > 0 be such that ∀a > cSp , P(τ0− > a) ≤ C a−1/2, where C is a positive
constant. Following Spitzer (1960) we can choose such a constant cSp . Since
K → ∞, for all M > 0, K /M > cSp will be satisfied. Then, using the indepen-
dence of the ladder excursions, together with the definition (33), we can write

P(σℓ ≥
K

M
; N (n) = N ) ≤P(σℓ ≥

K

M
∩τℓ0− < τℓLn

)pn(1−pn)N−2 ≤C

√
M

K
pn(1−pn)N−2.

Using this bound we see that

S2(K ,n, M) ≤
∞∑

N=M+1

C (M)3/2pn(1−pn)N−2

p
K

= C (M)3/2(1−pn)M−1

p
K

≤ C (M)3/2

p
K

.

(36)
Finally

S3(n, M) = (37)
∞∑

N=M+1
P(∃m = M +1, . . . , N , TN −TN−m ≥ exp

1

2
(V (TN )−V (TN−m)) ; N (n) = N ) ≤

∞∑
N=M+1

N∑
m=M+1

P(σN−m+1 + . . .σN > exp
1

2
(HN−m+1 + . . .+HN ) ; N (n) = N ) ≤

≤
∞∑

N=M+1

N∑
m=M+1

N∑
ℓ=N−m+1

(1−pn)N−m pnP(mσℓ > exp
1

2

N∑
k=N−m+1; k ̸=ℓ

Hℓ) (38)

Where in the last line we used the independence of the excursions and the
fact that Hk > 0. The term (1− pn)N−m pn comes from N (n) = N , where the
N −m first excursion are independent of the m last, and hence of the event
σN−m+1 + . . .σN > exp 1

2 (HN−m+1 + . . .+HN ), whereas pn appears because the
excursion corresponding to the ‘success’ is after TN (n). Note that we used Hℓ > 0
to get rid of Hℓ in the exponential. In this way σℓ is independent of the sum
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∑N
k=N−m+1; k ̸=ℓ Hk . Now using Markov inequality,

S3(n, M) ≤ (39)
∞∑

N=M+1

N∑
m=M+1

N∑
ℓ=N−m+1

(1−pn)N−m pnP(mσℓ > exp
1

2

N∑
k=N−m+1; k ̸=ℓ

Hk ) ≤

∞∑
N=M+1

N∑
m=M+1

(1−pn)N−m pnm2Eσ1(Ee−1/2H1 )m−1 ≤

∞∑
N=M+1

(1−pn)N−M pn

N∑
m=M+1

m2e−mc ≤
∞∑

N=M+1
(1−pn)N−M pne−Mc ′ ≤ e−Mc ′

And finally putting together (35), (36) and (39)

P(C c (K ,n)) =

S1(n, M)+S2(K ,n, M)+S3(n, M) ≤ M pn + M 3/2

p
K

+e−Mc ′ .

We first choose M large enough, such that e−Mc ′ ≤ ε. Then we get

lim
K→∞

limsup
n→∞

P(C c (K ,n)) ≤ ε

and since ε> 0 is arbitrary, this concludes the proof of ii).
Now we prove i ).

Recall that V (x) = ∑x
y=1 logρy if x > 0, and (logρy )y∈Z are i.i.d. and centered.

Denote

τln = inf
{

x ∈Z+, V (x) ≥ logn +
√

logn
}

, τ0− = inf
{

x ∈Z+, V (x) < 0
}

.

Using the strong Markov property,

L ({V (bn+x)−V (bn), x = K−bn , . . . ,cn−bn}) =L ({V (x), x = K , . . . ,τln|τln < τ0−}) .

Hence we have to prove

lim
K→+∞

inf
n
P

(
V (x) ≥ δxη, ∀x = K , . . . ,τln ∧τ0− |τln < τ0−

)= 1.

or equivalently

lim
K→+∞

sup
n

P (∃x ≥ K , x < τln ∧τ0−, V (x) < δxη, τln < τ0−)

P (τln < τ0−)
= 0. (40)
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Let c > 1 be an integer such that ∀a > c, P(τ0− > a) ≤ C a−1/2, where C is a
positive constant. Following Spitzer Spitzer (1960) we can choose such a con-
stant c. For r ∈N∗, denote Cr the following event

Cr := {∃x ∈ [cr−1,cr [; x < τln ∧τ0−; V (x) < δxη; τln < τ0−}

and denote for x ∈ [cr−1,cr [

Ax := {∀z ∈ [cr−1, x[; Vz ≥ δzη; V (x) < δxη; x < τn ∧τ0−}

Note that Ax are disjoint for x ∈ [cr−1,cr [ and that

Cr :=
cr −1⋃

x=cr−1

{Ax ∩ {τln < τ0−}} .

For all x ∈N, denote P :=P0, Fx =σ{V0, . . . ,Vx}. Denote Ln = logn +
√

logn.
It is easy to see that

∀0 ≤ y < Ln , Py (τln < τ0−) ≤ y + c0

Ln

for some positive constant c0 = supn,y≥0Ey (−V (τ0−) | τ0− < τln). Indeed, using
Doob stopping theorem, and the fact that VτL > L,

Py (τln < τ0−) = y −Ey [Vτ0− | τ0− < τln]

Ey [VτL | τL < τ0−]−Ey [Vτ0− | τ0− < τln]
.

Since the event {τln < τ0−} is invariant under shift, using Markov property
we can write:

P0 (Ax ∩ {τln < τ0−}) = E0 [P0 (Ax ∩ {τln < τ0−}|Fx)] =
E0

(∀z ∈ [cr−1, x[; Vz ≥ δzη; V (x) < δxη; x < τln ∧τ0−; PVx (τln < τ0−)
)≤

P0
(∀z ∈ [cr−1, x[; Vz ≥ δzη; V (x) < δxη; x < τln ∧τ0−

)
(δxη+ c0)(Ln)−1 =

P(Ax)(δxη+ c0)(Ln)−1.

Hence, using the fact that Ax are disjoint and that

∀x = cr−1, . . . ,cr −1; Ax ⊂ {τ0− > x} ⊂ {τ0− > cr−1},
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with our choice of c, we have

P(Cr ) =
cr −1∑

x=cr−1

P (Ax ∩ {τln < τ0−}) ≤ δcrη+ c0

Ln

cr −1∑
x=cr−1

P (Ax) =

δcrη+ c0

Ln
P

(
cr −1⋃

x=cr−1

Ax

)
≤ δcrη+ c0

Ln
P

(
τ0− > cr−1)≤

C
p

c(δcr (η−1/2) + c0c−r /2)(Ln)−1.

Finally, for any n and R ≥ 2,

P
(∃x > cR−1; x < τln ∧τ0−; V (x) < δxη; τln < τ0−

)≤
∞∑

r=R
P(Cr ) ≤C1(δ+ c0c−Rη)cR(η−1/2)(Ln)−1,

and (40) follows from P0(τln < τ0−) ∼ (Ln)−1.

3.2. Proof of Theorem 1.4

Using Proposition 1.3 we prove the tightness result for the potential incre-
ments (Ξn) given by (24).

Proof. Recall that (ℓ1,∥.∥1) is a complete separable metric space and hence ,
using Prohorov’s theorem (Billingsley (1999)), the sequence of distributions PΞn

is relatively compact if and only if it is tight. Recall also the characterization of
the compacts in (ℓ1,∥.∥1) :

K ⊂ ℓ1 is compact ⇐⇒ sup
l∈K

∥l∥1 <∞ and lim
N→∞

sup
l∈K

∑
|x|≥N

|lx | = 0.

Let η ∈ (0,1/2), K > 0. Denote

K (η,K ) := {l ∈ ℓ1; |lx | ≤ 1; lx ≤ 1

x2
, ∀x ∈Z−∩{|x| ≥ K }; lx ≤ e−|x|η , ∀x ∈Z+∩{|x| ≥ K }}.

K (η,K ) is a compact in ℓ1. As a consequence of Proposition 1.3, for n large
enough P(Ξn ∈K (η,K )) ≥ 1−ε and the sequence PΞn is tight.

From Golosov (1984) the following convergence of finite dimensional dis-
tributions (fidi) holds:

Ξn = {
exp[−(V (bn +x)−V (bn))] ; x ∈Z} fidi−→ {

exp[−Ṽ (x)] ; x ∈Z}
.
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Using bn →∞ a.s. and cn −bn →∞ a.s., the finite dimensional distributions of
Ξn converge weakly to those of {exp[−Ṽ (x)] ; x ∈Z} . Denote by M the class of
continuous, bounded, finite-dimensional functions:

M :=
⋃

k∈N∗

{
f ∈Cb(ℓ1) : f (li ) = f (l ′i ) ∀i ∈ �−k,k� =⇒ f (l ) = f (l ′)

}
.

It is clear that M separates points: if l ∈ ℓ1, l ′ ∈ ℓ1, l ̸= l ′, that there exists f ∈M ,
such that f (l ) ̸= f (l ′). Since (ℓ1,d) is separable and complete, and M sepa-
rates points, using Theorem 4.5 from Stewart N. Ethier (2005) M is separating.
Now the claim follows directly from proposition (1.4) and lemma 4.3 of Stewart
N. Ethier (2005).

4. Proof of Proposition 1.2

Proof. To show reversibility, we need to prove that for the chain starting from
ω̄0 ∼Q, defined by (23),

EF (ω̄0)G(ω̄1) = EF (ω̄1)G(ω̄0) (41)

for F,G continuous and bounded onΩ. Let P̃ denote the law of ω̃. By definition
(3) of the transition R, the LHS in (41) is equal to
∫

Ω
d P̃(ω̃)

∑
x∈Z

ν̃(x)F (Txω̃)
[
ω̃(x)G(Tx+1ω̃)+ (1− ω̃(x))G(Tx−1ω̃)

]

=
∫

Ω
d P̃(ω̃)

[ ∑
x∈Z

ν̃(x)F (Txω̃)ω̃(x)G(Tx+1ω̃)+
∑
x∈Z

ν̃(x)F (Txω̃)(1− ω̃(x))G(Tx−1ω̃)
]

=
∫

Ω
d P̃(ω̃)

[ ∑
x∈Z

ν̃(x +1)F (Txω̃)(1− ω̃(x +1))G(Tx+1ω̃)+
∑
x∈Z

ν̃(x −1)F (Txω̃)ω̃(x −1)G(Tx−1ω̃)
]

=
∫

Ω
d P̃(ω̃)

[ ∑
y∈Z

ν̃(y)F (Ty−1ω̃)(1− ω̃(y))G(Ty ω̃)+
∑
z∈Z

ν̃(z)F (Tz+1ω̃)ω̃(z)G(Tzω̃)
]
,

where in the third line we used the relation

ν̃(x −1)ω̃(x −1) = ν̃(x)(1− ω̃(x)) (42)

and we changed the variables y = x+1, z = x−1 in the last one. The last expres-
sion being the RHS of (41), we obtain reversibility of Q, which implies invari-
ance by taking G = 1. Finally consider the event

Ω+ =
{
ω ∈Ω :

x∑
y=1

log
1−ω(y)

ω(y)
≥ 0 ∀x ≥ 1

}
.
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By construction of Ṽ and since V is a mean-zero random walk underP, we have

Q(Ω+) = 1, P(Ω+) = 0 ,

so the two measures are mutually singular.

Remark 4.1. From the proof of reversibility we see that there exist many invari-
ant measures by the transition R. Indeed, the proof works thanks to the relation
(42), (which means the reversibility of the measure ν̃ with respect to the walk in
the environment ω̃) and thanks to the fact that

∑
x∈Zexp[−Ṽ (x)] finite a.s. . As a

consequence for any V̂ (in the place of Ṽ ), ω̂ and ν̂ defined with the help of V̂ us-
ing (15),(16) the measure on Ω given by E

∑
x∈Z ν̂(x)δTx ω̂, where the expectation

is taken w.r.t. to the law of V̂ , is reversible for R.

5. Examples

In this section we give some examples of application of Theorem1.1. All
these applications deal with the limit behavior of properly normalized sums

S f
n = ∑n

k=1 f (ω(Xk ),∆Xk ), for which we perform a decomposition, represent-

ing S f
n as a sum of martingale and an additive functional of the environment’s

chain. For such a functional we can apply our ergodic theorem ( Theorem 1.1).
In this sense, this is an extension of the environments method of Kozlov and
Molchanov (1984) to the recurrent RWRE.

5.1. Law of large numbers for functions of the environment seen from the parti-
cle and steps

Proposition 5.1. Let f :Ω× {−1;1} →R, bounded. Denote ∆Xk = Xk+1 −Xk , k ∈
N. Then the following convergence in distribution under annealed probability
holds :

1

n

n∑
k=1

f (ω(Xk ),∆Xk )
L−→

∑
x∈Z

(
f (w̃x ,1)ω̃x + f (w̃x ,−1)(1− ω̃x)

)
ν̃(x), n →∞.

In particular, if f does not depend on ω, f : {−1;1} → R, then the following con-
vergence in annealed probability holds :

1

n

n∑
k=1

f (∆Xk )
P−→ f (1)+ f (−1)

2
, n →∞.
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Proof. Denote
Fn =σ{∆X0, . . . ,∆Xn , ω(X0), . . . ,ω(Xn+1)}

and let’s write the martingale difference decomposition :

1

n

n∑
k=1

f (ω(Xk ),∆Xk ) = 1

n

n∑
k=1

Dk +
1

n

n∑
k=1

E( f (ω(Xk ),∆Xk )|Fk−1). (43)

Where
Dk := f (ω(Xk ),∆Xk )−E( f (ω(Xk ),∆Xk )|Fk−1); k ∈N

is centered conditionally to Fk−1, measurable with respect to Fk , uniformly
bounded random variable. As a consequence (Dk );k ∈ N, are bounded, non-
correlated and

1

n

n∑
k=1

Dk
L2

−→ 0. (44)

Remark that

E( f (ω(Xk ),∆Xk )|Fk−1)) = f (ω(Xk ),1)ω(Xk )+ f (ω(Xk ),−1)(1−ω(Xk )).

Theorem 1.1 gives the following convergence in distribution :

1

n

n∑
k=1

E( f (ω(Xk ),∆Xk )|Fk−1)
L−→

∑
x∈Z

(
f (ω̃x ,1)ω̃(x)+ f (ω̃x ,−1)(1− ω̃(x))

)
ν̃(x).

(45)
When f does not depend on ω, the previous limit becomes

1

n

n∑
k=1

E( f (∆Xk )|Fk−1)
L−→

∑
x∈Z

(
f (1)ω̃(x)+ f (−1)(1− ω̃(x))

)
ν̃(x) = f (1)+ f (−1)

2
.

Indeed, using the definitions (16) and (15) ,

∑
x∈Z

ω̃(x)ν̃(x) =
∑
x∈Z

(1− ω̃(x))ν̃(x) = 1

2
.

Using (44) and (45) together in (43) this completes the proof.

Proposition 5.2. Let f : Ω× {−1;1} → R, bounded. Then the following conver-
gence in distribution holds:

1p
n

n∑
k=1

(
f (ω(Xk ),∆Xk )− f (ω(Xk ),1)ω(Xk )− f (ω(Xk ),−1)(1−ω(Xk ))

) L−→ Z ,
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where Z is a random variable with the characteristic function

φZ (t ) = E(exp(−1

2
η2t 2),

and η is a random variable distributed as:

η2 L=
∑
x∈Z

( f (w̃x ,1)− f (ω̃x ,−1))2ω̃(x)(1− ω̃(x))ν̃(x).

That is Z
L= ηU where η and U are independent and U ∼N (0,1).

In particular, if f does not depend on ω, f : {−1;1} → R, then the following
convergence in distribution holds:

1p
n

n∑
k=1

(
f (∆Xk )− f (1)ω(Xk )− f (−1)(1−ω(Xk ))

) L−→ Z ,

where Z is a random variable with the characteristic functionφZ (t ) = E(exp(−1
2η

2t 2),

andη is a random variable defined by: η2 L= ( f (1)− f (−1))2 ∑
x∈Z ω̃(x)(1−ω̃(x))ν̃(x).

That is Z
L= ηU where η and U are independent and U ∼N (0,1).

Proof. In this proof we will rely on Theorem 3.4 from Hall and Heyde (1980) and
use their notation. Define

Dnk := 1p
n

(
f (ω(Xk ),∆Xk )−E( f (ω(Xk ),∆Xk )|Fk−1)

)
.

Let Sn0 = 0, Sni = ∑i
k=1 Dnk and put for i = 1, . . . ,n, Fni := Fi . Then Sni is

adapted to Fi . Let U 2
ni =

∑i
k=1 D2

nk . Denote

Gn =σ{ω(X0), . . . ,ω(Xn+1)},

Clearly Gn ⊂Fn . Let for i = 1, . . . ,n,

Gn,i :=Fni ∨Gn =Fi ∨Gn =σ(∆X1, . . . ,∆Xi ,ω(X0), . . . ,ω(Xn+1)}.

Moreover,

max
i=1...n

|Dni | ≤
2∥ f ∥p

n
−→ 0 and E

(
max

i=1...n
|Dni |2

)
≤ 2∥ f ∥2

n
. (46)

23



Define a random sequence (u2
n) by

u2
n =

n∑
k=1

E
(
D2

nk |Fk−1
)

.

It is easy to see that

E
(
D2

nk |Fk−1
)= 1

n
( f (ω(Xk ),1)− f (ω(Xk ),−1))2ω(Xk )(1−ω(Xk )),

hence the sequence (u2
n) is (Gn)-adapted. In order to show the following con-

vergence in probability ( condition (3.28) of Theorem 3.4 from Hall and Heyde
(1980)):

U 2
nn −u2

n =
n∑

k=1

(
D2

nk −E(D2
nk |Fk−1)

) P−→ 0, (47)

we remark that
(
D2

nk −E(D2
nk |Fk−1)

)
; k = 1, . . . ,n, are bounded, centered con-

ditionally on Fk−1, (Fk )− adapted and hence non correlated. Hence, using
(46), U 2

nn −u2
n converges to 0 in L2 :

E

(
n∑

k=1

(
D2

nk −E(D2
nk |Fk−1)

)
)2

=
n∑

k=1
E

(
D2

nk −E(D2
nk |Fk−1)

)2 ≤ 2n∥ f ∥4

n2
→ 0.

Then for all i = 1. . .n, E
(
Dni |Gn,i−1

) = 0, and the condition (3.29) of Theorem
3.4 from Hall and Heyde (1980) is satisfied. Applying Theorem (1.1) we see that

u2
n = 1

n

n∑
k=1

( f (ω(Xk ),1)− f (ω(Xk ),−1))2ω(Xk )(1−ω(Xk ))
L−→

∑
x∈Z

( f (ω̃x ,1)− f (ω̃x ,−1))2ω̃(x)(1− ω̃(x))ν̃(x).

Using (47),

U 2
nn = (U 2

nn −u2
n)+u2

n
L−→

∑
x∈Z

( f (ω̃x ,1)− f (ω̃x ,−1))2ω̃(x)(1− ω̃(x))ν̃(x).

and the theorem follows.

Example I. Suppose that ω(x) ∈ A, where A is countable and let a ∈ A. Then
using Proposition (5.1) we obtain

1

n

n∑
k=1

1(ω(Xk ) = a)1(∆(Xk ) = 1)
L−→ a

∑
x∈Z

1(ω̃x = a)ν̃(x) = aν̃(x : ω̃x = a)
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Moreover, using Proposition (5.2),

1p
n

n∑
k=1

1(ω(Xk ) = a) [1(∆(Xk ) = 1)−a]
L−→

√
a(1−a)ν̃(x : ω̃x = a)Z ;

where Z ∼N (0,1) is independent of ν̃(x : ω̃x = a).
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SUPPLEMENTARY MATERIAL
The supplement contains the additional Section 6. We prove there the cru-

cial Proposition 2.1 used in the proof of Theorem 1.1. This proposition allows to
approximate an additive functional of the environment’s chain by a functional
depending only on the environment.

6. Proof of the approximation in probability of
∫
ΩF dSn .

Proof. Let n ∈N∗ and ω ∈Ω be fixed. Denote T 0 = 0. For y ∈Z+, ∀k ≥ 1, denote

T k
y := inf{t > T k−1

y , X t = y}

We shorten Ty := T 1
y . Using the recurrence of X, T k

y <∞ P−a.s. Denote kn the
number of visits of bn by the walk before the time n :

kn := ξ(n,bn) =
n∑

t=0
1(X t = bn).

As µn is an invariant probability of (X̃ n), kn/n can be compared with µn :

Pω
0

(∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣> ε
)
≤ (48)

Pω
0

(∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣> ε, Tbn < nε/2, Tcn > n

)
+Pω

0

(
Tbn ≥ nε/2

)+Pω
0

(
Tcn ≤ n

)
.

For the first term of the inequality (48) we can write:

Pω
0

(∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣> ε, Tbn < nε/2, Tcn > n

)
≤ Pω

0 (B1)+Pω
0 (B2); (49)

Where we have denoted

B1 := {
kn ≥ [n(µn(bn)+ε)]+1, Tbn < nε/2, Tcn > n

}
;

B2 := {
kn ≤ [n(µn(bn)−ε)], Tbn < nε/2, Tcn > n

}
.

Both events B1 and B2 concern with the part of the trajectory X0, . . . , Xn , where
the value cn did not occur. Hence Pω

0 (Bi ) = P̃ω,n
0 (Bi ), i = 1,2. Then, using the
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definition of (T k
bn

), strong Markov property and Markov inequality, for n ≥ 2/ε

Pω
0 (B1) = P̃ω,n

0 (B1) ≤ P̃ω
0

(
T [n(µn (bn )+ε)]+1

bn
≤ n

)
≤

P̃ω,n
0

(
[n(µn (bn )+ε)]∑

k=1
(T k+1

bn
−T k

bn
) ≤ n

)
≤ P̃ω,n

bn

(
[n(µn (bn )+ε)]∑

k=1
ηk ≤− nε−1

µn(bn)

)

≤
n(µn(bn)+ε)µ2

n(bn)Ṽω,n
bn

η1

(nε−1)2
≤ 4

(1+ε)

ε2

Ṽ
ω,n
bn

η1

n
, (50)

where
ηk = T k+1

bn
−T k

bn
−1/µn(bn)

are i.i.d. and centered under P̃ω,n
bn

, since µn is the invariant probability for the

irreducible positively recurrent chain X̃ n and Ẽω,n
bn

T 1
bn

= 1
µn (bn ) . Similar argu-

ments give

Pω
0 (B2) = P̃ω,n

0 (B2) ≤ P̃ω
0

(
T [n(µn (bn )−ε)]

bn
≥ n, Tbn < nε/2

)
≤

P̃ω,n
0

(
[n(µn (bn )−ε)]−1∑

k=1
(T k+1

bn
−T k

bn
) ≥ n(1−ε/2)

)
≤ P̃ω,n

bn

(
[n(µn (bn )−ε)]−1∑

k=1
ηk ≥ nε

2

)

≤ 4
n(µn(bn)−ε)Ṽω,n

bn
η1

n2ε2
≤ 4

(1−ε)

ε2

Ṽ
ω,n
bn

η1

n
. (51)

Finally, putting together (48), (49), (50) and (51) we get:

Pω
0

(∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣> ε
)
≤ 8

ε2n
Ṽ
ω,n
bn

Tbn +Pω
0

(
Tbn ≥ nε/2

)+Pω
0

(
Tcn ≤ n

)
. (52)

Note that for a fixedω ∈Ω,Σn(F ) =∑
x∈ZF (Txω)µn(x) is fixed. Denote for x ∈Z+

Fω(x) := F (Txω), Fω(x) := Fω(x)−Σn(F ) and ε̃= ε/3∥F∥∞.

We will first obtain a non-asymptotic bound on the quenched probability of the
deviation |Sn(F )−Σn(F )| =

∣∣ 1
n

∑n
k=0 F (TXkω)−Σn(F )

∣∣=
∣∣ 1

n

∑n
k=0 Fω(Xk )−Σn(F )

∣∣ .
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Pω
0

(∣∣∣∣∣
1

n

n∑
k=0

Fω(Xk )−Σn(F )

∣∣∣∣∣> ε
)
≤ Pω

0

(∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣> ε
)
+Pω

0

(
Tcn < n

)+

Pω
0

(
Tbn−1∑

k=0
|Fω(Xk )| > nε/3

)
+Pω

0




∣∣∣∣∣∣∣

T kn
bn

−1∑
k=Tbn

Fω(Xk )

∣∣∣∣∣∣∣
> nε/3,

∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣≤ ε, Tcn > n


+

Pω
0




n∑

k=T kn
bn

|Fω(Xk )| > nε/3, Tcn > n


 (53)

Using the definition of ε̃ we see that

Pω
0

(
Tbn−1∑

k=0
|Fω(Xk )| > nε/3

)
≤ Pω

0

(
Tbn > ε̃n

)
. (54)

The law of T kn+1
bn

−T kn
bn

conditionally on F
T kn

bn

is that of Tbn . Also, using the defi-

nition (29) we can see that µn(bn) ≥ 1/2cn . Hence, using again Ẽω,n
bn

T 1
bn

= 1
µn (bn ) ,

Pω
0




n∑

k=T kn
bn

|Fω(Xk )| > nε/3, Tcn > n


= P̃ω

0




n∑

k=T kn
bn

|Fω(Xk )| > nε/3, Tcn > n


≤

P̃ω
0




T kn+1
bn∑

k=T kn
bn

|Fω(Xk )| > nε/3


≤ P̃ω,n

bn

(
Tbn > nε̃

)≤ 1

nµn(bn)ε̃
≤ 2cn

nε̃
. (55)

Now we obtain a bound for the main term of the decomposition (53). Denote
for k ∈N∗,

ξk :=
T k+1

bn
−1∑

l=T k
bn

Fω(Xl ).

Under P̃ω,n
0 the random variables ξk ,k ∈N∗ are i.i.d. Their law is that of

∑Tbn−1
l=0 Fω(Xl )

under P̃ω,n
bn

and they are centered. Indeed, for an irreducible positively recur-
rent chain (Yk ) with an invariant probabilityµ, and f defined on the state space,

Ey

Ty−1∑
k=0

f (Yk ) =µ(F )Ey Ty ,
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see again Norris (1997) Theorems 1.7.6 and 1.7.7, which become here

Eω,n
bn

Tbn−1∑
l=0

Fω(Xl ) =µn(Fω(·))Eω,n
bn

Tbn =Σn(F )Eω,n
bn

Tbn .

Hence Mm := ∑m
k=1ξk ; m ∈ N∗ is a square-integrable martingale under P̃ω,n

0 .
Using Kolmogorov inequality we get:

Pω
0




∣∣∣∣∣∣∣

T kn+1
bn

−1∑
k=Tbn

Fω(Xk ))

∣∣∣∣∣∣∣
> nε/3,

∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣≤ ε, Tbn < εn, Tcn > n


≤ (56)

P̃ω,n
0

(∣∣∣∣∣
kn∑

k=1
ξk

∣∣∣∣∣> nε/3,

∣∣∣∣
kn

n
−µn(bn)

∣∣∣∣≤ ε
)
≤

P̃ω,n
0

(
sup

m=1,...,[n(µn (bn )+ε)]

∣∣∣∣∣
m∑

k=1
ξk

∣∣∣∣∣> nε/3

)
≤

9(µn(bn)+ε)Ṽω,n
bn

(ξ1)

nε2

Pluging in (53) the bounds (52), (54), (55) and (56) we obtain:

Pω
0 (|Sn(F )−Σn(F )| > ε) ≤

Pω
0

(
Tbn ≥ nε/2

)+Pω
0

(
Tbn ≥ nε̃

)+2Pω
0

(
Tcn ≤ n

)+
8

nε2
Ṽ
ω,n
bn

Tbn +
9(1+ε)Ṽω,n

bn
(ξ1)

nε2
+ 2cn

nε̃
.

To conclude the proof we need to estimate Ṽω,n
bn

(ξ1). For x ∈ Z+ introduce

Yx =
Tbn∑
j=0

1{x}(X j )

the local time in x during 1-th excursion from bn to bn . Note that under P̃ n
bn

,

ξ1 =
∑

x=0,...,cn

Fω(x)Yx (57)

and
Ṽ
ω,n
bn

(ξ1) ≤ (cn +1)∥Fω∥2
∞

∑
x=0,...,cn

Ṽ
ω,n
bn

(Yx).
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Taking Fω = 1 in (57) we get:

Ṽ
ω,n
bn

(Tbn ) ≤ (cn +1)
∑

x=0,...,cn

Ṽ
ω,n
bn

(Yx).

Using Lemma (6.1), which is given in Appendix, for all η > 0, there exists δ > 0
and an eventΩη,δ ⊂Ωwith P(Ωη,δ) > 1−η such that : ∀ω ∈Ωη,δ,∀x ∈ [0,cn],

Ṽ
ω,n
bn

(Yx) ≤ n1−δ .

The proof of Lemma 6.1 is given below. Note that the bound (2.13) on the vari-
ance of the similar quantity in Gantert et al. (2010) is not sufficient. As a conse-
quence, for all η > 0, there exists 1 > δ > 0, and a set Ωη,δ with P(Ωη,δ) > 1−η,
such that for all ω ∈Ωη,δ it holds

Pω
0 (|Sn(F )−Σn(F )| > ε) ≤C

c2
nn1−δ

n
+2Pω

0

(
Tbn ≥ (ε+ ε̃)n

)+2Pω
0

(
Tcn ≤ n

)
.

The last bound tends to zero. Indeed, from Golosov (1984), Lemma 1, Pω
0

(
Tbn > nε′

)→ 0
for all ω ∈ Ω and ε′ > 0. And from Golosov (1984), Lemma 7, for all ω ∈ Ω,
Pω

0 (T (cn) ≤ n) → 0.

In our proof we correct the crucial estimation of the variance of the number
of visits of a given state during one life cycle, formula (2.13) in Gantert et al.
(2010). It is done in following Lemma (6.1).

Recall the definition:

Yx =
Tbn∑
j=0

1{x}(X j )

Lemma 6.1. For all η> 0 there exists δ> 0 and an eventΩη,δ ⊂Ωwith

P(Ωη,δ) > 1−η

such that for all ω ∈Ωη,δ, for all x ∈ [0,cn],

Ṽ
ω,n
bn

(Yx) ≤ n1−δ .

Proof. Note that Ybn = 1. Using (2.10) of Gantert et al. (2010), for x ̸= bn we have
Ṽω(Yx) ≤ 4

β(x) , where

β(x) = (1−ωx)P̃ω,n
x−1 (T (bn) < T (x)) , x = bn +1, . . .cn ;
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β(x) =ωx P̃ω,n
x+1 (T (bn) < T (x)) , x = 0, . . . ,bn −1.

Then using Assumption II, (2.8) and (2.11) of Gantert et al. (2010) we can
find a constant C0 such that for y = 1, . . .cn −bn ,

Ṽω(Ybn+y ) ≤C0

bn+y−1∑
j=bn

eV ( j )−V (bn+y−1),

and for y =−bn , . . . ,−1,

Ṽω(Ybn+y ) ≤C0

bn−1∑
j=bn+y

eV ( j )−V (bn+y).

However the exponential is missing in the bound (2.13) of Gantert et al.
(2010), hence, to complete the proof we have to handle the term

Aω
n (x) :=

{ ∑bn+x−1
j=bn

eV ( j )−V (bn+x−1) if x = 1, . . .cn −bn ,
∑bn−1

j=bn+y eV ( j )−V (bn+y) if x =−bn , . . . ,−1

more carefully. Using Komlos-Mayor-Tusnady theorem we can construct a prob-
ability space (Ω,A ,P ) on which are defined the environmentω and a Brownian
motion W s.t. a.s.

sup
0≤s≤t

|V (s)−σWs | ≤C ln t ,

whereσ2 = E(logρ)2 and V (s), s ≥ 0, is defined equal to V ( j ) on [ j , j +1[, j ∈Z+.
Let t = cn , W (n)(s) = 1

σ lnn W (sσ2 ln2 n), b̄n = bn

σ2 ln2 n
, c̄n = cn

σ2 ln2 n
and ln2 := lnln.

Then we can write, with z =σ2 ln2 n ×u,

Aω
n (x) =

∫ bn+x−1

bn

exp{σ|W (z)−W (bn +x −1)|+O(lncn)}d z =

σ2 ln2 n
∫ b̄n+ x−1

σ2 ln2 n

b̄n

e{σ2 lnn[W (n)(u)−W (n)(b̄n+ x−1
σ2 ln2 n

)]}du ×e(O(lncn )).

Denote
∆n := max{W (n)(u)−W (n)(v); b̄n ≤ u ≤ v ≤ c̄n}

and
∆′

n := max{W (n)(u)−W (n)(v); 0 ≤ v ≤ u ≤ b̄n}
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It follows that

max{Aω
n (x), x = 0, . . . ,cn −bn} ≤ cn exp{σ2 lnn ×∆n +O(lncn)}.

Similarly, for x ∈ [−bn , . . . ,0],

max{Aω
n (x), x =−bn , . . . ,0} ≤ cn exp{σ2 lnn ×∆′

n +O(lncn)}.

And hence,

max{
ln Aω

n (x)

σ2 lnn
; x ∈ [−bn ;cn −bn]} ≤∆n ∨∆′

n +O(
lncn

lnn
). (58)

By Donsker theorem, (b̄n , c̄n ,W (n)) converges in distribution to (b̄, c̄,W̄ ), where
W̄ is a Brownian motion,

c̄ = inf{s ≥ 0, W̄ (s)− min
0≤t≤s

W̄ (t ) ≥ 1}

and
b̄ := inf{u ≥ 0, W̄ (u) = min

0≤t≤c̄
W̄ (t )}.

Therefore, (∆n ,∆′
n) converges in distribution to (∆,∆′), with

∆ := max{W̄ (u)−W̄ (v); b̄ ≤ u ≤ v ≤ c̄}

and
∆′ := max{W̄ (u)−W̄ (v); 0 ≤ v ≤ u ≤ b̄}

Both ∆ < 1 and ∆′ < 1 a.s., so ∆∨∆′ < 1 a.s. Using the monotonicity and again
Donsker theorem it follows that ∀η> 0, ∃δ> 0, such that

liminf
n→∞ P(∆n ∨∆′

n < 1−δ) > 1−η (59)

It follows from (59) and (58) that ∀η> 0,∃δ> 0, s.t.

liminf
n→∞ P( max

[−bn ,cn−bn ]
Aω

n (x) ≤ n1−δ) ≥ 1−η

Denote Ωη,δ := {ω ∈ Ω; max[−bn ,cn−bn ] Aω
n (x) ≤ n1−δ} such that P(Ωη,δ) > 1−η.

Suppose that ω ∈Ωη,δ. Then for all x ∈ [−bn ,cn −bn], ṼωYn(x) ≤ n1−δ.
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