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For Sinai's walk (X k ) we show that the empirical measure of the environment seen from the particle ( ωk ) = (ω(X k + x), x ∈ Z ) converges in law to some random measure S ∞ , explicitly given in terms of the infinite valley V , defined in Golosov (1984). As a consequence an 'in law' ergodic theorem holds:

This allows some extensions to the recurrent case of the 'environment method' of Kozlov and Molchanov (1984). In particular, we show the LLN and the CLT with the convergence to a mixture of Gaussians for n k=1 f (ω(X k ), X k+1 -X k ). The new ingredient is the convergence in distribution in ℓ 1 of the sequence (exp

where b n is the bottom of the main valley of the potential V , to (exp -V (x), x ∈ Z). Whereas the finite dimensional convergence here is known since Golosov (1984) and Bertoin (1993), the tightness result is new and relies on new estimations of the growth of the random walk conditioned to stay positive.
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Introduction, assumptions and main results

Model

Let ω = {ω(x); x ∈ Z} be a collection of i.i.d. random variables taking values in [0,1]. Denote Ω := [0, 1] Z , P the distribution of ω on (Ω, B(Ω)) and E the expectation under this law. For fixed ω ∈ Ω, let X = (X k ) k∈N be the timehomogeneous Markov chain on Z + with transition function p ω given by p ω (0, 1) = 1, and for all x ∈ Z * + ,

p ω (x, y) =    ω(x) if y = x + 1, 1 -ω(x) if y = x -1, 0 otherwise.
For x ∈ Z + and fixed ω ∈ Ω, we denote by P ω x the law on (Z N + , B(Z N + )) of the Markov chain X starting from x. This is the quenched law of X . The annealed law of the couple (ω, X ) is the probability measure P := P x on (Ω × Z N + , B(Ω) ⊗ B(Z N + )) defined for all x ∈ Z + and all F ∈ B(Ω) and G ∈ B(Z N + ) by P x (F ×G) = F P ω x (G)P(dω).

We write E ω

x and E for the corresponding quenched and annealed expectations, respectively. For simplicity and following Golosov (1984) and Gantert et al. (2010), we consider the walk on the positive integers reflected at 0, but we need the environment to be defined on Z to introduce later the infinite valley of the potential.

Denote, for x ∈ Z,

ρ x = 1 -ω(x) ω(x) . ( 1 
)
It was shown in Solomon (1975) that when

E log ρ 0 = 0, (2) 
for P-almost all ω the Markov chain X is recurrent, otherwise the walk is transient. This paper focuses on the recurrent case, hence (2) will be in force for all our results.

1.2. Motivation: Method of the environment viewed from the particle.

For ω ∈ Ω and x ∈ Z, denote by T x the shift operator T x : Ω → Ω, which translates the environment by the vector x, i.e. ∀y ∈ Z, (T x ω)(y) = ω(x + y).

The environment seen from the particle is the Ω-valued process ( ωk ) given by ωk = T X k ω , k ∈ N .

It is well known since Kozlov and Molchanov (1984) that ( ωk , k ≥ 0) is a Markov chain (with respect to both P and P ω 0 ), with the transition kernel

R(ω, d ω ′ ) = ω(0)δ T 1 ω (d ω ′ ) + (1 -ω(0))δ T -1 ω (d ω ′ ). (3) 
The state space of this Markov chain is very complex, however, in the transient ballistic case, which is characterized in (Solomon (1975)) by the linear speed of escape of the walk to infinity, namely Kozlov and Molchanov (1984) showed that there exists a unique invariant probability Q for the kernel R, which is absolutely continuous with respect to P, with an explicit density

X n /n → v = (1 -Eρ 0 )/(1 + Eρ 0 ), (4) 
p = d Q/d P = v(1 + ρ 0 ) 1 + ∞ x=1 x j =1
ρ j (5) (see Molchanov (1994) p.273 or Theorem 1.2 in Sznitman (2002)). In particular, Birkhoff's a.s. ergodic theorem applies and gives for all Q-integrable F

1 n n k=1 F ( ωk )-→ Ω F (ω)p(ω)P(d ω) P -a.s. ( 6 
)
This constitutes the basis of the 'method of the environment viewed from the particle'. To recall it briefly, let us sketch the proof of Solomon's result (4) on the asymptotic velocity for the ballistic random walk. Let ∆X n := X n+1 -X n , F n = σ{∆X 0 , . . . , ∆X n , ω(X 0 ), . . . , ω(X n+1 )}. We can write the classical martingale differences decomposition:

X n /n = 1 n n k=1 [∆X k -E(∆X k |F k-1 )] + 1/n n k=1 E(∆X k |F k-1 ). ( 7 
)
The first sum in ( 7) is composed of centered, uncorrelated terms, hence it tends to zero in L 2 and, using the martingale's convergence, even a.s. Moreover, since

E(∆X k |F k-1 ) = ω(X k ) -1(1 -ω(X k )) = 2 ωk (0) -1,
for the second term of (7) we can apply Birkhoff's theorem (6) and get

1 n n k=1 E(∆X k |F k-1 ) = 1/n n k=1
(2 ωk (0) -1) -→ Ω (2ω(0) -1)p(ω)P(d ω) = v a.s.

For further illustration of this method see Sznitman (2002), [START_REF] Zeitouni | Random walks in random environment[END_REF] and L.V. Bogachev (2006).

In this work we are interested in the limits of additive functionals of the environment's chain in the recurrent case and our main result, Theorem(1.1), shows that under (2)

1

n n k=1 F ( ωk ) L -→ Ω F d S ∞ , (8) 
where S ∞ is a random probability measure on Ω, defined precisely in (20). This 'in law' ergodic theorem allows us to extend in a certain sense the environment's method to the recurrent case. In particular, let f be bounded and

S f n := n k=1 f (ω(X k ), ∆X k ).
As we have

E[ f (ω(X k ), ∆X k )|F k-1 )] = f (ω(X k ), 1)ω(X k ) + f (ω(X k ), -1)(1 -ω(X k ))
we can represent S f n as in (7):

S f n = M n + A n ,
where

M n = n k=1 f (ω(X k ), ∆X k ) -E[ f (ω(X k ), ∆X k )|F k-1 )]
is a martingale and A n is an additive functional of the environment seen from the particle, to which we can apply the convergence (8). In Section (5), using this method, we show a LLN and a CLT with the convergence to a mixture of normal laws for S f n . The sums of the form S f n arise in particular in the study of the limit distribution of the Maximum Likelihood Estimator (MLE) of the law of the environment. The consistency and the asymptotic normality of MLE in the ballistic and sub-ballistic cases were studied in Comets et al. (2014) and Falconnet et al. (2013) and Falconnet et al. (2014). The consistency in the recurrent case, when the law of the environment has finite support, was shown in Comets et al. (2016). Finding the limit distribution of the MLE in this last case requires the knowledge of the limit behaviour of the score function, i.e. the derivative of the likelihood, and this last function depends on the functionals of the form

n k=1 1(ω(X k ) = a)1(∆X k = 1), ( 9 
)
where a is a given point of the support of ω x . The functional (9) represents the total number of steps to the right from the sites where the environment is equal to a. In Section 5, relying on our result (8), we give the limit behavior and the fluctuations of such functionals. Note also that despite the fact that (8) gives only an 'in law' version of the ergodic theorem, in many examples the limit in ( 8) is deterministic, hence the convergence (8) actually holds in probability. We give such examples in Section (5).

To define precisely the limit random measure S ∞ we need to introduce the notion of the potential and of the infinite valley.

Potential and infinite valley

Let ρ x , x ∈ Z be given by (1) and define the potential V = {V (x) : x ∈ Z} by

V (x) =      x y=1 log ρ y if x > 0, 0 if x = 0, -0 y=x+1 log ρ y if x < 0. (10) 
Then, V is a (double-sided) random walk, an example of a realisation of V can be seen on Figure 1. It is easy to see that the measure µ defined as

µ(0) = 1, µ(x) = exp[-V (x -1)] + exp[-V (x)], x ∈ Z * + , (11) 
is a reversible and invariant measure for the Markov chain X under quenched law. Define the right border c n of the 'valley' with depth log n + (log n) 1/2 as the random variable 

c n = min x ≥ 0 : V (x) -min 0≤y≤x V (y) ≥ log n + (log n) 1/2 , ( 12 
) V (x) x b n c n log n + log n 1
b n = min x ≥ 0 : V (x) = min 0≤y≤c n V (y) . (13) 
Figure 1 shows a representation of b n and c n for recurrent Temkin random environment with parameter a = 0.3. Namely, the environment's law here is

P(ω x = a) = P(ω x = 1 -a) = 1/2.
The salient probabilistic feature of the recurrent RWRE is the strong localization revealed by Sinaȋ (1982). Considered on the spatial scale ln 2 n the RWRE becomes localized near b n . We are interested in the shape of the valley (0, b n , c n ) when n tends to infinity and we recall the concept of infinite valley introduced by Golosov (1984). Let V = { V (x) : x ∈ Z} be a collection of random variables distributed as V conditioned to stay positive for any negative x, and non-negative for any non negative x. Such events having probability zero, a formal definition uses Doob's h-transform (see Golosov (1984)[ Lemma 4], Bertoin (1993)). It is known (Golosov (1984), pp. 494-495) 

that x∈Z exp -V (x) < ∞. ( 14 
) ( V (x), x ∈ Z)
is the so-called infinite valley, introduced in Golosov (1984).

Let ω = { ω(x), x ∈ Z} be the environment of the walk in the infinite valley:

ω(x) = exp[-V (x)] exp[-V (x)] + exp[-V (x -1)] , x ∈ Z. ( 15 
)
Let ν be a probability measure on Z defined by

ν(x) = exp[-V (x -1)] + exp[-V (x)] 2 z∈Z exp[-V (z)] , x ∈ Z. ( 16 
)
Thanks to (14) the probability measure ( 16) is well defined, and is a stationary (and reversible) distribution of the random walk in in the 'infinite valley', i.e. the walk governed by the environment ω.

Assumptions and main results

Assumption I. E log ρ 0 = 0 and V(log ρ 0 ) > 0.

Under Assumption (I) for P-almost ω the Markov chain X is recurrent.

Assumption II. P(δ 0 ≤ ω(0) ≤ 1δ 0 ) = 1 for some δ 0 ∈ (0, 1).

The assumption (II) is technical and commonly admitted. We are interested in the limit behavior of additive functionals of the environment's chain ( ωk ). The empirical law S n of this chain, defined as

S n = 1 n n k=1 δ ω k , (17) 
allows to represent Birkhoff sums of F : Ω → R along the chain as an integral

1 n n k=1 F ( ωk ) = Ω F d S n .
Define for n ∈ N and x ∈ Z, the local time of the walk at the position x as

ξ(n, x) = n k=1 1{X k = x}. ( 18 
)
Note that the empirical law (17) of the environment seen from the walker can be expressed using the local times as

S n = x∈Z ξ(n, x) n δ T x ω . ( 19 
)
Let S ∞ be a random measure on Ω given by

S ∞ := x∈Z ν(x)δ T x ω , (20) 
where ν(x) and ω are given respectively by ( 16) and ( 15) and denote the stationary distribution of the walk and the environment in the infinite valley. Provide Ω := [0, 1] Z with the distance of the infinite product given by

d (ω, ω ′ ) = x∈Z 2 -|x| |ω(x) -ω ′ (x)|. ( 21 
)
Theorem 1.1. Under Assumptions I and II the empirical law of the environment seen from the walker converges in distribution, as n → ∞:

S n L -→ S ∞ ( 22 
)
in the space P (Ω) equipped with the topology of the weak convergence of probability measures. As a consequence, for every bounded and continuous F :

Ω → R, 1 n n k=1 F ( ωk ) L -→ Ω F d S ∞ .
Note that in particular, for every m ∈ N and g : [0, 1] 2m+1 → R, continuous and bounded,

1 n n k=1 g (ω(X k -m), . . . , ω(X k + m)) L -→ x∈Z g ( ω(x -m), . . . , ω(x + m))ν(x) .
The simplest example is given by f : [0, 1] → R, continuous and bounded:

1 n n k=1 f (ω(X k )) L -→ x∈Z f ( ω(x))ν(x) .
Denote by E the expectation with respect to the law of V = ( V (x)) x∈Z and let us define Q ∈ P (Ω) by

Ω F d Q = E Ω F d S ∞ = x∈Z E ν(x)F (T x ω) , ( 23 
)
for bounded F : Ω → R. We can view Q as the E -expectation of S ∞ .

Proposition 1.2. The probability Q is invariant and reversible for the Markov chain ( ωk , k ≥ 0) in Ω. The measures P and Q are mutually singular.

As we mentioned in Section (1.2) , the invariant probability of the environment's chain in the ballistic case ( 5) is absolutely continuous with respect to the law of the environment P, see (Molchanov, 1994, P. 273). To the best of our knowledge, the one we find here is the first one to be obtained as a limit in the case of zero velocity, and it is singular with respect to P.

The proof of Theorem (1.1) is partially inspired by the paper of Gantert et al. (2010) concerning the convergence in distribution of the centered local times (

ξ(n,b n +x) n , x ∈ Z) to (ν(x), x ∈ Z).
Based on the observation (see Sinaȋ (1982), [START_REF] Zeitouni | Random walks in random environment[END_REF]), that at each single site around the bottom b n the walk spends an asymptotically positive amount of time proportional to the weight of the site with respect to the invariant measure, these local times, similarly to Gantert et al. (2010), can be approximated in probability by the normalized invariant measure of the walk µ, given by ( 11). So finally the question of the convergence of the empirical measure S n (19) can be reduced to the question of the convergence in distribution to exp -V (x) ; x ∈ Z of the sequence of random vectors (Ξ n ) given by

Ξ n = exp[-(V (b n + x) -V (b n ))]1 {-b n ,...,c n -b n -1} (x) ; x ∈ Z (24) in the space ℓ 1 = {(ℓ(x), x ∈ Z; x∈Z |ℓ(x)| < ∞}.
Note that the fidi convergence here is known since Golosov (1984), Bertoin (1993), but the fact that the sequence (Ξ n ) is tight in ℓ 1 , proved in Theorem 1.4, is new. Showing this tightness boils down to showing that the potential's increments grow fast enough when x → ±∞. This is done in Proposition 1.3 bellow. This result continues a series of papers about the random walk conditioned to stay positive, as the increments on the right of b n have the same law that V, conditioned to reach log n+ log n before 0 -. These subjects were actively studied in the nineties, see Bertoin (1993), Bertoin and Donney (1994), [START_REF] Tanaka | Time reversal of random walks in one-dimension[END_REF]), Ritter (1981). Most of these papers deal with the convergence of finite dimensional distributions, or study the law of the limit walk, but as the size of the main valley tends to the infinity, the fidi convergence is not sufficient here. Proposition 1.3 is a key new technical result of the paper. Note that the tightness of (Ξ n ) is also needed in Gantert et al. (2010), but is missing there. Hence together with Proposition 1.3 Theorem 1.4 completes the proof of Theorem 1.2 of Gantert et al. (2010).

Proposition 1.3. Suppose that Assumptions (I) and(II) are satisfied. Then the following holds:

i) For all η ∈]0, 1/2[ and δ > 0, lim K →+∞ lim inf n→∞ P V (b n + x) -V (b n ) ≥ δx η , ∀x ∈ K , c n -b n = 1. ii) Moreover, lim K →+∞ lim inf n→∞ P V (b n -x) -V (b n ) ≥ 2 log x, ∀x ∈ K , b n = 1.
This proposition is proven in Section (3). Denote by P Ξ n the law of Ξ n on (ℓ 1 , ∥ • ∥ 1 ).

Theorem 1.4. Suppose that Assumptions (I) and (II) are satisfied. Then the sequence P Ξ n is relatively compact in (ℓ 1 , ∥ • ∥ 1 ). As a consequence, the sequence P Ξ n converges weakly to the law of {exp[-V (x)] ; x ∈ Z} in (ℓ 1 , B(ℓ 1 )).

Structure of the paper

Section 2 is devoted to the proof of Theorem 1.1. Section 3 deals with the properties of the random walk conditioned to stay positive. Here we prove the main new technical ingredient, Proposition 1.3, and the tightness result, Theorem 1.4. Section 4 deals with the properties of the invariant measure of the environment's chain, Proposition 1.2. In Section5 we show how the environment's method can be deduced from Theorem1.1. There we prove the LLN, Proposition (5.1), and the convergence to the mixture of Gaussian laws, Proposition 5.2, for normalized sums n k=1 f (ω(X k ), ∆X k ). Finally Supplementary material, Section 6 contains the proof of an important auxiliary result, Proposition 2.1, which gives an approximation in probability of an additive functional of the environment's chain by a functional depending only on the environment.

Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof is based on the approximation in probability of an additive functional of the environment's chain by a functional depending on the environment only, which is the content of Subsection 6, Proposition 2.1. Then in Subsection 2.2 we give the proof of Theorem 1.1, explaining its main steps.

Approximation in probability of

Ω F d S n .
Let Xn = ( X n t ) t ∈N be the Markov chain with value in {0, . . . , c n }, reflected in 0 and c n and with transition given by pω,n (x,

x + 1) = ω x , pω,n (x, x -1) = 1 -ω x ; ∀x ∈ {1, . . . , c n -1}.
For x ∈ {0, . . . , c n } we denote by P ω,n

x the law of this chain starting from x. The idea of the proof of Theorem 1.1 consists in considering the original walk X only after it reaches b n and before it exits [0, c n ], i.e. to replace X with Xn , since on the time interval [0, n] it turns out to be a good approximation in probability. The advantage to work with Xn is in the fact that it is irreducible, positively recurrent with the invariant probability µ n defined by ( 29). As a consequence the decomposition on the i.i.d. cycles between successive visits of a given state can be used to obtain the deviation of an additive functional, as well as some well known formulas linking the invariant probability and the expectation of hitting times. The idea to replace X by Xn is borrowed from Gantert et al. (2010), but the use of this idea, namely trough the life-cycles decomposition, is different.

Proposition 2.1. Let S n be given by ( 19) and Σ n by (30). For any continuous F : [0, 1] 2m+1 → R and all ε > 0 we have

P (|S n (F ) -Σ n (F )| > ε) → 0.
The proof of Proposition 2.1 is given in Supplementary material, Section 6.

Proof of Theorem 1.1

Proof. Recall that E denotes the expectation with respect to the law of V . By definition, claim ( 22) is equivalent to

lim n→∞ EG(S n ) = E G(S ∞ ) (25)
for all bounded continuous G : P (Ω) → R. We first observe that it is sufficient to prove (25) for all G of the form

G(S ) = n l =1 Ω F 1 d S × . . . × Ω F l d S , S ∈ P (Ω) (26) 
with arbitrary integers n, m, l and continuous

F k : [0, 1] 2m+1 → R (1 ≤ k ≤ l ).
Indeed, with d defined by (21) (Ω, d ) is a compact separable metric space and hence (P (Ω), ρ), endowed with the Prohorov metric ρ, is a compact separable metric space too. The set G of functions G of the form ( 26) is an algebra of continuous functions on the compact metric space P (Ω) which contains constant functions and separates the points. By Stone-Weierstrass Theorem, this set is dense in the space C (P (Ω); R) for the supremum norm, and then it suffices to prove (25) for such G. This, in turn, is equivalent to prove the following convergence in distribution:

Ω F 1 d S n , . . . , Ω F l d S n L -→ Ω F 1 d S ∞ , . . . , Ω F l d S ∞ . ( 27 
)
Using the Cramer-Wold device ( 27) is equivalent to

∀(t 1 , . . . t l ) ∈ R l , l i =1 t i Ω F i d S n L -→ l i =1 t i Ω F i d S ∞ ,
and finally, as l i =1 t i F i is a continuous function on Ω, depending only on a finite number of coordinates, we only need to prove that

∀m ∈ N * , ∀F ∈ C b ([0, 1] 2m+1 ), Ω F d S n law -→ Ω F d S ∞ . ( 28 
)
Below we give the proof of ( 28), which is separated in 3 main steps.

Step 1. Approximation in probability of Ω F d S n .

For F as in (28), using ( 18) and ( 19) we can write S n (F ) in the 'spatial' form

S n (F ) = x∈Z F (T x ω) ξ(n, x) n = x∈Z F (ω(-m + x), . . . , ω(m + x)) ξ(n, x) n .
Fix n ∈ N * and denote µ n = µ ω n the random probability measure on Z + , s.t.

µ n (x) :=          1 Z n e -V (x) + e -V (x-1) if 0 < x < c n , 1 Z n if x = 0, 1 Z n e -V (c n -1) if x = c n , 0 if x ∉ {0, . . . , c n }, (29) 
where x) , and c n and V are respectively defined by ( 12) and (10). The local times ξ(n,x) n , x ∈ Z + can be approached in probability by the quantities µ n (x), x ∈ Z + . This argument was found by Gantert et al. (2010).

Z n = 2 c n -1 x=0 e -V (
Here we show that more generally, the additive functional S n (F ) can be approached in probability by

Σ n (F ) = Ω F d Σ n with Σ n = x∈Z µ n (x)δ T x ω . ( 30 
)
Proposition 2.1 states that ∀ε > 0,

P (|S n (F ) -Σ n (F )| > ε) → 0. ( 31 
)
Note that S n depends on the walk and on the environment, whereas Σ n depends only on the environment. The next two steps allow to show the convergence in law:

Σ n (F ) L -→ S ∞ (F ).
Step 2. Expressing Σ n (F ) as a continuous function of a weakly convergent sequence.

Note that

Σ n (F ) = x∈Z F (T x ω)µ n (x) = x∈Z F (T b n +x ω)µ n (b n + x).
Remember that we denoted Ξ n the random element in ℓ 1 given by:

Ξ n := exp[-(V (b n + x) -V (b n ))]1 {-b n ,...,c n -b n -1} (x) ; x ∈ Z }. Both µ n (b n +x) and ω(b n +x) : x = -b n , . . . , c n -b n -1 can be expressed in terms of Ξ n : µ n (b n + x) = Ξ n (x) + Ξ n (x -1) 2 y∈Z Ξ n (y) ,
and

ω(b n + x) = Ξ n (x) Ξ n (x) + Ξ n (x -1) . Thus, Σ n (F ) = H F (Ξ n ) where H F : ℓ 1 → R is continuous.
In Theorem 1.4 we showed that the distribution of Ξ n converges weakly to that of {exp[-V (x)] ; x ∈ Z} in this space. Together with the continuity on

ℓ 1 of Σ n (F ) = H F (Ξ n ) that gives the convergence in law Σ n (F ) L -→ S ∞ (F ). ( 32 
)
Step 3. Conclusion: Using (31) and (32) we conclude that S n (F ) L -→ S ∞ (F ). This ends the proof of Theorem 1.1.

Random walk conditioned to stay positive and weak convergence to the infinite valley

In this section we prove Proposition 1.3 and Theorem 1.4. Note that the idea of the proof of i i ) is the decomposition of the dynamic on the i.i.d. cycles corresponding to the strict descending ladders, whereas the proof of i ) is partialy inspired by Ritter (1981).

Proof of of Proposition 1.3

Proof. We start by proving i i ). Let T 0 := 0 and for all ℓ ∈ N * , put

T ℓ+1 := inf{y > T ℓ , V (y) < V (T ℓ )}.
The sequence (T ℓ ) ℓ∈N is the sequence of the strict descending ladder epochs of

V. Let e ℓ = ((V (z) -V (T ℓ-1 )), T ℓ-1 ≤ z < T ℓ ), ℓ ∈ N * .
Using the strong Markov property of V, the sequence of excursions (e ℓ ), ℓ ∈ N * is an i.i.d. sequence. Let N (n) be a random time, such that b n defined by ( 13) satisfies b n = T N (n) . Namely, setting as previously L n := log n + log n, we have following Golosov (1984) p.492,

N (n) := inf{ℓ ∈ N * ; max{V (z) -V (T ℓ-1 ); T ℓ-1 ≤ z < T ℓ } ≥ L n }.
Due to the independence and the equidistribution of the excursions (e ℓ ), ℓ ∈ N * , the random variable N (n) is geometrically distributed with the parameter

p n := P(τ L n < τ 0-), where (33) 
τ L n := inf{z > 0, V (z) ≥ L n } and τ 0-:= inf{z > 0; V (z) < 0}.
Denote also

τ ℓ 0-:= τ 0-• θ T ℓ and τ ℓ L n := τ L n • θ T ℓ . With this notation τ 0 0-:= τ 0-and τ 0 L n := τ L n . We also denote σ ℓ := T ℓ -T ℓ-1 and H ℓ := V (T ℓ ) -V (T ℓ-1
) respectively the length and the high of the ℓ-th ladder. Let K ∈ N * and

C (K , n) : = {∀x = K , . . . , b n , V (b n -x) -V (b n ) ≥ 2 log x} = {∀y = 0, . . . , b n -K , V (y) -V (b n ) ≥ 2 log |y -b n |}.
Keeping in mind the relation b n = T N (n) , we can observe that

C (K , n) = (34) {∀ℓ = 0, . . . N (n) -1; |T ℓ -T N (n) | ≥ K ; V (T ℓ ) -V (T N (n) ) ≥ 2 log |T ℓ -T N (n) |}
Indeed, let ℓ(y) ∈ N be the number of ladder excursions containing y, i.e. T ℓ(y) ≤ y < T ℓ(y)+1 , then using the fact that the function

x → 2 log x is increasing on R + , V (y) ≥ V (T ℓ(y) ) and V (T ℓ ) -V (T N (n) ) ≥ 2 log |T ℓ -T N (n) | for all ℓ ∈ N, we have V (y) -V (T N (n) ) = V (y) -V (T ℓ(y) ) + V (T ℓ(y) ) -V (T N (n) ) ≥ 2 log |T ℓ(y) -T N (n) | ≥ 2 log |y -T N (n) |.
Which proves (34). Now we can write:

P(C c (K , n)) = ∞ N =1 P(∃ℓ = 0, . . . , N -1, T N -T ℓ ≥ K , V (T ℓ ) -V (T N ) < 2 log |T ℓ -T N |; N (n) = N ) ≤ M N =1 P(N (n) = N ) + ∞ N =M +1 P(∃m = 1, . . . , M , T N -T N -m ≥ K ; N (n) = N )+ ∞ N =M +1 P(∃m = M + 1, . . . , N , T N -T N -m ≥ exp 1 2 (V (T N ) -V (T N -m )) ; N (n) = N ) := S 1 (n, M ) + S 2 (K , n, M ) + S 3 (n, M ).
Here in the third line we denoted m = N -ℓ the number of 'ladder' between T N and T ℓ , and the auxiliary M ∈ N * will be choosen later. We obviously have

S 1 (n, M ) = M N =1 (1 -p n ) N -1 p n ∼ M p n → 0 if n → ∞. (35) 
For the second sum we can write

S 2 (K , n, M ) := ∞ N =M +1 P(∃m = 1, . . . , M , T N -T N -m ≥ K ; N (n) = N ) ≤ ∞ N =M +1 P(T N -T N -M ≥ K ; N (n) = N ) = ∞ N =M +1 P(σ N -M +1 + . . . + σ N ≥ K ; N (n) = N ) ≤ ∞ N =M +1 N ℓ=N -M +1 P(σ ℓ ≥ K /M ; N (n) = N ).
The event {N (n) = N } can be written as

{N (n) = N } = {τ 1 0-< τ 1 L n ; . . . ; τ N -1 0-< τ N -1 L n ; τ N 0-> τ N L n }.
Let c Sp > 0 be such that ∀a > c Sp , P(τ 0-> a) ≤ C a -1/2 , where C is a positive constant. Following Spitzer (1960) we can choose such a constant c Sp . Since K → ∞, for all M > 0, K /M > c Sp will be satisfied. Then, using the independence of the ladder excursions, together with the definition (33), we can write

P(σ ℓ ≥ K M ; N (n) = N ) ≤ P(σ ℓ ≥ K M ∩τ ℓ 0-< τ ℓ L n )p n (1-p n ) N -2 ≤ C M K p n (1-p n ) N -2 .
Using this bound we see that

S 2 (K , n, M ) ≤ ∞ N =M +1 C (M ) 3/2 p n (1 -p n ) N -2 K = C (M ) 3/2 (1 -p n ) M -1 K ≤ C (M ) 3/2 K . (36) Finally S 3 (n, M ) = (37) ∞ N =M +1 P(∃m = M + 1, . . . , N , T N -T N -m ≥ exp 1 2 (V (T N ) -V (T N -m )) ; N (n) = N ) ≤ ∞ N =M +1 N m=M +1 P(σ N -m+1 + . . . σ N > exp 1 2 (H N -m+1 + . . . + H N ) ; N (n) = N ) ≤ ≤ ∞ N =M +1 N m=M +1 N ℓ=N -m+1 (1 -p n ) N -m p n P(mσ ℓ > exp 1 2 N k=N -m+1; k̸ =ℓ H ℓ ) (38)
Where in the last line we used the independence of the excursions and the fact that

H k > 0. The term (1 -p n ) N -m p n comes from N (n) = N
, where the Nm first excursion are independent of the m last, and hence of the event σ N -m+1 + . . . σ N > exp 1 2 (H N -m+1 + . . . + H N ), whereas p n appears because the excursion corresponding to the 'success' is after T N (n) . Note that we used H ℓ > 0 to get rid of H ℓ in the exponential. In this way σ ℓ is independent of the sum N k=N -m+1; k̸ =ℓ H k . Now using Markov inequality,

S 3 (n, M ) ≤ (39) ∞ N =M +1 N m=M +1 N ℓ=N -m+1 (1 -p n ) N -m p n P(mσ ℓ > exp 1 2 N k=N -m+1; k̸ =ℓ H k ) ≤ ∞ N =M +1 N m=M +1 (1 -p n ) N -m p n m 2 Eσ 1 (Ee -1/2H 1 ) m-1 ≤ ∞ N =M +1 (1 -p n ) N -M p n N m=M +1 m 2 e -mc ≤ ∞ N =M +1 (1 -p n ) N -M p n e -Mc ′ ≤ e -Mc ′
And finally putting together ( 35), ( 36) and ( 39)

P(C c (K , n)) = S 1 (n, M ) + S 2 (K , n, M ) + S 3 (n, M ) ≤ M p n + M 3/2 K + e -Mc ′ .
We first choose M large enough, such that e -Mc ′ ≤ ε. Then we get lim

K →∞ lim sup n→∞ P(C c (K , n)) ≤ ε
and since ε > 0 is arbitrary, this concludes the proof of ii). Now we prove i ). Recall that V (x) = x y=1 log ρ y if x > 0, and (log ρ y ) y∈Z are i.i.d. and centered. Denote

τ ln = inf x ∈ Z + , V (x) ≥ log n + log n , τ 0-= inf x ∈ Z + , V (x) < 0 .
Using the strong Markov property,

L ({V (b n +x)-V (b n ), x = K -b n , . . . , c n -b n }) = L ({V (x), x = K , . . . , τ ln |τ ln < τ 0-}) .
Hence we have to prove lim

K →+∞ inf n P V (x) ≥ δx η , ∀x = K , . . . , τ ln ∧ τ 0-|τ ln < τ 0-= 1. or equivalently lim K →+∞ sup n P (∃x ≥ K , x < τ ln ∧ τ 0-, V (x) < δx η , τ ln < τ 0-) P (τ ln < τ 0-) = 0. ( 40 
)
Let c > 1 be an integer such that ∀a > c, P(τ 0-> a) ≤ C a -1/2 , where C is a positive constant. Following Spitzer Spitzer (1960) we can choose such a constant c. For r ∈ N * , denote C r the following event

C r := {∃x ∈ [c r -1 , c r [; x < τ ln ∧ τ 0-; V (x) < δx η ; τ ln < τ 0-} and denote for x ∈ [c r -1 , c r [ A x := {∀z ∈ [c r -1 , x[; V z ≥ δz η ; V (x) < δx η ; x < τ n ∧ τ 0-} Note that A x are disjoint for x ∈ [c r -1 , c r [ and that C r := c r -1 x=c r -1 {A x ∩ {τ ln < τ 0-}} . For all x ∈ N, denote P := P 0 , F x = σ{V 0 , . . . ,V x }. Denote L n = log n + log n. It is easy to see that ∀0 ≤ y < L n , P y (τ ln < τ 0-) ≤ y + c 0 L n
for some positive constant c 0 = sup n,y≥0 E y (-V (τ 0-) | τ 0-< τ ln ). Indeed, using Doob stopping theorem, and the fact that V τ L > L,

P y (τ ln < τ 0-) = y -E y [V τ 0-| τ 0-< τ ln ] E y [V τ L | τ L < τ 0-] -E y [V τ 0-| τ 0-< τ ln ] .
Since the event {τ ln < τ 0-} is invariant under shift, using Markov property we can write:

P 0 (A x ∩ {τ ln < τ 0-}) = E 0 [P 0 (A x ∩ {τ ln < τ 0-}|F x )] = E 0 ∀z ∈ [c r -1 , x[; V z ≥ δz η ; V (x) < δx η ; x < τ ln ∧ τ 0-; P V x (τ ln < τ 0-) ≤ P 0 ∀z ∈ [c r -1 , x[; V z ≥ δz η ; V (x) < δx η ; x < τ ln ∧ τ 0-(δx η + c 0 )(L n ) -1 = P(A x )(δx η + c 0 )(L n ) -1 .
Hence, using the fact that A x are disjoint and that

∀x = c r -1 , . . . , c r -1; A x ⊂ {τ 0-> x} ⊂ {τ 0-> c r -1 },
with our choice of c, we have

P(C r ) = c r -1 x=c r -1 P (A x ∩ {τ ln < τ 0-}) ≤ δc r η + c 0 L n c r -1 x=c r -1 P (A x ) = δc r η + c 0 L n P c r -1 x=c r -1 A x ≤ δc r η + c 0 L n P τ 0-> c r -1 ≤ C c(δc r (η-1/2) + c 0 c -r /2 )(L n ) -1 .
Finally, for any n and R ≥ 2,

P ∃x > c R-1 ; x < τ ln ∧ τ 0-; V (x) < δx η ; τ ln < τ 0-≤ ∞ r =R P(C r ) ≤ C 1 (δ + c 0 c -Rη )c R(η-1/2) (L n ) -1 ,
and ( 40) follows from P 0 (τ ln < τ 0-) ∼ (L n ) -1 .

Proof of Theorem 1.4

Using Proposition 1.3 we prove the tightness result for the potential increments (Ξ n ) given by (24).

Proof. Recall that (ℓ 1 , ∥.∥ 1 ) is a complete separable metric space and hence , using Prohorov's theorem (Billingsley (1999)), the sequence of distributions P Ξ n is relatively compact if and only if it is tight. Recall also the characterization of the compacts in (ℓ 1 , ∥.∥ 1 ) :

K ⊂ ℓ 1 is compact ⇐⇒ sup l ∈K ∥l ∥ 1 < ∞ and lim N →∞ sup l ∈K |x|≥N |l x | = 0. Let η ∈ (0, 1/2), K > 0. Denote K (η, K ) := {l ∈ ℓ 1 ; |l x | ≤ 1; l x ≤ 1 x 2 , ∀x ∈ Z -∩{|x| ≥ K }; l x ≤ e -|x| η , ∀x ∈ Z + ∩{|x| ≥ K }}. K (η, K ) is a compact in ℓ 1 .
As a consequence of Proposition 1.3, for n large enough P(Ξ n ∈ K (η, K )) ≥ 1ε and the sequence P Ξ n is tight.

From Golosov (1984) the following convergence of finite dimensional distributions (fidi) holds:

Ξ n = exp[-(V (b n + x) -V (b n ))] ; x ∈ Z fidi -→ exp[-V (x)] ; x ∈ Z .
Using b n → ∞ a.s. and c n -b n → ∞ a.s., the finite dimensional distributions of Ξ n converge weakly to those of {exp[-V (x)] ; x ∈ Z} . Denote by M the class of continuous, bounded, finite-dimensional functions: 

M := k∈N * f ∈ C b (ℓ 1 ) : f (l i ) = f (l ′ i ) ∀i ∈ -k, k =⇒ f (l ) = f (l ′ ) . It is clear that M separates points: if l ∈ ℓ 1 , l ′ ∈ ℓ 1 , l ̸ = l ′ , that there exists f ∈ M , such that f (l ) ̸ = f (l ′ ). Since (ℓ 1 , d ) is separable

Proof of Proposition 1.2

Proof. To show reversibility, we need to prove that for the chain starting from ω0 ∼ Q, defined by ( 23),

EF ( ω0 )G( ω1 ) = EF ( ω1 )G( ω0 ) (41) 
for F,G continuous and bounded on Ω. Let P denote the law of ω. By definition (3) of the transition R, the LHS in ( 41) is equal to

Ω d P( ω) x∈Z ν(x)F (T x ω) ω(x)G(T x+1 ω) + (1 -ω(x))G(T x-1 ω) = Ω d P( ω) x∈Z ν(x)F (T x ω) ω(x)G(T x+1 ω) + x∈Z ν(x)F (T x ω)(1 -ω(x))G(T x-1 ω) = Ω d P( ω) x∈Z ν(x + 1)F (T x ω)(1 -ω(x + 1))G(T x+1 ω) + x∈Z ν(x -1)F (T x ω) ω(x -1)G(T x-1 ω) = Ω d P( ω) y∈Z ν(y)F (T y-1 ω)(1 -ω(y))G(T y ω) + z∈Z ν(z)F (T z+1 ω) ω(z)G(T z ω) ,
where in the third line we used the relation

ν(x -1) ω(x -1) = ν(x)(1 -ω(x)) (42) 
and we changed the variables y = x +1, z = x -1 in the last one. The last expression being the RHS of (41), we obtain reversibility of Q, which implies invariance by taking G = 1. Finally consider the event

Ω + = ω ∈ Ω : x y=1 log 1 -ω(y) ω(y) ≥ 0 ∀x ≥ 1 .
20 By construction of V and since V is a mean-zero random walk under P, we have

Q(Ω + ) = 1 , P(Ω + ) = 0 ,
so the two measures are mutually singular.

Remark 4.1. From the proof of reversibility we see that there exist many invariant measures by the transition R. Indeed, the proof works thanks to the relation (42), (which means the reversibility of the measure ν with respect to the walk in the environment ω) and thanks to the fact that x∈Z exp[-Ṽ (x)] finite a.s. . As a consequence for any V (in the place of Ṽ ), ω and ν defined with the help of V using (15),( 16) the measure on Ω given by E x∈Z ν(x)δ T x ω , where the expectation is taken w.r.t. to the law of V , is reversible for R.

Examples

In this section we give some examples of application of Theorem1.1. All these applications deal with the limit behavior of properly normalized sums

S f n = n k=1 f (ω(X k ), ∆X k )
, for which we perform a decomposition, representing S f n as a sum of martingale and an additive functional of the environment's chain. For such a functional we can apply our ergodic theorem ( Theorem 1.1). In this sense, this is an extension of the environments method of Kozlov and Molchanov (1984) to the recurrent RWRE.

Law of large numbers for functions of the environment seen from the particle and steps

Proposition 5.1. Let f :

Ω × {-1; 1} → R, bounded. Denote ∆X k = X k+1 -X k , k ∈ N.
Then the following convergence in distribution under annealed probability holds :

1 n n k=1 f (ω(X k ), ∆X k ) L -→ x∈Z f ( wx , 1) ωx + f ( wx , -1)(1 -ωx ) ν(x), n → ∞.
In particular, if f does not depend on ω, f : {-1; 1} → R, then the following convergence in annealed probability holds :

1 n n k=1 f (∆X k ) P -→ f (1) + f (-1) 2 , n → ∞.

Proof. Denote

F n = σ{∆X 0 , . . . , ∆X n , ω(X 0 ), . . . , ω(X n+1 )} and let's write the martingale difference decomposition :

1 n n k=1 f (ω(X k ), ∆X k ) = 1 n n k=1 D k + 1 n n k=1 E( f (ω(X k ), ∆X k )|F k-1 ). ( 43 
)
Where

D k := f (ω(X k ), ∆X k ) -E( f (ω(X k ), ∆X k )|F k-1 ); k ∈ N is centered conditionally to F k-1 , measurable with respect to F k , uniformly bounded random variable. As a consequence (D k ); k ∈ N, are bounded, non- correlated and 1 n n k=1 D k L 2 -→ 0. ( 44 
)
Remark that

E( f (ω(X k ), ∆X k )|F k-1 )) = f (ω(X k ), 1)ω(X k ) + f (ω(X k ), -1)(1 -ω(X k )).
Theorem 1.1 gives the following convergence in distribution :

1 n n k=1 E( f (ω(X k ), ∆X k )|F k-1 ) L -→ x∈Z f ( ωx , 1) ω(x) + f ( ωx , -1)(1 -ω(x)) ν(x).
(45) When f does not depend on ω, the previous limit becomes

1 n n k=1 E( f (∆X k )|F k-1 ) L -→ x∈Z f (1) ω(x) + f (-1)(1 -ω(x)) ν(x) = f (1) + f (-1) 2 .
Indeed, using the definitions ( 16) and ( 15) ,

x∈Z ω(x)ν(x) = x∈Z (1 -ω(x))ν(x) = 1 2 .
Using ( 44) and ( 45) together in (43) this completes the proof.

Proposition 5.2. Let f : Ω × {-1; 1} → R, bounded. Then the following convergence in distribution holds:

1 n n k=1 f (ω(X k ), ∆X k ) -f (ω(X k ), 1)ω(X k ) -f (ω(X k ), -1)(1 -ω(X k )) L -→ Z ,
where Z is a random variable with the characteristic function

φ Z (t ) = E(exp(- 1 2 η 2 t 2 ),
and η is a random variable distributed as:

η 2 L = x∈Z ( f ( wx , 1) -f ( ωx , -1)) 2 ω(x)(1 -ω(x))ν(x).
That is Z L = ηU where η and U are independent and U ∼ N (0, 1). In particular, if f does not depend on ω, f : {-1; 1} → R, then the following convergence in distribution holds:

1 n n k=1 f (∆X k ) -f (1)ω(X k ) -f (-1)(1 -ω(X k )) L -→ Z ,
where Z is a random variable with the characteristic function φ Z (t ) = E(exp(-1 2 η 2 t 2 ), and η is a random variable defined by: η

2 L = ( f (1)-f (-1)) 2 x∈Z ω(x)(1-ω(x))ν(x).
That is Z L = ηU where η and U are independent and U ∼ N (0, 1).

Proof. In this proof we will rely on Theorem 3.4 from Hall and Heyde (1980) and use their notation. Define

D nk := 1 n f (ω(X k ), ∆X k ) -E( f (ω(X k ), ∆X k )|F k-1 ) .
Let S n0 = 0, S ni = i k=1 D nk and put for i = 1, . . . , n,

F ni := F i . Then S ni is adapted to F i . Let U 2 ni = i k=1 D 2 nk . Denote G n = σ{ω(X 0 ), . . . , ω(X n+1 )}, Clearly G n ⊂ F n . Let for i = 1, . . . , n, G n,i := F ni ∨ G n = F i ∨ G n = σ(∆X 1 , . . . , ∆X i , ω(X 0 ), . . . , ω(X n+1 )}. Moreover, max i =1...n |D ni | ≤ 2∥ f ∥ n -→ 0 and E max i =1...n |D ni | 2 ≤ 2∥ f ∥ 2 n . ( 46 
)
Define a random sequence (u 2 n ) by

u 2 n = n k=1 E D 2 nk |F k-1 .
It is easy to see that

E D 2 nk |F k-1 = 1 n ( f (ω(X k ), 1) -f (ω(X k ), -1)) 2 ω(X k )(1 -ω(X k )), hence the sequence (u 2 n ) is (G n )-adapted.
In order to show the following convergence in probability ( condition (3.28) of Theorem 3.4 from Hall and Heyde (1980)):

U 2 nn -u 2 n = n k=1 D 2 nk -E(D 2 nk |F k-1 ) P -→ 0, (47) 
we remark that D 2 nk -E(D 2 nk |F k-1 ) ; k = 1, . . . , n, are bounded, centered conditionally on F k-1 , (F k )-adapted and hence non correlated. Hence, using (46), U 2 nn -u 2 n converges to 0 in L 2 :

E n k=1 D 2 nk -E(D 2 nk |F k-1 ) 2 = n k=1 E D 2 nk -E(D 2 nk |F k-1 ) 2 ≤ 2n∥ f ∥ 4 n 2 → 0.
Then for all i = 1 . . . n, E D ni |G n,i -1 = 0, and the condition (3.29) of Theorem 3.4 from Hall and Heyde (1980) is satisfied. Applying Theorem (1.1) we see that

u 2 n = 1 n n k=1 ( f (ω(X k ), 1) -f (ω(X k ), -1)) 2 ω(X k )(1 -ω(X k )) L -→ x∈Z ( f ( ωx , 1) -f ( ωx , -1)) 2 ω(x)(1 -ω(x))ν(x).
Using (47),

U 2 nn = (U 2 nn -u 2 n ) + u 2 n L -→ x∈Z ( f ( ωx , 1) -f ( ωx , -1)) 2 ω(x)(1 -ω(x))ν(x).
and the theorem follows.

Example I. Suppose that ω(x) ∈ A, where A is countable and let a ∈ A. Then using Proposition (5.1) we obtain

1 n n k=1 1(ω(X k ) = a)1(∆(X k ) = 1) L -→ a x∈Z 1( ωx = a)ν(x) = a ν(x : ωx = a)
Moreover, using Proposition (5.2),

1 n n k=1 1(ω(X k ) = a) [1(∆(X k ) = 1) -a] L -→ a(1 -a)ν(x : ωx = a)Z ;
where Z ∼ N (0, 1) is independent of ν(x : ωx = a). ), strong Markov property and Markov inequality, for n ≥ 2/ε

P ω 0 (B 1 ) = P ω,n 0 (B 1 ) ≤ P ω 0 T [n(µ n (b n )+ε)]+1 b n ≤ n ≤ P ω,n 0 [n(µ n (b n )+ε)] k=1 (T k+1 b n -T k b n ) ≤ n ≤ P ω,n b n [n(µ n (b n )+ε)] k=1 η k ≤ - nε -1 µ n (b n ) ≤ n(µ n (b n ) + ε)µ 2 n (b n ) V ω,n b n η 1 (nε -1) 2 ≤ 4 (1 + ε) ε 2 V ω,n b n η 1 n , (50) 
where 

η k = T k+1 b n -T k b n -1/µ n (b n ) are i.i.
b n = 1 µ n (b n ) . Similar argu- ments give P ω 0 (B 2 ) = P ω,n 0 (B 2 ) ≤ P ω 0 T [n(µ n (b n )-ε)] b n ≥ n, T b n < nε/2 ≤ P ω,n 0 [n(µ n (b n )-ε)]-1 k=1 (T k+1 b n -T k b n ) ≥ n(1 -ε/2) ≤ P ω,n b n [n(µ n (b n )-ε)]-1 k=1 η k ≥ nε 2 ≤ 4 n(µ n (b n ) -ε) V ω,n b n η 1 n 2 ε 2 ≤ 4 (1 -ε) ε 2 V ω,n b n η 1 n . (51) 
Finally, putting together (48), ( 49), ( 50) and (51) we get:

P ω 0 k n n -µ n (b n ) > ε ≤ 8 ε 2 n V ω,n b n T b n + P ω 0 T b n ≥ nε/2 + P ω 0 T c n ≤ n . (52) Note that for a fixed ω ∈ Ω, Σ n (F ) = x∈Z F (T x ω)µ n (x) is fixed. Denote for x ∈ Z + F ω (x) := F (T x ω), F ω (x) := F ω (x) -Σ n (F ) and ε = ε/3∥F ∥ ∞ .
We will first obtain a non-asymptotic bound on the quenched probability of the deviation

|S n (F ) -Σ n (F )| = 1 n n k=0 F (T X k ω) -Σ n (F ) = 1 n n k=0 F ω (X k ) -Σ n (F ) . 29 P ω 0 1 n n k=0 F ω (X k ) -Σ n (F ) > ε ≤ P ω 0 k n n -µ n (b n ) > ε + P ω 0 T c n < n + P ω 0 T b n -1 k=0 |F ω (X k )| > nε/3 + P ω 0    T k n b n -1 k=T b n F ω (X k ) > nε/3, k n n -µ n (b n ) ≤ ε, T c n > n    + P ω 0    n k=T k n b n |F ω (X k )| > nε/3, T c n > n    (53) 
Using the definition of ε we see that

P ω 0 T b n -1 k=0 |F ω (X k )| > nε/3 ≤ P ω 0 T b n > εn . ( 54 
)
The law of

T k n +1 b n -T k n b n conditionally on F T k n b n is that of T b n . Also, using the defi- nition (29) we can see that µ n (b n ) ≥ 1/2c n . Hence, using again Ẽ ω,n b n T 1 b n = 1 µ n (b n ) , P ω 0    n k=T k n b n |F ω (X k )| > nε/3, T c n > n    = P ω 0    n k=T k n b n |F ω (X k )| > nε/3, T c n > n    ≤ P ω 0    T k n +1 b n k=T k n b n |F ω (X k )| > nε/3    ≤ P ω,n b n T b n > n ε ≤ 1 nµ n (b n )ε ≤ 2c n n ε . (55) 
Now we obtain a bound for the main term of the decomposition (53). Denote for k ∈ N * ,

ξ k := T k+1 b n -1 l =T k b n F ω (X l ). Under P ω,n 0 the random variables ξ k , k ∈ N * are i.i.d. Their law is that of T b n -1 l =0
F ω (X l ) under P ω,n b n and they are centered. Indeed, for an irreducible positively recurrent chain (Y k ) with an invariant probability µ, and f defined on the state space, Norris (1997) Theorems 1.7.6 and 1.7.7, which become here

E y T y -1 k=0 f (Y k ) = µ(F )E y T y , see again
E ω,n b n T b n -1 l =0 F ω (X l ) = µ n (F ω (•))E ω,n b n T b n = Σ n (F )E ω,n b n T b n .
Hence M m := m k=1 ξ k ; m ∈ N * is a square-integrable martingale under P ω,n 0 . Using Kolmogorov inequality we get:

P ω 0    T k n +1 b n -1 k=T b n F ω (X k )) > nε/3, k n n -µ n (b n ) ≤ ε, T b n < εn, T c n > n    ≤ (56) P ω,n 0 k n k=1 ξ k > nε/3, k n n -µ n (b n ) ≤ ε ≤ P ω,n 0 sup m=1,...,[n(µ n (b n )+ε)] m k=1 ξ k > nε/3 ≤ 9(µ n (b n ) + ε) V ω,n b n (ξ 1 ) nε 2
Pluging in (53) the bounds ( 52), ( 54), ( 55) and ( 56) we obtain: Taking F ω = 1 in (57) we get:

P ω 0 (|S n (F ) -Σ n (F )| > ε) ≤ P ω 0 T b n ≥ nε/2 + P ω 0 T b n ≥ n ε + 2P ω 0 T c n ≤ n + 8 nε 2 V ω,n
V ω,n Using Lemma (6.1), which is given in Appendix, for all η > 0, there exists δ > 0 and an event Ω η,δ ⊂ Ω with P(Ω η,δ ) > 1η such that : ∀ω ∈ Ω η,δ , ∀x ∈ [0, c n ],

V ω,n b n (Y x ) ≤ n 1-δ .
The proof of Lemma 6.1 is given below. Note that the bound (2.13) on the variance of the similar quantity in Gantert et al. ( 2010) is not sufficient. As a consequence, for all η > 0, there exists 1 > δ > 0, and a set Ω η,δ with P(Ω η,δ ) > 1η, such that for all ω ∈ Ω η,δ it holds

P ω 0 (|S n (F ) -Σ n (F )| > ε) ≤ C c 2 n n 1-δ n + 2P ω 0 T b n ≥ (ε + ε)n + 2P ω 0 T c n ≤ n .
The last bound tends to zero. Indeed, from Golosov (1984), Lemma 1, P ω 0 T b n > nε ′ → 0 for all ω ∈ Ω and ε ′ > 0. And from Golosov (1984), Lemma 7, for all ω ∈ Ω, P ω 0 (T (c n ) ≤ n) → 0.

In our proof we correct the crucial estimation of the variance of the number of visits of a given state during one life cycle, formula (2.13) in Gantert et al. (2010). It is done in following Lemma (6.1).

Recall the definition:

Y x = T b n j =0
1 {x} (X j ) Lemma 6.1. For all η > 0 there exists δ > 0 and an event Ω η,δ ⊂ Ω with P(Ω η,δ ) > 1η such that for all ω ∈ Ω η,δ , for all x ∈ [0, c n ],
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 1 Figure 1: Example of potential derived from a Temkin random environment with parameter a = 0.3. Simulation with n = 1000. and the bottom b n of the valley as

  and complete, and M separates points, using Theorem 4.5 from Stewart N. Ethier (2005) M is separating. Now the claim follows directly from proposition (1.4) and lemma 4.3 of Stewart N. Ethier (2005).

  d. and centered under P ω,n b n , since µ n is the invariant probability for the irreducible positively recurrent chain X n and Ẽ ω,n b n T 1

  proof we need to estimate V ω,n b n (ξ 1 ). For x ∈ Z + introduce in x during 1-th excursion from b n to b n . Note that under P

  ) ≤ n 1-δ .Proof. Note that Y b n = 1. Using (2.10) ofGantert et al. (2010), for x ̸ = b n we haveV ω (Y x ) ≤ 4 β(x), whereβ(x) = (1ω x ) P ω,n x-1 (T (b n ) < T (x)) , x = b n + 1, . . . c n ; β(x) = ω x P ω,n x+1 (T (b n ) < T (x)) , x = 0, . . . , b n -1. Then using Assumption II, (2.8) and (2.11) ofGantert et al. (2010) we can find a constant C 0 such that for y = 1, . . .c n -b n , V ω (Y b n +y ) ≤ C 0 b n +y-1 j =b n e V ( j )-V (b n +y-1) , and for y = -b n , . . . , -1, V ω (Y b n +y ) ≤ C 0 b n -1 j =b n +y e V ( j )-V (b n +y) .However the exponential is missing in the bound (2.13) ofGantert et al. (2010), hence, to complete the proof we have to handle the termA ω n (x) := b n +x-1 j =b n e V ( j )-V (b n +x-1) if x = 1, . . . c n -b n , b n -1 j =b n +y e V ( j )-V (b n +y) if x = -b n , . . . ,-1 more carefully. Using Komlos-Mayor-Tusnady theorem we can construct a probability space (Ω, A , P ) on which are defined the environment ω and a Brownian motion W s.t. a.s. sup 0≤s≤t|V (s) -σW s | ≤ C ln t ,whereσ 2 = E(log ρ) 2 and V (s), s ≥ 0, is defined equal to V ( j ) on [ j , j +1[, j ∈ Z + . Let t = c n , W (n) (s) = 1 σ ln n W (sσ 2 ln 2 n), bn = b n σ 2 ln 2 n , cn = c n σ 2 ln 2 nand ln 2 := ln ln .Then we can write, with z= σ 2 ln 2 n × u, -W (b n + x -1)| + O(ln c n )}d z = n[W (n) (u)-W (n) ( bn + x-1 σ 2 ln 2 n )]} d u × e (O(ln c n )) . Denote ∆ n := max{W (n) (u) -W (n) (v); bn ≤ u ≤ v ≤ cn } and ∆ ′ n := max{W (n) (u) -W (n) (v); 0 ≤ v ≤ u ≤ bn }
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SUPPLEMENTARY MATERIAL

The supplement contains the additional Section 6. We prove there the crucial Proposition 2.1 used in the proof of Theorem 1.1. This proposition allows to approximate an additive functional of the environment's chain by a functional depending only on the environment.

Proof of the approximation in probability of

We shorten T y := T 1 y . Using the recurrence of X, T k y < ∞ P -a.s. Denote k n the number of visits of b n by the walk before the time n :

As µ n is an invariant probability of ( X n ), k n /n can be compared with µ n :

For the first term of the inequality (48) we can write:

Where we have denoted

Both events B 1 and B 2 concern with the part of the trajectory X 0 , . . . , X n , where the value c n did not occur. Hence P ω 0 (B i ) = P ω,n 0 (B i ), i = 1, 2. Then, using the It follows that

Similarly, for x ∈ [-b n , . . . , 0],

By Donsker theorem, ( bn , cn ,W (n) ) converges in distribution to ( b, c, W ), where W is a Brownian motion,

Both ∆ < 1 and ∆ ′ < 1 a.s., so ∆ ∨ ∆ ′ < 1 a.s. Using the monotonicity and again Donsker theorem it follows that ∀η > 0, ∃δ > 0, such that lim inf

It follows from ( 59) and ( 58) that ∀η > 0, ∃δ > 0, s.t.