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The Price equation has found widespread application in many areas of
evolutionary biology, including the evolutionary epidemiology of infectious
diseases. In this paper, we illustrate the utility of this approach tomodelling dis-
ease evolution by first deriving a version of Price’s equation that can be applied
in continuous time and to populations with overlapping generations. We then
show how this version of Price’s equation provides an alternative perspective
on pathogen evolution by considering the epidemiological meaning of each
of its terms. Finally, we extend these results to the case where population size
is small and generates demographic stochasticity. We show that the particular
partitioning of evolutionary change given by Price’s equation is also a natural
way to partition the evolutionary consequences of demographic stochasticity,
and demonstrate how such stochasticity tends to weaken selection on birth
rate (e.g. the transmission rate of an infectious disease) and enhance selection
onmortality rate (e.g. factors, like virulence, that cause the end of an infection).
In the long term, if there is a trade-off between virulence and transmission
across parasite strains, the weaker selection on transmission and stronger
selection on virulence that arises from demographic stochasticity will tend to
drive the evolution of lower levels of virulence.
1. Introduction
The Price equation has come to be regarded as one of the most general descrip-
tions of evolution by natural selection [1–4]. Most applications of this equation
are to models of evolution that are formulated in discrete time and that assume
non-overlapping generations (but see [5–7] for examples involving discrete
time with overlapping generations). One area in which the application of
Price’s results to continuous-time models has been relatively well developed
is the study of infectious disease dynamics [8–10]. Several processes have
been examined in this context, including the evolution of pathogen virulence,
transmissibility, coinfection and antigenicity [11–15].

The use of Price’s equation in studies of evolutionary epidemiology has
provided an alternativeway to conceptualize the evolution of infectious diseases,
and one that is tied to very general evolutionary principles as well as to the popu-
lation-genetic literature [14]. Perhaps more importantly, it has also provided fresh
insight into the underlying causes of evolutionary change by clearly separating
the direct effects of natural selection from those that arise through epidemiological
feedbacks, and byallowing these feedbacks to occur on a timescale that is compar-
able with that of evolutionary change. For example, studies have shown that very
different evolutionary outcomes are expected for epidemic versus endemic dis-
eases [7,11,16–18], that transient evolutionary changes in traits like virulence or
transmission rate can be in a direction opposite to that of their long-term
change [8,9,11,18–20], and that the short-term evolutionary consequences of inter-
ventions like vaccination can be very different from the long-term outcome [13].
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Nevertheless, in virtually all of these examples, the full power
of Price’s results has not been used because most of these ana-
lyses have focused only on the so-called ‘first term’ or
covariance term of Price’s equation. As will be seen more
clearly below, biologically this means that these studies have
mostly focused on cases where natural selection acts only at
the between-host level and where mutation is neglected.

In this paper, we have three goals. First, for completeness,
we derive a general form of the Price equation in continuous
time that allows for non-overlapping generations and show
how evolutionary change can be partitioned into three
distinct terms [7]. Biologically, these terms correspond to
the effect of differences among types in reproductive
success, differences among types in the fidelity of replication,
and differences among types in how they change over time if
they survive. Second, we show how this equation provides an
alternative way to view the evolutionary epidemiology of
infectious diseases, and how each of the three terms
represents an important process in pathogen evolution;
namely, differences among strains in their ability to spread
among susceptible hosts, differences among strains in their
mutation rate, and differences among strains in their ability
at within-host competition. Third, we extend these results
to incorporate demographic stochasticity and show that the
way in which the Price equation partitions evolutionary
processes into three terms is also a natural way to partition
the evolutionary consequences of demographic stochasticity.
2. A continuous-time Price equation
Consider a population with a discrete set of kinds of individ-
uals and suppose that each individual is characterized by
some quantity z. For example, z might be a quantitative
trait of an individual or it might be an indicator variable
that takes a value of 1 if some characteristic of interest is pres-
ent and 0 otherwise. The value of z for a type i individual is
denoted zi and the average value of z in the entire population
is �z. We use ni to denote the number of individuals of type i.
In a small interval of time, Δt, we assume that each type i
individual produces biΔt descendants and itself survives
with probability 1− diΔt. We refer to bi as the birth rate of
type i, di as the death rate of type i, and we define the net
reproductive rate as ri = bi− di.

Now suppose that descendants of a type i individual
might be of a different type j≠ i such that the average value
of z across all descendants of a type i individual is zi + Δzi,
where Δzi is the difference (on average) in the z-value
between a type i ‘parent’ and all of its descendants. In a simi-
lar way, if an individual of type i itself survives the interval of
time Δt it might also change in type and thus in its value of z.
To account for this, we define zsi (Dt) to be the expected value
of z for an individual of type i that has survived a duration Δt.
Note that zsi (0) ¼ zi, meaning that if no time elapses, an indi-
vidual of type iwill necessarily still be of type i and thus have
a trait value of zi.

We now seek an equation that governs the time dynamics
of �z. At time t + Δt (where Δt is small) we have

�z(tþ Dt) ¼

X
i

nibiDt(zi þ Dzi)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{reproduction

þ
X
i

ni(1� diDt)zsi (Dt)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{survival

P
i ni(biDtþ (1� diDt))

þ o(Dt),

(2:1)
where the first term in the numerator accounts for all new
births and the second term accounts for the survival of exist-
ing individuals. Approximating everything to first order in Δt
we obtain
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which can be rearranged (using zsi (0) ¼ zi) to give
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where all overbars denote an expectation taken over the dis-
tribution ni=

P
i ni. Dividing by Δt and taking the limit Δt→ 0

then gives the following differential equation governing the
rate of change of the average value �z:

d�z
dt

¼ cov[z, r]þ E[bDz]þ E
dzs

dt

� �
, (2:4)

where dzs/dt is evaluated at Δt = 0 and again the expectations
and covariance are taken over all types in the population (i.e.
over the distribution ni=

P
i ni).

Equation (2.4) reveals that there are three separate
effects that govern the evolutionary dynamics [7]. The first
term accounts for differences among types in reproductive
success. For example, if types with large values of z tend
to have high net reproductive rates, r, then the covariance
will be positive and this will tend to increase the average
value of z in the population. The second term accounts
for differences among types in the fidelity of replication.
For example, if offspring tend to have a higher value of z
than their parents, then the second term will be positive
and this will tend to increase the average value of z in
the population. The third term accounts for differences
among types in how they change over time if they survive.
For example, if the value of z of an individual tends to
increase over time then the third term will be positive
and this will tend to increase the average value of z in
the population.

Also notice that the first term in the Price equation (2.4)
results fromboth birth anddeath events, the second term results
only from birth events, and the third term does not involve
either. As will be seen shortly, these differences in how the
demographic events affect the evolutionary dynamics are also
central to understanding how demographic stochasticity affects
evolutionary change.

3. Evolutionary epidemiology
Our main goal in this article is to illustrate how the above
general formalism of Price’s equation connects to mathemat-
ical models for the evolutionary epidemiology of infectious
diseases. To do so, here we begin by constructing a model
for the evolution of an infectious disease using a standard
multi-strain compartment model [9,21–23]. In the next
section, we then use a change of variables [9,14] to recast
this model in the context of Price’s equation.



Consider a compartment model in which there are two
pathogen strains. Hosts infected with each strain generate
new infections through contact with susceptible hosts, and
mutation can also occur during the transmission process.
We allow for secondary infection and the resultant within-
host competition in the simplest possible way by using a
superinfection assumption [24,25]. Under this assumption,
when a secondary infection occurs, it is assumed that
within-host competition resolves the multiple infection
instantly such that the host either switches to another kind
of infection or remains as it was.

Under these assumptions, a simple model for the time
dynamics of the density, Ii, of hosts infected with strain i is

dIi
dt

¼ hiS� (mþ vi)Ii þ shiIjrij � shjIir ji, (3:1)

where j≠ i and i and j take values in {1, 2}. Here hi = (βiIi(1−
τi) + βjIjτj) and is called the ‘force of infection’ for strain i. The
constant βi is the transmission rate of strain i from such
infected hosts and τi is the probability that, when a type i
host transmits a parasite propagule, this propagule has
mutated to the other type. Therefore, hi represents the rate
at which type i infectious propagules are being generated,
both by type i parasites that do not mutate (the component
βiIi(1− τi)) and by type j parasites that mutate to type i
(the component βjIjτj). As a result, the term hiS is the
rate at which type i infections are generated through trans-
mission of the parasite to susceptible hosts. The terms
σhiIjρij and −σhjIiρji represent the rates of gain and of loss,
respectively, of type i infections through secondary infection.
The positive constant σ scales the efficacy of secondary
infection relative to infection of susceptible hosts, and ρij is
the probability that, given a secondary infection occurs, the
type i parasite out-competes the type j parasite instantly via
superinfection. Finally, vi is the pathogen-induced mortality
rate (i.e. virulence) for strain i and μ is the background host
mortality rate.

Equation (3.1) must also be supplemented with an
equation governing the time dynamics of susceptible hosts,
S, as well as any other host categories that might be relevant
(e.g. recovered and immune hosts). To keep things as clear as
possible, we will focus on a simple SIS (susceptible–infected–
susceptible) model, and in this case the above two equations
for I1 and I2 are coupled to a single additional equation of the
form

dS
dt

¼ B� mS�
X
i

biIiS, (3:2)

where B is a function specifying the total rate of influx of new
susceptible hosts through birth and immigration.

The above model (equations (3.1) and (3.2)) can be
analysed using a variety of techniques to determine how
the strain composition of the population evolves [9,22]. For
example, one of the most common techniques is to use
an adaptive dynamics approach, which implicitly assumes
that the evolutionary dynamics occur on a much slower
timescale than the epidemiological dynamics [26]. Often,
however, evolution and epidemiology occur on similar time-
scales and in this case recasting the model using a change of
variables can be helpful to gain insight [9,14]. This change of
variables separates the evolutionary and epidemiological
components of the dynamics, with the evolutionary part
being given by a form of Price’s equation. We illustrate how
to do this next.
4. Connecting price and evolutionary
epidemiology

Here, we take equations (3.1) and (3.2) and re-write them
with a change of variables, tracking the total number of
infected hosts, I = I1 + I2, and the frequency, p, of these that
are infected with strain 1 (i.e. p = I1/(I1 + I2)) [9,14]. We get

dI
dt

¼ �bSI � (mþ �v)I (4:1)

and

dS
dt

¼ B� mS� �bIS (4:2)

along with

dp
dt

¼ p(1� p)((b1 � b2)S� (v1 � v2))þ (1� p)b2St2 � pb1St1

þ sh1(1� p)r12 � sh2pr21, (4:3)

where the overbars denote an average of the parameters
over the two different kinds of infected hosts (e.g.
�b ¼ pb1 þ (1� p)b2, etc.).

Equations (4.1) and (4.2) specify the epidemiological
dynamics while equation (4.3) separates out from this the
evolutionary dynamics. Notice that equation (4.1) for the
total abundance of infected hosts I simplifies considerably
from equation (3.1) because mutation and secondary infec-
tion affect the kinds of infections that occur but they do not
affect total number of all infections.

We can also see from equation (4.3) that the evolutionary
dynamics are governed by three processes. The first process
is captured by the term p(1− p)((β1− β2)S− (v1 − v2)) and
represents the difference between strains in their ability to
infect susceptible hosts as well as the difference in the
rates at which each type of infection ends. The second
process is captured by the terms (1− p)β2Sτ2− pβ1Sτ1 and
represents mutation between the two strains during the pro-
cess of infection of susceptible hosts. Finally, the third
process is captured by the terms σh1(1− p)ρ12− σh2pρ21 and
represents the gain and loss of strain 1 infections through
secondary infection.

Equations (4.1)–(4.3) allow one to see how evolution pro-
ceeds when coupled to the epidemiological dynamics, and
also clearly illustrate the different factors that affect evol-
utionary change. Furthermore, equation (4.3) is precisely a
special case of the Price equation (2.4). To see this, we need
to identify z, b and d from equation (2.4) in the context of
the above model.

To begin, we take z ¼ I1, the indicator variable for type
1. In other words, z1 = 1 and z0 = 0. Thus, in this context �z
is just the frequency of type 1 infections because
�z ¼ �I1 ¼ p � 1þ (1� p) � 0 ¼ p. Furthermore, the birth rate of
strain i is bi = βiS while the death rate is di = μ + vi (recall
that, from the standpoint of Price’s equation, bi is the total
birth rate for a type i parent regardless of the type of offspring
that are produced). Therefore, the first term of Price’s
equation (2.4) is

cov[z, r] ¼ p(1� p)((b1 � b2)S� (v1 � v2)) (4:4)



or more simply

cov[z, r] ¼ p(1� p)(r1 � r2), (4:5)

where ri = βiS− (μ + vi). This is exactly the first term of
equation (4.3).

The second term of Price’s equation (2.4) accounts for
the fidelity of transmission. To compute it, we need to
compute the expected difference in type between a parent
and its offspring, Δz, for both types of infection. We
then multiply these by bi and average them over the entire
population.

Consider the offspring of type 1 infections. With prob-
ability 1− τ1 no mutation occurs and so there is no change
in type. With probability τ1 a mutation occurs and so z
changes from z1 = 1 to z2 = 0. Therefore, using a subscript
on Δz to indicate type, we have

Dz1 ¼ (1� t1) � 0þ t1(� 1) ¼ �t1 (4:6)

and similarly,

Dz2 ¼ (1� t2) � 0þ t2(1) ¼ t2: (4:7)

Therefore, together we get

E[bDz] ¼ pb1S(�t1)þ (1� p)b2t2, (4:8)

which is exactly the second term of equation (4.3).
Finally, for the third term of Price’s equation (2.4) we need

to specify the instantaneous rate at which the expected value
of z for type 1 infections changes as a result of type 1 infec-
tions switching to type 2 through secondary infection (and
vice versa). These must then be averaged over the two types
of infected hosts.

Since z is an indicator variable with z1 = 1 and z0 = 0, the
rate at which the expected value of z changes during survival
for a type 1 infection is simply the rate at which a type 1 infec-
tion becomes a type 2 infection through superinfection. This
is given by

dzs1
dt

(0) ¼ �sIp(b1pt1 þ b2(1� p)(1� t2))r21: (4:9)

Likewise, the rate at which the expected value of z changes
during survival for a type 2 infection is simply the rate at
which a type 2 infection becomes a type 1 infection through
superinfection, and is given by

dzs2
dt

(0) ¼ sI(1� p)(b1p(1� t1)þ b2(1� p)t2)r12: (4:10)

Therefore, we have

E
dzs

dt

� �
¼ �(1� p)sIp(b1pt1 þ b2(1� p)(1� t2))r21

þ psI(1� p)(b1p(1� t1)þ b2(1� p)t2)r12 (4:11)

or

E
dzs

dt

� �
¼ sh1(1� p)r12 � sh2pr21, (4:12)

which is exactly the third term of equation (4.3).
To summarize, the above considerations show that

we can rewrite the evolutionary-epidemiological model
given by equations (3.1) and (3.2) in terms of Price’s
equation (2.4) as

dS
dt

¼ B� mS� �bIS (4:13)

dI
dt

¼ �bSI � (mþ �v)I (4:14)

and
dp
dt

¼ cov[z, bS� v]þ E[bSDz]þ E
dzs

dt

� �
: (4:15)

The system of equations (4.13)–(4.15) also illustrates another
interesting feature of the application of Price’s equation to
evolutionary epidemiology. In most applications of Price’s
results there is no explicit modelling of demography and so
no feedback between evolution and demography. However,
this kind of epi-evolutionary feedback is at the core of most
models in infectious disease evolution and so when such
models are cast in terms of Price’s results, one typically
obtains a coupled system of equations whereby Price’s
equation is coupled to equations governing the demography
of the population. For example, in the above model Price’s
equation (4.15) involves the density of susceptible hosts S
as well as the total number of infected hosts I (see equation
(4.12)). Each of these variables changes through time as speci-
fied by equations (4.13) and (4.14), and these equations are
coupled to Price’s equation (4.15) because �b and �v both
depend on p.

The fact that there is an epi-evolutionary feedback
between Price’s equation and the equations for population
demography highlights that the direction and speed of
evolution can be influenced by the number of different
kinds of hosts in the population and how these numbers
change over time. The above equations (4.13) and (4.14) are
adequate for capturing these demographic dynamics pro-
vided the number of individuals in the population is large
enough that this deterministic description is appropriate.
For smaller population sizes, however, we need to account
for demographic stochasticity. Moreover, because the evol-
utionary dynamics are coupled to the population dynamics,
demographic stochasticity will presumably alter how evol-
ution proceeds as well. In the next section, we examine this
in detail.
5. Including demographic stochasticity
Here, we extend the above epidemiological model to include
demographic stochasticity and so demonstrate how Price’s
equation is altered. As we will show, the particular partition-
ing of evolutionary processes in Price’s equation is also a
natural way to partition the evolutionary consequences of
demographic stochasticity.

Our approach to including demographic stochasticity is
based on a continuous-time Markov chain model for the
epidemiological dynamics (appendix A). The model treats
population size as being integer-valued and tracks the
number of hosts in each of the three classes (susceptible or
infected by strain 1 or 2).We also specify the area of the habitat,
A, in which the population lives so that we can transform the
stochastic process into one that tracks population density
(recall that the deterministic model is formulated in terms of
density). Then, by assuming that the habitat size is relatively
large, we can obtain a diffusion approximation for the density
of the three classes of individuals (S, I1 and I2, [27]). If we
describe this diffusion process using stochastic differential
equations (SDEs), we obtain the following SDE for the



evolutionary dynamics of the frequency of type 1 infections
(appendix A):

dp
dt

¼ p(1� p) ðb1 � b2ÞS 1� 1
AI

� �
� (v1 � v2) 1þ 1

AI

� �� �

þ ð(1� p)b2t2 � pb1t1ÞS 1� 1
AI

� �

� sh1(1� p)r12 � sh2pr21
þD, (5:1)

where D is a noise term that has a mean value of 0 and that is
approximately a diffusion. The remaining terms in equation
(5.1) represent the expected change in the frequency of type
1 infection. Equation (5.1) is also coupled to SDEs for S and
I but we do not present these here since our primary focus
is on Price’s equation for the evolutionary dynamics (but
see [27]).

The notation dp/dt in equation (5.1) is non-standard
because the frequency p is not a differentiable function of
time, but this notation facilitates comparison with the deter-
ministic case in equation (4.3). Specifically, we can directly
compare the first line of equation (5.1) with the first term
given in equation (4.3) as given by equation (4.4). We see
that, in comparison with equation (4.4), the ‘birth’ part of
the SDE (5.1) is multiplied by (1− 1/AI) while the ‘death’
part is multiplied by (1 + 1/AI). This makes the birth com-
ponent in the SDE smaller than that of the deterministic
case, while the death component in the SDE is larger than
that of the deterministic case. This means that demographic
stochasticity diminishes the evolutionary importance of
differences in birth rates between strains and it enhances
the evolutionary importance of differences in death rates.
At first this asymmetry seems surprising until we recognize
that evolution is a change in the frequency of different types.
When a new infection (i.e. a birth) occurs, the number of infec-
tions goes from AI to AI + 1 and thus the change in frequency
due to adding an additional infection gets smaller (it goes
from 1/AI to 1/(AI + 1)). Conversely, when a death occurs,
the number of infections goes from AI to AI− 1 and thus the
change in frequency due to removing an individual through
death gets larger (it goes from 1/AI to 1/(AI− 1)). Appendix
B makes this idea more precise.

The second line of the SDE (5.1) can be compared with the
second component of equation (4.3) as given by equation
(4.8). Again we see that the SDE version is multiplied by
(1− 1/AI). As with the birth component above this makes
the effect of this second term smaller in the presence of demo-
graphic stochasticity. The reason is the same as above—this
second term accounts for mutation during the generation of
new infections, and the evolutionary consequences of new
infections (in terms of the frequency p) show diminishing
returns as the number of infections increases.

The third line of the SDE (5.1) can be compared with
equation (4.12) and we see that they are identical—demo-
graphic stochasticity does not alter how superinfection
affects the evolutionary dynamics. The reason is that super-
infection does not result in a change in the total number of
infections. As a result, when the number of type 1 infections
changes owing to superinfection, the effect on the frequency
of type 1 infections remains the same (the frequency always
changes by the reciprocal of the total number of infected
hosts). Finally, the noise term D can be decomposed into
the various demographic processes as well but we put
aside this analysis for future work.

Taken together, we can therefore write a version of
Price’s equation (2.4) for this epidemiological model under
demographic stochasticity. Neglecting the noise term,
we have

d�z
dt

¼ cov[z, b] 1� 1
AI

� �
� cov[z, d] 1þ 1

AI

� �
dt

þ E[bDz] 1� 1
AI

� �
þ E

dzs

dt

� �
: (5:2)
6. Discussion
The Price equation has found widespread use in many differ-
ent areas of evolutionary biology. Here, we have illustrated
how it can also provide useful insight into the evolutionary
biology of infectious diseases. Although classical multi-
strain compartment models in epidemiology can be analysed
in a variety of ways, the change of variables used here that
recasts such models in terms of Price’s equation represents
an interesting complement to these modelling techniques.
One of its main features is that it separates the epidemiologi-
cal dynamics from the evolutionary dynamics and so more
clearly illustrates how there is a reciprocal feedback between
the two. It also thereby lends itself to exploring how the
evolutionary outcome depends on the relative rates at
which epidemiological and evolutionary processes occur.
For example, the Price equation approach has been used to
show that very different evolutionary outcomes are expected
for epidemic versus endemic diseases [7,11,17,18], that transi-
ent evolutionary changes in traits like virulence or
transmission rate can be in a direction opposite to that of
their long-term change [8,9,11], and that the short-term evol-
utionary consequences of interventions like vaccination can
be very different from the long-term outcome [11,13,18,20].
This theoretical framework has also inspired evolution exper-
iments with microbes in the laboratory [18,20] and provided
some insights on the understanding of the epidemiology and
evolution of pathogens at a global scale [28].

The particular decomposition of evolutionary change that
is highlighted by the Price equation also provides an interest-
ing perspective on the evolution of infectious diseases. We
have shown that for populations with overlapping gener-
ations (as is the case for most epidemiological models)
there are three components to evolutionary change (see
equation (4.15)). The first term (the covariance term) of
equation (4.15) stems from differences among strains in the
net rate at which hosts infected with each strain is changing.
This net rate of change is made up of two broad classes of
demographic events: (i) births—the generation of new infec-
tions through transmission to susceptible hosts, βS; and
(ii) deaths—the loss of existing infections through host mor-
tality, μ + v. Not all new infections caused by a particular
strain will be infections by that same strain, however, because
of mutation. The second term of Price’s equation (4.15)
accounts for this potential lack of fidelity of transmission
and so it involves demographic processes associated with
births but not deaths (i.e. it involves βS but not μ + v). Finally,
the third term of equation (4.15) accounts for changes in type
of existing infections as a result of secondary infection
(within-host mutation and subsequent within-host



competition would also be captured by a term of this type).
Since this process involves a change of one infection type to
another rather than the generation of a new infection, it
does not involve births, βS, nor deaths, μ + v. Note that each
of the above three processes is affected by the epidemiologi-
cal dynamics as well, through their dependence on S and/or
I. This kind of epi-evolutionary (or eco-evolutionary) feed-
back is something not often appearing in traditional
applications of the Price equation.

The above partitioning of the evolutionary processes by
Price’s equation (4.15) also provides a natural way to par-
tition the evolutionary consequences of demographic
stochasticity when the population size is small. Specifically,
our analysis demonstrates that demographic stochasticity
tends to diminish the evolutionary importance of differences
in birth rates between strains and it tends to enhance the evol-
utionary importance of differences in death rates. This is
because births (i.e. the generation of a new infection) increase
the number of infections by 1, and so decrease the effect that
changes in number have on the frequency of the different
strains. Likewise, deaths (i.e. the loss of an infection) decrease
the number of infections by 1, and so increase the effect that
changes in number have on the frequency of the different
strains. Both effects appear in the covariance term of Price’s
equation (5.2) while only the birth effect appears in the
mutation term. Neither effect appears in the term accounting
for secondary infection, because this process does not result
in a change in the total number of infections.

These results on the evolutionary consequences of demo-
graphic stochasticity parallel previous findings arguing that
selection favours reduced variance in fitness when there is
demographic stochasticity [4,27,29–31]. To see this we can
combine the first two terms of Price’s equation (5.2) to get

d�z
dt

¼ cov z, b� d� bþ d
AI

� �
þ E[bDz] 1� 1

AI

� �
þ E

dzs

dt

� �
:

(6:1)

We can see that the ‘measure of fitness’ that appears in the
covariance term is then b− d− (b + d )/AI. In other words,
selection will tend to increase �z if high values of z are associ-
ated with high values of b− d− (b + d )/AI. The quantity b− d
is simply the net rate of increase, or expected fitness, while
the quantity b + d is the rate at which birth or death events
happen and can also be viewed as the variance in fitness
[27]. Therefore, selection will tend to increase �z if high
values of z are associated with high expected fitness and
low variance in fitness. While this is a well-known finding,
the derivation used here (including that in appendix B) pro-
vides a more mechanistic understanding of where this
result comes from.

The effect of demographic stochasticity on evolutionary
dynamics has been explicitly discussed within the Price
equation framework by Rice [32]. Rice [32] considered a dis-
crete-time version of the Price equation and introduced
demographic stochasticity by allowing fitness to be a
random variable. There is no explicit description of demogra-
phy, but mean fitness (i.e. a measure of the growth rate of the
population) drops when the variance in fitness increases (see
also [29,30]). This effect is akin to the process mediated by the
change in population size following a birth or a death event
that we discuss above. In our formalism, the link between
evolutionary change and stochastic demography is more
explicit, but the incorporation of other forms of stochasticity
(e.g. environmental stochasticity) remains to be investigated
in the epi-evolutionary framework with SDEs.

These findings regarding demographic stochasticity have
interesting implications for the study of infectious disease
evolution. The above results mean that demographic stochas-
ticity will tend to weaken selection on transmission rate and
enhance selection on factors that cause the end of an infection
(like virulence). Thus, if there is a trade-off between virulence
and transmission across parasite strains, the weaker selection
on transmission and stronger selection on virulence that
arises from demographic stochasticity means that such sto-
chasticity will tend to drive the evolution of lower levels of
virulence [27,33,34].

The study of the joint epidemiological and evolutionary
dynamics of pathogens yields multiple theoretical challenges.
Once again, the Price equation provides a very useful frame-
work to identify distinct processes acting on evolutionary
dynamics. This partitioning has the remarkable ability to
account for a seemingly endless amount of biological
complexity.
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Appendix A
Here, we derive a version of the epidemiological model
presented in the main text that accounts for demographic sto-
chasticity. We use a continuous-time Markov chain where the
state space is the integer-valued set of all possible numbers of
susceptible hosts as well as the number of hosts infected with
strain 1 or strain 2. As such the system remains in its current
state for an exponentially distributed amount of time, after
which some event occurs (e.g. a new infection, a host
death, a superinfection, etc.). Furthermore, the number
times each event has occurred by time t is given by an
inhomogeneous Poisson process. Therefore, we define Pi(t)
to be a Poisson counting process for event i that has unit
intensity. Likewise, we define P�

i (t) ¼ Pi(t)� t to be the corre-
sponding mean-centred process. With this notation, if there
are I1(0) hosts infected with strain 1 at time t = 0, then the
number of hosts infected by strain 1 at time t, X1(t), can be
written as

X1(t) ¼ X1(0)þ P1

ðt
0
b̂1YX1(1�t1) ds

� �
þ P2

ðt
0
b̂2YX2t2 ds

� �

� P3

ðt
0
mX1 ds

� �
� P4

ðt
0
v1X1 ds

� �

� P5

ðt
0
sb̂1X

2
1t1r21 ds

� �
�P6

ðt
0
sb̂2X1X2(1�t2)r21 ds

� �

þ P7

ðt
0
sb̂1X1X2(1�t1)r12 ds

� �
þP8

ðt
0
sb̂2X

2
2t2r12 ds

� �
,

(A 1)

where Y(t) is the number of susceptible hosts at time t. All of
the notation in equation (A 1) is the same as the main text



except we have defined b̂ ¼ b=A because β in the main text is
specific to population densities and we are tracking popu-
lation numbers in equation (A 1). So, for example, b̂ should
be smaller if the same number of individuals are occupying
a larger area because their effective contact rate per individual
would be lower. An analogous equation holds for X2(t), and a
similar equation can also be written for Y(t). Now using the
definition of P�

i (t) we get

X1(t)¼X1(0)þ
ðt
0
b̂1YX1(1�t1)dsþ

ðt
0
b̂2YX2t2 ds

�
ðt
0
mX1 ds�

ðt
0
v1X1 ds

�
ðt
0
sb̂1X1X1t1r21 ds�

ðt
0
sb̂2X1X2(1�t2)r21 ds

þ
ðt
0
sb̂1X1X2(1�t1)r12 dsþ

ðt
0
sb̂2X2X2t2r12 ds

þP�
1

ðt
0
b̂1YX1(1�t1)ds

� �
þP�

2

ðt
0
b̂2YX2t2 ds

� �

�P�
3

ðt
0
mX1 ds

� �
�P�

4

ðt
0
v1X1 ds

� �

�P�
5

ðt
0
sb̂1X

2
1t1r21 ds

� �
�P�

6

ðt
0
sb̂2X1X2(1�t2)r21 ds

� �

þP�
7

ðt
0
sb̂1X1X2(1�t1)r12 ds

� �
þP�

8

ðt
0
sb̂2X

2
2t2r12 ds

� �
:

(A2)

We then divide by the habitat area A, and define Ii =Xi/A
and S =Y/A, and bi ¼Ab̂i to get

I1(t)¼ I1(0)þ
ðt
0
b1SI1(1�t1)dsþ

ðt
0
b2SI2t2 ds

�
ðt
0
mI1 ds�

ðt
0
v1I1 ds

�
ðt
0
sb1I1I1t1r21 ds�

ðt
0
sb2I1I2(1�t2)r21 ds

þ
ðt
0
sb1I1I2(1�t1)r12 dsþ

ðt
0
sb2I2I2t2r12 ds

þ 1
A
P�
1 A

ðt
0
b1SI1(1�t1)ds

� �
þ 1
A
P�
2 A

ðt
0
b2SI2t2 ds

� �

� 1
A
P�
3 A

ðt
0
mI1 ds

� �
� 1
A
P�
4 A

ðt
0
v1I1 ds

� �

� 1
A
P�
5 A

ðt
0
sb1I

2
1t1r21 ds

� �
� 1
A
P�
6 A

ðt
0
sb2I1I2(1�t2)r21 ds

� �

þ 1
A
P�
7 A

ðt
0
sb1I1I2(1�t1)r12 ds

� �
þ 1
A
P�
8 A

ðt
0
sb2I

2
2t2r12 ds

� �
:

(A3)

So far everything is expressed in terms of Poisson processes
but we can model these with diffusion processes if the habitat
area A is relatively large, using the approximation [27,35,36]

1
A
P�(Ag(t))� 1ffiffiffiffi

A
p W(g(t))

where g(t) is a function of time and W(t) is a standard Wiener
process. Therefore, we have

I1(t)� I1(0)þ
ðt
0
b1SI1(1�t1)dsþ

ðt
0
b2SI2t2 ds

�
ðt
0
mI1 ds�

ðt
0
v1I1 ds

�
ðt
0
sb1I1I1t1r21 ds�

ðt
0
sb2I1I2(1�t2)r21 ds

þ
ðt
0
sb1I1I2(1�t1)r12 dsþ

ðt
0
sb2I2I2t2r12 ds

þ 1ffiffiffiffi
A

p W1

ðt
0
b1SI1(1�t1)ds

� �
þ 1ffiffiffiffi

A
p W2

ðt
0
b2SI2t2 ds

� �

� 1ffiffiffiffi
A

p W3

ðt
0
mI1 ds

� �
� 1ffiffiffiffi

A
p W4

ðt
0
v1I1 ds

� �

� 1ffiffiffiffi
A

p W5

ðt
0
sb1I

2
1t1r21 ds

� �
� 1ffiffiffiffi

A
p W6

ðt
0
sb2I1I2(1�t2)r21 ds

� �

þ 1ffiffiffiffi
A

p W7

ðt
0
sb1I1I2(1�t1)r12 ds

� �
þ 1ffiffiffiffi

A
p W8

ðt
0
sb2I

2
2t2r12 ds

� �

(A4)

and upon computing the differential we get

dI1¼b1SI1(1�t1)dtþb2SI2t2 dt� (mþv1)I1 dt
�sb1I1I1t1r21 dt�sb2I1I2(1�t2)r21 dt
þsb1I1I2(1�t1)r12 dtþsb2I2I2t2r12 dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1SI1(1�t1)

p
ffiffiffiffi
A

p dW1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2SI2t2

p
ffiffiffiffi
A

p dW2�
ffiffiffiffiffiffiffi
mI1

p
ffiffiffiffi
A

p dW3

�
ffiffiffiffiffiffiffiffi
v1I1

p
ffiffiffiffi
A

p dW4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb1I21t1r21

q
ffiffiffiffi
A

p dW5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb2I1I2(1�t2)r21

p
ffiffiffiffi
A

p dW6

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb1I1I2(1�t1)r12

p
ffiffiffiffi
A

p dW7þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb2I22t2r12

q
ffiffiffiffi
A

p dW8:

(A5)

An analogous equation holds for I2, providing a stochastic
version of equation (3.1) for the case where the habitat area
A is large. Finally, defining p = I1/(I1 + I2) and using Ito’s
lemma we get equation (5.1) of the main text.
Appendix B
In this appendix,we formalize the intuition behind the different
effects of demographic stochasticity. Recall that demographic
stochasticity affects those parts of the evolutionary process
that are driven by new infections (the first two lines of the
Price equation (5.1) but it has no effect on those parts driven
by secondary infections (the third line of Price’s equation
(5.1)). The key to understanding this difference is to note that
processes associated with the first two lines result in a change
in the total number of infected hosts (increasing from births
and decreasing from deaths), whereas processes associated
with the third line do not alter the total number of infected
hosts (instead one type of host changes to another).

To explore this idea more broadly, consider a simple
generic model in which there are just births or deaths. We
assume that one event happens at a time and the rate at
which events happen is proportional to the total population
size. To illustrate the above points, we will consider two
different demographic schemes: (1) the total population size
is fixed by ensuring that any birth or death event is



compensated for by randomly adding or removing another
individual as necessary (this corresponds to the processes
embodied by the third line of Price’s equation (5.1)); and (2)
the total population size changes as a result of births and
deaths (this corresponds to the processes embodied by the
first two lines of Price’s equation (5.1)).

Let X denote the number of type 1 individuals, p the
frequency of type 1 individuals, and N the total population
size. Also, let bi be the birth rate of type i and di the death
rate. As an example, with this set-up, if we condition on a
birth or death event occurring, it will be a birth of type 1
with probability

pb1
pb1 þ (1� p)b2 þ pd1 þ (1� p)d2

and so forth. The total rate at which events happen is N
( pb1 + (1− p)b2 + pd1 + (1− p)d2), and for simplicity of nota-
tion we will define α = pb1 + (1− p)b2 + pd1 + (1− p)d2, which
is the average rate of events (Nα is the total rate of events).

(a) Scheme 1 (N is a fixed constant)
Each birth replaces a type 1 individual with probability p and
a type 2 individual with probability 1− p. Likewise, the
vacancy created by each death event is filled by a type 1 indi-
vidual with probability p and a type 2 individual with
probability 1− p. Given an event occurs, we therefore have
the following table of possibilities:
event
 probability
 expected change in p
birth of type 1
 b1p
a
 (1� p) Xþ1

N þ p XN � X
N ¼ (1� p) 1N
birth of type 2
 b2(1�p)
a
 (1� p) XN þ p X�1

N � X
N ¼ �p 1

N

death of type 1
 d1p
a
 (1� p) X�1

N þ p XN � X
N ¼ �(1� p) 1N
death of type 2
 d2(1�p)
a
 (1� p) XN þ p Xþ1

N � X
N ¼ p 1

N

The expected change in p in a small interval of time Δt is
therefore

E[Dp] ¼ (1�NaDt) � 0

þNaDt
1
a

b1p(1� p)
1
N

� b2(1� p)p
1
N

�

�d1p(1� p)
1
N

þ d2(1� p)p
1
N

� (B 1)

or

E[Dp] ¼ p(1� p)((b1 � b2)� (d1 � d2))Dt:

Thus, if the total population size does not change as a result
of births or deaths, then the expected change in frequency in
a small interval of time does not depend on population size.
Instead, this expected change is exactly the same as the
change in frequency predicted by a deterministic model.
This is why the third line of SDE (5.1) is identical to that of
the deterministic model.

(b) Scheme 2 (N changes with births and deaths)
In this case, we do not replace individuals upon births nor fill
empty spots upon deaths but instead allow the total popu-
lation size to change. Given an event occurs, we therefore
have the following table of possibilities:
event
 probability
 expected change in p
birth of type 1
 b1p
a

Xþ1
Nþ1 � X

N ¼ (1� p) 1
Nþ1
birth of type 2
 b2(1�p)
a

X
Nþ1 � X

N ¼ �p 1
Nþ1
death of type 1
 d1p
a

X�1
N�1 � X

N ¼ �(1� p) 1
N�1
death of type 2
 d2(1�p)
a

X
N�1 � X

N ¼ p 1
N�1
The expected change in p in a small interval of time Δt
is therefore

E[Dp] ¼ (1�NaDt) � 0

þNaDt
1
a

b1p(1� p)
1

N þ 1
� b2(1� p)p

1
N þ 1

�

�d1p(1� p)
1

N � 1
þ d2(1� p)p

1
N � 1

�

(B 2)

or

E[Dp] ¼ p(1� p) (b1 � b2)
N

N þ 1
� (d1 � d2)

N
N � 1

� �
Dt:

In this case, because the total population size changes as a
result of births or deaths, the expected change in frequency
changes as well in a way that depends on what the current
population size is. For example, the increase in frequency of
type 1 due to the birth of a type 1 individual is smaller
than the decrease in frequency of type 1 due to the death of
a type 1 individual.

We can take this a bit further in drawing a connection to
the main text by noting that, if N is large, then to first order in
1/N we get

E[Dp] ¼ p(1� p) (b1 � b2) 1� 1
N

� �
� (d1 � d2) 1þ 1

N

� �� �
Dt,

which has exactly the same form as the third line of SDE (5.1).
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