Maher Me'meh 
  
Ali Saraeb 
  
A Generalization of Iseki's Formula and The Jacobi Theta Function

Keywords: Jacobi Theta Function, Dedekind Eta function, Iseki's Formula, Dedekind Sums. 2010 Mathematics Subject Classification. 11F20, 11F50, 11F55

In this paper we give a generalization of Iseki's formula and use it to prove the transformation law of θ 1 (z, τ ).

Introduction

The Dedekind Eta function, defined as

η(τ ) = e πiτ /12 ∞ n=1
(1 -e 2πinτ ), plays an important role in the study of Modular and Jacobi forms. Its transformation over a matrix A ∈ SL 2 (Z), where with no loss of generality A = a b c d with c > 0, is given by η(Aτ ) = ε(A)(-i(cτ + d)) 1/2 η(τ ).

One obtains the Dedekind eta-character "ε(A)" which is defined as, (check, [START_REF] Rademacher | Topics in Analytic Number Theory[END_REF],III)

ε(A) =    d c i (1-c)
/2 e (πi/12)(bd(1-c 2 )+c(a+d)) if c odd c d e πdi/4 e (πi/12)(ac(1-d 2 )+d(b-c)) if d odd,

where (d, c) = 1, and c d is the Legendre-Jacobi symbol given by

c d = n i=1 c p i α i , if d = p α 1 1 .p α 2 2 .
..p αn n , where each p i is a prime and each c p i is the regular Legendre symbol defined as

c p i =   
1 if c is a quadratic residue mod p i -1 if c is a quadratic non-residue mod p i 0 if c is a multiple of p i However, it turns out that computations done using this definition of the eta-character can get really messy. On the other hand, Sho Iseki proved in 1952 [Apo89, p.53, Theorem 3.5] the transformation law of the eta function using a functional equation which will be addressed below. Using his proof he was able to write the eta-character using Dedekind sums which proved to be much easier in terms of computations. The eta-character turns out to be Since the eta-character appears significantly in the transformation laws of Jacobi theta functions and Jacobi forms ([Rad12],X), we generalize Iseki's proof of the eta function and apply the generalization to Jacobi theta function ϑ 1 (z, τ ), which is defined as

ϑ 1 (z, τ ) = -iζ 1/2 q 1/8 ∞ n=1 (1 -q n )(1 -ζq n )(1 -ζ -1 q n-1 ), (1.1)
where ζ = e 2πiz and q = e 2πiτ , z ∈ C and τ ∈ H, where H is the upper half plane. We first generalize Iseki's functional equation of his Λ function defined by

Λ(α, β, z) = ∞ n=0 -log(1 -e -2π((n+α)z-iβ) ) -log(1 -e -2π((n+1-α)z+iβ) ) and Λ(α, β, z) = Λ(1 -β, α, z -1 ) + g 0 (α, β, z)
to four variables using methods from Fourier analysis then we employ this tool to prove the transformation law of ϑ 1 .

Generalization of Iseki's formula

Theorem 2.1. If Re(w) > 0, 0 < α < 1 , θ is real, and 0 < β + θ < 1 , then

Λ(α, β, w, θ) = Λ(1 -β, α, w -1 , -iθ/w) + g 0 (α, β, w, θ), (2.2) 
where

Λ(α, β, w, θ) = - ∞ n=0 log(1 -e 2πiθ e -2π((n+α)w-iβ) ) + log(1 -e -2πiθ e -2π((n+1-α)w+iβ) ), (2.3) with g 0 (α, β, w, θ) = π w B 2 (β + θ) -πwB 2 (α) + 2πiB 1 (α)B 1 (β + θ), (2.4)
and B n is the n th Bernoulli polynomial coming from the Taylor expansion of

te xt e t -1 = ∞ n=1 B n (x) t n n! ,
with an explicit formula

B n (x) = n m=0 1 m + 1 m k=0 (-1) k m k (x + k) n .
Proof: The proof utilizes the following well-known identities from Fourier analysis (check [Bro59, 5.2, p. 370])

e 2πmαw 1 -e 2πmw + 1 2πwm = 1 2πi ∞ n=-∞ n =0
e 2πiαn wmi + n .

(2.5)

Replacing w by w -1 and m and -m, we get

e -2πmαw -1 1 -e -2πmw -1 - 1 2πw -1 m = - 1 2πi ∞ n=-∞ n =0
e 2πiαn w -1 mi -n .

(2.6)

We also have

1 m(wmi -n) = - 1 mn + w n(ni + wm) .
(2.7)

We first observe that (2.3) can be rewritten as follows

Λ(α, β, w, θ) = ∞ m=1 e 2πimβ m e -2πmαw 1 -e -2πmw e 2πimθ - ∞ m=1 e -2πimβ m e 2πmαw 1 -e 2πmw e -2πimθ = - ∞ m=-∞ m =0 e -2πimβ m e 2πmαw 1 -e 2πmw e -2πimθ .
(2.8)

Multiplying both sides of equation (2.5) by -1 2πmi e -2πimβ e -2πimθ and then summing from m = -∞ to +∞, we rewrite (2.8) as follows

Λ(α, β, w, θ) = - 1 2πi ∞ m=-∞ m =0 ∞ n=-∞ n =0 e -2πimβ m e 2πinα wmi + n e -2πimθ + 1 2πw ∞ m=-∞ m =0 e -2πim(β+θ) m 2 = - 1 2πi ∞ m=-∞ m =0 ∞ n=-∞ n =0 e -2πimβ m e -2πinα wmi -n e -2πimθ + 1 2πw ∞ m=-∞ m =0 e 2πim(β+θ) m 2 = - 1 2πi ∞ m=-∞ m =0 (A m (α, β, w, θ)) + 1 2πw F 2 (β + θ), (2.9) 
where

A m (α, β, w, θ) = ∞ n=-∞ n =0 e -2πimβ m e -2πinα wmi -n e -2πimθ , (2.10) 
and

F n (x) = ∞ m=-∞ m =0 e 2πimx m n =                      ∞ m=-∞ m =0 e -2πimx m n if n is even. - ∞ m=-∞ m =0 e -2πimx
m n if n is odd.

(2.11) Using (2.7), (2.10) becomes as follows

A m (α, β, w, θ) = - e -2πim(β+θ) m ∞ n=-∞ n =0 e -2πinα n + ∞ n=-∞ n =0 e -2πimβ e -2πinα n( ni w + m) e -2πimθ .
By using

F 1 (x) = -2πiB 1 (x), F 2 (x) = -(2πi) 2 2!
B 2 (x) [Apo89, theorem 3.5, p:56], (2.7), (2.10), and (2.11) and by carefully manipulating the signs of m and n in the summands, we observe that

- 1 2πi ∞ m=-∞ m =0 A m,n (α, β, w, θ) = 1 2πi ∞ m=-∞ m =0 e -2πim(β+θ) m ∞ n=-∞ n =0 e -2πinα n - 1 2πi ∞ m=-∞ m =0 ∞ n=-∞ n =0 e -2πim(β+θ) e -2πiαn n( ni w + m) = 1 2πi F 1 (β + θ)F 1 (α) - 1 2πi ∞ m=-∞ m =0 ∞ n=-∞ n =0 e -2πin(β+θ) e -2πimα m( mi z + n) = 2πiB 1 (β + θ)B 1 (α) - 1 2πi ∞ m=-∞ m =0 ∞ n=-∞ n =0 e 2πin(β+θ) e -2πimα m( mi w -n) = 2πiB 1 (β + θ)B 1 (α) + ∞ m=-∞ m =0 e -2πm(1-β-θ)w -1 1 -e -2πmw -1 e -2πimα m - w 2π ∞ m=-∞ m =0 e -2πimα m 2 = 2πiB 1 (β + θ)B 1 (α) - ∞ m=-∞ m =0 e -2πimα m e -2πm(1-β)w -1 1 -e 2πmw -1 e 2πim(-iθw -1 ) - w 2π ∞ m=-∞ m =0 e -2πimα m 2 = 2πiB 1 (β + θ)B 1 (α) + Λ(1 -β, α, w -1 , -iθ/w) -πwB 2 (α).
(2.12) Plugging (2.12) in (2.9), we get that

Λ(α, β, w, θ) = Λ(1 -β, α, w -1 , -iθ/w) + π w B 2 (β + θ) -πwB 2 (α) + 2πiB 1 (β + θ)B 1 (α).
This completes the proof of Theorem 2.1. We now use Theorem 2.1. to prove the transformation law for ϑ 1 under the elements of the full modular group SL 2 (Z). 

ϑ 1 z cτ + d , aτ + b cτ + d = ε 1 (A) (-i(cτ + d)) 1/2 e πicz 2 cτ +d ϑ 1 (z, τ ).
(2.13)

Here ε appears in the transformation law of the Dedekind eta function as mentioned in the introduction, where

ε 1 (A) = -iε 3 = -i. exp 3πi a + d 12c + s(-d, c) . and s(h, k) = k-1 r=1 r k hr k - hr k - 1 2
is the Dedekind sum for k > 0 and (k, h) = 1.

Proof. We will start by deriving equivalent functional equations to (2.13). Firstly note that (2.13) is equivalent to

log ϑ 1 z cτ + d , aτ + b cτ + d = log(ε 1 (A)) + 1 2 log(-i(cτ + d)) + πicz 2 cτ + d + log (ϑ 1 (z, τ )) (2.14)
where the logarithm is taken over the principle branch.

Note that using the definition of Dedekind eta function, we have

∞ n=1 (1 -q n ) = η(τ ).e -πiτ
12 .

Hence (1.1) becomes

ϑ 1 (z, τ ) = -iζ 1/2 q 1/8 η(τ )e -πiτ 12 ∞ n=1 (1 -ζq n )(1 -ζ -1 q n-1 ), (2.15) 
where again ζ = e 2πiz and q = e 2πiτ .

As a result of (2.15), (2. cτ +d e 2(n-1)πi( aτ +b cτ +d ) )

= log -i. exp 3πi( a

+ d 12c + s(-d, c)) + 1 2 log(-i(cτ + d)) + πicz 2 cτ + d + log(-ie πiz e πiτ 4 ) + log(η(τ )) - πiτ 12 + ∞ n=1 log(1 -e 2πiz e 2nπiτ ) + ∞ n=1
log(1 -e -2πiz e 2(n-1)πiτ ).

Using the fact that, (check [Apo89, 3.4, p.52])

log η aτ + b cτ + d = πi a + d 12c + πis(-d, c) + 1 2 log(-i(cτ + d)) + log(η(τ )),
we obtain

πiz cτ + d + πi 6 aτ + b cτ + d + ∞ n=1 log(1 -e 2πiz cτ +d e 2nπi( aτ +b cτ +d ) ) + ∞ n=1 log(1 -e -2πiz
cτ +d e 2(n-1)πi( aτ +b

cτ +d ) ) = log(-i) + 2πi( a + d 12c ) + 2πis(-d, c)) + πicz 2 cτ + d + πiz + πiτ 6 + ∞ n=1 log(1 -e 2πiz e 2nπiτ ) + ∞ n=1
log(1 -e -2πiz e 2(n-1)πiτ ).

Relocating the terms we get d,c)

+ πicz 2 cτ + d - πiz cτ + d + πiz + πi 6 τ - aτ + b cτ + d .
(2.16)

Now we prove an equivalence of (2.16) by introducing a classical change of variable, we set

-i(cτ + d) = v a = H, c = k and h = -d,
where it is clear that Hh ≡ -1 (mod k).

Under this change of variable, we have

τ = iv + h k and aτ + b cτ + d = 1 k H + i v . Moreover, πi 6 τ - aτ + b cτ + d = -2πi a + d 12c - π 6k v - 1 v .
Plugging in (2.16), where log(-i) = -πi 2 , we obtain that (2.16) and hence our functional equation (2.13) is equivalent to 

(h+iv) ) + 2πis(h, k) - π 6k (v - 1 v ) - πi 2 + πkz 2 v + πiz - πz v , (2.17) 
which is what we desire to prove.

We now follow Iseki's proof closely and we let

β = φ k where 0 ≤ φ ≤ k -1.
In order to use Theorem 2.1, we need 0 < β + θ < 1 for which one can easily prove that it is equivalent to having 0 < θ < 1 k .

We will use Theorem 2.2 to prove the functional equation (2.17) for θ real and in the open interval (0, 1 k ). Also, we will divide the proof into two cases, for k = 1 and k > 1, and then use analytic continuation to extend the result to the whole plane. Λ(α, β, w, θ) = Λ(1 -β, α, 1/w, -iθ/w) + g 0 (α, β, w, θ).

(2.18)

For k = 1 we obtain from (2.17)

∞ n=1 log(1 -e 2πz v e 2nπi(H+ i v ) ) + log(1 -e -2πz v e 2(n-1)πi(H+ i v ) ) = ∞ n=1
log(1 -e 2πiz e 2nπi(h+iv) ) + log(1 -e -2πiz e 2(n-1)πi(h+iv) ) -

π 6 (v - 1 v ) - πi 2 + πz 2 v - πz v + πiz.
Note that e 2nπiH = 1, so we end up with

∞ n=1 log(1 -e 2πz v e -2nπ v ) ) + log(1 -e -2πz v e -2(n-1)π v ) ) = ∞ n=1 log(1-e 2πiz e -2nπv) )+ ∞ n=1 log(1-e -2πiz e -2(n-1)πv) )- π 6 v - 1 v - πi 2 + πz 2 v +πiz- πz v .
(2.19)

Setting β = 0 and α → 1, from (2.18), we see that

- ∞ n=0 log(1 -e -2πiθ e -2π(n)w) ) + log(1 -e 2πiθ e -2π(n+1)w) ) = - ∞ n=0 log(1 -e -2π θ w e -2π(n) w ) ) + log(1 -e 2π θ w e -2π(n+1) w ) ) - πw 6 + π w (θ 2 -θ + 1 6 ) - πi 2 + πiθ
Relocating the terms,

∞ n=1 log(1 -e 2πθ w e -2πn w ) + ∞ n=1 log(1 -e -2πθ w e -2π(n-1) w ) = ∞ n=1 log(1 -e 2πiθ e -2πnw ) + ∞ n=1 log(1 -e -2πiθ e -2π(n-1)w ) = - π 6 w - 1 w + πθ 2 w - πθ w - πi 2 + πiθ. (2.20)
This is exactly (2.19) if we let θ = z and w = v. This proves the transformation law when k = 1.

For k > 1 we let α = µ k where 1 ≤ µ ≤ k -1, and writing hµ = qk + φ we choose

β = φ k where 1 ≤ φ ≤ k -1.
Note that φ ≡ hµ (mod k) so -Hφ ≡ -Hhµ ≡ µ (mod k), and hence -Hφ/k ≡ µ/k (mod 1). Therefore α = µ/k ≡ -Hφ/k (mod 1)

β = φ/k ≡ hµ/k (mod 1).
Plugging in (2.18) where again w = v and θ = z we obtain

∞ n=0 log(1 -e -2πz v e -2π((n+β)v -1 +iα) ) + ∞ n=0 log(1 -e 2πz v e -2π((n+1-β)v -1 -iα) ) = ∞ n=0 log(1 -e 2πiz e -2π((n+α)v-iβ) ) + ∞ n=0 log(1 -e -2πiz e -2π((n+1-α)v+iβ) ) -πv α 2 -α + 1 6 + π v (β + z) 2 -(β + z) + 1 6 + 2πi α - 1 2 β - 1 2 + 2πzi α - 1 2 .
Using α ≡ -Hφ/k (mod 1) and β ≡ hµ/k (mod 1), we obtain

∞ n=0 log(1 -e -2πz v e -2π((n+φ/k)v -1 -i Hφ k ) ) + ∞ n=0 log(1 -e 2πz v e -2π((n+1-φ/k)v -1 +i Hφ k ) ) = ∞ n=0 log(1 -e 2πiz e -2π((n+µ/k)v-i hµ k ) ) + ∞ n=0 log(1 -e -2πiz e -2π((n+1-µ/k)v+i hµ k ) ) -πv µ k 2 - µ k + 1 6 + π v φ k + z 2 -( φ k + z) + 1 6 +2πi µ k - 1 2 φ k - 1 2 +2πzi µ k - 1 2 . (2.21) Note that log(1 -e -2π(x+mi) ) = log(1 -e -2πx
), i.e it's periodic of period i so the above can be written as

∞ n=0 log(1 -e -2πz v e -2π( (nk+φ)( 1 v -iH) k ) ) + ∞ n=0 log(1 -e 2πz v e -2π( (nk+k+φ)( 1 v -iH) k ) ) = ∞ n=0 log(1 -e 2πiz e -2π (nk+µ)(v-ih) k ) ) + ∞ n=0 log(1 -e -2πiz e -2π (nk+k+µ)(v-ih) k ) ) -πv µ k 2 - µ k + 1 6 + π v φ k 2 + 2z( φ k ) + z 2 -( φ k + z) + 1 6 +2πi µ k - 1 2 φ k - 1 2 +2πzi µ k - 1 2
Now sum both sides on µ from µ = 1, 2...k -1 and also notice that {nk + µ, n = 0, 1, 2...; µ = 1, 2, ...k -1} = {r : r ≡ 0 (mod k)} , and the same goes for the set of number nk + k -µ, and since φ ≡ hµ (mod k) as µ runs over the number 1, 2, ...k -1 so does φ but in some other order. Hence we get

∞ r=1 r ≡0( mod k) log(1 -e -2πz v e -2πr( ( 1 v -iH) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e 2πz v e -2πr( ( 1 v -iH) k ) ) = ∞ r=1 r ≡0( mod k) log(1 -e 2πiz e -2πr (v-ih) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e -2πiz e -2πr (v-hi) k ) ) -πv k-1 µ=1 µ k 2 - µ k + 1 6 + π v k-1 µ=1 φ k 2 + 2z( φ k ) + z 2 -( φ k + z) + 1 6 + 2πi k-1 µ=1 µ k - 1 2 φ k - 1 2 + 2πzi k-1 µ=1 µ k - 1 2 . (2.22)
Checking [Apo89, 3.7, p: 61], one can see that

∞ µ=1 µ k - 1 2 φ k - 1 2 = ∞ µ=1 µ k φ k - 1 2 = s(h, k), so (22) transforms into ∞ r=1 r ≡0( mod k) log(1 -e -2πz v e 2πir( ( i v +H) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e 2πz v e 2πir( i v +H k ) ) = ∞ r=1 r ≡0( mod k) log(1 -e 2πiz e 2πir (vi+h) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e -2πiz e 2πir (vi+h) k ) ) -πv k-1 µ=1 µ k 2 - µ k + 1 6 + π v k-1 µ=1 φ k 2 + 2z( φ k ) + z 2 -( φ k + z) + 1 6 + 2πis(h, k) + 2πzi k-1 µ=1 µ k - 1 2 . (2.23)
Notice that the four sums resemble the desired form, so we intend to look at the residues g 0 , where

-πv k-1 µ=1 µ k 2 - µ k + 1 6 + π v k-1 µ=1 φ k 2 + 2z( φ k ) + z 2 -( φ k + z) + 1 6 + 2πis(h, k) + 2πzi k-1 µ=1 µ k - 1 2 = -πv 1 k 2 . k(k -1)(2k -1) 6 + πv 1 k . k(k -1) 2 -πv k -1 6 + 2πis(h, k) + π v 1 k 2 . k(k -1)(2k -1) 6 + (2z -1) k -1 2 + (z 2 -z + 1 6 )(k -1) . (2.24) Note that k-1 µ=1 µ k - 1 2 = 1 k k(k -1) 2 - (k -1) 2 = 0,
so the last term in (2.23) cancels. After some simplification of the terms, (2.24) becomes 

- π 6k (k -1)(2k -1) v - 1 v + π 3 (k -1) v - 1 v + kπz 2 v - πz 2 v = π 6 v - 1 v - π 6k v - 1 v + kπz 2 v - πz 2 v . Hence (2.23) is equivalent to ∞ r=1 r ≡0( mod k) log(1 -e -2πz v e 2πir( ( i v +H) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e 2πz v e 2πir(
) ) + 2πis(h, k) - π 6k v - 1 v + πkz 2 v - πz v + πiz - πi 2 .
This is exactly (2.17), and this completes the proof of theorem 2 for 0 < θ < 1 k where θ = z. However by considering equation (2.13), both sides are entire in z, and the set E = (0, 1 k ) clearly has a limit point. Hence by proving that the functional equation holds for θ ∈ E then it holds for all z ∈ C, and hence our proof is done.
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  Theorem 2.2. For τ ∈ H and z ∈ C and A = a b c d ∈ SL 2 (Z) with c > 0, we have

  +d e 2(n-1)πi( aτ +b cτ+d ) ) = ∞ n=1 log(1 -e 2πiz e 2nπiτ ) + ∞ n=1log(1 -e -2πiz e 2(n-1)πiτ ) + log(-i) + 2πi( a + d 12c ) + 2πis(-

  mod k) log(1 -e 2πiz e 2πir (vi+h) k ) ) + ∞ r=1 r ≡0( mod k) log(1 -e -2πiz e 2πir (vi+h) equation (2.25) to equation (2.20), which corresponds to the case when k = 1: -e -2πiz e -2π(n-1)v ) + ∞ n=1 log(1 -e 2πiz e -2πnv ) -Adding equation (2.20) accounts for the missing r where r ≡ 0 ( mod k) if we write r = mk, then the functional equation becomes e -2πiz e 2πi(r-1) (h+iv) k
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