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A note on Fourier eigenfunctions in four dimensions

Daniel Lautzenheiser

Abstract. In this note, we exhibit a weakly holomorphic modular form for use in constructing a Fourier eigenfunction in four

dimensions. Such auxiliary functions may be of use to the D4 checkerboard lattice and the four dimensional sphere packing

problem.
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1. Introduction

The sphere packing density is the proportion of Rd occupied by non-overlapping unit balls. In recent
years, the sphere packing problem of finding the most dense arrangement of spheres in Rd has regained
interest. This problem has been recently solved in 8 and 24 dimensions [Via17, CKM17] by means of
constructing a specialized radial Schwartz function using Fourier and complex analytic methods. The
sphere packing problem has otherwise only been solved in dimensions 1,2, and 3 [Tot43, Hal05]. A
recent work [CLS] conjectures conditions for which the sphere packing problem in dimension 4 may
be solved. In this paper, we present a function for possible use toward this conjecture.

If Λ is a lattice in Rd with minimal nonzero vector length ρ, then a sphere packing associated to
Λ may be defined by placing spheres of radius ρ/2 at each lattice point. In this case, there is one
sphere for each copy of the lattice fundamental cell Rd/Λ and the sphere packing density is the ratio

Vol(Bd
ρ/2)

Vol(Rd/Λ)
.

Let f : Rd → C be integrable with Fourier transform

F(f)(ξ) = f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdx, ξ ∈ Rd.

If f : Rd → R is a Schwartz function, Poisson summation enforces∑
x∈Λ

f(x) =
1

Vol(Rd/Λ)

∑
y∈Λ∗

f̂(y)

where Λ∗ is the dual lattice. We can modify Poisson summation to form an inequality

f(0) ≥
∑
x∈Λ

f(x) =
1

Vol(Rd/Λ)

∑
y∈Λ∗

f̂(y) ≥ f̂(0)

Vol(Rd/Λ)

if f is positive definite (f̂ ≥ 0) and f(x) ≤ 0 for all ||x|| ≥ ρ. This yields Vol(Rd/Λ) ≥ 1 if
f̂(0) = f(0). In light of the lattice sphere packing density, the existence of an auxiliary function
f turning the above inequalities into equalities shows that the Λ lattice sphere packing density is
≤ Vol(Bd

ρ/2). This argument, first put forth in [CoEl03], converts the sphere packing problem into an
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analysis problem. To construct a magic function f in which the above inequalities are tight (f and f̂

also vanish on nonzero lattice points), it is typical to write f = f+ +f− where f̂+ = f+ and f̂− = −f−
and f+, f− have sign radius

rf = inf{M ≥ 0 : f({||x|| ≥M}) ⊆ [0,∞)}

equal to ρ. Minimizing the quantity (rfrf̂ )1/2 is a type of uncertainty principle which is currently

only solved in dimension d = 12 when f̂ = f and dimensions d ∈ {1, 8, 24} when f̂ = −f , with the
cases d ∈ {8, 24} corresponding to the −1 eigenfunctions constructed in the solving of the sphere
packing problems in dimensions 8 and 24 [Lo83, BCK10, GSS17, CoGo19, GoRa20].

We construct a radial Schwartz function f+ : R4 → R such that f̂+ = f+ with sign radius
rf+ =

√
2, which is also the minimal vector length in the D4 checkerboard lattice [CoSl13]. f+ is

not sharp in the sense of minimizing the sign radius since numerical results in [CoGo19] demonstrate
auxiliary f with rf < 0.97. It is possible, in light of the slackness conditions imposed in conjecture
6.1 of [CLS] that f+ may be of use toward the sphere packing problem in dimension 4.

To make this note more self-contained, we will include some of the details and arguments from
[Via17, CKM17, CoGo19, RoWa20, RaVi19].

2. A +1 eigenfunction in four dimensions

We let q = e2πiz with Im(z) > 0. Define the Jacobi theta series

Θ2(z) =
∑

n∈Z+ 1
2

q
1
2
n2
,

Θ3(z) =
∑
n∈Z

q
1
2
n2
,

Θ4(z) =
∑
n∈Z

(−1)nq
1
2
n2
.

Under the action of z 7→ −1/z, these theta functions satisfy

Θ2(−1/z) = (−iz)1/2Θ4(z),

Θ3(−1/z) = (−iz)1/2Θ3(z),

Θ4(−1/z) = (−iz)1/2Θ2(z).

Under the action of z 7→ z + 1 they satisfy

Θ2(z + 1) = eiπ/4Θ2(z),

Θ3(z + 1) = Θ4(z),

Θ4(z + 1) = Θ3(z).

The fourth powers Θ4
2, Θ4

3, Θ4
4 have the following leading terms at the cusp i∞:

Θ4
2 = 16q1/2 + 64q3/2 +O(q5/2),

Θ4
3 = 1 + 8q1/2 + 24q + 32q3/2 + 24q2 +O(q5/2),

Θ4
4 = 1− 8q1/2 + 24q − 32q3/2 + 24q2 +O(q5/2).
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From these q-expansions one can observe the Jacobi identity : Θ4
3 = Θ4

2 + Θ4
4. Additionally, Θ4

2, Θ4
3,

and Θ4
4 generate the ring of holomorphic modular forms of weight k = 2 for the congruence subgroup

Γ(2) [Bru08]. We normalize the modular discriminant ∆, which can be written in several ways:

∆(z) = q
∏
n≥1

(1− qn)24 = η(z)24 =
∑
n≥1

τ(n)qn =
E3

4 − E2
6

1728
.

The function ∆ is a weight 12 cusp form for SL2(Z) [MDG]. A salient point for our purposes is that
∆(it) > 0 for t > 0. This can be seen upon setting z = it in the above product expansion.

For x ∈ Rd, the Fourier transform of a Gaussian function is

eπi||x||
2z → (−iz)−d/2eπi||x||2(−1/z).

Thus, a natural way to construct Fourier eigenfuctions is to work with linear combinations of Gaussians
- the continuous version being the Laplace transform. For r >

√
2, let

a(r) = −4i sin(πr2/2)2

∫ ∞
0

ϕ(it)e−πr
2tdt

which may be interpreted as the Laplace transform of a weighting function g(t) = ϕ(it) evaluated at
πr2, multiplied by the root forcing function −4i sin(πr2/2)2. We derive conditions on ϕ that make
â = a. We may interpret a(r) = a(x) for x ∈ R4 with ||x|| = r since we are interested in radial
functions [BCK10, CoEl03]. Letting z = it rotates the integration to the positive imaginary axis
giving

a(r) =

∫ i∞

0
ϕ(z)eπir

2(z+1)dz +

∫ i∞

0
ϕ(z)eπir

2(z−1)dz − 2

∫ i∞

0
ϕ(z)eπir

2zdz

=

∫ 1+i∞

1
ϕ(z − 1)eπir

2zdz +

∫ −1+i∞

−1
ϕ(z + 1)eπir

2zdz − 2

∫ i∞

0
ϕ(z)eπir

2zdz.

Addressing the convergence of the integral at i∞ and near the real line, if |ϕ(it)| = O(e2πt) as t→∞
and |ϕ(it)| = O(e−π/t) as t → 0+, we may apply Cauchy’s theorem and write

∫ 1+i∞
1 +

∫ i
i∞+

∫ 1
i = 0

and
∫ −1+i∞
−1 +

∫ i
i∞+

∫ −1
i = 0. The path of integration is chosen to be perpendicular to the real line

at the endpoints 1 and −1. If also ϕ(z + 2) = ϕ(z), then

a(r) = 2

∫ i∞

i
(ϕ(z + 1)− ϕ(z))eπir

2zdz +

∫ i

1
ϕ(z − 1)eπir

2zdz

+

∫ i

−1
ϕ(z + 1)eπir

2zdz − 2

∫ i

0
ϕ(z)eπir

2zdz.

Taking the Fourier transform and maintaining the variable r (since the Fourier transform of a radial
function is radial), substitute ω = −1

z :

â(r) = 2

∫ 0

i
(ϕ(−1

ω + 1)− ϕ(−1
ω ))i−d/2ωd/2−2eπir

2ωdω

+

∫ i

−1
ϕ(−1

ω − 1)i−d/2ωd/2−2eπir
2ωdω

+

∫ i

1
ϕ(−1

ω + 1)i−d/2ωd/2−2eπir
2ωdω

−2

∫ i

i∞
ϕ(−1

ω )i−d/2ωd/2−2eπir
2ωdω.
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Note that we are exchanging the Fourier transform with the contour integrals. The equality â = a
can be achieved if equality happens at the level of the integrand functions. Comparing the terms in
the integral

∫ i∞
i results in

ϕ(z + 1)− ϕ(z) = ϕ(−1
z )i−d/2zd/2−2. (2.1)

Comparing terms in
∫ i

0 results in ϕ(z) = (ϕ(−1
z + 1)− ϕ(−1

z ))i−d/2zd/2−2, which is the same as (2.1)

after inverting back z 7→ −1
z . Comparing terms in

∫ i
1 , we get

ϕ(z + 1) = ϕ(−1
z + 1)i−d/2zd/2−2. (2.2)

From (2.1),

ϕ(z + 1) = ϕ(z) + ϕ(−1
z )i−d/2zd/2−2

= (ϕ(−1
z + 1)− ϕ(−1

z ))i−d/2zd/2−2 + ϕ(−1
z )i−d/2zd/2−2

= ϕ(−1
z + 1)i−d/2zd/2−2.

Thus (2.2) follows from (2.1). The comparison in
∫ i
−1 is similar.

Proposition 2.1. Let d = 4 and let

ϕ =
Θ12

4 (Θ12
3 + Θ12

2 )

∆
. (2.3)

Then, f+(r) = ia(r) is a radial Schwartz function invariant under the Fourier transform and f+ has
sign radius rf+ =

√
2.

Proof. Based on the functional equations for Θ2,Θ3,Θ4 and ∆,

ϕ(z + 1) =
Θ12

3 (Θ12
4 −Θ12

2 )

∆

and

ϕ(−1/z) =
−z6Θ2(z)12(−z6Θ3(z)12 − z6Θ4(z)12)

z12∆(z)
=

Θ12
2 (Θ12

3 + Θ12
4 )

∆
.

Thus, ϕ satisfies (2.1) for d = 4. To show that ϕ is a weight 0 weakly holomorphic modular form
for the congruence subgroup Γ(2), written ϕ ∈ M !

0(Γ(2)), it suffices to check that ϕ(γz) = ϕ(z) for
a set of generators of Γ(2). Γ(2) is generated by ( 1 2

0 1 ), ( 1 0
2 1 ), and −I. Observe that ϕ (( 1 2

0 1 ) z) =
ϕ(z + 2) = ϕ(z) directly from the definitions of ∆,Θ2,Θ3, and Θ4. Using (2.1),

ϕ

((
1 0
2 1

)
z

)
= ϕ

(
z

2z + 1

)
= ϕ

(
−1

−1/z − 2

)
= ϕ

(
−1

z
− 2

)
− ϕ

(
−1

z
− 2 + 1

)
= ϕ

(
−1

z

)
−
(
ϕ

(
−1

z

)
− ϕ

(
−1

−1/z

))
= ϕ(z).

The first few Fourier coefficients of ϕ are

ϕ(z) = q−1 − 24 + 4096q1/2 − 98028q +O(q3/2), (2.4)

ϕ(−1/z) = 8192q1/2 +O(q3/2).

The asymptotics and the fact that f+ is a Schwartz function follow directly from the growth rate of
these Fourier coefficients since ϕ is a weakly holomorphic modular form [Bru02]. f+ has sign radius√

2 since we may observe that for t > 0, ∆(it) > 0 and each Θj(it) ∈ R. Thus, f+(r) ≥ 0 for r >
√

2.
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Based on the q-series expansion (2.4), it is possible to write

a(r) = −4i sin(πr2/2)2

∫ ∞
0

(e2πt − 24 +O(e−πt))e−πr
2tdt

= −4i sin(πr2/2)2

(
1

π(r2 − 2)
− 24

πr2
+

∫ ∞
0

(ϕ(it)− e2πt + 24)e−πr
2tdt

)

which converges for all r ≥ 0. In particular, f+(0) = 0, so f+ is not positive definite.

3. A -1 eigenfunction and concluding remarks

To construct a −1 eigenfunction, it is possible to begin with a similar function shape

b(r) = −4 sin(πr2/2)2

∫ i∞

0
φ(−1/z)zd/2−2eπir

2zdz.

Comparing integrand terms as before, we get

φ

(
−1

z − 1

)
(z − 1)d/2−2 + φ

(
−1

z + 1

)
(z + 1)d/2−2 − 2φ

(
−1

z

)
zd/2−2 = 2φ(z). (3.5)

So, the form given for b(r) enforces (3.5) when b̂ = −b. Using the Eisenstein series E2(z) =
1 − 24

∑
n≥1 σ1(n)qn (which is usually introduced as a basic example of a quasi-modular form) and

the transformation property

E2

(
−1

z

)
= z2E2(z) +

6z

πi
,

a straightforward calculation shows that E2 satisfies (3.5) for d = 4. Thus, setting φ = E2 above
gives a −1 eigenfunction also with sign radius

√
2. So, b(r) provides a simple construction of an

eigenfunction with the basic depth 1 Eisenstein series E2 within the integral. As before, b(r) is not
sharp since the numerical bounds from table 4.1 in [CoGo19] give A−(4) ≤ 1.204 <

√
2. Furthermore,

using the checkerboard lattice D4 from [CoSl13] with minimal radius
√

2, the dual lattice D∗4 is
homothetic to D4 but will have minimal radius 1. We can scale D4 so that D4 and D∗4 both have
minimal radius 21/4, however constructing eigenfunctions f : R4 → R of the above shape with sign
radius 21/4 appears to remain a difficult problem.
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