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We consider a q-analog r 2 (n, q) of the number of representations of an integer as a sum of two squares r 2 (n). This q-analog is generated by the expansion of a product that was studied by Kronecker and Jordan. We generalize Jacobi's two squares formula from r 2 (n) to r 2 (n, q). We characterize the signs in the coefficients of r 2 (n, q) using the prime factors of n. We use r 2 (n, q) to characterize the integers which are the length of the hypotenuse of a primitive Pythagorean triangle.

Introduction

Using the formal identity

∞ m=1 1 -(-t) m 1 + (-t) m = ∞ n=-∞ t n 2 ,
(1.1) due to C. F. Gauss [Gau1866], the generating function for the number of representations of an integer n as the sum of the squares of two integers, denoted r 2 (n), immediately follows,

∞ m=1 (1 -(-t) m ) 2 (1 + (-t) m ) 2 = 1 + ∞ n=1 r 2 (n)t n .
(1.2) C. G. J. Jacobi [Jac1829] expressed r 2 (n) as a function of the divisors of n ≥ 1,

r 2 (n) = 4d 1,4 (n) -4d 3,4 (n), (1.3) 
where d k,m (n) is the number of divisors of n which are congruent to k modulo m.

The explicit formula for r 2 (n, q) defined by the expansion of the product

∞ m=1 (1 -(-qt) m ) 2 (1 + q(-qt) m ) (1 + q -1 (-qt) m ) = 1 + ∞ n=1 r 2 (n, q) t n , (1.4)
which is a q-deformation 1 of identity (1.2), can be attributed to L. Kronecker [Kro1890], who proved a more general version and C. Jordan [Jor1894], who described a method to derive this particular case. The polynomial r 2 (n, q) was first introduced in the article [START_REF] Caballero | A Characterization of the Hypotenuses of Primitive Pythagorean Triangles Using Partitions into Consecutive Parts[END_REF], using the notation Γ n (q), and it was called Kassel-Reutenauer q-analog of the number of representations as a sum of two squares. Some versions of the polynomial r 2 (n, q), e.g., changing the sign of q and sometimes dividing it by q -1 or by (q-1) 2 , have been studied by several authors, in connection with different branches of mathematics: finite fields [KR18a, KR18b, Cab18], algebraic topology [START_REF] Hausel | Arithmetic harmonic analysis on character and quiver varieties II[END_REF], modular functions [START_REF] Kassel | The Fourier expansion of η(z)η(2z)η(3z)/η(6z)[END_REF] and elementary number theory [START_REF] Caballero | On a function introduced by Erdös and Nicolas[END_REF][START_REF] Caballero | Jordan's Expansion of the Reciprocal of Theta Functions and 2-densely Divisible Numbers[END_REF][START_REF] Caballero | Integers Which Cannot Be Partitioned Into an Even Number of Consecutive Parts[END_REF].

The aim of the present note is to prove that there are polynomials 4d 1,4 (n, q) and 4d 3,4 (n, q) satisfying the following properties2 :

(i) all the coefficients of 4d 1,4 (n, q) and 4d 3,4 (n, q) are non-negative integers;

(ii) for every k, q k cannot appear with non-zero coefficient in both 4d 1,4 (n, q) and 4d 3,4 (n, q); (iii) the decomposition of r 2 (n, q) into positive and negative parts, r 2 (n, q) = 4d 1,4 (n, q) -4d 3,4 (n, q) (1.5) holds;

(iv) 4d 1,4 (n, q) and 4d 3,4 (n, q) are q-analogs of 4d 1,4 (n) and 4d 3,4 (n) respectively, i.e., 4d 1,4 (n, 1) = 4d 1,4 (n) and 4d 3,4 (n, 1) = 4d 3,4 (n).

Therefore, the identity (1.5) is a generalization of Jacobi's two squares formula from integers to polynomials. Considering that properties (i), (ii) and (iii) uniquely define the polynomials 4d 1,4 (n, q) and 4d 3,4 (n, q), it is non-trivial that they should also satisfy property (iv). Furthermore, as applications of this formula, we will determine when r 2 (n, q) has a negative coefficient by analyzing the prime factors of n. Also, we will use r 2 (n, q) to characterize the integers which are the length of the hypotenuse of a primitive Pythagorean triangle.

Generalization of Jacobi's formula

In this section we will prove our main result.

Theorem 2.1. Let n be a positive integer. The polynomials 4d 1,4 (n, q) = (q + 1)

d|n d ≡ 1 (mod 4) q ( 2n d +1)(d-1)/2 + q ( 2n d -1)(d+1)/2 , (2.6) 
4d 3,4 (n, q) = (q + 1)

d|n d ≡ 3 (mod 4) q ( 2n d +1)(d-1)/2 + q ( 2n d -1)(d+1)/2 , (2.7) 
satisfy properties (i), (ii), (iii) and (iv).

Proof. Property (i) immediately follows from the explicit expressions (2.6) and (2.7). Property (iv) is just the result of the evaluations of these expressions at q = 1. Property (iii) follows from the following formal manipulation. Take formula (0.100) from [START_REF] Cooper | Ramanujan's theta functions[END_REF],

∞ m=1 (1 -t m ) 2 (1 -qt m ) (1 -q -1 t m ) = 1 + q 1/2 -q -1/2 ∞ d=1 ∞ k=1 t dk q d-k/2 -q -d+k/2 . (2.8) Replace t by qt in (2.8), ∞ m=1 (1 -(qt) m ) 2 (1 -q(qt) m ) (1 -q -1 (qt) m ) = 1 + (q -1) ∞ d=1 k ≥ 1 k odd t dk q dk+d-k/2-1/2 -q dk-d+k/2-1/2 , (2.9)
where the restriction to only odd values of k is because of the identity

∞ d=1 k ≥ 1 k even t dk q dk+d-k/2-1/2 -q dk-d+k/2-1/2 = ∞ d=1 ∞ e=1 t 2de q 2de+d-e-1/2 -q 2de-d+e-1/2 (2.10) = q -1/2 ∞ d=1 ∞ e=1 t 2de q 2de+d-e - ∞ d=1 ∞ e=1 t 2de q 2de-d+e (2.11) = 0.
(2.12)

3. Applications 86 3. Applications

Replace q by -q in (2.9),

∞ m=1 (1 -(-qt) m ) 2 (1 + q(-qt) m )(1 + q -1 (-qt) m ) = 1 + (q + 1) ∞ d=1 k ≥ 1 k odd t dk (-q) (2d+1)(k-1)/2 -(-q) (2d-1)(k+1)/2 (2.13) = 1 + (q + 1) ∞ d=1 k ≥ 1 k ≡ 1 (mod 4) t dk (-q) (2d+1)(k-1)/2 -(-q) (2d-1)(k+1)/2 + (q + 1) ∞ d=1 k ≥ 1 k ≡ 3 (mod 4) t dk (-q) (2d+1)(k-1)/2 -(-q) (2d-1)(k+1)/2
(2.14)

= 1 + (q + 1) ∞ d=1 k ≥ 1 k ≡ 1 (mod 4) t dk q (2d+1)(k-1)/2 + q (2d-1)(k+1)/2 -(q + 1) ∞ d=1 k ≥ 1 k ≡ 3 (mod 4) t dk q (2d+1)(k-1)/2 + q (2d-1)(k+1)/2 (2.15) = 1 + ∞ n=1
(4d 1,4 (n, q) -4d 3,4 (n, q)) t n .

(2.16)

To prove property (ii), we proceed by reductio ad absurdum. Suppose that for some k, the coefficient of q k is non-zero in both 4d 1,4 (n, q) and 4d 3,4 (n, q). We need to analyze 16 possible cases. We will use the notations d and e for two arbitrary divisors of n satisfying d ≡ 1 (mod 4) and e ≡ 3 (mod 4).

Let f (x) = 2n

x + 1 x-1 2 . Notice that f (x), on the domain x > 0, is strictly increasing and satisfies the inequality Assume that k = f (d) + 1 = f 2n e . On the one hand,

f (x + 2) -f (x) > 1. Furthermore, f 2n x = 2n x -1 x+1 2 . Notice that, k = f (d) = f (
f (d) = 2n d + 1 d-1 2 is even, since d-1
2 is even. On the other hand f 2n e = 2n e -1 e+1 2 is also even, since e+1 2 is even. We derive the absurd conclusion that 1 = f 2n e -f (d) should be even. In the same vein, we can easily prove that k = f (d) = f 2n e + 1 imples an absurd. Similarly, we can exclude the cases k = f 2n d + 1 = f (e) and k = f 2n d = f (e) + 1.

Applications

In this section we derive some immediate consequences of our generalization of Jacobi's formula.

Corollary 3.1. Let n be a positive integer. The polynomial r 2 (n, q) has a negative coefficient if and only if some of the prime factors of n are congruent to 3 modulo 4.

Proof. Considering that d 3,4 (n, q) = 0 if and only if some of the prime factors of n are congruent to 3 modulo 4, the result immediately follows from Theorem 2.1 and the definition of d 1,4 (n, q) and d 3,4 (n, q).

We recall that n is the hypotenuse of a primitive Pythagorean triangle if and only if for some pair of positive integers u and v the equality u 2 + v 2 = n 2 holds and u, v and n are relatively prime.

Corollary 3.2. An odd integer n larger than 1 is the length of the hypotenuse of a primitive Pythagorean triangle if and only if all the coefficients of the polynomial r 2 (n, q) are non-negative.

Proof. E. J. Eckert [START_REF] Eckert | The group of primitive Pythagorean triangles[END_REF] proved that an integer larger than 1 is the hypotenuse of a primitive Pythagorean triangle if and only if all its prime factors are congruent to 1 modulo 4. Combining this result with Corollary 3.1, the result follows.

Final remarks

In the spirit of the work of C. Kassel and C. Reutenauer [START_REF] Kassel | Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables[END_REF], the value of the polynomial r 2 (n, q), when q is a prime power, may have a combinatorial interpretation in the ring F q [X, Y, X -1 , Y -1 ].

Let r 4 (n) be the number of representations of n as the sum of 4 squares of integers. We suggest to empirically study the q-analog of r 4 (n) obtained from the square 1 + ∞ n=1 r 2 (n, q) t n 2 = 1 + ∞ n=1 r 4 (n, q) t n (4.17)

and check whether some of the classical results about r 4 (n) can be generalized to r 4 (n, q). The expansion of the corresponding product can be found in equation (0.101) of [START_REF] Cooper | Ramanujan's theta functions[END_REF].

  e) implies d = e. Nevertheless, this is impossible because d ≡ e (mod 4). In the same way, it is easy to prove that k = f 2n d = f 2n d also implies an absurde. Similarly, k = f (d) + 1 = f (e) + 1 and k = f 2n d + 1 = f 2n d + 1 are impossible. Notice that k = f (d) = f 2n e implies d = 2n e . If this is the case, de = 2n, which is absurd, since d and e are odd. In the same vein, k = f 2n d = f (e) is also absurd. Similarly, we exclude the cases k = f (d) + 1 = f 2n e + 1 and k = f 2n d + 1 = f (e) + 1. Assume that k = f (d) + 1 = f (e). It follows that e > d. Because e and d share the same parity (both are odd), e ≥ d + 2. Hence, f (e) -f (d) ≥ f (d + 2) -f (d) > 1, which contradicts our assumption. In the same vein, it is easy prove that k = f (d) = f (e) + 1 implies an absurd conclusion. Similarly, we exclude the cases, k = f 2n d + 1 = f 2n e and k = f 2n d = f 2n e + 1 by considering that 2n d and 2n e share the same parity (both are even).

We consider that it is more elegant to work with 4d1,4(n, q) and 4d3,4(n, q) rather than d1,4(n, q) and d3,4(n, q) because of property (i).
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