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Abstract
Ceramic matrix composites have good thermo-mechanical properties at high or very
high temperatures. The modeling of the crack networks associated to the degradation
of such composites using damage mechanics is not straight forward. The main
reason is the presence of a crack network mainly oriented by the loading direction,
which is a priori unknown. To model this, compliance tensorial damage variables
are used in a thermodynamic potential able to account for crack closure effects
(unilateral contact). The damage kinematic is initially completely free and imposed
by the evolution laws. The key point of the present paper is to account for friction
in such cracks that can result in an apparent activation/deactivation of the shear
damage. The initial model is enriched with an inelastic strain and a friction law. The
plasticity criterion is expressed only using tensorial variables. The model is identified
and illustrated on multi-axial data obtained at ONERA on tubes loaded in tension and
torsion.
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List of symbols
C0 Initial compliance tensor
∆C = ∆Cm,∆Z = ∆Zm Damage compliance tensors
C = C0 + ∆C Current compliance tensor

H = C 1
2 , ∆H = ∆C 1

2 and H0 = C
1
2
0 see appendix

ρΨel State potential, ρ is the volumic mass
< . >+, < . >− Classical positive and negative parts (see appendix)
σ,σ+,σ− Stress, positive part of the stress w.r.t. H

negative part of the stress w.r.t. H0

(see appendix)
ε, εel, εst Total, elastic and stored strains
Y′,Y′,Y′′ Thermodynamical forces or equivalent
⊗ Tensor product
: Contracted product between 2nd order tensors
:: Contracted product between 4th order tensors
(.)sym Symmetric part of a second order tensor
I Fourth order identity tensor
ȧ Total time derivative of a quantity a

Introduction
Ceramic matrix composites (CMC) are good candidates for the manufacturing of
aeronautical engine structures or nuclear energy applications as they present very good
specific properties at high temperatures and irradiations. In both cases, engineers have
to use mechanical models in order to design and size parts with limited safety factors.
Regarding SiC/SiC composites, several crack networks can develop depending on the
densification of the material and of the fiber/matrix interface Guillaumat and Lamon
(1993). Among them, inter-yarn cracks may develop orthogonally to the loading direction
as mentioned by Aubard (1992).
Such damage kinematics have led to the development of the so-called anisotropic
damage models in the literature Kachanov (1992); Ju (1990). The introduction of damage
variables to describe the effects of crack networks is generally done using the effective
stress concept. It has been initiated by Kachanov (1958); Rabotnov (1969) for scalar
variables. The problem is more difficult while using tensorial damage variables as in
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Murakami and Ohno (1981). For example, in Murakami (1988); Betten (1983), a second
order damage tensor is used. In order to construct the effective stress, a fourth order effect
tensor is built on the basis of this damage description. A difficulty resides in keeping
the symmetries of the obtained stress tensor. While an equivalence in strain is generally
used, Cordebois and Sidoroff (1979) proposed a solution to that problem assuming an
equivalence in energy. This solution has been followed by Voyiadjis and Park (1997)
and Park and Voyiadjis (1998) for finite strains. Note that Chaboche (1977) worked on
the direct use of a fourth order damage tensor to define an effective stress. Ladevèze
(2002) does not use this concept of effective stress and directly postulates the form of the
damaged potential.

Another major problem is to account for crack closure effects i.e. restauration of
the stiffness in compression. Important for CMCs like in Gasser et al. (1996), this
problem of stiffness recovery in compression is also well known in the field of brittle
or quasi-brittle material modeling (Halm and Dragon (1998); Lemaitre et al. (2000)
for e.g.). The difficulty resides in the obtention of continuous stress/strain relations i.e.
convex potential for multi-axial non-proportional loadings Chaboche (1992); Carol and
Willam (1996). For that, two main approaches have been developed for CMCs. The first
one is to discretize the potential crack directions in the plane and use associated scalar
damage variables in fixed directions as in Marcin et al. (2011); Bernachy-Barbe et al.
(2015a). The second one is to use tensorial damage variables. The simplest approach
is to use a second order tensor damage variable as in Chaboche and Maire (2001);
Gasser et al. (1996). Several difficulties associated to the model of Chaboche and
Maire are mentioned in Cormery and Welemane (2002) and by the authors themselves.
Another approach is to use directly fourth order tensors as in Chaboche (1982). For
example, Ladevèze (2002) used compliance tensors as damage variables. He defined
associated special positive and negative parts of the stresses in order to get a free energy
potential convex regarding the stress to respect the conditions given by Curnier et al.
(1994). This model from Ladevèze is the basis of this paper. Note that, full tensorial
damage models have been simplified to scalar damage models in the litterature, for
example Chaboche and Maire (2001) leads to Marcin et al. (2011). An automatic strategy
adapted to that purpose can be found in Baranger (2013); Friderikos and Baranger (2016).

As already mentioned, the model initially developed by Ladevèze (2002), relies on
the use of 4th order tensorial variables as damage variables. The damage kinematics is
therefore completely free and only imposed by the evolution laws. This model has been
extended to take into account non-proportional multi-axial loadings recently Baranger
(2016). In this last paper, the history effect of damage is extended to account for turning
crack orientations that have been observed during alternate torsion tests by Bernachy-
Barbé (2014). This rich experimental study is used as validation but does not exhibit
the effect of crack closure on the shear stiffness. Indeed, Maire and Pacou (1996) have
performed tension/compression/torsion tests on SiC/SiC tubes and exhibited the recovery
of the shear stiffness while cracks are loaded in compression. This effect is associated to
friction in existing cracks. Following the work of Andrieux et al. (1986), some authors
Halm and Dragon (1998); Ragueneau et al. (2000) added a model of plasticity to account
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for friction in cracks. Chaboche and Maire (2001) also introduced this mechanism but
using an activation/deactivation rule similar to unilateral contact. As mentioned by the
authors, this leads to some difficulties regarding loading cycles because an infinite
friction coefficient is implicitly assumed. The different proposed models generally use
damage variables working in directions explicitly given by some eigenvectors which
give the damage directions. In that context, it is difficult to get good properties for turning
loading directions. The model proposed by Ladevèze does not use such explicit directions
given by eigenvectors. In this paper, we propose to integrate friction in this model.

In this paper, the original model from Ladevèze (2002) is presented in the next section.
A first illustration of this model is shown on CMC. In the second section, a simple
case is used to better understand how to take into account sliding based on the work
of Andrieux et al. (1986). In the third section the model is written in a more complex
case and illustrated in the fourth section for data from Maire and Pacou (1996) and on a
complex loading case.

Original damage model
In order to introduce versatile damage kinematics, different authors have chosen to
describe damage using fourth order tensors Chaboche (1982); Ju (1990). In this part, the
model from Ladevèze for SiC/SiC composites is emphasized Ladevèze (2002); Cluzel
et al. (2009); Genet et al. (2014). The first main idea of this model is to let the damage
kinematic completely free a priori and to specify it using the evolution laws. The second
idea is to split the contributions related to the different crack networks. The objective is
to have a mechanical model that could be linked to a physico-chemical one to treat self-
healing aspects of lifetime predictions Cluzel et al. (2009); Genet et al. (2012); Baranger
(2017). The present paper will focus only on the mechanical part of the model. The
identification and validation of the model focuses on the data of Maire and Pacou (1996),
only the part of the model related to degradation mechanisms present in the experimental
data are presented hereafter that simplifies the model.

State potential and damage variables
The elastic potential ρΨel is written in stress as the sum of three contributions: the
first is a contribution only active in tension, the second is a contribution active only in
compression and the third is a contribution active both in tension and compression (i.e.
mainly shear). It reads:

ρΨel =
1

2
σ+ : C : σ+ +

1

2
σ− : C0 : σ− +

1

2
σ : ∆Z : σ (1)

∆C = C− C0 and ∆Z are the damage variables of the model, by definition they are
positive and have the symmetries of a compliance tensor so that the associated tensors
H and H0 exist. σ+ and σ− are positive and negative parts of the stress σ defined to
manage unilateral contact in cracks (the shear stiffness recovery is not taken into account
in this form as it is related to friction) and to keep a convex potential in stress even for
non-proportional loadings. For that, two spectral decompositions are used. The first is
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used to define the positive part:

σ+ = H−1 :< H : σ >+ (2)

The second is used to define the negative part:

σ− = H−10 :< H0 : σ >− (3)

This leads to:

ρΨel =
1

2
< H : σ >+:< H : σ >+ +

1

2
< H0 : σ >−:< H0 : σ >− +

1

2
σ : ∆Z : σ

(4)

With the proposed positive and negative parts, the state potential is convex with respect
to σ as demonstrated in Ladevèze et al. (2014). It allows to get a continuous stress-strain
relation even during crack closure. Note that the use of classical positive and negative
parts on the stress (< σ >+ and< σ >−) would lead to a non-convex potential and thus
to a non-continuous stress-strain relation. Note also that, contrary to the classical positive
and negative part, σ 6= σ+ + σ−.

The stress-strain relation is given by (see appendix of Baranger (2013) for some
calculus elements):

εel =
∂ρΨel

∂σ
= C : σ+ + C0 : σ− + ∆Z : σ (5)

The total damage is split in different contributions related to the different crack
networks (inter-yarn cracks, intra longitudinal yarn cracks, intra transverse cracks for
example) as in Cluzel et al. (2009). In the following, only the inter-yarn crack network is
supposed (noted with underscore m). It is sufficient to describe the experimental results
in the present paper. A more detailed experimental investigation (as in Bernachy-Barbe
et al. (2015b) would be necessary to clearly connect the damage contributions to crack
networks. In the general case, the total damage is the sum of the different contributions.
The associated damage contributions are called: ∆Cm and ∆Zm (see Cluzel et al. (2009)
for other contributions). In the present paper, we assume that:

∆C = ∆Cm , ∆Z = ∆Zm (6)

Thermodynamical forces
The thermodynamical forces associated to the damage variables are also fourth order
tensors:

Y =
∂ρΨel

∂∆Z
=

1

2
σ ⊗ σ (7)

Y′ =
∂ρΨel

∂∆C
=

1

2
σ+ ⊗ σ+ (8)
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Another force is introduced to deal with shear:

Y′′ =
1

2
(O π

2
.σ+)sym ⊗ (O π

2
.σ+)sym (9)

whereO π
2

is a π
2 rotation in the plane. For the moment, the model is defined only for 2D

applications.

Damage evolution laws
To build the damage evolution laws, an equivalent driving force is introduced as:

zm(Y′) =
(
(1− a)Tr[Y′n+1] + aTr[Y′]n+1

) 1
n+1 (10)

A version written in strain also exists and is commented in Baranger (2016). a allows
to pass from isotropic to anisotropic damage and n to emphasize the directionality of
damage. In the present case n = 1 and thus zm is positive.

The maximum force over time is defined by:

z̄m(t) = sup
τ≤t

zm(Y′(τ)) (11)

This last equation is used in the following for its simplicity. It leads to an isotropic
history that is not relevant for alternate torsion for example as shown in Baranger (2016).
In this paper, the author also proposed a version that is adapted to such non-proportional
loadings. Regarding the data from Maire and Pacou, this extension is not necessary and
will not be presented to keep the model as simple as possible for the reader. The evolution
laws read:

∆Ċm = α̇m
(1− a)Y′n + aTr[Y′]nI

z̄nm
(12)

∆Żm = α̇m
bY′′n

z̄nm
(13)

αm(z̄m) is a scalar increasing function. For a unidirectional loading, the reader can
check that the damage kinematics given by the evolution laws are in agreement with
cracks oriented by the loading direction for a = 0. This choice is made in the following.
The proposed model leads to a positive dissipated power Genet et al. (2014). The
dissipated power ω̇ reads:

ω̇ = ∆Ċm :: Y′ + ∆Żm :: Y (14)

As shown in Baranger (2016), ∆Ċm is proportional to the derivative of zm(Y′) so this
first part of the dissipated power is always positive. To prove that the second part is
always positive, one has to remark that Y′′ has (O π

2
.σ+)sym as the only eigendirection

associated to a non-zero eigenvalue. Furthermore, this eigenvalue is positive (it is a
square). Thus, Y′′n is proportional to Y′′ with a positive proportionality coefficient (noted
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λ) . This leads to:

∆Żm :: Y = α̇m
bY′′n

z̄nm
:: Y (15)

= λα̇m
bY′′

z̄nm
:: Y = λα̇m

b

4z̄nm

(
(O π

2
.σ+)sym : σ

)2 ≥ 0 (16)

In the following study, all the examples are treated with the stress evolution prescribed.
Thus, the strain evolution is determined by the governing equations of the model. The
standard procedure leading to the computation of the stress (and tangent stiffness) from
the strain and strain increment has not been studied for the moment.

Illustration
First note that, many eigenvalue problems have to be solved due to the positive and
negative parts ; this is in general time consuming. In the present case, as in Cluzel et al.
(2009); Baranger et al. (2011), a very simple explicit scheme is used. The reader can
find a more refined integration scheme in Genet et al. (2014). The model being written
in stress, it is rather easy to use classical experimental mechanical tests while the model
is more difficult to use in a finite element framework. In this part, the initial model is
identified on a part of a test performed by Pacou and Maire (test called SiC05). The
loading path is described in figure 1. Associated to this loading path, elastic testing
loadings are intercalated between damaging cycles to be able to identify the evolutions
of the compliance. These test cycles are shown in figure 2. In this part, related to
identification, the combined shear/tension loadings are not used. The strain-stress curve
associated to the incremental loading in tension is plotted in figure 3. Figure 4 presents
the stress-strain curves related to pure tensile and torsion loadings used to determine the
evolution of the compliance tensor between damaging tension incremental loads. For the
tensile part, it can be seen that at some point around −20MPa crack closure occurs and
the material recovers its initial stiffness. The fact that cracks do not close at zero stress is
related to a thermal expansion coefficients mismatch that leads to an initial internal stress
state after a manufacturing process done at high temperature. It is not the case in shear,
crack lips are slipping. The proposed model is able to account for crack closure effects
as shown in the figure 5. The model is formulated to model crack closure at zero stress.
This is the reason why, in this last figure, the axial experimental data have been shifted
of about 20MPa to avoid to add a shifting term in the model as in Marcin et al. (2011).
There is no difficulty for that but wouldn’t help the reader. In this figure, dashed lines
correspond to the identification of the model. The material parameters are given in table
1.

In figure 6, the response for a combine tension/torsion loading is presented. The crack
closure effect is visible in the left picture. Note, in the right picture, that the shear
stiffness is recovered for negative shear loadings. This loading range also corresponds
to a compressive loading range. The shear stiffness recovery is due to friction in the
crack lips that are in contact and do not slip. The proposed model, in its initial form, is
not able to describe this mechanism. Unilateral contact is modeled but not friction. The
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Figure 1. Loading path of an incremental test in tension from Maire and Pacou (1996).
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Figure 2. Low amplitude multi-axial loadings for compliance extraction from Maire and Pacou
(1996). The green line corresponds to a pure tension/compression loading, the red line
corresponds to a pure shear loading and the blue line corresponds to a tension/compression
and shear loading.

response of the initial model would be similar to the one in the right side of figure 5. This
is the object of the extension proposed in this paper.
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Figure 3. Strain-stress curve of the incremental damaging tension loading part.
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Figure 4. Strain-stress curves of loadings used to determine the compliance evolutions.

Parameter Value
E (longitudinal Young’s modulus) 180 GPa
G (shear modulus) 68 GPa
ν (Poisson’s ratio) 0.15

a 0
n 1
b 2
αm(zm) 4.10−10 (<

√
zm − 100MPa >+)2(GPaMPa2)−1

Table 1. Material parameters and laws identified.
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Figure 5. Results of the identification procedure in black (experimental curves in color).
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Figure 6. Mechanical response of a tension/torsion combined loading.

Macroscopic Coulomb’s criterion in cracks

In Andrieux et al. (1986), a hardening variable is introduced to describe the load
transferred by shear between the crack lips while loaded in compression. A similar
approach is followed here. A macroscopic hardening variable is introduced as a second
order tensor R. The building and understanding of the evolution laws associated to
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friction in existing cracks is illustrated on two simple cases in this section. For the sake
of simplicity, in the following a = 0, n = 1.

Model development for an initially uni-axial damage state
As a very first case, it is assumed that a preliminary loading has been performed in
the direction n. Introducing V nn = n⊗ n, the positive part of the stress during this
preliminary phase reads:

σ+ = σnnV nn (17)

This is not exactly a uniaxial loading as damage intervenes through H in the definition of
the positive part, nevertheless the initial state of damage is given by:

∆Cm = α1V nn ⊗ V nn (18)

α1 is the value taken by αm at the end of this preliminary loading step. Introducing
the orthogonal vector t to n:

t = O π
2
.n (19)

whereO π
2

is the in-plane π
2 rotation. IntroducingW nt = (t⊗ n)sym, we have also:

∆Zm = bα1W nt ⊗W nt (20)

During the next loading step, a non damaging load is assumed. This implies that
∆Cm and ∆Zm do not evolve and so continue to model correctly the preliminary crack
network. The loading direction does not need to be n. The normal and tangential stresses
to the preliminary crack network read:

σnn = σ : V nn (21)
σnt = σ : W nt (22)

Leading to:

σ2
nn =

σ : ∆Cm : σ

α1
(23)

σ2
nt =

σ : ∆Zm : σ

bα1
(24)

As mentioned, a hardening variable is introduced as a second order tensorR to model
the load transferred by shear, the projection of this variable onW nt is noted:

rnt = R : W nt (25)

Note the following equality:

(σnt − rnt)2 =
(σ −R) : ∆Zm : (σ −R)

bα1
(26)
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σnt − rnt is used to model the frictional stress in the cracks. Assuming a crack in
compression, the normal and tangential stresses must satisfy the Coulomb’s friction
model as:

(σnt − rnt)2 − cσ2
nn ≤ 0 if σnn ≤ 0 (27)

c is the square of the friction coefficient. Once again, σnt − rnt models the shear stress
on the crack lips (the normal stress on the cracks lips is equal to σnn as shown in Bui
(1978)). In terms of macroscopic quantities, the criterion reads:

(σ −R) : ∆Zm : (σ −R)− bcσ : ∆Cm : σ ≤ 0 if σnn ≤ 0 (28)

In tension, the crack is opened and therefore:

σnt − rnt = 0 =⇒ (σ −R) : ∆Zm : (σ −R) = 0 (29)

These last two equations can be combined in a single one. In order to get a convex
criterion, a new negative part is introduced via ∆Hm = ∆C

1
2
m. Now the criterion reads:

(σ −R) : ∆Zm : (σ −R)− bc < ∆Hm : σ >−:< ∆Hm : σ >−≤ 0 (30)

This form will be used in the following for more complex initial states.

Model understanding for an initially bi-axial orthotropic damage
To better understand the results of the previously formulated inequality for an initially
multi-axial state, two orthogonal vectors n1 and n2 such as n1.n2 = 0 are considered.
These vectors are supposed to be the eigenvectors of the preliminary loading positive
stress.

V 1 = n1 ⊗ n1 , V 2 = n2 ⊗ n2 (31)
W 1 = (t1 ⊗ n1)sym , W 2 = (t2 ⊗ n2)sym (32)

Because the problem is posed in 2D, one can remark that:

W 1 = −W 2 = W (33)

The initial damage state reads:

∆Cm = α1V 1 ⊗ V 1 + α2V 2 ⊗ V 2 (34)
∆Zm = bα1W 1 ⊗W 1 + bα2W 2 ⊗W 2 (35)

leading to:

σ : ∆Zm : σ = bα1(σ : W 1)2 + bα2(σ : W 2)2 = b(α1 + α2)(σ : W ) (36)
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The normal stress σn1n1
(resp. σn2n2

) on the crack lips for the crack network oriented
by the direction n1 (resp. n2) appears as a contribution in:

< ∆Hm : σ >−:< ∆Hm : σ >−=α1< σ : V 1 >−:< σ : V 1 >−︸ ︷︷ ︸
<σn1n1

>2
−

(37)

+ α2< σ : V 2 >−:< σ : V 2 >−︸ ︷︷ ︸
<σn2n2

>2
−

because:

∆Hm =
√
α1V 1 ⊗ V 1 +

√
α2V 2 ⊗ V 2 (38)

The friction criterion (equation 30) and the equations 38, 36 lead to:

((σ −R) : W )
2 − c

(
α1

α1 + α2
< σ : V 1 >−:< σ : V 1 >−

+
α2

α1 + α2
< σ : V 2 >−:< σ : V 2 >−

)
≤ 0 (39)

From this expression, the reader can note that the normal stress (second part of the left
hand side) is here the stress in the directions of the pre-existing cracks weighted by the
relative magnitude of damage in each directions.

Anisotropic damage model accounting for unilateral contact and
friction
For non orthogonal pre-existing crack networks, the situation is difficult to calculate
analytically and no interpretation is given. The proposed form is assumed to remain
physically consistent.

The total strain rate is decomposed as:

ε̇ = ε̇el + ε̇st (40)

where εst is used to model the frictional sliding in shear.

Expression of the potential and state laws
In the present case, there is only one contribution to Z and Z = ∆Zm. As friction may
occur in all crack networks, Z will be used in the following. The free energy reads:

ρΨ =
1

2
σ+ : C : σ+ +

1

2
σ− : C0 : σ− +

1

2
R : Z : R (41)
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The state laws read:

εel =
∂ρΨ

∂σ
= C : σ+ + C0 : σ− (42)

α =
∂ρΨ

∂R
= Z : R (43)

This corresponds to the assumption of a linear kinematic hardening law. The forces
associated to damage are now defined as:

Y =
1

2
R⊗R (44)

Y′ =
1

2
σ+ ⊗ σ+ (45)

Y′′ =
1

2
(O π

2
.σ+)sym ⊗ (O π

2
.σ+)sym (46)

Damage evolution laws:
First, note that Y is not used for the inter-yarn matrix damage, it has a contribution for
the intra-yarn damage in Ladevèze (2002). The damage evolution laws are supposed to
remain unchanged (equations 12 and 13).

Coulomb’s criterion and flow rule associated to friction:
The Coulomb’s criterion is assumed to be:

f = (σ −R) : Z : (σ −R)− bc < ∆H : σ >−:< ∆H : σ >− (47)

The form of this criterion resumes to a friction cone for a unidimensional loading. If
there is no compressive stress, then the hardening is equal to the applied stress for the
damaged direction.

Proof:
The Kelvin decomposition of ∆Zm reads:

∆Zm =
∑
i

αiV i ⊗ V i (48)

Because there is no compressive stress:

(σ −R) : ∆Zm : (σ −R) = 0 (49)

(σ −R) : ∆Zm : (σ −R) =
∑
i

αi ((σ −R) : V i)
2

= 0 (50)
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For i such as αi > 0 (one always has αi ≥ 0) then (σ −R) : V i = 0. Thus:

1

2
R : ∆Zm : R =

1

2

∑
i

αi (R : V i)
2

=
1

2

∑
i

αi (σ : V i)
2

=
1

2
σ : ∆Zm : σ (51)

End of proof.

The flow rules derives from:

g = (σ −R) : ∆Zm : (σ −R) (52)

The flow rules read:

ε̇st = γ̇st
∂g

∂σ
= γ̇st∆Zm : (σ −R) (53)

α̇ = −γ̇st ∂g
∂R

= γ̇st∆Zm : (σ −R) = ε̇st (54)

Classical Kuhn-Tucker conditions should be added. Note that the notion of effective
stress is already included in σ −R in shear. Regarding the normal loading, there is
no need for the notion of effective stress, the crack is closed or opened. Considering
the dissipation related to this plasticity model, as the flow rule derives from a convex
function which is positive and nul at the origin, the dissipation is positive Lemaitre and
Chaboche (1994).

In the following study, all the examples are treated with the stress evolution prescribed.
Thus, the strain evolution is determined by the governing equations of the model. The
standard procedure leading to the computation of the stress (and tangent stiffness) from
the strain and strain increment has not been studied for the moment.

Applications

Shear stiffness recovery for proportional shear/compression loadings
In this part, the proposed model is applied to the experimental results of Pacou and Maire.
Experimental results do not allow to identify the friction coefficient but only to give a
bound. This bound is related to the loading ratio of 0.5 between the applied shear stress
and the axial stress. To get friction, it is assumed that c = 0.5. This choice is arbitrary.
Because the experimental data can be described by a stress driven evolution, it is possible
to calculate damage independently of friction leading to a very simple solving scheme
because the plasticity model is also driven by the stress once the damage is known.
The figure 9 shows the stress/strain curves for the combined shear and tension loading
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conditions. The model is superimposed to experimental results. On the left picture, the
modeled axial behavior is in agreement with the experimental data. Note that even if this
picture is similar to the figure 5, loading conditions are not the same. Figure 5 is for
identification and the present one for validation. In the right picture of figure 9, the shear
behavior is correctly modeled, especially the frictional effect leading to the recovery of
the shear stiffness in the compressive loading range. This compressive loading range is
defined to account for the shifting of crack closure effect. This is why the shear stiffness
recovery is visible for shear stresses less than 5 MPa. The proposed model is thus in good
agreement with the existing experimental data. Note the slight discrepancies between the
experimental curves and numerical ones ; the author suspects that friction between crack
lips leads to an erroneous identification in pure shear and thus leads to an underestimation
of the stiffness loss in pure shear.
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Figure 7. Mechanical response of a tension/torsion combined loading. Continuous colored
lines are associated to experimental data while black lines are associated to the model
prediction.

Continuous stress/strain evolution for shear/compression
non-proportional loadings
In this paragraph, the ability of the model to produce a continuous stress/strain law is
evaluated on a complex loading. This one is presented in figure 8. Several phases can be
distinguished depending on the pseudo time:

1. from 0 to 2: the tensile stress increases to create damage and is followed by
unloading;

2. from 2 to 3: the shear stress increases to create slip between crack lips;
3. from 3 to 4: the shear stress is maintained at its level and a compressive stress is

applied so that friction can occur in cracks;
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4. from 4 to 5: the compression stress is maintained at its level and the shear stress is
decreased to zero;

5. from 5 to 6: the axial stress is increased to go from compression to tension.
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Figure 8. Applied stress in tension/compression and shear.

In figure 9, the total strain resulting from the computation of the model is plotted.
The time steps are shown on the shear curve using + symbols. This shows a continuous
evolution of the strain versus time. The strain evolution follows the loading phases:

1. from 0 to 1: the slope of variation of the axial strain increases while damage is
created;
from 1 to 2: the axial strain decreases elastically;

2. from 2 to 3: the shear strain increases;
3. from 3 to 4: the shear strain remains almost constant, a slight decrease can be

observed as the loading direction turns also slightly;
4. from 4 to 5: friction occurs between crack lips, only the elastic part is released.

The shear strain decreases to reach a plateau which is the stored part of the strain.
5. from 5 to 6: the axial stress increases to reach zero, the cracks start to slip and the

shear strain vanishes when the stress becomes positive.

This test shows the ability of the model to describe continuous stress strain evolutions
for complex loadings including friction.

Conclusion
In this work, an anisotropic damage model is proposed to account for all the aspect related
to crack closure for SiC/SiC materials i.e. unilateral contact as well as friction. The use of
4th order tensorial damage variables allows to store the information of crack orientations
and therefore, a simple plasticity model can be developed to model Coulomb’s friction
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Figure 9. Total strain evolution computed with the model.

in cracks. It relies on the ability to estimate the normal and shear stresses in cracks using
a projection of the stress on the damage tensors. Only very few experimental data are
available in the literature on CMCs regarding multi-axial loadings and crack closure
effects. The data of Maire and Pacou (1996) have been used in this paper to identify
the model and check its validity. Non-proportional loading conditions have also been
used to show the continuity of the stress-strain law for cracks under complex shear and
compression loading sequences. To go further on the study of the interaction between
damage development and friction, more experimental data are needed. It would be
interesting first to look at available data on reinforced concrete which present similar
mechanisms (among many others).
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Spectral decompositions and definitions of positive and negative
parts

Kelvin decomposition
Due to the symmetries of a compliance tensor, it is possible using the Voigt’s notation to
decompose a fourth order tensor as:

C =
∑
i

ciV i ⊗ V i (55)
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ci is a positive scalar and V i are symmetric tensors of order two. H is then defined as
follows:

H = C
1
2 =

∑
i

√
ciV i ⊗ V i (56)

The same procedure can be done to obtain H0 from C0.

Classical positive and negative parts
Starting from the Kelvin decomposition of a second order tensor a : a =

∑
i aivi ⊗ vi,

the positive and negative parts are defined as:

< a >+ =
∑
i

< ai >+ vi ⊗ vi (57)

< a >− =
∑
i

< ai >− vi ⊗ vi (58)

where < . >+ (resp. < . >−) is the positive (resp. negative) part of a scalar.

Positive and negative parts with respect to damage

σ+ = H−1 :< H : σ >+ (59)

The second is used to define the negative part:

σ− = H−10 :< H0 : σ >− (60)

If H0 and H are isotropic then these definitions are equivalent to the classical positive
and negative parts.
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mécanique, Symposium franco-polonais, Cracow (Poland). pp. 137–159.

Chaboche J (1982) Le concept de contrainte effective appliqué à l’élasticité et à la viscoplasticité
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