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LONG TIME GYROKINETIC EQUATIONS

CHRISTOPHE CHEVERRY AND SHAHNAZ FARHAT

Abstract. The aim of this text is to elucidate the oscillating patterns [9] which are generated
in a toroidal plasma by a strong external magnetic field and a nonzero electric field. It is also to
justify and then study new modulation equations which are valid for longer times than before.
Oscillating coherent structures are induced by the collective motions of charged particles which
satisfy a system of ODEs implying a large parameter, the gyrofrequency ε−1 � 1. By exploiting
the properties of underlying integrable systems, we can complement the KAM picture [1, 3] and
go beyond the classical results about gyrokinetics [1, 2, 3, 5]. The purely magnetic situation
was addressed in [7, 8]. We are concerned here with the numerous additional difficulties due to
the influence of a nonzero electric field.

Keywords. Nonlinear differential equations; Nearly integrable systems; WKB analysis;

Toroidal magnetized plasmas; Coherent structures; Gyrokinetic equations.
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1. Introduction

In Subsection 1.1, we present the general ideas. In Subsection 1.2, we define the two key
concepts of average flow and mean flow. In Subsection 1.3, we clarify the assumptions made
on the external electromagnetic field. In Subsection 1.4, we specify the coherent structures; we
highlight the applications to toroidal plasmas; and we detail our plan.

1.1. Motivations. We study the motions of charged particles in the presence of a fixed external
electromagnetic field (E,B) with E 6≡ 0 and |B| � 1. The case where E ≡ 0 was recently
published in [7, 8]. As is well-known, the electric and magnetic forces affect the trajectories of
charged particles through the Lorentz force. They can be exploited in order to confine plasmas
through for instance toroidal devices (like tokamaks). The purpose is to ensure that the plasma
stays away from the walls.
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Understanding the transport processes in axisymmetric configurations is an old challenging goal.
The subject has a long history with a huge number of contributions. There are many approaches,
including the KAM method [1, 3] and gyrokinetics [2, 5]. The difference of our viewpoint
with KAM theory is - away from a set of zero measure in the phase space (corresponding
to the presence of separatrices) - a global quantitative space-time description [9] of plasma
oscillations, in terms of explicit phases and profiles. Its main novelty compared to gyrokinetics
is the deterministic rigorous investigation of longer times. And, in connection with [7, 9, 8], the
originality of the present paper is the addition of a non trivial electric field E 6≡ 0.

The main tool to confine plasmas is a large fixed external magnetic field B. But it is also
essential to explore what happens under the simultaneous presence of a smaller electric field
E 6≡ 0. Indeed, the influence of such E 6≡ 0 cannot be ignored. First, due to the coupling
between the Vlasov and Maxwell equations, a nonzero electric field is spontaneously generated.
Secondly, in experiments, such non trivial E is a known cause of disruptions. When E 6≡ 0, the
kinetic energy is no more conserved. The particles can be accelerated or decelerated, leading to
the development of instabilities. Such instabilities often proceed from the production of whistler
waves [7, 9], which have their origins in the collective organization of charged particles [10]. It
is therefore important to detect the oscillating coherent structures which are induced by the
inhomogeneous features of the electromagnetic field (E,B).

In the case E ≡ 0, this program has been achieved in [7, 8] with difficulties coming from the
variations of B. When E 6≡ 0, the discussion is even more complicated (with new geometrical
structures appearing at the level of Paragraph 3.2.1). Still, it falls within the scope of the WKB
analysis introduced in [11]. This is not obvious, far from it. Thus, our first task is to make sure
that all prerequisites of [11] are satisfied when dealing with concrete data emanating from the
modeling of tokamaks. Once done, the results of [11] furnish long time modulation equations
(Theorem 1.9) where it is possible to measure the impact of E. Then, our second motivation is
to investigate the stability issues at the level of these reduced equations. In particular, we want
to examine the potential effects of the condition E 6≡ 0.

A relativistic charged particle starting at time t = 0 from the position (x0, v0) ∈ R3 × R3 is
moving in the phase space R3×R3 according to the dimensionless ordinary differential equation

(1.1)


dx

dt
= v ,

dv

dt
=

(
1− |v|2

)1/2 {− 1

ε
v ∧B(x)− E(x) +

(
v · E(x)

)
v
}
.

The integral curves associated to (1.1) give rise to the characteristics of the Vlasov equation. The
origin of (1.1) is recalled in Subsection 2.1. In physics, the parameter ε comes from the inverse
of the electron gyrofrequency. In practice, it is small, such that ε ' 10−4 << 1. This is why it
is often viewed as going to zero. The regime of intermediate times (related to gyrokinetics) is
when t ∼ 1. We are concerned here with the study of (1.1) for longer times, when τ := εt ∼ 1
(or t ∼ ε−1). Thus, with t(x̃, ṽ)(x0, v0; τ) := t(x, v)(x0, v0; τ/ε) we have to consider:

(1.2)


dx̃

dτ
=

1

ε
ṽ ,

dṽ

dτ
=

1

ε

(
1− |ṽ|2

)1/2 {− 1

ε
ṽ ∧B(x̃)− E(x̃) +

(
ṽ · E(x̃)

)
ṽ
}
.

Knowing that ε� 1, the right hand side of (1.2) is very large. We can recognize a leading term
of size ε−2 yielding the (well-known for t ∼ 1) repercussions of the strong external magnetic field
(the gyromotions) . But there are also terms of size ε−1 which take into account the impact of
the electric field. This leads to a number of extra effects that we aimed to better understand.
Here, for some ε0 ∈]0, 1[, we assume that ε ∈]0, ε0], To clearly exhibit the hierarchy of effects in
terms of powers of ε, the parameter ε is intended to go to zero.
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In contrast to preceding works [7, 8], in the present situation, the kinetic energy is in general
not conserved. Still, we can describe the leading behavior of the solution (x̃, ṽ) to (1.2). On
this basis, in Section 4, we can exhibit a spatial confinement property (related to x̃) for a whole
range of electric fields E adjusted as in Assumption 1.7. In addition, when the electric field is
radial, that is when the scalar electric potential Φ depends only on r, we can also prove a long
time (τ ∼ 1) stability property concerning the momentum component ṽ.

1.2. Notions of average and mean flows. For realistic choices of (E,B), we would like to
deduce from (1.2) simplified models which are valid for τ ∼ 1. To fit with the toroidal geometry,
in Subsection 2.2, we change the phase space R3 × R3 into (R× T× T)2, where T := R/2πZ is
the torus. We also extract from (1.1) a special class of a nonlinear differential equations having
the following form

(1.3) ∂t

(
--z
υ

)
=

(
A
V

)(
ε; --z;

υ

ε

)
,

(
--z
υ

)
(0) =

(
z0

ν0

)
,

where the new dependent variables are --z = t(r, θ, v, ζ) ∈ R × T × R+ × T and υ ∈ T, and
where z0 ∈ R4 and ν0 ∈ T stand for initial data (which may depend smoothly on ε ∈ [0, ε0]).
The vector valued function A does not involve ε, whereas the scalar component V does. More
precisely, the source term t(A,V) looks like

C∞(R∗+ × T× R× T× T;R4) 3 A(ε; --z; ν) ≡ A(--z; ν) = t(Ar,Aθ,Av,Aζ)(--z; ν),(1.4)

C∞([0, ε0]× R∗+ × T× R× T× T;R) 3 V(ε; --z; ν) = V0(--z) + εV1(--z; ν).(1.5)

Most importantly, the source terms A and V are periodic in the last variable ν of period 2π.
This means that, when passing from (1.1) to (1.3), the singular weight ε−1 has been converted
into fast oscillations carried by ν. The profile A(--z; ν) can be decomposed according to

(1.6) A(--z; ν) = A(--z) +A∗(--z; ν) , A(--z) :=
1

2π

∫ 2π

0
A(--z; ν) dν,

where A = t(Ār, Āθ, Āv, Āζ) is the mean part and A∗ = t(A∗r ,A∗θ,A∗v,A∗ζ) is the oscillating part.

The same applies to V = V+V∗. The function --z(·) is the sum of the average flow –Z(z0; t) defined
below plus deviations.

Definition 1.1 (The average flow associated with the intermediate time evolution in t of --z).
The average flow –Z(z0; t) on R4 that is associated with (1.3) is the (locally or globally defined)
mapping –Z : R4 × R→ R4 obtained by solving

(1.7) ∂t –Z = A(–Z), –Z(z0; 0) = z0, –Z = t(–Zr, –Zθ, –Zv, –Zζ).

The average flow issued from (1.1) is studied in Section 3. It reflects the main behavior of the
dynamics during intermediate times. It is described in Subsection 3.1. It plays a key role in
what happens next, when τ ∼ 1. Indeed, to have access to [11], one of the difficulties is to prove
that, for all fixed z0, the average flow –Z(z0; ·) is globally defined and periodic in t (with a period
which may depend on z0). Subsection 3.2 is designated to this purpose.

Once this is done, we can normalize the period of the average flow. To this end, in Paragraph
4.1.1, we change adequately (in a way depending on z0) the time variable t into s ∼ t (with
s 6= t but s ∼ t still representing intermediate times). Then, we can interpret the long time
behavior in terms of τ := ε s (where τ 6= τ but τ ∼ τ). Instead of t(--z, υ), we work with t(z,ν)
as in (4.3). By this way, in Section 4, we can enter into the framework of [11]. As a matter of
fact, the system (1.2) is recast as follows

(1.8) ∂τ

(
z
ν

)
=

1

ε

(
A
V

)(
ε, z0; z;

τ

ε
,
ν

ε

)
,

(
z
ν

)
(0) =

(
z0

ν0

)
,
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where the functions A and V satisfy

C∞(R4 × R4 × T× T;R4) 3 A(z0; z; s, ν),(1.9)

C∞([0, ε0]× R4 × R4 × T× T;R) 3 V(ε, z0; z; s, ν) = (V0 + εV1)(z0; z; s, ν).(1.10)

Compare (1.2) with (1.8). The singular weight ε−2 has disappeared but there remains a large
factor ε−1 mutiplied by a double periodic function. Indeed, the source term t(A,V) is periodic
of period 2π in both variables s and ν.

Definition 1.2 (The mean flow associated with the intermediate time evolution in s of z). Let
A(z0; z; s) be defined from A as in (1.6). Given a position z0 ∈ R4, the mean flow Ξmf (z0; z; s)
on R4 associated with (1.8) is the (locally or globally defined) mapping Ξmf (z0; ·) : R4×R→ R4

which is obtained by solving

(1.11) ∂sΞmf(z0; z; s) = A
(
z0; Ξmf(z0; z; s); s

)
, Ξmf(z0; z; 0) = z.

Remark 1.3. As already explained, the average flow is the gate to the construction of the mean
flow. It should not be confused with the mean flow. The two equations (1.7) and (1.11) are
distinct. We have A 6= A, not least because A and A depend on distinct variables. The above
notion of mean flow is consistent with the one of [11, Definition 1]. ◦

The oscillating coherent structures can be detected on the WKB approximation in (τ, z0,ν0)
of the solutions t(zε,νε)(τ, z0,ν0) to (1.8). As shown in [11], such expansions become available
provided that the two following criterions are verified.

Condition 1.4 (Complete integrability of the mean flow). For all (z0, z) ∈ R4 × R4, the mean
flow Ξmf(z0; z; ·) is globally defined and periodic of period 2π.

Condition 1.5 (Constraints on V0). The function V0 is positive and does not depend on ν ∈ T.

The validity of Conditions 1.4 and 1.5 in the case of functions A and V issued from (1.1) is
verified in Subsection 4.1. This means that the results of [11] can be applied concerning (1.1).
Related applications are developed in Section 4 .

1.3. Assumptions on the external field. In Paragraph 1.3.1, we implement the toroidal
coordinates. In Paragraph 1.3.2, we describe the structure of the external magnetic field B. In
Paragraph 1.3.3, we detail the content of the electric field E. By doing so, we take care to adjust
B and E in a manner which is consistent with what could be expected in tokamaks.

1.3.1. Toroidal description of tokamaks. To simplify the discussion, we introduce geometrical
coordinates. It is easy to see that every point x ∈ R3 in the cartesian coordinates can also be
identified by a radial coordinate r ∈ R+ (the distance from the magnetic axis) and by the two
rotational invariances θ ∈ T (the poloidal angle) and φ ∈ T (the toroidal angle). These new
coordinates are associated with the following decomposition

(1.12) x = X(r, θ, φ) =
(
R(r, θ) cosφ, R(r, θ) sinφ, r sin θ

)
, R(r, θ) = R0 + r cos θ.

Retain that 0 ≤ r ≤ a < R0 where a and R0 are respectively the minor radius and major radius
of the tokamak, see Figure 1. We denote by er, eθ and eφ the orthonormal basis corresponding
to the selection of (r, θ, φ), which is given by

(1.13)
er(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ) ,
eθ(θ, φ) = (− sin θ cosφ,− sin θ sinφ, cos θ) ,

eφ(φ) = (− sinφ, cosφ, 0) .

Remark that er ∧ eθ = −eφ and recall that ∇ = er ∂r + eθ
1

r
∂θ + eφ

1

R0
∂φ.
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Figure 1. Schematic diagram of the tokamak-plasma geometry.

1.3.2. Adjusting the magnetic field. The function B(·) inside (1.1) has ε−1 in factor (with ε� 1)
for reasons clarified in Subsection 2.1. It represents the dimensionless version of the external
magnetic field, and therefore it is of amplitude one. We impose common restrictions on B,
compatible with all the contributions [6, 12, 13, 15, 16, 19, 20]. In particular, the reader can
refer to the Notes on Tokamak equilibrium [15].

Assumption 1.6 (Toroidal external magnetic field). The magnetic field B is issued from a
scalar magnetic potential A(·) through the relation B = O ∧ A where, given some auxiliary
function I ∈ C1([0, a];R∗+) which must be associated with a poloidal current, we have

A(r, θ) := − r ∇φ− g(r, θ) ∇θ , g(r, θ) :=

∫ r

0

r̃ I(r̃)

R0 + r̃ cos θ
dr̃.

The above magnetic field B(·) can always be decomposed (see Figure 2) according to

B = Bt︸︷︷︸
Toroidal magnetic field

+ Bp︸︷︷︸
Poloidal magnetic field

, Bt ‖ eφ , Bp ‖ eθ , Bt ⊥ Bp .

In practice, the poloidal magnetic field is produced by the plasma current flowing in the toroidal
direction. It helps to confine the plasma and to get some equilibrium. As seen in Figure 2, the
magnetic field lines follow helical paths around the torus.

Figure 2. The decomposition of the magnetic field.
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1.3.3. Adjusting the electric field E. In the journal [12], the authors take measurements that
fit (after nondimensionalization) with the condition |E| ' 1. Thus, from now on, the electric
field E inside (1.1) is supposed to be of amplitude one. Due to the cylindrical symmetry, it is
reasonable to assume some invariance with respect to φ.

Assumption 1.7 (Axisymmetric external electric field). The electric field E is issued from a
scalar electric potential Φ which does not depend on φ. More precisely, we can find a smooth
(non constant) function Φ : [0, a]× R→ R such that

(1.14) E(r, θ, φ) = ∇Φ = ∂rΦ(r, θ) er(θ, φ) + r−1 ∂θΦ(r, θ) eθ(θ, φ).

Even though ∂φΦ ≡ 0, the above field E(·) does depend on φ through er(·) and eθ(·). When
moreover Φ(r, θ) ≡ Φ(r), the electric field E ≡ Er(r, θ, φ) ≡ ∂rΦ er is said to be radial. There is
no definitive consensus concerning the choice of E. But the formula (1.14) is sufficiently general
to take into account most of the phenomena.

The model (1.14) is selected in accordance with the authoritative publications [19, Section 2.18]
and [20] where, as in the next Paragraph 2.2.1, there are three nontrivial components Er, E
and E⊥ emanating from ∇Φ. In [20], the authors consider the relativistic guiding center motion
of charged particles in magnetic fields consistent with toroidal Tokamak equilibrium. They take
into account that runaway electrons increase their kinetic energy due to the accelerating force
of the toroidal electric field. They try to know what is the orbit of a runaway electron which
is produced on a given magnetic surface after it has performed a very large number of toroidal
revolutions. They search for whether the observed phenomena can be explained by the change
of the runaway electron orbits due to a flattening of the current and pressure profiles. In this
process, the acceleration due to the toroidal electric field is essential. We share here the same
concerns but from a mathematical viewpoint.

From knowledge of E, we can define the separatrix region S according to a procedure that is
described in Subsection 3.2. The (closed) set S is used in Theorem 1.8 below. It is properly
defined at the level of (3.29).

1.4. Results, outcomes and plan. Paragraph 1.4.1 is devoted to a first application about
coherent structures. Paragraph 1.4.2 focusses on the properties of the long time gyrokinetic
equations. Paragraph 1.4.3 details the plan of the article.

1.4.1. Coherent structures. As long as t ∼ 1, the trajectory of charged particles is a helix that
winds rapidly around the magnetic field lines. The gyrokinetic theory describes perfectly the
(relatively) slow motion of the guiding center. But what happens next ? For t � 1, that
is for t ∼ ε−1 or τ ∼ 1, the motions become much more complicated. As explained below,
their collective behaviors are organized around multiscale structures which can be completely
described through WKB expansions.

Theorem 1.8 (Long time global picture of the flow: emergence of coherent structures). Suppose
that Assumptions 1.6 and 1.7 hold. Select in the phase space any bounded connected open set Ω
whose closure Ω̄ does not intersect the separatrix region S. Then, for all ε ∈]0, 1], there exists

on a uniform domain Ω×T̃ with T̃ ≡ T̃ (x0, v0) ∈ R∗+ a local smooth solution (x̃ε, ṽε)(·) to (1.2).
In addition, we can find smooth profiles

X̃j(x0, v0; τ, s̃, ν̃) ∈ C∞(Ω× [0, T̃ ]× T× T;R3) , j ∈ N ,

Ṽj(x0, v0; τ, s̃, ν̃) ∈ C∞(Ω× [0, T̃ ]× T× T;R3) , j ∈ N ,

adjusted in such a way that the long time behavior of the solution (x̃ε, ṽε) of (1.2) can be described
in the sup-norm as follows

(1.15)

(
x̃ε
ṽε

)
(x0, v0; τ) ∼

ε→0

+∞∑
j=0

εj
(
X̃j

Ṽj

)(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
.
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The profiles X̃j and Ṽj are identified by modulation equations (which can be made explicit).
Given �(·) as in Lemma 3.7, the expression Ψ1 is given by

(1.16) Ψ1(x0, v0; τ) :=
2πτ

�
(
z0(x0, v0)

) .
The function Ψ2

ε plays the role of a phase; it is oscillating; and it is defined by

(1.17)

Ψ2
ε(x0, v0; τ) := 〈V −1〉

(
z0(x0, v0),Ψ1(x0, v0; τ)

)
+ε
{

[∂τ〈V −1〉]
(
z0(x0, v0); Ψ1(x0, v0; τ)

)
s∗
(
z0(x0, v0);

Ψ1(x0, v0; τ)

ε

)
+V 0

(
z0(x0, v0), 0; Ψ1(x0, v0; τ),

Ψ1(x0, v0; τ)

ε
+ s∗

(
z0(x0, v0);

Ψ1(x0, v0; τ)

ε

))}
,

where s∗ is introduced in Lemma 3.8, whereas 〈V −1〉 and V 0 are computed in Proposition 4.2.

Gyrokinetics deals with t ∼ 1 (that is with x and v) and fast gyromotions around the field lines,
which occur at the frequency ε−1 in terms of the time scale t. On the other hand, Theorem 1.8
addresses longer times τ ∼ 1 (which imply x̃ and ṽ) and extra fast oscillating behaviors, which
arise at the frequency ε−1 in terms of the time scale τ . Depending on the chosen set Ω, we are
faced with librations (in the case of trapped particles in banana orbits) or rotations (in the case
of passing particles), see Figure 3. The expansion (1.15) makes visible the complex macroscopic
juxtaposition of all these oscillations.

1.4.2. Outcomes. By analogy with the usual gyrokinetic equations, which are valid for t ∼ 1,
the modulation equations leading to the main profiles X̃0 and Ṽ0 are referred to as the long
time gyrokinetic equations. They are of practical prime interest because they reveal the leading
behavior of the solutions (for τ ∼ 1). This is why they are studied below in detail.

Theorem 1.9 (Long time gyrokinetic equations). The profile X̃0(·) does not depend on ν̃, while

the profile Ṽ0(·) does. These functions can be expressed in terms of the average flow –Z, which is
the solution to (1.7), as follows

X̃0(x0, v0; τ, s̃) := X
(
〈Z0r〉; –Zθ(〈Z0〉; � s̃/2π), Φ̃0(τ, s̃)

)
,(1.18)

Ṽ0(x0, v0; τ, s̃, ν̃) := V
(
〈Z0r〉; –Zθ(〈Z0〉; � s̃/2π), Φ̃0(τ, s̃),

–Zv(〈Z0〉; � s̃/2π), –Zζ(〈Z0〉; � s̃/2π), ν̃ + Ṽ 1(τ, s̃)
)
,

(1.19)

where X and V are the explicit functions given by (2.4) and (2.8), � is as in Lemma 3.7, Φ̃0 is

issued from (4.48) and (4.50), and the scalar function Ṽ 1 is as in (4.20). On the other hand,
in the right hand side of (1.18) and (1.19), the symbol 〈Z0〉 stands for the function 〈Z0〉(z0; τ)
which is determined by solving the nonlinear Cauchy problem

(1.20) ∂τ〈Z0〉(z0; τ) = 〈A1〉
(
z0; 〈Z0〉(z0; τ)

)
, 〈Z0〉(z0; 0) = z0,

where the initial data z0 = t(r0, θ0, v0, ζ0) can be computed from (x0, v0) through (2.4) and (2.8),
and where the expression of 〈A1〉 is computed in (4.60). Moreover, as claimed in Lemma 4.10,
we find that 〈A1r〉(z0; z) = 0 for all (z0, z) ∈ Rd × Rd, so that 〈Z0r〉(z0; τ) = r0.

The above theorem has multiple implications:

• A model for the leading behavior of the flow (x̃, ṽ) is provided by:

(1.21)
x̃(x0, v0; τ) = X̃0

(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε

)
+O(ε) ,

ṽ(x0, v0; τ) = Ṽ0

(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
+O(ε).

The behavior of x̃ and ṽ are mainly governed respectively by the profiles X̃0 and Ṽ0;
7



• Looking at (1.18), we find ∂s̃X̃0 6≡ 0 and ∂ν̃X̃0 ≡ 0. This implies that the propagation
of the oscillating singularities at the leading order of the spatial part x̃ is completely
achieved by Ψ1(x0, v0; τ). On the other hand, we have ∂ν̃X̃1 6≡ 0. This implies that the
spatial part x̃ involves small amplitude oscillations related to Ψ2

ε(x0, v0; τ) associated
with higher frequency ε−2. The rapid variation with repect to ν̃ is activated at the level
of X̃j as soon as j ≥ 1;

• Looking at (1.19), we find ∂s̃Ṽ0 6≡ 0 and ∂ν̃ Ṽ0 6≡ 0. The large amplitude oscillations

related to Ψ1(x0, v0; τ) and Ψ2
ε(x0, v0; τ) emerge in the velocity part ṽ at the level of Ṽj

as soon as j ≥ 0;

• The expressions X̃0 and Ṽ0 consist of distinct parts. There are first the two diffeomorphic
maps X as in (2.4) and V as in (2.8) composed with the average flow –Z, the scalar

function Ṽ 1, and the toroidal angle Φ̃0. Secondly, there is the contribution 〈Z0〉. Now,
the access to 〈Z0〉 is complicated. It requires the determination of 〈A1〉. Computing
or even finding the simplified expression of 〈A1〉 requires long computations which are
achieved in Paragraph 4.3.1;

• There is a cancellation effect induced by the action of the operator 〈·〉 on A1(·). Indeed,
in view of Theorem 1.9, we have 〈A1r〉 ≡ 0. This implies that the spatial component
〈Z0r〉 is not activated when solving (1.20). And thus, it suffices to look at the remaining
three components 〈Z0θ〉, 〈Z0v〉 and 〈Z0ζ〉. We find also that 〈A1v〉 ≡ 0 when the electric
field is radial, that is when Φ = Φ(r), leading in this simplified case to a stability property
concerning the component 〈Z0v〉.

1.4.3. Plan of the text. The present text is organized as follows.

Section 2 furnishes useful tools to deal with the axisymmetric configuration.

- In Subsection 2.1, we clarify the origin of (1.1).
- In Subsection 2.2, the space coordinate x is changed into the toroidal coordinates, while

the velocity v is expressed in spherical coordinates coming from a basis (er, e⊥, e ) where
the vector e represents the (unitary) direction of the magnetic field. The system (1.1)
is then interpreted in terms of these new coordinates.

Section 3 describes the properties of the average flow.

- In Subsection 3.1, we specify the time evolution equations for the average flow.
- In Subsection 3.2, we study the periodic properties of the average flow.

Section 4 is devoted to applications.

- In Subsection 4.1, we show that our analysis is consistent with the one presented in [11].
- In Subsection 4.2, we prove Theorem 1.8.
- In Subsection 4.3, we exhibit and study the long time gyrokinetic equations.

2. Modeling of the dynamics

In the present chapter, we are concerned with the equations satisfied by a charged particle in
the presence of a prescribed electromagnetic field (which is not affected by the repartition of the
charged particles). We consider the motion of an electron with mass m and electric charge −e
(of negative sign) in a given electric field E and magnetic field B. In Subsection 2.1, we explain
the origin of (1.1). In Subsection 2.2, we adapt the phase space and the equations in accordance
with the geometries induced by the shape of the toroidal device and by the variations of B.
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2.1. Nondimensionalization. Under the influence of a Lorentz force F, a relativistic charged
particle is moving according to

(2.1)


dx

dt
= v,

dp

dt
= F := −e

[
E(x) + v ∧B(x)

]
,

with the relations

v =
p

γ m
, γ =

(
1− v2

c2

)−1/2
=
(

1 +
p2

m2 c2

)1/2
, |v| < c ,

where c ' 3 × 108ms−1 is the speed of light, e ' 1.6 × 10−19C is the elementary charge, and
m ' 9.1× 10−31 kg is the electron mass.

Lemma 2.1 (Equivalent system). The system (2.1) amounts to the same thing as

(2.2)


dx

dt
= v,

dv

dt
= − e

m

(
1− v2

c2

)1/2 [
E(x) + v ∧B(x)− c−2

(
v ·E(x)

)
v
]
.

Proof. The chain rule yields

γ3

c2
m
(
v · dv

dt

)
v + γ m

dv

dt
= −e [E + v ∧B].

We can decompose the acceleration a := dv/dt into the sum of two parts a and a⊥ with a
parallel to the velocity v and a⊥ perpendicular to it. Thus, we have v ·a⊥ = 0 and v ·a = v ·a.
This furnishes (v · a )v = v2 a and therefore

F =
γ3mv2

c2
a‖ + γ m (a + a⊥) = γ3m

(
v2

c2
+

1

γ2

)
a + γ m a⊥

= γ3 m

(
v2

c2
+ 1− v2

c2

)
a + γ m a⊥ = γ3 m a + γ m a⊥.

This can be used to calculate acceleration from force, yielding

(2.3) a =
1

m γ

(
F− (v · F)v

c2

)
.

Since v · F = −e v ·E, after substitution inside (2.3), we find (2.2). �

Let us assume that x ∈ Ω ⊂ R3 where Ω is a bounded open domain of size L. We then consider
the nondimensional variable x := x/L with |x| < 1. We also introduce the normalized velocity
v := v/c with |v| < 1. Taking into account these selections, it is more convenient to work with
the time variable t := c t/L. It remains to interpret the electric and magnetic fields in terms of
these variables. So, we select E(x) := E−1 E(Lx) and B(x) := B−1 B(Lx) where E and B are
typical amplitudes of respectively E and B. The system (2.2) becomes

dx

dt
= v,

dv

dt
=

(
1− v2

)1/2 {−eL B

mc
v ∧B(x)− eL E

mc2

[
E(x)−

(
v · E(x)

)
v
]}
.

The inverse of the electron gyrofrequency is the dimensionless parameter ε := (mc)/(eL B).
Common tokamaks are built with L ' 5m and B ' 5T so that ε ' 10−4. On the other hand,
in line with [14, 17, 20], we can consider that

eL E

mc2
= 1 .

This is consistent with the realistic selections of E ' 5 × 105 V m−1. This furnishes (1.1) as a
starting point for our analysis.
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2.2. Geometric reformulation of the equations. The cartesian coordinates are not suitable
to differentiate the various types of motion. In Paragraph 2.2.1, we present a toroidal description
of x, and we decompose v in spherical coordinates emanating from an orthonormal basis following
the variations of B. In Paragraph 2.2.2, we reformulate the equations for x accordingly. Then,
in Paragraph 2.2.3, we do the same for v.

2.2.1. Change of coordinates for x and v. Recall (1.13). Remark that

(2.4) x = X(r, θ, φ) = R0 (cosφ, sinφ, 0) + r er , ẋ = ṙ er + r θ̇ eθ +R(r, θ) φ̇ eφ

as well as

∇x = er ∂r + eθ
1

r
∂θ + eφ

1

R
∂φ

Picture 1 represents r, θ, φ (and the shape of the confined plasma). From now on, we will work
with (r, θ, φ) ∈ [0, a]× T2 instead of x. By assumption 1.6, the function B(·) takes the form

B = I(r)∇φ+∇φ ∧∇r , I(r) ∈ R∗+ ,
which leads to

B = I(r) R−1 eφ +R−1 eφ ∧ er =
I(r)

R(r, θ)
eφ −

1

R(r, θ)
eθ.

Retain that

B(r, θ) = Bθ(r, θ) eθ +Bφ(r, θ) eφ , Bθ(r, θ) := − 1

R(r, θ)
, Bφ(r, θ) :=

I(r)

R(r, θ)
.

We aim to straighten out the field lines in an orthogonal way. For that, we define

e (r, θ, φ) := − 1√
1 + I(r)2

eθ(θ, φ) +
I(r)√

1 + I(r)2
eφ(φ) .

The magnetic field then can be written

B
(
X(r, θ, φ)

)
= b(r, θ) e (r, θ, φ), b(r, θ) :=

1

R(r, θ)

√
1 + I(r)2 ,

where b > 0 is the norm of the magnetic field B. Introduce the angle w(r) ∈]− π/2, 0[ between
the two directions eφ and e . We have

e (r, θ, φ) = sinω(r) eθ(θ, φ) + cosω(r) eφ(φ) .

In the basis (eφ, eθ), this gives rise to(
cosω(r), sinω(r)

)
=

(
I(r)√

1 + I(r)2
, − 1√

1 + I(r)2

)
.

The unitary direction e can be completed in order to obtain a positively oriented orthonormal
basis (er, e⊥, e ) with er ∧ e⊥ = −e . We find that

e⊥(r, θ, φ) := cosω(r) eθ(θ, φ) − sinω(r) eφ(φ) .

We can also pass from (e⊥, e ) to (eθ, eφ) through

(2.5) eθ = + cosω e⊥ + sinω e , eφ = − sinω e⊥ + cosω e .

From (1.14) and (2.5), we have

E(x) = Er(r, θ) er + E⊥(r, θ) e⊥ + E (r, θ) e ,

with

(2.6) Er(r, θ) = ∂rΦ(r, θ), E⊥(r, θ) = r−1 cosω(r) ∂θΦ(r, θ),

and

(2.7) E (r, θ) = r−1 sinω(r) ∂θΦ(r, θ).
10



On the other hand, v(t) can be decomposed according to the spherical coordinates associated
with the basis (er, e⊥, e ) as follows

(2.8)
v = V (r, θ, φ, v, ζ, ν)

= v
[

cos ζ cos ν er(θ, φ) + cos ζ sin ν e⊥(r, θ, φ) + sin ζ e (r, θ, φ)
]
.

with radial distance v := |v| ∈ R+, azimuth angle ζ ∈ [−π/2, π/2], and polar angle ν ∈ T. The
two maps V (r, θ, φ, 0, ·, ·) and V (r, θ, φ, v,±π/2, ·) are not one-to-one. Unless otherwise stated,
we will work away from v = 0 (with 0 < v < 1) and away from parallel and antiparallel situations
(with ζ 6∈ {−π/2,+π/2}). The number ν allows to describe rotations in the plane perpendicular
to e . From the perspective of gyrokinetics (as long as t ' 1), the coordinates r, θ, φ, v and ζ
undergo slow variations, whereas ν is subjected to fast fluctuations.

2.2.2. Equations in toroidal coordinates for x. The purpose of this paragraph is to interpret
(1.1) in terms of r, θ, φ, v, ζ and ν. To this end, we follow [8] with some adaptations due to the
presence of the electric field. The spatial part (r, θ, φ) can be handled as follows.

Lemma 2.2. [Spatial toroidal equations] The first equation inside (1.1) furnishes

(2.9)


dr

dt
dθ

dt

 =

Ar
Aθ

 := v

1 0 0

0
1

r
cosω(r)

1

r
sinω(r)

 cos ζ cos ν
cos ζ sin ν

sin ζ

 ,

together with

(2.10)
dφ

dt
= Aφ :=

v

R(r, θ)

(
− sinω(r) cos ζ sin ν + cosω(r) sin ζ

)
.

At time t = 0, we start with (r, θ, φ)(0) = (r0, θ0, φ0).

Proof. We can express the spherical coordinates (2.8) of v in the basis (er, eθ, eφ) through

(2.11)
v = v cos ζ cos ν er(θ, φ) + v

[
cos ζ sin ν cosω(r) + sin ζ sinω(r)

]
eθ(θ, φ)

+ v
[

sin ζ cosω(r)− cos ζ sin ν sinω(r)
]
eφ(φ).

Just compare the second part of (2.4) to the equation (2.11) to find (2.9) and (2.10). �

2.2.3. Equations in spherical coordinates for v. Below, we interpret the second equation of (1.1)
in terms of r, θ, φ, v, ζ and ν.

Lemma 2.3 (Velocity equations in spherical coordinates). We have

(2.12)


v̇ = Av := − (1− v2)3/2

[
cos ζ cos ν Er + cos ζ sin ν E⊥ + sin ζ E

]
,

ζ̇ = Aζ := v Fgζ +
(1− v2)1/2

v

[
sin ζ cos ν Er + sin ζ sin ν E⊥ − cos ζ E

]
,

ν̇ =
v Fgν
cos ζ

+
(1− v2)1/2

v cos ζ

[
sin ν Er − cos ν E⊥ −

1

ε
v b cos ζ

]
,

where Fgζ and Fgν are geometrical coefficients given by

Fgζ (r, ζ, θ, ν) := ω′(r) cos ζ cos ν sin ν

− 1

r
sinω cos ν

(
cosω cos ζ sin ν + sinω sin ζ

)
− 1

R

(
cos θ cosω cos ν − sin θ sin ν

) (
− sinω cos ζ sin ν + cosω sin ζ

)
.
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Fgν (r, θ, ζ, ν) := −ω′(r) cos ζ (cos ν)2 sin ζ

− 1

r
(cosω sin ν cos ζ + sinω sin ζ) (sinω sin ν sin ζ + cosω cos ζ)

− 1

R
(− sinω cos ζ sin ν + cosω sin ζ) (cosω cos θ sin ν + sin θ cos ν) sin ζ

+
1

R
(− sinω cos ζ sin ν + cosω sin ζ) cos ζ sinω cos θ .

Note that the right hand sides of (2.12) are not defined when v = 0 or when ζ ∈ {−π/2,+π/2}.
For this reason, at time t = 0, we start with t(v, ζ, ν)(0) = t(v0, ζ0, ν0) satisfying

(2.13) 0 < v0 < 1 , ζ0 6∈ {−π/2,+π/2} .
The system (2.12) involves all components Er, E⊥ and E of the electric field E. The effects on
the motion of these components are interpreted in [19, Sections 2.5, 2.6, 3.9]. In particular:

• The perpendicular component E⊥ takes part in the so called E × B drift which may
induce small displacements in perpendicular directions to both fields E and B ;
• The parallel component E lies in the magnetic surface. It can be responsible for the

acceleration or deceleration of particles along the magnetic field.

Proof. We introduce first the auxilliary orthonomal basis (e1
v, e

2
v, e

3
v) such that e1

v ∧ e2
v = e3

v and
built with

e1
v := + cos ζ cos ν er + cos ζ sin ν e⊥ + sin ζ e ,

e2
v := − sin ζ cos ν er − sin ζ sin ν e⊥ + cos ζ e ,

e3
v := − sin ν er + cos ν e⊥ .

We can also express (er, e⊥, e ) in terms of this new basis:

er := cos ζ cos ν e1
v − sin ζ cos ν e2

v − sin ν e3
v ,

e⊥ := cos ζ sin ν e1
v − sin ζ sin ν e2

v + cos ν e3
v ,

e := sin ζ e1
v + cos ζ e2

v .

By construction, we have v = v e1
v which can be used to compute the second equation of (1.1) in

terms of r, θ, φ, v, ζ and ν. To this end, we can exploit the three following intermediate formulas:

(1) The first one is

v̇ = v̇ e1
v + v ζ̇ e2

v + v cos ζ ν̇ e3
v + v cos ζ (θ̇ cosω − φ̇ sinω cos θ) e3

v

+ v (θ̇ sinω + φ̇ cosω cos θ) (− sin ζ er + cos ζ cos ν e )

+ v
(
ṙ ω′(r) + φ̇ sin θ

)
(sin ζ e⊥ − cos ζ sin ν e ) .

(2) The second is(
cos ν − sin ν
sin ν + cos ν

)(
− sin ζ er + cos ζ cos ν e
+ sin ζ e⊥ − cos ζ sin ν e

)
=

(
1 0
0 sin ζ

)(
e2
v

e3
v

)
.

(3) The third is

B(X) ∧ V = − v b(r, θ) cos ζ e3
v .

By combining (1) and (2), we get

v̇ = v̇ e1
v + v ζ̇ e2

v + v cos ζ ν̇ e3
v + v cos ζ (θ̇ cosω − φ̇ sinω cos θ) e3

v

+ v (θ̇ sinω + φ̇ cosω cos θ) sin ν sin ζ e3
v + v

(
ṙ ω′(r) + φ̇ sin θ

)
cos ν sin ζ e3

v

+ v (θ̇ sinω + φ̇ cosω cos θ) cos ν e2
v − v

(
ṙ ω′(r) + φ̇ sin θ

)
sin ν e2

v .

This allow us to write the second equation of (1.1) in the basis (e1
v, e

2
v, e

3
v) according to

0 = (1− v2)−1/2 v̇ + E − (v · E) v +
1

ε
v ∧B

=
[
(1− v2)−1/2 v̇ + (1− v2) (cos ζ cos ν Er + cos ζ sin ν E⊥ + sin ζ E )

]
e1
v
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+
[
(1− v2)−1/2 v ζ̇ + (1− v2)−1/2 v (θ̇ sinω + φ̇ cosω cos θ) cos ν

− (1−v2)−1/2 v
(
ṙ ω′(r)+ φ̇ sin θ

)
sin ν− sin ζ cos ν Er− sin ζ sin ν E⊥+cos ζ E

]
e2
v

+
[
(1− v2)−1/2 v cos ζ ν̇ + (1− v2)−1/2 v (θ̇ sinω + φ̇ cosω cos θ) sin ν sin ζ

+ (1− v2)−1/2 v
(
ṙ ω′(r) + φ̇ sin θ

)
cos ν sin ζ

+ (1−v2)−1/2 v cos ζ (θ̇ cosω− φ̇ sinω cos θ)− sin ν Er+cos ν E⊥+
1

ε
v b cos ζ

]
e3
v .

As (e1
v, e

2
v, e

3
v) is a basis, all components must be zero. The one in factor of e1

v leads to the first

equation of (2.12). Those in factor of e2
v and e3

v, after replacing the time derivatives of ṙ, θ̇, φ̇ as
in (2.9) and (2.10), give rise respectively to the second and third equation of (2.12). �

To absorb the large factor ε−1 in the last equation of (2.12), we perform now a sort of filtering
method. Recall that we have decomposed the velocity in spherical coordinates where v as well
as ζ are intended to be slow scales whereas ν ∈ T is a fast one. This implies that it is natural
to seek ν in the form ν = ε−1υ with, at time t = 0, the condition υ(0) = ε ν0. Then, comparing
this to the third equation in (2.12), we get

(2.14) υ̇ = V0(r, θ, v) + εV1(r, θ, v, ζ, ν) , υ(0) = ε ν0 ,

where the two source terms V0 and V1 are given by

V0(r, θ, v) := − (1− v2)1/2 b(r, θ) < 0 ,(2.15)

V1(r, θ, v, ζ, ν) := v (cos ζ)−1Fgν + v−1 (cos ζ)−1 (1− v2)1/2
[

sin ν Er − cos ν E⊥
]
.(2.16)

The right hand sides of (2.9) and (2.12) do not depend on φ. Thus, we can put φ aside. The
strategy to solve (1.1) is to focus on (2.9)-(2.12), and then (ultimately) to consider (2.10) to
recover φ. By construction, the system (2.9)-(2.12) amounts to the same thing as (1.3) with

(2.17) --z := t(r, θ, v, ζ) , A := t(Ar,Aθ,Av,Aζ) , υ := ε ν , V := V0 + ε V1 , ν0 = εν0 .

At time t = 0, we start with --z(0) = z0 := t(r0, θ0, v0, ζ0) where

(2.18) 0 < r0 < a < R0 , 0 ≤ θ0 < 2π , 0 < v0 < 1 , −π
2
< ζ0 <

π

2
.

The nonlinear source term t(A,V)(ε; z; ν) satisfies (1.4) and (1.5). In particular, it is periodic
of period 2π with respect to the last variable ν. The Cauchy-Lipschitz theorem guarantees the
existence of unique local solution to (1.3). Since both A and V are bounded for --z in a compact
set and ν ∈ T, the lifespan Tε is such that Tε ≥ T for some T > 0.

3. Work of preparation

We consider here the average flow (in the sense of Definition 1.1) which is associated with
the system (1.3) on r, θ, v and ζ derived from (1.1). Thus, with –Z = t(–Zr, –Zθ, –Zv, –Zζ) and

A = t(Ar,Aθ,Av,Aζ), we look at the flow generated by (1.7). In Subsection 3.1, its structure
is made explicit. In Subsection 3.2, its periodic properties (which are essential to eliminate
problems of secular growth) are investigated.

3.1. Structure of the average flow. In Subsection 3.1.1, we detail the content of (1.7) for
the realistic data issued from (2.9) and (2.12). In Subsection 3.1.2, we exhibit two invariant
quantities. In Subsection 3.1.3, this information is exploited to show that the lifespan associated
with (1.7) is infinite. Finally, in Subsection 3.1.4, we come back to the parallel case.
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3.1.1. Equations for the average flow. The first step is to clarify the structure of (1.7).

Lemma 3.1 (The system of odes in ]0, a[×T×]0, 1[×]−π/2, π/2[ satisfied by the average flow).
We find that

(3.1)
d–Zr
dt

= 0 , –Zr(0) = r0 .

For the remaining components, we obtain the following system of coupled equations

(3.2)



d–Zθ
dt

= + r−1
0 sinω(r0) –Zv sin –Zζ , –Zθ(z0; 0) = θ0 ,

d–Zv

dt
= − (1− –Z2

v)3/2 sin –Zζ E (r0, –Zθ) , –Zv(z0; 0) = v0 ,

d–Zζ
dt

= − –Zv

(
2R(r0, –Zθ)

)−1
sinω(r0) sin –Zθ cos –Zζ

− –Z−1
v (1− –Z2

v)1/2 cos –Zζ E (r0, –Zθ) , –Zζ(z0; 0) = ζ0 .

From (3.1), we know that –Zr(t) = r0 for all t ∈ R. In comparison with (2.12), observe that both
components Er and E⊥ have disappeared from (3.2).

Proof. We have Ar = 0 so that (3.1) is obvious. By formula (1.6), we can see that

/ The mean value of Aθ is

Aθ(z) =
1

2π

∫ 2π

0

v

r0

[
cos ζ sin ν cosω(r0) + sin ζ sinω(r0)

]
dν

= r−1
0 v sin ζ sinω(r0).

/ The mean value of Av is

Av(z) =
1

2π

∫ 2π

0
−(1− v2)3/2

[
cos ζ cos ν Er + cos ζ sin ν E⊥ + sin ζ E||

]
dν

= −(1− v2)3/2 sin ζ E||(r0, θ).

/ The mean value of Aζ is

Āζ(z) =
1

2π

∫ 2π

0

[
vFgζ + v−1 (1− v2)1/2 (sin ζ cos ν Er + sin ζ sin ν E⊥ − cos ζ E )

]
dν

= −v−1 (1− v2)1/2 cos ζ E − 1

2π

v

R
sin θ cos ζ sinω

∫ 2π

0

1 + cos 2ν

2
dν

= −v−1 (1− v2)1/2 cos ζ E (r0, θ)−
v

2R(r0, θ)
sin θ cos ζ sinω(r0).

It is now clear that (1.7) implies (3.2). �

3.1.2. Two invariant quantities. With Φ as in (2.7), define

H1(r0; θ, v, ζ) := v (1− v2)−1/2 (R0 + r0 cos θ)1/2 cos ζ ,(3.3)

H2(r0; θ, v, ζ) ≡ H2(r0; θ, v) := Φ(r0, θ) + (1− v2)−1/2 .(3.4)

Lemma 3.2 (Constants of motion). For all r0 ∈ R∗+, the two functions H1(r0; ·) and H2(r0; ·)
given by (3.3) and (3.4) are constant along the trajectories induced by (3.2), in the sense that

(3.5)
d

dt

[
Hi(r0; –Zθ, –Zv, –Zζ)

]
= 0 , ∀ i ∈ {1, 2} .

14



Proof. Compute

(3.6)

∂θH1(r0; θ, v, ζ) = −1

2
r0 v (1− v2)−1/2 R(r0, θ)

−1/2 sin θ cos ζ,

∂vH1(r0; θ, v, ζ) =
√
R(r0, θ) cos ζ [(1− v2)−1/2 + v2(1− v2)−3/2],

∂ζH1(r0; θ, v, ζ) = −v (1− v2)−1/2
√
R(r0, θ) sin ζ ,

∂θH2(r0; θ, v) = r0

(
sinω(r0)

)−1
E||(r0, θ) = ∂θΦ(r0, θ),

∂vH2(r0; θ, v) = v (1− v2)−3/2.

We derive now the two function H1 and H2 with respect to time to get

(3.7)

d

dt
H1(r0; –Zθ, –Zv, –Zζ) = ∂θH1(r0; –Zθ, –Zv, –Zζ)

d–Zθ
dt

+ ∂vH1(r0; –Zθ, –Zv, –Zζ)
d–Zv

dt

+ ∂ζH1(r0; –Zθ, –Zv, –Zζ)
d–Zζ
dt

,

d

dt
H2(r0; –Zθ, –Zv) = ∂θH2(r0; –Zθ, –Zv)

d–Zθ
dt

+ ∂vH2(r0; –Zθ, –Zv)
d–Zv

dt
.

Substitute in (3.7) the terms d–Zθ/dt, d–Zv/dt and d–Zζ/dt as indicated in (3.2) as well as the
partial derivatives of H? as indicated in (3.6) to get that (3.5) holds true. �

In general (at least when ζ 6= 0), the level surfaces of H1 and H2 intersect transversally in the
three dimensional space T×]0, 1[×T to define curves which correspond to integral curves of (3.2).

3.1.3. Study of the lifespan. The conservation of H1 and H2 allows to extract the following
interesting information.

Lemma 3.3 (Infinite lifespan). Fix any r0 ∈]0, a]. Then, for all (θ0, v0, ζ0) satisfying (2.18),
the solution to the nonlinear system (3.2) exists for all times t ∈ R.

Proof. We denote by S(z0) ∈ R∗+ ∪ {+∞} the lifespan associated with (3.2). From (3.5) with
i = 2, we can deduce that

(3.8)
(
1− –Zv(t)2

)−1/2
= − r0

sinω(r0)

∫ –Zθ(t)

θ0

E (r0, θ̃) dθ̃ + (1− v2
0)−1/2 .

The function E (r0, ·) is a periodic function with mean value equal to zero. Define

−∞ < m(r0) := min
–Zθ∈R

∫ –Zθ

0
E (r0, θ̃) dθ̃ ≤ 0 , 0 ≤M(r0) := max

–Zθ∈R

∫ –Zθ

0
E (r0, θ̃) dθ̃ < +∞ .

Recall that ω(r0) ∈]− π/2, 0[ so that sinω(r0) < 0. We see that

∀t ∈ [0, S(z0)[,
(
1− –Zv(t)2

)−1/2 ≤ − r0

sinω(r0)
M(r0) + (1− v2

0)−1/2 .

This implies that

(3.9) ∃ η1 ∈]0, 1[ ; ∀t ∈ [0, S(z0)[, –Zv(t) ≤ 1− η1.

From (3.5) with i = 1, we can infer that

–Zv = v0
(1− –Z2

v)1/2

(1− v2
0)1/2

(R0 + r0 cos θ0)1/2

(R0 + r0 cos –Zθ)1/2

cos ζ0

cos –Zζ

≥ v0

√
η

1

(1− v2
0)1/2

(R0 + r0 cos θ0)1/2

(R0 + r0)1/2
cos ζ0 > 0.

By this way, we get

(3.10) ∃ η2 ∈]0, 1[ ; ∀t ∈ [0, S(z0)[, η2 ≤ –Zv(t).
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But we can also assert that

cos –Zζ = v0
(1− –Z2

v)1/2

(1− v2
0)1/2

(R0 + r0 cos θ0)1/2

(R0 + r0 cos –Zθ)1/2

cos ζ0

–Zv

≥ v0

√
η

1

(1− v2
0)1/2

(R0 + r0 cos θ0)1/2

(R0 + r0)1/2
cos ζ0 > 0 ,

which means that

(3.11) ∃ η3 ∈]0, 1[ ; ∀t ∈ [0, S(z0)[, −π
2

+ η3 ≤ –Zζ(t) ≤
π

2
− η3.

Thus, the flow remains in a compact set of T×]0, 1[×] − π/2, π/2[. By extension theorem, this
implies that S(z0) = +∞. �

In view of (2.8), we have

v · e‖ = v sin ζ = v cos(π/2− ζ) .

Thus, the real number π/2 − ζ ∈]0, π[ represents the angle between the direction v and the
magnetic field B. The endpoints ζ = −π/2 and ζ = π/2 correspond respectively to antiparallel
and parallel situations.

3.1.4. Solving the average flow in the parallel case. As already observed, the system (2.12) is not
meaningful when cos ζ = 0. By contrast, the right hand sides of (3.2) are defined and smooth
with respect to –Zζ without any restriction on –Zζ . By continuity, any (local or global if it does
exist) solution to (3.2) issued from ζ0 = −π/2 or ζ0 = π/2 tells us what happens (approximately)
when cos ζ0 > 0 is small. We work with ζ0 = π/2, the other case ζ0 = −π/2 being very similar.
In the limiting case ζ0 = π/2, we find that –Zζ(t) = π/2 for all time t, and we have just to solve

(3.12)


d–Zθ
dt

= + r−1
0

–Zv sinω(r0) , –Zθ(z0; 0) = θ0 ,

d–Zv

dt
= − (1− –Z2

v)3/2 E (r0, –Zθ) , –Zv(z0; 0) = v0 .

The functional H1 (which is zero) does not help. On the other hand, the conservation of H2

yields (3.9) as before. To simplify, let us assume that

− r0m(r0)

sinω(r0)
+ (1− v2

0)−1/2 > 1 .

Using (3.8), this ensures that –Zv > 0 remains away from zero. As a consequence, we have

∃η4 > 0 ; ∀ t ∈ R+ ,
d–Zθ
dt
≤ −η4 < 0 .

Define T := inf
{
t ∈ R∗+ ; –Zθ(t) = θ0 − 2π

}
. From (3.8), we see that –Zv(T ) = v0. Thus, at the

time T , we return to the same initial data as in (3.12). The solution of (3.12) viewed in T×]0, 1[
is therefore periodic of period T ∈ R∗+. This brief discussion suggests that (3.2) could generate
similar periodic features. The next subsection checks this point.

3.2. Periodic properties of the average flow. We start with initial data as in (2.18). The
next step is to show that (3.2) is made of a family of Hamiltonian subsystems sharing the same
simplified form, namely (3.23). This is achieved in Paragraph 3.2.1 after a series of change
of variables. In the resulting Hamiltonian subsystems, as observed in Paragraph 3.2.2, we
can decompose the phase space into the union of distinct subsets leading to different types of
motion: libration, rotation or convergence to a fixed point (separatrices). In the two first cases,
we can construct action-angle variables. In Paragraph 3.2.3, we select a domain Ω that avoids
the separatrix region. We observe that the flow issued from positions inside Ω is periodic. In
Paragraph 3.2.3, we exhibit extra almost periodic features.
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3.2.1. Foliation by Hamiltonian subsystems. Define

fv : ]0, 1[ −→ ]1,+∞[
–Zv 7−→ (1− –Z2

v)−1/2 ,

fζ : ]− π/2, π/2[ −→ R
–Zζ 7−→

√
2 sgn –Zζ (− ln cos –Zζ)

1/2 .

It is clear that fv :]0, 1[→]1,+∞[ is one-to-one. The case of fζ is examined below.

Lemma 3.4 (About fζ). The function fζ :]− π/2, π/2[−→ R is a smooth diffeomorphic map.

Proof. Due to the factor sgn –Zζ , remark that fζ(–Zζ) ∼ –Zζ near –Zζ = 0. This indicates that fζ
should be a local diffeomorphism near –Zζ = 0. For a global argument, consider the function

G : ]− π/2, π/2[ −→ R+

–Zζ 7−→ − ln cos –Zζ .

Observe that G(0) = G′(0) = 0. On the other hand G′′(–Zζ) = (cos –Zζ)
−2. The integral version

of Taylor’s theorem yields

2 G(–Zζ) = − 2 ln cos –Zζ = –Z2
ζ g(–Zζ) , g(–Zζ) := 2

∫ 1

0
(1− s)

(
cos(–Zζs)

)−2
ds .

Remark that g(·) is a smooth positive even function on the interval ]−π/2, π/2[, which is strictly
increasing on [0, π/2[ and such that g(0) = 1. This implies that –Zζ 7−→ –Zζ

√
g(–Zζ) ≡ fζ(–Zζ)

is well-defined, smooth and odd. It has a positive derivative, and it tends to ±∞ when –Zζ goes
to ±π/2. Therefore, it gives rise to a diffeomorphism from ]− π/2, π/2[ onto R. �

To elucidate the internal structure of (3.2), the fist step is to replace the state variable –Z by
Z = t(Zr,Zθ,Zv,Zζ) = f(–Z) where f is the diffeomorphic map

(3.13)
f : ]0, a]× T×]0, 1[×]− π/2, π/2[ −→ ]0, a]× T×]1,+∞[×R

(–Zr, –Zθ, –Zv, –Zζ) 7−→
(

–Zr, –Zθ,fv(–Zv),fζ(–Zζ)
)
.

By convention, we can set fr(–Zr) := –Zr and fθ(–Zθ) := –Zθ. The second step is to change the
time variable t. To this end, introduce

f : ]− π/2, π/2[ −→ R∗+
–Zζ 7−→ f′ζ(–Zζ) cos –Zζ .

By differentiating the identity fζ(–Zζ)
2 = − 2 ln cos –Zζ , we can deduce the extra relation

(3.14) ∀ –Zζ ∈ ]− π/2, π/2[ , sin –Zζ = f(–Zζ) fζ(–Zζ) .

We now follow the evolution of –Z(z0; ·) in terms of the new state variable Z and also according
to some adapted internal clock associated with the new time variable

(3.15) t(z0; t) :=
sinω(r0)

r0

∫ t

0

–Zv(z0; t̃) f ◦ –Zζ(z0; t̃) dt̃ .

Recall that sinω(r0) < 0. Due to (3.9), (3.10) and (3.11), we have

(3.16) ∃ (η5, η6) ∈ R2 ; 0 < η5 ≤ −
dt

dt
≤ η6 .

Thus, we can change the time variable t ∈ R into t ∈ R (with a one-to-one global correspondence).
Let t(z0; ·) be the inverse function of t(z0; ·). We can define

(3.17) Z(z0; t) := f ◦ –Z
(
z0; t(z0; t)

)
.

Lemma 3.5 (The system of odes in ]0, a[×T×]1,+∞[×R satisfied by Z(z0; ·)). Starting from
(r0, θ0, v0, ζ0) as in (2.18), define

Z0 ≡ Z0(z0) = (Z0r,Z0θ,Z0v,Z0ζ)(z0) :=
(
r0, θ0,fv(v0),fζ(ζ0)

)
.

We find that

(3.18)
dZr
dt

= 0 , Zr(0) = Z0r .
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On the other hand, the system (3.2) is equivalent to

(3.19)



dZθ
dt

= +Zζ , Zθ(0) = Z0θ ,

dZv

dt
= − ∂θΦ(r0,Zθ) Zζ , Zv(0) = Z0v ,

dZζ
dt

= − r0 sinZθ
2R(r0,Zθ)

− Zv

Z2
v − 1

∂θΦ(r0,Zθ) , Zζ(0) = Z0ζ .

From (3.18), we know that Zr(t) = r0 for all t ∈ R.

Proof. The line (3.18) is straightforward. In view of (3.2) and (3.15), the first equation of (3.19)
is satisfied if and only if

dZθ
dt

=
dt

dt

d–Zθ
dt

=
sin –Zζ
f ◦ –Zζ

= Zζ = fζ(–Zζ)

which is guaranteed by (3.14). The second equation of (3.19) comes from

dZv

dt
=
dt

dt
f′v(–Zv)

d–Zv

dt
= − r0

sinω(r0)

sin –Zζ
f ◦ –Zζ

E (r0,Zθ)

together with (2.7) and (3.14). The last equation of (3.19) can be obtained by following the
same lines of computations. �

From (3.9), (3.10) and (3.11), we know that Z remains in a compact set of R× T×]1,+∞[×R.
On the other hand, the invariant functionals H1(r0; ·) and H2(r0; ·) can be expressed in terms
of Z. They simply become

H1(Z) := (Z2
v − 1)1/2 (R0 + Zr cosZθ)1/2 e−Z

2
ζ /2 , H2(Z) := Φ(Zr,Zθ) + Zv .

Of course, the relation (3.5) becomes

(3.20)
d

dt

[
Hi(Z)

]
= 0 , ∀ i ∈ {1, 2} .

The information (3.20) for i = 2 is particularly interesting. Starting from the initial data Z0

having (second) energy H20 := Φ(Z0r,Z0θ) + Z0v, we can compute the component Zv(t) as a
function of Zθ(t) according to

(3.21) Zv(t) = Fr0,H20

(
Zθ(t)

)
, Fr0,H20(Zθ) := H20 − Φ(r0,Zθ) .

Consider the two-dimensional manifold

Er0,H20 :=
{
Z ∈]0, a]× T×]1,+∞[×R ; Zr = r0 , Φ(r0,Zθ) + Zv = H20

}
.

This surface may be parametrized by q ≡ Zθ and p ≡ Zζ in the following way

Er0,H20 :=
{
PFr0,H20(q, p) ; q ∈ T , p ∈ R

}
, PFr0,H20(q, p) :=

(
r0, q,Fr0,H20(q), p

)
.

Now, starting from any position PFr0,H20(q0, p0) inside Er0,H20 , which is associated with the
choice of some (q0, p0), we can use (3.21) instead of the equation on Zv to compute Zv(t). As a
consequence, limited to Er0,H20 , the third equation of (3.19) implies a right hand side that can
be viewed as minus the derivative with respect to Zθ of the function

(3.22) Kr0,H20(Zθ) := −1

2
ln (R0 + r0 cosZθ)−

1

2
ln
(
Fr0,H20(Zθ)2 − 1

)
.

By this way, we have extracted from (3.19) a two-dimensional systems in T× R looking like

(3.23)


dq

dt
= + p , q(0) = q0 ,

dp

dt
= − ∂qKr0,H20(q) , p(0) = p0 .
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In so doing, we have highlighted a foliation of the dynamics generated by (3.18)-(3.19) by self-
contained subsystems (which are indexed by r0 and H20) on (q, p) := (Zθ,Zζ), where p is the
conjugate variable of q. For the sake of simplicity, we will sometimes skip the two indices r0 and
H20, and simply use K ≡ Kr0,H20 .

The reduced equations (3.23) describe the motion of a body of mass 1 subject to a conservative
potential energy K. The Hamiltonian is given by H(q, p) := (p2/2) + K(q). Since K(·) is a
periodic function of period 2π, the system (3.23) is of pendulum type.

3.2.2. Reminders about the pendulum. The system (3.23) on T × R is well known in classical
dynamics. When K(q) = cos q, this is just the simple pendulum which is addressed in detail in
[4]. The more general case, when K is for instance as in (3.22), is discussed in the lecture notes
of M.V.N. Murthy or in [18]. For general potentials K, we cannot solve (3.23) explicitly. But
still we can explore its properties. In this paragraph, we highlight particulars that are needed
for the subsequent discussion.

Definition 3.6 (Critical value). A critical value (sometimes called critical energy) is a number
Ecrit such that Ecrit = K(q) for some q satisfying ∂qK(q) = 0.

The set of critical values is denoted by

C :=
{
Ecrit ∈ R ; ∃q ∈ T such that ∂qK(q) = 0 and K(q) = Ecrit

}
.

The set C ⊂ T is compact with #C ≥ 1. By Sard’s lemma, it is of measure zero. For the sake of
simplicity, let us first recall what happens when C is finite of cardinal m, that is when

C =
{
E1
crit, · · · , Emcrit

}
, E1

crit < · · · < Emcrit .

Then, there is a partition of the phase space into T×R = L∪R∪S corresponding to the distinct
types of motion indicated below:

• The region of libration motion: .

L := ∪m−1
j=0 L

j , Lj :=
{

(q, p) ∈ T× R ; Ejcrit < H(q, p) < Ej+1
crit

}
.

The particles issued from some (q0, p0) ∈ L are trapped. Define H0 := H(p0, q0). Identify
the two turning points q1 and q2 associated to the energy level H0, which are the largest
q1 and the smallest q2 satisfying q1 ≤ q ≤ q2 together with K(q1) = K(q2) = H0. Then,
the solution (q, p)(·) is periodic of period

(3.24) 0 < P ≡ P(H0) ≡ P(z0) :=

∫ q2

q1

√
2√

H0 −K(q)
dq .

Physically, the particles are bouncing back and forth between two poloidal angles θ1 ≡ q1

and θ2 ≡ q2. They explore only a part of the torus (in the θ-variable).
• The region of rotation motion:

R ≡ Lm :=
{

(q, p) ∈ T× R ; H(q, p) > Emcrit
}
.

The particles issued from some (q0, p0) ∈ R are passing. They are in transit in q with
momentum p not changing sign. This corresponds to high levels of energy H, with ∂tq
of fixed sign. The position q(t) is going to ±∞ when t → ±∞ according to the sign ±
of p0. Select some (q0, p0) ∈ R. Then, viewed on T×R, the motion is periodic of period

(3.25) 0 < P ≡ P(H0) ≡ P(z0) :=
1√
2

∫ 2π

0

1√
H0 −K(q)

dq .

• The separatrix region:

S := ∪mj=1 Sj , Sj :=
{

(q, p) ∈ T× R ; H(q, p) = Ejcrit
}
.

The particles issued from some (q0, p0) ∈ S are converging to a fixed point. The level
sets Sj of H may be viewed as boundaries which separate the preceding different types
of trajectories (having distinct homotopy classes).
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When the cardinal of C is infinite, by extension, we can still define the (closed) separatrix region
S := H−1(C) ⊂ T × R and the (open) rotation region R :=

{
(q, p) ∈ T × R ; H(q, p) > sup C

}
.

The complement set of S ∪R is the (open) libration region L.

The phase portrait of the simple pendulum is represented below. We find that C = {−1, 1} so
that m = 2. The region of libration motion contains the closed trajectories (homeomorphic to
circles with nonzero radius) which are drawn inside the two red curves. The region of rotation
motion contains the trajectories which are outside the red curves. The separatrix region is
represented by the two red curves plus a (non visible) equilibrium position placed at (π, 0).

Figure 3. The phase portrait when K(q) = cos q

Inside L or R, we can use a canonical transformation to action-angle variables (I,Θ). The new
Hamiltonian is denoted by W . It is independent of Θ. Thus, it suffices to solve

(3.26)

{
∂tI = 0 , I(0) = I0 ,
∂tΘ = ∂IW (I) , Θ(0) = Θ0 .

The solution to this Cauchy problem is globally defined. It is simply

(3.27) (I,Θ)(I0,Θ0; t) =
(
I0,Θ0 + ∂IW (I0) t

)
, 0 < ∂IW (I0) = 2π/P, t ∈ R .

To normalize the period of the solution, we can change the time variable t (or t) into s through

(3.28) s ≡ s(z0; t) := ∂IW (I0) t(z0; t) .

Indeed, expressed in terms of s, the flow associated to (3.26) just becomes

(I,Θ)(I0,Θ0; s) = (I0,Θ0 + s), s ∈ R ,

which is a uniform translation.

3.2.3. Periodic properties away from separatrices. In the present situation, the potential K does
depend on (r0,H20), or more generally on z0. The same applies to the corresponding separatrix
region Sr0,H20 , the period P ≡ P(z0), the construction of W ≡ W (z0), and so on · · · , including
the passage from t to s. Look at

(3.29)
S :=

{
PFr0,H20(Sr0,H20) ; r0 ∈]0, a] , H20 ≥ inf Φ(r0, ·) + 1

}
⊂]0, a]× T×]1,+∞[×R .

We want to avoid the positions which emerge from S because they involve qualitatively different
behaviors. What happens in the proximity of S is complicated. On the other hand, we can
select in the phase space any bounded connected open domain D (made of libration or rotation)
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such that D̄ ∩ S = ∅. The open set Ω of Theorem 1.8 is just the pullback of such domain D in
the original phase space variables (x, v). In other words

(3.30)
Ω :=

{
(x, v) ∈ R3 × R3 ; ∃ (r, θ, φ, v, ζ, ν) ∈]0, a[×T2×]0, 1[×T2 ;

f(r, θ, v, ζ) ∈ D , (x, v) =
(
X(r, θ, φ), V (r, θ, φ, v, ζ, ν)

)}
.

Lemma 3.7 (Periodic behaviors of the average flow). Select z0 ∈ f−1(D). The average flow
issued from such z0, when it is interpreted in the time variable s, is periodic in s with period 2π.
On the other hand

(3.31) ∃ ! �(z0) ∈ R∗+ ; t
(
z0;−�(z0)

)
= −P(z0) ,

and the flow –Z(z0, ·) is periodic in t of period �(z0).

Proof. Taking into account (3.15) and (3.27), looking at –Z(z0, ·) in terms of the time variable s
means to consider the function

(3.32) s 7−→ –Z
(
z0; t

(
z0;P(z0) s/2π

))
= f−1 ◦ Z

(
z0;P(z0) s/2π

)
.

The periodicity for the component –Zr(z0, ·) is obvious because this function is simply constant.
On the other hand, our study of the reduced system (3.23) has revealed that (Zθ,Zζ)(z0, ·) is
periodic in t with a period P(z0) given by (3.24) or (3.25). Exploiting (3.19), this implies for
the remaining component Zv that

Zv(t + P) = Zv(t)−
∫ t+P

t
∂θΦ

(
r0,Zθ(s)

)
Zζ(s) ds = Zv(t)−

∫ P
0
∂θΦ

(
r0,Zθ(s)

) dZθ
ds

(s) ds

= Zv(t)−
∫ Zθ(P)

θ0

∂θΦ(r0, θ) dθ = Zv(t) + Φ(r0, θ0)− Φ
(
r0,Zθ(P)

)
= Zv(t) .

This clearly means that Zv(z0, ·), and therefore the field Z(z0, ·) as a whole, is periodic in t of
period P ≡ P(z0). This period for Z(z0, ·) becomes 2π at the level of the map (3.32).

It is now a matter of transferring this periodic information on Z to –Z. By construction, we have
t(z0; 0) = 0, and the condition (3.16) ensures that (3.31) is satisfied by a unique �(z0) ∈ R∗+.
Then, using (3.17), we can assert that

–Z
(
z0;−�(z0)

)
= f−1 ◦ Z

(
z0;−P(z0)

)
= f−1 ◦ Z(z0; 0) = –Z(z0; 0) .

This means that –Z(z0; ·) is coming back to the initial condition –Z(z0; 0) at the time t = −�(z0).
By Cauchy-Lipschitz theorem, the flow –Z(z0; ·) is periodic of period �(z0). �

3.2.4. Linear growths plus periodic oscillations. Given a periodic function F of period �, we can
decompose F into a mean part 〈F〉� plus a contribution F∗ with zero mean according to

(3.33) F(t) = 〈F〉� + F∗(t) , 〈F〉� :=
1

�

∫ �

0
F(t) dt ,

∫ �

0
F∗(t) dt = 0 .

With this convention, we have 〈F〉2π ≡ F̄, where the operator F̄ is as in (1.6). Moreover

(3.34)

∫ t

0
F(s) ds = 〈F〉� t+ IF∗(t) , IF∗(t) :=

∫ t

0
F∗(s) ds = IF∗(t+ �) ,

where the exponent ∗ serves to highlight the periodicity. The above integration of F reveals a
linear part (which is non-trivial as soon as 〈F〉� 6= 0) plus a periodic contribution. This principle
applies to certain quantities that have been exhibited before. For instance, it allows to further
investigate the change of time variable s(z0; ·) introduced at the level of (3.28).

Lemma 3.8. [Link between t and s] For all time t ∈ R, with s(z0; ·) as in (3.28), we have

(3.35) s ≡ s(z0; t) =
2πt

�(z0)
+ s∗

(
z0;

2πt

�(z0)

)
, s∗(z0; t+ 2π) = s∗(z0; t) .
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Proof. We can apply (3.34) to the product (–Zv f ◦ –Zζ)(z0; t) which, in view of Lemma 3.7, is
periodic of period �(z0). This furnishes

t(z0; t) :=
sinω(r0)

r0

[〈
(–Zv f ◦ –Zζ)(z0; ·)

〉
�(z0)

t+ I
(

–Zv f ◦ –Zζ)(z0; ·)
)∗

(t)
]
,

with from Lemma 3.7

〈(–Zv f ◦ –Zζ)(z0; ·)〉�(z0) =
1

�(z0)

∫ �(z0)

0
(–Zv f ◦ –Zζ)(z0; t) dt =

1

�(z0)

∫ 0

−�(z0)
(–Zv f ◦ –Zζ)(z0; t) dt

= − 1

�(z0)

r0

sinω(r0)
t
(
z0;−�(z0)

)
=

P(z0) r0

�(z0) sinω(r0)
.

Coming back to (3.28), we find (3.35) with

s∗(z0; t) =
2π

P(z0)

sinω(r0)

r0
I
(

–Zv f ◦ –Zζ)(z0; ·)
)∗(�(z0) t

2π

)
,

which is indeed periodic of period 2π. �

The two physical quantities φ (toroidal angle) and υ (slow gyromotion of the polar angle ν
associated with the velocity v) have been put aside respectively at the level of Lemma 2.2 and
inside the system (1.3). For the sake of completeness, we indicate below their approximate
behavior. Looking at (2.10) and (2.14), neglecting the impact of sin ν (due to the cancellations
induced by the rapid oscillations) and the O(ε)-term, it is expected that φ ∼ φ̄ and υ ∼ ῡ with
φ̄ and ῡ subject to

dφ̄

dt
= Aφ(–Z) = R(–Zr, –Zθ)

−1 –Zv cosω(–Zr) sin –Zζ , φ̄(0) = φ0 ,

dῡ

dt
= V0(–Z) = −

√
1− –Z2

v b(–Zr, –Zθ) , ῡ(0) = 0 .

It is worth noting that neither φ̄ nor ῡ are periodic. Instead, applying again (3.34), we find

φ̄(t) =
〈
Aφ ◦ –Z(z0; ·)

〉
�(z0)

t+ I
(
Aφ ◦ –Z(z0; ·)

)∗
(t) ,

ῡ(t) =
〈
V0 ◦ –Z(z0; ·)

〉
�(z0)

t+ I
(
V0 ◦ –Z(z0; ·)

)∗
(t) ,

where the coefficients in factor of t are (in general) non zero. These expressions are composed
with cos or sin at the level of (2.4) and (2.8). As a consequence, even at a rough level of
description, the complete flow associated with (1.1) inherits almost periodic (and not only purely
periodic) features.

4. Applications

Subsection 4.1 shows that the description of (1.2) falls within the scope of [11] in the case
of the realistic data that we have introduced. Subsection 4.2 describes the coherent structures
underlying the flow issued from (1.2) with, at the end (Paragraph 4.2.4) the proof of Theorem
1.8. Subsection 4.3 exhibits and studies the long time gyrokinetic equations in order to draw
out some implications.

4.1. A manageable framework. We want to apply the results of the article [11]. To this end,
in Paragraph 4.1.1, we explain how to get a system of nonlinear differential equations which is
consistent with the one presented in [11]. Then, in Paragraph 4.1.2, we check that Conditions
1.4 and 1.5 (required in [11] to apply Theorem 3 and 4 there) are satisfied.
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4.1.1. A singular system of odes with multiscale periodic features. Like t(z0; ·), the change of
time variable s(z0; ·) : R → R introduced at the level of (3.28) is a global diffeomorphism. The
associated inverse is denoted by t(z0; s).

Lemma 4.1. The function ∂ts
(
z0; t(z0; ·)

)
is negative, and it is periodic of period 2π.

Proof. The negative sign of ∂ts follows from (3.16), (3.27) and (3.28). Due to (3.35), we have

s+ 2π = s
(
z0; t(z0; s)

)
+ 2π =

2π

�(z0)

[
t(z0; s) + �(z0)

]
+ s∗

(
z0;

2π

�(z0)
t(z0; s)

)
.

By definition, the left hand side is the same as s
(
z0; t(z0; s+2π)

)
. On the other hand, due again

to (3.35), the right hand side coincides with s
(
z0; t(z0; s) + �(z0)

)
. This is possible if and only if

(4.1) t(z0; s+ 2π) = t(z0; s) + �(z0) .

Now, knowing from Lemma 3.7 that

(4.2) ∂ts(z0; t) =
2π

P(z0)

sinω(r0)

r0
(–Zv f ◦ –Zζ)(z0; t) < 0

is periodic in t of period �(z0), we can easily deduce the expected result. �

The system (1.3) can be expressed in the time variable s and then in terms of τ = ε s. To this
end, it suffices to consider

(4.3)

(
z
ν

)
(ε, z0,ν0; τ) :=

(
--z
υ

)(
ε, z0,ν0; t(z0; τ/ε)

)
,

and then, with ν0 = εν0, to replace (1.3) by (1.8) where

(4.4)

(
A
V

)
(ε, z0; z; s, ν) := ∂ts

(
z0; t(z0; s)

)−1
(
A
V

)
(ε, z; ν) .

The above expression A (like A) does not depend on ε, whereas V (like V) does. The source
term t(A,V) is a smooth function. From Lemma 4.1, it is periodic in s with period 2π. In view
of the preceding discussion, we can assert that t(A,V) satisfies (1.9) and (1.10).

One may wonder why it is necessary to pass from t to s. The reason is that a uniform period
(not depending on z0) is crucial with a view to applying [11]. Otherwise, the WKB construction
(the determination of the phases and the profiles) does not work due to instabilities with respect
to variations in the initial data.

4.1.2. Verification of the prerequisites. Given a function Z(s, ν) which is periodic of period 2π
in both variables s and ν, define

Z(s) :=
1

2π

∫ 2π

0
Z(s, ν) dν , Z∗(s, ν) := Z(s, ν)− Z(s) ,(4.5)

〈Z〉 :=
1

(2π)2

∫ 2π

0

∫ 2π

0
Z(s, ν) ds dν , Z

?
(s) := Z(s)− 〈Z〉 .(4.6)

Retain that this induces a decomposition of Z in three components according to

(4.7) Z(s, ν) = 〈Z〉+ Z
?
(s) + Z∗(s, ν).

• Validity of Condition 1.4. Condition 1.4 is about the mean flow Ξmf . Thus, the first thing to
do is to make the link between Ξmf and the average flow –Z of Lemma 3.1. To this end, we can
use (1.7) to compute

∂s
[
–Z
(
z; t(z0, s)

)]
= ∂ts

(
z0; t(z0; s)

)−1 A
(

–Z
(
z; t(z0, s)

))
.

From (4.4), we have

A(z0; –Z; s) = ∂ts
(
z0; t(z0; s)

)−1 A(–Z) .
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This implies that

∂s
[
–Z
(
z; t(z0, s)

)]
= A(z0; –Z; s) , –Z

(
z; t(z0, 0)

)
= z.

Compare this with (1.11) to see that this is the same. Thus, by Cauchy-Lipschitz theorem, we
must have

(4.8) Ξmf(z0; z; s) = –Z
(
z; t(z0, s)

)
.

Since t(z0, ·) and –Z(z; ·) are globally defined (Lemma 3.3), the same applies to Ξmf(z0; z; ·).
Moreover, with Lemma 3.7 and (4.1), we can see on (4.8) that, for all (z0, z), the map Ξmf(z0; z; ·)
is as required periodic of period 2π.

• Validity of Condition 1.5. The second equation in the system (1.8) reads

∂τν =
1

ε
V0

(
z0; z;

τ

ε

)
+ V1

(
z0; z;

τ

ε
,
ν

ε

)
where, in view of (2.15) and (4.4), we have

V0(z0; z; s) = − ∂ts
(
z0; t(z0; s)

)−1
√

1− v2 b(r, θ) > 0 ,

which is positive and does not depend on ν (whereas V1 does).

4.2. Coherent structures. In Paragraph 4.2.1, we apply [11] to get the oscillating description
of the solutions (z,ν) to (1.8). Then, to show Theorem 1.8, we have to rebuild (x̃, ṽ)(ε, x0, v0; τ)
from (z,ν)(ε, z0,ν0; τ). To this end, in Paragraph 4.2.2, we replace (z,ν), (z0,ν0) and τ in
terms of respectively (--z, υ), (x0, v0) and τ . This is not sufficient since, in view of (2.4), (2.8) and
(2.17), the access to (x, v) or (x̃, ṽ) from these data needs also the knowledge of φ. Therefore,
in Paragraph 4.2.3, we exhibit separately the WKB expansion of the toroidal angle φ. Finally,
in Paragraph 4.2.4, we can conclude with the proof of Theorem 1.8.

4.2.1. Coherent structures associated with (1.8). Recall that the map f has been defined at the
level of Paragraph 3.2.1, see (3.13). On the other hand, as explained in Paragraph 3.2.3, a
bounded connected set D ⊂ B(0, R] with R ∈ R∗+ has been selected away from the separatrix
region S. Now, given Z0 ∈ D as in Lemma 3.5, we have z0 = f−1(Z0) ∈ f−1(D) ⊂ f−1(B(0, R])
where the latter is a compact set of ]0, a] × T×]0, 1[×] − π/2, π/2[. As a direct consequence of
[11, Theorem 3], we have the following result.

Proposition 4.2. [The WKB expansion of the flow induced by the system (1.8)] Suppose that
Assumptions 1.6 and 1.7 hold. Let z0 ∈ f−1(D) and ν0 ∈ T. The lifespan T (ε, z0,ν0) that is
associated with the system (1.8) is uniformly bounded below by some T (z0,ν0) ∈ R∗+. Moreover,
there exist smooth profiles

Zj(z0,ν0; τ, s, ν) ∈ C∞
(
f−1(D)× T× [0, T (z0,ν0)]× T× T;R4

)
,

Vj(z0,ν0; τ, s, ν) ∈ C∞
(
f−1(D)× T× [0, T (z0,ν0)]× T× T;R

)
,

which, taking into account (4.5) and (4.6), are such that

(4.9) V−1 ≡ 〈V−1〉(z0; τ), V0 ≡ V 0(z0,ν0; τ, s), Z0 ≡ Z0(z0; τ, s),

and which are adjusted in such a way that, in terms of the sup norm, we have

(4.10)

z(ε, z0,ν0; τ) =
+∞∑
j=0

εj Zj

(
z0,ν0; τ,

τ

ε
,
〈V−1〉(z0; τ)

ε2
+

V 0(z0,ν0; τ, τε )

ε

)
,

ν(ε, z0,ν0; τ) =

+∞∑
j=−1

εj Vj
(
z0,ν0; τ,

τ

ε
,
〈V−1〉(z0; τ)

ε2
+

V 0(z0,ν0; τ, τε )

ε

)
.
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From [11, Theorem 4], with 〈Z̄0〉 determined as indicated in this Theorem 4, and using (4.8), we
have also

(4.11) Z0(z0; τ, s) = Ξmf

(
z0; 〈Z̄0〉(z0; τ); s

)
= –Z

(
〈Z̄0〉(z0; τ); t(z0, s)

)
.

As explained in the next paragraphs, Theorem 1.8 is a corollary of Proposition 4.2. To see why,
we have now to reverse the procedure going from (x, v) to (z,ν). The first step is to replace
inside (4.10) the time variable τ by τ and the state variable (z,ν) by (--z, υ) - in fact by (-̃-z, υ̃)
with (-̃-z, υ̃) as in (4.14).

4.2.2. Coherent structures associated with the long time study of (1.3). By construction, we have
τ = εt and τ = εs as well as s = s(z0; t). Taking into account Lemma 3.8, we can directly pass
from τ to τ through

(4.12) τ = ε s
(
z0;

τ

ε

)
=

2πτ

�(z0)
+ ε s∗

(
z0;

2πτ

ε�(z0)

)
.

On the other hand, the change (4.3) can be reformulated as

(4.13)

(
--z
υ

)(
ε, z0,ν0;

τ

ε

)
=

(
z
ν

)(
ε, z0,ν0; ε s

(
z0;

τ

ε

))
.

Amongst other things, the formula (1.15) allows to capture the dependence of the flow (x̃, ṽ)(·)
on the initial data (x0, v0). To take this into account, we have to look inside (4.3) at (z0,ν0) as
a function of (x0, v0). According to (2.4) and (2.8), we have

(x0, v0) =
(
X(r0, θ0, φ0), V (r0, θ0, φ0, v0, ζ0, ν0)

)
, z0 = t(r0, θ0, v0, ζ0) .

The map (X,V )(·) is smooth and one-to-one. This implies that both z0 and ν0 are smoothly
determined by (x0, v0). In other words, they can be viewed as functions z0(x0, v0) and ν0(x0, v0)
of (x0, v0) where (x0, v0) is selected in the bounded connected open set Ω ⊂ R3 × R3 which is
introduced in Theorem 1.8, see also (3.30). Following this perspective, we define Ψ1 as in (1.16)
and, since ν0 = εν0, we introduce

(4.14)

(
-̃-z
υ̃

)
(ε, x0, v0; τ) :=

(
--z
υ

)(
ε, z0(x0, v0), εν0(x0, v0);

τ

ε

)
.

We denote by r̃, θ̃, ṽ and ζ̃ the components of -̃-z. Recall (3.16), (3.27) and (3.28) which furnish

τ = ε
2π

P
(
z0(x0, v0)

) t
(
z0(x0, v0);

τ

ε

)
, 0 < η̃5 ≤ |

dτ

dτ
| ≤ η̃6 .

By construction, the expression (-̃-z, υ̃) is defined on the interval [0, T̃ (ε, x0, v0)[ where T̃ can be
deduced from T (ε, z0,ν0) by inverting (uniformly in ε) the above relation from τ to τ. In so
doing, we find that

(4.15) ∃ T̃ (x0, v0) ∈ R∗+ ; ∀ ε ∈ ]0, ε0] , T̃ (x0, v0) ≤ T̃ (ε, x0, v0) .

Lemma 4.3 (The WKB expansion interpreted at the level of (-̃-z, υ̃)). Suppose that Assumptions

1.6 and 1.7 hold true. Take Ω and T̃ as indicated above. Then, for all ε ∈]0, ε0] with ε0 small

enough, the field t(z̃, υ̃)(ε, x0, v0; ·) is defined on [0, T̃ (x0, v0)] and there exist smooth profiles

Z̃j(x0, v0; τ, s̃, ν̃) ∈ C∞
(
Ω× [0, T̃ (x0, v0)]× T× T;R4

)
,

Ṽj(x0, v0; τ, s̃, ν̃) ∈ C∞
(
Ω× [0, T̃ (x0, v0)]× T× T;R

)
,
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such that

(4.16)

-̃-z(ε, x0, υ0; τ) =
+∞∑
j=0

εj Z̃j

(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
,

υ̃(ε, x0, υ0; τ) =

+∞∑
j=−1

εj Ṽj
(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
=

1

ε
Ψ2
ε(x0, v0; τ) +O(ε),

where Ψ1(x0, v0; τ) and Ψ2
ε(x0, v0; τ) are respectively as in (1.16) and (1.17).

It bears noting that:

• The function Ψ1 plays the role of a phase which is linear in τ ;
• The function Ψ2

ε is also a phase which oscillates weakly with respect to ε. Indeed, at the
level of (1.17), the weight ε is in factor of profiles involving the frequency ε−1 ;
• The distinction between s, ν (in Proposition 4.2) and s̃, ν̃ (in Theorem 1.8 and Lemma

4.3) is to highlight that different phases come to replace different variables.

Proof. Combining (4.12), (4.13), (4.14) and (1.16), we find that

(
-̃-z
υ̃

)(
ε, x0, υ0; τ

)
=

(
z
ν

)(
ε, z0(x0, v0), εν0(x0, v0);

Ψ1(x0, v0; τ) + ε s∗
(
z0(x0, v0);

Ψ1(x0, v0; τ)

ε

))
.

To go further, we exploit (4.10) where τ is replaced as indicated above by Ψ1 + ε s∗. We argue
with -̃-z, the case of υ̃ being completely similar. By this way, we find that

-̃-z
(
ε, x0, υ0; τ

)
=

+∞∑
j=0

εj Zj

(
z0(x0, v0), εν0(x0, v0); Ψ1 + ε s∗,

Ψ1

ε
+ s∗,

〈V−1〉
(
z0(x0, v0); Ψ1 + ε s∗)

ε2
+

V 0

(
z0(x0, v0), εν0(x0, v0); Ψ1 + ε s∗, Ψ1

ε + s∗
)

ε

)
.

The first line involves only oscillations with respect to Ψ1 (including those induced by s∗) which

can be incorported inside profiles Z̃j as indicated in (4.16). By expanding the second line in
powers of ε, we find

〈V−1〉
(
z0(x0, v0); Ψ1 + ε s∗)

ε2
+

V 0

(
z0(x0, v0), εν0(x0, v0); Ψ1 + ε s∗, Ψ1

ε + s∗
)

ε

=
1

ε2
Ψ2
ε(x0, v0; τ) +O(1) ,

with Ψ2
ε as in (1.17) and where again the O(1) may imply oscillations at the frequency ε−1 with

respect to Ψ1 which can contribute to the Z̃j . This explains the origin of (4.16). �
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Retain that the preceding construction yields

Z̃0 ≡ Z̃0(x0, v0; τ, s̃) = Z0

(
z0(x0, v0); Ψ1(x0, v0; τ), s̃+ s∗

(
z0(x0, v0); s̃

))
,(4.17)

Ṽ−1 ≡ 〈Ṽ −1〉(x0, v0; τ) = 〈V −1〉
(
z0(x0, v0); Ψ1(x0, v0; τ)

)
,(4.18)

Ṽ0 ≡ Ṽ 0(x0, v0; τ, s̃) = ∂τ〈V −1〉
(
z0(x0, v0); Ψ1(x0, v0; τ)

)
s∗
(
z0(x0, v0); s̃

)
(4.19)

+ V 0

(
z0(x0, v0), 0; Ψ1(x0, v0; τ), s̃+ s∗(z0(x0, v0), s̃)

)
,

Ṽ1 ≡ Ṽ 1(x0, v0; τ, s̃) =
1

2
∂2
τ〈V −1〉

(
z0(x0, v0); Ψ1(x0, v0; τ)

)
s∗
(
z0(x0, v0); s̃

)2
(4.20)

+ ∂τV 0

(
z0(x0, v0), 0; Ψ1(x0, v0; τ), s̃+ s∗(z0(x0, v0), s̃)

)
s∗

+ ∂ν0V 0

(
z0(x0, v0), 0; Ψ1(x0, v0; τ), s̃+ s∗(z0(x0, v0), s̃)

)
ν0

+ V 1

(
z0(x0, v0), 0; Ψ1(x0, v0; τ), s̃+ s∗(z0(x0, v0), s̃)

)
.

At the level of (4.16), we can already recognize the oscillating structure of (1.15). But, there are
still complications since, as explained in Subsection 2.2 - see especially (2.4), (2.8) and (2.17),
to deduce (x̃, ṽ) from (z̃, υ̃), we also need access to φ.

4.2.3. Asymptotic behavior of the toroidal angle. In line with (4.14), introduce

(4.21) φ̃(ε, x0, v0; τ) := φ
(
ε, z0(x0, v0), εν0(x0, v0), φ0(x0, v0);

τ

ε

)
.

From (2.10), with Aφ as in (2.10), we know that

(4.22)
dφ̃

dτ
=

1

ε
Aφ
(
-̃-z,
υ̃

ε

)
=

1

ε

ṽ

R(r̃, θ̃)

(
− sinω(r̃) cos ζ̃ sin

( υ̃
ε

)
+ cosω(r̃) sin ζ̃

)
.

On the other hand, from the last line of (4.16), we can infer that

(4.23)
υ̃

ε
=

1

ε2
Ψ2
ε(x0, v0; τ) +

+∞∑
j=1

εj−1 Ṽj
(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
.

Applying Lemma 4.3 and (4.23) to replace υ̃/ε as well as rules of composition, it follows that
the source term of (4.22) can be expanded (for adequate profiles Aφj) according to

(4.24)
1

ε
Aφ
(

-̃-z,
υ̃

ε

)
=

+∞∑
j=−1

εj Aφj
(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
.

In view of (4.17) and (4.20), knowing that Z̃0 ≡ Z̃0(τ, s̃) and Ṽ1 ≡ Ṽ 1(τ, s̃), the term with ε−1

in factor inside (4.24) yields

Aφ−1(x0, v0; τ, s̃, ν̃) = Aφ
(
Z̃0(x0, v0; τ, s̃), ν̃ + Ṽ 1(x0, v0; τ, s̃)

)
=
[ Z̃0v

R(Z̃0r, Z̃0θ)

(
− sinω(Z̃0r) cos Z̃0ζ sin

(
ν̃ + Ṽ 1

)
+ cosω(Z̃0r) sin Z̃0ζ

)]
(x0, v0; τ, s̃) .

Lemma 4.4 (The double mean of Aφ−1). With Aφ−1 as above, we have

(4.25) 〈Aφ−1〉(x0, v0; τ) =
1

(2π)2

∫ 2π

0

∫ 2π

0
Aφ−1(x0, v0; τ, s̃, ν̃) dν̃ ds̃ = 0 .

Proof. Consider (4.17) together with (4.11) to extract

(4.26) Z̃0(x0, v0; τ, s̃) = –Z
(
〈Z0〉

(
z0(x0, v0); Ψ1(τ)

)
; t
(
z0(x0, v0); s̃+ s∗(z0(x0, v0); s̃)

))
,
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where –Z is the solution to (3.2) and t(z0; ·) is the inverse of s(z0; ·). In particular, due to (3.1),
we find that

(4.27) Z̃0r ≡ 〈Z̃0r〉(x0, v0; τ) = 〈Z0r〉
(
z0(x0, v0); Ψ1(τ)

)
.

With the aid of (4.26) and (4.27), the mean of Aφ−1 with respect to ν̃ ∈ T is

Aφ−1(τ, s̃) =
1

2π

∫ 2π

0

–Zv

R(〈Z0r〉, –Zθ)

[
− sinω(〈Z0r〉) cos –Zζ sin

(
ν̃ + Ṽ 1

)
+ cosω(〈Z0r〉) sin –Zζ

]
dν̃

=

[
–Zv

R(〈Z0r〉, –Zθ)
cosω(〈Z0r〉) sin –Zζ

](
〈Z0〉

(
z0; Ψ1(τ)

)
; t
(
z0; s̃+ s∗(z0; s̃)

))
.

Now, we can compute then the mean of Aφ−1 with respect to s̃ ∈ T to find that

〈Aφ−1〉(x0, v0; τ)

=
1

2π
cosω(〈Z0r〉)

∫ 2π

0

[ –Zv

R(〈Z0r〉, –Zθ)
sin –Zζ

](
〈Z0〉; t

(
z0; s̃+ s∗(z0; s̃)

))
ds̃

=
1

�(z0)
cosω(〈Z0r〉)

∫ �(z0)

0

[ –Zv

R(〈Z0r〉, –Zθ)
sin –Zζ

](
〈Z0〉; t

(
z0;

2πt̃

�(z0)
+ s∗(z0;

2πt̃

�(z0)
)︸ ︷︷ ︸

=s(z0;t̃)

))
dt̃

=
1

�(z0)
cosω(〈Z0r〉)

∫ �(z0)

0

[ –Zv

R(〈Z0r〉, –Zθ)
sin –Zζ

](
〈Z0〉; t̃

)
dt̃,

where, to obtain the third line, we took the change of variable s̃ = 2πt̃/�(z0) and we exploited
(3.35). Now, looking at the first equation of (3.2), we have

(4.28)
[
–Zv sin –Zζ

]
(〈Z0〉, t̃) =

d–Zθ

dt̃

〈Z0r〉
sinω(〈Z0r〉)

.

This furnishes

〈Aφ−1〉(x0, v0; τ) =
1

�(z0)

〈Z0r〉 cosω(〈Z0r〉)
sinω(〈Z0r〉)

∫ �(z0)

0

1

R0 + 〈Z0r〉 cos –Zθ(〈Z0〉; t̃)
d–Zθ(〈Z0〉, t̃)

dt̃
dt̃ .

This must be zero since the average flow –Z(〈Z0〉; ·) is periodic of period �(z0). �

We seek a WKB solution φ̃εa to (4.22) in a similar form as (4.24), that is

(4.29) φ̃εa(x0, v0; τ) =
+∞∑
j=−1

εj Φ̃j

(
x0, v0; τ,

Ψ1(x0, v0; τ)

ε
,
Ψ2
ε(x0, v0; τ)

ε2

)
.

The idea is to perform a formal analysis at the level of (4.22) using (4.29) to find constraints on

the profiles Φ̃j . To this end, we need first to compute the derivative of the oscillating phase Ψ2
ε

with respect to time variable τ . From (1.17), it is found to be

(4.30)

∂τΨ2
ε(τ) =

2π

�(z0)

(
1 + ∂ts

∗(z0;
Ψ1

ε
)
) (
∂sV 0 + ∂τ〈V −1〉

)(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)
)

+ ε
2π

�(z0)

(
∂τV 0 + ∂2

τ〈V −1〉 s∗(z0;
Ψ1

ε
)
)(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)
)
.

To proceed, we need to simplify (4.30). To this end, we exploit two helpful information. The
first is issued from (3.35) which gives rise to

(4.31) ∂ts(z0;
τ

ε
) =

2π

�(z0)

(
1 + ∂ts

∗(z0;
Ψ1

ε
)
)
.

The second tool is given in the following lemma.
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Lemma 4.5 (Simplification). With V0 as in (2.15), we have

(4.32)

(
∂sV 0 + ∂τ〈V−1〉

)(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)
)

= ∂ts(z0;
τ

ε
)−1 V0

(
Ξmf

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
))
.

Proof. First from (3.35), we have

(4.33) s(z0;
τ

ε
) =

Ψ1(τ)

ε
+ s∗(z0;

Ψ1(τ)

ε
).

Exploit (4.33) together with [11, Section 3, equations (3.41) and (3.42)] to get

∂τ〈V−1〉(z0; Ψ1) = 〈V0〉
(
z0; 〈Z0〉(z0; Ψ1)

)
,

∂sV 0

(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)︸ ︷︷ ︸

=s(z0; τ
ε

)

)
= V

?
0

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)
.

Then exploiting the above two expressions leads to

(4.34)
∂sV 0

(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)
)

+ ∂τ〈V −1〉(z0; Ψ1)

= V0

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)
≡ V0

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)
.

We also have from [11, Section 2, page 19: equation (2.34)] that

(4.35) V0

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)

= V0

(
z0; Ξmf

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)
; s(z0;

τ

ε
)
)
.

Then, using (4.35), (4.34) becomes

(4.36)

∂sV 0

(
z0, 0; Ψ1,

Ψ1

ε
+ s∗(z0;

Ψ1

ε
)
)

+ ∂τ〈V −1〉(z0; Ψ1)

= V0

(
z0; Ξmf

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
)
; s(z0;

τ

ε
)
)

= ∂ts
(
z0; t

(
z0; s(z0;

τ

ε
)
)

︸ ︷︷ ︸
= τ
ε

since t is inverse of s

)−1 V0

(
Ξmf

(
z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
))

= ∂ts
(
z0;

τ

ε

)−1 V0

(
Ξmf(z0; 〈Z0〉(z0; Ψ1); s(z0;

τ

ε
)
))
,

where in the line before the last, we have used (4.4). �

With the aid of the two identities (4.31) and (4.32), the line (4.30) reduces to

(4.37) ∂τΨ2
ε(τ) = V0 + ε

2π

�(z0)

(
∂τV 0 + ∂2

τ〈V −1〉 s∗
)
.

In view of (4.37), the equation (4.22) is formally equivalent to

(4.38)

+∞∑
j=−1

εj∂τ Φ̃j +

+∞∑
j=−1

εj−1 2π

�(z0)

{
∂s̃Φ̃j +

(
∂τV 0 + ∂2

τ〈V −1〉 s∗
)
∂ν̃Φ̃j

}
+

+∞∑
j=−1

εj−2 V0 ∂ν̃Φ̃j =

+∞∑
j=−1

εjAφj(x0, v0; τ, s̃, ν̃) .

Lemma 4.6 (The WKB expansion of the toroidal coordinate φ̃). Suppose that Assumptions 1.6

and 1.7 hold. Let Ω as in Theorem 1.8 and T̃ as in (4.15). For all ε ∈]0, ε0] with ε0 small enough,

the function φ̃(ε, x0, v0; ·) is defined on [0, T̃ (x0, v0)]. Moreover, there exist smooth profiles

Φ̃j(x0, v0; τ, s̃, ν̃) ∈ C∞
(
Ω× [0, T̃ ]× T× T;R

)
, j ∈ N,
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such that the expression φ̃εa which is built as indicated in (4.29) with Φ̃−1 ≡ 0 is a solution to the
cascade of equations that is issued from (4.38). This furnishes through (4.29) an approximated

solution φ̃εa which is close in the sup norm to the solution φ̃ of (4.22) with, for all N ∈ N, a
precision of order O(εN ).

In what follows, we need to invert the derivative ∂s̃ and ∂ν̃ . To this end, introduce the set L1
∗(T)

made of periodic functions with zero mean, namely

L1
∗(T) :=

{
Z ∈ L1(T) ;

∫ 2π

0
Z(θ) dθ = 0

}
.

We can define an operator ∂−1
s̃ or ∂−1

ν̃ : L1
∗(T) −→ L1

∗(T) according to

(4.39)

∂−1
s̃ Z(s̃) :=

∫ s̃

0
Z(r) dr − 1

2π

∫ 2π

0

(∫ s

0
Z(r) dr

)
ds ,

∂−1
ν̃ Z(ν̃) :=

∫ ν̃

0
Z(r) dr − 1

2π

∫ 2π

0

(∫ s

0
Z(r) dr

)
ds .

Proof. The matter here is to determine the profiles Φ̃j using the constraint (4.38). Define

Γ−3(Φ̃−1) := V0 ∂ν̃Φ̃−1 ,(4.40)

Γ−2(Φ̃−1, Φ̃0) :=
2π

�(z0)

{
∂s̃Φ̃−1 + ∂ν̃Φ̃−1

(
∂τV 0 + ∂2

τ〈V −1〉 s∗
)}

+ V0 ∂ν̃Φ̃0 .(4.41)

The above two expressions (4.40) and (4.41) are respectively the ε−3 and ε−2 terms collected
from (4.38). In a similar fashion, we pick the εj terms from (4.38) and we gather them in the
expression Γj which, for j ≥ −1, is defined by

(4.42)
Γj(Φ̃j , Φ̃j+1, Φ̃j+2) := ∂τ Φ̃j +

2π

�(z0)

{
∂s̃Φ̃j+1 + ∂ν̃Φ̃j+1

(
∂τV 0 + ∂2

τ〈V −1〉 s∗
)}

+ V0 ∂ν̃Φ̃j+2 −Aφj(x0, v0; τ, s̃, ν̃) .

Introduce the following hypothesis

Hφj :
{

The profiles Φ̃−1, · · · , Φ̃j , Φ̃
?

j+1, Φ̃∗j+1, Φ̃∗j+2 are known on the domain [0, T̃ ]× T2
}

which reflects the outcome of solving successively Γk = 0 from k = −3 up to k = j. To prove
Lemma 4.6, it suffices to show that Hφj is verified for all j ≥ −1. This is achieved in two steps:

A) First, we prove that the preliminary condition Hφ−1 is verified. This amounts to the

determination of the profiles Φ̃−1, Φ̃
?

0, Φ̃∗0 and Φ̃∗1 ;

B) Secondly, we prove the validity of the hypothesis Hφj by using an induction argument.

In what follows, we first check A). Then, we consider B).

A) To obtain the starting point Hφ−1, we can limit ourselves at looking at the constraints Γk = 0
for k = −3,−2,−1. The constraint Γ−3 = 0 with Γ−3 emanating from (4.40) implies that

(4.43) V0︸︷︷︸
6=0

∂ν̃Φ̃−1 = 0 ⇒ Φ̃−1 ≡ Φ̃−1(x0, v0; τ, s̃) .

With the simplification (4.43), the constraint Γ−2 = 0 becomes

(4.44)
2π

�(z0)
∂s̃Φ̃−1 + V0 ∂ν̃Φ̃∗0 = 0 .

Since V0 does not depend on ν̃, the equation (4.44) amounts to the same thing as

(4.45) Φ̃−1 ≡ 〈Φ̃−1〉(x0, v0; τ), Φ̃0 ≡ Φ̃0(x0, v0; τ, s̃) .
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With the aid of (4.45), the equation Γ−1 = 0 reduces to

(4.46) ∂τ 〈Φ̃−1〉+
2π

�(z0)
∂s̃Φ̃

?

0 + V0 ∂ν̃Φ̃∗1 = Aφ−1(x0, v0; τ, s̃, ν̃) .

Take in (4.46) the average in both variables (s̃, ν̃) ∈ T2 to get

(4.47) ∂τ 〈Φ̃−1〉 = 〈Aφ−1〉(x0, v0; τ) .

Due to (4.25) and since 〈Φ̃−1〉(x0, v0; 0) = 0, we find that Φ̃−1(x0, v0; τ, s̃) ≡ 〈Φ̃−1〉(x0, v0; τ) ≡ 0.

The double mean value 〈Φ̃−1〉 is not activated so that ∂τ 〈Φ̃−1〉(x0, v0; τ) = 0. Then, the equation
(4.46) averaged with respect to ν̃ ∈ T furnishes

(4.48)
2π

�(z0)
∂s̃Φ̃

?

0 = Aφ−1(x0, v0; τ, s̃) ≡ A?φ−1(x0, v0; τ, s̃) .

Since the right hand side of (4.48) belongs to L1
∗(T) with respect to s̃, we can invert ∂s̃ as

indicated in (4.39) to recover Φ̃
?

0. Then, substitute ∂s̃Φ̃
?

0 as in (4.48) into (4.46) to obtain

(4.49) ∂ν̃Φ̃∗1 =
1

V0
A∗φ−1(x0, v0; τ, s̃, ν̃).

Once more, since the right hand side of (4.49) belongs to L1
∗(T) with respect to ν̃, we can invert

∂ν̃ as indicated in (4.39) to get Φ̃∗1. We have determined Φ̃−1 ≡ 0, Φ̃
?

0, Φ̃∗0 ≡ 0 and Φ̃∗1 which
means that the starting point Hφ−1 is verified.

B) We assume that Hφk is verified for k = −1 up to k = j − 1. This means that Φ̃−1, · · · ,
Φ̃j−1, Φ̃

?

j , Φ̃∗j , Φ̃∗j+1 have been identified on the domain [0, T̃ ] × T2. The aim is to prove that

Hφj holds true. Recall that Φ̃j can be decomposed according to (4.7). To obtain Hφj , we need

to determine 〈Φ̃j〉, Φ̃
?

j+1, Φ̃∗j+2. Look at the equation 〈Γj〉 = 0 with Γj as in (4.42), that is

(4.50) ∂τ 〈Φ̃j〉 = 〈Aφj〉(x0, v0; τ),

which must be completed with the initial data coming from φ̃(x0, v0; 0) = φ0. The linear Cauchy

differential equation (4.50) has a solution on the whole interval [0, T̃ ], leading to 〈Φ̃j〉. Next, we

consider the equation Γj = 0 where Φ̃j is written in the form Φ̃j = Φ̃
?

j + 〈Φ̃j〉 and where ∂τ 〈Φ̃j〉
is replaced as indicated in (4.50). This furnishes

(4.51) Φ̃
?

j+1 =
�(z0)

2π
∂−1
s̃

[
A?φj(x0, v0; τ, s̃)− ∂τ Φ̃

?

j

]
.

There remains to extract Φ̃∗j+2 from the equation Γj = 0 through

Φ̃∗j+2 =
1

V0
∂−1
ν̃

[
A∗φj − ∂τ Φ̃∗j −

2π

�(z0)

{
∂s̃Φ̃

∗
j+1 + ∂ν̃Φ̃∗j+1

(
∂τV 0 + ∂2

τ〈V −1〉 s∗
)}]

.

In summary, we have Hφj . Thus, for all N ∈ N, we know that ∂τ (φ̃− φ̃εa) = O(εN ) and therefore

(just by integration) that φ̃− φ̃εa = O(εN ). �

4.2.4. Proof of Theorem 1.8. According to (2.4), (2.8) and (2.17), the solution t(x, v) to the
system (1.1) looks like

(4.52)

(
x
v

)
(ε, x0, v0; t) =

(
X(r, θ, φ)
V (r, θ, φ, v, ζ, υ/ε)

)(
z0(x0, v0), ε ν0(x0, v0), φ0(x0, v0); t

)
.

This means that

(4.53)

(
x̃
ṽ

)
(ε, x0, v0; τ) =

(
X(r̃, θ̃, φ̃)

V (r̃, θ̃, φ̃, ṽ, ζ̃, υ̃/ε)

)
(ε, x0, v0; τ) .

31



The existence part of Theorem 1.8 is guaranteed by Lemmas 4.3 and 4.6. On the other hand,
the expansion of x̃ and ṽ can be recovered by applying Taylor expansion in (4.53) to the two

functions X(·) and V (·) after substituting z̃ = (r̃, θ̃, ṽ, ζ̃), φ̃ and υ̃/ε as indicated respectively in
Lemma 4.3, Lemma 4.6 and (4.23). By this way, we can recognize (1.15).

4.3. The long time gyrokinetic equations. The goal of this section is to understand the
long time leading behavior of the solution to (1.2) under Assumptions 1.6 and 1.7. In view of
(4.16), (4.17), (4.18), (4.19), (4.20), (4.23) and (4.45), the identity (4.53) gives rise to

x̃(x0, v0; τ) = X
(
Z̃0r, Z̃0θ, Φ̃0

)
(x0, v0; τ,

Ψ1

ε
) +O(ε),(4.54)

ṽ(x0, v0; τ) = V
(
Z̃0r, Z̃0θ, Φ̃0, Z̃0v, Z̃0ζ ,

Ψ2
ε

ε2
+ Ṽ 1

)
(x0, v0; τ,

Ψ1

ε
) +O(ε).(4.55)

Substitute s(z0; τε ) as indicated in (4.33) inside (4.26) to see that

(4.56) Z̃0(x0, v0; τ,
Ψ1(τ)

ε
) = –Z

(
〈Z0〉

(
z0; Ψ1(τ)

)
; t(z0; s(z0;

τ

ε
)
)

= –Z
(
〈Z0〉

(
z0; Ψ1(τ)

)
;
τ

ε

)
.

With the aid of (4.56) and since we have the simplification (4.27), in line with (1.15), the
equations (4.54) and (4.55) become (1.21), where, with 〈Z0〉 ≡ 〈Z0〉

(
z0(x0, v0); Ψ1(τ)

)
and � ≡

�
(
z0(x0, v0

)
, we have introduced X̃0 and Ṽ0 as indicated in (1.18) and (1.19).

In contrast with the classical gyrokinetic equations, the long time gyrokinetic ansatz X̃0 implies
large amplitude oscillations (carried by s̃). In the above formulas for X̃0 and Ṽ0, the following
components can be directly determined from the data: X and V are given by (2.4) and (2.8);

the average flow –Z can be deduced from (3.1) and (3.2); the scalar function Ṽ 1 comes from (??)

together with the WKB construction of Proposition 4.2; and Φ̃0 is issued from (4.48) and (4.50)

which are based on A?φ−1 and Aφ0. Once done, the access to the main profiles X̃0 and Ṽ0 is

entirely driven by 〈Z0〉(z0; τ). Now, from [11, Theorem 4], the function 〈Z̄0〉 can be determined
by solving (1.20) where, with ∂−1

ν as in (4.39), we have introduced

(4.57)

A1(z0; z; s, ν) :=DzΞmf(z0; z; s)−1{[
V−1

0

(
∂−1
ν A∗ · ∇z

)
A− ∂s(V−1

0 ∂−1
ν A∗)− V1 V

−1
0 A∗

+
(
∂−1
ν A∗ · ∇z

)
(V−1

0 ) A∗
](
z0; Ξmf(z0; z; s); s, ν

)}
,

and where the access to the double mean value 〈A1〉 is furnished by (4.6). In Paragraph 4.3.1,
we explore the effect on A1 of the mean operator along (s, ν) ∈ T2. Then, in Paragraph 4.3.2,
we exhibit a spatial confinement property. In Paragraph 4.3.3, we also exhibit a conservation of
the kinetic energy in the the special case when the electric field is radial. Finally, in Paragraph
4.3.4, we present some computations explicitly as an appendix.

4.3.1. Computation of the source term 〈A1〉. Let us examine the averaging operation on A1 along
ν ∈ T. For simplicity and to be consistent with [11], we write Ξmf ≡ Ξ0 = t(Ξ0r,Ξ0θ,Ξ0v,Ξ0ζ).

Lemma 4.7 (Finding A1). We have

(4.58) A1(z0; z; s) = DzΞ0(z0; z; s)−1 ∂ts
(
z0; t(z0, s)

)−1 S
(
Ξ0(z0; z; s)

)
,
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where S = t(Sr,Sθ,Sv,Sζ) is as follows

Sr(r, θ, v, ζ) := − I(r)

1 + I(r)2

[
R(r, θ)

r
∂θΦ(r, θ) + v2 (1− v2)−1/2 sin θ (

cos2 ζ

2
+ sin2 ζ)

]
,

Sθ(r, θ, v, ζ) :=
1

r
cosω b−1 Er −

1

2rR
v2 (1− v2)−1/2 b−1 sin2 ω cosω cos2 ζ cos θ

− 1

2r
v2 (1− v2)−1/2 ∂r(b

−1) cosω cos2 ζ

+ v2 (1− v2)−1/2 b−1
[
− 1

rR
cos3 ω sin2 ζ cos θ − 1

r2
cosω sin2 ω sin2 ζ

+
1

2r
ω′ sinω cos2 ζ +

1

2r2

(
cosω cos2 ζ − cos3 ω cos2 ζ

)]
,

Sv(r, θ, v, ζ) :=
v

2
(1− v2) cos2 ζ

[
∂r(b

−1) E⊥ − ∂θ(b−1) Er
cosω

r

]
+

1

2
v (1− v2) b−1

[
∂rE⊥ cos2 ζ − ∂θEr cos2 ζ

cosω

r
+

2

R
Er sin2 ζ cosω sin θ

+ E⊥

(2 sin2 ω sin2 ζ + cos2 ω cos2 ζ

r
+

2 sin2 ζ cos2 ω + sin2 ω cos2 ζ

R
cos θ

)]
,

Sζ(r, θ, v, ζ) := cos ζ sin ζ
{b−1

2

(cosω

r
∂θEr − ∂rE⊥

)
+

1

2

(cosω

r
∂θ(b

−1) Er − ∂r(b−1) E⊥

)
+

1

R
Er b

−1 sin θ cosω

+
v2

2
(1− v2)−1/2

[ 1

R
sin θ

(
ω′ sinω b−1 − ∂r(b−1) cosω

)
− 1

r2
sin2 ω cosω ∂θ(b

−1)− 1

rR
cos3 ω cos θ ∂θ(b

−1)
]

+ E⊥ b
−1
(sin2 ω

r
+ cos θ

cos2 ω

R
− cos2 ω

2r
− sin2 ω cos θ

2R

)}
.

Proof. We are interested in finding A1(z0, z; s). For this reason, we do not have to take into
account the contribution ∂s(V

−1
0 ∂−1

ν A∗0) inside (4.57). Indeed, its mean with respect to ν ∈ T is
just equal to zero since the term V0 is independent of ν ∈ T. Now, in view of (4.4) as well as
since DzΞmf

−1 and ∂ts
−1 are independent of ν ∈ T, we can average (4.57) to get

A1 ≡


A1r

A1θ

A1v

A1ζ

 (z0; z; s) = DzΞ0(z0; z; s)−1 ∂ts
(
z0; t(z0, s)

)−1


Sr
Sθ
Sv

Sζ

(Ξ0(z0; z; s)
)
,

where we have introduced the terms S? with ? ∈ {r, θ, v, ζ} as follows

(4.59) S? = V−1
0

(
∂−1
ν A∗ · ∇z

)
A? − V−1

0 V1A∗? − V−2
0

(
∂−1
ν A∗ · ∇z

)
(V0) A∗?.

The passage from the above line to the explicit expressions for the S? enumerated in Lemma 4.7
is detailed in Paragraph 4.3.4. �

Let us now examine the effect of the mean operator along s ∈ T to the function A1(z0, z, s)
through the following lemma.
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Lemma 4.8 (Finding 〈A1〉). We have

(4.60) 〈A1〉(z0; z) =
1

2π

∫ �(z0)

0
Dz0 –Z(z; t̃)−1 S

(
–Z(z; t̃)

)
dt̃,

where S is identified in Lemma 4.7 and �(z0) is the period provided by (3.31).

Proof. In view of (4.8), we can see that

(4.61) DzΞ0(z0; z; s) = Dz –Z
(
z; t(z0; s)

)
.

With the aid of (4.8), (4.61) and Lemma 4.7, we get

(4.62) 〈A1〉(z0; z) =
1

2π

∫ 2π

0
Dz –Z(z; t(z0; s))−1 ∂ts

(
z0; t(z0, s)

)−1 S
(

–Z(z; t(z0; s))
)
ds.

Now, inside (4.62), we perform the change of variale t̃ = t(z0; s), and since t(z0; ·) is the inverse
of s(z0; ·), we get

dt̃ = ∂st(z0; s) ds = (∂ts(z0; t(z0, s)))
−1 ds.

From (3.15) and (3.28), it is obvious that s(z0; 0) = 0 and thus t(z0; 0) = 0, we exploit then (4.1)
with s = 0 to see that t(z0; 2π) = �(z0). We get at the end

〈A1〉(z0; z) =
1

2π

∫ 2π

0
Dz0 –Z(z; t(z0; s)︸ ︷︷ ︸

=t̃

)−1 S(–Z(z; t(z0; s)︸ ︷︷ ︸
=t̃

)) (∂ts(z0; t(z0, s)))
−1 ds︸ ︷︷ ︸

=dt̃

=
1

2π

∫ �(z0)

0
Dz0 –Z(z; t̃)−1 S(–Z(z; t̃)) dt̃.

�

4.3.2. Confinement properties. Of particular interest is the radius r̃ which appears as the first
componant of -̃-z = t(r̃, θ̃, ṽ, ζ̃). It owns an asymptotic expansion as indicated in (4.16) with the

main term Z̃0r as in (4.27). In other words, we have

(4.63) r̃(x0, v0; τ) = 〈Z0r〉
(
z0(x0, v0); Ψ1(x0, v0; τ)

)
+O(ε),

where 〈Z0r〉 solves

(4.64) ∂τ〈Z0r〉 = 〈A1r〉(z0; 〈Z0〉(z0; τ)), 〈Z0r〉(z0; 0) = r0.

It is interesting to see that we have a stability property related to 〈Z0r〉. This is illustrated in
the two following lemmas.

Lemma 4.9 (Conservative form). We have

(4.65) Sr(–Z(z; t)) =
d

dt

[
Fr
(

–Z(z; t)
)]
,

where –Z(z; t) = t(zr, –Zθ, –Zv, –Zζ)(z, t) is the average flow solving the system (3.2) with initial data
z (instead of z0) and where we have introduced Fr(·) as follows

Fr(r, θ, v, ζ) :=
I(r)

1 + I(r)2

1

sinω(r)
v (1− v2)−1/2 R(r, θ) sin ζ.

Proof. Note first that since –Zr(z; t) ≡ zr, we have

(4.66)
d

dt

[
Fr(–Z(z; t))

]
= ∂θFr(–Z(z; t))

d–Zθ
dt

+ ∂vFr(–Z(z; t))
d–Zv

dt
+ ∂ζFr(–Z(z; t))

d–Zζ
dt

.
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The partial derivatives of Fr are given by

(4.67)

∂θFr(r, θ, v, ζ) = − I(r)

1 + I(r)2

r

sinω(r)
v (1− v2)−1/2 sin θ sin ζ,

∂vFr(r, θ, v, ζ) = +
I(r)

1 + I(r)2

1

sinω(r)
(1− v2)−3/2 R(r, θ) sin ζ,

∂ζFr(r, θ, v, ζ) = +
I(r)

1 + I(r)2

1

sinω(r)
v (1− v2)−1/2 R(r, θ) cos ζ.

Exploit (4.67) and (3.2) inside (4.66) to obtain that

(4.68)

d

dt

[
Fr(–Z(z; t))

]
= − I(zr)

1 + I(zr)2

[
–Z2

v (1− –Z2
v)−1/2 sin –Zθ (sin –Zζ)

2

+
1

sinω(zr)
R(zr, –Zθ) E (zr, –Zθ) (sin –Zζ)

2

+
–Z2

v

2
(1− –Z2

v)−1/2 sin –Zθ (cos –Zζ)
2

+
1

sinω(zr)
R(zr, –Zθ) E (zr, –Zθ) (cos –Zζ)

2
]
.

From (2.7), we have E (zr, –Zθ) = 1/zr sinω(zr) ∂θΦ(zr, –Zθ). Insert the latter into (4.68) to
display the term Sr of Lemma 4.7. �

Lemma 4.10 (Cancellation property). We have 〈A1r〉(z0; z) = 0 implying that 〈Z0r〉(z0; τ) = r0

for all τ.

Proof. Note that since –Z(z; t) = zr, the first row of the matrix
(
Dz0 –Z(z; t)

)−1
is (1 0 0 0). Exploit

(4.65) inside (4.60). This gives

〈A1r〉(z0; z) =
1

2π

∫ �(z0)

0
Sr(–Z(z; t̃)) dt̃ =

1

2π

∫ �(z0)

0

d

dt̃

[
Fr
(

–Z(z; t̃)
)]
dt̃,

which must be zero since the average flow –Z(z; ·) is periodic of period �(z0) by Lemma 3.7. �

From (4.75), it follows that 〈Z0r〉(z0; τ) = r0 for all τ. Coming back to (4.56) together with
(3.18), and then using (2.4), we can see that

|x̃(x0, v0; τ)−R0| = r0 +O(ε) , ∀ τ ∈
[
0, T̃ (x0, v0)

]
.

This implies that the portion of the plasma that is issued from z0 ∈ f−1(D) remains trapped
during long times inside a toroidal chamber (in particular, it does not collide with the walls).
Thus, for such positions z0, the conclusion is that the introduction of an electric field satisfying
Assumption 1.7 is not a factor of deconfinement.
Still, looking at (4.56) together with (4.54)-(4.55), the leading long time behavior of x̃ and ṽ
involves large amplitude oscillations at frequencies ε−1 and ε−2. Let us now look more closely
at what happens concerning ṽ.

4.3.3. The case of a radial electric field. We suppose in this paragraph that the electric field is
radial. In other words, we work with Φ ≡ Φ(r) in Assumption 1.7. This implies that the two
components of the electric field: E⊥ in (2.6) and E in (2.7) are such that E = E⊥ = 0. In this
case, the system for the average flow (3.2) with initial data z instead of z0 is reduced to

–Zr(z; t) = zr,(4.69)

d–Zθ/dt = +zv zr
−1 sinω(zr) sin –Zζ , –Zθ(z; 0) = zθ ,(4.70)

–Zv(z; t) = zv,(4.71)

d–Zζ/dt = − zv
(
2R(zr, –Zθ)

)−1
sinω(zr) sin –Zθ cos –Zζ , –Zζ(z; 0) = zζ .(4.72)
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On the other hand, the expression of the term Sv in Lemma 4.7 is also simplified to

(4.73) Sv(r, θ, v, ζ) = v (1− v2)
I(r)

1 + I(r)2
∂rΦ(r) sin θ

(cos2 ζ

2
+ sin2 ζ

)
.

Then, in view of (4.16), (4.26) and (4.71), we can assert that the momentum ṽ which appears

as the third component of -̃-z = t(r̃, θ̃, ṽ, ζ̃) owns the following expansion

(4.74) ṽ(x0, v0; τ) = 〈Z0v〉
(
z0(x0, v0); Ψ1(x0, v0; τ)

)
+O(ε),

where 〈Z0v〉 solves

(4.75) ∂τ〈Z0v〉 = 〈A1v〉(z0; 〈Z0〉(z0; τ)), 〈Z0v〉(z0; 0) = v0.

Since the average flow –Z(z; t) = t(zr, –Zθ(z; t), zv, –Zζ(z; t)) is as in (4.69), (4.70), (4.71) and (4.72),
we get from (4.60) that

(4.76) 〈A1v〉(z0; z) =
1

2π

∫ �(z0)

0
Sv

(
–Z(z; t̃)

)
dt̃.

Below, we show that we have a stability property related to 〈Z0v〉.

Lemma 4.11 (Conservative form for the momentum term). For all z in a compact set, we have
that Sv is conservative in the sense

(4.77) Sv(–Z(z; t)) =
d

dt

[
Fv(–Z(z; t))

]
,

where –Z(z; t) = t(zr, –Zθ, zv, –Zζ)(z, t) is the average flow as in (4.69), (4.70), (4.71) and (4.72)
and where we have introduced Fv(·) as follows

Fv(r, θ, v, ζ) := −(1− v2)
I(r)

1 + I(r)2

1

sinω(r)
∂rΦ(r) R(r, θ) sin ζ.

Proof. Note first that since –Zr(z; t) ≡ zr and –Zv(z; t) ≡ zv, we have

(4.78)
d

dt

[
Fv(–Z(z; t))

]
= ∂θFv(–Z(z; t))

d–Zθ
dt

+ ∂ζFv(–Z(z; t))
d–Zζ
dt

.

With R(·) as in (1.12), the partial derivatives of Fv are computed as follows

(4.79)

∂θFv(r, θ, v, ζ) =
rI(r)

1 + I(r)2

1

sinω(r)
∂rΦ(r) sin θ (1− v2) sin ζ,

∂ζFv(r, θ, v, ζ) = − I(r)

1 + I(r)2

1

sinω(r)
∂rΦ(r) R(r, θ) (1− v2) cos ζ.

Exploit (4.79) then substitute d–Zθ/dt, d–Zζ/dt as indicated in (4.70) and (4.72) inside (4.78), we
find that

d

dt

[
Fv(–Z(z; t))

]
=

I(zr)

1 + I(zr)2

zr
sinω

∂rΦ(zr) sin –Zθ (1− zv
2) sin –Zζ

zv
zr

sinω sin –Zζ

+
I(zr)

1 + I(zr)2

1

sinω
∂rΦ(zr) R(zr, –Zθ) (1− zv

2) cos –Zζ zv
(
2R(zr, –Zθ)

)−1
sinω sin –Zθ cos –Zζ

= Sv

(
–Z(z; t)

)
.

�

Now, we exploit (4.77) inside (4.76), we find that 〈A1v〉(z0; z) = 0 since the average flow –Z(z; ·)
is periodic of period �(z0) by Lemma 3.7. This implies that 〈Z0v〉(z0; τ) = v0 for all τ. And
thus, the equation (4.74) becomes

(4.80) ṽ(x0, v0; τ) = v0(x0, v0) +O(ε).

This means that the kinetic energy is, at least at the leading order, a conserved quantity.
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4.3.4. Appendix. To proceed, we need to consider the Fourier series expansions with respect to
the variable ν ∈ T of the functions A(--z, ·) and Vj(--z, ·) for j ∈ {0, 1}, which can be written as

A?(--z, ν) = A?(--z) +
2∑

n=1

1

n
CA?n(--z) cos(nν) +

2∑
n=1

1

n
SA?n(--z) sin(nν) , ? ∈ {r, θ, v, ζ},

Vj(--z, ν) = Vj(--z) +
2∑

n=1

1

n
CVjn(--z) cos(nν) +

2∑
n=1

1

n
SVjn(--z) sin(nν) , j ∈ {0, 1}.

From (2.9), we know that

CAr1 = v cos ζ , SAr1 = 0 , CArn = SArn = 0 , ∀n ≥ 2,

CAθ1 = 0, SAθ1 =
v

r
cosω cos ζ, CAθn = SAθn = 0 , ∀n ≥ 2.

From (2.12), we can deduce in particular that

CAv1 = −(1− v2)3/2 cos ζ Er , SAv1 = −(1− v2)3/2 cos ζ E⊥ ,

SAζ1 = v−1 (1− v2)1/2 sin ζ E⊥ +
v

R
sin θ cosω sin ζ,

CAζ1 = v−1 (1− v2)1/2 sin ζ Er −
v

r
sin2 ω sin ζ − v

R
cos θ cos2 ω sin ζ,

CAζ2 =
v

R
sin θ sinω cos ζ,

SAζ2 = v ω′ cos ζ − v

r
sinω cosω cos ζ +

v

R
cos θ cosω sinω cos ζ,

as well as CAvn = SAvn = CAζn = CAζn = 0 for all n ≥ 2. On the other hand, from (2.15), it
is obvious that CV0n = 0 and SV0n = 0 for all n ∈ N. Looking at (2.16), we can assert that

CV11 = − v

R
sin2 ζ cosω cos−1 ζ sin θ − v−1 cos−1 ζ (1− v2)1/2 E⊥,

SV11 = −v

r
cos2 ω cos ζ − v

r
sin2 ω sin2 ζ cos−1 ζ − v

R
sin2 ζ cos−1 ζ cos2 ω cos θ

− v

R
sin2 ω cos ζ cos θ + v−1 cos−1 ζ (1− v2)1/2 Er,

CV12 = −v ω′ sin ζ +
v

r
cosω sinω sin ζ − v

R
sin ζ sinω cosω cos θ,

SV12 =
v

R
sin ζ sinω sin θ.

We now come back to (4.59) in order to compute the different terms occurring in S?. We have(
∂−1
ν A∗ · ∇z

)
=
(
∂−1
ν A∗r ∂r

)
+
(
∂−1
ν A∗θ · ∂θ

)
+
(
∂−1
ν A∗v ∂v

)
+
(
∂−1
ν A∗ζ ∂ζ

)
= CAr1 sin ν ∂r − SAθ1 cos ν ∂θ +

[
CAv1 sin ν − SAv1 cos ν

]
∂v

+
[
CAζ1 sin ν − SAζ1 cos ν +

1

4
CAζ2 sin 2ν − 1

4
SAζ2 cos 2ν

]
∂ζ .

It follows that(
∂−1
ν A∗ · ∇z

)
Ar = −1

2

[
SAv1 ∂v

(
CAr1

)
+ SAζ1 ∂ζ

(
CAr1

)]
=

1

2
(1− v2)3/2 cos2 ζ E⊥ +

v2

2R
sin2 ζ cosω sin θ

+
1

2
(1− v2)1/2 sin2 ζ E⊥.
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(
∂−1
ν A∗ · ∇z

)
Aθ =

1

2

[
CAr1 ∂r

(
SAθ1

)
+ CAv1 ∂v

(
SAθ1

)
+ CAζ1 ∂ζ

(
SAθ1

)]
=

1

2
v2 cos2 ζ

∂

∂r

(cosω

r

)
− (1− v2)3/2

2r
cos2 ζ cosω Er

+
v2

2r
sin2 ζ cosω

(sin2 ω

r
+

cos θ cos2 ω

R

)
− (1− v2)1/2

2r
sin2 ζ cosω Er.

(
∂−1
ν A∗ · ∇z

)
Av =

1

2

[
− SAθ1 ∂θ

(
CAv1

)
− SAv1 ∂v

(
CAv1

)
− SAζ1 ∂ζ

(
CAv1

)
+ CAr1 ∂r

(
SAv1

)
+ CAv1 ∂v

(
SAv1

)
+ CAζ1 ∂ζ

(
SAv1

)]
= −v

2
(1− v2)3/2 cos2 ζ ∂rE⊥ +

v

2r
(1− v2)3/2 cos2 ζ cosω ∂θEr

− v

2R
(1− v2)3/2 sin2 ζ cosω sin θ Er

− v

2
(1− v2)3/2 sin2 ζ E⊥

(sin2 ω

r
+

cos θ cos2 ω

R

)
.

(
∂−1
ν A∗ · ∇z

)
Aζ =

1

2

[
− SAθ1 ∂θ

(
CAζ1

)
− SAv1 ∂v

(
CAζ1

)
− SAζ1 ∂ζ

(
CAζ1

)
+ CAr1 ∂r

(
SAζ1

)
+ CAv1 ∂v

(
SAζ1

)
+ CAζ1 ∂ζ

(
SAζ1

)]
+

1

16

[
CAζ2 ∂ζ

(
SAζ2

)
− SAζ2 ∂ζ

(
CAζ2

)]
=

v2

2R2
cos ζ sin ζ sin θ cos θ cosω (cos2 ω − 1)

+
(1− v2)1/2

2
sin ζ cos ζ

(
∂rE⊥ −

cosω

r
∂θEr

)
− v2

2R
ω′ cos ζ sin ζ sin θ sinω − v2

2rR
cos ζ sin ζ sin θ cos3 ω

− (1− v2)3/2

2
sin ζ cos ζ

(sin2 ω

r
E⊥ + sin θ

cosω

R
Er + cos θ

cos2 ω

R
E⊥
)
.

We find also

V1A∗r =
1

2
CAr1 CV11 = − v2

2R
sin2 ζ cosω sin θ − (1− v2)1/2

2
E⊥,

as well as

V1A∗θ =
1

2
SAθ1 SV11

= − v2

2r2
cos3 ω cos2 ζ − v2

2r2
cosω sin2 ω sin2 ζ

− v2

2rR
sin2 ζ cos3 ω cos θ − v2

2rR
sin2 ω cosω cos2 ζ cos θ

+
(1− v2)1/2

2r
cosω Er.
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V1A∗v =
1

2

[
CAv1 CV11 + SV11 SAv1

]
=

v(1− v2)3/2

2R
Er sin2 ζ cosω sin θ

+
v

2r
(1− v2)3/2 E⊥

[
cos2 ω cos2 ζ + sin2 ω sin2 ζ

]
+

v

2R
(1− v2)3/2 E⊥ cos θ

[
sin2 ζ cos2 ω + sin2 ω cos2 ζ

]
.

V1A∗ζ =
1

2

[
CAζ1 CV11 + SAζ1 SV11

]
+

1

8

[
CAζ2 CV12 + SAζ1 SV12

]
= − v2

2rR
sin θ cos3 ω sin ζ cos ζ

− v2

2R2
sin ζ cos ζ sin θ cos θ sin2 ω cosω

+
(1− v2)1/2

2R
sin θ cosω sin ζ cos ζ Er

+
(1− v2)1/2

2
sin ζ cos ζ E⊥

(
sin2 ω − cos2 ω

) (1

r
− cos θ

R

)
.

There remains to compute(
∂−1
ν A∗ · ∇z

)
(V0) A∗r = −1

2
CAr1

[
SAθ1 ∂θV0 + SAv1 ∂vV0

]
=

v2(1− v2)1/2

2r
∂θb cosω cos2 ζ +

v2(1− v2)

2
b E⊥ cos2 ζ,

(
∂−1
ν A∗ · ∇z

)
(V0) A∗θ =

1

2
SAθ1

[
CAr1 ∂rV0 + CAv1 ∂vV0

]
=

v

2r
cosω cos ζ

[
− v(1− v2)1/2 ∂rb cos ζ − v(1− v2) b cos ζ Er

]
,(

∂−1
ν A∗ · ∇z

)
(V0) A∗v =

1

2

[
CAr1 ∂rV0 SAv1 − SAθ1 ∂θV0 CAv1

]
=

v

2
(1− v2)2 cos2 ζ

(
∂rb E⊥ −

cosω

r
∂θb Er

)
,

as well as(
∂−1
ν A∗ · ∇z

)
(V0) A∗ζ =

1

2

[
CAr1 SAζ1 ∂rV0 − SAθ1 CAζ1 ∂θV0 +

(
CAv1 SAζ1 − SAv1 CAζ1

)
∂vV0

]
= −v2

2r
(1− v2)1/2 ∂θb cosω cos ζ sin ζ

(sin2 ω

r
+

cos θ cos2 ω

R

)
+

1

2r
(1− v2) ∂θb cosω cos ζ sin ζ Er

− v2

2
(1− v2) cos ζ sin ζ E⊥ b

(sin2 ω

r
+

cos θ cos2 ω

R

)
− 1

2
(1− v2) E⊥ ∂rb sin ζ cos ζ

− v2

2R
(1− v2)1/2 ∂rb cos ζ cosω sin θ sin ζ

− v2

2R
(1− v2) sin θ cosω sin ζ cos ζ b Er.

We can compile the above results at the level of (4.59) to recover the content of the S? inside
Lemma 4.7.
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