

Leaching of Metals in Coastal Technosols Triggered by Saline Solutions and Labile Organic Matter Removal

Hussein Jaafar Kanbar, Edward Elias Srouji, Zeinab Zeidan, Sirina Chokr,

Zeinab Matar

▶ To cite this version:

Hussein Jaafar Kanbar, Edward Elias Srouji, Zeinab Zeidan, Sirina Chokr, Zeinab Matar. Leaching of Metals in Coastal Technosols Triggered by Saline Solutions and Labile Organic Matter Removal. Water, Air, and Soil Pollution, 2018, 229 (5), pp.157. 10.1007/s11270-018-3808-z . hal-03914183

HAL Id: hal-03914183 https://hal.science/hal-03914183

Submitted on 28 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Leaching of metals in coastal technosols triggered by saline solutions and labile organic matter removal

3 Hussein Jaafar Kanbar^{a, b, *}, Edward Elias Srouji^a, Zeinab Zeidan^a, Sirina Chokr^a, Zeinab Matar^{a, c, *}

⁴ ^a Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and

5 Technology (EDST); Faculty of Sciences; The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat,
6 Lebanon.

^b Applied Plant Biotechnology Laboratory (APBL); Faculty of Sciences; The Lebanese University, Rafic Hariri
 Campus, Hadat, Lebanon.

^o Department of Earth and Life Sciences; Faculty of Sciences; The Lebanese University, Rafic Hariri Campus,
 Hadat, Lebanon.

11 * Corresponding authors: <u>Hsen.kanbar@gmail.com</u>, ORCID ID: 0000-0002-9505-9974, telephone number: +961

12 71219629; matarzeinab@gmail.com, telephone number: +961 76971133

13

14 Abstract

15 This study aims to understand the influence of salinity and labile organic matter removal on the fate and 16 behavior of metals in coastal technosols. Two technosol cores were collected near the Lebanese shore. The cores 17 were sectioned into layers; each layer was characterized for pH, salinity, electric conductivity, labile and total 18 organic matter, grain size, and total and oxalate-extractable metals. Consequently, two saline solutions were used 19 in desorption experiments to understand the role of ionic strength and labile organic matter on metal release. The 20 results showed that the technosol layers were highly heterogeneous; most layers were enriched with Fe, Zn, Pb 21 and Cu. The mineralogical investigations showed that the metals, notably Fe, were not present as crystalline 22 minerals, rather big percentages of the metals were found in amorphous or poorly crystalline phases. Desorption 23 experiment showed that Mg release was dependent on salinity and organic matter in both technosols, while Pb 24 release was dependent on both factors only in one. Additionally, Zn and Cu were associated to organic matter, 25 and their release was conditioned by the removal of labile organic matter; iron was primarily found as amorphous 26 or poorly crystalline phases, and salinity had a major role in its release. The role of ionic strength and labile 27 organic matter removal on the behavior of metals in technosols was demonstrated. Finally, understanding metal 28 dynamics between the solid and liquid compartments in technosols, especially where salt deposition occurs, is 29 important to reduce unwanted metal leaching to groundwater or seawater and transfer to biota.

30

0 **Keywords:** technosol, desorption, metals, oxalate-extractable, ionic strength, labile organic matter

31 Acknowledgement

32 This research was financed by the research grant programs of the Lebanese University (The funding source 33 had no involvement in the study design, writing of the report and decision to submit the article for publication). 34 We would like to thank Prof. Ahmad Kobaissi (Lebanese University, Applied Plant Biotechnology Laboratory "APBL") for giving us access to the flame photometer. The research assistants of the Research and Analysis 35 36 Platform for Environmental Sciences (PRASE), namely Ms. Sarah Haddad, Ms. Sahar Rihane, Ms. Manal 37 Houhou-Hadada, Mr. Ali Berro and Ms. Zahraa Ataya, are acknowledged for their dedicated work in sample 38 analyses. We also thank Mr. Hussein Nasser who helped during the sampling campaign, Dr. Rawaa Ammar for 39 reviewing an earlier version of this manuscript and an anonymous reviewer for their constructive comments.

40 **1. Introduction**

41 Lands covered by technosols have been gaining interest worldwide. Technosols are soils whose properties 42 or pedogenesis is predominated by technical origin (IUSS Working Group WRB, 2006); they develop on materials 43 resulting from human activities. Technosols commonly occur in urbanized and industrial regions, contain many 44 artefacts that are usually absent in natural soils (e.g. pesticides, sludge, cinder, slag and other industrial materials), 45 and can be enriched with organic compounds and metals (Huot et al., 2014a, 2014b; IUSS Working Group WRB, 46 2006; Monserie et al., 2009). In the near future, more technosols are expected to form due to urbanization, growth 47 of industrial sectors and the increasing demand for energy and mineral resources (Santini and Fey, 2016; 48 Scalenghe and Ferraris, 2009). Even though some technosols are recognized as metal and contaminant holding 49 zones, there is still a lack of information about the environmental fate of metals and contaminants in technosols. 50 In the case of metals, the major parameters that influence their behavior and fate are the initial metal species, 51 physico-chemical parameters of the matrix (e.g. solid and liquid phases of the technosol), such as pH, redox 52 potential and ionic strength (salinity), cation exchange capacity (CEC), and mineral, organic and vegetal 53 composition (Adriano, 2001; Butler, 2009; Carrillo-González et al., 2006; Du Laing et al., 2009).

54 Although technosols might be enriched with metals, they can further accumulate metals from different 55 sources, such as atmospheric depositions and surface run-off. Metal sorption augments if the technosols contain 56 fine particles (clayey), and are rich in organic matter (OM) and amorphous or poorly crystalline minerals, such as allophanes and Fe oxyhydroxides (e.g. Latrille et al., 2003; Lynch et al., 2014). Indeed, the high surface area of 57 58 such particles can form abundant binding sites for metals (Du Laing et al., 2009; Wang et al., 2018). Furthermore, 59 the labile fraction of the organic matter (i.e. labile organic matter "LOM") is the part that can be easily decomposed 60 by soil organisms (days to a few years). As a result, metals might be released from LOM, leach to water 61 compartments (e.g. groundwater or sea water) and can cause harmful effects with time (Charriau et al., 2011; 62 Strosser, 2010). Allophane-like phases have been reported to be present in volcanic soils and in materials where 63 similar high-temperature conditions predominate, such as in the byproducts and waste materials originated from 64 coal combustion, iron mining and steel making (e.g. sludge and slag from blast furnaces) (Parfitt and Kimble, 65 1989). Allophanes are mainly present in clay fractions, are made from hydrous aluminosilicates, and have amorphous or poorly crystalline features (Hiradate, 2005; Wada and Wada, 1977). Moreover, allophanes were 66 67 proven to be present or even develop in technosols near steelmaking facilities (Huot et al., 2014b; Uzarowicz and Skiba, 2011). In allophane rich technosols, OM tends to accumulate since the binding of these two components 68 69 (i.e. allophanes and OM) resist organic matter degradation (Buurman et al., 2007). Consequently, the mobility of 70 metals that are bound to allophanes, organic matter, or allophane-OM complexes might be limited or suspended 71 until further alterations cause metal release. Stable sulfide (or sulphide) formation under anoxic conditions (e.g. 72 water saturated technosols) or the integration of metals into well crystalline structures upon mineral crystallization 73 or soil ageing also reduces metal desorption (Du Laing et al., 2009; Manceau et al., 2002).

The Lebanese shore, located in the eastern part of the Mediterranean Sea (Levantine Sea), has been recognized for shipping and trading activities since the Bronze Age (Elmaleh et al., 2012). As a result, contaminated and technical soils and sediments have been present since a long time in Lebanon as well as other sites that were famous for trading. Currently, Lebanon contains a lot of industries, especially on the shore; several 78 sites were reported to have signatures of anthropogenic activities, mainly by industrial and agrochemical plants 79 (Ammar et al., 2016, 2015; Kanbar et al., 2014). Soils, including technosols, located near seas/oceans undergo 80 unique processes; a key parameter that influences metal mobility at those sites is salinity (or ionic strength). Indeed, 81 sea breeze is carried to land where salts deposit; consequently, the cations released from the salts compete with 82 metals for binding sites, which causes the exchange between salt cations and sorbed metals. This might cause 83 unwanted metal desorption or leaching to nearby water bodies. Moreover, ionic strength, along with OM, is a 84 common parameter influencing metal sorption and desorption (e.g. Schlegel et al., 1999; Shi et al., 2013, 2005). 85 Therefore, technosols that are enriched with metals possibly associated to amorphous or poorly crystalline 86 minerals (such as allophanes and Fe oxyhydroxides), OM or a complex of both depict peculiar behavior, especially 87 for sites where salts are continuously deposited by sea breeze. Hence, this study will provide insights to the 88 potential environmental fate of metals in shoreline technosols that are susceptible to salt deposition.

The present study aims to characterize the technosols in terms of physico-chemical parameters, chemical and mineralogical composition, and to determine the dynamics of metals between the solid (particulate) and liquid (leachate) compartments of the technosols. More precisely, the effect of LOM removal and salinity on metal desorption in metal-rich technosols is addressed. Accordingly, the understanding of the dynamics and fate of metals under those conditions can help to manage technosols, to implement precaution strategies and to maintain sustainable land. As a result, metal spreading and risk of transfer to biota can be downgraded or even stopped.

95

2. Materials and Methods

96 **2.1. Sampling site**

97 The technosols were collected near the Lebanese shore (Selaata, North Lebanon), located on the eastern side of the Mediterranean Sea (Fig. 1). The Lebanese coast is characterized by a mild Mediterranean climate with 98 99 a cold and rainy winter (November till March) with temperatures ranging between 3 and 18°C, and a dry and 100 warm summer (May till September) with temperatures ranging between 18 and 38°C. The mean annual 101 precipitation on the Lebanese coast is 950 - 1000 mm. Surface water flows on the carbonaceous bedrock while 102 groundwater flows through karstic carbonate rocks, mainly resulting in the dissolution of carbonates (Metni et al., 103 2004; Shaban, 2014). Agrochemical plants, fertilizer industries, wastewater treatment plants, tile factories, and a 104 steelmaking plant are located on the Lebanese shore, mainly in the north region (Selaata and Batroun). Local 105 studies were carried out on Lebanese soils (master studies at the Lebanese University, Faculty of Sciences) that 106 used X-ray fluorescence (XRF). The soils near the steelmaking plant were rather heterogeneous in composition, 107 yet a big part contained artefacts (mainly scrap) and were shown to be enriched with Fe, Pb, Zn, Cd and other 108 metals (XRF findings). As a result, the soils were identified as technosols and were chosen as the sampling site. 109 The technosol covers approximately 3000 m^2 and is not vegetated. It is important to note that the facility is active 110 only during certain periods of the year, so waste disposal directly from the facility is not continuous. Waste 111 materials and byproducts collected from the electric arc furnaces are usually reused in the furnaces; however, 112 metal-enriched materials harm the inner lining of furnaces and are therefore dumped. Those technosols are 113 expected to have allophanes which originate from the electric arc furnaces. Furthermore, other waste materials 114 from local and international industries have also been dumped at that location since approximately 10 years; those 115 introduced materials contribute to the presence of organic matter in the technosols, especially since the area behind

the steelmaking facilities is not vegetated. The area will serve as a dock after the dumped materials form an elevated land.

118

2.2. Sample collection, description and treatment

119 Technosols were collected via a motorized core drill behind the steelmaking industry (Percussion hammer 120 Cobra TT, Eijkelkamp); the corer is 110 cm long and has a 90 mm diameter. Two cores were collected, hereby 121 referred as NS and FS (collected near the sea and far the sea, respectively, Fig. 1). Those sites were chosen due 122 to their distinct visual features as well as their locations away from the shoreline; different amounts of salt 123 deposition from the sea are expected for the two sites. The NS and FS cores were located approximately 10 and 124 40 meters away from the sea (Fig. 1) and were 40 and 87 cm deep, respectively. The NS core could not go deeper than 40 cm due to the presence of stones and coarse waste materials. The cores were sectioned according to visual 125 aspects of the technosol layers (color, grain size, and presence of pebbles, stones and waste materials). The NS 126 127 core was sectioned into 9 layers (NS1 to NS9), and the FS core was sectioned into 14 layers (FS10 to FS23). Some 128 of the main properties of the layers that were used to section the cores are summarized in Table 1. All the 23 layers were frozen and freeze-dried. The bulk density and porosity (as well as particle density and solid space) were 129 130 calculated using the dried samples (according to Thien and Graveel, 2003). The samples were then stored under 131 dry conditions for further analyses. An aliquot of each sample was ground using an acid cleaned agate mortar and

132 pestle.

Table 1: Main	properties	of the NS	and FS	technosol	layers.
DD 1 11 1	•,				

BD: p	ulk densit	y				
Core	Layer (cm)	Label	Color	Properties (content)	BD (g/cm ³)	Porosity (%)
	0-3	NS1		iron dust and scrap	1.1	44
-	3-6	NS2		iron dust	1.3	50
	6-10	NS3	derk brown	iron dust, glass materials and scrap	1.4	55
	10-20	NS4		stone and plastic materials	1.2	50
NS	20-22	NS5		white grains, plastic materials and scrap	1.2	50
	22-26	NS6		plastic and paper wastes	1.4	47
	26-30	NS7		scrap and plastic materials	1.3	50
-	30-35	NS8	beige	scrap	1.3	44
	35-40	NS9		scrap	1.3	68
	0-4	FS10	- dark brown	scrap	1.2	45
	4-8	FS11		scrap and white grains	1.2	50
	8-16	FS12	sandy brown	scrap	-	-
	16-19	FS13		sticky texture and scrap	-	-
	19-24	FS14		sticky texture and white grains	1.1	48
	24-32	FS15		sticky texture	1.0	50
ES	32-50	FS16			-	-
1.2	50-55	FS17			1.0	50
	55-61	FS18	light brown		-	-
	61-65	FS19		sticky taxture and white grains	-	-
	65-71	FS20	-	sucky texture and white grains	-	-
	71-76	FS21			-	-
	76-81	FS22			-	-
-	81-87	FS23			1.0	62

133

2.3. Physico-chemical characterization

134 The physico-chemical parameters, namely pH, salinity, electric conductivity (EC), total dissolved solids (TDS), soil organic matter (total and labile) and grain sizes, were determined for all NS technosol layers and for 135 6 FS technosol layers. A duplicate measurement was done for each sample using non-ground aliquots unless 136 indicated otherwise. The pH was measured in a 1:1 ratio of soil:distilled water slurry using a combined soil pH 137 138 electrode (MA920B/1 from Milwaukee) coupled to a digital pH meter (AD1000 from ADWA), as described by Burt (2004). Salinity, EC and TDS were measured according to AFNOR (NF ISO 11265, 1994) using a LaMotte 139 pH/TDS/Salt portable meter (Tracer PockeTester). Soil LOM and total OM, the latter represented by loss on 140 141 ignition (LoI), were determined after calcinating the samples. Dried and ground samples were calcinated at 250°C 142 for four hours; the mass difference was used to calculate soil LOM. The same samples were then heated at 550°C 143 for four hours, and the mass difference was used to calculate total organic matter (Heiri et al., 2001; Loh et al., 2016). The particle size distribution of the technosols was carried out using laser diffraction method (Partica Laser 144 145 Scattering Particle Size Distribution Analyzer LA-950V2, from Horiba) with a range from 10 nm to 3000 µm.

146 **2.4. Mineralogical and chemical composition**

147 Dried and finely ground technosol samples were used for mineralogical and chemical composition 148 investigations. The major crystalline minerals were determined by qualitative X-ray diffraction (XRD) using a D8 149 Bruker X-ray diffractometer (copper anticathode of wavelength $\lambda K_{\alpha} = 1.5418$ Å). The diffractograms were 150 collected in the 20 range of 10° to 60° with a step size of 0.034° per second. Functional groups were determined 151 by Fourier transform infrared (FTIR-6300 from JASCO). All technosol layers were analyzed using XRD and 152 FTIR; however, only relevant diffractograms and spectra are included in this paper.

153 Semi-quantitative XRF readings were done on all the layers of the two technosol cores. A pre-calibrated handheld XRF gun equipped with an Ag anode and a generator of 45 kV maximum power was used (Niton XL2 154 155 Analyzer from Thermo Scientific). Sixty-second readings were performed on samples prepared on 2 cm holding 156 disks. Due to the sensitivity of the XRF gun, and due to the metal enrichment in the samples, only Ca, Fe, Zn and 157 Pb were semi-quantified. For selected layers of the NS and FS technosol cores, acid digestion was done via aqua regia, as described by Kanbar et al. (2014). Although aqua regia does not dissolve silicate minerals, it was proven 158 to be a reliable technique for the determination of total metal contents (e.g. Melaku et al., 2005; Sastre et al., 2002; 159 160 Taraškevičius et al., 2013). Sodium and K were quantified using model 420 dual-mode flame photometer (from 161 Sherwood). Magnesium, Ca, Fe, Pb, Zn and Cu were measured using atomic absorption spectroscopy (AAS 162 Rayleigh WFX-210) equipped with a WF-10A autosampler, and flame and graphite furnace modes. Manually prepared standards were used for calibration and QA/QC procedures were implemented based on internal 163 164 standards to reduce random errors.

Selective dissolution of allophanes as well as amorphous and poorly crystalline Fe oxyhydroxides or ferrihydrites was done by acid oxalate method under darkness (AOD), which is also known as Tamm's method (Pansu and Gautheyrou, 2006). This method was used to determine the metal contents associated with the aforementioned minerals, which will be termed oxalate-extractable metals. The chemical composition was determined by a flame photometer (for Na and K) and AAS (for Mg, Fe, Pb, Zn and Cu).

170 **2.5. Desorption experiments of bulk and calcinated technosols using salt solutions**

171 Desorption experiments were conducted to understand the release of metals as a function of salinity and LOM removal. Salinity plays a crucial role in metal release, especially in coastal technosols and soils, while LOM 172 173 loss or degradation has a role in metal release in relatively short periods. Desorption experiments were made on 174 bulk and 250°C calcinated samples (the calcination process was presented in section 2.3). It should be noted that 175 XRD and FTIR analyses were also performed on the calcinated samples. However, two salt concentrations were 176 used in the desorption experiments (due to the different salinities of the technosols). Solutions of 200 and 1300 177 mg/L salinities were prepared, indicating low (LS) and high (HS) salinities, respectively. The LS and HS solutions 178 represent 0.5 and 2.9 mM ionic strengths, respectively. Calcium nitrate (Ca(NO₃)₂) was used as an electrolyte 179 because it is a neutral salt, i.e. it does not interact with exchanging processes; $Ca(NO_3)_2$ is commonly used in 180 metal exchange experiments (e.g. Camargo et al., 2007; Shi et al., 2013, 2008). Briefly, four desorption experiments were done for each sample (i.e. bulk-LS, bulk-HS, 250-LS and 250-HS). A mass of 0.8 g of ground 181 182 soil (bulk and calcinated "250") was added to 50 ml extracting solution (LS and HS). The mixtures were left 24 183 hours to stand before the experiment began so that swelling clays would have swelled (Keiser et al., 2014); this 184 was done to mimic actual conditions in the field and to give more accurate results on the metals released. The 185 mixtures were then stirred for 6 hours, filtered over 0.45 µm (cellulose acetate), the filtrates were acidified with 186 two drops of concentrated HNO₃ and stored at 4°C for metal quantification. The metals Mg, Fe, Pb, Zn and Cu 187 were quantified by AAS, and Na and K were quantified by flame photometry (AFP100 flame photometer, from 188 Biotech Engineering Management Co. LTD). The metal concentrations (in mg/L) released from the technosols 189 were converted to contents (either mg/kg or percent); consequently, a comparison could be made between the 190 desorbed metals on one hand, and the total and oxalate-extractable metals on the other.

191

3. Results and Discussion

192 **3.1.Physico-chemical parameters of the technosols**

193 Both technosol cores (NS and FS), even though located only 30 meters apart, have variable characteristics. 194 All the samples showed pH values above neutral (Fig. 2), indicating calcareous nature, which is a characteristic 195 of most Lebanese soils (Abdel-Rahman and Nader, 2002). As for salinity, EC and TDS, the NS technosols significantly depicted elevated values, which ranged between 1040-1920 mg/L, 1970-3510 µS/cm (equivalent to 196 197 1.9-3.5 dS/m) and 1460-2680 mg/L, respectively. On the other hand, those parameters were much lower for FS 198 technosols (190-320mg/L, 374-615 µS/cm and 260-440 mg/L for salinity, EC and TDS, respectively). The exact 199 values for each layer are compiled in Table A1 (Online Resource). Although the technosols are rather 200 heterogeneous in composition and contained waste materials (Table 1), the high values of salinity, EC and TDS 201 are thought to be related to the location near the seashore (caused by sea breeze). Indeed, the relatively high EC 202 values in NS technosols were comparable to other soils collected near seas (e.g. Wang et al., 2014; Yu et al., 203 2014). The organic fractions of NS and FS generally lied in the same ranges. However, NS samples contained 204 higher OM, mainly observed by lower LOM and OM limits for FS technosols. Samples with high LOM are 205 expected to have available nutrients or metals for biota (such as K, Mg, Fe, Mg, Zn and Cu), meaning that metal 206 release/desorption is higher (Strosser, 2010). As clearly seen by the grain size deciles (D₁₀, D₅₀ and D₉₀), FS samples are finer in texture than NS ones; more than 50% of the FS samples are made from silt and clay (D_{50} is 207 208 inferior to 64 μ m; Table A1, Online Resource). Moreover, the D₁₀ values of the FS technosols, unlike NS ones,

- 209 indicate the presence of clay particles (< $2 \mu m$). Furthermore, most of the FS samples, especially the deep ones, 210 had a sticky nature (Table 1), which reflects higher clay contents than NS samples. Organic matter and grain size 211 generally denote higher CEC on one hand, and higher total and exchangeable metals on the other. Indeed, soils 212 that are made of fine grains and contain high organic matter are expected to be more enriched with metals than 213 coarse and OM-poor soils (e.g. Carrillo-González et al., 2006; Kanbar et al., 2014; Manceau et al., 2002).
- 214

3.2. Semi-quantification of metals in the technosols using XRF and possible sources

215 The XRF findings were used to do an inter and intra-comparison between the NS and FS technosol samples. 216 The trends of Ca, Fe, Pb and Zn semi-contents are shown in Fig. 3. Calcium contents were higher in the top 40 217 cm of the FS technosols when compared to the deeper layers; moreover, pH of the FS technosols followed a 218 similar trend (Table A1, Online Resource), suggesting the contribution of Ca minerals in the calcareous technosols. 219 Although Ca is ubiquitous in Lebanese soils due to the predominance of carbonaceous formation (Abdel-Rahman 220 and Nader, 2002), it is also the main component present in steelmaking slag, since limestone and dolomite are 221 used in blast and electric arc furnaces to remove impurities (Das et al., 2007, 2002). Interestingly, NS technosols 222 were greatly enriched with Fe, and showed a general increase in depth. Even though Fe is the main element of 223 interest in steelmaking, it may still be present in byproducts or wastes if it cannot be extracted from the materials 224 used in the furnace; i.e. if Fe occurs as non-extractable species. Similar to iron, Pb and Zn contents were also 225 higher in the NS technosols when compared to FS samples. As for FS technosols, Pb and Zn were relatively higher 226 in the surface 20 cm layers. Iron, Zn and Pb are commonly found in waste materials released from steelmaking 227 facilities (Das et al., 2007; Kanbar et al., 2017; Kretzschmar et al., 2012). This, however, does not indicate that 228 the materials are entirely made from steelmaking wastes. Moreover, the trends of the metals were different even 229 for the same technosol core (e.g. different trends for Fe and Pb). An exception is the general decreasing trends of 230 Pb and Zn from the surface towards 20 cm depth, and quasi-steady contents afterward in the FS technosols. The 231 variability of metal contents in the same technosol core, or between the two cores, indicates that multiple sources 232 have contributed to the technosol formation. Finally, and according to the XRF findings (Fig. 3), the physico-233 chemical characteristic (Table A1, Online Resource) and general properties of the technosol layers (Table 1), 234 some layers were selected for further characterization (namely NS1, NS4, NS9, FS11, FS14 and FS17). Those 235 samples are marked by a star in Fig. 3.

236

3.3. Bulk mineralogical composition and chemical structure

237 The diffractograms were fitted to quartz and calcite to correct the horizontal displacement; quartz and 238 calcite were used for fitting due to their predominance in the technosols. X-ray diffraction patterns revealed that the well crystalline minerals present in the samples are primary silicate minerals (quartz), carbonate minerals 239 240 (calcite and dolomite) and secondary weathered silicate minerals (phyllosilicates; as indicated by the diffraction 241 lines at 4.47 and 2.57 Å) (Fig. 4). The NS and FS technosols have pH values in the range of 7.6-8.1 (Fig. 2) and 242 are therefore expected to contain calcite (Thomas, 2006). Dolomite was clearly identified in FS11 and FS17 243 technosols by the 2.88 Å peak. As stated previously, the detected dolomite might be originated from the 244 steelmaking facilities, since it is used to remove impurities, or it might be naturally found in soils of carbonaceous 245 formations (Abdel-Rahman and Nader, 2002; Das et al., 2007). Phyllosilicates were detected in the FS technosols; 246 indeed, FS technosols showed a clayey character in terms of size (small grain size deciles in Fig. 2) and sticky

texture (Table 1). Crystalline iron minerals were also detected in the technosols. Hematite (Fe₂O₃) or pyrite (FeS₂)

248 (~ 2.7 Å) and magnetite (Fe₃O₄, 2.53 Å) were slightly detected in the NS technosols; NS layers are richer in Fe

than FS layers (Fig. 3). The relatively small peak at 2.7 Å of the NS technosols makes it difficult to distinguish

between hematite and pyrite (2.69 and 2.71 Å, respectively), hence the peak is assigned to either hematite or pyrite

251 (H/P), or can even be both. Goethite (α -FeOOH, 4.18 Å) was detected in the FS technosols. It is worth mentioning

that the diffractograms of the calcinated samples did not reveal additional information that the initial/bulk samples

253 did.

254 The FTIR spectra for the bulk and calcinated samples are shown in Fig. 5. From a general view, the bulk 255 FS14 and FS17 technosols showed a prominent peak at 1640 cm⁻¹, indicating bending mode of water molecules and/or alkene functional group (Maréchal, 2011; Parikh et al., 2014). Since the samples were freeze-dried, the 256 257 water molecules indicated in the spectra are trapped in the interplanar spaces of clays (Schuttlefield et al., 2007); indeed, diffractograms showed that the FS14 and FS17 technosols contain phyllosilicates (Fig. 4). Also, there is 258 259 a contribution of alkene (C=C) to the same peak due to its persistence in the calcinated samples for all technosols. 260 Bands between 2960 and 2855 cm⁻¹ indicate alkyl functional groups (-CH₃, -CH₂ and CH), which in turn reflect 261 OM (Ammar et al., 2016; Kanbar et al., 2014; Le Meur et al., 2016). Those peaks were clearly shown in the bulk 262 NS technosols, especially NS1, which is the richest in OM (Table A1, Online Resource). Other bands that also indicate OM are 1800-1400 cm⁻¹ (aliphatic or aromatic compounds) and 915, 785 and 695 cm⁻¹ (aromatic C-H) 263 264 (Margenot et al., 2015). After calcination, the bands assigned to OM naturally disappear due to the rupture of hydrocarbon bonds. Moreover, bands between 930-730 cm⁻¹ and 1425 cm⁻¹ could indicate calcite (Legodi et al., 265 266 2001). The band at 2515 cm⁻¹ could refer to thiol (S-H) or O-H group of carboxylic acid (Ammar et al., 2016; 267 Parikh et al., 2014), both which disappeared after calcination. Bands at 1115 and 1025 cm⁻¹ indicate OM (carboxylic acid C-O) as well as Si-O-Si of allophanes or quartz (Bishop et al., 2013; Levard et al., 2012; 268 269 Schuttlefield et al., 2007). Those peaks decreased after calcination, which could demonstrate the presence of 270 allophanes or quartz, since the latter surely remains intact after thermal treatment. Additionally, the bands at 520 271 and 465 cm⁻¹ might also indicate salt or Si-O-Al out-of-plane bending for allophanes (Bishop et al., 2013; Parikh et al., 2014; Pérez et al., 2016), the former is expected due to the location near the sea. Furthermore, the bands 272 273 located between 1300 and 900 cm⁻¹ could also indicate allophanes (Prado et al., 2007; Rennert et al., 2014), in 274 addition to the other functional groups indicated in Fig. 5. The presence of a band at 627 cm⁻¹ of the calcinated samples indicates Fe-O vibrations of hematite or asymmetrical stretch of Fe-O of goethite; such minerals might 275 crystallize from Fe oxyhydroxides after thermal treatment. Metals might be released from the Fe oxyhydroxides 276 277 upon the formation of hematite and goethite (Lynch et al., 2014). The OH-stretching motion of interlayer hydroxyl 278 groups in kaolinite are assigned by the bands between 3800 and 3500 cm⁻¹ (Ammar et al., 2016; Le Meur et al., 279 2016; Schuttlefield et al., 2007), which were more prominent in the clay (phyllosilicate) containing FS technosols 280 and NS1 (Fig. 4). Other O-H groups are assigned at 3435, 3351 and 3300 cm⁻¹, indicating O-H stretching of carboxylic acids. After calcination, those peaks became more prominent due to the disappearance of organic 281 282 matter contributing to peaks in that region. Additionally, a small peak was detected at 3750 cm⁻¹ in the calcinated technosols, which belongs to the vibrational stretching of structural hydroxyl groups (Parikh et al., 2014). 283

3.4. Total and oxalate-extractable metal contents, and behavior upon desorption
 experiments

The total metal contents confirmed the semi-quantitative XRF measurements, as seen by the similar trends for the metals (Zn, Pb and Fe) in the two technosol cores (**Fig. 3**, **Fig. 6** and **Fig. 7**). Moreover, some of the metals that were not semi-quantified by XRF showed to be distinct between the two technosol cores, namely Na, K and Mg (**Fig. 6**). It is worth mentioning that due to the heterogeneity of the technosols (in terms of origin and contents), the particle size did not correlate with metal contents (total, oxalate-extractable or desorbed), as it might be the case of other studies.

292

3.4.1. Behavior of major elements: Na, K, Mg and Ca

293 Sodium contents were higher in the technosols having higher salinity, EC and TDS (i.e. NS technosols) 294 and were majorly released after oxalate extraction and desorption experiments (Fig. 6a). Even though Na salts 295 (mainly NaCl) were not detected by XRD, the presence of such salts can be affirmed by the location of NS 296 technosol near the seashore. Therefore, a part of the released Na is thought to come from Na salt dissolution, while 297 another part might come from the exchange caused by the $Ca(NO_3)_2$ salt in the desorption experiment. The high 298 total and oxalate-extractable Na in the NS samples could be reflected by high Na desorption after extraction with 299 salt solutions (LS and HS). Indeed, there exists a positive correlation between total and oxalate-extractable Na on 300 one hand, and desorbed or dissolved Na after desorption on the other (Table A2, Online Resource). Nonetheless, 301 different salt concentrations (or ionic strengths) and thermal treatment did not show to have an impact on Na 302 release. This is shown by similar Na contents released from bulk and calcinated samples upon desorption with LS and HS solutions (Fig. 6a); again, this indicates that a big part of the dissolved Na originates from the dissolution 303 304 of Na salts. Moreover, K has higher affinity to soil particles than Na (Lal, 2006) and can be present in lattices as 305 a non-exchangeable element (Hodges, 2010); therefore, K is not leached as prominently as Na (Fig. 6b). Ammar et al. (2016) showed that mainly Na, and to a lesser degree K, was exchanged with Ca in soils. The possible 306 307 presence of allophanes in the technosols was previously demonstrated by the FTIR (Fig. 5); a part of the released 308 K could originate from allophanes or amorphous or poorly-crystalline Fe oxyhydroxides, as seen by the positive 309 correlations between oxalate-extractable K and K released after desorption (Table A2, Online Resource). 310 Nevertheless, the correlation cannot be considered significant due to the low numbers of samples. In most cases, 311 more K was released using higher ionic strength solution (HS); this indicates that K forms exchangeable outer 312 sphere complexes (ionically bound) in soil particles, possibly in interlayer spaces of phyllosilicates (Butler, 2009; Manceau et al., 2002). As for Mg, it was highly present in NS1 and NS4 technosols, however, only a minor part 313 314 was oxalate-extractable (Fig. 6c). On the other hand, NS9, FS11 and FS14 had relatively higher oxalate-315 extractable Mg, which might suggest higher Mg desorption; this, however, was not the case. Disregarding oxalateextractable Mg, only a small part of Mg was desorbed from the bulk samples. Yet, Mg was significantly released 316 from the calcinated samples, in which HS solution showed more Mg desorption; again, this might indicate 317 exchangeable Mg as outer sphere complexes in the technosols. Indeed, this suggests Ca exchange (from the salt 318 319 solutions) with ionically held Mg. Moreover, in solutions with high ionic strength, divalent cations (Mg^{2+} in our 320 case) are more prone to desorption than monovalent ones (Hinsinger, 2006). Magnesium desorption after removing LOM indicates that Mg had been initially associated with OM. At this stage, Mg²⁺ is the most cation to 321 be related to exchange with Ca^{2+} ; this, however, is only true for the calcinated samples (as seen by the positive 322 323 correlation between 250-LS and 250-HS, Table A2, Online Resource). As indicated mainly by XRD (calcite and 324 dolomite) and to a lesser extent by FTIR (Fig. 4 and Fig. 5), the samples are enriched with Ca, except for FS17, which contained the lowest Ca contents (**Fig. 6**d). Since the desorption solutions contain Ca (i.e. $Ca(NO_3)_2$), Ca desorption will not be discussed in the desorption experiments.

327

3.4.2. Fe mineralogy, chemical composition and role in metal sorption

The NS technosol samples are enriched with Fe (12, 20 and 24% for NS1, NS4 and NS9, respectively; Fig. 328 329 7a). Due to that enrichment, well-crystalline Fe bearing minerals were expected to be detected by XRD, which 330 was not the case. In Fe rich technosols, soils and sediments, iron is found as oxides (hematite, wuestite "FeO" and 331 magnetite), oxyhydroxides (goethite), and sulfides (pyrite) (e.g. Huot et al., 2014b; Kanbar et al., 2017; 332 Montargès-Pelletier et al., 2014, 2007; Uzarowicz and Skiba, 2011). It should be noted that the absence of main 333 crystalline Fe bearing minerals in the XRD patterns was the main reason why oxalate-extractable Fe was addressed. 334 The peaks of hematite, goethite and magnetite were slightly detected in the diffractograms of NS and FS 335 technosols (Fig. 4); the low peaks suggest that Fe is majorly present as amorphous or poorly crystalline 336 oxyhydroxides. Poorly crystalline and amorphous phases are more reactive than crystalline minerals (Fey and LeRoux, 1977; Lynch et al., 2014; Wada and Greenland, 1970). A big part of Fe was oxalate-extractable in NS1, 337 NS4, NS9 and FS11 technosols (Fig. 7a). Even though Fe can be associated to allophanes (ferriallophanes), the 338 339 high oxalate-extractable Fe suggests that they might be found as amorphous or poorly crystalline oxyhydroxides 340 as well. Iron desorption seemed rather heterogenous for the different technosol layers. Indeed, Fe is a major and 341 reactive element present in soils, in which precipitation and dissolution processes are diverse. This makes the determination of Fe species and behavior in the environment highly interesting. What could be noted is a positive 342 343 correlation with electrolyte concentration for the bulk NS1 and NS4 technosols, while it was a negative correlation 344 for the FS technosols. After calcination, however, the released Fe contents were lower in comparison to the bulk 345 samples. Calcination of Fe oxyhydroxides can modify the structural arrangement of the chemically bonded water 346 and the -OH groups to produce crystalline phases (Lynch et al., 2014; Pansu and Gautheyrou, 2006); at 250°C, 347 hematite and goethite start to form (Longa-Avello et al., 2017). Although it could not be detected by XRD (Fig. 348 4), hematite and/or goethite formed in the calcinated samples, as suggested by the protrusion of the Fe-O peak in 349 the FTIR spectra (627 cm⁻¹, Fig. 5). During precipitation, metals might be released from or integrated into the 350 newly formed minerals (Lynch et al., 2014). Moreover, Fe rich allophanes or amorphous Fe phases (oxides or 351 oxyhydroxides) were proven to selectively sorb metals, such as Zn, Cu and Pb, some of which were found as 352 sulfides (Carrillo-González et al., 2006; Kanbar et al., 2017; Manceau et al., 2002; Uzarowicz and Skiba, 2011), which might support the formation of Zn and Pb containing sulfides (for example in pyrite detected in the NS 353 354 samples, Fig. 4).

355 **3.4.3.** Contents and fate of Pb, Zn and Cu in the technosols

356 The NS technosols contain elevated Pb, Cu and Zn contents (~ 1000 mg/kg (0.1%) of Pb and 15000-22000 mg/kg (1.5-2.2%) of Zn in NS technosols, and ~ 3000 mg/kg of Cu in NS4 and NS9 technosols, Fig. 7: b-d). Were 357 358 those metals present as crystalline minerals, their contents might be below the detection limits of the XRD, which 359 explains why Pb, Zn and Cu bearing minerals were not detected in the diffractograms (Fig. 4). Depending on the 360 crystallinity and level of the order of minerals, metals should be in the range of 0.5-5% to be detected on XRD 361 (Luxton et al., 2013). Another reason explaining the absence of Pb, Zn and Cu rich minerals by XRD, which is 362 more applicable here, is that their bearing phases are poorly crystalline or amorphous, such as Fe oxyhydroxides 363 or allophanes. Indeed, great fractions of Zn and Cu, and to a lesser extent Pb, were found as oxalate-extractable

364 (Fig. 7: b-d); those metals were reported to be associated to amorphous, poorly crystalline and organic phases (Carrillo-González et al., 2006; Han and Singer, 2007; Manceau et al., 2002, 1996; Shi et al., 2013). Due to the 365 enrichment of Fe oxyhydroxides and/or Fe rich allophanes, Zn, Pb and Cu are thought to be present in those 366 367 phases, as well as in organic fractions. Nonetheless, it is not known if those metal-rich phases were initially introduced to the technosol or if they formed as a result of different reactions through time. On the second 368 369 possibility, Huot et al. (2014b) showed that Fe rich allophane-like minerals formed in soils containing wastes from 370 an iron industry, which was considered as an early transformation or diagenesis. Other studies showed that the 371 weathering of aluminosilicate glass (in coal ash and blast furnace slag for example) can lead to the formation of 372 allophanes (Zevenbergen et al., 1999), especially in calcareous soils and under humid conditions (Bleam, 2017; 373 Sauer and Burghardt, 2006). In this study, the initial materials dumped in the sampling site could not be studied, 374 yet the formation of metal-rich allophanes and oxyhydroxides is highly anticipated. The high contents of Fe (total 375 and oxalate-extractable) and oxalate-extractable metals further support the presence of metals in allophanes, as 376 well as amorphous or poorly crystalline Fe oxyhydroxides. Additionally, poorly crystalline Fe rich 377 aluminosilicates were proven to form in metal-rich sediments (from steelmaking industries) and were able to retain 378 metals, such as Zn and Pb (Kanbar et al., 2017).

379 Even though Pb is generally considered as an immobile element, some treatments might promote Pb 380 desorption. In the case of NS and FS technosols, calcination caused higher Pb release in comparison to bulk 381 samples (Fig. 7b). This suggests that a major part of Pb might be complexed to organic fractions (as discussed previously). As for the bulk samples, higher electrolyte solution caused higher Pb release for NS and FS technosols, 382 383 making the Ca-Pb exchange concentration dependent. This implies that Pb might also be found as outer sphere 384 complexes (Butler, 2009; Manceau et al., 2002); higher electrolyte solutions can release metals that are held in interplanar spaces. On the other hand, when electrolyte concentration has no observable effect, only a small part 385 386 might be present in interplanar spaces, such as the case of FS samples, where phyllosilicates were prominently 387 detected (Fig. 4). Interestingly, 55-88% of Zn was oxalate-extractable, which partially explain why crystalline Zn 388 minerals were not detected in the samples containing 1.5-2% Zn (Fig. 7c). Moreover, Zn was found to be present 389 in Fe oxyhydroxides and allophane-like aluminosilicates (Huot et al., 2014b; Kanbar et al., 2017; Manceau et al., 390 2002). In general, calcination increased Zn release (Fig. 7c). Additionally, and similarly to Pb, higher Ca^{2+} in the 391 solution caused higher Zn release; ionic strength was proven to influence Zn release in metal-rich sediments 392 (Butler, 2009). Several studies have shown that metal release after calcination is limited due to the integration of 393 metals in the precipitating iron oxides (e.g. Kribi et al., 2012; Ndiba et al., 2008). However, this is not the case in 394 the NS and FS technosols, where mainly Pb and to a lesser extent Zn desorption increased after calcination. 395 Therefore, metal integration in the precipitating Fe oxides is absent or limited. Alternatively, from the relatively 396 high oxalate-extractable Zn and Pb contents, and high Zn and Pb contents desorbed after calcination, those metals 397 are expected to be held by iron oxyhydroxides, amorphous phases and organic matter (Carrillo-González et al., 2006; Han and Singer, 2007). Copper, like Zn and Pb, was released in higher contents after calcination (Fig. 7d). 398 399 Studies have shown that organic matter, in addition to Fe oxyhydroxides (Lynch et al., 2014), is the main holding phase for Cu (Eggleton and Thomas, 2004; Weng et al., 2002). Indeed, copper release from technosols was 400 401 reported to be significantly higher for elevated pH values, which might be linked to the dissolution of organic phases (Yao et al., 2009). The general high contents of Cu, Zn and Pb released in HS desorption experiments 402 403 suggest that those metals are not, or only rarely, found in sulfide minerals. The release of those metals was shown

- 404 to be independent of salinity in desorption experiments unless they were found as sulfides (Atkinson et al., 2007).
- Finally, a graphic representation of the fate of metals (Mg, Fe, K, Pb, Zn and Cu) caused by saline solutions and
- 406 LOM removal for the two technosol cores is shown in **Fig. 8**. The release of metals upon the aforementioned
- 407 conditions can give insights on risk assessment, prevention strategies and consequent management of technosols408 located near shorelines.

409 **4. Conclusion**

410 Layers of technosols collected near a steelmaking facility on the Lebanese shore were characterized for 411 physico-chemical parameters, mineralogical composition, and chemical contents (total and oxalate-extractable) and behavior. Salinity, EC, TDS and grain sizes were different for the two technosol layers, while pH, OM and 412 413 LOM were comparable. The main crystalline minerals present in the technosols were quartz and calcite, while 414 few samples included phyllosilicates and dolomite. Despite the enrichment of Fe in the NS technosols, only 415 insignificant peaks of crystalline Fe minerals were detected by XRD; Fe was majorly present as amorphous or 416 poorly crystalline oxyhydroxides. Moreover, FTIR spectra suggested that allophane minerals are present in the 417 NS and FS technosols. Indeed, the metal-rich technosols showed that high percentages of metals (Fe, Pb, Zn and 418 Cu) were oxalate-extractable (amorphous or poorly crystalline), and thus explain the limited identification of 419 crystalline minerals, mainly Fe minerals, in the diffractograms. Those metals are chemically available upon 420 changes in physico-chemical parameters. Furthermore, desorption experiments supported that idea. The metals 421 Mg, Fe, Pb, Zn and Cu were desorbed in higher contents after LOM removal for most technosol samples. Salinity 422 showed to mainly affect Mg and Zn desorption, and to a lesser extent Fe and Pb. In the case of some technosols, 423 there was no effect of salinity concentration on metal release once the LOM was removed. This study highlights 424 the fate of metals in technosols near shorelines. By the deposition of salts and after the removal of LOM with time, 425 quantities of metals will be desorbed from the technosols and leach to groundwater or seawater, which might 426 cause destructive changes to the biota. Therefore, precautions should be taken to reduce saline solution deposition 427 (from seawater or sea breeze) to the high metal-available technosols by creating barriers between the sea and the technosols, or by installing geomembranes to inhibit the migration of metal-containing leachates. 428

- 429 **5. Conflict of Interest**
- 430 The authors declare that they have no conflict of interest.

431 **6. References**

- Abdel-Rahman, A.-F.M., Nader, F.H., 2002. Characterization of the Lebanese Jurassic-Cretaceous carbonate
 stratigraphic sequence: a geochemical approach. Geol. J. 37, 69–91. https://doi.org/10.1002/gj.902
- Adriano, D.C., 2001. Biogeochemical Processes Regulating Metal Behavior, in: Trace Elements in Terrestrial
 Environments. Springer Science, New York, pp. 29–59. https://doi.org/10.1007/978-0-387-21510-5_2
- Ammar, R., Kanbar, H.J., Kazpard, V., Wazne, M., El Samrani, A.G., Amacha, N., Saad, Z., Chou, L., 2016. Role
 of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils. J. Environ.
 Manage. 178, 20–29. https://doi.org/10.1016/j.jenvman.2016.04.042
- Ammar, R., Kazpard, V., Wazne, M., El Samrani, A.G., Amacha, N., Saad, Z., Chou, L., 2015. Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface. Environ. Monit. Assess. 187, 4791. https://doi.org/10.1007/s10661-015-4791-0
- Atkinson, C.A., Jolley, D.F., Simpson, S.L., 2007. Effect of overlying water pH, dissolved oxygen, salinity and
 sediment disturbances on metal release and sequestration from metal contaminated marine sediments.
 Chemosphere 69, 1428–1437. https://doi.org/10.1016/j.chemosphere.2007.04.068
- Bishop, J.L., Ethbrampe, E.B., Bish, D.L., Abidin, Z.L., Baker, L.L., Matsue, N., Henmi, T., 2013. Spectral and
 hydration properties of allophane and imogolite. Clays Clay Miner. 61, 57–74.
- Bleam, W., 2017. Surface Chemistry and Adsorption, in: Soil and Environmental Chemistry. Elsevier, pp. 385–443. https://doi.org/10.1016/B978-0-12-804178-9.00008-2
- Burt, R., 2004. Soil Survey Laboratory Methods Manual. Soil Survey Laboratory Investigations Report No: 42.
 USDA-NRCS.
- Butler, B.A., 2009. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release
 from mine drainage impacted streambed sediments. Water Res. 43, 1392–1402.
 https://doi.org/10.1016/j.watres.2008.12.009
- Buurman, P., Peterse, F., Almendros Martin, G., 2007. Soil organic matter chemistry in allophanic soils: a
 pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur. J. Soil Sci. 58, 1330–1347.
 https://doi.org/10.1111/j.1365-2389.2007.00925.x
- Camargo, I.M.C., Hiromoto, G., Flues, M., 2007. Heavy metal partition in acid soils contaminated by coal power
 plant. J. Braz. Chem. Soc. 18, 831–837. https://doi.org/10.1590/S0103-50532007000400024
- Carrillo-González, R., Šimůnek, J., Sauvé, S., Adriano, D.C., 2006. Mechanisms and pathways of trace element mobility in soils, in: Advances in Agronomy. pp. 111–78. https://doi.org/10.1016/S0065-2113(06)91003-7
- Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., Billon, G., 2011. Trace metal
 behaviour in riverine sediments: Role of organic matter and sulfides. Appl. Geochemistry 26, 80–90.
 https://doi.org/10.1016/j.apgeochem.2010.11.005
- Das, B., Prakash, S., Reddy, P.S.R., Biswal, S.K., Mohapatra, B.K., Misra, V.N., 2002. Effective utilization of
 blast furnace flue dust of integrated steel plants. Eur. J. Miner. Process. Environ. Prot. 2, 61–68.
- Das, B., Prakash, S., Reddy, P.S.R., Misra, V.N., 2007. An overview of utilization of slag and sludge from steel
 industries. Resour. Conserv. Recycl. 50, 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008
- 468 Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., Tack, F.M.G., 2009. Trace metal behaviour in estuarine
 469 and riverine floodplain soils and sediments: A review. Sci. Total Environ. 407, 3972–3985.
 470 https://doi.org/10.1016/j.scitotenv.2008.07.025
- 471 Eggleton, J., Thomas, K. V., 2004. A review of factors affecting the release and bioavailability of contaminants
 472 during sediment disturbance events. Environ. Int. 30, 973–980. https://doi.org/10.1016/j.envint.2004.03.001
- Elmaleh, A., Galy, A., Allard, T., Dairon, R., Day, J.A., Michel, F., Marriner, N., Morhange, C., Couffignal, F.,
 2012. Anthropogenic accumulation of metals and metalloids in carbonate-rich sediments: Insights from the
 ancient harbor setting of Tyre (Lebanon). Geochim. Cosmochim. Acta 82, 23–38.
 https://doi.org/10.1016/j.gca.2011.04.032
- Fey, M. V, LeRoux, J., 1977. Properties and quantitative estimation of poorly crystalline components in sesquioxidic soil clays. Clays Clay Min. 25, 285–294.
- Han, F.X., Singer, A., 2007. Selective sequential dissolution for trace elements in arid zone soils, in: Alloway,
 B.J., Trevors, J.T. (Eds.), Biogeochemistry of Trace Elements in Arid Environments. Springer, Dordrecht,
 pp. 107–130. https://doi.org/10.1007/978-1-4020-6024-3_4
- Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate
 content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110.
 https://doi.org/10.1023/A:1008119611481
- Hinsinger, P., 2006. Potassium, in: Lal, R. (Ed.), Encyclopedia of Soil Science. CRC Press, pp. 1354–1358.
 https://doi.org/10.1081/E-ESS-120001716
- Hiradate, S., 2005. Structural changes of allophane during purification procedures as determined by solid-state
 ²⁷Al and ²⁹Si NMR. Clays Clay Miner. 53, 653–658. https://doi.org/10.1346/CCMN.2005.0530611

- 489 Hodges, S.C., 2010. Soil fertility basics. North Carolina State University.
- Huot, H., Faure, P., Biache, C., Lorgeoux, C., Simonnot, M.-O., Morel, J.-L., 2014a. A Technosol as archives of
 organic matter related to past industrial activities. Sci. Total Environ. 487, 389–398.
 https://doi.org/10.1016/j.scitotenv.2014.04.047
- Huot, H., Simonnot, M.-O., Watteau, F., Marion, P., Yvon, J., De Donato, P., Morel, J.-L., 2014b. Early
 transformation and transfer processes in a Technosol developing on iron industry deposits. Eur. J. Soil Sci.
 65, 470–484. https://doi.org/10.1111/ejss.12106
- 496 IUSS Working Group WRB, 2006. World reference base for soil resources 2006. World Soil Resour. Reports 103.
- Kanbar, H.J., Hanna, N., El Samrani, A.G., Kobaissi, A.N., Harb, N., Kazpard, V., Amacha, N., 2014. Metal
 binding in soil cores and sediments in the vicinity of a dammed agricultural and industrial watershed.
 Environ. Monit. Assess. 186, 8793–806. https://doi.org/10.1007/s10661-014-4044-7
- 500 Kanbar, H.J., Montargès-Pelletier, E., Losson, B., Bihannic, I., Gley, R., Bauer, A., Villieras, F., Manceau, L., El Samrani, A.G., Kazpard, V., Mansuy-Huault, L., 2017. Iron mineralogy as a fingerprint of former 501 502 steelmaking activities in river sediments. Sci. Total Environ. 599-600. 540-553. 503 https://doi.org/10.1016/j.scitotenv.2017.04.156
- Keiser, L., Soreghan, G.S., Joo, Y.J., 2014. Effects of drying techniques on grain-size analyses of fine-grained
 sediment. J. Sediment. Res. 84, 893–896. https://doi.org/10.2110/jsr.2014.68
- Kretzschmar, R., Mansfeldt, T., Mandaliev, P.N., Barmettler, K., Marcus, M.A., Voegelin, A., 2012. Speciation
 of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction,
 fluorescence, and absorption spectroscopy. Environ. Sci. Technol. 46, 12381–12390.
 https://doi.org/10.1021/es302981v
- Kribi, S., Ramaroson, J., Nzihou, A., Sharrock, P., Depelsenaire, G., 2012. Laboratory scale study of an industrial
 phosphate and thermal treatment for polluted dredged sediments. Int. J. Sediment Res. 27, 538–546.
 https://doi.org/10.1016/S1001-6279(13)60011-6
- 513 Lal, R., 2006. Encyclopedia of Soil Science. CRC Press.
- Latrille, C., Denaix, L., Lamy, I., 2003. Interaction of copper and zinc with allophane and organic matter in the B
 horizon of an Andosol. Eur. J. Soil Sci. 54, 357–364. https://doi.org/10.1046/j.1365-2389.2003.00530.x
- Le Meur, M., Montargès-Pelletier, E., Bauer, A., Gley, R., Migot, S., Barres, O., Delus, C., Villiéras, F., 2016.
 Characterization of suspended particulate matter in the Moselle River (Lorraine, France): evolution along the course of the river and in different hydrologic regimes. J. Soils Sediments 16, 1625–1642.
 https://doi.org/10.1007/s11368-015-1335-8
- Legodi, M.A., De Waal, D., Potgieter, J.H., Potgieter, S.S., 2001. Rapid determination of CaCO₃ in mixtures utilising FT-IR spectroscopy. Miner. Eng. 14, 1107–1111. https://doi.org/10.1016/S0892-6875(01)00116-9
- Levard, C., Doelsch, E., Basile-Doelsch, I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., Bottero,
 J.-Y., 2012. Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils.
 Geoderma 183, 100–108.
- Loh, P.S., Chen, C.-T.A., Anshari, G.Z., Lou, J.-Y., Wang, J.-T., Wang, S.-L., Wang, B.-J., 2016. Sedimentary
 organic matter and phosphate along the Kapuas River (west Kalimantan, Indonesia). J. Chem. 2016, 1–9.
 https://doi.org/10.1155/2016/6874234
- Longa-Avello, L., Pereyra-Zerpa, C., Casal-Ramos, J.A., Delvasto, P., 2017. Study of the calcination process of
 two limonitic iron ores between 250 °C and 950 °C. Rev. Fac. Ing. 26, 33–45.
 https://doi.org/10.19053/01211129.v26.n45.2017.6053
- Luxton, T.P., Miller, B.W., Scheckel, K.G., 2013. Zinc Speciation Studies in Soil, Sediment and Environmental
 Samples, in: Bakirdere, S. (Ed.), Speciation Studies in Soil, Sediment and Environmental Samples. CRC
 Press, Taylor & Francis Groups, New York, pp. 433–477. https://doi.org/doi:10.1201/b15501-12
- Lynch, S., Batty, L., Byrne, P., 2014. Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals 4, 52–73. https://doi.org/10.3390/min4010052
- Manceau, A., Boisset, M.-C., Sarret, G., Hazemann, J.-L., Mench, M., Cambier, P., Prost, R., 1996. Direct
 determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ. Sci. Technol. 30,
 1540–1552. https://doi.org/10.1021/es9505154
- Manceau, A., Marcus, M.A., Tamura, N., 2002. Quantitative speciation of heavy metals in soils and sediments by
 synchrotron X-ray techniques. Rev. Mineral. Geochemistry 49, 341–428.
 https://doi.org/10.2138/gsrmg.49.1.341
- Maréchal, Y., 2011. The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR
 region completed with thermodynamics data. J. Mol. Struct. 1004, 146–155.
 https://doi.org/10.1016/j.molstruc.2011.07.054
- Margenot, A., Calderón, F., Bowles, T., Parikh, S., Jackson, L., 2015. Soil organic matter functional group
 composition in relation to organic carbon, nitrogen, and phosphorus practions in organically managed
 tomato fields. Soil Sci. Soc. Am. J. 79, 772–782. https://doi.org/10.2136/sssaj2015.02.0070
- 548 Melaku, S., Dams, R., Moens, L., 2005. Determination of trace elements in agricultural soil samples by inductively

- coupled plasma-mass spectrometry: Microwave acid digestion versus aqua regia extraction. Anal. Chim.
 Acta 543, 117–123. https://doi.org/10.1016/j.aca.2005.04.055
- Metni, M., El-Fadel, M., Sadek, S., Kayal, R., Lichaa El Khoury, D., 2004. Groundwater Resources in Lebanon:
 A Vulnerability Assessment. Int. J. Water Resour. Dev. 20, 475–492. https://doi.org/10.1080/07900620412331319135
- Monserie, M.-F., Watteau, F., Villemin, G., Ouvrard, S., Morel, J.-L., 2009. Technosol genesis: identification of
 organo-mineral associations in a young Technosol derived from coking plant waste materials. J. Soils
 Sediments 9, 537–546. https://doi.org/10.1007/s11368-009-0084-y
- Montargès-Pelletier, E., Duriez, C., Ghanbaja, J., Jeanneau, L., Falkenberg, G., Michot, L.J., 2014. Microscale
 investigations of the fate of heavy metals associated to iron-bearing particles in a highly polluted stream.
 Environ. Sci. Pollut. Res. 21, 2744–2760. https://doi.org/10.1007/s11356-013-2192-x
- Montargès-Pelletier, E., Jeanneau, L., Faure, P., Bihannic, I., Barres, O., Lartiges, B.S., 2007. The junction of
 Fensch and Moselle rivers, France; mineralogy and composition of river materials. Environ. Geol. 53, 85–
 102. https://doi.org/10.1007/s00254-006-0621-6
- Ndiba, P., Axe, L., Boonfueng, T., 2008. Heavy metal immobilization through phosphate and thermal treatment
 of dredged sediments. Environ. Sci. Technol. 42, 920–926. https://doi.org/10.1021/es072082y
- 565 NF ISO 11265, 1994. Qualité du sol—détermination de la conductivité électrique spécifique.
- Pansu, M., Gautheyrou, J., 2006. Mineralogical Separation by Selective Dissolution, in: Handbook of Soil
 Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 167–219. https://doi.org/10.1007/978-3-540 31211-6_4
- Parfitt, R.L., Kimble, J.M., 1989. Conditions for formation of allophane in soils. Soil Sci. Soc. Am. J. 53, 971.
 https://doi.org/10.2136/sssaj1989.03615995005300030057x
- Parikh, S.J., Goyne, K.W., Margenot, A.J., Calderón, F.J., 2014. Soil Chemical Insights Provided Through
 Vibrational Spectroscopy, in: Advances in Agronomy. pp. 1–148. https://doi.org/10.1016/B978-0-12 800132-5.00001-8
- Pérez, N.A., Bucio, L., Lima, E., Soto, E., Cedillo, C., 2016. Identification of allophane and other semi-crystalline
 and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico. Microchem. J.
 126, 349–358. https://doi.org/10.1016/J.MICROC.2015.12.033
- 577 Prado, B., Duwig, C., Hidalgo, C., Gómez, D., Yee, H., Prat, C., Esteves, M., Etchevers, J.D., 2007.
 578 Characterization, functioning and classification of two volcanic soil profiles under different land uses in
 579 Central Mexico. Geoderma 139, 300–313.
- Rennert, T., Eusterhues, K., Hiradate, S., Breitzke, H., Buntkowsky, G., Totsche, K.U., Mansfeldt, T., 2014.
 Characterisation of Andosols from Laacher See tephra by wet-chemical and spectroscopic techniques (FTIR, 27 Al-, 29 Si-NMR). Chem. Geol. 363, 13–21.
- Santini, T.C., Fey, M. V., 2016. Assessment of Technosol formation and in situ remediation in capped alkaline
 tailings. CATENA 136, 17–29. https://doi.org/10.1016/j.catena.2015.08.006
- Sastre, J., Sahuquillo, A., Vidal, M., Rauret, G., 2002. Determination of Cd, Cu, Pb and Zn in environmental
 samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta
 462, 59–72. https://doi.org/10.1016/S0003-2670(02)00307-0
- Sauer, D., Burghardt, W., 2006. The occurrence and distribution of various forms of silica and zeolites in soils
 developed from wastes of iron production. CATENA 65, 247–257.
 https://doi.org/10.1016/j.catena.2005.11.017
- Scalenghe, R., Ferraris, S., 2009. The first forty years of a technosol. Pedosphere 19, 40–52.
 https://doi.org/10.1016/S1002-0160(08)60082-X
- Schlegel, M.L., Charlet, L., Manceau, A., 1999. Sorption of metal ions on clay minerals. II. Mechanism of Co
 sorption on hectorite at high and low ionic strength and impact on the sorbent stability. J. Colloid Interface
 Sci. 220, 392–405. https://doi.org/10.1006/jcis.1999.6538
- Schuttlefield, J.D., Cox, D., Grassian, V.H., 2007. An investigation of water uptake on clays minerals using ATR FTIR spectroscopy coupled with quartz crystal microbalance measurements. J. Geophys. Res. 112, D21303.
 https://doi.org/10.1029/2007JD008973
- Shaban, A., 2014. Physical and anthropogenic challenges of water resources in Lebanon. J. Sci. Res. Reports 3,
 479–500.
- Shi, Z., Di Toro, D.M., Allen, H.E., Ponizovsky, A.A., 2005. Modeling kinetics of Cu and Zn release from soils.
 Environ. Sci. Technol. 39, 4562–4568. https://doi.org/10.1021/es048554f
- Shi, Z., Di Toro, D.M., Allen, H.E., Sparks, D.L., 2013. A general model for kinetics of heavy metal adsorption
 and desorption on soils. Environ. Sci. Technol. 47, 3761–7. https://doi.org/10.1021/es304524p
- Shi, Z., Di Toro, D.M., Allen, H.E., Sparks, D.L., 2008. A WHAM Based kinetics model for Zn adsorption and desorption to soils. Environ. Sci. Technol. 42, 5630–5636. https://doi.org/10.1021/es800454y
- Strosser, E., 2010. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 27, 49–60.
 https://doi.org/10.2478/s10146-009-0008-x

- Taraškevičius, R., Zinkutė, R., Stakėnienė, R., Radavičius, M., 2013. Case study of the relationship between Aqua
 Regia and real total contents of harmful trace elements in some European soils. J. Chem. 2013, 1–15.
 https://doi.org/10.1155/2013/678140
- Thien, S.J., Graveel, J.G., 2003. Laboratory Manual for Soil Science: Agricultural and Environmental Principles,
 8th ed. McGraw-Hill Publishing Company, Boston, MA.
- Thomas, G.W., 2006. pH, in: Lal, R. (Ed.), Encyclopedia of Soil Science. CRC Press, pp. 1270–1274.
- Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral
 transformations as an indicator of pedogenesis. Geoderma 163, 95–108.
 https://doi.org/10.1016/j.geoderma.2011.04.008
- Wada, K., Greenland, D.J., 1970. Selective dissolution and differential infrared spectroscopy for characterization
 of amorphous constituents in soil clays. Clay Miner. 8, 241–254.
- 620 Wada, S.-I., Wada, K., 1977. Density and structure of allophane. Clay Miner. 12, 289–298.
- Wang, J.C., Hill, S.P., Dilbeck, T., Ogunsolu, O.O., Banerjee, T., Hanson, K., 2018. Multimolecular assemblies
 on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev.
 https://doi.org/10.1039/C7CS00565B
- Wang, Z., Zhao, G., Gao, M., Chang, C., Jia, J., Li, J., 2014. Characteristics and spatial variability of salinealkaline soil degradation in the typical Yellow River Delta area of Kenli County, China. J. Environ. Prot.
 (Irvine, Calif). 5, 1053–1063. https://doi.org/10.4236/jep.2014.512104
- Weng, L., Temminghoff, E.J.M., Lofts, S., Tipping, E., Van Riemsdijk, W.H., 2002. Complexation with dissolved
 organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 36, 4804–4810.
 https://doi.org/10.1021/es0200084
- Yao, F.X., Macías, F., Virgel, S., Blanco, F., Jiang, X., Camps Arbestain, M., 2009. Chemical changes in heavy
 metals in the leachates from Technosols. Chemosphere 77, 29–35.
 https://doi.org/10.1016/j.chemosphere.2009.06.012
- Yu, J., Li, Y., Han, G., Zhou, D., Fu, Y., Guan, B., Wang, G., Ning, K., Wu, H., Wang, J., 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environ. Earth Sci. 72, 589–599. https://doi.org/10.1007/s12665-013-2980-0
- Zevenbergen, C., Bradley, J.P., van Reeuwijk, L.P., Shyam, A.K., Hjelmar, O., Comans, R.N.J., 1999. Clay
 formation and metal fixation during weathering of coal fly ash. Environ. Sci. Technol. 33, 3405–3409.
 https://doi.org/10.1021/es9900151

Fig. 1 Map of Lebanon (left) and the sampling sites at Selaata near the steelmaking facilities (right). The stars indicate the sites where the NS (near sea) and FS (far sea) technosol cores were collected

Fig. 2 Boxplots of pH, salinity, EC, TDS, LOM, OM, D_{10} , D_{50} and D_{90} values for the sets of NS and FS technosols.

White and gray plots refer to NS and FS samples, respectively. The lower and upper boundaries of the boxes refer to the 1^{st} (Q25) and 3^{rd} (Q75) quartiles, respectively. The horizontal lines in the boxes refer to the medians. The whiskers indicate the minimum and maximum values. The diamond shapes represent the averages

Fig. 3 Semi-quantitative metal contents (Ca, Fe, Pb and Zn, in counts/second) for the NS and FS technosols. Star symbols mark the samples that are presented hereafter

Fig. 5 FTIR spectra for selected NS and FS technosol layers before (top) and after calcination (bottom)

Fig. 6 Total and oxalate-extractable metal contents (Na, K, Mg and Ca), and extractable metals after desorption experiments for bulk (termed B) and calcinated samples (termed 250) using high and low salt concentrations (LS and HS, respectively)

Fig. 7 Total and oxalate-extractable metal contents (Fe, Pb, Zn and Cu), and extractable metals after desorption experiments for bulk (termed B) and calcinated samples (termed 250) using high and low salt concentrations (LS and HS, respectively)

Fig. 8 Schematic representation of the fate of metals upon contact with saline solutions and removal of labile organic matter.

The salinity of the technosols decreases when the location becomes farther from the sea due to salt deposition reduction. Salinity was shown to promote K and Fe release from the NS technosol layers; LOM removal was shown to promote Zn and Cu release from FS technosol layers; the combined effect of salinity and LOM removal was shown to promote Mg release in NS and FS technosol layers and Pb release in the FS technosol layers. The released metals indicated by cations are capable of leaching to water bodies (sea or groundwater).

7. Online Resource

Samples	Depth cm	рН	Salinity (mg/L)	EC (µS/cm)	TDS (mg/L)	LOM (%)	OM (%)	D ₁₀ (µm)	D ₅₀ (µm)	D ₉₀ (µm)
NS1	0-3	7.9	1330	2719	1860	4.8	13.3	6.0	43	956
NS2	3-6	8.0	1160	2129	1630	4.3	11.2	6.3	132	114
NS3	6-10	7.9	1040	1969	1460	-	-	6.2	51	410
NS4	10-20	7.8	1240	2359	1660	5.3	11.5	11.6	344	1350
NS5	20-22	7.8	1120	2169	1580	-	-	7.3	132	717
NS6	22-26	7.9	1130	2009	1570	4.9	11.5	7.8	107	847
NS7	26-30	7.8	1620	3149	2280	4.8	12.1	6.9	268	2197
NS8	30-35	7.7	1920	3509	2680	-	-	6.1	45	622
NS9	35-40	7.8	1190	2149	1680	5.5	12.5	9.6	184	908
FS 10	0-4	8.1	210	456	300	3.3	9.9	5.4	19	321
FS 11	4-8	8.1	220	441	310	2.5	7.7	5.6	27	709
FS 14	19-24	8.1	190	374	260	4.1	10.8	0.2	6	90
FS 15	24-32	7.9	320	615	440	4.7	12.1	0.3	8	98
FS 17	50-55	7.6	230	453	330	4.9	12.6	2.3	10	64
FS 23	81-87	7.8	200	403	280	5.9	14.6	0.1	3	32

Table A1: pH, salinity, EC, TDS, LOM, OM, D₁₀, D₅₀ and D₉₀ values for NS and FS samples. The same values were used to plot Fig. 2.

	0	<u> </u>	0 7	· /	
Na	OE	B-LS	B-HS	250-LS	250-HS
Total	.980	.951	.941	.936	.927
OE		.914	.902	.904	.902
B-LS			.999	.997	.993
B-HS				.998	.995
250-LS					.998

B-HS

.028

.834

.985

250-LS

.162

.907

.979

.981

B-LS

.022

.809

K

Total

OE

B-LS

B-HS

250-LS

OE

.470

Table A2: Correlation of total metal contents, oxalate-extractable (OE) metal contents, and metal contents released from bulk (B) and calcinated (250) samples												
after desorption using low (LS) and high salinity (HS) solutions.												
Na	OE	B-LS	B-HS	250-LS	250-HS		Fe	OE	B-LS	B-HS	250-LS	250-HS

Total

OE

B-LS

B-HS

250-LS

250-HS	Pb	OE	B-LS	B-HS	250-LS
.205	Total	.891	749	730	620
.787	OE		413	523	270
.655	B-LS			.919	.744
.638	B-HS				.574
.747	250-LS				

.970

-.426

-.525

.418

.311

-.322

-.259

-.354

.198

.720

.690

.625

.198

-.180

-.566

250-HS

-.418

-.065

.588

.397

.969

Mg	OE	B-LS	B-HS	250-LS	250-HS
Total	176	.372	.543	.414	.441
OE		667	516	566	332
B-LS			.496	.743	.732
B-HS				.017	068
250-LS					.950

Cu	OE	B-LS	B-HS	250-LS	250-HS
Total	.976	370	.513	.316	142
OE		413	.683	.469	032
B-LS			334	474	531
B-HS				.867	.395
250-LS					.556

Zn	OE	B-LS	B-HS	250-LS	250-HS
Total	.987	372	.837	368	.298
OE		423	.809	434	.238
B-LS			401	311	139
B-HS				036	.717
250-LS					.486