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Abstract4

Fix an arbitrary compact orientable surface with a boundary and consider a5

uniform bipartite random quadrangulation of this surface with n faces and boundary6

component lengths of order
√
n or of lower order. Endow this quadrangulation with7

the usual graph metric renormalized by n−1/4, mark it on each boundary component,8

and endow it with the counting measure on its vertex set renormalized by n−1, as9

well as the counting measure on each boundary component renormalized by n−1/2.10

We show that, as n → ∞, this random marked measured metric space converges11

in distribution for the Gromov–Hausdorff–Prokhorov topology, toward a random12

limiting marked measured metric space called a Brownian surface.13

This extends known convergence results of uniform random planar quadrangu-14

lations with at most one boundary component toward the Brownian sphere and15

toward the Brownian disk, by considering the case of quadrangulations on general16

compact orientable surfaces. Our approach consists in cutting a Brownian surface17

into elementary pieces that are naturally related to the Brownian sphere and the18

Brownian disk and their noncompact analogs, the Brownian plane and the Brown-19

ian half-plane, and to prove convergence results for these elementary pieces, which20

are of independent interest.21
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1 INTRODUCTION 3

1 Introduction68

1.1 Context69

Random maps, seen as discrete models of random 2-dimensional geometries, have gen-70

erated a sustained interest in the last couple of decades. An important instance of this71

line of research are the results by Le Gall [LG13] and the second author [Mie13], showing72

that a uniform random quadrangulation of the sphere with n faces, seen as a random73

finite metric space by endowing its vertex set with the usual graph metric renormalized74

by n−1/4, converges in distribution toward the so-called Brownian sphere, or Brownian75

map. The aim of the present work is to generalize this result to the case of general76

compact orientable surfaces. Let us start with some elements of context.77

Random surfaces as scaling limits of random maps. While the idea that contin-78

uum random geometries should be obtained as scaling limits of random maps originates79

from the physics literature on 2-dimensional quantum gravity [Pol81, Dav85, KPZ88], this80

question was first approached in the mathematical literature in the pioneering work of81

Chassaing and Schaeffer [CS04], who studied the model of uniformly chosen random quad-82

rangulations of the sphere, and found in particular that the proper scaling factor in this83

case was n−1/4. Marckert and Mokkadem [MM03] then constructed a candidate limiting84

space today called the Brownian sphere, and showed the convergence toward it in another85

topology than the Gromov–Hausdorff topology. Le Gall [LG07] later showed that the86

sequence of rescaled metric spaces associated with uniform random quadrangulations of87

the sphere was relatively compact. Finally, Le Gall [LG13] and the second author [Mie13]88

showed by two independent approaches that the previous sequence converges toward the89

Brownian sphere.90

It is known that the Brownian sphere arises as a universal scaling limit for many91

models of planar maps that are uniformly chosen in a certain class, given their face92

degrees, and provided that face degrees are typically all of the same order of magnitude;93

see [LG13, BLG13, ABA17, BJM14, Abr16, CLG19, ABA21, Mar22]. See also [LGM11]94

for models of maps that fall out of this universality class.95

The scaling limits of quadrangulations on surfaces that are more general than the96

sphere were considered by the first author in [Bet15, Bet16], who showed similar results97

to the above, but only up to extraction of appropriate subsequences, leaving a gap that98

amounts to uniquely characterize the limit. This gap was filled in the particular case of99

the disk topology in our previous work [BM17]. In particular, we showed that a uniform100

quadrangulation of genus 0 with one boundary component having n internal faces and101

perimeter 2ln weakly converges, once scaled by the factor n−1/4 and when ln ∼ L
√
2n,102

toward a random metric space called the Brownian disk of perimeter L. Two alternate103

constructions of Brownian disks were proposed by Le Gall [LG19a, LG22a], allowing in104

particular to show that Brownian disks arise as connected components of the complement105

of metric balls in the Brownian sphere, conditionally given their areas and boundary106

lengths. See also [MS21a, BCK18, LGR20].107
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Besides the case of the sphere and the disk, only a few results have been obtained for108

maps on compact surfaces. Namely, it has been shown that uniform quadrangulations109

of a given compact surface with a boundary exhibit scaling limits [Bet10, Bet12, Bet16],110

all of the same topology as the considered surface, and geodesics to a uniformly chosen111

points were studied [Bet16]. More recently, it was shown that uniformly distributed112

essentially simple toroidal triangulations (that is, triangulations of the torus without113

contractible loops or double edges forming cycles that are homotopic to 0) also exhibit114

scaling limits [BHL19], which are believed to be the same as for random quadrangulations.115

See also [ARS22] for a scaling limit result of Boltzmann random maps with annular116

topology.117

There has also been a growing interest in noncompact versions of these models, es-118

pecially as they bridge some Brownian surfaces with so-called uniform infinite random119

maps, which are maps with infinitely many faces that first arose in a work by Angel and120

Schramm [AS03], as local limits of random finite maps. Three main models of noncom-121

pact Brownian surfaces have been identified: the Brownian plane [CLG14], the Brownian122

half-plane [GM17, BMR19], and the infinite-volume Brownian disk [BMR19], which can123

be thought of as noncompact versions of the Brownian sphere and Brownian disks, ei-124

ther with unbounded or bounded boundary. See [LGR21] for a framework unifying those125

objects. The first two of these models will play an important role in the current work.126

This whole line of research crucially depends on strong combinatorial techniques, and127

in particular on bijective approaches [Sch98, BDG04, AP15] that allow to give very de-128

tailed quantitative information on the geodesic paths in random maps and their scaling129

limits. The present work is no exception. See for instance [LG10, Mie09, AKM17, MQ21,130

LG22b] for results related to the structure of geodesics in the Brownian sphere, [LG19b]131

for a recent survey, and [Cur19] for another approach called peeling. We note, however,132

that, so far, these methods are restricted to models of maps chosen uniformly, condition-133

ally given their face degrees, as alluded to above.134

Random surfaces via Liouville quantum gravity metrics. A line of research par-135

allel to the above consists in building the limiting spaces directly as continuum ran-136

dom metrics in planar domains or Riemann surfaces. This approach also finds its roots137

in the physics theory of Liouville quantum gravity [Pol81]. In the case of Brownian138

surfaces, this has first been implemented by Miller and Sheffield in a series of works139

[MS21a, MS20, MS21b, MS21c], where they use a growth model called Quantum Loewner140

Evolution (QLE) to define a random metric on the plane, whose metric balls are described141

by QLE, and whose law as an abstract metric space is equal to that of the Brownian142

plane. Local variants of the construction allow to define the Brownian sphere in this143

way. The Miller–Sheffield metric is in fact a special element of a one-parameter family144

of Liouville Quantum Gravity (LQG) metrics, that have been defined as scaling limits of145

first-passage percolation models in mollified exponentiated Gaussian free fields landscapes146

[DDDF20, GM21b]. See [DDG21] for an overview of LQG metrics.147

These constructions operate entirely in the continuum, and naturally ask whether148

canonical embeddings of random maps in the sphere are compatible with the convergence149



1.2 Generalities and terminology on maps 5

toward the Brownian sphere, in the sense that the metrics induced by the embedding150

converge to the random metric of Miller–Sheffield. Such a result was recently obtained151

by Holden and Sun [HS19] (which is the last piece of a vast research project, described152

in details in this reference), who showed the joint convergence of the metric and the area153

measure generated by a uniform plane triangulation embedded via the Cardy–Smirnov154

embedding in an equilateral triangle. We refer to the overview article [GHS19].155

The existence of a canonical conformal structure for Brownian surfaces was also ap-156

proached in a more direct way by Gwynne, Miller and Sheffield in [GMS20, GMS22].157

Their method, which has been implemented so far for the plane, half-plane, sphere and158

disk topologies, consists in taking limits of discrete embeddings obtained directly from159

the continuum limit by considering Poisson–Voronoi tessellations with a finer and finer160

mesh, and showing that the random walk on the discrete approximation converges to161

Brownian motion in the plane. In passing, this allows one to define Brownian motion on162

the Brownian surfaces under consideration.163

Random surfaces and conformal field theories. While the definition of LQG met-164

rics applies to any field that “locally looks like” the Gaussian free field, the exact law of165

the latter is of crucial importance to obtain the exact law of random surfaces that arise as166

scaling limits of maps, and this law can be obtained from Liouville conformal field theory167

[Pol81]. Here, rather than dealing with random metrics, one is rather interested in the168

computation of partition functions defined from the field, and it has been shown recently169

in a rich body of work – see [DKRV16, GRV19, KRV20] and references therein – that170

this theory has a probabilistic interpretation in terms of Gaussian multiplicative chaoses,171

which are random measures defined in terms of the Gaussian free field. This approach has172

unveiled fundamental integrability properties for planar Gaussian multiplicative chaoses,173

which can be used to provide exact distributions for various quantities related to the LQG174

metrics, hence to the scaling limits of random maps. For instance, in [ARS22], the authors175

compute the law of the conformal modulus of a Brownian annulus, which is a member of176

the family of Brownian surfaces described in the present work.177

The interplay between these approaches provides a wealth of methods to prove various178

properties of random surfaces [She22], and the geometric properties of the Brownian179

surfaces, as well as the other LQG metrics, are the object of intensive current research.180

1.2 Generalities and terminology on maps181

Surface with a boundary. Recall that a surface with a boundary is a nonempty Haus-182

dorff topological space in which every point has an open neighborhood homeomorphic to183

some open subset of R × R+. Its boundary is the set of points having a neighborhood184

homeomorphic to a neighborhood of (0, 0) in R×R+. When it is nonempty, this set forms185

a 1-dimensional topological manifold. In this work, we will only consider orientable186

compact connected surfaces with a (possibly empty) boundary. By the classification the-187

orem, these are characterized up to homeomorphisms by two nonnegative integers, the188

genus g and the number b of connected components of the boundary. We denote by Σ
[g]
b189
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the compact orientable surface of genus g with b boundary components, which is unique190

up to homeomorphisms. It can be obtained from the connected sum of g tori, or from the191

sphere in the case g = 0, by removing b disjoint open disks whose boundaries are pairwise192

disjoint circles.193

Map. A map is a proper cellular embedding of a finite graph, possibly with multiple194

edges and loops, into a compact connected orientable surface without boundary. Here, the195

word proper means that edges can intersect only at vertices, and cellular means that the196

connected components of the complement of the edges, which are called the faces of the197

map, are homeomorphic to 2-dimensional open disks. Maps will always be considered up198

to orientation-preserving homeomorphisms of the surface into which they are embedded.199

The genus of a map is defined as the genus of the surface into which it is embedded; we200

speak of plane maps when the genus is 0. We call half-edge an oriented edge in a map.201

With every half-edge, we may associate in a one-to-one way a corner, which is the angular202

sector lying to its left at the origin of the half-edge. Note that this makes sense because203

the surfaces we are considering are orientable. We say that a corner, or the corresponding204

half-edge, is incident to a face f if it lies into f . We also say that the face is incident205

to the corner or the half-edge in this case. The number of half-edges (or equivalently, of206

corners) incident to a face is called its degree.207

A map is rooted if it comes with a distinguished corner – or, equivalently, a half-edge208

– called the root. Rooting is a very useful notion as it allows to kill the symmetries of209

a map. In fact, when dealing with nonrooted maps, we will systematically count them210

by weighting each map m by a factor 1/Aut(m), where Aut(m) denotes the number of211

automorphisms of m. The latter is also equal to 2 |E(m)|/R(m), where E(m) is the edge212

set of m, and R(m) is the number of distinct rooted maps that can be obtained from the213

nonrooted map m. Therefore, with this convention, the weighted number of nonrooted214

maps in a given family of maps with a given number e of edges is simply the cardinality215

of the set of rooted maps from this same family, divided by 2e.216

Map with holes. We will consider maps with pairwise distinct distinguished elements,217

generically denoted by h1, h2, . . . , hk, that can be either faces or vertices. These218

distinguished elements are called the holes of the map, a given hole being called either an219

external face or an external vertex, depending on its nature. The nondistinguished faces220

and vertices are called the internal faces and internal vertices. The degree of a hole, also221

called its perimeter, is defined as 0 for an external vertex or as the degree of the face for222

an external face. Beware that the boundaries of the external faces are in general neither223

simple curves, nor pairwise disjoint. As a result, the object obtained by removing them224

from the surface in which the map is embedded is not necessarily a surface. Note that,225

however, removing from every external face an open disk whose closure is included in the226

(open) face results in a surface with a boundary.227

Bipartite map. Finally, we say that a map is bipartite if its vertex set can be partitioned228

into two subsets such that no edge links two vertices of the same subset.229
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Tuples. The many tuples considered in this work will conventionally be denoted by230

a boldface font letter (possibly with a subscript) and their coordinates with the same231

letter in a normal font, with the index written as a superscript, as in x = (x1, . . . , xr)232

for instance. When x is a tuple of real nonnegative numbers, we set ∥x∥ =
∑r

i=1 x
i. We233

denote by xy the concatenation of x with y. Finally, when concatenating with a 1-tuple,234

we often identify it with its unique coordinate, writing for instance x0 = (x1, . . . , xr, 0).235

1.3 The Gromov–Hausdorff–Prokhorov topology236

In this paper, a metric measure space is a triple (X , dX , µX ), where (X , dX ) is a nonempty237

compact metric space and µX is a finite Borel measure on X . We say that two met-238

ric measure spaces (X , dX , µX ) and (Y , dY , µY) are isometry-equivalent if there exists an239

isometry ϕ from (X , dX ) onto (Y , dY) such that µY = ϕ∗µX . This defines an equivalence240

relation on the class of all metric measure spaces. If (X , dX , µX ) and (Y , dY , µY) are two241

metric measure spaces, the Gromov–Hausdorff–Prokhorov metric (GHP metric for short)242

is defined by243

dGHP

(
(X , dX , µX ), (Y , dY , µY)

)
= inf

ϕ :X→Z
ψ :Y→Z

{
dHZ(ϕ(X ), ψ(Y)) ∨ dPZ(ϕ∗µX , ψ∗µY)

}
, (1)244

where the infimum is taken over all choices of compact metric spaces (Z, dZ), and all245

isometric maps ϕ, ψ from X , Y to Z, where dHZ is the Hausdorff metric on compact246

subsets of Z, and dPZ is the Prokhorov metric on finite positive measures on Z, defined as247

follows. First, for any ε > 0 and any closed subset A ⊆ Z, we denote by248

Aε =
{
z ∈ Z : inf

y∈A
dZ(z, y) < ε

}
249

its ε-enlargement. Then, for any compact subsets A, B ⊆ Z,250

dHZ(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε},251

and, for any finite Borel measures µ, ν on Z,252

dPZ(µ, ν) = inf
{
ε > 0 : for all closed A ⊆ Z, µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε

}
.253

Equation (1) defines a metric on the set M of isometry-equivalence classes of metric254

measure spaces, making it a complete and separable metric space. The references [Vil09,255

Chapter 27] as well as [ADH13, LG19a] discuss relevant aspects of the GHP topology,256

with some variations, as the exact definition of the metric may differ from place to place.257

More generally, for ℓ, m ≥ 0, we will consider ℓ-marked, m-measured metric spaces of258

the form (X , dX ,A,µX ), where259

• (X , dX ) is a nonempty compact metric space,260

• A is an ℓ-tuple, called marking, of nonempty compact subsets of X , called marks,261
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• µX is an m-tuple of finite Borel measures on X .262

We often consider marks that are singletons; in this case, we identify the singleton with263

the point it contains. We define the ℓ-marked, m-measured Gromov–Hausdorff–Prokhorov264

metric (still GHP metric for short) on such spaces by265

266

d
(ℓ,m)
GHP

(
(X , dX ,A,µX ), (Y , dY ,B,µY)

)
267

= inf
ϕ :X→Z
ψ :Y→Z

{
dHZ(ϕ(X ), ψ(Y)) ∨ max

1≤i≤ℓ
dHZ(ϕ(A

i), ψ(Bi)) ∨ max
1≤j≤m

dPZ(ϕ∗µ
j
X , ψ∗µ

j
Y)
}
,268

269

where the infimum is taken over the same family as in (1). Again, this defines a complete270

and separable metric on the set M(ℓ,m) of isometry-equivalence classes of ℓ-marked, m-271

measured metric spaces, where (X , dX ,A,µX ) and (Y , dY ,B,µY) are isometry-equivalent272

if there exists an isometry ϕ from X onto Y such that ϕ(Ai) = Bi for 1 ≤ i ≤ ℓ and273

ϕ∗µ
j
X = µjY for 1 ≤ j ≤ m. Note that we have d

(0,1)
GHP = dGHP. Finally, the space274

(M(ℓ), d
(ℓ)
GH) = (M(ℓ,0), d

(ℓ,0)
GHP) of ℓ-marked compact metric spaces without measures is the275

so-called ℓ-marked Gromov–Hausdorff metric (GH metric for short).276

As a first example, we will sometimes use in the present work the point space {ϱ}277

consisting of a single point, seen as the element ({ϱ}, (ϱ, . . . , ϱ), (0, . . . , 0)} ∈ M(ℓ,m) for278

any values of ℓ and m.279

In what follows, we will often simply use the terminology “marked” or “measured”280

instead of “ℓ-marked” or “m-measured” if the numbers ℓ or m are clear from the context.281

Furthermore, when m ≥ 2, we will often single out the first measure by writing it as a282

separate coordinate, writing (X , dX ,A, µX ,νX ) for instance. The reason is that this first283

measure will often be an area measure whereas the other will be boundary measures, and284

these have different natural scales, as we will see shortly.285

1.4 The main convergence result286

Brownian surfaces. For k ≥ 0, a quadrangulation with k holes is a bipartite map287

having k holes h1, . . . , hk and whose internal faces are all of degree 4. For1 n ∈ Z+ and288

l = (l1, . . . , lk) ∈ (Z+)
k (with the convention that (Z+)

0 = {∅}), we define the set →
Q

[g]
n,l289

of all genus g rooted quadrangulations with k holes having n internal faces, and whose290

holes h1, . . . , hk are of respective degrees 2l1, . . . , 2lk; see Figure 1 for an example.291

Likewise, we denote by Q
[g]
n,l the set of nonrooted quadrangulations of genus g with n294

internal faces and half-perimeters given by l. Since maps are counted with an inverse295

factor given by the number of automorphisms, the weighted cardinality of this set is296

∑
q∈Q[g]

n,l

1

Aut(q)
=

∣∣→Q[g]
n,l

∣∣
4n+ 2∥l∥

, (2)297

1We will write Z+ = {0, 1, 2, . . . } the set of nonnegative integers, as well as N = {1, 2, 3, . . . } the set
of positive integers.
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c∗

h1

h2

h3

h4

h5

Figure 1: A quadrangulation from →
Q

[1]
19,(4,1,2,0,0). The root is the corner c∗. Here, h1, h2, and

h3 are external faces, while h4 and h5 are external vertices.
292

293

where |→Q[g]
n,l| is the cardinality of →

Q
[g]
n,l, and 4n + 2∥l∥ is the number of oriented edges,298

hence of potential roots, in any element of Q[g]
n,l.299

It will be useful to notice for further reference that the quadrangulations with k holes300

in →
Q

[g]
n,l or in Q

[g]
n,l all have the same number of internal vertices, namely301

n+ ∥l∥+ 2− 2g − k (3)302

Indeed, let us consider such a map, and denote by v, e, f , its number of vertices, edges,303

faces. The number of external faces is thus f−n so that the desired number is v−k+f−n.304

Furthermore, counting the corners yields 2e = 4n+ 2∥l∥, and the result follows from the305

Euler characteristic formula v − e+ f = 2− 2g.306

If q is a quadrangulation with k holes, we can view it as a k-marked, k + 1-measured307

metric space, in the following way. We let V (q) be the vertex set of q, and dq the graph308

metric on this set. We let309

∂q =
(
V (h1), . . . , V (hk)

)
,310

where for 1 ≤ i ≤ k, V (hi) is either {hi} if hi is an external vertex, or the set of vertices311

incident to hi if it is an external face. We let µq and ν∂q be the measures on V (q) and312

the elements of ∂q defined by:313

µq =
∑

v∈V (q)

δv , νi∂q =
∑

v∈V (hi)

mv δv ,314

where mv, the multiplicity of v, is the number of corners of the face hi that are incident315

to v. These are respectively called the area measure and boundary measures. While we316

believe that our results also hold when νi∂q is replaced by the counting measure on V (hi)317

(without multiplicities), it turns out that the above definition makes matter simpler. We318

associate with the quadrangulation q the space319 (
V (q), dq, ∂q, µq,ν∂q

)
∈ M(k,k+1) .320
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Our main result exhibits a family321

S
[g]
L , g ≥ 0, L ∈

⊔
k≥0

[0,∞)k,322

of random marked measured metric spaces, where S
[g]
L will be called the Brownian surface323

of genus g with boundary perimeter vector L and unit area. The latter family describes324

the scaling limits of uniform random elements of →
Q

[g]
n,ln

, in the following sense. Define the325

scaling operator Ωn by326

Ωn(q) =

(
V (q),

( 9

8n

)1/4
dq, ∂q,

1

n
µq,

1√
8n

ν∂q

)
. (4)327

The scaling constants (8/9)1/4 and
√
8 are here to make the upcoming description of S[g]

L328

simpler in Sections 4 to 7. Our main result is the following.329

Theorem 1. Fix g, k ≥ 0. Let L = (L1, . . . , Lk) be a k-tuple of nonnegative real numbers330

and, for n ≥ 1, let ln = (l1n, . . . , l
k
n) ∈ (Z+)

k be such that lin/
√
2n → Li as n → ∞, for331

1 ≤ i ≤ k. Let Qn be a random variable that is uniformly distributed over →
Q

[g]
n,ln

. Then332

Ωn(Qn)
(d)−→

n→∞
S
[g]
L333

where the convergence holds in distribution in the space
(
M(k,k+1), d

(k,k+1)
GHP

)
.334

By our discussion on nonrooted maps, note that the same statement holds if Qn is335

rather distributed over the set Q
[g]
n,ln

of nonrooted maps, with a probability proportional336

to the inverse of the number of automorphisms. Note however that this automorphism337

number is equal to 1 for the vast majority of maps [RW95], so we expect that our results338

also hold for genuine uniform random nonrooted maps.339

If S[g]
L = (X , dX ,A, µX ,νX ), we will call µX the area measure, and νX the boundary340

measures. Note that µX is a probability measure, since (3) implies that |V (Qn)| ∼ n as341

n → ∞, while νiX has total mass Li for 1 ≤ i ≤ k, so νiX is the trivial zero measure if342

Li = 0.343

Note that, for (g, k) = (0, 0), the above result amounts to the aforementioned con-344

vergence of plane quadrangulations to the Brownian sphere [LG13, Mie13], while for345

(g, k) = (0, 1) with L1 > 0, it corresponds to the convergence of quadrangulations with a346

boundary to the Brownian disk [BM17]. Note however that the statement of the present347

paper is slightly stronger, since it is formulated in terms of the marked GHP topology348

rather than the weaker GH topology. In the case (g, k) = (0, 0) of the Brownian sphere,349

it amounts to the GHP topology since there are no marks and only one measure; this350

stronger forms appears for instance in [ABW17, Theorem 1.2] and [LG19a, Theorem 7].351
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Topology and Hausdorff dimension. Let us also list some basic properties of the352

limiting metric spaces, which justify the terminology of Brownian surfaces. We say that353

a metric space is locally of Hausdorff dimension d if any nontrivial ball has Hausdorff354

dimension d.355

Proposition 2. Let L = (L1, . . . , Lk) be fixed and let b denote the number of positive356

coordinates of L. Almost surely, the random metric space S
[g]
L is homeomorphic to Σ

[g]
b ,357

is locally of Hausdorff dimension 4, and, if b > 0, each of the b connected components of358

its boundary, considered as a metric space by restriction of the metric on S
[g]
L , is locally359

of Hausdorff dimension 2.360

This statement is an immediate corollary of a result from [Bet16], showing that, in361

the case b = k, any subsequential limit in distribution of n−1/4Qn satisfies the stated362

properties. The case b < k is easily obtained from there by the observation concerning null363

perimeters at the end of this section. However, our method of proof of Theorem 1 will also364

provide an alternative and rather transparent proof of Proposition 2, once an analogous365

statement has been established for the noncompact analogs of the cases of the sphere and366

disk, namely, the Brownian plane and the Brownian half-plane [CLG14, GM17, BMR19]367

(see Section 4.4). We also mention that the case (g, k, b) = (0, 1, 0) was obtained in [Bet15]368

(see also [BG09]).369

A comment on notation. Throughout this paper, we will often work in fixed topology370

and consistently use the following pieces of notation, as in the above statement:371

• g for the genus of the surface;372

• k for the size of the boundary perimeter vector, that is the number of holes in the373

discrete maps;374

• b, as in boundary, for the number of nonzero coordinates in the boundary perimeter375

vector;376

• p, as in puncture, for the number of null coordinates in the boundary perimeter377

vector.378

Beware that the latter two numbers do not always correspond to the numbers of external379

faces and external vertices in the discrete maps, since we only require that ln/
√
2n→ L.380

However, for n sufficiently large, the b holes corresponding to the b nonzero coordinates381

in the boundary perimeter vector are external faces; each of the p remaining holes can382

be either a vertex or a face but, in the latter case, it should be thought of as a “small383

face” in the sense that its perimeter is of order O(
√
n), and we will see that this implies a384

diameter of order O(n1/4).385
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Method of proof. We prove Theorem 1 by some surgical methods, and from the known386

cases g = 0 and k ∈ {0, 1}. Heuristically, we will cut Qn along well-chosen geodesics into387

a finite number of elementary pieces of planar topology, to which we can apply a variant388

of the cases (g, k) ∈ {(0, 0), (0, 1)} of Theorem 1. The idea of cutting quadrangulations389

along geodesics into so-called slices appears in Bouttier and Guitter [BG09, BG12]. The390

use of these slices and the study of their scaling limits play an important role in Le391

Gall’s proof [LG13] of the uniqueness of the Brownian sphere (they are called maps with392

a piecewise geodesic boundary in this reference) and are crucial to our study [BM17] in393

the case of the disk. More specifically, in the latter reference, we view Brownian disks as394

a continuum version of the slice decomposition.395

The proof of Theorem 1 relies on similar but yet different ideas, and will require396

the introduction of other types of surgeries on objects that we call (composite) slices397

and quadrilaterals (with geodesic sides). The core of the proof of Theorem 1 consists in398

showing scaling limit results for these elementary pieces, as stated in Theorems 12 and 14.399

We believe that these results are of independent interest, as elementary pieces and their400

scaling limits might serve as building blocks in other models of random surfaces. In order401

to prove this result, it turns out that it is simpler to view the discrete and continuum402

elementary pieces as embedded into non-compact vertion of the Brownian sphere and403

disk, namely the Brownian plane and half-plane defined in [CLG14, GM17, BMR19]. We404

stress that the description of the Brownian half-plane in terms of gluing of composite405

slices considered in Section 5.3 below is related to the slice decomposition of metric bands406

property used by Miller and Qian [MQ21] for studying geodesic stars in the Brownian407

sphere.408

Theorem 1 generalizes the case of the sphere at two different levels, one given by the409

positive genus and one given by the addition of a boundary. Although these two levels of410

generalization rely to some extent on similar ideas, the difficulties that they generate are411

of quite different nature. The case of the disk, which was the focus of [BM17], relied on412

relatively well-understood objects, but required gluing an infinite number of such objects,413

which in principle could create problems in the limit. On the other hand, the surgery414

involved in the general case consists in gluing a bounded number of objects, but the415

objects themselves will turn out to be of a more complicated nature.416

Null perimeter coordinates. We end this section by the following observation relating417

Brownian surfaces in case of null perimeter coordinates. The operations of adding or418

removing a mark used in the following proposition are given by Lemmas 15 and 18 in419

Section 3.420

Proposition 3. Let L = (L1, . . . , Lk) ∈ [0,∞)k, and L0 be the sequence (L1, . . . , Lk, 0).421

Then S
[g]
L0 has same distribution as the space S

[g]
L , where, denoting by µ the area measure422

of the latter space, a random µ-distributed point has been added to the set of marks of S[g]
L423

in (k+1)-th position (and the zero measure has been added as a trivial (k+1)-th boundary424

measure).425

Consequently, if Li = 0 for some given i ∈ {1, 2, . . . , k}, and if L̂ denotes the vector L426
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with i-th coordinate removed, then S
[g]

L̂
has same distribution as the space S

[g]
L with its i-th427

mark and (trivial) i-th boundary measure removed.428

Proof. Let us fix ln = (l1n, . . . , l
k
n) ∈ (Z+)

k such that ljn ∼
√
2nLj for 1 ≤ j ≤ k, and let Qn429

be uniformly distributed over →
Q

[g]
n,ln

. Setting ln0 = (l1n, . . . , l
k
n, 0), a uniformly distributed430

random variable Q′
n in →

Q
[g]
n,ln0

may be obtained by choosing an extra distinguished external431

vertex hk+1 uniformly at random among the internal vertices of Qn, that is, according to432

the measure µQn conditioned on the set of internal vertices. Since the number of distin-433

guished vertices in Qn is at most k, while the total number of vertices is asymptotically434

equivalent to n, the GHP limit of the quadrangulation Q′
n rescaled as in Theorem 1 is the435

same as if we had chosen hk+1 uniformly at random among the set of all vertices of Qn. By436

Theorem 1 applied to Qn and Lemma 15 below, we obtain the result. The second part of437

the statement is obtained by permuting or removing marks and measures appropriately,438

as discussed in Lemma 18 below.439

As an example, the Brownian sphere S
[0]
∅ can be seen as S

[0]
(0,0) by forgetting its two440

marks. Anticipating on the construction of the Brownian surfaces in Section 4, this441

provides a nontrivially equivalent construction of the Brownian sphere as the gluing of442

one quadrilateral with geodesic sides, rather than the one from [LG13, Mie13].443

1.5 Scaling limits of Boltzmann quadrangulations444

We may also consider scaling limits for models of quadrangulations with holes in which445

the area and perimeters are not fixed, but rather weighted by Boltzmann factors. We446

introduce the following sets of nonrooted maps:447

Q
[g]
l =

⊔
n≥0

Q
[g]
n,l , for g ≥ 0, l ∈

⊔
k≥0

(Z+)
k ,448

449

and450

Q[g](b, p) =
⊔
l∈Nb

Q
[g]
l0p , for g, b, p ≥ 0 .451

452

We then let W be the σ-finite measure on the set of nonrooted quadrangulations with453

an arbitrary number of holes and arbitrary genus, given by454

W(q) =
1

Aut(q)
12−|q| 8−∥∂q∥ ,455

where |q| is the number of internal faces of q, and ∥∂q∥ is the sum of the perimeters of456

its holes. The reason for the choice of the weights 1/12 and 1/8 for the internal faces457

and perimeters comes from the following enumeration result, which will be proved in an458

extended form in Proposition 61, in Appendix B.459

Proposition 4. Fix b ≥ 0 and L ∈ (0,∞)b. Let (ln, n ≥ 0) be a sequence of integers460

such that lin ∼
√
2nLi as n→ ∞ for 1 ≤ i ≤ b. Then there exist a continuous function tg461

of L, such that462

W
(
Q

[g]
n,ln

)
∼

n→∞
tg(L)n

5g−7
2

+ 3b
4 .463
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The function tg(L) is related to the so-called double scaling limit of maps, as described464

in [Eyn16, Chapter 5], and its Laplace transform can be computed by solving Eynard and465

Orantin’s topological recursion. The method presented in Appendix B is based on the466

bijections presented in Section 2.467

For any g ≥ 0, p ≥ 0, L ∈ [0,∞)p and A > 0, if (X , d,A, µ) is a random variable with468

same law as S
[g]

L/
√
A

, we define the Brownian surface of genus g with boundary perimeter469

vector L and area A as a random variable S
[g]
A,L with same law as (X , A1/4d,A, Aµ). If470

L ∈
⊔
b≥0(0,∞)b and p ≥ 0, we let L0p ∈ [0,∞)b+p be the sequence L to which we471

append p terms equal to 0.472

For integers g, b, p ≥ 0, and for L ∈ (0,∞)b, setting k = b + p, we define a σ-finite473

measure on M(k,k+1) by the formula474

S [g]
L,p(·) =

∫
(0,∞)

dAA
5g−7

2
+ 3b

4
+p tg

(
L/

√
A
)
P
(
S
[g]
A,L0p ∈ ·

)
.475

The measure S [g]
L,p is a σ-finite measure that “randomizes” the area measure of the476

Brownian surface of genus g with b boundary components of lengths given by L, as well477

as p marked vertices, in the sense that its conditional law given having total area A is478

that of S[g]
A,L0p .479

Recall that the scaling operator Ωn is defined by (4); here, we use it for any n ∈ (0,∞).480

Theorem 5. Let g, b, p ∈ Z+, k = b+p, L ∈ (0,∞)b, K > 0, and F : M(k,k+1) → R be a481

continuous and bounded function that is supported on the set of spaces (X , dX ,A, µX ,νX )482

such that µX (X ) ∈ [1/K,K]. Let (la, a > 0) be a family where la ∈ Nb is such that483

lia ∼
√
2/aLi for 1 ≤ i ≤ b. Then, it holds that484

a
5(g−1)

2
+ 3b

4
+pW

(
F (Ωa−1(Q))1

Q
[g]
la0p

)
−→
a↓0

S [g]
L,p(F ) .485

Note that our main result, Theorem 1, can be seen as a “local limit” version of Theo-486

rem 5, in the sense that it gives the conditional statement of this last result given Q
[g]

a−1,la0p ,487

taking a = 1/n. There is also a version of this theorem where the perimeters given by L488

are left free as well. For g, b, p ≥ 0, we define the σ-finite measure489

S [g]
b,p (·) =

∫
(0,∞)b

dLS [g]
L,p(·) .490

Corollary 6. Let g, b, p ∈ Z+, k = b+ p, K > 0, and F : M(k,k+1) → R be a continuous491

and bounded function that is supported on the set of spaces (X , dX ,A, µX ,νX ) such that492

µX (X ) and νiX (Ai), 1 ≤ i ≤ b, all lie in [1/K,K]. Then it holds that493

2
b
2a

5(g−1)
2

+ 5b
4
+pW

(
F (Ωa−1(Q))1Q[g](b,p)

)
−→
a↓0

S [g]
b,p (F ) .494

Interestingly, the measure S [g]
L,p is finite in the particular cases g = 0, b = 1 and495

p ∈ {0, 1}, or g = 0, b = 2 and p = 0; it can be checked that it is infinite in all other cases.496



1.6 Perspectives 15

By computing the functions t0(L) in the case b ∈ {1, 2}, we obtain three probability497

distributions by normalizing the measures S [0]
(L),0, S [0]

(L),1, S [0]
(L,L′),0. Those are the law of498

the free Brownian disk of perimeter L ∈ (0,∞):499

FBDL =

∫ ∞

0

dA
L3

√
2πA5

exp

Å
−L2

2A

ã
P
(
S
[0]
(L),A ∈ ·

)
,500

the law of the free pointed Brownian disk of perimeter L ∈ (0,∞):501

FBD•
L =

∫ ∞

0

dA
L√
2πA3

exp

Å
−L2

2A

ã
P
(
S
[0]
(L,0),A ∈ ·

)
,502

and the law of the free Brownian annulus of boundary perimeters L, L′ :503

FBAL,L′ =

∫ ∞

0

dA
(L+ L′)√

2πA3
exp

Å
−(L+ L′)2

2A

ã
P
(
S
[0]
(L,L′),A ∈ ·

)
.504

Note in particular that FBD•
L = limε↓0 FBAL,ε. These laws, as well as the associated505

σ-finite measures S [0]
1,0, S [0]

1,1, S [0]
2,0, play an important role in [ARS22].506

In the case b = 0, the two previous statements are in fact the same, since S [g]
∅,p =507

S [g]
0,p. This measure describes the scaling limit of quadrangulations with no boundary, p508

marked vertices, and free area measure. In this case, the quantity tg(∅) is equal to the509

classical universal constant tg arising in map enumeration; see [BC86, LZ04]. Explicitly,510

the numbers τg = 25g−2Γ(5g−1
2

)tg satisfy τ0 = −1 and the recursion511

τg+1 =
(5g + 1)(5g − 1)

3
τg +

1

2

g∑
h=1

τhτg+1−h , g ≥ 0 .512

In this case, we thus have the following formula513

S [g]
0,p(·) = tg

∫
(0,∞)

dAA
5g−7

2
+p P(S[g]

A,0p ∈ · ) .514

1.6 Perspectives515

A natural question, which we plan to investigate in future works, is to derive the analog516

of Theorem 1 for bipartite quadrangulations on nonorientable compact surfaces, using the517

bijective techniques developed in [CD17, Bet22]. The first step of showing the existence of518

subsequential limits for nonorientable quadrangulations without boundary has been taken519

in [CD17]. Addressing this question would complete the catalog of compact Brownian520

surfaces.521

As mentioned in the first section of this introduction, an important aspect is that of522

universality of the spaces S
[g]
L . In fact, we expect these spaces to be the scaling limits of523

many other models of random maps on surfaces. In the case of the Brownian sphere S
[0]
∅ ,524
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this was indeed verified for several models; see the references mentioned above. In the case525

of Brownian disks, we showed in [BM17] that the spaces S
[0]

(L1) appear as scaling limits of526

many conditioned Boltzmann models. This approach to universality should generalize to527

our context, at the price of some specific technicalities. We will not address this question528

here, but will comment more on this in Section 7.529

It would be most interesting to complete the bridge between Brownian surfaces and530

LQG metrics and CFT. As was pointed to us by J. Miller, in order to define a canonical531

conformal structure and Brownian motion on Brownian surfaces, it would be natural to532

investigate whether the construction of general Brownian surfaces given in the present533

paper, by gluing elementary pieces of disk topologies along geodesic boundaries, can be534

made compatible with the approach of [GMS20, GMS22] mentioned in the introduction.535

Knowing that such a structure exists, one can try to delve even further into its integrability536

properties. The works [DKRV16, GRV19] state precise conjectures linking Liouville CFT537

with scaling limits of the area measure of random maps (without boundary) after suitable538

uniformization. In a nutshell, the LQG metrics are local objects that can be defined539

globally by using charts and atlases on general Riemann surfaces. However, fixing a540

surface amounts to fixing the conformal modulus of the LQG metric, while Brownian541

surfaces have a random modulus. Hence, the computation of the law of this modulus is an542

important question, which has been solved by [ARS22] in the case of the annular topology.543

It seems that the case of general compact surfaces should be approachable as well given544

the recent developments on conformal bootstrap in Liouville CFT [GKRV21, Wu22].545

We also mention that random surfaces with boundaries of the type studied in this paper546

are related to the study of self-avoiding paths in random geometries. See [GM19, GM21a]547

for more on this in the case of the gluing of two Brownian half-planes or disks. It would be548

interesting to explicitly describe the scaling limits of self-avoiding paths and loops on maps549

of fixed topologies as gluings of Brownian surfaces along boundaries. As N. Holden pointed550

to us, this would involve presumably difficult computations of the partition functions for551

self-avoiding loops in fixed classes of the fundamental group of the surface, although this552

problem simplifies in the case of the self-avoiding loop on a Brownian sphere [AHS23].553

1.7 Organization of the paper554

In Section 2, we present the extension of the famous Cori–Vauquelin–Schaeffer bijection555

allowing to encode a quadrangulation with a simpler tree-like structure carrying integer556

labels on its vertices. We also present a variant of the bijection, which leads to the557

definition of the elementary pieces into which we decompose a quadrangulation. We558

finally state the relevant scaling limit results for these elementary pieces. In Section 3,559

we present the surgical operation we need in order to reconstruct a metric space from its560

elementary pieces, namely gluing along geodesic segments. The proof of Theorem 1 and561

Proposition 2 are given in Section 4. In Sections 5 and 6, we present the metric spaces562

forming the continuum elementary pieces into consideration and explain how they are563

natural building blocks of the Brownian plane and half-plane, which are the noncompact564

analogs of the Brownian sphere and disk, and we tweak known convergence results to565
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these noncompact Brownian surfaces to prove that the continuum elementary pieces are566

the scaling limits of the discrete elementary pieces. Finally, we give in Section 7 an567

alternate description of Brownian surfaces that does not involve gluing operations and568

that is closer to the usual definition of the Brownian sphere and disks.569

Acknowledgment. We thank G. Chapuy for stimulating discussions during the elabora-570

tion of this work, and in particular for his encouragements to deal with general compact571

surfaces with a boundary. Thanks to J. Bouttier for bringing our attention to the fact572

that the semigroup property of discrete slices might have an interesting continuum coun-573

terpart. Thanks are also due to X. Sun for discussions around the problem of defining574

Brownian surfaces in the context of LQG and the question of the random modulus of575

these surfaces, and also for sharing the work [ARS22]. We finally thank N. Holden and J.576

Miller for their comments on a first version of this paper.577

2 Variants of the Cori–Vauquelin–Schaeffer bijection578

As is customary when studying on scaling limits of maps, this work strongly relies on579

powerful encodings of discrete maps by tree-like objects. We now present variants of the580

famous Cori–Vauquelin–Schaeffer (CVS) bijection [CV81, Sch98] between plane quad-581

rangulations and so-called well-labeled trees, and its generalizations by Chapuy–Marcus–582

Schaeffer [CMS09] for higher genera and by Bouttier–Di Francesco–Guitter [BDG04] for583

plane maps with faces of arbitrary degrees. We only give the constructions from the en-584

coding objects to the considered maps and refer the reader to the aforementioned works585

for converse constructions and proofs.586

2.1 Basic construction587

Let m be a map, rooted or not, and f be a face of m. Starting from a choice of a corner c0588

in f , we index the subsequent corners of f in counterclockwise order as (ci, i ∈ Z) (forming589

a periodic sequence). Let λ : V (m) → Z be a labeling of the vertices of m by integers.590

We extend the definition of λ to the corners of the map by setting λ(c) = λ(v) if v is the591

vertex incident to the corner c. In what follows, we will either consider that λ is defined592

up to addition of a constant, or that the value of λ at some corner is fixed, for instance593

that λ(c0) = 0.594

We say that (m, λ) is well labeled inside f if λ(ci+1) ≥ λ(ci) − 1 for every i ≥ 0. In595

particular, if (m, λ) is well labeled inside f and e is a half-edge of m such that both e596

and its reverse ē are incident to f , then |λ(e+) − λ(e−)| ≤ 1, where e−, e+ denote the597

origin and end of e. Note that this will be the case for every edge when m is a map with598

a single face.599

Let (m, λ) be well labeled inside f . With the above notation, let us define s(i) =600

inf{j > i : λ(cj) = λ(ci)− 1} ∈ Z∪ {∞} and the successor of ci as s(ci) = cs(i), where c∞601

is by convention the unique corner incident to a vertex v∗ that is added in the interior602

of f , and which naturally carries the label λ(v∗) = min{λ(ci), i ∈ Z} − 1. Clearly, s(ci)603
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is then well defined for all corners (distinct from c∞), and only depends on the corner ci604

and not on the particular choice of the index i. The CVS construction inside the face f605

consists in606

• linking by an arc every corner c incident to f to its successor s(c), in such a way607

that arcs do not cross, which is always possible due to the well labeling condition,608

• deleting all the edges of m.609

This construction results in an embedded graph2 denoted by CVS(m, λ; f), whose vertex610

set consists of v∗ and the vertices of m incident to f , and whose edges are the arcs between611

the corners of f and their successors. By construction, the edges of CVS(m, λ; f) are in612

bijection with the corners of m incident to f . If m is rooted inside f , say at the corner ci,613

then CVS(m, λ; f) naturally inherits a root at the corner preceding the arc linking ci614

to s(ci). Note that the well labeling condition, as well as the output CVS(m, λ; f), are615

invariant under addition of a constant to λ, as they should.616

We will also need an interval variant of this construction, where we fix a sequence,617

also referred to as an interval, of subsequent corners I = {c0, c1, . . . , cr} of a face f of m,618

and only ask that (m, λ) is well labeled on I in the sense that λ(ci+1) ≥ λ(ci) − 1 for619

0 ≤ i ≤ r − 1. In this case, we set λ∗ = min{λ(ci), 0 ≤ i ≤ r} − 1 and ℓ = λ(cr) − λ∗.620

Instead of a single extra corner c∞, we introduce inside f a sequence of distinct consecutive621

corners cr+1, cr+2, . . . , cr+ℓ, incident to new vertices vr+1, vr+2, . . . , vr+ℓ with labels622

λ(cr) − 1, λ(cr) − 2, . . . , λ∗. The successor mapping s is then defined for all corners623

except cr+ℓ. We let CVS(m, λ; I) be the resulting (nonrooted) embedded graph whose624

edges are the arcs. In this embedded graph, the following are of particular interest:625

(1 ) the apex vr+ℓ, which will usually be denoted with a subscript ∗;626

(2 ) the maximal geodesic, which is the chain of arcs linking c0, s(c0), s(s(c0)), . . . , cr+ℓ,627

and which will always be denoted with the letter γ and depicted in red in the figures;628

(3 ) the shuttle, which is the chain of arcs linking cr, cr+1, . . . , cr+ℓ, and which will629

always be denoted with the letter ξ and depicted in green in the figures.630

Note that the two latter are paths from the first and last corners of I to the apex.631

The construction generalizes to several intervals I, J , . . . that pairwise share at632

most one extremity. In the case of a shared extremity, say I = {c0, c1, . . . , cr} and633

J = {c′0, c′1, . . . , c′r′} with cr = c′0, one first duplicates the common corner before applying634

the construction, in the sense that the copy cr is used in the shuttle of I and c′0 is used635

in the maximal geodesic of J ; see Figure 2. In this construction, each interval yields a636

distinct apex, maximal geodesic, and shuttle, and the construction results in an embed-637

ded graph denoted by CVS(m, λ; I, J, . . .). Plainly, the ordering of the intervals does not638

affect the construction.639

2In general, this embedded graph is not a map of the surface into consideration. In all the constructions
we will use in this work, it will, however, always turn out to be a map.
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Figure 2: Performing the interval variant of the Cori–Vauquelin–Schaeffer bijection with two
intervals sharing an extremity. The interval I consists of the corners in the purple area, starting
with c0 and ending with cr, while J consists of the corners in the red area, starting with c′0 and
ending with c′r′. The interval I yields the apex v∗, maximal geodesic γ, and shuttle ξ, while J
yields respectively v′∗, γ′, and ξ′. As will be the case in all the figures, the maximal geodesics are
in red and the shuttles in green.
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641
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644

645

We make the important observation that any chain c, s(c), . . . , si(c) of consecutive646

successors induces a geodesic chain for the graph metric in the resulting embedded graph647

CVS(m, λ; I, J, . . . ), that is, a path of minimal length between its extremities. This648

is simply because, by construction, any arc of the resulting embedded graph links two649

vertices u and v such that |λ(u)− λ(v)| = 1, and because λ decreases by 1 at every step650

on a chain of consecutive successors. In particular, the maximal geodesics and shuttles of651

CVS(m, λ; I, J, . . .) are geodesic chains.652

2.2 The generalized Chapuy–Marcus–Schaeffer bijection653

Encoding quadrangulations. As a first example, let us perform this construction on654

a particular class of maps. For n ∈ Z+ and l = (l1, . . . , lk) ∈ Zk+, we let →
M

[g]
n,l be the set655

of labeled rooted maps (m, λ) satisfying the following properties:656

• m is a map of genus g with n +
∑k

i=1 l
i edges, one internal face f∗ and k holes h1,657

. . . , hk, rooted at a corner of its internal face f∗;658

• for all i, the hole hi is of degree li; if it is an external face, then it has a simple659

boundary3;660

• for any i ̸= j, if hi and hj are faces, then they are not incident to any common edge;661

• (m, λ) is well labeled inside f∗.662

We similarly define the set M
[g]
n,l of labeled nonrooted maps. Setting l0 = (l1, . . . , lk, 0),663

the CVS construction applied to the internal face f∗ provides a bijection between M
[g]
n,l664

and Q
[g]
n,l0, through which the k first holes correspond, while the extra hole hk+1 of the665

3A face has a simple boundary if it is incident to as many vertices as its degree.
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quadrangulation is the extra vertex v∗ of the construction. In case of rooted maps, it666

yields a one-to-two correspondence4 between →
M

[g]
n,l and →

Q
[g]
n,l0.667

Decomposition into elementary pieces. Let us now perform the construction on the668

same set of maps M
[g]
n,l but with well-chosen intervals. We will decompose a map of M[g]

n,l669

into a collection of labeled forests indexed by an underlying structure called the scheme.670

For the remainder of this section, we exclude the cases (g, k) ∈ {(0, 0), (0, 1)} leading to671

encoding objects not entering the upcoming framework. We fix (m, λ) ∈ M
[g]
n,l.672
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Figure 3: Left. A labeled map from M
[1]
63,(6,3,0). The outlined vertices are its nodes and the

thicker edges correspond to the map ‹m. Right. The corresponding scheme.
673

674

Let ‹m be the nonrooted map obtained from m by iteratively removing all its vertices675

of degree 1 that are not holes. The resulting map ‹m may be seen as a submap of m:676

the map m is obtained from ‹m by appending rooted labeled trees at its corners. We call677

nodes of m the following vertices:678

• the external vertices of m;679

• the vertices of m having degree 3 or more in ‹m.680

These nodes are linked in ‹m by maximal chains of edges not containing any nodes other681

than their extremities. Replacing every such chain with a single edge yields a nonrooted682

map s, called the scheme of m. It has one internal face, still denoted by f∗, and k holes,683

still denoted by h1, . . . , hk; see Figure 3.684

We denote by E⃗(s) the set of half-edges incident to the internal face of s; this set is685

partitioned into the set I⃗(s) of half-edges whose reverses belong to E⃗(s) as well, and the686

set B⃗(s) of half-edges whose reverses do not belong to E⃗(s). (We used the letter I for687

internal and B for boundary.) The set B⃗(s) is further partitioned as688

B⃗(s) =
⊔

1≤r≤k

B⃗r(s)689

4The factor 2 comes from the fact that the corners of f∗ correspond to the edges of the resulting
map, each edge corresponding to 2 half-edges. We refer the interested reader to [Bet16, Section 3.1] for
a presentation of the reverse mapping.
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where B⃗r(s) is either empty if hr is a vertex, or the set of half-edges of E⃗(s) whose reverse690

are incident to hr if it is a face. We consider e ∈ E⃗(s). It corresponds to a chain e1,691

. . . , ej of half-edges in m. Let us denote by ce and c′e the corners of ‹m preceding e1 and692

succeeding ej in the contour order. In m, there are several corners that make up ce and c′e.693

The corner interval Ie is the interval of corners of m from the first corner corresponding694

to ce to the first corner corresponding to c′e. Observe that, in m, the tree grafted at ce is695

thus covered by Ie, whereas the tree grafted at c′e is not.696

By construction,
⋃
e∈E⃗(s) Ie is equal to the set of corners of f∗ and each extremity of697

these intervals is shared by exactly two such intervals. More precisely, the intervals Ie,698

e ∈ E⃗(s), with their last corner removed give a partition of the corners of f∗. Applying699

the interval CVS construction CVS(m, λ; {Ie, e ∈ E⃗(s)}) gives a natural decomposition of700

the quadrangulation (q, v∗) = CVS(m, λ; f∗) into submaps, whose study, starting in the701

next section, are the key to this work; see Figure 4. These submaps are called the elemen-702

tary pieces of (q, v∗) and are of two types: the ones corresponding to half-edges of B⃗(s)703

are called (composite) slices and the ones corresponding to half-edges of I⃗(s) are called704

quadrilaterals (with geodesic sides). They are not rooted and come with distinguished705

vertices on their boundaries that will be discussed later on.706
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Figure 4: Performing the interval bijection on the labeled map from Figure 3. Left. Two
elementary pieces are represented: one quadrilateral with geodesic sides in red, and one composite
slice in blue. Right. The interval bijection yields a decomposition into 4 composite slices and
7 quadrilateral with geodesic sides. Here, only the maximal geodesics and shuttles are depicted.
We let the edges of the original scheme figure on this output map, but these are neither edges
nor chains of edges of this output map (remember that the edges of the original map are never
edges of the output map).

707

708

709

710
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712

713

The elementary piece corresponding to the half-edge e ∈ E⃗(s) is encoded by the part714

of the labeled map (m, λ) corresponding to715

• either the interval Ie if e ∈ B⃗(s),716

• or the union Ie ∪ Iē if e ∈ I⃗(s), where ē denotes the reverse of e.717

See Figure 5. Note that, when e ∈ I⃗(s), the elementary pieces corresponding to e and to718

its reverse ē are the same map; only the distinguished vertices on the boundary will differ719
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(more precisely be given in a different order). We refer the reader to [Bet16, Section 3.4.1]720

for more on this decomposition, keeping in mind that, in the latter reference, the maps721

are rooted and the root is encoded in the scheme, which essentially amounts in seeing the722

root of the map as an extra external vertex.723
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Figure 5: The parts of the labeled map from Figure 3 encoding the elementary pieces. The two
parts corresponding to the quadrilateral with geodesic sides and the composite slice from Figure 4
are extracted. The red and blue colors match.

724

725

726

Finiteness of the number of schemes. We will elaborate more on elementary pieces727

in the next two sections and end this one with a simple combinatorial lemma. We say728

that a map with holes is a scheme if it has one internal face, all its external faces have a729

simple boundary and do not share a common incident edge, and all its internal vertices730

have degree 3 or more.731

Lemma 7. For fixed values of (g, k) /∈ {(0, 0), (0, 1)}, there are finitely many genus g732

schemes with k holes and these have at most 3(2g + k − 1) edges and 2(2g + k − 1)733

vertices.734

Proof. As there is a finite number of maps with a given number of edges, the bound on735

the number of edges yields the finiteness of the considered set.736

Let v, e, f be the number of vertices, edges and faces of a given scheme as in the737

statement, and let b be its number of external faces (so that p = k − b are external738

vertices). By construction, we have f = b+1 and the vertices are all of degree at least 3,739

except possibly up to p of them, which have degree at least 1. The sum of the degrees740

of the vertices being twice the number of edges, we obtain 2e ≥ 3(v − p) + p, and we see741

by the Euler characteristic formula v − e+ f = 2− 2g that the considered scheme has at742

most 6g+3k− p− 3 ≤ 3(2g+ k− 1) edges, and at most 2(2g+ k− 1) vertices, using that743

k = p+ b.744
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2.3 Composite slices745

We call plane forest a collection f = (t0, . . . , tl−1, ρl), for some l ≥ 1, of rooted plane trees746

(the last one being reduced to the vertex-tree), which we view systematically as a map by747

taking an embedding of every ti in the upper half-plane R×R+, with root ρi at the point748

(i, 0), and in which ρi is linked to ρi−1 by the line segment between (i, 0) and (i−1, 0), for749

1 ≤ i ≤ l. The union of these line segments is called the floor of the forest. The resulting750

embedded graph, which we still denote by f (see e.g. the left of Figure 6) is a nonrooted751

plane map coming with the two distinguished vertices ρ = ρ0 and ρ̄ = ρl; it is in fact a752

plane tree, but we insist on calling it a forest.753

We let a be the total number of edges of t0, . . . , tl−1, and I = {c0, c1, . . . , c2a+l} be754

the interval of corners of f that are incident to the upper half-plane (hence excluding755

the corners that are “below” the floor), starting from the root corner of t0 and ending756

with the only corner incident to ρl, arranged in the usual contour order. We now equip f757

with an integer-valued labeling function λ : V (f) → Z, again defined up to addition of a758

constant, that we require to satisfy the well labeling condition in the interval I. In this759

case, it means that760

• λ(u)−λ(v) ∈ {−1, 0, 1} whenever u and v are neighboring vertices of the same tree;761

• for 1 ≤ i ≤ l, we have λ(ρi) ≥ λ(ρi−1)− 1.762
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Figure 6: The interval Cori–Vauquelin–Schaeffer bijection giving composite slices. On this
example, the forest has a = 7 edges and l = 3 trees (remember that the last vertex-tree does not
count as a “real” tree). The boundary of q has three parts: the maximal geodesic (in red), the
shuttle (in green) and the base (in burgundy). Its tilt is 4.

763

764

765

766

The map sl = CVS(f , λ; I) is then a nonrooted plane quadrangulation with one hole767

having a internal faces. Setting λ∗ = min{λ(v) : v ∈ V (f)}− 1, we see that the boundary768

of sl has length 2(λ(ρl)− λ∗ + l). It contains three distinguished vertices: ρ, the apex v∗769

(the extra vertex with label λ∗), and ρ̄, as well as three distinguished paths:770

(1 ) the maximal geodesic γ, which has length λ(ρ0)− λ∗;771
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(2 ) the shuttle ξ, which has length λ(ρl)− λ∗;772

(3 ) the remaining boundary segment, called the base and denoted by β, consisting in773

the arcs connecting the root vertices of the trees. More precisely, if cj denotes the774

last corner of the tree ti, then the part of the boundary of sl between ρi and ρi+1
775

consists in the arc linking cj to s(cj) and the successive arcs linking cj+1, s(cj+1),776

s(s(cj+1)), . . . , s(cj). As a result, this base has length λ(ρl)−λ(ρ0)+ 2l. Moreover,777

any vertex of the base is at distance at most max1≤i≤l |λ(ρi) − λ(ρi−1)| + 1 from778

some element of the set {ρ0, . . . , ρl}.779

Note that, as is the case in Figure 6, the base may overlap with the other distinguished780

paths. Furthermore, as noted at the end of Section 2.1, the maximal geodesic and the781

shuttle are geodesic chains. On the contrary, the base is not a geodesic in general.782

Definition 8. A map obtained by this construction will be called a discrete composite783

slice, or simply slice for short: its area is the integer a, its width is the integer l and its784

tilt is defined as the integer785

δ = λ(ρ̄)− λ(ρ).786

The terminology of composite slices, width and tilt are borrowed from [Bou19]; how-787

ever, the reader should mind that our exact definitions differ slightly from those in that788

reference5. Note also that, in the present work, we use the simplified terminology of slice789

in order to designate a composite slice. Beware that these have not to be confused with790

similar objects existing in the literature, in particular in our previous work [BM17], called791

elementary slices or also slices for short; they actually correspond to composite slices of792

width 0, objects that we do not consider here.793

We record the following useful counting result.794

Proposition 9. The number of slices with area a, width l and tilt δ is equal to795

3a
l

2a+ l

Ç
2a+ l

a

åÇ
2l + δ − 1

l − 1

å
,796

which can also be recast as797

12a 8l 2δ Ql(2a+ l)Pl(δ) ,798

where Qℓ(u) is the probability that a simple random walk hits −ℓ for the first time at799

time u, and Pℓ(j) = P(G1 + · · · + Gℓ = j), where G1, G2, . . . are independent random800

variables with shifted Geometric(1/2) law, i.e., such that P(G1 = j) = 2−j−2 for j ≥ −1.801

Proof. The term l
2a+l

(
2a+l
a

)
is the number of forests with l trees and a non-floor edges, the802

term
(
2l+δ−1
l−1

)
counts the number of possible ways to well label the roots, and the term 3a803

counts the number of ways to well label the other vertices, since it amounts to choosing804

a label difference in {−1, 0, 1} along each edge.805

5In particular, in [Bou19], the width is the length of the base, equal to 2l+ δ in our notation, and the
tilt is the opposite −δ of what we call the tilt in this paper.
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The probabilistic form is a simple exercise using the encoding of forests and geometric806

walks by simple walks, yielding l
2a+l

(
2a+l
a

)
= 22a+lQl(2a + l) and

(
2l+δ−1
l−1

)
= 22l+δ Pl(δ).807

See Section 5.4 and [Bet15, Lemma 6].808

An important feature of the construction is that the labels on V (sl) inherited from809

those on V (f) are exactly the relative distances to v∗ in sl:810

dsl(v, v∗) = λ(v)− λ∗ , v ∈ V (sl) ,811

and that the following bound holds:812

dsl(ci, cj) ≤ λ(ci) + λ(cj)− 2 min
i≤r≤j

λ(cr) + 2 , i ≤ j . (5)813

If sl is a slice, using a slightly different convention from that of Section 1.4, we view814

it as the marked measured metric space in M(5,2) given by815 (
V (sl), dsl, ∂sl, µsl, νβ

)
with ∂sl =

(
β, ρ, γ, ρ̄, ξ

)
, (6)816

where each boundary part is identified with the vertices it contains, where µsl is the817

counting measure on the vertices of sl that do not belong to the shuttle, and where νβ818

is the counting measure (with multiplicities) on β \ {ρ̄}. The measures µsl and νβ are819

respectively called the area measure and the base measure of the slice. It might be820

surprising at this point to include ρ and ρ̄ in the marking as these can be found from the821

other three marks; they are here to enter the framework of geodesic marks introduced in822

Section 3.2. The idea is that the data of (ρ, γ) suffice to recover the maximal geodesic as823

an oriented path, whereas the data of γ (as a set of vertices) do not give the orientation824

of the path.825

2.4 Quadrilaterals with geodesic sides826

Consider a double forest, that is, a pair (f , f̄) of plane forests with the same number of827

trees. Let h ≥ 1 denote this common number of trees and recall that this means that f828

and f̄ have h trees plus an additional vertex-tree. Similarly to the previous section, we829

represent it by letting830

• the floors be both sent to the chain linking the points (i, 0) ∈ R2, where 0 ≤ i ≤ h,831

• the trees of f be contained in the upper half-plane R × R+, the i-th tree attached832

to (i− 1, 0), for 1 ≤ i ≤ h,833

• and the trees of f̄ be contained in the lower half-plane, the i-th tree attached to834

(h− i+ 1, 0), for 1 ≤ i ≤ h.835

We obtain a nonrooted plane map, which we denote by f ∪ f̄ , coming with the two836

distinguished vertices ρ = (0, 0) and ρ̄ = (h, 0). Here also, it is in fact a plane tree having837

two distinguished vertices.838
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We let I =
{
c0, c1, . . . , c2a+h

}
be the interval of corners of f∪ f̄ , in facial order, that are839

incident to the upper half-plane, and Ī =
{
c̄0, c̄1, . . . , c̄2ā+h

}
the interval of those incident840

to the lower half-plane, where a (resp. ā) is the number of edges in the trees of the upper841

(resp. lower) half-plane. As mentioned during Section 2.1, we use the slightly unusual842

convention that c2a+h ̸= c̄0 (and similarly c̄2ā+h ̸= c0): this means that the first corner843

incident to ρ is “split” in two corners, one in the upper half-plane and one in the lower844

half-plane.845

Finally, assume that, in its unique face, the map f ∪ f̄ is well labeled by an integer846

function λ : V (f ∪ f̄) → Z defined up to addition of a constant: this simply means that847

λ(u) − λ(v) ∈ {−1, 0, 1} whenever u and v are neighboring vertices. See Figure 7 for848

an example. Note that, equivalently, a well-labeled double forest ((f , f̄), λ) can be seen849

as a well-labeled vertebrate, that is a well-labeled tree with two distinct distinguished850

vertices ρ, ρ̄, where the interval I corresponds to the consecutive corners in the contour851

order from ρ to ρ̄, which contains all the corners incident to ρ and stops at the first corner852

incident to ρ̄, and Ī is defined similarly with the roles of ρ, ρ̄ exchanged.853
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Figure 7: The interval Cori–Vauquelin–Schaeffer bijection giving quadrilaterals with geodesic
sides. The quadrilateral with geodesic sides has half-areas 5 and 4, width 3, and tilt 1.

854

855

The map qd = CVS(f ∪ f̄ , λ; I, Ī) is then a nonrooted plane quadrangulation with856

one hole having a + ā + h internal faces. Its boundary contains the four distinguished857

vertices ρ, the apex v∗ associated with I, ρ̄, and the apex v̄∗ associated with Ī, as well as858

the maximal geodesics γ, γ̄ and shuttles ξ, ξ̄, with obvious notation.859

Definition 10. The quadrilateral with geodesic sides, or simply quadrilateral for short,860

associated with ((f , f̄), λ) is by definition qd = CVS(f ∪ f̄ , λ; I, Ī). Its width, half-areas,861
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and tilt are respectively the numbers862

h , a and ā , λ(ρ̄)− λ(ρ).863

Observe that the parameters of a quadrilateral can be recovered from the map qd and864

the distinguished vertices ρ, ρ̄. Furthermore, the quadrilateral associated with ((f̄ , f), λ)865

is obtained from the one associated with ((f , f̄), λ) simply by switching the distinguished866

elements ρ with ρ̄, γ with γ̄, and ξ with ξ̄. It has the same width, its half-areas are867

switched and its tilt is reversed.868

Proposition 11. The number of quadrilaterals with half-areas a, ā, width h and tilt δ is869

equal to870

12a+ā+hQh(2a+ h)Qh(2ā+ h)Mh(δ) ,871

where Qℓ has been defined in Proposition 9, and Mℓ(j) = P(U1 + . . .+Uℓ = j), where U1,872

U2, . . . are independent uniform random variables in {−1, 0, 1}.873

Proof. As in the proof of Proposition 9, the number of forests with h floor edges and α874

non-floor edges is 22α+hQh(2α+h), so the number of double forests with proper parameters875

is 4a+ā+hQh(2a+h)Qh(2ā+h) . Then, the number of possible labelings of the floor vertices876

is the number of walks with h steps in {−1, 0, 1} going form 0 to δ, which equals 3hMh(δ).877

The final term 3a+ā counts the possible labelings of the non-root vertices in the double878

forest.879

If qd is a quadrilateral, we will view it as a marked measured metric space in M(6,1)
880

given by881 (
V (qd), dqd, ∂qd, µqd

)
with ∂qd =

(
ρ, γ, ξ, ρ̄, γ̄, ξ̄

)
, (7)882

where each boundary part is identified with the vertices it contains, and where µqd is the883

counting measure on the vertices of qd that do not belong to the shuttles. We call884

this measure µqd the area measure of the quadrilateral.885

2.5 Scaling limits of elementary pieces886

In this section, we state two important results that will be crucial in the proof of The-887

orem 1. These show that, under appropriate hypotheses, random discrete slices and888

quadrilaterals converge in distribution in the GHP topology toward “continuum analogs”889

of these objects.890

We first fix three sequences (an) ∈ (Z+)
N, (ln) ∈ NN and (δn) ∈ ZN such that891

an
n

−→
n→∞

A > 0 ,
ln√
2n

−→
n→∞

L > 0 and
Å

9

8n

ã1/4
δn −→

n→∞
∆ ∈ R. (8)892

Recall that a slice is seen as an element of M(5,2) given by (6) and that Ωn is the scaling893

operator defined in (4).894
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Theorem 12. Let Sln be uniformly distributed among composite slices with area an,895

width ln and tilt δn. Then we have the convergence896

Ωn(Sln)
(d)−→

n→∞
SlA,L,∆ ,897

in distribution in the space
(
M(5,2), d

(5,2)
GHP

)
. The limit is called a (continuum composite)898

slice with area A, width L and tilt ∆.899

This theorem will be proved in Section 5, where a detailed characterization of the900

limiting object will be given. For the time being, this theorem should be taken as a901

definition of the spaces SlA,L,∆.902

The following statement, whose proof is a direct consequence of Theorem 12 and is903

left to the reader, deal with the case of vanishing areas and widths, and will be useful in904

Section 4.3 below.905

Corollary 13. Let the sequences (an) ∈ (Z+)
N and (ln) ∈ (Z+)

N satisfy ln = O(
√
n) and906

an+ ln = Θ((ln)
2). Let Sln be the vertex map whenever ln = 0, or be uniformly distributed907

among slices with area an, width ln and tilt 0 otherwise. Then we have the convergence908

toward the point space909

Ωn(Sln)
(d)−→

n→∞
{ϱ} ,910

in distribution in the space
(
M(5,2), d

(5,2)
GHP

)
.911

To lift any possible ambiguity, let us stress that the property “an + ln = Θ((ln)
2)”912

means that the sequence ((an + ln)/(ln)
2), restricted to the values of n for which they913

are defined, is bounded away from 0 and ∞. This compact way of writing this property914

covers in fact the two following situations. If (ln) is a bounded integer sequence, it simply915

means that (an) is a bounded integer sequence. If (ln) is unbounded, then it means that916

(an/(ln)
2) is bounded away from 0 and ∞. Note that, up to extracting subsequences, we917

are always in one of these two situations.918

We will derive Theorem 12 from the known convergence of the uniform infinite half-919

planar quadrangulation toward the Brownian half-plane. The former naturally contains920

a family of slices and the latter contains a continuous “flow” of continuum slices. These921

consist in free versions of the objects considered here so that we will need to finish with922

a conditioning argument.923

We now turn to quadrilaterals, which are seen as elements of M(6,1) given by (7).924

We consider four sequences (an), (ān) ∈ (Z+)
N, (hn) ∈ NN and (δn) ∈ ZN such that, as925

n→ ∞,926

an
n

→ A > 0 ,
ān
n

→ Ā > 0 ,
hn√
2n

→ H > 0 ,

Å
9

8n

ã1/4
δn → ∆ ∈ R. (9)927
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Theorem 14. Let Qdn be uniformly distributed among quadrilaterals with half-areas an928

and ān, width hn and tilt δn. Then we have the convergence929

Ωn(Qdn)
(d)−→

n→∞
QdA,Ā,H,∆ ,930

in distribution in the space
(
M(6,1), d

(6,1)
GHP

)
. The limit is called a continuum quadrilateral931

with half-areas A and Ā, width H and tilt ∆.932

As for slices, the proof of this result is postponed, to Section 6, where a detailed933

characterization of the limiting object will be given. The idea of the proof will be similar934

to that of Theorem 12, using the uniform infinite planar quadrangulation and Brownian935

plane as reference spaces instead of the half-planar versions mentioned above.936

3 Marking and gluing along geodesics937

In our previous work [BM17], we proved Theorem 1 in the case of disks (for the GH topol-938

ogy) by writing Qn and S
[0]

(L1) as gluings of appropriate subspaces along geodesic segments,939

namely so-called slices in the discrete setting and their scaling limits in the continuum.940

The fact that the number of gluings needed was infinite caused some difficulties (which we941

mainly overcame by noticing that any geodesic between two typical points may be broken942

down to a finite number of pieces lying in different such subspaces). In contrast, in this943

work, we will only need to consider gluings of a finite number of subspaces along geodesic944

segments. As this operation is well behaved in a more general setting, we present it in945

this section. But first, we collect a number of useful lemmas on the GHP topology.946

We will use the following notation. If µX is a finite positive measure on a set X ,947

we let µ̄X = µX/µX (X ) be the normalized probability measure. If µX = 0, we use the948

convention µ̄X = 0. If µ = (µ1, . . . , µm) is a finite family of nonnegative measures, we let949

µ̄ = (µ̄1, . . . , µ̄m).950

3.1 Useful facts on the GHP topology and markings951

Recall the definitions of (M(ℓ,m), d
(ℓ,m)
GHP ) and (M(ℓ), d

(ℓ)
GH) from Section 1.3. If (X , dX ,A,µX )952

is an element of M(ℓ,m) and r ∈ (Z+)
m such that rj = 0 whenever µjX = 0, we may consider953

the random variable (X , dX ,A(x11, . . . , x
1
r1) . . . (x

m
1 , . . . , x

m
rm)) taking values in M(ℓ+∥r∥),954

where, for each j ∈ {1, . . . ,m}, the points xj1, . . . , xjrj are i.i.d. sampled random variables955

with law µ̄jX (if the latter measure is 0, then this still makes sense since rj = 0); we denote956

by Markr((X , dX ,A,µX ), ·) the law of this random marked metric space. Some care is957

actually needed here since we are considering isometry classes of metric measure spaces.958

See [Mie09] for an accurate definition of this notion, which is immediately generalized to959

our setting where we incorporate the extra marks given by A, and several measures. The960

following lemma states that one can formulate the GHP convergence entirely in terms of961

the GH convergence of randomly marked spaces.962
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Lemma 15. Let (Xn, dXn ,An,µXn
), n ≥ 1, and (X , dX ,A,µX ) be elements of M(ℓ,m).963

The following statements are equivalent.964

(i) The space (Xn, dXn ,An,µXn
) converges to (X , dX ,A,µX ) in

(
M(ℓ,m), d

(ℓ,m)
GHP

)
.965

(ii) One has µXn
(Xn) → µX (X ) coordinatewise as n → ∞ and, for every r ∈ (Z+)

m
966

such that rj = 0 whenever µjX = 0, it holds that967

Markr
(
(Xn, dXn ,An,µXn

), ·
)
−→
n→∞

Markr
(
(X , dX ,A,µX ), ·

)
968

in the sense of weak convergence of probability measures on
(
M(ℓ+∥r∥), d

(ℓ+∥r∥)
GH

)
.969

Proof. The implication (i) =⇒ (ii) is an easy generalization of known results. See970

[Mie09, Proposition 10] for the case where the measures are probability measures, and971

[LG19a, Section 2.2] for a generalized context with finite measures; our extended context972

of marked measured metric spaces adds no difficulty. To show the converse implica-973

tion, we argue as follows. By taking the trivial case r = 0m of (ii), we obtain that974

{(Xn, dXn ,An), n ≥ 1} is relatively compact in
(
M(ℓ), d

(ℓ)
GH

)
. Together with the fact that975

the sequences (µjXn
(Xn), n ≥ 1) are bounded, this implies that {(Xn, dXn ,An,µXn

), n ≥ 1}976

is relatively compact in
(
M(ℓ,m), d

(ℓ,m)
GHP

)
. So let (X ′, dX ′ ,A′,µX ′) be a limit in M(ℓ,m) along977

some subsequence of (Xn, dXn ,An,µXn
). By using the implication (i) =⇒ (ii), we obtain978

that, for every r such that rj = 0 whenever µjX = 0,979

Markr
(
(X , dX ,A,µX ), ·

)
= Markr

(
(X ′, dX ′ ,A′,µX ′), ·

)
.980

Now, let m′ be the number of nonzero elements of µX , fix r > 0 and set rj = r1{µjX ̸=0}.981

We let the (ℓ+rm′)-marked metric space (X , dX , (A1, . . . , Aℓ, x11, . . . , x
1
r1 , . . . , x

m
1 , . . . , x

m
rm))982

have law Markr((X , dX ,A,µX ), ·), and set θr = (θjr, 1 ≤ j ≤ m), where θjr = r−1
∑r

i=1 δxji
983

if µjX ̸= 0 and θjr = 0 if µjX = 0. It is a consequence of the law of large numbers that984

(X , dX ,A,θr) converges almost surely in M(ℓ,m), as r → ∞, to (X , dX ,A, µ̄X ); see for985

instance [LG19a, Lemma 5]. Applying this same result to (X ′, dX ′ ,A′,µX ′) shows that986

(X ′, dX ′ ,A′, µ̄′
X ′) is isometry-equivalent to (X , dX ,A, µ̄X ). Since µX (X ) = µX ′(X ′) is the987

limit of µXn
(Xn), we conclude.988

We also recall that, often, the most useful way to estimate GH distances is via the989

notion of distortion of a correspondence. A correspondence between two sets X and Y is990

a subset R ⊆ X ×Y whose coordinate projections are X and Y . We will often write xRy991

instead of (x, y) ∈ R. If X and Y are endowed with the metrics dX and dY , the distortion992

of the correspondence R is the number993

dis(R) = sup
{
|dX (x, x′)− dY(y, y

′)| : xR y, x′ R y′
}
.994

If A = (A1, . . . , Aℓ) and B = (B1, . . . , Bℓ) are markings of X and of Y , we say that the995

correspondence R between X and Y is compatible with the markings if for every 1 ≤ i ≤ ℓ,996

R∩ (Ai ×Bi) is a correspondence between Ai and Bi.997
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Lemma 16 ([Mie09, Section 6.4]). It holds that998

d
(ℓ)
GH

(
(X ,A, dX ), (Y ,B, dY)

)
=

1

2
inf
R

dis(R),999

where the infimum is taken over correspondences compatible with the markings.1000

Correspondences are also useful for estimating GHP distances when used together1001

with the notion of couplings, which are measures on the product of the two spaces to be1002

compared. The following is a direct adaptation of [LG19a, Lemma 4], which treats the1003

case of M(0,1).1004

Lemma 17. Let (X , dX ,A,µX ) and (Y , dY ,B,µY) be elements of M(ℓ,m) for some ℓ,1005

m ≥ 0. Let ε > 0, and R be a correspondence between X and Y compatible with the1006

markings and of distortion bounded above by ε. For 1 ≤ j ≤ m, let νj be a finite measure1007

on the product X×Y such that νj(Rc) < ε and, letting pX , pY be the coordinate projections1008

onto X and Y,1009

dPX (µ
j
X , (pX )∗ν

j) ∨ dPY(µ
j
Y , (pY)∗ν

j) < ε .1010

Then d
(ℓ,m)
GHP ((X , dX ,A,µX ), (Y , dY ,B,µY)) ≤ 3ε.1011

Finally, we state an elementary lemma whose proof is straightforward and omitted.1012

Lemma 18. The mappings1013

(X , dX , (A1, . . . , Aℓ),µX ) 7−→ (X , dX , (A1 ∪ A2, A3, . . . , Aℓ),µX ) ,1014

(X , dX , (A1, . . . , Aℓ),µX ) 7−→ (X , dX , (A1, . . . , Aℓ−1),µX )1015
1016

are 1-Lipschitz from
(
M(ℓ,m), d

(ℓ,m)
GHP

)
to
(
M(ℓ−1,m), d

(ℓ−1,m)
GHP

)
; the mappings1017

(X , dX ,A, (µ1
X , . . . , µ

m
X ) 7−→ (X , dX ,A, (µ1

X + µ2
X , µ

3
X , . . . , µ

m
X ))1018

(X , dX ,A, (µ1
X , . . . , µ

m
X ) 7−→ (X , dX ,A, (µ1

X , . . . , µ
m−1
X ))1019

1020

are respectively 2-Lipschitz and 1-Lipschitz from
(
M(ℓ,m), d

(ℓ,m)
GHP

)
to
(
M(ℓ,m−1), d

(ℓ,m−1)
GHP

)
;

and, for every permutation σ of {1, 2, . . . , ℓ} and τ of {1, 2, . . . ,m},1021 (
X , dX , (A1, . . . , Aℓ), (µ1

X , . . . , µ
m
X )
)
7−→

(
X , dX ,

(
Aσ(1), . . . , Aσ(ℓ)

)
,
(
µ
τ(1)
X , . . . , µ

τ(m)
X

))
,1022

1023

is an isometry from (M(ℓ,m), d
(ℓ,m)
GHP ) onto itself.1024

3.2 Geodesics in metric spaces1025

We now discuss the important notion of geodesics in metric spaces, as well as its relations1026

with GHP limits.1027
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In a metric space (X , dX ), compact or not, a geodesic is a mapping χ : [0, l ] → X1028

defined on some compact interval6 [0, l ] and that is isometric, i.e., satisfies1029

dX (χ(s), χ(t)) = |t− s| , 0 ≤ s, t ≤ l . (10)1030

The points χ(0), χ(l ) are called the extremities of χ, and the quantity l = dX (χ(0), χ(l ))1031

is the length of the geodesic, denoted by lengthdX (χ), or simply length(χ) when there is1032

little risk of ambiguity. The space (X , dX ) is called a geodesic space if, for every pair of1033

points x, y ∈ X , there exists a geodesic with extremities x, y.1034

The range χ([0, length(χ)]) of a geodesic path is called a geodesic segment. An oriented1035

geodesic segment is a pair (χ(0), χ([0, length(χ)])) made of a geodesic segment and a1036

distinguished extremity, called its origin. Note that an oriented geodesic segment uniquely1037

determines the geodesic χ, since χ(t) is the unique point at distance t away from the origin.1038

For this reason, we will systematically identify geodesics with oriented geodesic segments1039

and use the same piece of notation for both of them.1040

In a marked measured metric space (X , dX ,A,µX ), some pairs (Ai, Aj) of marks might1041

be oriented geodesic segments; such pairs are called geodesic marks.1042

Geodesic marks and GHP limits. The following proposition states that geodesic1043

marks nicely pass to the limit in the GHP topology.1044

Proposition 19. Let (Xn, dXn ,An,µXn
), n ≥ 1, be a sequence of marked measured com-1045

pact metric spaces that converges to some limit (X , dX ,A,µX ) in the GHP topology. Sup-1046

pose that i, j are fixed and that, for every n, the pair of marks (Ain, A
j
n) = γn is a geodesic1047

mark. Then the pair of marks (Ai, Aj) = γ of A is also a geodesic mark. Moreover, it1048

holds that1049

length(γ) = lim
n→∞

length(γn) .1050

Proof. The wanted property deals only with the marks and not with the measures, so1051

it suffices to establish the proposition in the space M(ℓ) of marked, nonmeasured spaces.1052

Without loss of generality (by Lemma 18), we may and will assume that i = 1 and j = 2.1053

By Lemma 16, we may find a sequence of correspondences Rn between Xn and X that1054

is compatible with the markings An and A, and whose distortion εn := dis(Rn) goes to1055

zero. From now on, we will never need to refer to marks other than the first two.1056

Let y, z ∈ A1. Since A1
n contains a single point, which we denote by xn = γn(0), we1057

have xn Rn y and xn Rn z, so that dX (y, z) ≤ εn for every n ≥ 1, entailing y = z. So A1
1058

is a singleton, which we denote by A1 = {x}.1059

Next, let a ∈ A2 and an ∈ A2
n be such that anRna. Then |dX (x, a)−dXn(xn, an)| ≤ εn,1060

which implies that dXn(xn, an) → dX (x, a) as n → ∞, and in particular, dX (x, a) ≤1061

lim infn→∞ length(γn), and therefore1062

max
a∈A2

dX (x, a) ≤ lim inf
n→∞

length(γn) .1063

6We allow l = 0 in this definition.
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In the other direction, let t ≤ lim supn→∞ length(γn). We claim that there exists at1064

least a point ct ∈ A2 such that dX (x, ct) = t. This will entail that length(γn) converges to1065

l = maxa∈A2 dX (x, a). To see the claim, observe that, at least along a suitable extraction,1066

there exists a sequence tn → t such that length(γn) ≥ tn. Along this extraction, let γn(tn)1067

be the unique point of γn such that tn = dXn(xn, γn(tn)), and let gn be an element of A2
1068

such that γn(tn)Rn gn. Then |dX (x, gn)− tn| ≤ εn, so that, possibly by further extracting,1069

(gn) converges to a limit ct ∈ A2. It then holds that dX (x, ct) = t, as claimed.1070

Now fix s, t ∈ [0, l ] with s ≤ t, and let a, b ∈ A2 be such that dX (x, a) = s and1071

dX (x, b) = t. By the triangle inequality, we have dX (a, b) ≥ t− s, and, on the other hand,1072

if an Rn a and bn Rn b with an, bn ∈ A2
n, then1073

dX (a, b) ≤ dXn(an, bn) + εn = |dXn(xn, bn)− dXn(xn, an)|+ εn1074

≤ |dX (x, b)− dX (x, a)|+ 3εn1075

= t− s+ 3εn1076
1077

where in the second line, we have used the fact that an, bn lie on a geodesic having xn as1078

one of its extremities. Letting n→ ∞, this shows that dX (a, b) = t− s, and in particular,1079

taking t = s shows that the point ct of the preceding paragraph is the unique point of A2
1080

at distance t from x. We conclude that γ is an oriented geodesic segment with length l1081

and origin x.1082

Maps as compact geodesic metric spaces. So far, we have been seeing maps as1083

finite metric spaces. We may also interpret a map m as a compact geodesic metric space,1084

by viewing each edge as isometric to a real segment of length 1 (this is called the metric1085

graph [BBI01] associated with m). Note that the restriction of the metric to the subset1086

corresponding to the vertex set of m is the graph metric, so that the two metric spaces1087

corresponding to m are at dGH-distance less than 1/2. In the scaling limit, this bears no1088

effects.1089

With this point of view on maps, note that, in the notation of Sections 2.3 and 2.4,1090

• (ρ, γ) and (ρ̄, ξ) are geodesic marks of sl;1091

• (ρ, γ), (ρ̄, ξ), (ρ̄, γ̄), and (ρ, ξ̄) are geodesic marks of qd.1092

3.3 Gluing along geodesics1093

Quotient pseudometrics. Let (X , d) be a pseudometric space, that is, a set equipped1094

with a symmetric function d : X 2 → R+⊔{∞} that vanishes on the diagonal and satisfies1095

the triangle inequality. Then {d = 0} is an equivalence relation on X , and the quotient1096

set X/{d = 0} equipped with the function induced by d (still denoted by d for simplicity),1097

is a true metric space, meaning that d is also separated.1098

Let R be an equivalence relation on X . Let d/R be the largest pseudometric on X1099

such that d/R ≤ d and that satisfies d/R(x, y) = 0 as soon as xRy. By [BBI01, Theorem1100
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3.1.27], it is given by the formula1101

d/R(x, y) = inf

{
m∑
i=1

d(xi, yi) :
m ≥ 1, x1, . . . , xm, y1, . . . , ym ∈ X ,
x1 = x, ym = y, yi R xi+1 for i ∈ {1, . . . ,m− 1}

}
. (11)1102

In this setting, the set {d/R = 0} is another equivalence relation on X that contains R,1103

possibly strictly. We let (X , d)/R = (X/{d/R = 0}, d/R) and call it the gluing of (X , d)1104

along R.1105

A simple observation is that if R1, R2 are two equivalence relations on X , then we1106

have the equality of pseudometrics on X1107

(d/R1)/R2 = (d/R2)/R1 = d/R , (12)1108

where R is the coarsest equivalence relation containing R1∪R2. This expression is indeed1109

a direct consequence of (11) and the fact that x R y if and only if there exists some1110

integer m and points x0 = x, x1, . . . , xm = y such that (xi−1, xi) ∈ R1 ∪ R2 for every1111

i ∈ {1, 2, . . . ,m}.1112

Gluing two spaces along geodesics. Let (X , dX ), (Y , dY) be two pseudometric1113

spaces and γ, ξ be two geodesics in X and Y , respectively, where the definition (10) of a1114

geodesic is naturally extended to pseudometric spaces. The pseudometric of the disjoint1115

union X ⊔ Y is defined by1116

dX⊔Y(x, y) =


dX (x, y) if x, y ∈ X
dY(x, y) if x, y ∈ Y
∞ otherwise

.1117

We define the metric gluing of X and Y along γ and ξ by letting l = length(γ)∧ length(ξ)1118

and by setting1119

G(X ,Y ; γ, ξ) = (X ⊔ Y , dX⊔Y)/R , (13)1120

where R is the coarsest equivalence relation satisfying γ(t)R ξ(t) for every t ∈ [0, l ].1121

In this particular case, the fact that γ and ξ are geodesics greatly simplifies (11).1122

Indeed, yi R xi+1 and yi+1 R xi+2 imply that dX⊔Y(yi, xi+2) = dX⊔Y(xi+1, yi+1). In other1123

words, using twice the relation R does not create shortcuts. As a result, the pseudometric1124

of the gluing is the function dG whose restrictions to X × X and Y × Y are dX and dY1125

respectively, and1126

dG(x, y) = dG(y, x) = inf
t∈[0,l ]

{
dX (x, γ(t)) + dY(ξ(t), y)

}
if x ∈ X , y ∈ Y . (14)1127

Remark 20. In fact, Equation (14) holds in the more general setting of gluing along1128

isometric subspaces [BH99, Chapter I.5], the underlying isometry in our context being1129

γ(t) 7→ ξ(t). We will not need this level of generality here.1130
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If (X , dX ,A,µX ) ∈ M(ℓ,m) and (Y , dY ,B,µY) ∈ M(ℓ′,m′) are marked measured metric1131

spaces, we may view G(X ,Y ; γ, ξ) as an element of M(ℓ+ℓ′,m+m′) by assigning marks and1132

measures1133

(p(A1), . . . ,p(Aℓ),p(B1), . . . ,p(Bℓ′)) and (p∗µ
1
X , . . . ,p∗µ

m
X ,p∗µ

1
Y , . . . ,p∗µ

m′

Y ) ,1134

where p : X ⊔ Y → G(X ,Y ; γ, ξ) is the canonical projection. With a slight abuse of1135

notation, we will keep denoting these by AB and µXµY . Observe that γ and ξ may1136

themselves be part of the marking, in which case they induce the same marks p(γ) = p(ξ)1137

in the glued space. Observe also that geodesic marks in A or in B remain geodesic marks1138

in AB, due to the fact that, by definition, (X , dX ) and (Y , dY) are isometrically embedded1139

in G(X ,Y ; γ, ξ).1140

Finally observe that the gluing of the point space as an element of M(ℓ,m) with1141

(Y , dY ,B,µY) along ξ only has the effect of prepending ℓ times ξ(0) to B and m times1142

the zero measure to µY .1143

Gluing two geodesics in the same space. A similar gluing procedure7 can be de-1144

fined for two geodesics γ, ξ in the same pseudometric space (X , dX ). We again set1145

l = length(γ) ∧ length(ξ) and then define1146

G(X ; γ, ξ) = (X , dX )/R , (15)1147

where R is the coarsest equivalence relation satisfying γ(t)R ξ(t) for every t ∈ [0, l ]. The1148

quotient pseudometric dG(x, y) may be condensed into1149

dX (x, y) ∧ inf
t∈[0,l ]

{
dX (x, γ(t)) + dX (ξ(t), y)

}
∧ inf
t∈[0,l ]

{
dX (x, ξ(t)) + dX (γ(t), y)

}
. (16)1150

Similarly to the above, the space G(X ; γ, ξ) naturally inherits the marking A and1151

measures µX that X may be endowed with, simply by pushing those forward by the1152

canonical projection X → G(X ; γ, ξ); by a slight abuse of notation, we keep the piece of1153

notation A, µX for these inherited objects. Note however that it is not true in general1154

that geodesic marks in (X , dX ) remain geodesic marks in G(X ; γ, ξ). Let us state a useful1155

comparison result between dX and dG.1156

Lemma 21. Let (X , dX ) be a pseudometric space with two distinguished geodesics γ, ξ.1157

Denote by dG the pseudometric on G(X ; γ, ξ) as in (16).1158

(i) For every x, y ∈ X ,1159

dG(x, y) ≤ dX (x, y) ≤ dG(x, y) +R(γ, ξ) ,1160

where R(γ, ξ) is the Hausdorff distance in the space (X , dX ) between the initial1161

segments of γ, ξ that are glued together, i.e., of length l .1162

7In fact, since we are allowing points at infinite distance, the gluing G(X ,Y; γ, ξ) could be seen as a
particular case of gluing of a single space along two geodesics, but we refrain to do so as we will mostly
be interested in gluing true metric spaces.
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(ii) For every ε > 0 and x, y ∈ X , if dX (x, y) < ε and dX (x, γ) ∧ dX (y, γ) > ε (or if1163

dX (x, ξ) ∧ dX (y, ξ) > ε), it holds that1164

dG(x, y) = dX (x, y) .1165

Proof. Let us first prove (i). The first inequality is a direct consequence of (16). To prove1166

the other bound, simply observe that for every t ∈ [0, l ] we have1167

dX (x, y) ≤ dX (x, γ(t)) + dX (γ(t), ξ(t)) + dX (ξ(t), y)1168

≤ dX (x, γ(t)) + dX (ξ(t), y) +R(γ, ξ) .1169
1170

Taking the infimum over t, and then applying the same reasoning with the roles of γ, ξ1171

interchanged, we obtain the result by (16).1172

The proof of (ii) is even more straightforward. Under our assumptions, it holds that1173

both dX (x, γ(t)) + dX (y, ξ(t)) and dX (x, ξ(t)) + dX (y, γ(t)) are greater than ε > dX (x, y),1174

for every choice of t, so that dG(x, y) must be equal to dX (x, y).1175

Gluing and GHP limits. From now on, we mostly focus on compact geodesic1176

spaces. The gluing of one or two geodesic spaces along geodesics is again a geodesic1177

space by general results presented in [BBI01]. The gluing operation also preserves the1178

compactness of the spaces that are glued together. Furthermore, if a compact metric1179

space is the Gromov–Hausdorff limit of a sequence of compact geodesic spaces, then it is1180

also a compact geodesic space [BBI01, Theorem 7.5.1].1181

The next result shows that the gluing operations behave well with respect to the GHP1182

metric. For simplicity, we state it with the first marks of the markings but it obviously1183

holds up to index permutations, using Lemma 18 for instance.1184

Proposition 22. Let (Xn, dXn ,An,µXn
), (Yn, dYn ,Bn,µYn

), n ≥ 0, be geodesic marked1185

measured metric spaces that converge in the marked GHP topology to (X , dX ,A,µX ),1186

(Y , dY ,B,µY). Assume that the first pairs of marks (A1
n, A

2
n) = γn and (B1

n, B
2
n) = ξn1187

of Xn and of Yn are geodesic marks for every n ≥ 0. Then the first two marks of A and1188

of B are geodesic marks γ, ξ, and1189

G(Xn,Yn; γn, ξn) −→
n→∞

G(X ,Y ; γ, ξ)1190

in the GHP topology.1191

Similarly, if we now assume that the first four marks are such that (A1
n, A

2
n) = γn and1192

(A3
n, A

4
n) = ξn are geodesic marks, then the same holds for the first marks γ, ξ of A, and1193

G(Xn; γn, ξn) −→
n→∞

G(X ; γ, ξ)1194

in the GHP topology.1195
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In order to prove this proposition, we are first going to state and prove a useful lemma1196

that allows one to deal only with the situations where the geodesics along which the1197

spaces of interest are glued have the same lengths. While Lemma 18 showed that the1198

operation of merging two marks is continuous on (M(ℓ,m), d
(ℓ,m)
GHP ), this lemma states that1199

in the case of geodesic marks, the natural splitting operation is continuous. If γ is a1200

geodesic mark and r ∈ [0, length(γ)], the splitting of γ at level r is the two geodesic marks1201

(γ(0), {γ(t) : 0 ≤ t ≤ r}), (γ(r), {γ(t), r ≤ t ≤ length(γ)}).1202

Lemma 23. Let (Xn, dXn ,An,µXn
), n ≥ 0, be a sequence of geodesic marked measured1203

metric spaces converging in the GHP topology toward a geodesic marked measured metric1204

space (X , dX ,A,µX ), and assume that, say, the first pairs of marks, are geodesic marks γn1205

and γ. Denote by ln = length(γn) and l = length(γ) their lengths. Let rn ∈ (0, ln) be real1206

numbers such that rn → r ∈ (0, l ). Then the convergence Xn → X still holds in the GHP1207

topology after replacing the marks γn and γ in An and A, with their splittings γ′n, γ′′n and1208

γ′, γ′′, respectively at levels rn and r.1209

Proof. Since the desired property does not involve the measures, it suffices to establish1210

it in the space of marked, nonmeasured spaces. Let R be a correspondence between Xn1211

and X compatible with the markings. We fix ε > dis(R) and consider the enlarged1212

correspondence1213

Rε =
{
(x, y) ∈ Xn ×X : ∃(x′, y′) ∈ R, dXn(x, x

′) ∨ dX (y, y
′) < ε

}
.1214

By the triangle inequality, the distortion of Rε is at most dis(R)+4ε. Moreover, we claim1215

that for s ∈ [0, ln] and t ∈ [0, l ] such that |t− s| < ε− dis(R), it holds that γn(s)Rε γ(t).1216

Indeed, since R is compatible with the markings, for every s, t as above, there exists u1217

such that γn(s)R γ(u), so1218

|s− u| =
∣∣dXn(γn(s), γn(0))− dX (γ(u), γ(0))

∣∣ ≤ disR ,1219

and therefore |dX (γ(t), γ(u))| = |t − u| ≤ |t − s| + |s − u| < ε, as wanted. From this,1220

we conclude that Rε is compatible with the geodesic marks γ′n, γ′ and γ′′n, γ′′, as soon1221

as ε > |rn − r| ∨ |ln − l |. Choosing a sequence of correspondences Rn with vanishing1222

distortion and taking εn = (dis(Rn) ∨ |rn − r| ∨ |ln − l |) + 1/n yields the result.1223

Proof of Proposition 22. With the help of Lemma 23, we may and will assume that γn,1224

ξn have same length for every n. The fact that the limiting marks are geodesics marks1225

with same length comes from Proposition 19. We will first establish the result for marked,1226

nonmeasured spaces, from which we will deduce the full result thanks to Lemma 15.1227

Let R and R′ be two correspondences respectively between Xn and X and between Yn1228

and Y , compatible with the considered markings. Identifying Xn and Yn (resp. X and Y)1229

with their canonical embeddings into G(Xn,Yn; γn, ξn) (resp. into G(X ,Y ; γ, ξ)), we see1230

R′′ = R∪R′ as a correspondence between G(Xn,Yn; γn, ξn) and G(X ,Y ; γ, ξ), obviously1231

compatible with the other marks. In order to bound its distortion, let us take xnRx and1232

yn R′ y.1233
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We let ln = length(γn) = length(ξn) and l = length(γ) = length(ξ) be the lengths of1234

the considered geodesics and we denote by dn and d the metrics in the previous gluings.1235

From (14) and by compactness, there exists t ∈ [0, l ] such that1236

d(x, y) = dX (x, γ(t)) + dY(ξ(t), y).1237

Then there exist tn, t′n ∈ [0, ln] such that γn(tn)R γ(t) and ξn(t
′
n)R′ ξ(t). As a result,1238

dn(xn, yn) ≤ dXn

(
xn, γn(tn)

)
+ dn

(
γn(tn), ξn(t

′
n)
)
+ dYn

(
ξn(t

′
n), yn

)
1239

≤ dX (x, γ(t)) + dis(R) + dn
(
γn(tn), ξn(t

′
n)
)
+ dY(ξ(t), y) + dis(R′)1240

≤ d(x, y) + dis(R) + dis(R′) + dn
(
γn(tn), ξn(t

′
n)
)
.1241

1242

Using the facts that γn, ξn, γ, ξ are geodesics and γn(0)R γ(0), ξn(0)R′ ξ(0), we easily1243

obtain1244

dn
(
γn(tn), ξn(t

′
n)
)
=
∣∣dXn

(
γn(0), γn(tn)

)
− dYn

(
ξn(0), ξn(t

′
n)
)∣∣

1245

≤ |dX (γ(0), γ(t))− dY(ξ(0), ξ(t))|+ dis(R) + dis(R′)1246

= dis(R) + dis(R′).1247
1248

Using a symmetric argument, we see that |dn(xn, yn) − d(x, y)| ≤ 2 (dis(R) + dis(R′)).1249

Adding to this the simpler cases where the pairs of points we compare belong both to R1250

or both to R′, we obtain1251

dis(R′′) ≤ 2 (dis(R) + dis(R′))1252

and the first statement easily follows for the GH topology (without the measures).1253

Let us show that the result still holds when considering the measures. We assume for1254

simplicity that the terms of µX , µY are all nonzero, since the case of a vanishing measure,1255

say µjX , is equivalent to the fact that µjXn
(Xn) → 0. Denote by m, m′ the numbers of coor-1256

dinates of µX , µY and sample r(m+m′) independent points x = (xji , 1 ≤ i ≤ r, 1 ≤ j ≤ m)1257

and y = (yji , 1 ≤ i ≤ r, 1 ≤ j ≤ m′) where xji has law µ̄jX and yji has law µ̄jY . We1258

identify these points with their images in the glued space by the canonical projection1259

X ⊔Y → G(X ,Y ; γ, ξ). We assume that µXn(Xn) > 0 and µYn(Yn) > 0, which hold for n1260

sufficiently large since, as n → ∞, µXn(Xn) → µX (X ) > 0 and µYn(Yn) → µY(Y) > 0.1261

We proceed similarly to sample r(m + m′) random points xn = (xjn,i), yn = (yjn,i) in1262

G(Xn,Yn; γn, ξn) with laws µ̄jXn
and µ̄jYn

as appropriate. Lemma 15 guarantees that1263

the marked spaces (Xn, dXn ,Anxn) and (Yn, dYn ,Bnyn) converge to (X , dX ,Ax) and1264

(Y , dY ,By) in distribution in the GH topology. Applying the result of Proposition 221265

proved above in the case without measures, we obtain the convergence in distribution1266

of the glued space G(Xn,Yn; γn, ξn) with markings AnBnxnyn to G(X ,Y ; γ, ξ) with the1267

marking ABxy. Since xn, yn and x, y are also independent samples from the renor-1268

malized measures µ̄Xn
, µ̄Yn

and µ̄X , µ̄Y viewed as measures on the glued spaces, an1269

application of the converse implication of Lemma 15 implies the result.1270

The second part of the statement dealing with metric spaces that are glued along two1271

marked geodesics is shown in a similar fashion. We leave the details to the reader.1272
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4 Proof of Theorem 11273

Let g, k ∈ Z+ be fixed; as in Section 2.2, we exclude the cases (g, k) ∈ {(0, 0), (0, 1)}1274

of the sphere, the pointed sphere, or the disk. Recall that the case (g, k) = (0, 0) of1275

the sphere is already known. The case (g, b, k) = (0, 1, 1) of the disk is partially known1276

but has not been treated in the complete setting of Theorem 1. In fact, it may actually1277

enter the following framework: in this case, the decomposition of Section 2.2 yields only1278

one well-labeled forest (and thus one unique slice) indexed by a degenerate scheme with1279

one external face having one unique vertex with a self-loop edge. This creates a small1280

ambiguity coming from the choice of the first tree in the forest, which can be overcome1281

by randomization when considering random maps. The case (g, b, k) = (0, 0, 1) of the1282

pointed sphere would yield an even more degenerate decomposition with a one-vertex1283

map as a scheme and a unique composite slice of width 0, object that is not introduced1284

in this work.1285

Instead of considering these extensions and objects, we rather obtain these cases by1286

using Proposition 3 at the end of Section 1.4. More precisely, provided Theorem 1 holds1287

for (g, k) = (0, 2), we infer the case (g, k) = (0, 1) as follows. Let l1n ∈ Z+ be such1288

that l1n/
√
2n → L1 as n → ∞ and Qn be uniform in →

Q
[0]

n,(l1n)
. Then let us choose a1289

vertex uniformly at random among the internal vertices of Qn and denote by Q•
n the map1290

obtained from Qn by declaring the chosen vertex as a second hole. Since Q•
n is clearly1291

uniform in →
Q

[0]

n,(l1n,0)
, the case (g, k) = (0, 2) of Theorem 1 implies the convergence of the1292

corresponding metric measure space toward S
[0]

(L1,0), and finally the convergence of the1293

metric measure space corresponding to Qn toward the space S
[0]

(L1), defined as S
[0]

(L1,0) with1294

its second mark and second boundary measure forgotten.1295

4.1 Gluing quadrangulations from elementary pieces1296

We start by interpreting the observations of Section 2.2 in the light of the previous section1297

for a deterministic map. Let n ∈ Z+ and l ∈ Nk be fixed, let q ∈ Q
[g]
n,l and v∗ ∈ V (q).1298

The CVS construction being one-to-one, there is a unique labeled map (m, λ) ∈ M
[g]
n,l1299

that corresponds to (q, v∗). We denote by s the scheme of m and by (EPe, e ∈ E⃗(s)) the1300

collection of elementary pieces of (q, v∗). We emphasize that the decomposition strongly1301

depends on the distinguished point v∗ and not only on q.1302

If e ∈ B⃗(s), we let γe, ξe and βe be the maximal geodesic, shuttle, and base of the1303

slice EPe, and we let µe, νe be the associated area and base measures defined at (6). If1304

e ∈ I⃗(s), we let γe, ξe, γ̄e, ξ̄e be the maximal geodesics and shuttles of EPe, where the1305

first two correspond to Ie and the latter two to Iē, in the notation of Section 2.2; we also1306

let µe be the associated area measure defined at (7). Note that EPē yield the same map1307

as EPe with the same measure; only the marks are ordered differently, namely γ̄e, ξ̄e, γe,1308

ξe.1309

The construction of q from (m, λ) consists in connecting every corner of m to its1310

successor, and the paths following consecutive successors are geodesic paths all aiming1311

toward v∗. On the other hand, the construction of the elementary pieces from (m, λ)1312
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consists in performing the interval CVS bijection on every interval Ie, in the notation1313

of Section 2.2. The only difference between these constructions lies on the shuttles of1314

these elementary pieces: if c is a corner in some interval Ie whose successor in the interval1315

bijection belongs to the shuttle ξe, then in order to obtain q we should rather connect c1316

to its successor s(c) in the contour order around f∗. This successor will belong to some1317

interval Ie′ arriving later in contour order around f∗ – note that this interval can be Ie1318

itself. Note also that this successor s(c) belongs to the maximal geodesic γe′ . Moreover,1319

interpreting q and its elementary pieces as compact geodesic marked metric spaces, it is1320

straightforward to see that the identifications correspond to metric gluings along geodesics.1321

Iterative gluing procedure. In order to reconstruct q from EPe, e ∈ E⃗(s), rather1322

than connecting the shuttle vertices to their actual successors all at once, we will pro-1323

ceed progressively by first connecting only those whose successors belong to the maximal1324

geodesic of the elementary piece that arrives immediately after in contour order around f∗.1325

We now formalise this idea. Let κ denote the cardinality of E⃗(s). We arrange the1326

half-edges e1, . . . , eκ incident to the internal face of s according to the contour order,1327

starting at an arbitrarily chosen half-edge. While following the contour of the internal1328

face f∗ of m, we successively visit the elementary pieces EPei , 1 ≤ i ≤ κ, which are1329

themselves viewed as marked measured geodesic metric spaces. The reconstruction of q1330

will be done recursively in κ steps, resulting in a sequence of marked k + 1-measured1331

metric spaces q0, . . . , qκ. At the i-th step, qi+1 will be obtained from qi by gluing EPei1332

along (part of) its marked maximal geodesic γei . At the same time, we will do some1333

operations on the markings and measures, namely reorderings, unions of marks and sums1334

of measures, which are all continuous by Lemma 18.1335

We need to keep track of the boundary marks, as well as the geodesics yet to be glued1336

as marks. More precisely, the marking of qi is (γ0i , ξ0i , γ1i , ξ1i , . . . , γuii , ξuii , β1
i , . . . , β

k
i ), where1337

• γji , ξ
j
i , 0 ≤ j ≤ ui, are geodesic marks,1338

• β1
i , . . . , βki are called the boundary marks. By convention, certain of these marks1339

may be empty, in which case they are simply discarded from the marks.1340

The mark ξ0i is the mark along which the subsequent gluing producing qi+1 will occur,1341

and ui represents the number of quadrilaterals that have been involved only once in the1342

gluing procedures up to the i-th step. Each of these quadrilateral yields two marks γji , ξ
j
i1343

for some j ∈ {1, . . . , ui}, corresponding to the unvisited half of the quadrilateral, which1344

will have to be glued at a further step. Finally, each qi will come with measures µi,1345

νi where µi is called the area measure and νi = (ν1i , . . . , ν
k
i ) is the k-tuple of boundary1346

measures.1347

We initiate the construction by letting u0 = 0, q0 ∈ M(2,k+1) be the point space with1348

the two marks γ00 , ξ00 being the unique point, and measures µ0 = 0, ν0 = 0k. We also let1349

all the boundary marks be empty.1350

Next, provided that qi−1 has been constructed for some i ∈ {1, . . . , κ}, we define qi1351

by considering the following cases, depicted on Figures 8 to 10.1352
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• If ei ∈ B⃗r(s) for some r ∈ {1, . . . , k}, meaning in particular that EPe1 is a slice, we1353

set1354

qi = G
(
qi−1,EP

ei ; ξ0i−1, γ
ei
)
,1355

and mark it as follows. We update the boundary marks by setting1356

βri = βri−1 ∪ βei , βr
′

i = βr
′

i−1 for r′ ∈ {1, . . . , k} \ {r} .1357

We update the geodesic marks by letting8
1358

γ0i = γ0i−1 ∪
(
γei \ ξ0i−1

)
, ξ0i = ξei ∪

(
ξ0i−1 \ γei

)
, (17)1359

and, setting ui = ui−1, we let γji = γji−1 and ξji = ξji−1 for 1 ≤ j ≤ ui. Finally, we1360

update the measures by1361

µi = µi−1 + µei , νri = νri−1 + νei , νr
′

i = νr
′

i−1 for r′ ∈ {1, . . . , k} \ {r} .1362

This case is illustrated in Figure 8.1363

• If ei ∈ I⃗(s), meaning in particular that EPe1 is a quadrilateral, we keep the boundary1364

marks unchanged by setting βri = βri−1 for 1 ≤ r ≤ k, we set νi = νi−1, and consider1365

the following two possible situations.1366

– If ei /∈ {ēj, 1 ≤ j < i}, that is, if the unoriented edge corresponding to ei is1367

visited for the first time, we let again1368

qi = G
(
qi−1,EP

ei ; ξ0i−1, γ
ei
)
,1369

and update its geodesic marks as follows. We update the first two geodesic1370

marks by (17). We set ui = ui−1 + 1 and let γji = γji−1 and ξji = ξji−1 for1371

1 ≤ j ≤ ui − 1. Finally, we set γuii = γ̄ei , ξuii = ξ̄ei , and µi = µi−1 + µei . This1372

case is illustrated in Figure 9.1373

– If ei ∈ {ēj, 1 ≤ j < i}, say ei = ēℓ, that is, if the unoriented edge corresponding1374

to ei is visited for the second time, then γei = γ̄eℓ is a mark of qi−1: it is the1375

mark γei = γuℓℓ of qℓ and stays a mark of the subsequent spaces qℓ+1, . . . , qi−1.1376

Similarly, ξei = ξ̄eℓ is a mark of qi−1. We let1377

qi = G
(
qi−1; ξ

0
i−1, γ

ei
)
,1378

we update the first two geodesic marks by (17), and, setting ui = ui−1 − 1, we1379

let (γji , ξ
j
i , 1 ≤ j ≤ ui) be the the sequence (γji−1, ξ

j
i−1, 1 ≤ j ≤ ui−1) from which1380

the terms γei and ξei have been removed. Finally, we set µi = µi−1. This case1381

is illustrated in Figure 10.1382

8In (17), we use the convention set in Section 3.3 for marks in a glued space: in particular, after
gluing, one of the marks γei , ξ0i−1 is contained in the other, depending on which is longest.
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qi−1
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i−1

ξ0i−1

EPei

qi

γ0
i

βei

γei ξei

ξ0i

qi−1

γ0
i−1 ξ0i−1

EPei
qi

γ0
i

ξ0i

ξei

γei

βei

Figure 8: The gluing procedure in the case where EPei is a slice. In this picture and the
following ones, the black wiggly curve depicts all the marks different from γ0i−1, ξ0i−1. The reader
should bear in mind that, in general, qi−1 has no reason to present a planar topology as in these
pictures. The boundary ξ0i−1 of qi−1 is glued to the maximal geodesic γei, and the base of EPei
is added to the r-th boundary mark of qi−1 whenever ēi is incident to hr. The first two geodesic
marks are updated according to (17), which leads to the two alternative situations described in
this figure, depending on which of ξ0i−1 and γei is the longest: the unglued part of these geodesics
becomes part of ξ0i or of γ0i .
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i

ξlii
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Figure 9: The gluing procedure in the case where EPei is a quadrilateral that was not involved
previously in the construction. The boundary ξ0i−1 of qi−1 is glued to the maximal geodesic γei.
The first two geodesic marks are again updated according to (17), leading to two possible sit-
uations depending on which of ξ0i−1 and γei is the longest. Only one of these situations is
represented on this figure. In this case, the two geodesic boundary marks γ̄ei and ξ̄ei are added
to the marking; they will be involved in a later construction step.
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qi−1

γ0
i−1

ξ0i−1

qi

γeiξei

ξ0i
γ0
i

Figure 10: The gluing procedure in the case where EPei is a quadrilateral, one side of which
was already involved in a previous construction step. The boundary ξ0i−1 of qi−1 is glued to the
maximal geodesic γei, which had been introduced as a geodesic mark in this previous construc-
tion step. The first two geodesic marks are again updated according to (17), and the geodesic
marks γei, ξei are removed from the remaining marks.
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It is important to notice that, in qi, all the marks γji , ξ
j
i , 0 ≤ j ≤ ui, are geodesic marks.1402

Indeed, each of these paths always take the form of a chain of consecutive successors, which1403

therefore must be a geodesic; more precisely, these are the maximal geodesics and shuttles1404

of the interval CVS bijection on the intervals Ie1 ∪ . . . ∪ Iei and Iēj for each j ≤ i such1405

that ej ∈ I⃗(s) \ {ē1, . . . , ēi}.1406

At the end of this inductive procedure, we have connected all shuttle corners of some1407

interval Iei , to their actual successors in m whenever these lie on some Iei′ with 1 ≤ i <1408

i′ ≤ κ. It remains to connect the shuttle corners in some Iei whose actual successor in m1409

lies in some Iei′ with 1 ≤ i′ ≤ i ≤ κ. But one can observe that uκ = 0, so that qκ carries1410

exactly two geodesic marks γ0κ, ξ0κ. The shuttle corners yet to be connected are exactly1411

those of ξ0κ, and should be matched to the successive corners of γ0κ. Therefore, as marked1412

metric spaces, we have q = G(qκ; γ
0
κ, ξ

0
κ), with marks βrκ, 1 ≤ r ≤ k, which are precisely1413

the connected components of the boundary ∂q, ordered as they should.1414

It is also possible to view all these gluing operations at once, as shown on Figure 11.1415

Measures. We claim that the previous equality q = G
(
qκ; γ

0
κ, ξ

0
κ

)
only holds as k-1428

marked k + 1-measured metric spaces up to a difference in the supports consisting of1429

a bounded number of vertices. When considering rescaled measures through the opera-1430

tor Ωn, this small difference will be of no importance in our limiting arguments.1431

First of all, the boundary measures of the external faces match. This is because the1432

boundary of a given external face of q is made of the bases, say βei1 , . . . , βeij , of several1433

slices that satisfy βeiℓ ∩βeiℓ+1 = {ρ̄eiℓ} for 1 ≤ ℓ ≤ j with ij+1 = i1 and where we denoted1434

by ρ̄e the final point of the base of EPe. Since the base measure of the slice EPe is the1435

counting measure on βe\{ρ̄e}, the resulting measure in the gluing is the counting measure1436

on the boundary of the considered external face of q, as desired.1437

For the boundary measures of the external vertices, the measure in q is the count-1438
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e1
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e13

e14
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14
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∗
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7
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12
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Figure 11: Reconstructing q by gluing its elementary pieces along geodesics. On this example,
we have κ = 14. Although we used the same scheme as in Figure 3 without h3 (for lower
complexity), beware that the labels here do not match those from the left of Figure 3. On the
top, the half-edges of E⃗(s) are arranged according to the contour order. With each one of
them corresponds a “triangle,” which is either a slice (here, with e1, e5, e8, e11) or “half”
a quadrilateral, depending whether the half-edge belongs to B⃗(s) or I⃗(s). The five matchings
of the corresponding “halves” of quadrilaterals, that is, the matchings of half-edges in I⃗(s),
are represented with light colors. The vertices of these triangles are represented at a height
corresponding to their label, where λi∗ = minIei λ − 1. The geodesic marks of the pieces may be
involved in multiple gluings. For instance, the shuttle of the leftmost triangle is involved in three
gluings; it is split in three parts, corresponding to the triangles that can be “seen” to its right
(those corresponding to e2, e5, and e7).
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1427

ing measure on the singleton consisting of the external vertex, while the corresponding1439

boundary measure in the gluing is the zero measure.1440

For the area measure, by convention, we decided that in the elementary pieces, the1441

measures were taken on vertices outside of the shuttles. In doing so, after each gluing1442

operation where a piece of a shuttle is glued to a piece of a maximal geodesic, the corre-1443

sponding vertices are counted only once, as they should, except possibly for the vertices ρ,1444

ρ̄ of the quadrilaterals, since they lie both on a maximal geodesic and on a shuttle, and1445

are therefore not part of the counting measures by convention. Therefore, the final gluing1446

is naturally equipped with an area measure that is the counting measure on all but at1447
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most 2(2g + k − 1) vertices, which is an upper bound on the number of vertices of the1448

scheme by Lemma 7.1449

Conclusion. We finally observe that the number κ of gluing operations necessary to1450

obtain q is uniformly bounded in n. Indeed, the number of edges of s is, by Lemma 7,1451

smaller than 3(2g + k − 1).1452

As a result, Theorem 1 will directly follow from subsequent applications of Proposi-1453

tion 22 once we will have shown that, after a proper scaling, the elementary pieces of a1454

uniform quadrangulation jointly converge in distribution in the GHP topology.1455

4.2 Scaling limit of the collection of elementary pieces1456

We now fix L = (L1, . . . , Lk) ∈ [0,∞)k. We let b and p be the numbers of indices i such1457

that Li > 0 and Li = 0 respectively. In order to ease notation, we assume that L1, . . . ,1458

Lb > 0 while Lb+1, . . . , Lk = 0.1459

Limiting measure for size parameters. We denote by →
S⋆ the set of rooted genus g1460

schemes with k holes, h1, . . . , hb being faces, hb+1, . . . , hk being vertices of degree 1, and1461

whose internal vertices are all of degree exactly 3. These are called dominant schemes.1462

Let s ∈ →
S⋆ be fixed and denote its root vertex by v0. We let Ts be the set of tuples1463 (

(ae)e∈E⃗(s), (h
e)e∈I⃗(s), (l

e)e∈B⃗(s), (λ
v)v∈V (s)

)
∈ (R+)

E⃗(s) × (R+)
I⃗(s) × RB⃗(s) × RV (s)

1464

such that1465

•
∑

e∈E⃗(s) a
e = 1,1466

• hē = he, for all e ∈ I⃗(s),1467

•
∑

e∈B⃗i(s)
le = Li, for 1 ≤ i ≤ b,1468

• λv0 = 0.1469

There is a natural Lebesgue measure Ls on Ts defined as follows. First, if J is a1470

finite set, and L > 0 a positive real number, we let ∆L
J be the Lebesgue measure on the1471

simplex {(xj, j ∈ J) ∈ (R+)
J :
∑

j∈J x
j = L}. The latter measure can be defined as the1472

image of the measure
⊗

j∈J ′ dxj1{
∑

j∈J′ xj<L}, where J ′ is obtained from J by removing one1473

arbitrary element j′, by the mapping (xj, j ∈ J ′) 7→ (xj, j ∈ J) where xj
′
= 1−

∑
j∈J ′ xj.1474

Next, let I(s) be an orientation of I⃗(s), that is, a set containing exactly one element1475

from {e, ē} for every e ∈ I⃗(s). We let L+
I(s) be the measure

⊗
e∈I(s) dh

e1{he≥0}. Similarly,1476

we let LV (s) be the measure
⊗

v∈V ′(s) dλ
v, where V ′(s) = V (s) \ {v0}.1477

Finally, the measure Ls is the the image measure of1478

∆1
E⃗(s)

⊗ L+
I(s) ⊗

b⊗
i=1

∆Li

B⃗i(s)
⊗ LV (s)1479
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by the mapping that associates with1480 (
(ae)e∈E⃗(s), (h

e)e∈I(s),
(
(le)e∈B⃗i(s)

, 1 ≤ i ≤ b
)
, (λv)v∈V ′(s)

)
1481

the unique compatible element of Ts, that is, such that he = hē for every e ∈ I⃗(s), and1482

such that λv0 = 0.1483

We let ParamL be the probability measure on
⋃

s∈→
S⋆{s} × Ts whose density with1484

respect to the measure
∑

s∈→
S⋆ δs ⊗ Ls is1485

1

ZL

∏
e∈I⃗(s)

qhe(a
e)
∏

e∈B⃗(s)

qle(a
e)
∏
e∈I(s)

phe(δλ
e)
∏

e∈B⃗(s)

p3le(δλ
e) , (18)1486

where pt, qx are defined after (30), where δλe = λe
+ − λe

− for e ∈ E⃗(s), and where ZL is1487

a normalizing constant, equal to the integral of the remaining display. Beware that the1488

third product is over I(s), not I⃗(s).1489

Scaling limits for size parameters. Next, let (ln) = (l1n, . . . , l
k
n) and Qn be as in1490

the statement of Theorem 1. We let v∗n be uniformly distributed over the set of internal1491

vertices of Qn, whose cardinality given by (3) only depends on the parameters. Conse-1492

quently, (Qn, v
∗
n) is uniformly distributed over the set of quadrangulations from →

Q
[g]
n,ln0

,1493

seeing v∗ as a k+1-th hole. The rooted labeled map (Mn, λn) corresponding via the CVS1494

correspondence is thus uniformly distributed over →
M

[g]
n,ln

. We denote by Sn the scheme1495

of the nonrooted map corresponding to Mn, and we root Sn uniformly at random among1496

its half-edges, incident to internal or external faces, but such that the corresponding edge1497

does not belong to the boundary of hb+1, . . . , hk. Note that we could have rooted Sn1498

from the root of Mn by asking that the root of Mn belongs to the forest indexed by the1499

root of Sn but this would have introduced an undesirable bias. Here instead, from the1500

unrooted map corresponding to Mn, the map Mn is rooted at a uniform corner incident1501

to its internal face. Furthermore, the boundaries of the holes hb+1, . . . , hk are excluded1502

from the possible rootings of Sn since they should be thought of as having null length in1503

the limit.1504

For i ∈ {b + 1, . . . , k}, the hole hi of Mn is called a vanishing face if it is a face, that1505

is, if lin > 0. The corresponding hole hi of the scheme Sn is called a tadpole if it is made1506

of a single self-loop edge incident to a single vertex of degree 3. We let S·◦
n be the map Sn1507

in which every tadpole corresponding to a vanishing face hi has been shrunk into a single1508

vertex, still denoted by hi, in the sense that the corresponding self-loop has been removed.1509

Note that the root of Sn is never removed in this operation, so that S·◦
n is always rooted.1510

Forgetting the root of Qn, we let (EPen, e ∈ E⃗(Sn)) be the collection of elementary1511

pieces of (Qn, v
∗
n). For the half-edges e ∈ B⃗(Sn), we let Aen, Len be the area and width1512

of the slice EPen. For e ∈ I⃗(Sn), we let Aen, He
n be the first half-area and width of the1513

quadrilateral EPen; note that Aēn is the second half-area of EPen. Recall that the vertices1514

of Sn are in one-to-one correspondence with the nodes of Mn: for every v ∈ V (Sn),1515
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we denote by Λvn the label of the corresponding node, where we choose for the labeling1516

function λn the representative giving label 0 to the root vertex of Sn.1517

Proposition 24. As n→ ∞, with probability tending to one, every vanishing face of Mn1518

induces a tadpole in Sn, and, on this likely event, for every e ∈
⊔k
i=b+1 B⃗i(Sn), it holds1519

that Aen + Len = Θ((Len)
2) in probability.1520

Moreover, the following convergence in distribution holds:1521

1522 Ç
S·◦
n,

Å
Aen
n

ã
e∈E⃗(S·◦n)

,

Å
He
n√
2n

ã
e∈I⃗(S·◦n)

,

Å
Len√
2n

ã
e∈B⃗(S·◦n)

,

Å( 9

8n

)1/4
Λvn

ã
v∈V (S·◦n)

å
1523

(d)−→
n→∞

(
S, (Ae)e∈E⃗(S) , (H

e)e∈I⃗(S) , (L
e)e∈B⃗(S) , (Λ

v)v∈V (S)

)
, (19)1524

1525

where the limiting random variable has the law ParamL described in the previous para-1526

graph.1527

This proposition is a generalization of [Bet16, Proposition 15]. Given its technical1528

nature, we postpone its proof to Appendix B.1529

Scaling limits of the elementary pieces. As (Mn, λn) is uniformly distributed over1530

the set →
M

[g]
n,ln

, conditionally given (19), the random variables EPen, e ∈ E⃗(Sn), are only1531

dependent through the relations linking EPēn with EPen for e ∈ I⃗(Sn). Moreover,1532

• if e ∈ B⃗(Sn), then EPen is uniformly distributed among slices with area Aen, width Len1533

and tilt Λe
+

n − Λe
−
n ;1534

• if e ∈ I⃗(Sn), then EPen is uniformly distributed among quadrilaterals with half-1535

areas Aen and Aēn, width He
n and tilt Λe

+

n − Λe
−
n .1536

Applying the Skorokhod representation theorem, we may and will assume that the con-1537

vergence of (19) holds almost surely. Since, by Lemma 7, there are finitely many possible1538

schemes, this furthermore implies that S·◦
n = S for n sufficiently large. Together with1539

Theorems 12 and 14, the above observations entail that the collection of resclaed ran-1540

dom metric spaces (Ωn(EP
e
n), e ∈ E⃗(S·◦

n)), converge in distribution in the GHP topology1541

toward a family
(
EPe, e ∈ E⃗(S)

)
of continuum elementary pieces with the following law1542

conditionally given the right-hand side of (19):1543

• if e ∈ B⃗(S), then EPe is a continuum slice with area Ae, width He and tilt Λe+−Λe
− ;1544

• if e ∈ I⃗(S), then EPe is a continuum quadrilateral with half-areas Ae and Aē,1545

width He and tilt Λe
+ − Λe

− .1546

We write γ(EPe), ξ(EPe), µ(EPe), and either β(EPe), ν(EPe) or γ̄(EPe), ξ̄(EPe) the marks1547

and measures of EPe, with an obvious choice of notation. As continuum elementary pieces1548

have only been defined as limits in the GHP topology of discrete elementary pieces so far,1549
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these marks and measures are the limits of the corresponding marks and measures of the1550

discrete pieces.1551

We treat the elementary pieces corresponding to the vanishing faces thanks to Corol-1552

lary 13. We define, for every hole hi of Sn with b+ 1 ≤ i ≤ k, the elementary piece EPhi
n1553

as EPen if B⃗i(Sn) = {e} or the vertex map otherwise, marked five times at its unique1554

vertex and endowed twice with the zero measure (thinking of it as an “empty slice”). By1555

Proposition 24 and Corollary 13, with probability tending to 1, each one of the rescaled1556

random metric spaces Ωn(EP
hi
n ), b + 1 ≤ i ≤ k, converges in distribution in the GHP1557

topology toward the point space (note that the tilt of EPhi
n is always equal to 0).1558

4.3 Gluing pieces together1559

We can now complete the proof of Theorem 1 by applying Proposition 22 at every step1560

of the inductive construction of Section 4.1.1561

We work on the event of asymptotic full probability of Proposition 24 and assume1562

that n is large enough so that S·◦
n = S. We denote by κ = |E⃗(S)|+ p and let e1, . . . , eκ be1563

the sequence made of the half-edges of E⃗(S), as well as the external vertices of S, listed in1564

contour order. Since S is dominant, these external vertices are hb+1, . . . , hk. Applying the1565

construction of Section 4.1 to the random quadrangulation Qn, up to adding the gluing1566

of the point space for each external vertex (not changing the markings and measures), we1567

obtain a sequence Qn,1, . . . , Qn,κ of marked measured metric spaces.1568

The limiting marked measured metric space S
[g]
L is obtained from (S, (EPe, e ∈ E⃗(S))1569

by recursively defining a sequence of marked measured metric spaces S0, . . . , Sκ, in the1570

following way. For 0 ≤ i ≤ κ, the space Si will carry geodesic marks γji , ξ
j
i , 0 ≤ j ≤ ui,1571

boundary marks β1
i , . . . , βki , an area measure µi, and boundary measures ν1i , . . . , νki .1572

We initiate the construction by letting u0 = 0, S0 ∈ M(2,k+1) be the point space with1573

the two marks γ00 , ξ00 being the unique point, and measures µ0 = 0, ν0 = 0k. We also let1574

all the boundary marks be empty.1575

Next, given Si−1 for some i ∈ {1, . . . , κ}, consider the following cases.1576

• If ei ∈ B⃗r(S) for some r ∈ {1, . . . , k}, set1577

Si = G
(
Si−1,EP

ei ; ξ0i−1, γ(EP
ei)
)
,1578

βri = βri−1 ∪ β(EPei) , βr
′

i = βr
′

i−1 for r′ ∈ {1, . . . , k} \ {r} ,1579

γ0i = γ0i−1 ∪
(
γ(EPei) \ ξ0i−1

)
, ξ0i = ξ(EPei) ∪

(
ξ0i−1 \ γ(EPei)

)
, (20)1580

1581

and, setting ui = ui−1, let γji = γji−1 and ξji = ξji−1 for 1 ≤ j ≤ ui. Finally, we let1582

µi = µi−1 + µ(EPei), νri = νri−1 + ν(EPei) and νr
′
i = νr

′
i−1 for r′ ̸= r.1583

• If ei ∈ I⃗(S), set βri = βri−1, νri = νri−1 for 1 ≤ r ≤ k, and consider the following two1584

possible situations.1585
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– If ei /∈ {ēj, 1 ≤ j < i}, let1586

Si = G
(
Si−1,EP

ei ; ξ0i−1, γ(EP
ei)
)
,1587

update the first two geodesic marks by (20), and, setting ui = ui−1 + 1, let1588

γji = γji−1 and ξji = ξji−1 for 1 ≤ j ≤ ui − 1, and γuii = γ̄(EPei), ξuii = ξ̄(EPei).1589

Finally, set µi = µi−1 + µ(EPei).1590

– if ei ∈ {ēj, 1 ≤ j < i} let1591

Si = G
(
Si−1; ξ

0
i−1, γ(EP

ei)
)
,1592

update the first two geodesic marks by (20), and, setting ui = ui−1 − 1, let1593

(γji , ξ
j
i , 1 ≤ j ≤ ui) be the the sequence (γji−1, ξ

j
i−1, 1 ≤ j ≤ ui−1) from which1594

the terms γ(EPei) and ξ(EPei) have been removed. Finally, set µi = µi−1.1595

• If ei is an external vertex of S, set Si = Si−1.1596

Finally, we let S
[g]
L = G(Sκ; ξ

0
κ, γ

0
κ), seen as an element of M(k,k+1), equipped with the1597

marking (β1
κ, . . . , β

k
κ) and measures µκ, νκ. An application of Proposition 22 and of1598

Lemma 18 at every step of the construction shows that, for every i ∈ {1, . . . , κ}, the1599

rescaled marked measured metric space Ωn(Qn,i) converges to Si in the marked GHP1600

topology, and finally Ωn(Qn) converges to S
[g]
L by a final application of Proposition 22 and1601

the observation regarding the measure supports in the final gluing mentioned at the end1602

of Section 4.1. This completes the proof of Theorem 1.1603

4.4 Topology and Hausdorff dimension1604

In this section, we essentially derive from Proposition 2 in the case (g, k) ∈ {(0, 0), (0, 1)}1605

an alternate proof of Proposition 2 in the other cases. In the spherical case, Proposi-1606

tion 2 was obtained by Le Gall and Paulin [LGP08] thanks to a theorem of Moore by1607

seeing the Brownian sphere as a rather wild quotient of the sphere by some equivalence1608

relation. The same result was later obtained in [Mie08] through the theory of regular-1609

ity of sequences developed by Begle and studied by Whyburn. The latter approach was1610

generalized in [Bet12, Bet15, Bet16] in order to obtain the general cases.1611

Our approach of decomposition into elementary pieces gives a rather direct and trans-1612

parent proof of Proposition 2 in the case (g, k) /∈ {(0, 0), (0, 1)} provided the following1613

lemma, which will be obtained in Sections 5 and 6, and which amounts to Proposition 21614

for the noncompact analogs of the cases (g, k) ∈ {(0, 0), (0, 1)}.1615

Lemma 25. Almost surely, a slice or a quadrilateral is homeomorphic to a disk and1616

is locally of Hausdorff dimension 4. Its boundary as a topological manifold consists in1617

the union of its marks, the intersection of any two marks being empty or a singleton.1618

Furthermore, in the case of a slice, the base is locally of Hausdorff dimension 2.1619
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Now, a quadrangulation from Q
[g]
n,ln

is “not far” from being homeomorphic to Σ
[g]
bn

,1620

where bn is the number of external faces, in the sense that we can “fill in” the internal1621

faces with small topological disks and “fill in” the external faces by thin topological annuli1622

without altering the metric and in such a way that the resulting object is homeomorphic1623

to Σ
[g]
bn

and at bounded GH distance from the quadrangulation (see [Bet16, Section 4.3.3]1624

for more details about this procedure). The decomposition of the quadrangulation into1625

elementary pieces gives a decomposition of this surface into pieces that are non other than1626

the elementary pieces of the quadrangulation with faces filled in and a thin rectangle added1627

on the bases of the slices; see Figure 12.1628

Figure 12: Left. Topological disk corresponding to an elementary piece of a quadrangulation.
Right. Decomposition of the surface associated with a quadrangulation into surfaces homeo-
morphic to disks. Here also, we used the same scheme as in Figure 3 without h3.

1629

1630

1631

With the notation of the previous section, Qn yields a surface homeomorphic to Σ
[g]
bn

1632

and its elementary pieces EPen, e ∈ E⃗(Sn), yield surfaces homeomorphic to disks.1633

• If e ∈ I⃗(Sn), then the boundary of the surface associated with EPen consists in the1634

two maximal geodesics and the two shuttles of EPen.1635

• If e ∈ B⃗(Sn), then the boundary of the surface associated with EPen consists in the1636

maximal geodesic, the shuttle, as well as three sides of the added thin rectangle.1637

Then gluing back these disks along their boundaries in the same way as they were cut1638

gives back the surface Σ
[g]
bn

. Forgetting the slice corresponding to a tadpole topologically1639

amounts to fill in the corresponding vanishing face. Assuming that n is sufficiently large,1640

all the vanishing faces correspond to tadpoles in the scheme. So the gluing of the el-1641

ementary pieces without the slices corresponding to tadpoles yields Σ
[g]
b . In the limit,1642

we glue topological disk exactly in the same way (using markings that are topologically1643

equivalent), so we obtain the same surface. The result about the topology follows.1644

The statement about the Hausdorff dimension is even more straightforward as we glue1645

along geodesics a finite number of objects that are locally of dimension 4 and the boundary1646

is the union of the bases of the slices, which are all locally of Hausdorff dimension 2.1647
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5 Convergence of composite slices1648

The goal of this section is to prove Theorem 12 on the convergence of slices to their limiting1649

slices. To this end, we are first going to derive a “free” version of this result by finding1650

slices with a free area and tilt within the uniform infinite half-planar quadrangulation.1651

The latter is known to converge to the Brownian half-plane, which itself contains a “flow”1652

of continuum slices with free areas and tilts; these are shown to be the scaling limits of1653

the discrete slices. We conclude by a conditioning argument to pass from free to fixed1654

area and tilt. First, let us start with deterministic considerations.1655

5.1 Metric spaces coded by real functions1656

Here we borrow some material from [BMR19, Section 2.1], with however several slight1657

differences, in order to describe in a unified fashion the various random metric spaces we1658

will use. Let C (resp. C(2)) be the set of continuous functions of one variable (resp. of two1659

variables) defined on some nonempty closed interval:1660

C =
⊔

I closed interval
I ̸=∅

C(I,R) and C(2) =
⊔

I closed interval
I ̸=∅

C(I2,R) .1661

For a function f ∈ C(I,R) we denote by I(f) = I its interval of definition and by1662

τ̄(f) = inf I and τ(f) = sup I its extremities. The set C is naturally equipped with the1663

topology of uniform convergence over compact subsets of R; more precisely, the topology1664

induced by the following metric:1665

1666

distC(f, g) =
∣∣ arctan(τ̄(f))− arctan(τ̄(g))

∣∣+ ∣∣ arctan(τ(f))− arctan(τ(g))
∣∣

1667

+
∑
n≥1

1

2n
sup

t∈[−n,n]

∣∣f(τ̄(f) ∨ t ∧ τ(f))− g
(
τ̄(g) ∨ t ∧ τ(g)

)∣∣ .1668

1669

We also equip C(2) with a straightforward adaptation distC(2) .1670

5.1.1 R-trees coded by functions1671

R-trees. For f ∈ C and s, t ∈ I = I(f) with s ≤ t, set1672

f(s, t) = inf
[s,t]

f (21)1673

and, for s, t ∈ I, set1674

df (s, t) = f(s) + f(t)− 2f(s ∧ t, s ∨ t) . (22)1675
1676

This formula defines a pseudometric on I, which is continuous as a function from I21677

to R+, since df (s, t) ≤ 2ω(f ; [s ∧ t, s ∨ t]), where ω(f ; J) = supJ f − infJ f . We let1678

Tf = (I/{df = 0}, df ) be the associated quotient space, and pf : I → Tf be the canonical1679

projection, which is continuous since df is. The space Tf is a so-called R-tree, that is,1680

satisfies the following.1681
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• For every two points a, b ∈ Tf , there exists a geodesic from a to b, that is, an1682

isometric mapping χa,b : [0, df (a, b)] → Tf with χa,b(0) = a and χa,b(df (a, b)) = b.1683

• The image of the path χa,b, which we denote by Ja, bKf , is the image of any injective1684

path from a to b.1685

If I is compact, we let a∗(f) = pf (t∗), where t∗ is any point at which f attains its overall1686

minimum. In this case, for t ∈ I and a = pf (t), the geodesic segment Ja, a∗(f)Kf is given1687

by1688

Ja, a∗(f)Kf = pf
(
{s ∈ [t ∧ t∗, t ∨ t∗] : f(s) ≤ f(u), ∀u ∈ [s ∧ t, s ∨ t]}

)
.1689

In the case where I is unbounded, we will systematically make the extra assumption that1690 
when τ̄(f) = −∞ , inf

t≤0
f(t) = −∞ or lim

t→−∞
f(t) = ∞ ;

when τ(f) = ∞ , inf
t≥0

f(t) = −∞ or lim
t→ ∞

f(t) = ∞ .
(23)1691

In particular, it holds that1692

∀ s ∈ I, lim
|t|→∞, t∈I

df (s, t) = ∞ , (24)1693

which implies that Tf is locally compact, as the reader may easily check.1694

Gluing two R-trees. Next, given two functions f , g ∈ C with common interval of1695

definition I = I(f) = I(g) both satisfying (23), we define another pseudometric on I as1696

the quotient pseudometric (defined by (11))1697

Df,g(s, t) = dg/{df = 0} , (25)1698

and equip the quotient set Mf,g = I/{Df,g = 0} with the metric Df,g. Note that Df,g :1699

I2 → R+ is continuous since1700 ∣∣Df,g(s, t)−Df,g(s
′, t′)

∣∣ ≤ Df,g(s, s
′) +Df,g(t, t

′)1701

≤ 2ω(g; [s ∧ s′, s ∨ s′]) + 2ω(g; [t ∧ t′, t ∨ t′]) .1702
1703

For this reason, the canonical projection pf,g : I → Mf,g is continuous. We may view1704

(Mf,g, Df,g) as gluing the R-tree Tg along the equivalence relation defining the R-tree Tf .1705

In fact, since either of df (s, t) = 0 or dg(s, t) = 0 implies Df,g = 0, the canonical projection1706

pf,g factorizes as1707

pf,g = πf ◦ pf = πg ◦ pg ,1708

where πf : Tf → Mf,g and πg : Tg → Mf,g are two surjective maps. Note that these1709

functions are continuous: if an = pf (tn) converges to some point a, then, up to taking1710

extractions (and using (24) if I is unbounded), we may assume that tn converges to1711

some limit t, and then pf (t) = a by continuity of pf , while πf (an) = pf,g(tn) converges1712

to pf,g(t) = πf (a). As a consequence, every geodesic segment Ja, bKf in Tf , and every1713

geodesic Jc, dKg in Tg is “immersed” into Mf,g via the mappings πf , πg.1714
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5.1.2 Composite slices coded by two functions1715

Slice trajectory. We say that (f, g) is a slice trajectory if f , g ∈ C have common1716

interval of definition I,1717

∀s, t ∈ I , df (s, t) = 0 =⇒ g(s) = g(t) , (26)1718
1719

if inf I = −∞, then1720

lim
t→−∞

f(t) = +∞ and inf
t≤0

g(t) = −∞ ,1721

1722

and, if sup I = ∞, then1723

inf
t≥0

f(t) = −∞ and inf
t≥0

g(t) = −∞ .1724

1725

In particular, f and g both satisfy (23) in the case where I is noncompact, and the1726

quantity f(inf I) ∈ R ∪ {+∞} is always well defined.1727

In the remainder of this section, we fix a slice trajectory (f, g), and call the metric1728

space1729

Slf,g = (Mf,g, Df,g)1730

the slice coded by (f, g). For the moment, we focus on deterministic considerations; the1731

functions f , g will be randomized in the following section.1732

Marks and measures. The slice Slf,g naturally comes with the following distinguished1733

elements.1734

Geodesics sides. For every t ∈ I, we set1735

Γt(r) = inf{s ≥ t : g(s) = g(t)− r} for r ∈ R+ such that inf
s≥t
s∈I

g(s) ≤ g(t)− r ;1736

Ξt(r) = sup{s ≤ t : g(s) = g(t)− r} for r ∈ R+ such that inf
s≤t
s∈I

g(s) ≤ g(t)− r .1737

1738

In particular, we have dg(Γt(r),Ξt(r)) = 0 for every t ∈ I and every r satisfying both1739

inequalities above.1740

We extend the definition given in Section 3.2 of geodesics to paths χ : [0,∞) → X that1741

satisfy (10) for every s, t ∈ R+. In this case, the point χ(0) is called the origin of χ, its1742

length is set to length(χ) = ∞ by convention, and the range of χ is called a geodesic ray.1743

The geodesic ray uniquely determines the geodesic χ by the same argument as for finite1744

length, since the origin of a geodesic ray is the unique point a such that, for any s > 0,1745

the number of points in the ray at distance s from a is one.1746

We observe that Γt and Ξt are geodesics (possibly of infinite length) from t for the1747

pseudometrics dg and Df,g, in the sense that, for every r, r′ such that Γt(r) and Γt(r
′) are1748

defined,1749

dg(Γt(r),Γt(r
′)) = Df,g(Γt(r),Γt(r

′)) = |r′ − r| , (27)1750
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and the same holds with Ξt in place of Γt. This fact is immediate for dg by definition. In1751

fact, when I is compact, one checks that the images of pg ◦Γt and pg ◦Ξt are the geodesic1752

segments Jpg(t), a∗(g|[t,sup I])Kg and Jpg(t), a∗(g|[inf I,t])Kg in Tg.1753

For Df,g, this fact follows from the bound1754

|g(s)− g(s′)| ≤ Df,g(s, s
′) ≤ dg(s, s

′) , s, s′ ∈ I ,1755

where the first inequality is an easy consequence of the fact that (f, g) is a slice trajectory.1756

Therefore, for t ∈ I, the paths defined by1757

γt(r) = pf,g(Γt(r)) , 0 ≤ r ≤ g(t)− g(t, sup I) , r ∈ R ,1758

ξt(r) = pf,g(Ξt(r)) , 0 ≤ r ≤ g(t)− g(inf I, t) , r ∈ R ,1759
1760

are two geodesics (possibly of infinite length) from pf,g(t), sharing a common initial part.1761

As mentioned in Section 3.2, we will often identify these paths with the pairs formed by1762

their origins and image sets, the latter being the projections πg(Jpg(t), a∗(g|[t,sup I])Kg) and1763

πg(Jpg(t), a∗(g|[inf I,t])Kg) when I is compact.1764

The slice Mf,g comes with zero, one, or two geodesic sides. If inf I > −∞, then the1765

geodesic γ = γinf I is called the maximal geodesic of Mf,g, and, if sup I <∞, the geodesic1766

ξ = ξsup I is called the shuttle of Mf,g. If inf I = −∞ (resp. sup I = ∞), we let γ−∞ (resp.1767

ξ∞) be the empty set. If I is a bounded interval, then the paths γinf I and ξsup I have a1768

common endpoint at the apex x∗ = pf,g(s∗) = πg(a∗(g)), where s∗ denotes any point s in1769

I such that g(s) = infI g.1770

Base. For x ∈ R, we define1771

Tx = inf{t ∈ I : f(t) = −x} ∈ R ∪ {∞} ,1772

the hitting time of level −x by the function f , with the convention that inf ∅ = ∞. Note1773

that, for x ∈ R, Tx ̸= −∞ because of the fact that (f, g) is admissible. By convention,1774

we also set T∞ = −T−∞ = ∞. The base of Slf,g is the set1775

β = pf,g

({
Tx : −f(inf I) ≤ x ≤ − inf

I
f
}
∩ R

)
.1776

Note that the set inside brackets projects via pf to a geodesic in Tf . When I is compact,1777

the base is the path πf (Jpf (T−f(inf I)),pf (T− infI f )K), and in general, it is the increasing1778

union of the paths1779

πf (Jpf (Tx),pf (Ty)Kf ) , −f(inf I) ≤ x < y ≤ − inf
I
f , x, y ∈ R .1780

Measures. Finally, denoting by LebJ the Lebesgue measure on the interval J , the1781

slice Slf,g is endowed with the following measures:1782

• the area measure µ = (pf,g)∗LebI ;1783

• the base measure ν, defined as the pushforward of Leb[−f(inf I),− infI f ]∩R by the map-1784

ping x 7→ pf,g(Tx) .1785



5.1 Metric spaces coded by real functions 55

Gluing slices. In what follows, we will make a slight abuse of notation and iden-1786

tify intervals of the form [a,∞], [−∞, a] for a ∈ R and [−∞,∞] with the intervals1787

[a,∞), (−∞, a] and R, respectively. For L, L′ in the extended line R ∪ {±∞} such that1788

−f(inf I) ≤ L ≤ L′ ≤ − infI f , we define the restrictions f (L,L′) and g(L,L
′) of f and g to1789

the interval [TL, TL′ ]∩ I, yielding also a slice trajectory. We may therefore define the slice1790

coded by (f (L,L′), g(L,L
′)) and denote it by1791

Sl(L,L
′) =

(
M (L,L′), D(L,L′)

)
=
(
Mf (L,L′),g(L,L′) , Df (L,L′),g(L,L′)

)
.1792

We let p(L,L′) : [TL, TL′ ] → M (L,L′) be the canonical projection, γ(L,L′), ξ(L,L′), β(L,L′) be1793

the maximal geodesic, shuttle, and base, and µ(L,L′), ν(L,L′) be the area and base measures1794

of Sl(L,L′).1795

This family of metric spaces is compatible with the gluing operation in the following1796

sense, illustrated in Figure 13.1797

Proposition 26. Let −f(inf I) ≤ L < L′ < L′′ ≤ − infI f be in the extended real line.1798

Then1799

Sl(L,L
′′) = G

(
Sl(L,L

′), Sl(L
′,L′′); ξ(L,L

′), γ(L
′,L′′)

)
.1800

Moreover, the marks and measures satisfy1801

γ(L,L
′′) = γ(L,L

′) ∪
(
γ(L

′,L′′) \ ξ(L,L′)
)
,1802

ξ(L,L
′′) = ξ(L

′,L′′) ∪
(
ξ(L,L

′) \ γ(L′,L′′)
)
,1803

β(L,L′′) = β(L,L′) ∪ β(L′,L′′) ,1804

µ(L,L′′) = µ(L,L′) + µ(L′,L′′) ,1805

ν(L,L
′′) = ν(L,L

′) + ν(L
′,L′′) ,1806

1807

with the convention that, in the right hand-side, sets and measures are identified with their1808

images and pushforwards by the canonical projections in Sl(L,L
′′) .1809

Proof. In the disjoint union [TL, TL′ ]⊔ [TL′ , TL′′ ], in order to avoid ambiguities due to the1818

fact that the point TL′ belongs to both intervals (thus should be duplicated), we use a1819

superscript 0 for points in the first interval and a superscript 1 for points in the second1820

interval. We observe that dg(L,L′′) can be seen as a quotient pseudometric d/R1 where d1821

is the disjoint union pseudometric on [TL, TL′ ] ⊔ [TL′ , TL′′ ] given by d(s, t) = dg(s, t) if s,1822

t belong to the same of the two intervals above and d(s, t) = ∞ otherwise, and R1 is the1823

coarsest equivalence relation containing1824 {(
ΞTL′ (r)

0,ΓTL′ (r)
1
)
, 0 ≤ r ≤ g(TL′)− g(TL, TL′) ∨ g(TL′ , TL′′)

}
.1825

Note also that, as TL′ is a hitting time, the equivalence relation {df (L,L′′) = 0} factorizes1826

over these two intervals, in the sense that if df (L,L′′)(s, t) = 0 with s ̸= t, then s, t must1827

belong to the same interval [TL, TL′ ] or [TL′ , TL′′ ]. So if R2 is the equivalence relation on1828
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pf,g(TL)

γ(L,L′) ξ(L,L′)

pf,g(TL′)

x
(L,L′)
∗

pf,g(TL′′)

Sl(L,L′)
Sl(L

′,L′′)

x
(L′,L′′)
∗

γ(L′,L′′)
ξ(L

′,L′′)

β(L′,L′′)β(L,L′)

Figure 13: Gluing slices encoded by a slice trajectory: the gluing of Sl(L,L
′) with Sl(L

′,L′′)

results in Sl(L,L
′′). Here, TL > −∞ and TL′′ < ∞. We denoted by x(L

′,L′′)
∗ the apex of Sl(L′,L′′)

and x(L,L
′)

∗ the apex of Sl(L,L′), which, on this example, is also the apex of Sl(L,L′′). Consequently,
the shuttle ξ(L,L

′′) is obtained by the union of ξ(L′,L′′) and the part of ξ(L,L′) that is not glued to
γ(L

′,L′′), whereas the maximal geodesic γ(L,L
′′) = γ(L,L

′), as stated at the end of Proposition 26.
The bases and measures simply add up. The fact that the slices depicted here are topological
disks does not hold true in general; it will, however, be the case for the random processes we will
consider in the upcoming sections.

1810

1811

1812

1813

1814

1815

1816

1817

the above disjoint union given by (si, tj) ∈ R2 if and only if df (s, t) = 0 and i = j ∈ {0, 1},1829

using (12), we have1830

D(L,L′′) = (d/R1)/R2 = (d/R2)/R1 =
(
D(L,L′) ⊔D(L′,L′′)

)
/R1 ,1831

which is precisely the quotient metric of the gluing G(Sl(L,L′), Sl(L
′,L′′); ξ(L,L

′), γ(L
′,L′′)).1832

Checking the claimed formulas for the marks and measures of Sl(L,L′′) is straightfor-1833

ward.1834

We finish this paragraph with a very strong identity, saying that the distances in a1835

slice Sl(L,L′) encoded by a restriction of the slice trajectory (f, g) are in fact the restrictions1836

of the distances in the “whole” slice Slf,g.1837

Corollary 27. Let (f, g) be a slice trajectory on the interval I, and −f(inf I) ≤ L ≤1838

L′ ≤ − infI f . Then D(L,L′) is the restriction of the function Df,g to [TL, TL′ ].1839

Proof. This is a direct consequence of the preceding proposition, which entails that Df,g1840

is the pseudometric obtained by gluing Sl(L,L
′) with Sl(L

′,sup I) along ξ(L,L′) and γ(L
′,sup I),1841

and then by gluing the resulting space Sl(L,sup I) with Sl(inf I,L) along γ(L,sup I) and ξ(inf I,L).1842

Since at each stage, the spaces that are glued together are isometrically embedded in the1843

resulting gluing, we obtain that Sl(L,L′) is isometrically embedded in Sl(inf I,sup I) = Slf,g.1844
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5.2 Random continuum composite slices1845

We now randomize the functions f , g considered in the preceding section in various ways1846

to construct random spaces of interest. For a fixed continuous function f ∈ C with1847

0 ∈ I(f), the snake9 driven by f is a random centered Gaussian process (Zf
t , t ∈ I(f))1848

with Zf
0 = 0 and with covariance function specified by1849

E
[
(Zf

t − Zf
s )

2
]
= df (s, t) , s, t ∈ I(f) . (28)1850

As soon as f is Hölder continuous, which will always be the case in this paper, this process1851

admits a continuous modification; we systematically consider this continuous modification1852

of Zf . If now Y is a (a.s. Hölder continuous) random function, then the random snake1853

driven by Y is defined as the Gaussian process ZY conditionally given Y .1854

By (28), it holds that Zf
s = Zf

t whenever df (s, t) = 0, so that, provided f satisfies the1855

required limit conditions if I(f) is noncompact, the pair (f, Zf ) is a slice trajectory. In1856

what follows, we will let (X,W ) : (f, g) 7→ (f, g) be the canonical process on C2.1857

Below and throughout this work, we use, for any process Y defined on an interval I,1858

the piece of notation Y t = infs≤t, s∈I Ys.1859

Let us proceed to the definition of continuum slices, which arise in Theorem 12. Fix A,1860

L ∈ (0,∞) and ∆ ∈ R. We let SliceA,L,∆ be the probability distribution under which1861

• the process X is a first-passage bridge10 of standard Brownian motion from 0 to −L1862

with duration A;1863

• conditionally given X, the process W has the same law as (Zt + ζ−Xt , 0 ≤ t ≤ A),1864

where Z is the random snake driven by X −X, and ζ/
√
3 is a standard Brownian1865

bridge of duration L and terminal value ∆/
√
3, independent of X and Z.1866

To be more precise, the process ζ = (ζt, 0 ≤ t ≤ L) is Gaussian, with E[ζt] = t∆/L1867

for t ∈ [0, L] and1868

Cov(ζs, ζt) = 3
s(L− t)

L
, 0 ≤ s ≤ t ≤ L .1869

With this definition, it is simple to see that SliceA,L,∆ is indeed carried by slice trajectories1870

defined on the interval I = [0, A].1871

Definition 28. The (composite) slice with area A, width L and tilt ∆, generically de-1872

noted by SlA,L,∆, is the 5-marked 2-measured metric space SlX,W under the law SliceA,L,∆,1873

endowed with the marking1874

∂SlA,L,∆ = (β, γ0, ξA)1875

comprising its base, its maximal geodesic and its shuttle, as well as its area and base1876

measures µ, ν.1877

The piece of notation ∂SlA,L,∆ for the marking comes from the fact that the union of1878

the three marks gives the topological boundary of SlA,L,∆, as stated in Lemma 25.1879

9Literally, this is rather called the “head of the snake driven by f”; see [LG99].
10A first-passage bridge of Brownian motion can be defined from Brownian motion stopped when first

hitting −L by absolute continuity; see [BM17].
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5.3 The Brownian half-plane, and its embedded slices1880

There is a natural relation between slices and the Brownian half-plane [GM17, BMR19],1881

which we now introduce. Let (Bt, t ≥ 0), (B′
t, t ≥ 0) be two independent standard1882

Brownian motions, and let (Πt = B′
t − 2 inf{0≤s≤t}B

′
s, t ≥ 0) be the so-called Pitman1883

transform of B′, which is a three-dimensional Bessel process. Recall the piece of notation1884

X t = infs≤tXs. We let Half be the probability distribution on C2 under which1885

• the process X has same distribution as (Bt1{t≥0} +Π−t1{t<0}, t ∈ R), and1886

• conditionally given X, the process W has same distribution as (Zt + ζ−Xt , t ∈ R),1887

where Z is the random snake driven by X −X, and ζ/
√
3 is a two-sided standard1888

Brownian motion11, independent of X and Z.1889

The measure Half is carried by slice trajectories defined on the interval R. We note1890

that we can make this definition more symmetric using standard excursion theory, in a1891

way similar to the encoding triples of [LGR21]. For this, we denote by1892

X(L) = (L+XTL−+t, 0 ≤ t ≤ TL − TL−) ,1893

W (L) = (WTL−+t, 0 ≤ t ≤ TL − TL−) ,1894
1895

the excursion of X above its past infimum at level −L, and the corresponding piece1896

of W . Note first that the process ζL = WTL , L ∈ R, is under Half a standard two-sided1897

Brownian motion multiplied by
√
3. Then, conditionally given ζ, the point measure on1898

R× C × C given by1899

M(dL dX dW ) =
∑

L∈R:TL ̸=TL−

δ(L,X(L),W (L)) (29)1900

is a Poisson measure with intensity 2dLNζL(d(X,W )), where Nx is the σ-finite “law”1901

of the lifetime process and head of the Brownian snake (started at x) driven by the1902

Itô measure of positive excursions of Brownian motion. The process (X,W ) is then a1903

measurable function of ζ and M by Itô’s reconstruction theory of Brownian motion from1904

its excursions.1905

Definition 29. The Brownian half-plane, generically denoted by BHP, is the 1-marked1906

2-measured metric space SlX,W considered under Half , endowed with the mark ∂BHP = β,1907

its area measure µ and its base measure ν.1908

There is only one mark here, the base; there is no maximal geodesic nor shuttle since1909

the interval of definition is R. The name comes from the fact that BHP is homeomorphic1910

to the half-plane R×R+, its boundary as a topological manifold being equal to the base;1911

see [BMR19, Corollary 3.8].1912

11This means that (ζx/
√
3, x ≥ 0) and (ζ−x/

√
3, x ≥ 0) are independent (one-dimensional) standard

Brownian motions issued from 0.
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In the light of Proposition 26, the Brownian half-plane can be seen to have a natural1913

Markov property. First, let θt : f 7→ f(t+ ·)− f(t) be the translation operator on C. We1914

claim that Half is invariant under θTL , since its action simply consists in translating by L1915

the time in process ζ, and the first coordinate of M, which leaves their laws invariant.1916

For similar reasons, for every L ∈ R, the processes
(
X(0,L),W (0,L)

)
, (X(−∞,0),W (−∞,0))1917

and (θTLX
(L,+∞), θTLW

(L,+∞)) are independent under Half , since they are respectively1918

functionals of the independent random elements1919

1920

(ζx, 0 ≤ x ≤ L),M((0, L]× C × C) , (ζx, x ≤ 0),M((−∞, 0]× C × C) ,1921

and (ζL+x − ζL, x ≥ 0),M((L,∞)× C × C) .1922
1923

Free slices. Note that, under Half , the process X(0,L) is simply a standard Brownian1924

motion killed at its first hitting time of −L, while the process (W
(0,L)
Tx

/
√
3, 0 ≤ x ≤ L) is1925

a standard Brownian motion killed at time L. For this reason, the law of (X(0,L),W (0,L))1926

under Half is the mixture1927

FSliceL =

∫ ∞

0

qL(A)dA

∫
R
p3L(∆)d∆SliceA,L,∆ , (30)1928

where pt(x) = e−x
2/2t/

√
2πt is the Gaussian density, and qx(t) = (x/t) pt(x)1{t>0} is the1929

(stable 1/2) density for the hitting time of level −x by standard Brownian motion. In what1930

follows, a random metric space with same law as Sl(0,L) under FSliceL will be referred1931

to as a free (composite) slice of width L. This, together with Proposition 26, yields the1932

following result.1933

Proposition 30. Fix L < L′ < L′′ in the extended line. Then, under Half , it holds1934

that Sl(L,L
′′) = G(Sl(L,L

′), Sl(L
′,L′′); ξ(L,L

′), γ(L
′,L′′)), where the spaces Sl(L,L

′), Sl(L
′,L′′) are1935

independent. Moreover, if L and L′ are finite, then Sl(L,L
′) is a free slice of width L′ − L.1936

Recall that this result is illustrated in Figure 13, which can be completed by extending1937

the brown segment into a line, letting the half-plane above be BHP, the line being its base1938

β = β(−∞,∞). This also suggests that Sl(L,L
′) is the bounded connected component of the1939

complement of γ(L,L′) ∪ ξ(L,L′) in BHP. More precisely, the following holds.1940

Proposition 31. For every L < L′ in R, almost surely under Half , the geodesics γ(L,L′)
1941

and ξ(L,L
′) meet only at the apex x(L,L

′)
∗ , and meet the base β only at their respective1942

origins pX,W (TL) and pX,W (TL′). Moreover, Sl(L,L′) is the closure of the bounded connected1943

component of the complement of the union of these two paths in BHP. It is therefore1944

homeomorphic to the closed unit disk, with boundary given by the union of the three sets1945

β(L,L′), γ(L,L′) and ξ(L,L′), which meet only at pX,W (TL), pX,W (TL′) and x(L,L′)
∗ .1946

Proof. This proposition is proved in the same way as Lemma 6.15 in [BMR19]. Let us1947

recall briefly the ideas. For any point t ∈ R, we let1948

Σt(r) = inf{s ≥ t : Xs = Xt − r} for 0 ≤ r ≤ Xt −X t ,1949
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so that the range of pX ◦ Σt is the geodesic path JpX(t),pX(T−Xt)KX in TX . Its image1950

by πX defines a path σt starting at pX,W (t) and ending at the point pX,W (T−Xt) of1951

the base. Moreover, almost surely, any path σt, t ∈ R, do not intersect a geodesic γs,1952

s ∈ R, except possibly at the starting point of either pX,W (s) or pX,W (t). This implies1953

that any point pX,W (t) of Sl(L,L′) that is not in the union γ(L,L
′) ∪ ξ(L,L

′) can be linked1954

to the bounded segment β(L,L′) of the base of BHP by the path σt without intersecting1955

γ(L,L
′) ∪ ξ(L,L′) except perhaps at its endpoint. This latest possibility can be discarded by1956

noting that, with probability 1, we have T−Xt /∈ {TL, TL′}. Similarly, a point pX,W (t) of1957

BHP outside of Sl(L,L′) is linked to the unbounded set β \β(L,L′) of the base of BHP by the1958

path σt, which does not intersect γ(L,L′) ∪ ξ(L,L′). This means that Sl(L,L
′) is the closure1959

of the bounded connected component of BHP minus γ(L,L′) ∪ ξ(L,L′).1960

The above discussion shows that the Brownian half-plane contains a natural “flow” of1961

free slices. We can also link directly the slices of Section 5.2 with the Brownian half-plane1962

via an absolute continuity argument. Recall the definitions of pt and qx after (30).1963

Lemma 32. Fix 0 < K < L, as well as A > 0 and ∆ ∈ R. For every nonnegative1964

function G that is measurable with respect to the σ-algebra generated by (X(0,K),W (0,K)),1965

we have1966

SliceA,L,∆[G] = Half
[
φA,L,∆

(
TK , K,WTK

)
·G
]
,1967

where1968

φA,L,∆(A
′, L′,∆′) =

qL−L′(A− A′)

qL(A)

p3(L−L′)(∆−∆′)

p3L(∆)
. (31)1969

Proof. This comes from similar statements for Brownian bridges and first-passage bridges;1970

see for instance [Bet10, Equations (18) and (19)]. For bounded measurable functions f ,1971

g on C, for 0 < A′ < A and 0 < K < L,1972

1973

SliceA,L,∆

[
f
(
X|[0,A′]

)
· g
(
ζ|[0,K]

)]
1974

= Half

[
f
(
X|[0,A′]

)qL−XA′ (A− A′)

qL(A)
1{XA′>−L} · g

(
ζ|[0,K]

)p3(L−K)(∆− ζK)

p3L(∆)

]
. (32)1975

1976

Here, the factor 3 in the index of the Gaussian density function comes from the fact that1977

ζ/
√
3 is a bridge of standard Brownian motion. We replace A′ with TK by a standard1978

argument, writing1979

f
(
X(0,K)

)
= lim

n→∞

∑
i≥0

1{(i−1)2−n<TK≤i 2−n} f
(
X|[0,i 2−n]

)
,1980

using dominated convergence and applying the above equality (32) to A′ = i 2−n, noting1981

that 1{(i−1)2−n<TK≤i 2−n} f
(
X|[0,i 2−n]

)
is a function of X|[0,i 2−n].1982

The result follows by noting that W (0,K) is built in the same way from X(0,K) and ζ|[0,K]1983

under SliceA,L,∆ as from X(0,K) and ζ|[0,K] under Half .1984
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We may now prove the statement about the topology and Hausdorff dimension of a1985

slice.1986

Proof of Lemma 25 for slices. First, almost surely, the Brownian half-plane is homeomor-1987

phic to the half-plane [BMR19, Corollary 3.8], is locally of Hausdorff dimension 4 and its1988

boundary is locally of Hausdorff dimension 2. The latter facts are obtained from similar1989

statements for Brownian disks [Bet15] thanks to [BMR19, Theorem 3.7] allowing to couple1990

arbitrary balls of BHP centered at the root pX,W (0) with balls of large enough Brownian1991

disks, centered at a point on the boundary.1992

Consequently, under the probability distribution Half , for any L < L′, by Lemma 27,1993

the metric space Sl(L,L′) is a.s. locally of Hausdorff dimension 4 and its base β(L,L′) is locally1994

of Hausdorff dimension 2. Furthermore, it is homeomorphic to the disk by Proposition 311995

and its boundary is the union of its three marks β(L,L′), γ(L,L′) and ξ(L,L′), whose pairwise1996

intersections are identified singletons.1997

Now, arguing under SliceA,L,∆, we use the fact from Proposition 26 that Sl(0,L) =1998

G(Sl(0,L/2), Sl(L/2,L); ξ(0,L/2), γ(L/2,L)). Lemma 32 entails that, almost surely, under this1999

probability distribution, the law of Sl(0,L/2) is absolutely continuous with respect to that2000

of the same random variable under Half , and so is homeomorphic to a disk. Now, we2001

observe that, under SliceA,L,∆, the process θTL/2
(X(L/2,L),W (L/2,L)) has same distribution2002

as (X(0,L/2),W (0,L/2)), which we leave as an exercise to the reader. Therefore, under this2003

law, Sl(L/2,L) has same distribution as Sl(0,L/2) and both are homeomorphic to a disk. We2004

conclude that the same is true for Sl(0,L) since it is obtained by gluing two topological2005

disks along two segments of their boundaries. The identification of the marks given in2006

Proposition 26 easily yields the desired property on the marks of Sl(0,L). The facts on the2007

local Hausdorff dimension are obtained similarly.2008

5.4 The uniform infinite half-planar quadrangulation2009

The UIHPQ. We now define a slight variant of the classical UIHPQ [CM15, CC18,2010

BMR19, BR18], the half-planar version of the uniform infinite random planar quadrangu-2011

lation, in the following way. Let F∞ = (Tk, k ∈ Z) be a two-sided sequence of independent2012

Bienaymé–Galton–Watson trees with a geometric offspring distribution of parameter 1/2.2013

Conditionally on F∞, we let λ0∞ be a uniformly chosen well labeling function, meaning2014

that every tree Tk is assigned a well labeling function giving label 0 to its root vertex,2015

independently, uniformly at random. Lastly, and independently of F∞ and λ0∞, we let2016

(bk, k ∈ Z) be a doubly-infinite walk with shifted geometric steps, meaning that b0 = 02017

a.s., and that bk − bk−1, k ∈ Z, are independent and identically distributed random vari-2018

ables with P(b1 = r) = 2−r−2 for every r ∈ {−1, 0, 1, 2, . . .}. For a vertex v ∈ Tk we let2019

λ∞(v) = bk + λ0∞(v), and call (F∞, λ∞) the infinite random well-labeled forest. We then2020

embed F∞ in the plane in such a way that all trees are contained in the upper half-plane,2021

and the root ρk of Tk is located at the point (k, 0) ∈ R2. We also link consecutive roots ρk,2022

ρk+1 by a line segment. We then let (ci, i ∈ Z) be the sequence of corners of the upper2023

half-plane part of the resulting map, in contour order from left to right, with origin the2024
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first corner c0 incident to ρ0. The uniform infinite half-planar quadrangulation (UIHPQ2025

for short) is then the infinite map Q∞ obtained by applying the CVS construction to2026

(F∞, λ∞), that is, by linking every corner to its successor as defined in Section 2.1, and2027

removing all edges of the forest afterward. The root of Q∞ is defined as the corner pre-2028

ceding the arc from c0 to its successor. Note that, in this case, there is no need to add an2029

extra vertex with a corner c∞.2030

Remark 33. The difference between this definition of the UIHPQ and the one appearing2031

in the mentioned references is a slight rooting bias. Indeed, the simplest way to obtain the2032

usual definition is to consider a two-sided simple random walk (zi, i ∈ Z) and construct2033

the sequence (bk, k ∈ Z) from it as follows. Let S↓ = {i ∈ Z : zi+1 − zi = −1} be the set2034

of descending steps of (zi, i ∈ Z) and i0 = sup(S↓ ∩ Z−) the index of the descending step2035

preceding 0. Then we define the sequence (bk, k ∈ Z) by reindexing (zi−zi0 , i ∈ S↓) with Z2036

in such a way that i0 corresponds to the index 0. The UIHPQ is then constructed as above2037

with this bridge but rooted at the corner preceding the arc linking s−i0(c0) to its successor2038

s−i0+1(c0) instead of the convention we presented. Apart from this slight root shift, the2039

resulting law of (bk, k ∈ Z) is not exactly that of a doubly-infinite bridge with shifted2040

geometric steps. The first step gets a size-biased distribution P(b1 = r) = (r + 2)2−r−3,2041

r ≥ −1, whereas all other steps get the desired shifted geometric distribution. See the2042

discussion in [BMR19, Section 4.5.2] for more information.2043

The construction we use here has the advantage of making the law of the slices invariant2044

by translation.2045

Convergence toward the Brownian half-plane. Denoting by vi the vertex of F∞2046

incident to ci and by Υ(i) ∈ Z the index of the tree to which vi belongs, we define the2047

contour and label processes on R by2048

C(i) = dTΥ(i)

(
vi, ρ

Υ(i)
)
−Υ(i) and Λ(i) = λ∞(vi) , i ∈ Z ,2049

and by linear interpolation between integer values; see Figure 14. As is well known, the2050

part of the contour process corresponding to Tk (counting the edge linking ρk to ρk+1)2051

has the same distribution as a simple random walk started at −k and killed when first2052

hitting −k− 1. Finally, for k ≥ 1, we denote by τk the hitting time of −k by C; its value2053

is thus also equal to k plus twice the number of edges in the first k trees T0, . . . , Tk−1.2054

As the vertices of the encoding objects are preserved through the CVS bijection, the2063

vertex vi can also be seen as a vertex of Q∞. Let us define2064

D∞(i, j) = dQ∞(vi, vj) , i, j ∈ Z .2065
2066

We extend D∞ to a continuous function on R2 by “bilinear interpolation,” writing {s} =2067

s− ⌊s⌋ for the fractional part of s and then setting2068

2069

D∞(s, t) = (1− {s})(1− {t})D∞(⌊s⌋, ⌊t⌋) + {s}(1− {t})D∞(⌊s⌋+ 1, ⌊t⌋)2070

+ (1− {s}){t}D∞(⌊s⌋, ⌊t⌋+ 1) + {s}{t}D∞(⌊s⌋+ 1, ⌊t⌋+ 1). (33)2071
2072
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Figure 14: Contour and label processes associated with (F∞, λ∞). The edges of the floor are
represented with dashed lines. The tree T0 and the corresponding part of the encoding processes
are highlighted (the corresponding floor edge and the final descending step of the contour function
are also highlighted). For instance, τ3 = 17 on this example. The contour process can be thought
of as recording the height of a particle moving at speed one around the forest. In this point of
view, the root ρk should be at height −k for each k ∈ Z; this can be achieved for instance by
vertically translating each tree in such a way that ρk is mapped to location (k,−k) instead of
(k, 0).
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We then define the renormalized versions of C, Λ, and D∞ : for every s, t ∈ R, we set2073

C(n)(s) =
C(2ns)√

2n
, Λ(n)(s) =

Λ(2ns)

(8n/9)1/4
, D(n)(s, t) =

D∞(2ns, 2nt)

(8n/9)1/4
. (34)2074

The next result can be seen as a reformulation of [GM17, Theorem 1.11] or [BMR19,2075

Theorem 3.6], proving the convergence of the UIHPQ to the Brownian half-plane defined2076

in Section 5.3.2077

Proposition 34. On C × C × C(2), it holds that2078 (
C(n),Λ(n), D(n)

) (d)−→
n→∞

(
X,W,DX,W

)
, (35)2079

where the limiting triple is understood under Half .2080

This statement does not appear in this exact form in the aforementioned references,2081

which do not explicitly focus on the processes C(n), Λ(n), X, W . In [BMR19, Remark 6.16],2082

it was however mentioned how to extend the results therein in order to take into account2083

these processes, so we will follow the line of reasoning sketched in that work.2084

Proof. The proof proceeds via established convergence results for random quadrangula-2085

tions with one external face to Brownian disks. Fix some number K > 0. We will sample2086

a quadrangulation with one external face, whose areas and perimeters are so large that, in2087

a neighborhood of 0 of amplitude K, this rescaled large quadrangulation and its limit, a2088

Brownian disk of large area and perimeter, are indistinguishable from the rescaled UIHPQ2089

and the Brownian half-plane, in a sense to be made precise. In the following, we will use2090

for all the objects related to the quadrangulation with one external face or the limiting2091
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Brownian disk a similar notation as for those related to the UIHPQ or the Brownian2092

half-plane, only with a superscript prime symbol ′.2093

Fix L > 0, which should be thought of as being large. For n ≥ 1, we sample the2094

aforementioned quadrangulation Q′
n with one external face as follows. First, consider a2095

uniform random element (M ′
n, λ

′
n) of →

M
[0]
an,(ln)

, where an = ⌊nL⌋ and ln = ⌊L
√
2n⌋. We2096

can view this as a labeled forest (F ′
n, λ

′
n) with ln trees arranged in a circle, and rooted2097

at ρ0, . . . , ρln−1 where ρ0 is the root of the tree containing the root corner of f∗. We let2098

C ′
n, Λ′

n be the contour and label process of this forest, defined as above, starting from the2099

tree rooted at ρ0. We let Q′
n = CVS(M ′

n, λ
′
n; f∗) be the rooted quadrangulation encoded2100

by (M ′
n, λ

′
n), and we let D′

n(i, j) = dQ′
n
(v′i, v

′
j) for 0 ≤ i, j ≤ 2an + ln, where v′i is the2101

i-th visited vertex of F ′
n in contour order, viewed as a vertex of Q′

n. As usual, we extend2102

D′
n into a continuous function on [0, 2an + ln]

2. Finally, we extend the definition of these2103

processes to the interval [−2an − ln, 2an + ln] by the simple translation formulas2104

C ′
n(t) = C ′

n(t+ 2an + ln) + ln , Λ′
n(t) = Λ′

n(t+ 2an + ln) , t ∈ [−2an − ln, 0] , (36)2105

and2106

D′
n(s, t) = D′

n(s+(2an+ln)1{s<0}, t+(2an+ln)1{t<0}) , s, t ∈ [−2an−ln, 2an+ln] . (37)2107

The idea behind this extension is that we are going to consider these processes in neigh-2108

borhoods of 0, so that we are really interested in the behavior of these processes when2109

the argument is close from 0 or from 2an + ln.2110

Define their rescaled versions: for s, t ∈ [−2an − ln, 2an + ln],2111

C ′
(n)(s) =

C ′
n(2ns)√
2n

, Λ′
(n)(s) =

Λ′
n(2ns)

(8n/9)1/4
, D′

(n)(s, t) =
D′
n(2ns, 2nt)

(8n/9)1/4
. (38)2112

Then by [BM17, Equation (26) and Theorem 20], one has the joint convergence2113 (
C ′

(n),Λ
′
(n), D

′
(n)

) (d)−→
n→∞

(X ′,W ′, D′) (39)2114

in distribution in C([0, L])×C([0, L])×C([0, L]2), where (X ′,W ′, D′) is an explicit limiting2115

process, which is the encoding process of the Brownian disk of area L and width
√
L.2116

In particular, the process D′ is a measurable function of the pair (X ′,W ′). Due to2117

the formulas in (36) and (37), this easily implies the convergence of these processes on2118

C([−L,L]) × C([−L,L]) × C([−L,L]2), where (X ′,W ′, D′) are extended to functions on2119

[−L,L] or [−L,L]2 in a similar way as above. Note that we choose to omit the dependence2120

of (X ′,W ′, D′) on L for lighter notation, but we will need later to choose L appropriately.2121

Now recall that K > 0 is a fixed number. The first crucial observation is that we2122

may choose L large enough, so that with high probability, the laws of the restrictions2123

of (X ′,W ′, D′) and (X,W,DX,W ) to the interval [−K,K] are very close. More precisely,2124

given ε ∈ (0, 1), fix r > 0 and A > 0 such that2125

P
Å

max
−K≤t≤K

DX,W (0, t) > r

ã
< ε/3 , P(T−A < −K < K < TA) ≥ 1− ε/3 .2126
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Then [BMR19, Proposition 6.6] and its proof (Lemmas 6.7 and 6.8) show that there exists2127

L0 > 0 such that, for L > L0, the two processes (X,W ) and (X ′,W ′) can be coupled in2128

such a way that on some event F of probability P(F) ≥ 1− ε/3, we have2129

Xt = X ′
t , Wt = W ′

t , DX,W (s, t) = D′(s, t) , (40)2130

for every s, t ∈ [T−A, TA] such that max(DX,W (0, t), DX,W (0, s)) ≤ r. Given our choice2131

of r, A, we see that with probability at least 1− ε, (40) holds for every s, t ∈ [−K,K].2132

Our second important observation is that, still with K and ε fixed, and possibly up2133

to choosing L even larger than the above, albeit in a way that does not depend on n, the2134

laws of (C(n),Λ(n), D(n)) and (C ′
(n),Λ

′
(n), D

′
(n)) in restriction to the interval [−K,K] are also2135

close, in the sense that they can be coupled in such a way that these restrictions coincide2136

with probability at least 1 − ε. This follows from the proof of [BMR19, Theorem 3.6], a2137

minor difference being that this proposition establishes that the balls of radius (8n/9)1/4r2138

centered at the root in Q∞ and Q′
n are isometric, rather than giving a statement on D(n)2139

and D′
(n). Therefore, in order to show that the latter coincide on [−K,K], one again has2140

to choose in the first place a radius r > 0 so that uniformly over n, with probability at2141

least 1− ε/3, the vertices v′i for integers i lying in [−2Kn, 2Kn] (where we naturally let2142

v′i = v′i+2an+ln
for i ≤ 0), all belong to this ball. The existence of such an r is guaranteed2143

by the convergence (39) and the continuity of D′. Finally, we see that both sides of (39)2144

can be coupled in such a way that with probability at least 1− ε, they coincide with both2145

sides of (35). Since ε was arbitrary, we conclude that (35) holds in restriction to [−K,K].2146

Since K was arbitrary, this concludes the proof.2147

Seeing a slice as part of the UIHPQ. We consider a fixed L > 0 and a sequence2148

(ln) ∈ NN such that2149

ln√
2n

−→
n→∞

L2150

and, for each n, we let (Fn, λn) be the random well-labeled forest obtained by keeping only2151

the labeled trees T0, . . . , Tln−1 of the infinite random well-labeled forest (F∞, λ∞), as well2152

as the root ρln of the tree Tln . In particular, the forest Fn has ln independent Bienaymé–2153

Galton–Watson trees with Geometric(1/2) offspring distribution, and the labels of the2154

root vertices of the trees (including ρln) follow a random walk of length ln whose step2155

distribution is a shifted Geometric(1/2) given by P( · = r) = 2−r−2 for r ≥ −1.2156

Recall that (ci, i ∈ Z) denotes the sequence of corners of the infinite random well-2157

labeled forest (F∞, λ∞) and that vi is the vertex of F∞ incident to ci. According to the2158

construction of Section 2.3, (Fn, λn) encodes a slice Qn, which is part of the UIHPQ Q∞2159

constructed from the whole infinite forest (F∞, λ∞). More precisely, the maximal geodesic2160

(resp. shuttle) can be read inside the UIHPQ as the chain of arcs linking c0 (resp. cτln ) to2161

its subsequent successors12 and the edges of the slice are given by the arcs from ci to s(ci),2162

for 0 ≤ i < τln . As a consequence, the vertex vi can be seen both as a vertex of Q∞ and2163

as a vertex of Qn, for 0 ≤ i ≤ τln .2164

12Recall Section 2.1.
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Furthermore, we can check that Qn is in fact isometrically embedded in Q∞ in the2165

sense that, whenever 0 ≤ i, j ≤ τln , it holds that dQn(vi, vj) = D∞(i, j). Indeed, similarly2166

to Proposition 26, Q∞ can be obtained as the gluing of the infinite quadrangulation2167

corresponding to the trees Tk, k < 0, of (F∞, λ∞), with Qn and then with the infinite2168

quadrangulation corresponding to the trees Tk, k ≥ ln, of (F∞, λ∞) along the proper2169

shuttles and maximal geodesics. Alternatively, one may also argue that there are no2170

shortcuts outside Qn : for 0 ≤ i, j ≤ τln , any path linking vi to vj in Q∞ may be shorten2171

to a path that stays within Qn since the maximal geodesic and shuttle are geodesics and2172

since the path c0 → s(c0) → s2(c0) → . . . is a geodesic ray that disconnects Q∞.2173

The contour function, label function and pseudometric corresponding to Qn are thus2174

obtained by restricting to [0, τln ] the analog functions corresponding to Q∞. After rescal-2175

ing, their joint limit is a direct consequence of Proposition 34.2176

Corollary 35. On C × C × C(2), it holds that2177 (
C(n)|[0,τln/2n],Λ(n)|[0,τln/2n], D(n)|[0,τln/2n]2

) (d)−→
n→∞

(
X(0,L),W (0,L), D(0,L)

)
, (41)2178

where we used the notation of Section 5.1, that is,2179

(a) the pair (X(0,L),W (0,L)) is the restriction to the interval [0, TL] of (X,W ) distributed2180

under Half ,2181

(b) D(0,L) = DX(0,L),W (0,L) is the random pseudometric on R defined by (25).2182

Proof. By the Skorokhod representation theorem, we may and will assume that the con-2183

vergence (35) holds almost surely. Classically, the a.s. path properties of X at time TL,2184

namely, the fact that X immediately visits the interval (L−ε, L) after time TL, yield that2185

τln/2n a.s. converges to TL. Proposition 35 and Corollary 27 then yield the result.2186

5.5 Scaling limit of conditioned slices2187

We now derive Theorem 12 from the results of the previous section by standard condi-2188

tioning arguments.2189

Convergence of the encoding processes. First, without loss of generality, we may2190

assume that the contour and label processes (C,Λ) of the infinite random well-labeled2191

forest defined in Section 5.4 are the canonical processes, considered under the probability2192

distribution P∞ on the canonical space. Next, for a, l ∈ N and δ ∈ Z, we denote by2193

Pa,l,δ the distribution of
(
C|[0,2a+l],Λ|[0,2a+l]

)
where (C,Λ) is distributed under P∞[ · |2194

τl = 2a+ l, Λ(τl) = δ]. The corresponding forest encoded by this random process is thus2195

composed of l Bienaymé–Galton–Watson trees with Geometric(1/2) offspring distribution2196

and uniform admissible labels, conditioned on the fact that the total number of edges in2197

the trees is a and the label of the root of the last vertex-tree is δ. Similarly to the slice it2198

encodes, we will say that the forest has tilt δ.2199
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For every measurable nonnegative functional G, it thus holds that2200

Ea,l,δ[G] = E∞
[
G
(
(C(k),Λ(k)), 0 ≤ k ≤ τl

) ∣∣ τl = 2a+ l, Λ(τl) = δ
]
.2201

Let (Fk, k ≥ 0) be the natural filtration associated with the canonical process (C,Λ).2202

Note that ((C(k),Λ(k)), 0 ≤ k ≤ τl) is the pair of contour and label processes of the first l2203

trees in the forest, and that Fτl is the σ-algebra generated by these first l trees (with their2204

labels and that of the root ρl). Recall from Proposition 9 the definitions of Qℓ, Pℓ.2205

Lemma 36. Fix 0 < k < l, as well as a ∈ N and δ ∈ Z. For every nonnegative2206

functional G that is Fτk-measurable, we have2207

Ea,l,δ[G] = E∞
[
Φa,l,δ(τk, k,Λ(τk)) ·G

]
,2208

where2209

Φa,l,δ(t, l
′, j) =

Ql−l′(2a+ l − t)

Ql(2a+ l)

Pl−l′(δ − j)

Pl(δ)
.2210

Proof. It suffices to prove the result when G is the indicator of the contour and label2211

processes of a given well-labeled forest with l′ trees, (t − l′)/2 edges, and tilt j. In this2212

case, Ea,l,δ[G] is equal to the number of ways in which one can complete this labeled forest2213

into a well-labeled forest with l trees, a edges and tilt δ, which is the number of forests2214

with l− l′ trees, a+ (l′ − t)/2 edges and tilt δ − j, divided by the number of well-labeled2215

forests with l trees, a edges and tilt δ. We conclude by Proposition 9.2216

In addition to the already fixed sequence (ln), we consider two more sequences (an),2217

(δn) satisfying (8). We will need the following direct consequence of the local limit theo-2218

rem [BGT89, Theorem 8.4.1]. Recall the definition of φA,L,∆ given in (31).2219

Lemma 37. If the integer-valued sequence (l′n) satisfies l′n/
√
2n → L′ ∈ (0, L), it holds2220

that2221

sup
0≤t≤an, j∈Z

∣∣∣∣Φan,ln,δn(t, l
′
n, j)− φA,L,∆

( t
n
, L′,

( 9

8n

) 1
4

j
)∣∣∣∣ −→n→∞

0 . (42)2222

We start with the following conditioned version of Corollary 35.2223

Proposition 38. On C × C × C(2), the triple
(
C(n),Λ(n), D(n)|[0,τln/2n]2

)
considered under2224

Pan,ln,δn converges in distribution to
(
X,W,DX,W

)
, considered under SliceA,L,∆.2225

Proof. The joint convergence of the first two coordinates is standard; see e.g. [Bet10,2226

Corollary 16]. Let us fix ε ∈ (0, L), define lεn = ln − ⌊ε
√
2n⌋, so that lεn/

√
2n → L − ε,2227

and set2228

Dε
(n) = D(n)|[0,τlεn/2n]2 and D0

(n) = D(n)|[0,τln/2n]2 .2229

By the usual bound (5), for every i, j ∈ [0, τln ],2230

|D∞(i ∧ τlεn , j ∧ τlεn)−D∞(i, j)| ≤ D∞(i, i ∧ τlεn) +D∞(j, j ∧ τlεn)2231

≤ 4
(
ω(Λn; τln − τlεn) + 1

)
,2232

2233
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where ω(f ; ·) denotes the modulus of continuity of f . This implies that2234

distC(2)

(
Dε

(n), D
0
(n)

)
≤
τln − τlεn

2n
+ 4ω

(
Λ(n), (τln − τlεn)/2n

)
+O

(
n−1/4

)
.2235

From the joint convergence of the first two coordinates, we have, for every η > 0,2236

2237

lim sup
n→∞

Pan,ln,δn
(
distC(2)

(
Dε

(n), D
0
(n)

)
≥ η
)

2238

≤ SliceA,L,∆
(
A− TL−ε + 4ω(W ;A− TL−ε) ≥ η

)
,2239

2240

which tends to 0 as ε → 0 since TL−ε → TL = A a.s. under SliceA,L,∆. We next show2241

that Dε
(n) under Pan,ln,δn converges in distribution to D(0,L−ε) under SliceA,L,∆, and use2242

the principle of accompanying laws [Str11, Theorem 9.1.13] to conclude that, jointly with2243

the convergence of (C(n),Λ(n)) to (X,W ), the process D0
(n) converges to the distributional2244

limit of D(0,L−ε) as ε→ 0, which is none other than D(0,L), due to Corollary 27.2245

To prove the claimed convergence of Dε
(n) to D(0,L−ε), we denote by Cε

(n) and Λε(n) the2246

restrictions of C(n) and Λ(n) to [0, τlεn/2n] and let F be a nonnegative bounded continuous2247

function. Using Lemma 36, then Corollary 35 (for the choice of L − ε instead of L) and2248

Lemma 37 gives2249

2250

Ean,ln,δn
[
F
(
Cε

(n),Λ
ε
(n), D

ε
(n)

)]
= E∞

î
Φan,ln,δn

(
τlεn , l

ε
n,Λ(τlεn)

)
F
(
Cε

(n),Λ
ε
(n), D

ε
(n)

)ó
2251

−→
n→∞

Half
[
φA,L,∆

(
TL−ε, L− ε,WTL−ε

)
F
(
X(0,L−ε),W (0,L−ε), D(0,L−ε))] ,2252

2253

the latter being equal to SliceA,L,∆
[
F
(
X(0,L−ε),W (0,L−ε), D(0,L−ε))] by Lemma 32.2254

GHP convergence. We infer from Proposition 38 the GHP convergence of Theorem 122255

by a standard method. First, by Skorokhod’s representation theorem, we may assume that2256

we are working on a probability space on which the convergence of Proposition 38 is almost2257

sure. We let SlA,L,∆ be the continuum slice coded by the limiting process, and Sln be the2258

slice encoded by the forest whose rescaled contour and label processes make up the pair2259

(C(n),Λ(n)). As mentioned before Corollary 35, Sln is isometrically embedded in Q∞, so2260

that the process D(n)|[0,τln/2n]2 under Pan,ln,δn projects into the metric of Ωn(Sln).2261

Then, from this almost sure convergence, we easily deduce that the distortion of the2262

correspondence Rn given by2263

Rn =
{(
v⌊(2an+ln)s⌋,pX,W (As)

)
: s ∈ [0, 1]

}
(43)2264

between Ωn(Sln) minus its shuttle and SlA,L,∆ tends to 0 as n → ∞. Forgetting the2265

marks and measures, this already gives the desired convergence in the 0-marked Gromov–2266

Hausdorff topology.2267

In order to include the marking and measures, we use the technique of enlargement of2268

correspondences already used in the proof of Lemma 23. Namely, we fix ε > 0 and let Rε
n2269

be the set of points of the form (v, x) in Sln × SlA,L,∆ such that there exists (w, y) ∈ Rn2270

satisfying dSln(v, w) < (8n/9)1/4ε and D(x, y) < ε. As before, the distortion of Rε
n is at2271

most dis(Rn) + 4ε. Let us start with the marks.2272



5.5 Scaling limit of conditioned slices 69

Marks. For a function f ∈ C defined over the interval I, we say that s ∈ I is a left-2273

minimum of f if f(t) ≥ f(s) for every t ≤ s in I, and we call it strict if f(t) > f(s)2274

for t < s in I. Note that the points of the form vi and pX,W (s) where i and s are left-2275

minimums of Λn and W respectively belong to the maximal geodesics of Sln and SlA,L,∆,2276

and that all points in these sets are in fact of this form, where we can even require the2277

stronger property that i and s are strict left-minimums.2278

By the uniform convergence of Λ(n) to W , for every η > 0, the following holds provided2279

n ≥ n0 for some n0 : every strict left-minimum of Λ(n) is at distance at most η/2 from some2280

(not necessarily strict) left-minimum of W , and vice-versa, exchanging the roles of Λ(n)2281

and W . Up to increasing n0, we furthermore assume that |(2an + ln)/2n − A| < η/2 as2282

soon as n ≥ n0. Choosing η small enough so that |D(n)(s, t)−D(n)(s
′, t′)| ≤ ε for every n2283

and |s−s′| ≤ η, |t−t′| ≤ η, we deduce that the extended correspondence Rε
n is compatible2284

with the maximal geodesics for n ≥ n0.2285

The argument is similar for the shuttles. This time, we note that elements of the2286

shuttle of SlA,L,∆ are of the form pX,W (s) where s is a right-minimum of the function W2287

(with an obvious definition), while elements of the shuttle of Sln are at distance 1 away2288

from points of the form vi where i is a right-minimum of the function Λn.2289

The mark corresponding to the base is also treated similarly. Recall from Section 2.32290

that vertices of the base are at distance at most Bn = max1≤i≤ln |Λn(ρi) − Λn(ρ
i−1)| + 12291

from some element of the floor {ρ0, . . . , ρln} of the forest coding the slice. The process of2292

labels (Λn(ρ
i), 0 ≤ i ≤ ln) forms a random walk with shifted geometric(1/2) increments2293

conditioned to be equal to δn at time ln, so, under our assumptions, it converges, after2294

rescaling by
√
2n in time and (8n/9)1/4 in space, to a continuous process (which is easily2295

checked to be the Brownian bridge ζ = (WTx , 0 ≤ x ≤ L)), so that Bn = O(n1/4) a.s.2296

Therefore, the base of Sln is at Hausdorff distance O(n1/4) from the floor {ρi, 0 ≤ i ≤ ln}.2297

In turn, these vertices are exactly those of the form vi where i is a left-minimum of the2298

contour process Cn. Moreover, by definition, the base of SlA,L,∆ consists of the points2299

pX,W (s) where s is a left-minimum of the process X. Therefore, the same argument as2300

for the maximal geodesic – replacing the processes Λn and W by Cn and X – shows that,2301

a.s., for every n large enough, the correspondence Rε
n is also compatible with the bases2302

of Sln and of SlA,L,∆.2303

Measures. Finally, let us deal with the convergence of the measures, starting with the2304

area measure. To this end, note that, for t in [0, 2an+ ln], the contour process Cn at time t2305

has either a left derivative equal to +1 or to −1. Letting int = ⌈t⌉ in the former case and2306

int = ⌊t⌋ in the latter case, the image of Leb[0,(2an+ln)/2n] by t 7→ vin2nt
is the counting2307

measure on the set of all non-floor vertices of the encoding forest, divided by n. Since the2308

number of floor vertices is O(
√
n), the counting measure on all vertices of Sln (except on2309

the shuttle) divided by n is at vanishing Prokhorov distance from the counting measure2310

on non-floor vertices of the forest, divided by n. Let ωn be the image of the Lebesgue2311

measure on [0, A∧((2an+ln)/2n)] by the mapping t 7→ (vin2nt
,pX,W (t)). Then ωn is carried2312

by the correspondence Rε
n for every n large enough, and its image measures on Sln and2313

SlA,L,∆ by the coordinate projections are at vanishing Prokhorov distances from µSln/n2314
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and µ(0,L) respectively.2315

For the base measure, we let ω′
n be the image of the Lebesgue measure on [0, L ∧2316

ln/
√
2n] by the mapping t 7→ (vτ⌊√2n t⌋

,pX,W (Tt)). Then ω′
n is carried by Rε

n, by the above2317

discussion on the mark corresponding to the base. Moreover, the coordinate projections2318

of ω′
n are at vanishing Prokhorov distance, respectively, from the counting measure on2319

{ρ0, . . . , ρln} divided by
√
2n, and ν(0,L). We now observe that, in turn, the counting2320

measure on {ρ0, . . . , ρln} divided by
√
2n, is at vanishing Prokhorov distance from the2321

renormalized counting measure (with multiplicities) νβn/
√
8n of the base. To justify this,2322

observe from Section 2.3 and the definition of the interval CVS bijection that the sequence2323

Λn(w0), . . . , Λn(w2ln+δn) of labels of the vertices w0, . . . , w2ln+δn of the base, taken in2324

contour order, forms a simple random walk starting with a −1 step, and conditioned on2325

hitting δn at time 2ln + δn. Moreover, if we write the set {j ∈ {0, . . . , 2ln + δn − 1} :2326

Λn(wj+1) − Λn(wj) = −1} of down steps of this walk as {j0, j1, . . . , jln−1} with 0 = j0 <2327

j1 < j2 < · · · < jln−1, then the i-th root ρi is equal to wji for 0 ≤ i < ln. Now consider a2328

uniform random variable U in [0, 1). Then wj⌊lnU⌋ is a uniformly chosen forest root, while2329

w⌊(2ln+δn)U⌋ is a vertex of the base chosen with probability proportional to its multiplicity2330

(and excluding ρln in both cases). Moreover, a standard large deviation estimate entails2331

that max0≤k<ln |jk − 2k| = O(log n) in probability. In turn, this easily implies that2332

dSln(wj⌊lnU⌋ , w⌊(2ln+δn)U⌋) = O(log n) in probability, showing that the uniform measure on2333

the ln ∼ L
√
2n elements of {ρ0, . . . , ρln−1} is at vanishing Prokhorov distance from the law2334

of the vertex incident to a corner uniformly chosen among the 2ln + δn ∼ L
√
8n corners2335

incident to the base.2336

Conclusion. By Lemma 17, we finally obtain that2337

lim sup
n→∞

d
(5,2)
GHP

(
Ωn(Sln), SlA,L,∆

)
≤ ε .2338

Since ε > 0 was arbitrary, this concludes the proof of Theorem 12.2339

6 Convergence of quadrilaterals with geodesic sides2340

The general method to prove Theorem 14 is the same as for slices. We start by seeing a2341

discrete quadrilateral as part of a discrete map that is known to converge to a Brownian2342

surface, which in this case is the Brownian plane rather than the Brownian half-plane.2343

However, the lack of an analog of Corollary 27, namely that quadrilaterals are only locally2344

isometrically embedded in the Brownian plane, makes matters considerably more delicate.2345

For this reason, we adapt the strategy we used in [BM17, Section 4] when treating the2346

case of noncomposite slices. Beware that, in this section, part of the notation we will be2347

using is slightly conflicting with that of Section 5: in particular, the random times Tx will2348

be re-defined.2349
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6.1 Quadrilaterals coded by two functions2350

In contrast with slices, which were coded by a pair of functions defined on a common2351

interval I, a quadrilateral will be coded by a pair of functions defined on a common union2352

of two intervals I− ∪ I+, each interval accounting for one “half” of the quadrilateral. This2353

leads to similar but slightly more intricate definitions. We start with the most convenient2354

setting, asking that sup I− = inf I+ = 0.2355

Recall the notation of Section 5.1.1. We adapt Section 5.1.2 to quadrilaterals instead2356

of slices as follows. We now say that a pair (f, g) ∈ C2 of functions with common closed2357

interval of definition I is a quadrilateral trajectory if they satisfy (26) and the following:2358

• the interval I contains 0 in its interior and is either bounded or equal to the whole2359

real line R, and, letting I+ = I ∩ R+ and I− = I ∩ R−,2360

• we have infI− f = infI+ f , and,2361

• if I = R, then inft≥0 f(t) = inft≤0 f(t) = inft≥0 g(t) = inft≤0 g(t) = −∞.2362

We may observe that (f |I+ , g|I+) is a slice trajectory, a fact that will not be used here.2363

For a quadrilateral trajectory (f, g), we set2364

d̂g(s, t) =

®
dg(s, t) for s, t ∈ I+ or s, t ∈ I−

∞ for st < 0
, (44)2365

and2366

D̂f,g = d̂g/{df = 0} . (45)2367

Note that d̂g is the disjoint union pseudometric of the two R-tree pseudometrics dg|I+2368

and dg|I− . Let
(“M f,g, D̂f,g

)
be the quotient space I/{D̂f,g = 0} equipped with the metric2369

induced by D̂f,g, still denoted by the same symbol. We call the metric space2370

Qdf,g = (“M f,g, D̂f,g)2371

the quadrilateral coded by (f, g).2372

We extend the above constructions to unions of two closed intervals I = I−∪I+ where2373

I− ⊆ R− and I+ ⊆ R+, as follows. First, a pair of functions (f, g) defined on I is a2374

quadrilateral trajectory if the pair (f ′, g′) defined by2375

f ′(t) =

®
f(t+ inf I+) for t ∈ I+ − inf I+

f(t+ sup I−) for t ∈ I− − sup I−
,2376

and similarly for g′, is a quadrilateral trajectory as defined above. Note that the continuity2377

hypothesis on f ′ implies in particular that f(sup I−) = f(inf I+), and similarly for g. We2378

then define the quadrilateral coded by (f, g) using the exact same definitions as above.2379

Note that the mapping t 7→ (t− inf I+)1t∈I+ +(t− sup I−)1t∈I− induces an isometry from2380

(“M f,g, D̂f,g) onto (“M f ′,g′ , D̂f ′,g′).2381

From now on, we work in this extended framework and consider a fixed quadrilateral2382

trajectory (f, g).2383
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Geodesic sides and area measure. For every t ∈ I \ {0}, we let It = I− if t < 0 or2384

It = I+ if t > 0, and set2385

Γt(r) = inf{s ≥ t : g(s) = g(t)− r} for r ∈ R+ such that inf
s≥t
s∈It

g(s) ≤ g(t)− r ;2386

Ξt(r) = sup{s ≤ t : g(s) = g(t)− r} for r ∈ R+ such that inf
s≤t
s∈It

g(s) ≤ g(t)− r .2387

2388

If 0 ∈ I, we also define Γ0 and Ξ0 with the same definition, using I0 = I+ in the definition2389

of Γ0, while using I0 = I− in the definition of Ξ0. Observe that, in contrast with the2390

definition for slices, the infimum of g is now taken on a subset of It. In particular, this2391

implies that the ranges of Γt, Ξt are included in It. From the same discussion as the one2392

around (27), we see that Γt, Ξt are geodesics for the pseudometrics d̂g and D̂f,g. In the2393

case where sup I+ = ∞, then, for every t ∈ I+, the range of the path Γt is a geodesic ray,2394

and, in the case where inf I− = −∞, then the same goes for Ξt for every t ∈ I−. This2395

allows to define geodesic paths in Qdf,g by the formulas2396

γt(r) = p̂f,g(Γt(r)) , 0 ≤ r ≤ g(t)− g(t, sup It) , r ∈ R ,2397

ξt(r) = p̂f,g(Ξt(r)) , 0 ≤ r ≤ g(t)− g(inf It, t) , r ∈ R ,2398
2399

where p̂f,g : I → “M f,g is the canonical projection and, as above, if 0 ∈ I, I0 = I+ in the2400

definition of γ0 and I0 = I− in that of ξ0. Note that the geodesics γt, ξt share a common2401

initial part.2402

The quadrilateral Qdf,g comes with four or two geodesic sides, defined as follows. If I2403

is bounded, the particular geodesics γ = γinf I+ and γ̄ = γinf I− are called the maximal2404

geodesics of Qdf,g, while ξ = ξsup I+ and ξ̄ = ξsup I− are called the shuttles of Qdf,g. In2405

this case, γ, ξ (resp. γ̄, ξ̄) have a common endpoint x∗ = p̂f,g(s∗) (resp. x̄∗ = p̂f,g(s̄∗))2406

where s∗ ∈ I+ is such that g(s) = infI+ g (resp. s̄∗ ∈ I− is such that g(s̄∗) = infI− g).2407

The points x∗, x̄∗ are called the apexes of Qdf,g. If I is unbounded, then Qdf,g has one2408

maximal geodesic γ = γinf I+ and one shuttle ξ̄ = ξsup I− ; we set ξ∞ = γ−∞ = ∅.2409

Finally, the area measure is defined as µ = (p̂f,g)∗LebI .2410

Gluing quadrilaterals. For x ∈ R, we let2411

Tx = inf{t ∈ I+ : f(t) = −x} ∈ R+ ∪ {+∞} ,2412

T̄x = sup{t ∈ I− : f(t) = −x} ∈ R− ∪ {−∞} ,2413
2414

as well as T∞ = −T̄∞ = ∞. Note that, here again, there is a slight difference with2415

the definition of Section 5 since, now, R− and R+ play different roles. Recall that2416

infI− f = infI+ f = infI f , and let H, H ′ ∈ R+∪{∞} be such that 0 ≤ H ≤ H ′ ≤ − infI f .2417

We may define the restrictions f (H,H′), g(H,H′) of f and g to the union of intervals2418

I(H,H
′) = [T̄H′ , T̄H ]∪ [TH , TH′ ], which is a subset of I. The pair (f (H,H′), g(H,H

′)) is another2419

quadrilateral trajectory. The associated quadrilateral is defined as2420

Qd(H,H
′) =

(“M (H,H′), D̂(H,H′)
)
= Qdf (H,H′),g(H,H′) .2421
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We let p̂(H,H′) : I(H,H
′) → “M (H,H′) be the canonical projection, µ(H,H′) be the area measure2422

of Qd(H,H′), and, whenever they exist, γ(H,H′), γ̄(H,H′) be the maximal geodesics, ξ(H,H′),2423

ξ̄(H,H
′) be the shuttles.2424

We refer to Figure 15 for an illustration of the following proposition in the upcoming2425

context of random quadrilaterals in the Brownian plane.2426

Proposition 39. Let 0 ≤ H < H ′ < H ′′ ≤ − infI f be in the extended positive real line.2427

Then2428

Qd(H,H
′′) = G

(
G
(
Qd(H,H

′),Qd(H
′,H′′); ξ(H,H

′), γ(H
′,H′′)

)
; γ̄(H,H

′), ξ̄(H
′,H′′)

)
, (46)2429

and it holds that2430

γ(H,H
′′) = γ(H,H

′) ∪
(
γ(H

′,H′′) \ ξ(H,H′)
)
,2431

ξ(H,H
′′) = ξ(H

′,H′′) ∪
(
ξ(H,H

′) \ γ(H′,H′′)
)
,2432

γ̄(H,H
′′) = γ̄(H

′,H′′) ∪
(
γ̄(H,H

′) \ ξ̄(H′,H′′)
)
,2433

ξ̄(H,H
′′) = ξ̄(H,H

′) ∪
(
ξ̄(H

′,H′′) \ γ̄(H,H′)
)
.2434

2435

Observe that, after the first gluing operation is performed, the marks γ̄ and ξ̄ remain2436

geodesic, as observed in Section 3.3. Note also that the order of the gluings in (46) is not2437

important, due to (12).2438

Proof. The proof is similar to that of Proposition 26, and we only sketch the argument.2439

Again, we view I(H,H
′′) as a disjoint union I(H,H

′) ⊔ I(H′,H′′) (denoting elements of these2440

sets with superscripts 0, 1 respectively) where the extremities T 0
H′ , T 1

H′ and T̄ 0
H′ , T̄ 1

H′ are2441

identified. We then observe that the pseudometric d̂g can be viewed as a quotient d/R1,2442

where d is the disjoint union metric on I(H,H′)⊔ I(H′,H′′) whose restriction to each interval2443

composing this set equals the restriction of dg to that interval, and R1 is the coarsest2444

equivalence relation containing2445

2446 {(
ΞTH′ (r)

0,ΓTH′ (r)
1
)
, 0 ≤ r ≤ g(TH′)− g(TH , TH′) ∨ g(TH′ , TH′′)

}
2447

and
{(

ΓT̄H′ (r)
0,ΞT̄H′ (r)

1
)
, 0 ≤ r ≤ g(T̄H′)− g(T̄H , T̄H′) ∨ g(T̄H′ , T̄H′′)

}
.2448

2449

Moreover, the equivalence relation {df = 0} factorizes in the sense that, if df (s, t) = 02450

with s, t ∈ I(H,H
′′), then it must hold that s, t belong either both to I(H,H′) or both to2451

I(H
′,H′′). Therefore, setting R2 as the equivalence relation on I(H,H′) ⊔ I(H′,H′′) defined by2452

si R2 t
j if and only if df (s, t) = 0 and i = j ∈ {0, 1}, we obtain2453

D̂(H,H′′) = (d/R1)/R2 = (d/R2)/R1 .2454

We now recognize that d/R2 is the pseudometric of the disjoint union of (I(H,H′), D̂(H,H′))2455

and (I(H
′,H′′), D̂(H′,H′′)), while R1 can be seen as the coarsest equivalence relation obtained2456

by first gluing ξ(H,H′) with γ(H
′,H′′), and then γ̄(H,H

′) with ξ̄(H
′,H′′).2457
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Due to the fact that the second gluing operation in Proposition 39 involves two2458

geodesics belonging to the same space, there is no direct analog of Corollary 27. However,2459

we have the following alternative, which is an immediate consequence of Lemma 21 and2460

a crude estimate of the length of the path ξ̄(H
′,H′′).2461

Proposition 40. Under the same assumptions as in Proposition 39, it holds that for2462

every s, t ∈ I(H,H
′),2463

D̂(H,H′′)(s, t) ≤ D̂(H,H′)(s, t) ≤ D̂(H,H′′)(s, t) + ω(g; I(H
′,H′′)) .2464

Finally, we observe that the metric space (Mf,g, Df,g) obtained by metric gluing of the2465

pseudometric dg along the relation {df = 0}, rather than using d̂g as in the definition2466

of Qdf,g, is related to the latter by a final gluing operation. The proof is analog to that of2467

Proposition 39, noting that dg is the gluing of d̂g along the coarsest equivalence relation2468

containing {(Γ0(r),Ξ0(r)), r ≥ 0}.2469

Lemma 41. One has
(
Mf,g, Df,g

)
= G

(
Qdf,g; γ, ξ̄

)
.2470

6.2 Random continuum quadrilaterals2471

Let us now describe the limiting continuum quadrilaterals that appear in Theorem 14, by2472

suitably randomizing the quadrilateral trajectory (f, g). We let (X,W ) be the canonical2473

process defined on quadrilateral trajectories. We introduce, for any process Y defined on2474

an interval containing 0, the piece of notation Y t = Y (0 ∧ t, 0 ∨ t).2475

Let us fix A, Ā, H ∈ (0,∞) and ∆ ∈ R. We let QuadA,Ā,H,∆ be the probability2476

distribution under which2477

• (Xt, 0 ≤ t ≤ A) and (X−t, 0 ≤ t ≤ Ā) are independent first-passage bridges of2478

standard Brownian motion from 0 to −H, with durations A and Ā ;2479

• conditionally given X, the process W has same law as (Zt + ζ−Xt ,−Ā ≤ t ≤ A),2480

where Z is the random snake driven by X−X, and ζ is a standard Brownian bridge2481

of duration H and terminal value ∆, independent of X and Z.2482

In this way, the probability distribution QuadA,Ā,H,∆ is carried by quadrilateral tra-2483

jectories on the interval [−Ā, A]. We remark that, in fact, we can view W more directly2484

as the random snake driven by X, conditioned on the event {WA = ∆}, a fact that we2485

leave to the interested reader.2486

Definition 42. The quadrilateral with half-areas A, Ā, width H and tilt ∆, generi-2487

cally denote by QdA,Ā,H,∆, is the 6-marked 1-measured metric space QdX,W under the law2488

QuadA,Ā,H,∆, endowed with its area measure µ, as well as the marking2489

∂QdA,Ā,H,∆ =
(
γ, ξ, γ̄, ξ̄

)
,2490

where γ, γ̄ are geodesic marks as usual, while ξ, ξ̄ are seen as (nonoriented) geodesic2491

segments, that is, given without their origins.2492
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As for slices, the piece of notation ∂QdA,Ā,H,∆ comes from the result of Lemma 25: the2493

boundary of the topological disk QdA,Ā,H,∆ is the union of γ, ξ, γ̄, ξ̄, which intersect only2494

at the points γ(0) = ξ̄(0) = p̂f,g(0), x∗, γ̄(0) = ξ(0) = p̂f,g(A) = p̂f,g(−Ā), and x̄∗.2495

6.3 The Brownian plane, and its embedded quadrilaterals2496

Similarly to the fact that (free) slices can be found in the Brownian half-plane, one can2497

obtain quadrilaterals from the Brownian plane, as we now explain. We let Plane be the2498

probability distribution on C2 under which2499

• the process X is a two-sided standard Brownian motion13, and2500

• the process W is the random snake driven by X.2501

The measure Plane is carried by quadrilateral trajectories defined over R.2502

Definition 43. The Brownian plane, generically denoted by BP, is the metric space2503

(MX,W , DX,W ) defined by (25), considered under Plane. Letting p : R → BP be the2504

canonical projection, it is endowed with the area measure µ = p∗LebR.2505

In this definition, beware that the metric is indeed defined by (25) rather than (45),2506

which would produce the metric space QdX,W = Qd(0,∞) = (“MX,W , D̂X,W ). Observe that,2507

by Lemma 41,2508

BP = G
(
Qd(0,∞); γ(0,∞), ξ̄(0,∞)

)
; (47)2509

see Figure 15 below for an illustration. Alternatively, the space Qd(0,∞) can be seen as2510

cutting the Brownian plane along the geodesic ray γ0 = ξ0; we do not go into further2511

details as we will not explicitly need this property.2512

Note also that, despite the similarity between this definition and that of the Brownian2513

half-plane, there is no marking now because, as its name suggests, the Brownian plane is2514

homeomorphic to R2 and therefore has an empty boundary as a topological surface.2515

One should finally mind that this definition is different from the original one given2516

in [CLG14], which will be recalled in Appendix A; in a nutshell, one goes from a definition2517

to the other by changing X into the process obtained by taking its Pitman transform both2518

on R+ and on R−.2519

Free quadrilaterals. Similarly to the discussion of Section 5.3, the Brownian plane sat-2520

isfies a Markov property which can be interpreted as a “flow” of continuum quadrilaterals.2521

Fixing 0 ≤ H ≤ H ′ ≤ ∞, and denoting by2522

ϑH : t ∈ [T̄H′ − T̄H , TH′ − TH ] 7→ (t+ T̄H)1t<0 + (t+ TH)1t≥0 ,2523

we see that the process
(
X(H,H′) ◦ ϑH + H,W (H,H′) ◦ ϑH − WTH

)
is independent of2524

(X(0,H),W (0,H)), (X(H′,+∞),W (H′,+∞)), and has same distribution as (X(H′−H),W (H′−H)).2525

13This means that (Xt, t ≥ 0) and (X−t, t ≥ 0) are independent standard Brownian motions.
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This can be proved by excursion theory of (X,W ) separately in positive and negative2526

times; we omit the details, which are similar to those presented in Section 5.3.2527

Under Plane, the process (X(0,H)) is a two-sided Brownian motion killed at its first2528

hitting times TH , T̄H of −H respectively in positive and negative times, while the process2529 (
W

(0,H)
Tx

, 0 ≤ x ≤ H
)

is a standard Brownian motion killed at time H. This implies that2530

the law of (X(0,H),W (0,H)) under Plane equals2531

FQuadH =

∫
(0,∞)2

qH(A)qH(Ā) dA dĀ

∫
R
pH(∆) d∆QuadA,Ā,H,∆ ,2532

where the densities pt, qx are defined after (30). A random metric space with same2533

law as Qd(0,H) under FQuadH will be referred to as a free (continuum) quadrilateral of2534

width H. From these considerations and Proposition 39, we obtain the following result.2535

Proposition 44. Let 0 ≤ H < H ′ < H ′′ ≤ ∞. Then, under Plane, it holds that2536

Qd(H,H
′′) = G

(
G
(
Qd(H,H

′),Qd(H
′,H′′); ξ(H,H

′), γ(H
′,H′′)

)
; γ̄(H,H

′), ξ̄(H
′,H′′)

)
,2537

where the glued spaces Qd(H,H
′) and Qd(H

′,H′′) are independent. Moreover, Qd(H,H
′) is a2538

free continuum quadrilateral of width H ′ −H.2539

BP

p(0)

p(TH)

p(TH′)γ0

ξ0
p(TH′′)

Qd(H,H′)

Qd(H
′,H′′)

γT̄H

ξTH

ξ(H,H′)

ξ(H
′,H′′)

γ̄(H′,H′′)

γ(H,H′)

γ(H′,H′′)

ξ̄(H,H′)

ξ̄(H
′,H′′)

γ̄(H,H′)

Figure 15: Seeing free quadrilaterals in the Brownian plane. The union of the dark yellow
regions forms Qd(H,H

′′). The dotted brown line is {p(Th) : h ≥ 0}. Note how BP itself is
obtained by gluing Qd(0,∞) along the geodesics γ(0,∞) and ξ(0,∞), resulting in the geodesic γ0 = ξ0.

2540

2541

2542
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We refer to Figure 15 for an illustration, which suggests, as is proved in the following2543

proposition, that quadrilaterals are topological disks bounded by their geodesic sides. In2544

contrast with our treatment of slices, a difficulty arises from the fact that the quadri-2545

laterals Qd(H,H
′) are not isometrically embedded in BP, and, in general, not even locally2546

isometrically embedded (think of a point of BP lying on the geodesic γ0).2547

Proposition 45. For every H ∈ (0,∞), almost surely under FQuadH , the quadrilateral2548

Qd(0,H) is a topological disk with boundary given by the geodesics γ(0,H), ξ(0,H), γ̄(0,H)
2549

and ξ̄(0,H), which pairwise meet only at the points γ(0) = ξ̄(0), ξ(0) = γ̄(0), and the2550

apexes x(0,H)
∗ and x̄(0,H)

∗ .2551

In order to prove this proposition and for later use, it will be important to characterize2552

the set {DX,W = 0}.2553

Lemma 46. The following holds almost surely under Plane. For every s, t ∈ R such2554

that s ̸= t, it holds that DX,W (s, t) = 0 if and only if either dX(s, t) = 0 or dW (s, t) = 0,2555

these two cases being mutually exclusive.2556

Proof. By [CLG14, Proposition 11], it holds that DX,W (s, t) = 0 implies that dX(s, t) = 02557

or dW (s, t) = 0. The fact that these two properties are mutually exclusive is a consequence2558

of the fact from Lemma 2.2 in [LG07] that almost surely, if s is a point such that Xu ≥ Xs2559

for every u ∈ [s, s + ε] for some ε > 0, then it must hold that infu∈[s,s+δ]Wu < Ws for2560

every δ ∈ (0, ε). In fact, [LG07, Lemma 2.2] is proved when the process X is distributed2561

as a standard Brownian excursion, and W as a random snake Z driven by this excursion.2562

However, being a local property of the processes at hand, it extends easily to our setting2563

by an absolute continuity argument. Details are left to the reader.2564

To the terminology of Section 5.1.1, we add the piece of notation Ja, bJf = Ja, bKf \{b}2565

for a, b ∈ Tf . The important consequence of this lemma for our purposes is the following.2566

Almost surely, if a, b ∈ TX and c, d ∈ TW , then the paths πX(Ja, bKX) and πW (Jc, dKW ) are2567

simple paths. Furthermore, πX(Ja, bJX) may intersect πW (Jc, dJW ) only if πX(a) = πW (c),2568

in which case these paths intersect at this point only. In particular, if we denote the2569

geodesic ray pX({s ≥ t : Xs = X(t, s)}) of TX by JpX(t),∞JX , then πX(JpX(t),∞JX)2570

is a simple path in BP. For instance, in Figure 15, we represented the simple path2571

πX(JpX(0),∞JX) with a dotted brown line.2572

Proof of Proposition 45. Let us depart slightly from the setting of the statement and fix2573

for now two numbers 0 ≤ H < H ′ <∞.2574

Claim. We assume that the geodesics γ(H,H′) and ξ̄(H,H′) do not intersect γ0 in BP. Then2575

the following holds.2576

(i) The geodesics γ(H,H′), ξ(H,H′), γ̄(H,H′), ξ̄(H,H′) intersect only at the points x(H,H′)
∗ ,2577

γ̄(H,H
′)(0) = ξ(H,H

′)(0), x̄(H,H′)
∗ and γ(H,H

′)(0) = ξ̄(H,H
′)(0) in this cyclic order, and2578

their union forms a Jordan curve C.2579

(ii) The set p(I(H,H′)) ⊆ BP is the closure of the bounded connected component of BP\C.2580
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Indeed, note that pX(TH) and pX(TH′) are two distinct points of JpX(0),∞JX , so that2581

their images by πX are distinct in BP. Then the paths γ(H,H′) and ξ(H,H
′) are the images2582

by πW of the two geodesic paths JpW (TH), a∗(W
(H,H′))KW and JpW (TH′), a∗(W

(H,H′))KW2583

in TW , which by definition meet only at a∗(W (H,H′)), and their union is the geodesic2584

JpW (TH),pW (TH′)KW in TW , which is thus projected via πW to a simple path in BP.2585

Therefore, γ(H,H′) and ξ(H,H
′) meet only at x(H,H′)

∗ = πW (a∗(W
(H,H′))). The same rea-2586

soning shows that γ̄(H,H′) and ξ̄(H,H
′) intersect only at x̄(H,H′)

∗ , and gives that the points2587

x(H,H
′)

∗ and x̄(H,H′)
∗ are distinct points (because they are distinct points in TW lying inside2588

two geodesics).2589

Next, if the path γ(H,H
′) does not intersect γ0 = πW (JpW (0),∞JW ), then necessarily2590

the path JpW (TH), a∗(W
(H,H′))KW must be disjoint from JpW (0),∞JW , which means that2591

W (TH , TH′) > W (0, TH) and W (T̄H′ , T̄H) > W (T̄H , 0) .2592

This implies that JpW (TH′), a∗(W
(H,H′))JW is also disjoint from JpW (0),∞JW , and by2593

projecting by πW , that ξ(H,H′) is disjoint from γ0. A similar argument applies to γ̄(H,H′) and2594

ξ̄(H,H
′). Therefore, under the conditions of the claim, the paths JpW (TH), a∗(W

(H,H′))KW2595

and JpW (T̄H), ā∗(W
(H,H′))KW are disjoint paths in TW , and their projections γ(H,H′) and2596

ξ̄(H,H
′) via πW intersect, if at all, only at their extremities. It is indeed the case that2597

p(TH) = p(T̄H), while, as we already saw, x(H,H′)
∗ ̸= x̄(H,H

′)
∗ . This proves (i).2598

The argument for (ii) is similar to that in the proof of Lemma 31, where the role of2599

the base is now played by the infinite path πX(JpX(0),∞JX) = {p(Th) : h ≥ 0}. For any2600

t ∈ R, we let2601

Σt(r) = inf{s ≥ t : Xs = Xt − r} for 0 ≤ r ≤ Xt −X t ,2602

where we recall that X t = X(0 ∧ t, 0 ∨ t). The range of pX ◦ Σt is the geodesic path2603

JpX(t),pX(T−Xt)KX in TX and its image by πX defines a path σt = p ◦ Σt from p(t)2604

to p(T−Xt). Moreover, by Lemma 46, the paths σt, t ∈ R, do not intersect any of the2605

geodesics γs, s ∈ R, except possibly at their starting points. There are now the following2606

possibilities.2607

• If t ∈ I(H,H
′), then σt ends on the path (p(Th), H ≤ h ≤ H ′). This means that,2608

if p(t) does not belong to the four geodesics γ(H,H′), ξ(H,H′), γ̄(H,H′), ξ̄(H,H′), then we2609

may connect it to, say, the point p(T(H+H′)/2) of the bounded set Qd(H,H
′), without2610

crossing the four mentioned geodesics.2611

• If t /∈ I(H,H
′), we distinguish two cases.2612

– If t /∈ [T̄H′ , TH′ ], then σt ends on the unbounded path {p(Th) : h > H}.2613

– If t ∈ (T̄H , TH), then σt ends on {p(Th) : 0 ≤ h < H}.2614

If p(t) does not belong to the four geodesics of interest, then it may be joined2615

without crossing the four geodesics either to the unbounded path {p(Th) : h > H}2616

or to the unbounded path {p(Th) : 0 ≤ h < H} ∪ γ0, by the assumption that γ02617

does not intersect the four geodesics.2618
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This completes the proof of the claim.2619

Now fix H > 0, and consider another positive number H0 to be thought of as large.2620

Since we know that Qd(H0,H0+H) under Plane has same distribution as Qd(0,H), we may2621

work with the former space rather than with the latter. For every ε > 0 it holds2622

that there exists some H0 large enough such that with probability at least 1 − ε, the2623

geodesics γ(H0,H0+H) and ξ̄(H0,H0+H) do not intersect γ0. Indeed, this happens whenever2624

W (TH0 , TH0+H) > W (0, TH0) or, equivalently,2625

WTH0
−W (0, TH0) > WTH0

−W (TH0 , TH0+H) , (48)2626

and similarly in negative times. The two sides of (48) are independent by the Markov2627

property stated above; the right-hand side has a distribution that depends only on H,2628

while the left-hand side, which has same distribution as −W (0, TH0) by a simple time-2629

reversal argument, converges to ∞ in probability as H0 → ∞.2630

By the claim, we obtain that on an event happening with probability at least 1 − ε,2631

the set p(I(H0,H0+H)) is the closure of the connected component of the complement in BP2632

of the paths2633

γ(H0,H0+H), ξ(H0,H0+H), γ̄(H0,H0+H), ξ̄(H0,H0+H) ,2634

which all together form a Jordan curve. On this event, the identity mapping on I(H0,H0+H)
2635

induces, by precomposition with the projection mappings p and p(H0,H0+H), a bijective2636

mapping ϕ from the compact space Qd(H0,H0+H) to p(I(H0,H0+H)), which is 1-Lipschitz2637

since DX,W ≤ D̂(H0,H0+H) by Lemma 21, (47) and Proposition 44. This shows that ϕ is2638

a homeomorphism, and therefore, with probability at least 1 − ε, the space Qd(H0,H0+H)
2639

has the properties claimed in the statement. Using the fact that Qd(H0,H0+H) has same2640

distribution as Qd(0,H) and that ε was arbitrary, we conclude.2641

The continuum quadrilaterals of the preceding section can be linked to the free quadri-2642

laterals embedded in the Brownian plane by an absolute continuity argument, whose proof2643

is similar to that of Lemma 32 and is omitted.2644

Lemma 47. Fix 0 < K < H, as well as A > 0, Ā > 0, and ∆ ∈ R. Then, for2645

every nonnegative function G that is measurable with respect to the σ-algebra generated2646

by (X(0,K),W (0,K)), one has2647

QuadA,Ā,H,∆[G] = Plane
[
ψA,Ā,H,∆(TK ,−T̄K , K,WTK ) ·G

]
,2648

where2649

ψA,Ā,H,∆(A
′, Ā′, H ′,∆′) =

qH−H′(A− A′)

qH(A)

qH−H′(Ā− Ā′)

qH(Ā)

pH−H′(∆−∆′)

pH(∆)
.2650

This allows to obtain, as stated in Lemma 25, the topology of quadrilaterals.2651
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Proof of Lemma 25 for quadrilaterals. The proof is similar to that for slices. We use the2652

fact that the Brownian plane is topologically a plane [CLG14, Proposition 13], as well2653

as [CLG14, Proposition 4] to obtain that it is locally of Hausdorff dimension 4 from2654

the analog result about the Brownian sphere [LG06]. We deduce from there the desired2655

properties for a free quadrilateral. To extend this result to quadrilaterals QdA,Ā,H,∆, which2656

we view as Qd(0,H) under the law QuadA,Ā,H,∆, we use the fact from Proposition 39 that2657

it can be seen as the gluing of Qd(0,H/2) and Qd(H/2,H) along the boundaries ξ(0,H/2) and2658

γ(H/2,H) on the one hand, and γ̄(0,H/2) and ξ̄(H/2,H) on the other hand. By the absolute2659

continuity relation stated in Lemma 47, we see that the law of Qd(0,H/2) is absolutely2660

continuous with respect to that of a free quadrilateral with width H/2, and the same is2661

true for Qd(H/2,H). Using Proposition 45, we obtain that Qd(0,H) is obtained by gluing two2662

topological disks, both locally of Hausdorff dimension 4, along part of their boundaries,2663

which allows to conclude.2664

6.4 The uniform infinite planar quadrangulation2665

The UIPQ is the whole plane pendant of the UIHPQ defined in Section 5.4. It is simpler2666

to describe and was introduced earlier [CD06, Kri05, CMM13]. Let (Tk, k ∈ Z) be a two-2667

sided sequence of independent Bienaymé–Galton–Watson trees with a geometric offspring2668

distribution of parameter 1/2. We construct an infinite tree T∞ embedded in the plane2669

by mapping the roots of Tk and of T−k to the point ρk = (k, 0) for every k ≥ 0, in such2670

a way that, except for these roots, the trees Tk, k ≥ 0 are embedded in the open upper2671

half-plane and the trees Tk, k < 0 are embedded in the open lower half-plane, without2672

intersection. Lastly, we link the roots ρk, ρk+1 with a horizontal segment for every k ≥ 0.2673

Conditionally on T∞, we assign to the edges random numbers, independent and uni-2674

formly distributed in {−1, 0, 1}, and let λ∞ : V (T∞) → Z be the labeling function whose2675

increments along the edges are given by these numbers. Note that this uniquely de-2676

fines λ∞, up to the usual addition of a constant. We call (T∞, λ∞) the infinite random2677

well-labeled tree. We then let (ci, i ∈ Z) be the sequence of corners of T∞ in contour order,2678

with origin the corner c0 corresponding to the root of T0. The uniform infinite planar2679

quadrangulation (UIPQ for short) is then the infinite map Q∞ obtained by applying the2680

CVS construction to (T∞, λ∞), that is, by linking every corner to its successor as defined2681

in Section 2.1, and removing all edges of the tree afterward. The root of Q∞ is defined2682

as the corner preceding the arc from c0 to its successor. As with the UIHPQ, there is no2683

need to add an extra vertex with a corner c∞.2684

Similarly as before, we denote by vi the vertex of T∞ incident to ci and by Υ(i) ∈ Z2685

the index of the tree to which vi belongs. We then define the contour and label processes2686

on R by2687

C(i) = dTΥ(i)

(
vi, ρ

|Υ(i)|)− |Υ(i)| and Λ(i) = λ∞(vi)− λ∞(v0) , i ∈ Z ,2688

and by linear interpolation between integer values; see Figure 16. Observe that, in contrast2689

with the definition of Section 5.4 for an infinite forest, there is an absolute value in the2690
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definition of C. In fact, changing the − into a + amounts to taking the so-called Pitman2691

transform, which is a one-to-one mapping, so this is just a matter of convention. We will2692

come back to this in Appendix A. We can easily check that C is distributed as a two-sided2693

random walk conditioned14 on C(−1) = −1.2694

C(T∞, λ∞)

ρ4
−2

−1−2−1

ρ0
0

0

1 −2

−1

ρ1
0 −1

0

ρ2

−2

−3

−2

−3

ρ3
Λ

Figure 16: Contour and label processes associated with (T∞, λ∞). The infinite dashed line
is the so-called spine of the tree. The tree T0 and the corresponding encoding processes are
highlighted. Similarly as on Figure 14, one might see the contour process as recording the height
of a particle moving at speed one around the infinite tree obtained by now letting ρk be located
at (0,−k) with Tk grafted on its right and T−k on its left (both upright), for k ≥ 0; see the left
of Figure 18 for an illustration.

2695

2696

2697

2698

2699

2700

As before, we extend C and Λ to functions on R by linear interpolation between integer2701

values. For k ≥ 0, we set2702

τ̄k = max
{
i ≤ 0 : C(i) = −k

}
and τk = min

{
i ≥ 0 : C(i) = −k

}
.2703

Note that, for a fixed k ≥ 0, the process (k +C(s+ τk), 0 ≤ s ≤ τk+1 − τk) is the contour2704

process of Tk, while, for k ≥ 1, (k+C(s+ τ̄k+1 +1), 0 ≤ s ≤ τ̄k− τ̄k+1 − 1) is the contour2705

process of T−k without the last descending step. Therefore, in this notation, the forest2706

composed of the k leftmost trees in the upper half-plane is coded by the interval [0, τk],2707

while the forest composed of the k leftmost trees in the lower half-plane is coded by the2708

interval [τ̄k+1+1, 0]. This slightly annoying shift will appear later on, in particular in the2709

statement of Lemma 56.2710

Remark 48. As with the UIHPQ, the above definition gives a slight variant of the usual2711

UIPQ, which is similarly defined by adding a further tree rooted at ρ0 embedded in the2712

lower half-plane, or equivalently, by removing the conditioning by {C(−1) = −1}. This2713

bias is similar to the one we had for the UIHPQ. Here again, the reason for using this2714

definition is that it will give the natural semigroup property for the discrete quadrilaterals.2715

We set2716

D∞(i, j) = dQ∞(vi, vj) , i, j ∈ Z , (49)2717

14See Remark 48 for the explanation of this conditioning.
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and extend it to a function on R2 by bilinear interpolation between integer values, as2718

in (33). We define the renormalized versions C(n), Λ(n), D(n) of C, Λ, D∞ by (34). The2719

following proposition builds on the convergence obtained in [CLG14] of the UIPQ to2720

the Brownian plane. As was the case for the UIHPQ, it does not appear in this exact2721

form in [CLG14] and calls for a proof, which is postponed to Appendix A. Recall from2722

Section 6.3 the definition of the distribution Plane.2723

Proposition 49. The following convergence in distribution holds on C × C × C(2):2724 (
C(n),Λ(n), D(n)

) (d)−→
n→∞

(
X,W,DX,W

)
,2725

where the limiting triple is understood under Plane.2726

6.5 Discrete quadrilaterals in the UIPQ2727

We proceed as in the last paragraph of Section 5.4. But, here, the lack of an analog of2728

Corollary 27 makes matter substantially more intricate. We consider a sequence (hn) ∈ NN
2729

such that2730

hn√
2n

−→
n→∞

H > 0 .2731

For each n, we let Fn be the random forest consisting of the hn trees T0, T1, . . . , Thn−1,2732

and ρhn , as well as F̄n be the random forest consisting of the hn trees T−hn , T−hn+1, . . . ,2733

T−1 and ρ0. The pair (Fn, F̄n) is a double forest in the terminology of Section 2.4 and the2734

map Fn ∪ F̄n is well labeled by the restriction of λ∞. We denote by Qn the corresponding2735

quadrilateral and by v∗, v̄∗ its apexes; similarly to the previous section, we see it as part2736

of the UIPQ Q∞.2737

For each i ∈ Z, the vertex vi of T∞ incident to ci can still be seen as a vertex of Qn2738

when τ̄hn+1 + 1 ≤ i ≤ τhn . We set2739

D̂n(i, j) = dQn(vi, vj) , τ̄hn+1 + 1 ≤ i, j ≤ τhn ,2740

extend it to a function on [τ̄hn+1+1, τhn ]
2 by bilinear interpolation between integer values2741

as in (33), and define its renormalized version2742

D̂(n)(s, t) =
D̂n(2ns, 2nt)

(8n/9)1/4
,

τ̄hn+1 + 1

2n
≤ s, t ≤ τhn

2n
. (50)2743

This section is devoted to the proof of the following result, which essentially amounts to2744

stating that, jointly with the convergence of Ωn(Q∞) to the Brownian plane, the properly2745

rescaled quadrilateral Ωn(Qn) converges to Qd(0,H).2746

Theorem 50. The following convergence in distribution holds in C × C × C(2) × C(2):2747 (
C(n),Λ(n), D(n), D̂(n)

) (d)−→
n→∞

(
X,W,DX,W , D̂

(0,H)
)
,2748

where the limiting quadruple is understood under Plane.2749
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The first step in the proof is the following tightness statement.2750

Lemma 51. From every increasing sequence of integers, one may extract a subsequence2751

along which the following convergence holds in C(2), jointly with the convergence of Propo-2752

sition 49:2753

D̂(n)
(d)−→

n→∞
D̃ , (51)2754

where D̃ is a random pseudometric on [T̄H , TH ].2755

Proof. The classical tightness argument from [LG07, Proposition 3.2] implies that the2756

laws of D̂(n), n ≥ 1, are tight in C(2). Together with Proposition 49, this yields the tight-2757

ness of the laws of the sequence of the quadruples (C(n),Λ(n), D(n), D̂(n)), and therefore, by2758

Prokhorov’s theorem, their joint convergence in distribution, at least along some subse-2759

quence, to a limiting process (X,W,DX,W , D̃), where the law of the first three components2760

is determined by Proposition 49. Since D̂(n) is a pseudometric on [(τ̄hn+1+1)/2n, τhn/2n],2761

and because of the convergence of C(n) to X implying the joint convergence of the bounds2762

of this interval to T̄H , TH , it is straightforward to check that all subsequential limits of2763

these laws are carried by functions that are pseudometrics on the interval [T̄H , TH ].2764

From now on, we fix a subsequence along which (51) holds, and only consider for the2765

time being values of n that belong to this particular subsequence. By the Skorokhod2766

representation theorem, we may and will assume that this convergence furthermore holds2767

almost surely.2768

We define Q̃d as the set [T̄H , TH ]/{D̃ = 0}, endowed with the metric D̃. Beware that2769

it is not clear at all that Q̃d = Qd(0,H), and this is precisely what we want to prove. More2770

precisely, we aim at showing that, almost surely, for every s, t ∈ [T̄H , TH ], it holds that2771

D̃(s, t) = D̂(0,H)(s, t), which will entail Theorem 50.2772

Since the real number H is fixed once and for all, we will use in the remainder of this2773

section the shorthand pieces of notation2774

D̂ = D̂(0,H) as well as D = DX,W .2775

We let p : R → BP and p̃ : [T̄H , TH ] → Q̃d be the canonical projections, which are2776

continuous since D and D̃ are continuous functions. Note that, clearly, for every n, it2777

holds that D∞ ≤ D̂n on [τ̄hn+1 + 1, τhn ]
2, so that D ≤ D̃ on [T̄H , TH ]. As a result, there2778

exists a unique continuous (even 1-Lipschitz) projection π : Q̃d → p([T̄H , TH ]) such that2779

p = π ◦ p̃ on [T̄H , TH ].2780

The inequality D̃ ≤ D̂ follows from the usual following arguments. First we come back2781

to discrete maps and observe that, for integers i, j ∈ [τ̄hn+1 +1, τhn ], we have dC(i, j) = 02782

if and only if vi and vj are the same vertex of Fn ∪ F̄n, which implies that D̂n(i, j) = 0.2783

Next, by considering the so-called maximal wedge path consisting of the concatenation of2784

the two geodesics from ci and from cj obtained by following subsequent successors up to2785

the point where they coalesce, we obtain the classical upper bound similar to (5):2786

D̂n(i, j) ≤ dΛ(i, j) + 2 , i, j ∈ [τ̄hn+1 + 1, τhn ] with ij ≥ 0 . (52)2787
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Passing to the limit yields that {dX = 0} ⊆ {D̃ = 0} and that D̃ ≤ d̂W , which imply the2788

inequality D̃ ≤ D̂. The converse inequality is harder and is the focus of what follows.2789

Let us start with some key properties of the pseudometrics D, D̃, and D̂. The following2790

lemma is proved in the exact same way as [BM17, Lemma 14].2791

Lemma 52. The spaces Q̃d and Qd(0,H) are compact geodesic metric spaces.2792

We will need the following identification of the set {D̃ = 0}, analog to Lemma 46.2793

Lemma 53. The following holds almost surely. For every s, t ∈ [T̄H , TH ] with s ̸= t, it2794

holds that D̃(s, t) = 0 if and only if either dX(s, t) = 0 or d̂W (s, t) = 0, these two cases2795

being mutually exclusive.2796

Proof. It follows very similar lines to that of Proposition 3.1 in [LG13], and we will only2797

sketch the main arguments. The fact that dX(s, t) = 0 or d̂W (s, t) = 0 implies D̃(s, t) = 02798

is immediate from the inequality D̃ ≤ D̂. Conversely, assume that D̃(s, t) = 0 for some2799

s ̸= t in [T̄H , TH ]. Then, in particular, since D ≤ D̃, it holds that D(s, t) = 0, so that2800

either dW (s, t) = 0 or dX(s, t) = 0, and these two cases are exclusive. If we are in the case2801

that s, t are of the same sign and that dW (s, t) = 0, this trivially implies d̂W (s, t) = 0, as2802

wanted. And since d̂W ≥ dW , it cannot hold that d̂W (s, t) = dX(s, t) = 0 at the same time.2803

Hence, the proof will be complete if we can show that the situation where dW (s, t) = 02804

necessarily implies that s and t are of the same sign.2805

For this, we argue by contradiction, assuming that t < 0 < s and dW (s, t) = 0.2806

Note that this implies in particular that s, t lie on some point of the geodesics Γ02807

and Ξ0, respectively, meaning that Ws = infu∈[0,s]Wu and Wt = infu∈[t,0]Wu. Then,2808

by the convergence of Λ(n) to W , there exist in ∈ [0, τhn ] and jn ∈ [τ̄hn+1 + 1, 0] such2809

that in/2n → s and jn/2n → t, with the property that Λn(in) = mink∈[0,in] Λn(k) and2810

Λn(jn) = mink∈[jn,0] Λn(k). This means that vin lies on the maximal geodesic γn of Qn,2811

and vjn lies at distance 1 from the shuttle ξ̄n of Qn.2812

Now any geodesic path in Qn from vin to vjn will necessarily intersect the spine of the2813

tree T∞ at some tree root ρln with 0 ≤ ln ≤ hn. Let kn ∈ [τ̄hn+1 + 1, τhn ] be an integer2814

such that vkn = ρln . In terms of the contour process Cn, this means that Cn(kn) ≤ Cn(l)2815

for every l ∈ [0∧kn, 0∨kn]. Up to extracting along a further subsequence, we may assume2816

that kn/2n→ u ∈ [T̄H , TH ] as n→ ∞, and we observe that u must be such that Xu ≤ Xt2817

for every t ∈ [0∧u, 0∨u], and in particular, we observe that dX(u, TH′) = dX(u, T̄H′) = 02818

where H ′ = −Xu. We may exclude the case where H ′ = 0 by noting that, necessarily,2819

Ws = Wt = Wu < 0.2820

On the other hand, since vkn lies on a geodesic path from vin to vjn , which has length2821

O(n1/4) because of our assumption that D̃(s, t) = 0, it holds that D̃(s, u) = D̃(u, t) = 0.2822

We arrive at the wanted contradiction since we have found four points s ̸= t, TH′ ̸= T̄H′2823

that are all identified by D but such that dW (s, t) = 0 and dX(TH′ , T̄H′) = 0.2824

As D̃ ≤ D̂ ≤ d̂W and {dX = 0} ⊆ {D̂ = 0}, Lemma 53 implies that the equivalence2825

relations {D̃ = 0} and {D̂ = 0} coincide, and that p̃ = p̂(0,H). For this reason we may, and2826
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will, systematically identify points of Q̃d with points of Qd(0,H). Moreover, the identity2827

mapping Qd(0,H) → Q̃d is continuous, and by compactness of these spaces, we conclude2828

that Q̃d is homeomorphic to Qd(0,H).2829

Theorem 50 will be obtained by compactness and continuity arguments from the fol-2830

lowing local version, stating that, locally and away either from both maximal geodesics2831

or from both shuttles, the three distances under consideration are equal. The proof of the2832

following lemma can straightforwardly be adapted from [BM17, Lemma 15], so that we2833

only sketch it and refer the reader to the latter reference for the details. In an arbitrary2834

pseudometric space (M,d), we denote by d(x,A) = inf{d(x, y) : y ∈ A} the distance from2835

a point x ∈M to a subset A ⊆M .2836

Lemma 54. The following holds almost surely. Fix ε > 0, and let s, t ∈ [T̄H , TH ] be such2837

that D̃(s, t) < ε and2838

• either D̃
(
s,Γ0 ∪ ΓT̄H

)
∧ D̃

(
t,Γ0 ∪ ΓT̄H

)
> ε ;2839

• or D̃
(
s,Ξ0 ∪ ΞTH

)
∧ D̃

(
t,Ξ0 ∪ ΞTH

)
> ε .2840

Then, it holds that D(s, t) = D̃(s, t) = D̂(s, t).2841

Proof. Let in, jn be integers in [τ̄hn+1 + 1, τhn ] such that in/2n → s and jn/2n → t as2842

n → ∞. From the assumption that D̃(s, t) < ε and the convergence of D(n) toward D̃,2843

we deduce that dQn(vin , vjn) < ε(8n/9)1/4 for every n large enough.2844

Next, keeping the same notation, assume that we are in the first alternative of the2845

statement. Then we claim that for every n large enough, vin and vjn must be at dQn-2846

distance at least ε(8n/9)1/4 from the maximal geodesics γn and γ̄n of Qn. Indeed, if we2847

assume otherwise, then up to taking an extraction along a further subsequence, we would2848

find a point kn ∈ [τ̄hn+1 + 1, τhn ] such that for every n, vkn belongs to (the same) one of2849

these maximal geodesics, and is at dQn-distance at most (8n/9)1/4 from (the same) one2850

of two points vin or vjn . To fix the ideas, assume that vkn is on γn and is close to vin in2851

the latter sense, the discussion being similar in the other cases. Up to taking yet another2852

subsequence if necessary, we may assume that kn/2n converges to some u ∈ [T̄H , TH ]. Note2853

that kn, being a time of visit of the maximal geodesic γn, must be a left-minimum for2854

the label process Λn restricted to nonnegative times, and, by passing to the limit, u must2855

be a left-minimum of W restricted to nonnegative times, entailing that D̃(u,Γ0) = 0.2856

Therefore, by passing to the limit in the inequality D(n)(in/2n, kn/2n) ≤ ε, we would2857

obtain that D̃(s,Γ0) ≤ ε, a contradiction with our assumption.2858

Now observe that Q∞ is obtained by the following two gluing operations, from Qn and2859

the infinite quadrangulation Qc
n, encoded by the labeled double forest with trees grafted2860

above ρhn+i, i ≥ 0, and below ρhn+i, i ≥ 1.2861

• First, by gluing the geodesic sides ξn and γ̄n of Qn to the (unique) maximal geodesic2862

and shuttle of Qc
n. Note that the resulting infinite quadrangulation is also obtained2863

by performing the interval CVS construction on T∞ with the intervals {ci, i ≤ 0}2864

and {ci, i ≥ 0}.2865
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• Second, by gluing together the (unique) maximal geodesic and shuttle of the infinite2866

quadrangulation obtained at the first step. Note that the geodesic sides of this2867

infinite map are prolongations of γn and ξ̄n.2868

Therefore, Lemma 21.(ii) applied twice (once for each gluing operation) shows that if v,2869

w ∈ V (Qn) are such that dQn(v, w) < K and either2870

• dQn(v, γn) ∧ dQn(w, γn) > K,2871

• or dQn(v, γ̄n) ∧ dQn(w, γ̄n) > K,2872

then dQn(v, w) = dQ∞(v, w). Applying this to v = vin , w = vjn , and K = (8n/9)1/4ε2873

yields, after passing to the limit, that D̃(s, t) = D(s, t). Since D̃ ≤ D̂ ≤ D, this yields2874

the result in the first alternative of the statement. The second case, with shuttles instead2875

of maximal geodesics, is similar.2876

We may finally prove Theorem 50.2877

Proof of Theorem 50. We follow the same lines as in the proof of [BM17, Theorem 11]. As2878

we observed before, the metric spaces Q̃d and Qd(0,H) are homeomorphic. Therefore, since2879

the geodesics γ and γ̄ do not intersect in Qd(0,H), the same is true in Q̃d, and similarly,2880

the geodesics ξ and ξ̄ do not intersect in these spaces. Moreover, as we know, these four2881

geodesics intersect only at γ(0) = ξ̄(0), ξ(0) = γ̄(0), x(0,H)
∗ and x̄(0,H)

∗ . Therefore, for every2882

x ∈ Q̃d \
{
γ(0), γ̄(0), x(0,H)

∗ , x̄(0,H)
∗

}
, there exists ε > 0 such that the open ball B‹D(x, ε) of2883

radius ε around x for the metric D̃ intersects neither γ ∪ γ̄ nor ξ ∪ ξ̄. By Lemma 54, this2884

implies that the balls B‹D(x, ε), and B“D(x, ε) are isometric. Hence, Q̃d and Qd(0,H) are2885

two compact geodesic metric spaces that are locally isometric except possibly around four2886

points. Therefore, the lengths of paths that do not go through these four points must be2887

the same in both spaces. It is then easy to see that the same is true for all paths that2888

visit each of these four points at most once, by splitting into subpaths, and by standard2889

properties of lengths of paths. One concludes by observing that, given a path in Q̃d, one2890

may construct another path of length smaller than or equal to that of the initial path, and2891

that visits each of the four distinguished points at most once. Since a geodesic space is a2892

length space [BBI01], the distance between two points is given by the infimum of length2893

of paths between these points. Therefore, Q̃d and Qd(0,H) are isometric.2894

6.6 Scaling limit of conditioned quadrilaterals2895

In this section, we finally prove Theorem 14. As a preliminary result, we will need a simple2896

estimate on distances in quadrilaterals. We invite the reader to recall the combinatorial2897

setting of Section 2.4 and to consult Figure 17. Let ((f , f̄), λ) be a well-labeled double2898

forest and let q be the corresponding quadrilateral. For k ∈ {1, 2, . . . , h − 1}, keeping2899

only the first k trees in f and the last k trees in f̄ yields a submap of f ∪ f̄ , well labeled2900

by the restriction of λ. We let qk be the corresponding quadrilateral, which we naturally2901

see as a submap of q. We will need the following coarse comparison between distances2902

in q and qk.2903
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ρ

ρ̄

ρ

ρ̄

qqk

f

f̄

γ

γ̄

ξ̄

ξ

Figure 17: Here, h = 5 and k = 3. On the left, a schematic picture of a double forest (f , f̄),
assumed to be well labeled, and its “truncation” obtained after removing the dashed elements. On
the right, a schematic picture of the corresponding quadrilaterals: the quadrilateral q is obtained
by gluing qk (in light yellow) along its sides ξ and γ̄ with the quadrilateral (in orange) coded by
the dashed elements along its sides γ and ξ̄ (only these four geodesic sides of interest are named
in the picture).

2904

2905

2906

2907

2908

2909

Lemma 55. Let ϖ = 2+max{λ(u) : u ∈ V (q)\V (qk)}−min{λ(u) : u ∈ V (q)\V (qk)}.2910

Then, for any v, w ∈ V (qk), one has2911

dq(v, w) ≤ dqk
(v, w) ≤ dq(v, w) +ϖ .2912

Proof. Observe that q may be obtained by gluing qk along its sides ξ and γ̄ with the2913

quadrilateral coded by the double forest obtained by taking the last h− k trees in f and2914

the first h− k trees in f̄ , well labeled by the restriction of λ, along its sides γ and ξ̄. The2915

lemma is then a straightforward consequence of Lemma 21.(i) since the lengths of the2916

glued geodesics are bounded by the quantity ϖ.2917

We now prove Theorem 14 by proceeding similarly as in Section 5.5. Recall the2918

notation (C(t),Λ(t), t ∈ R), τk, τ̄k from Section 6.4. Let P∞ be the law of (C,Λ) and2919

assume without loss of generality that the latter is the canonical process. Although we2920

use the same notation P∞ as in Section 5.5, we believe that there is little risk of confusion.2921

For j ≥ 1, let Fj be the σ-algebra generated by (C(i),Λ(i), 0 ≤ i ≤ j), and let Gj be the2922

one generated by (C(i),Λ(i+1),−j ≤ i ≤ −1). Note that Fτh is the σ-algebra generated2923

by the h leftmost trees of T∞ in the upper half-plane, together with their labels, as well2924

as the label of the root ρh. Similarly, G−τ̄h+1
is the σ-algebra generated by the h leftmost2925

trees of T∞ in the lower half-plane, together with their labels, as well as the label of2926

the root ρ0: the meaning of the shift by +1 in the process Λ is that we do not want to2927

incorporate the information of the label of the root ρh+1 in G−τ̄h+1
.2928

Next, for a, ā, h ∈ N and δ ∈ Z, we denote by Pa,ā,h,δ the distribution of2929 (
C|[−2ā−h,2a+h],Λ|[−2ā−h,2a+h]

)
2930

under P∞[ · | τh = 2a + h, τ̄h+1 + 1 = −2ā − h, Λ(τh) = δ]. The corresponding double2931

forest encoded by this random process is thus composed of a spine ρ0, . . . , ρh of length h,2932
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on which are grafted 2h Bienaymé–Galton–Watson trees with Geometric(1/2) offspring2933

distribution and uniform admissible labels, conditioned on the fact that the total number2934

of edges in the upper half-plane h trees is a, the number of edges in the lower half-2935

plane h trees is ā, and the label of the last root ρh is δ. The following lemma gives an2936

absolute continuity relation between the laws Pa,ā,h,δ and P∞. Its proof, which we omit,2937

is similar to that of Lemma 36, using the enumeration results of Proposition 11. Recall2938

from Propositions 9 and 11 the definitions of Qℓ and Mℓ.2939

Lemma 56. Fix the integers 0 < k < h, as well as positive integers a, ā ∈ N and δ ∈ Z.2940

For every nonnegative functional G that is Fτk ∨ G−τ̄k+1
-measurable, we have2941

Ea,ā,h,δ[G] = E∞
[
Ψa,ā,h,δ(τk,−(τ̄k+1 + 1), k,Λ(τk)) ·G

]
,2942

where2943

Ψa,ā,h,δ(s, t, h
′, j) =

Qh−h′(2a+ h− s)

Qh(2a+ h)

Qh−h′(2ā+ h− t)

Qh(2ā+ h)

Mh−h′(δ − j)

Mh(δ)
.2944

From now on, in addition to the sequence (hn), we fix three sequences (an), (ān), (δn)2945

as in (9). The following is a tedious but straightforward consequence of the local limit2946

theorem [BGT89, Theorem 8.4.1].2947

Lemma 57. If the integer-valued sequence (h′n) satisfies h′n/
√
2n→ H ′ ∈ (0, H), then2948

sup
0≤s≤an
0≤t≤ān

, j∈Z

∣∣∣∣Ψan,ān,hn,δn(s, t, h
′
n, j)− ψA,Ā,H′,∆

( s
n
,
t

n
,H ′,

( 9

8n

) 1
4

j
)∣∣∣∣ −→n→∞

0 .2949

We proceed to the conditioned version of Theorem 50. Recall the definition of D̂(n)2950

given in (50).2951

Proposition 58. On C×C×C(2), the triple
(
C(n),Λ(n), D̂(n)

)
considered under Pan,ān,hn,δn2952

converges in distribution to
(
X,W, D̂X,W = D̂(0,H)

)
, considered under QuadA,Ā,H,∆.2953

Proof. The arguments are very close to those used in the proof of Proposition 38 in2954

Section 5.5, adding Lemma 55 and Proposition 40 to cover the additional difficulty. The2955

joint convergence of the first two coordinates is also standard. Then, fix ε ∈ (0, H) and2956

set hεn = hn − ⌊ε
√
2n⌋. Let D̂ε

n and D̂ε
(n) be defined as in (50) and above, but with hεn2957

instead of hn. For simplicity, for every i ∈ R, let2958

iε = (τ̄hεn+1 + 1) ∨ i ∧ τhεn2959

and define jε similarly for any j ∈ R. Define also κεn = (τhn − τhεn) + (τ̄hεn+1 − τ̄hn+1).2960

From (52), we obtain2961 ∣∣D̂n(i, j)− D̂n(i
ε, jε)

∣∣ ≤ D̂n(i, i
ε) + D̂n(j, j

ε) ≤ 4
(
ω(Λn;κ

ε
n) + 1

)
.2962

2963
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Using Lemma 55, we have for every i, j ∈ [τ̄hεn+1 + 1, τhεn ],2964 ∣∣D̂n(i, j)− D̂ε
n(i, j)

∣∣ ≤ ω(Λn;κ
ε
n) + 2 .2965

These two facts together then imply that2966

distC(2)

(
D̂ε

(n), D̂(n)

)
≤ κεn

2n
+ 5ω

(
Λ(n), κ

ε
n/2n

)
+O

(
n−1/4

)
.2967

We now use the convergence of the first two coordinates, implying, for every η > 0,2968

lim sup
n→∞

Pan,ān,hn,δn
Ä
distC(2)

(
D̂ε

(n), D̂(n)

)
≥ η
ä
≤ QuadA,Ā,H,∆

(
κε + 5ω(W ;κε) ≥ η

)
, (53)2969

where κε = A − TH−ε + T̄H−ε + Ā. Since a.s. under QuadA,Ā,H,∆, the quantity κε tends2970

to 0 as ε→ 0, we deduce that the left-hand side in (53) also converges to 0. It remains to2971

show that D̂ε
(n) under Pan,ān,hn,δn converges to D̂(0,H−ε) under QuadA,Ā,H,∆ to conclude,2972

by the principle of accompanying laws, that D̂(n) converges to the distributional limit2973

of D̂(0,H−ε) as ε → 0, which is D̂(0,H) by Proposition 40. To this end, we consider the2974

restrictions Cε
(n), Λε(n) of C(n), Λ(n) to the intervals [(τ̄hεn+1 + 1)/2n, τhεn/2n] and, letting F2975

be a nonnegative bounded continuous function, we observe that, using Lemma 56, then2976

Theorem 50 (for the choice of H− ε instead of H) and Lemma 57, and finally Lemma 47,2977

we have2978

2979

Ean,ān,hn,δn
[
F
(
Cε

(n),Λ
ε
(n), D

ε
(n)

)]
2980

= E∞
[
Ψan,ān,hn,δn(τhεn ,−1− τ̄hεn+1,Λ(τhεn))G

(
Cε

(n),Λ
ε
(n), D

ε
(n)

)]
2981

−→
n→∞

Plane
î
ψA,Ā,H,∆(TH−ε,−T̄H−ε, H − ε,WTH−ε

)G
(
X(0,H−ε),W (0,H−ε), D̂(0,H−ε))ó

2982

= QuadA,Ā,H,∆
[
G
(
X(0,H−ε),W (0,H−ε), D̂(0,H−ε))] .2983

2984

This concludes the proof.2985

From there, we easily obtain the wanted GHP convergence by arguments similar as2986

those developed in the proof of Theorem 12 at the end of Section 5.5.2987

7 Construction from a continuous unicellular map2988

Our proof of Theorem 1 gives a description of the limiting Brownian surfaces as gluings2989

of elementary pieces, which appear either in the Brownian plane or in the Brownian2990

half-plane. Although this construction has a clear geometric content, it can be arguably2991

cumbersome to work with, having in mind, for instance, the universal character that the2992

spaces S
[g]
L are expected to bear.2993

Indeed, we believe that Brownian surfaces arise as universal limits for many more2994

classes of maps satisfying mild conditions (for instance uniformly distributed maps) and a2995
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more direct description seems to be useful in order to show such results. In particular, we2996

believe that the Brownian torus is the scaling limit of essentially simple triangulations,2997

as considered in [BHL19]. In fact, most of the known results of convergence toward the2998

Brownian sphere use a re-rooting technique due to Le Gall [LG13], which, very roughly2999

speaking, says that, if maps in a given class are properly encoded by discrete objects3000

converging to the random snake driven by a normalized Brownian excursion and if these3001

maps and the limiting object exhibit a property of invariance under uniform re-rooting,3002

then the limiting space is the Brownian sphere. We expect this approach to be general-3003

izable to our context and we now give a description of Brownian surfaces that is a direct3004

generalization of the classical definition of the Brownian sphere. This can be thought of3005

a continuum version of the Cori–Vauquelin–Schaeffer bijection, building on a continuum3006

version of a unicellular map (a map with only one internal face).3007

For a function f ∈ C and s, t ∈ I(f) with t < s, we extend (21) by setting3008

f(s, t) = inf
I(f)\[t,s]

f3009

and we set, for s, t ∈ I(f),3010

d̃f (s, t) = f(s) + f(t)− 2max
{
f(s, t), f(t, s)

}
. (54)3011

The difference with (22) is that we now take into account the minimum of f on the3012

“interval” from s ∨ t to s ∧ t on the “circle” I(f)/{τ̄(f) = τ(f)}.3013

The Brownian sphere. As a warm-up, let us first recall the definition of the Brownian3014

sphere. It is the metric space S
[0]
∅ =

(
[0, 1], d̃Z

)
/{de = 0}, where Z is the random snake3015

driven by a normalized Brownian excursion e.3016

Recall that the Continuum Random Tree (CRT) introduced by Aldous [Ald91, Ald93]3017

is the R-tree15 Te = ([0, 1]/{de = 0}, de), so that the Brownian sphere S
[0]
∅ may actually3018

be seen as a quotient of the CRT. In fact, Le Gall [LG07] showed that the pseudometric3019

d̃Z/{de = 0}(s, t) = 0 if and only if d̃Z(s, t) = 0 or de(s, t) = 0, so that the topological3020

space S
[0]
∅ is obtained by a continuous analog to the Cori–Vauquelin–Schaeffer bijection.3021

The Brownian disk. Let us turn to the Brownian disk with perimeter L ∈ (0,∞). It3022

is the metric space S
[0]
(L) =

(
[0, 1], d̃W

)
/{dX = 0}, where (X,W ) is the pair encoding a3023

slice with area 1, width L and tilt 0, that is, distributed according to Slice1,L,0 (defined3024

in Section 5.2).3025

The most natural continuous object generalizing the CRT in the case of the disk is3026

the gluing M [0]
(L) = ([0, 1], dX)/R where R is the coarsest equivalence relation containing3027

{dX = 0} and {(0, 1)}. As d̃W (0, 1) = 0, the Brownian disk is also ([0, 1], d̃W )/R and can3028

be seen as a quotient of M [0]
(L). Visually, M [0]

(L) is obtained by taking a circle of length L3029

and gluing a Brownian forest of mass 1 and length L on it. The random snake W then3030

assigns Brownian labels to it (with a Brownian bridge multiplied by
√
3 on the circle and3031

standard Brownian motions everywhere else).3032

15See Section 5.1.1.
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The general case. The CRT and the structure M [0]
(L) are the continuous equivalent to3033

the encoding objects of Section 2.2 in the particular cases of the sphere and the disk. In3034

general, we have a similar yet even more intricate construction, which we now describe.3035

Let g ≥ 0 be fixed and L = (L1, . . . , Lb) be a b-tuple of positive real numbers. Let then3036 (
S, (Ae)e∈E⃗(S) , (H

e)e∈I⃗(S) , (L
e)e∈B⃗(S) , (Λ

v)v∈V (S)

)
be a random vector distributed accord-3037

ing to the distribution ParamL, defined around (18). Conditionally given this vector, we3038

consider the following collection of processes. For each e ∈ E⃗(S),3039

• the process Xe is a first-passage bridge of standard Brownian motion from 0 to −He
3040

with duration Ae;3041

• the process Ze is a random snake driven by the reflected process Xe −Xe;3042

the processes (Xe, Ze), e ∈ E⃗(S), being independent. Independently, the process ζe is a3043

Brownian bridge3044

• of duration He from Λe
− to Λe

+ , with variance 1 if e ∈ I⃗(S);3045

• of duration Le from Λe
− to Λe

+ , with variance 3 if e ∈ B⃗(S).3046

Furthermore, for e ∈ I⃗(S), the bridges are linked through the relation3047

ζ ē(s) = ζe(He − s) , 0 ≤ s ≤ He ,3048

and, except for these relations, are independent. We then set, for each e ∈ E⃗(S),3049

W e
t = Ze

t + ζe−Xe
t
, 0 ≤ t ≤ Ae .3050

In the end, we obtain a collection of processes (Xe,W e), e ∈ E⃗(S), which are linked3051

through the relations linking ζe with ζ ē, translating the fact that the labels of the floors of3052

forests grafted on both sides of the same internal edge of the scheme should correspond.3053

We arrange the half-edges e1, . . . , eκ incident to the internal face of S according to3054

the contour order, starting from the root, and we define the concatenation3055

(Ws)0≤s≤1 = W e1 • · · · •W eκ ,3056

which is a continuous process. We define d̃W by (54) as above and now define the equiv-3057

alence relation along which to glue.3058

Roughly speaking, we glue together Brownian forests coded by the Xe’s according to3059

the scheme structure. For s ∈ [0, 1), we denote by [s] the integer in {1, . . . , κ} such that3060

[s]−1∑
i=1

Aei ≤ s <

[s]∑
i=1

Aei and ⟨s⟩ = s−
[s]−1∑
i=1

Aei ∈
[
0, Ae[s]

)
.3061
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By convention, we also set [1] = 1 and ⟨1⟩ = 0. We define the relation R on [0, 1] as the3062

coarsest equivalence relation for which s R t if one of the following occurs:3063

[s] = [t] and dXe[s] (⟨s⟩, ⟨t⟩) = 0 ; (55a)3064

e[s] = ē[t], X
[s]⟨s⟩ = X [s]⟨s⟩, X [t]⟨t⟩ = X [t]⟨t⟩ and X [s]⟨s⟩ = He[t] −X [t]⟨t⟩ ; (55b)3065

3066

where we wrote X [s]⟨s⟩ instead of Xe[s](⟨s⟩) for short. Equation (55a) identifies numbers3067

coding the same point in one of the Brownian forests, while Equation (55b) identifies the3068

floors of forests “facing each other”: the numbers s and t should code floor points (second3069

and third equalities) of forests facing each other (first equality) and correspond to the3070

same point (fourth equality).3071

Proposition 59. The Brownian surface S
[g]
L has the same distribution as ([0, 1], d̃W )/R.3072

Let us give a similar interpretation as in the case of the disk. Let first (Xs)0≤s≤1 be3073

the continuous process obtained by shifting and concatenating Xe1 , . . . , Xeκ . Then S
[g]
L3074

may be seen as a quotient of M [g]
L = ([0, 1], dX)/R, which can be pictured as follows.3075

Starting from the random vector
(
S, (Ae)e∈E⃗(S) , (H

e)e∈I⃗(S) , (L
e)e∈B⃗(S)

)
, we first construct3076

the metric graph obtained from S by assigning either the length He or Le to the edge3077

corresponding to e. For every half-edge e incident to the internal face of S, we then glue3078

a Brownian forest of mass Ae and length He or Le on e. We equip this space M [g]
L with3079

Brownian labels (with variance
√
3 on the boundary edges) and define S

[g]
L from there by3080

the same process as in the case of the Brownian disk.3081

Proof of Proposition 59. First of all, recall from Section 4.2 that the Brownian surface S[g]
L3082

is defined as the gluing along geodesic sides of a collection of continuum elementary pieces3083

distributed as follows. Conditionally given3084 (
S, (Ae)e∈E⃗(S) , (H

e)e∈I⃗(S) , (L
e)e∈B⃗(S) , (Λ

v)v∈V (S)

)
,3085

the elementary pieces EPe, e ∈ E⃗(S), are only dependent through the relation linking EPe3086

with EPē and, setting ∆e = Λe
+ − Λe

− ,3087

• if e ∈ B⃗(S), then EPe is a slice with area Ae, width Le and tilt ∆e;3088

• if e ∈ I⃗(S), then EPe is a quadrilateral with half-areas Ae and Aē, width He and3089

tilt ∆e.3090

Furthermore, it is straightforward from the definition of the pairs (Xe,W e), e ∈ E⃗(S),3091

that, if e ∈ B⃗(S), then the pair (Xe,W e − Λe
−
) is distributed as SliceAe,Le,∆e . When3092

e ∈ I⃗(S), we denote by3093 (
Xe,W e

)
=
(
Xe
s+Ae − 2Xe

s+Ae −He,W e
s+Ae

)
−Ae≤s≤0

3094

the process obtained by shifting the Pitman transform of Xe in order to obtain a process3095

from −He to 0, as well as changing the time range to [−Ae, 0]. By standard results on3096
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Brownian motion and random snakes, the pair obtained by concatenating (X ē,W ē−Λē
−
)3097

with (Xe,W e − Λe
−
) has the law of a process distributed as QuadAe,Aē,He,∆e .3098

As a result, we may assume that the elementary piece EPe is encoded by3099

• the pair (Xe,W e − Λe
−
) if e ∈ B⃗(S);3100

• the concatenation of (X ē,W ē − Λē
−
) with (Xe,W e − Λe

−
) if e ∈ I⃗(S).3101

This yields a collection of elementary pieces with the proper laws and dependencies; the3102

fact that, for e ∈ I⃗(S), EPe and EPē are the same with exchanged shuttles and maximal3103

geodesics is a simple application of the Pitman transform.3104

For s ∈ [0, 1], we denote by π(s) the projection in the gluing S
[g]
L of the point ⟨s⟩ of the3105

elementary piece EPe[s] . We claim that π : [0, 1] → S
[g]
L is onto. Indeed, for each half-edge3106

ϵ ∈ E⃗(S), recall that the elementary piece EPϵ is defined as a quotient of [0, Aϵ] and3107

observe that {⟨s⟩ : s such that e[s] = ϵ} = [0, Aϵ); furthermore, the “missing point” Aϵ3108

of EPϵ is glued to a point 0 of some elementary piece, which is π(s) for some s satisfying3109

⟨s⟩ = 0. Writing dS the distance in S
[g]
L and dR = d̃W/R, it is sufficient to show that, for3110

s, t ∈ [0, 1],3111

dR(s, t) = dS

(
π(s),π(t)

)
.3112

As the pseudometric df defined in (22) is unchanged by the addition of an additive3113

constant, setting3114

dϵ =

®
dW ϵ if ϵ ∈ B⃗(S)

d̂W ϵ̄•W ϵ if ϵ ∈ I⃗(S)
,3115

the quantity dS

(
π(s),π(t)

)
is the infimum of sums of the form

ℓ∑
i=1

dϵi(si, ti) where3116

• ϵ1 = e[s], s1 = ⟨s⟩, ϵℓ = e[t], sℓ = ⟨t⟩;3117

• for all i, it holds that si, ti ∈
®
[0, Aϵi ] if ϵi ∈ B⃗(S)

[−Aϵ̄i , Aϵi ] if ϵi ∈ I⃗(S)
;3118

• for all i,3119

a) either ϵi = ϵi+1 ∈ B⃗(S) and dXϵi (ti, si+1) = 0 ;3120

b) or ϵi = ϵi+1 ∈ I⃗(S) and dX ϵ̄i•Xϵi (ti, si+1) = 0 ;3121

c) or the point ti of EPϵi is glued to the point si+1 of EPϵi+1 .3122

As dϵ(u, v) = ∞ whenever uv < 0, we may furthermore assume that, for all i, siti ≥ 0.3123

Now, for each i, we set3124

s̃i =

[ϵi]−1∑
j=1

Aej + si if si ≥ 0 , s̃i =

[ϵ̄i]∑
j=1

Aej + si if si < 0 ,3125
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where we wrote [ϵ] the index of the half-edge ϵ in the ordering e1, . . . , eκ of E⃗(S). We3126

define t̃i similarly. It is easy to check that s̃1 = s, t̃ℓ = t and that, for each i, we have3127

dϵi(si, ti) = dW (s̃i, t̃i). Furthermore, for each i, we have the following.3128

a) If ϵi = ϵi+1 ∈ B⃗(S) and dXϵi (ti, si+1) = 0, then, unless ti = si+1 = Aϵi (in which case3129

t̃i = s̃i+1), it holds that si < Aϵi and ti < Aϵi , which yields that t̃i R s̃i+1 by (55a).3130

b) If ϵi = ϵi+1 ∈ I⃗(S) and dX ϵ̄i•Xϵi (ti, si+1) = 0, then,3131

– if tisi+1 ≥ 0, then t̃i R s̃i+1 by (55a) as above;3132

– if tisi+1 < 0, then t̃i R s̃i+1 by (55b).3133

c) If the point ti of EPϵi is glued to the point si+1 of EPϵi+1 , then it implies that3134

d̃W (t̃i, s̃i+1) = 0 (recall the situation depicted in Figure 11).3135

As a result, since d̃W ≤ dW , it holds that dR(s, t) ≤ dS

(
π(s),π(t)

)
. The converse in-3136

equality is very similar, noting that R identifies points in the elementary piece EPϵ as3137

does dXϵ = 0 or dX ϵ̄•Xϵ = 0, and that d̃W encodes all the functions dϵ, together with3138

the gluings of the elementary pieces. The use of d̃W and not dW takes into account the3139

gluings of shuttles with maximal geodesics of elementary pieces “overflying” the root,3140

as EPe14 with EPe1 or EPe12 with EPe7 in Figure 11 for instance. The details are left to3141

the reader.3142

A Technical lemmas on the Brownian plane3143

We now recall the definition of the Brownian plane from [CLG14], then show that it is3144

equivalent to the one we gave in Section 6.3, and we finally prove Proposition 49.3145

A.1 Equivalence of definitions of the Brownian plane3146

The original definition goes as follows. Let (Xt, t ∈ R) be such that (Xt, t ≥ 0) and3147

(X−t, t ≥ 0) are two independent three-dimensional Bessel processes. Since the overall3148

minimum of X is reached at 0, the maximum in the definition of d̃X – given in (54) – is3149

equal to3150

max
(
X(s, t),X(t, s)

)
=

®
inf{Xu, u ∈ [s ∧ t, s ∨ t]} if st ≥ 0

inf{Xu, u /∈ [s ∧ t, s ∨ t]} if st < 0
.3151

Next, define (Wt, t ∈ R) to be a centered Gaussian process conditionally given X, with3152

covariance function specified by3153

E[|Ws −Wt|2 | X] = d̃X(s, t) .3154

The Brownian plane was defined in [CLG14] as3155 (‹MX,W, D̃X,W

)
=
(
R/{D̃X,W = 0}, D̃X,W

)
where D̃X,W = dW/

{
d̃X = 0

}
.3156
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The following proposition shows that the definition given in Section 6.3 is equivalent3157

to the one above. Recall the piece of notation X t = X(0∧ t, 0∨ t) and define the process3158

(Πt = Xt − 2X t, t ∈ R) by taking the Pitman transform of X on R+ and on R−.3159

Proposition 60. The process (Π,W ) considered under Plane has same distribution as3160

(X,W) defined above. Moreover,
(‹MΠ,W , D̃Π,W = dW/

{
d̃Π = 0

})
and (MX,W , DX,W ) are3161

a.s. equal as metric spaces.3162

Proof. We claim that d̃Π = dX . This entails that, conditionally given X, the process W3163

is also Gaussian with E[(Ws −Wt)
2 | X] = d̃Π(s, t) and, since Π has same distribution3164

as X by Pitman’s 2M −X theorem [Pit75, Theorem 1.3], we see that (Π,W ) and (X,W)3165

have same distribution. We then have3166

D̃Π,W = dW/
{
d̃Π = 0

}
= dW/{dX = 0} = DX,W .3167

Checking that d̃Π = dX is a classical exercise, based on the fact that, for 0 ≤ s < t,3168

Π(s, t) = X(s, t)−Xs −X t , and inf
u≥s

Πu = −Xs . (56)3169

3170

The right equation is obtained from the left one by letting t→ ∞, noting that, for t large3171

enough, X(s, t) = X t. The left equation comes from a straightforward case analysis. If3172

Xs = X t, then, for all u ∈ [s, t], Xu = Xs = X t and so Πu = Xu −Xs −X t ; taking the3173

infimum on u ∈ [s, t] gives the result. If Xs > X t, then X(s, t) = X t so the right-hand3174

side is −Xs. Let r ∈ [s, t] be such that Xr = Xr = Xs. We have Πr = Xr − 2Xr = −Xs3175

and, for u ≥ s, Πu = Xu − 2Xu ≥ −Xu ≥ −Xs.3176

For 0 ≤ s < t, the left equation of (56) entails3177

d̃Π(t, s) = Πs +Πt − 2Π(s, t)3178

= Xs − 2Xs +Xt − 2X t − 2
(
X(s, t)−Xs −X t

)
= dX(s, t) .3179

3180

For s < 0 < t, we have that3181

Π(t, s) = inf
u≥t

Πu ∧ inf
u≤s

Πu = −
(
X(0, t) ∨X(s, 0)

)
= X(s, t)−X(s, 0)−X(0, t)3182

and we conclude as above. The remaining case s < t < 0 is treated similarly.3183

A.2 Convergence of the UIPQ to the Brownian plane3184

We use here the setting of Section 6.4. The proof of Proposition 49 will follow similar3185

lines as that of Proposition 34, using the coupling results of [CLG14]. As the law of X3186

is obtained from that of X by taking the Pitman transform on R+ and on R−, the same3187

should be done for the contour process C of the tree T∞. We thus define the process3188

(C(t) = C(t)− 2C(t), t ∈ R).3189

Note that this gives an alternate natural contour process since, for i ∈ Z, it holds that3190

C(i) = dTΥ(i)

(
vi, ρ

|Υ(i)|)+ |Υ(i)| = dT∞(vi, ρ
0) .3191
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Figure 18: Left. Representation of the infinite tree from Figure 16 after moving the trees in
such a way that, for k ≥ 0, ρk is located at (0,−k) with Tk grafted on its right and T−k on
its left. Top right. Taking the Pitman transform of the contour process on R+ and on R−
yields an alternate contour process. The differing parts are represented with dot-dashed lines;
they correspond to the edges of the infinite spine of the tree. Visually, the process C records the
height of a particle moving at speed one around the tree when represented as on the left. Bottom
right. Representation of the tree from Figure 16 where the root of Tk is now located at (k, |k|)
for each k ∈ Z. Note that, in this representation, the roots of T−k and Tk differ so that the
spine is duplicated. The process C records the height of a particle moving at speed one around
this bi-infinite tree.
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In this setting of discrete trees, the Pitman transform on the contour process is very3202

visual: it merely consists of going from reading the trees while moving down between3203

trees to reading them while moving up between trees; see Figure 18 for an illustration.3204

We may now proceed to the proof of the convergence of the UIPQ to the Brownian plane.3205

Proof of Proposition 49. Similarly as in the proof of Proposition 34, we fix some number3206

K > 0 and will sample a large plane quadrangulation such that, its properly scaled version3207

and its limit, the Brownian sphere, are indistinguishable from the rescaled UIPQ and the3208

Brownian plane, in a neighborhood of 0 of amplitude K. We use again a superscript prime3209

symbol ′ for the objects related to the plane quadrangulation and its limit. Here, some3210

care will also be needed when taking an inverse Pitman transform, since this operation a3211

priori involves more than just a neighborhood of 0.3212

We fix L > 0 and n ≥ 1, and consider a uniform random element (M ′
n, λ

′
n) of →

M
[0]
an,∅,3213

where an = ⌊nL⌋, that is, M ′
n is a uniform rooted plane tree with an edges, which we view3214
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as a map with a unique face f∗, and λ′n is a labeling function uniformly distributed among3215

those yielding a well-labeled tree. We let (C′
n,L

′
n) be the contour and label function of3216

this tree, we let Q′
n = CVS(M ′

n, λ
′
n; f∗) be the quadrangulation encoded by (M ′

n, λ
′
n), and3217

we set D′
n(i, j) = dQ′

n
(vi, vj) for 0 ≤ i, j ≤ 2an, where vi is the i-th visited vertex in M ′

n3218

in contour order, starting from the root corner, and viewed as a vertex of Q′
n. We extend3219

D′
n into a continuous function on [0, 2an]

2 by bilinearity, and all processes C′
n, L′

n, D′
n to3220

[−2an, 2an] by the same formulas as (36) and (37) but with ln = 0. We also define the3221

rescaled versions C′
(n), L′

(n), D′
(n) exactly as in (38). The joint convergence3222

(
C′
(n),L

′
(n),D

′
(n)

) (d)−→
n→∞

(
X′,W′,D′) (57)3223

on the space C([−L,L])×C([−L,L])×C([−L,L]2) is then a consequence of [Mie13, The-3224

orem 3], where the limit is as follows. Restricted to [0, L], the process X′ is a Brownian3225

excursion of duration L and W′ is the random snake driven by X′, while D′ is a random3226

pseudometric, which is an explicit function of (X′,W′). Moreover, all these processes are3227

extended to [−L,L] by a simple translation of their argument by L.3228

Let us now recall the relevant aspects of the coupling results of [CLG14], between the3229

pairs (X,W) and (X′,W′). It will be convenient to let3230

T̄x = inf{t ≤ 0 : Xt = x} , Tx = sup{t ≥ 0 : Xt = x} .3231

Fix r > 0 and ε > 0. Then by [CLG14, Lemmas 5 and 6], it is possible to find A > 13232

and then α > 0 and L0 > 0 large, such that for L > L0 the two processes (X,W) and3233

(X′,W′), can be coupled in such a way that on some event F of probability P(F) ≥ 1− ε,3234

the following properties hold.3235

• For every s, t ∈ [−α, α], one has3236

Xt = X′
t , Wt = W′

t . (58)3237

• It holds that3238

− α < T̄A4 and TA4 < α . (59)3239

• For every s, t ∈ [T̄A,TA], the two conditions max
(
D̃X,W(0, t), D̃X,W(0, s)

)
≤ r and3240

max(D′(0, t),D′(0, s)) ≤ r are equivalent, and, if these are satisfied, one has3241

D′(s, t) = D̃X,W(s, t) .3242

This choice of coupling being fixed, let us now define (Xt, t ∈ R) as the unique process3243

such that Xt = Xt− 2X t is the Pitman transform of X on R+ and on R−; more explicitly3244

Xt =

®
Xt − 2 infs≥tXs if t ≥ 0

Xt − 2 infs≤tXs if t < 0
.3245
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Let us also define W = W. Then X indeed has the law of a two-sided Brownian motion,3246

and W is the random snake driven by X, so that (X,W ) has law Plane. Note that,3247

in this particular coupling, we have T̄x = T̄x and Tx = Tx for every x ≥ 0, and also3248

DX,W = D̃X,W, by the observation in the proof of Proposition 60. Moreover, on the3249

event F , the restriction X|[T̄A2 ,TA2 ] is actually a function of X′|[−α,α]. Indeed, by (58)3250

and (59),3251

Xt =

®
X′
t − 2 inft≤s≤αX

′
s if 0 ≤ t ≤ TA2

X′
t − 2 inf−α≤s≤tX

′
s if T̄A2 ≤ t < 0

,3252

since, for 0 ≤ t ≤ TA2 , one has X(t,∞) = X(t, TA2) = X(t, α), and similarly in negative3253

times.3254

By choosing appropriately the values of r, and enlarging the values of A and α if3255

necessary, then, similarly to the proof of Proposition 34, we obtain that (58) holds on3256

[−K,K], and that the restrictions to [−K,K]2 of D′ and DX,W coincide with probability3257

at least 1− ε.3258

Next, keeping K, ε fixed, and possibly up to choosing L even larger, we need to couple3259

the processes (C(n),Λ(n), D(n)) and (C′
(n),L

′
(n),D

′
(n)) appropriately. To this end, we use3260

the techniques of [CLG14, Proposition 9]. The latter states that for ε > 0, there exists3261

α > 0 (independent of the choice of L arising in the definition of the scaling constant an)3262

such that for every n large enough, one may couple the quadrangulations Q′
n and Q∞3263

in such a way that, with probability at least 1 − ε, the balls of radius αa1/4n around the3264

root of Q′
n and Q∞ are isometric. The proof proceeds by coupling the encoding labeled3265

trees (M ′
n, λ

′
n), and (T∞, λ∞) in such a way that, with even larger probability, the first3266

⌊δa1/2n ⌋ generations of these trees coincide, for some δ > 0, and the minimal value of λ∞3267

taken on the vertices ρ0, ρ1, . . . , ρ⌊δa
1/2
n ⌋ of T∞ is less than −4αa

1/4
n . By choosing R and3268

then L large enough in the first place, for our choice of K, we may also require that with3269

probability at least 1− ε,3270

• the contour and label processes C′
n, L′

n of (M ′
n, λ

′
n) and C, L of (T∞, λ∞) on the3271

interval [−2nK, 2nK] involve only vertices of generations less than ⌊Rn1/2⌋, and3272

• the most recent common ancestor of the vertices at generation ⌊δa1/2n ⌋ has generation3273

at least ⌊Rn1/2⌋.3274

In particular, on this event, the restriction of the process C ′
n to [−2nK, 2nK] is equal to3275

the restriction of the process C on this same event – in words, the second itemized event3276

means that the spine of T∞ is determined by the data of M ′
n up to generation Rn1/2.3277

Since the process C is the inverse Pitman transform of C, it is then a simple exercise to3278

conclude that (C ′
(n),Λ

′
(n), D

′
(n)), which coincides with (C(n),Λ(n), D(n)) on [−K,K] with3279

high probability, converges to some (X ′,W ′, D′), which coincides with (X,W,DX,W ) on3280

[−K,K] with high probability.3281
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B Scaling limit of size parameters in labeled maps3282

B.1 Preliminaries3283

In this appendix, we prove Proposition 24, following the method of [Bet10, Proposition 7]3284

and [Bet15, Proposition 7]. In the meantime, we obtain an asymptotic enumeration3285

result for →
Q

[g]
n,ln

in Proposition 61 below, which will also allow us to deduce Theorem 53286

and Corollary 6 from Theorem 1.3287

Recall that (g, k) /∈ {(0, 0), (0, 1)}, that L = (L1, . . . , Lk) is a fixed k-tuple such that3288

L1, . . . , Lb > 0, while Lb+1, . . . , Lk = 0, and that we consider a fixed sequence of k-tuples3289

ln = (l1n, . . . , l
k
n) ∈ (Z+)

k, n ≥ 1, such that lin/
√
2n→ Li as n→ ∞, for 1 ≤ i ≤ k.3290

We furthermore assume that n sufficiently large so that lin ≥ 1 for each i ≤ b. We3291

denote by →
S the set of rooted genus g schemes with k holes, such that h1, . . . , hb are3292

faces. Note that our assumption on n ensures that Sn ∈ →
S.3293

“Free” parameters and notation. For every scheme s ∈ →
S, not necessarily dominant,3294

we arbitrarily fix, once and for all, half-edges ϵ0 ∈ I⃗(s), and ϵi ∈ B⃗i(s), for 1 ≤ i ≤ b. We3295

fix an orientation I(s) of I⃗(s) that contains ϵ0 and we set I ′(s) = I(s) \ {ϵ0}. We also3296

let v0 be the root vertex of s, and V ′(s) = V (s) \ {v0}, as in Section 4.2. Finally, we set3297

B⃗0(s) =
⊔

b+1≤i≤k

B⃗i(s) , B⃗+(s) =
⊔

1≤i≤b

B⃗i(s) ,3298

B⃗′
i(s) = B⃗i(s) \ {ϵi} , for 1 ≤ i ≤ b , B⃗′

+(s) =
⊔

1≤i≤b

B⃗′
i(s) .3299

3300

The motivation for introducing B⃗+ and B⃗0 is that we need a different treatment depending3301

whether the hole perimeters are in the scale
√
n or O(

√
n). The sets with a prime symbol3302

should be thought of as the sets containing the parameters on which there is a “degree of3303

freedom.” (The reason for removing one element from I will become clear in a moment.3304

We will not need a B⃗′
0 since the corresponding perimeters are all asymptotically null in3305

the scale
√
n of interest.).3306

From now on, we use the shorthand piece of notation xE for a family (xj)j∈E indexed3307

by a set E . For any subset F ⊆ E , we also denote by xF = (xj)j∈F the subfamily3308

indexed by F , and, in the case of real nonnegative numbers, by ∥x∥F =
∑

j∈F x
j (note in3309

particular that ∥x∥∅ = 0).3310

Counting scheme-rooted labeled maps with given size parameters. For the time3311

being, we do not take the areas parameters into account. We fix a rooted scheme s ∈ →
S,3312

and size parameters hI⃗(s), lB⃗(s) and λV (s). We say that a labeled map is scheme-rooted3313

on s if its scheme carries an extra root and the scheme rooted at this extra root is s. We3314

consider the elements of M[g]
n,l scheme-rooted on s whose size parameters are hI⃗(s), lB⃗(s)

3315

and λV (s). Reasoning as in Lemmas 9 and 11, we can express the number of such elements3316
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as3317

12n−
∥h∥
2 2∥h∥+∥l∥Q∥h∥+∥l∥(2n+ ∥l∥)

∏
e∈I(s)

3h
e

Mhe(δλ
e)
∏

e∈B⃗(s)

22l
e+δλePle(δλ

e) ,3318

the products over I(s) and B⃗(s) respectively counting the number of ways to label the3319

vertices along the edges of I(s) and B⃗(s), and the remaining term counting the labeled3320

forests, which can be seen as one big labeled forest obtained by concatenating all the3321

labeled forests indexed by the half-edges of E⃗(s). After recalling that
∑

e∈B⃗i(s)
δλe = 03322

and that ∥l∥B⃗i(s)
= li for every i ∈ {1, 2, . . . , k} corresponding to an external face of s, we3323

may recast this quantity as3324

12n 8∥l∥Q∥h∥+∥l∥(2n+ ∥l∥)
∏
e∈I(s)

Mhe(δλ
e)
∏

e∈B⃗(s)

Ple(δλ
e) .3325

Consequently, the number of elements of →
M

[g]
n,l scheme-rooted on s (these labeled maps3326

are thus rooted twice) whose size parameters are hI⃗(s), lB⃗(s) and λV (s) is equal to3327

→
Ss
n(h, l,λ) = (2n+ ∥l∥) 12n 8∥l∥Q∥h∥+∥l∥(2n+ ∥l∥)

∏
e∈I(s)

Mhe(δλ
e)
∏

e∈B⃗(s)

Ple(δλ
e) , (60)3328

since there are 2n+ ∥l∥ possible rootings of the map.3329

Counting rooted labeled maps. Next, for n, h ∈ N, s ∈ →
S, we set3330

Zs
1(h, n) =

∑
Ts(h,n)

∏
e∈I(s)

Mhe(δλ
e)
∏

e∈B⃗(s)

Ple(δλ
e) , (61)3331

where the sum is taken over the set Ts(h, n) of all size parameters from labeled maps3332

in M
[g]
n,ln

scheme-rooted on s, having h edges in total on the internal edges of s. More3333

precisely, it is the set of tuples3334 (
hI⃗(s), lB⃗(s),λV (s)

)
∈ NI⃗(s) × NB⃗(s) × ZV (s)

3335

such that3336

• ∥h∥ = 2h,3337

• hē = he, for all e ∈ I⃗(s),3338

• ∥l∥B⃗i(s)
= lin, for 1 ≤ i ≤ k,3339

• λv0 = 0.3340

Note that the conditions ∥l∥B⃗i(s)
= lin may only be satisfied if ln is compatible with s in3341

the sense that lin = 0 ⇐⇒ B⃗i(s) = ∅ for all i. As a result, Ts(h, n) = ∅ and thus3342

Zs
1(h, n) = 0 whenever ln is not compatible with s.3343

By double counting the elements of →
M

[g]
n,ln

scheme-rooted on s, we thus obtain that3344 ∣∣→M[g]
n,ln

∣∣ = 12n8∥ln∥
∑
s∈→

S

2n+ ∥ln∥
2|E(s)|

∑
h∈N

Q2h+∥ln∥(2n+ ∥ln∥)Zs
1(h, n) , (62)3345

since we sum over
⋃

s∈→
S ,h∈N{s} × Ts(h, n) the number →

Ss
n(h, ln,λ) given by (60), divided3346

by the number 2 |E(s)| of possible extra rootings on the scheme.3347
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B.2 Asymptotics of the scheme3348

When we work with a fixed scheme, which will be the case in all but the fourth paragraph,3349

we drop the argument from the sets in the notation in order to ease the reading, thus3350

writing I instead of I(s) for instance.3351

Law of the scheme. Recall that the triple (Mn, λn, Sn) is a rooted, scheme-rooted,3352

labeled map, where (Mn, λn) is uniformly distributed over →
M

[g]
n,ln

, while, conditionally3353

given it, Sn is rooted by uniformly choosing its root among
{
e, ē : e ∈ I⃗(Sn) ∪ B⃗+(Sn)

}
.3354

Let us fix a rooted scheme s ∈ →
S whose root or its reverse belongs to I⃗∪B⃗+. Writing s the3355

nonrooted scheme corresponding to s, observe that the set of rooted labeled maps in →
M

[g]
n,ln

3356

with scheme s is in bijection with the set of rooted labeled maps in →
M

[g]
n,ln

scheme-rooted3357

on s. Then,3358

P(Sn = s) =
∑

(m,λ)∈→
M

[g]
n,ln

with scheme s

P
(
(Mn, λn) = (m, λ), Sn = s

)
3359

=
∑

(m,λ)∈→
M

[g]
n,ln

scheme-rooted on s

P
(
(Mn, λn) = (m, λ)

)
P
(
Sn = s | (Mn, λn) = (m, λ)

)
3360

=
∑
h∈N

∑
Ts(h,n)

→
Ss
n(h, ln,λ)

1∣∣→M[g]
n,ln

∣∣ 1

|I⃗ |+ 2 |B⃗+|
=

Zs
1(n)

Z1(n)
,3361

3362

where3363

Zs
1(n) =

1

|I⃗(s)|+ 2 |B⃗+(s)|

∑
h∈N

Q2h+∥ln∥(2n+ ∥ln∥)Zs
1(h, n) (63)3364

and Z1(n) =
∑

s∈→
S Zs

1(n) is the proper normalization constant.3365

Schemes with tadpoles. Here, we fix a scheme s whose external faces among hi,3366

b+ 1 ≤ i ≤ k, are all tadpoles. Equivalently, each B⃗i, b+ 1 ≤ i ≤ k, is either empty or a3367

singleton. In this case, by the Euler characteristic formula,3368

|V ′| − |I| − |B⃗′
+| = −2g , (64)3369

since s has |I|+ |B⃗′
+|+ b+ |B⃗0| edges and 1 + b+ |B⃗0| faces.3370

Assuming that ln is compatible with s, we write the sum over Ts(h, n) in (61) as an3371

integral under the Lebesgue measure3372

dLs = dhI
′ ⊗ dlB⃗

′
+ ⊗ dλV

′ over (R+)
I′ × (R+)

B⃗′
+ × RV ′

3373

and obtain3374

Zs
1(h, n) =

∏
e∈B⃗0

Ple(0)

∫
dLs

∏
e∈I

Mhe(δλ
e)
∏
e∈B⃗+

Ple(δλ
e) , (65)3375

3376

where le = lin if e is the unique element of B⃗i, for i > b, and3377
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• he = ⌈he⌉, for e ∈ I ′,3378

• le = ⌈le⌉, for e ∈ B⃗′
+,3379

• λv = ⌈λv⌉, for v ∈ V ′,3380

• hϵ0 = h−
∑
e∈I′

he,3381

• lϵi = lin −
∑
e∈B⃗′

i

le, for 1 ≤ i ≤ b,3382

• λv0 = 0.3383

(Note that the ceiling function is superfluous for integer parameters; we kept it for nota-3384

tional simplicity.) In order to deal with the cases where hϵ0 ≤ 0 or lϵi ≤ 0, we simply3385

declare16 Mℓ(j) = Pℓ(j) = 0 whenever ℓ ≤ 0.3386

Observe that ln compatible with s means that B⃗0 corresponds to {i > b : lin ≥ 1}. We3387

then make the changes of variables in the natural scales to obtain3388

3389

Zs
1(h, n) = 3

b
2
−g 2

|V ′|
2

− g
2
− 3

4
b n

|V ′|
2

+ g
2
− b

4
− 1

2

∏
i>b : lin≥1

Plin(0)3390

×
∫

dLs

∏
e∈I

(8n
9

) 1
4

Mhe(δλ
e)
∏
e∈B⃗+

(8n
9

) 1
4

Ple(δλ
e) , (66)3391

3392

where3393

• he = ⌈
√
2nhe⌉, for e ∈ I ′,3394

• le = ⌈
√
2n le⌉, for e ∈ B⃗′

+,3395

• λv = ⌈(8n
9
)
1
4λv⌉, for v ∈ V ′,3396

• hϵ0 = h−
∑
e∈I′

he,3397

• lϵi = lin −
∑
e∈B⃗′

i

le, for 1 ≤ i ≤ b,3398

• λv0 = 0.3399

3400

We finally use the same method to treat the summation over h ∈ N in (63), that is,3401

we see it as an integral and do the proper change of variables. We write ln ▷◁ s to mean3402

“ln compatible with s”:3403

Zs
1(n) =

1ln▷◁s

|I⃗ |+ |B⃗+|

…
2

n

∫
R+

dhnQ2⌈
√
2n h⌉+∥ln∥(2n+ ∥ln∥)Zs

1

(
⌈
√
2n h⌉, n

)
. (67)3404

Setting hϵ0 = h−
∑

e∈I′ h
e, lϵi = Li−

∑
e∈B⃗′

i
le for 1 ≤ i ≤ b, and λv0 = 0, by the local3405

limit theorem [Pet75, Theorem VII.1.6], it holds that, when h ∼
√
2n h,3406 (8n

9

) 1
4

Mhe(δλ
e) −→

n→∞
phe(δλ

e) ,
(8n
9

) 1
4

Ple(δλ
e) −→

n→∞
p3le(δλ

e) , (68)3407

and3408

nQ2⌈
√
2n h⌉+∥ln∥(2n+ ∥ln∥) −→

n→∞
q2h+∥L∥(1) . (69)3409

16This is just a convenience. Note that we set M0(0) = P0(0) = 0 here, although it would be more
natural from a combinatorial point of view to set both these quantities to 1.
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Consequently, provided the domination hypothesis obtained in the following paragraph,3410

we get the following equivalent:3411

Zs
1(n) ∼

n→∞
cs1(L)1ln▷◁s n

|V ′|
2

+ g
2
− b

4
−1

∏
i>b : lin≥1

Plin(0) (70)3412

where the constant cs1(L) is given by3413

cs1(L) =
1

|I⃗ |+ 2 |B⃗+|
3

b
2
−g 2

|V ′|
2

− g
2
− 3

4
b+ 1

2

∫
R+

dh q2h+∥L∥(1)

∫
dLs

∏
e∈I

phe(δλ
e)
∏
e∈B⃗+

p3le(δλ
e) .3414

Domination hypothesis. In order to show that the convergence is dominated, we use3415

the bounds of Petrov [Pet75, Theorem VII.3.16], stating that there exist a constant C3416

such that, for any ℓ ∈ N, j ∈ Z, i ∈ N, and r ∈ N,3417

Mℓ(j) ∨ Pℓ(j) ≤ C
1√
ℓ

and Qi(ℓ) ≤ C
i

ℓ3/2
1

1 + (i2/ℓ)r
. (71)3418

We fix an arbitrary spanning tree of s, that is, a tree with vertex-set V and edge-set3419

a subset of E. We associate with any vertex v ̸= v0 the first edge of the unique path in3420

the tree from v to v0 and we denote by ev the unique half-edge of I ∪ B⃗ that corresponds3421

to this edge.3422

We bound the integrand in (66) as follows. First, by (71), we have, for e ∈ I ′,3423 (8n
9

) 1
4

Mhe(δλ
e) ≤

(8n
9

) 1
4 C√

he
≤
(8n
9

) 1
4 C√√

2nhe
=

…
2

3

C√
he

≤ C√
he
.3424

For h = ⌈
√
2n h⌉ and hϵ0 = h−

∑
e∈I′ h

e, a similar bound holds for e = ϵ0, up to possibly3425

enlarging the constant. Indeed, it suffices to show that hϵ0 is bounded from below by3426

a constant times
√
2nhϵ0 in order to complete the computation. We may assume that3427

hϵ0 ≥ 1 as otherwise the left-hand side is null. Then, if
√
2nhϵ0 ≤ 2|I ′|, it immediately3428

holds that hϵ0 ≥ 1
2|I′|

√
2nhϵ0 . Otherwise,3429

hϵ0 = h−
∑
e∈I′

he ≥
√
2nhϵ0 − |I ′| ≥ 1

2

√
2nhϵ0 .3430

In conclusion, up to changing the constant C, it holds that, for all e ∈ I,3431 (8n
9

) 1
4

Mhe(δλ
e) ≤ C√

he
.3432

Similarly, up to enlarging the constant C even more, setting lϵi = Li −
∑

e∈B⃗′
i
le for3433

1 ≤ i ≤ b, it holds that, for e ∈ B⃗+,3434 (8n
9

) 1
4

Ple(δλ
e) ≤ C√

le
.3435
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We use these bounds whenever e /∈ E⃗V =
{
ev : v ∈ V \ {v0}

}
and then, we operate3436

the integral with respect to dλV
′ vertices by vertices, starting from a leaf of the fixed3437

spanning tree, then from a leaf of the tree remaining after removing the first vertex, and3438

so on until only v0 remains. Since, for any ℓ ∈ N,3439 ∫
dx
(8n
9

) 1
4

Mℓ

(
⌈(8n

9
)
1
4x⌉
)
= 1,3440

and similarly with Pℓ instead of Mℓ, we obtain that, for n sufficiently large and after3441

integration with respect to dλV
′ , the integrand in (66) is bounded by3442

1{∥h∥I≤2h}1{∥l∥
B⃗′
+
≤2∥L∥}

∏
e∈I\E⃗V

C√
he

∏
e∈B⃗+\E⃗V

C√
le
. (72)3443

This is integrable with respect to dhI
′ ⊗ dlB⃗

′
+ and is bounded, after integration, by some3444

constant times some power of h. Taking r sufficiently large in (71) yields that this quantity3445

multiplied by nQ2⌈
√
2n h⌉+∥ln∥(2n + ∥ln∥) is integrable with respect to dh. The claimed3446

dominated convergence follows.3447

Dominant schemes. We will now see which schemes are such that Zs
1(n) has the3448

highest possible order in n. The exponent of n in the equivalent (70) is maximal when3449

|V (s)| is the largest; in this case,3450

|V (s)| = 2(2g + k − 1) .3451

This equality is obtained as in the proof of Lemma 7, since |V (s)| being the largest means3452

that the vertices have the lowest possible degrees, namely 3 for the internal vertices and 13453

for the external vertices. More precisely, denoting by v, e, f the numbers of vertices,3454

edges and faces of s, as well as t the number of tadpoles among hb+1, . . . , hk, we obtain3455

f = b+ t+1, 2e = 3(v−k+ b+ t)+k− b− t, and the result from the Euler characteristic3456

formula v − e+ f = 2− 2g.3457

Next, the local limit theorem [Pet75, Theorem VII.1.6] yields the existence of a com-3458

pact set K ⊂ (0,∞) such that, for all ℓ ∈ N,
√
ℓ Pℓ(0) ∈ K. Finally, for any s ∈ →

S,3459

we denote by s·◦ the scheme obtained by shrinking every tadpole among hb+1, . . . , hk3460

into a vertex. For any fixed dominant scheme d ∈ →
S⋆, observe that there exist exactly3461

one scheme among {s ∈ →
S : s·◦ = d} that is compatible with ln, namely the one whose3462

tadpoles among hb+1, . . . , hk are the holes indexed by {i > b : lin ≥ 1}. Furthermore, if3463

s ∈ →
S is such that s·◦ ∈ →

S⋆, then the external faces among hi, b + 1 ≤ i ≤ k, of s are3464

all tadpoles. We may thus use the equivalent (70) for these schemes. Consequently, as3465

n→ ∞,3466 ∑
s∈→

S
s·◦=d

Zs
1(n)=Θ

(
n

5(g−1)
2

+k− b
4

∏
i>b : lin≥1

(lin)
− 1

2

)
. (73)3467

In particular, if s has only tadpoles among its external faces indexed by b+1 ≤ i ≤ k3468

but is such that s·◦ is not dominant, then Zs
1(n) is negligible with respect to this sum.3469
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Nondominant schemes. We will now see that the above is the highest order in n and3470

that it is only obtained for the schemes that are dominant after the tadpoles shrinkage. To3471

this end, we fix an arbitrary scheme s ∈ →
S. As above, we consider an arbitrary spanning3472

tree of s and still denote by ev ∈ I ∪ B⃗ the half-edge corresponding to v ∈ V ′, as well as3473

E⃗V =
{
ev : v ∈ V ′}.3474

In (61), we bound Mhe(δλ
e) or Ple(δλe) thanks to (71) if e /∈ E⃗V and we operate the3475

sum over λV
′ leaf by leaf as we did in the previous paragraph. Since, for any ℓ ∈ N,3476 ∑

j∈ZMℓ(j) =
∑

j∈Z Pℓ(j) = 1, we obtain the bound3477

Zs
1(h, n) ≤

∑
hI⃗ , lB⃗

∏
e∈I\E⃗V

C√
he

∏
e∈B⃗\E⃗V

C√
le
,3478

where the sum is over the tuples hI⃗ , lB⃗ satisfying the conditions of Ts(h, n). Seeing the3479

sums as integrals under the simplex Lebesgue measures ∆h
I , and ∆

lin
B⃗i

whenever B⃗i ̸= ∅3480

yields, after renormalization by h or lin, integrals of Dirichlet distributions (with parameter3481

vectors containing only 1
2
’s and 1’s). As a result,3482

Zs
1(h, n) ≲ h|I|−1− 1

2
|I\E⃗V |

∏
1≤i≤k
B⃗i ̸=∅

(lin)
|B⃗i|−1− 1

2
|B⃗i\E⃗V |

3483

= h
1
2
|I|+ 1

2
|I∩E⃗V |−1

∏
1≤i≤k
B⃗i ̸=∅

(lin)
1
2
|B⃗i|+ 1

2
|B⃗i∩E⃗V |−1 ,3484

3485

where we used the symbol ≲ to mean bounded up to a constant independent17 of s, h,3486

and n. Since lin is in the scale
√
n for i ≤ b, the part of the product concerning these3487

indices is bounded by a constant times3488

n
1
4
|B⃗′

+|+ 1
4
|B⃗+∩E⃗V |− b

4 .3489

Recall that Bi ̸= ∅ ⇐⇒ lin ≥ 1 when ln is compatible with s. Using (67), which is valid3490

for any scheme, as well as the bound (71) as above to get integrability, we obtain3491

Zs
1(n) ≲ 1ln▷◁s n

1
4
(|I|+|B⃗′

+|)+ 1
4
|(I∪B⃗+)∩E⃗V |− b

4
−1

∏
i>b : lin≥1

(lin)
1
2
|B⃗i|+ 1

2
|B⃗i∩E⃗V |−1

3492

≲ 1ln▷◁s n
1
4
(|I|+|B⃗′

+|+|V ′|)− b
4
−1

∏
i>b : lin≥1

(lin)
1
2
|B⃗i|−1 ,3493

3494

since lin = O(
√
n) for all i, and |(I ∪ B⃗+ ∪ B⃗0) ∩ E⃗V | = |V ′|. Using again the Euler3495

characteristic formula, as well as the bound |V | ≤ 2(2g + k − 1), we obtain3496

Zs
1(n) ≲ 1ln▷◁s n

5(g−1)
2

+k− b
4

∏
i>b : lin≥1

(lin)
− 1

2

( lin√
n

) 1
2
(|B⃗i|−1)

,3497

17Recall from Lemma 7 that the number of edges in the schemes from →
S is bounded.
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which gives an order lower than that of (73) as soon as there exists i > b such that |B⃗i| ≥ 23498

since lin = O(
√
n). As a result, the normalization constant Z1(n) is of the order appearing3499

in (73) and Zs
1(n) = O(Z1(n)) whenever s·◦ /∈ →

S⋆. In particular, P(S·◦
n ∈ →

S⋆) → 1 as n→ ∞3500

and we obtain the first statement of Proposition 24: with asymptotic probability 1, every3501

vanishing face of Mn induces a tadpole in Sn.3502

B.3 Asymptotics of the size parameters3503

Limiting distribution of the size parameters. Given a bounded continuous func-3504

tion ϕ on the set3505 ⋃
s∈→

S : s·◦=s

{s} × (R+)
I⃗(s) × (R+)

B⃗(s) × RV (s),3506

we set, for n, h ∈ N, s ∈ →
S,3507

Zs
ϕ(h, n) =

∑
Ts(h,n)

ϕ

(
s·◦,

hI⃗(s
·◦)

√
2n

,
lB⃗(s·◦)

√
2n

,
λV (s·◦)

(8n/9)1/4

) ∏
e∈I(s)

Mhe(δλ
e)
∏

e∈B⃗(s)

Ple(δλ
e) ,3508

and3509

Zs
ϕ(n) =

1

|I⃗(s)|+ 2 |B⃗+(s)|

∑
h∈N

Q2h+∥ln∥(2n+ ∥ln∥)Zs
ϕ(h, n) ,3510

so that3511

E

[
ϕ

(
S·◦
n,

H
I⃗(S·◦n)
n√
2n

,
LB⃗(S·◦n)
n√
2n

,
ΛV (S·◦n)
n

(8n/9)1/4

)]
=

1

Z1(n)

∑
s∈→

S

Zs
ϕ(n) .3512

Conducting with Zs
ϕ(n) exactly the same computations as the ones we did with Zs

1(n),3513

we obtain the same domination (up to sup |ϕ|) when s·◦ is not dominant and a similar3514

equivalent when s·◦ is dominant, namely (70) where cs1(L) is replaced with3515

3516

csϕ(L) =
1

|I⃗(s)|+ 2 |B⃗+(s)|
3

b
2
−g 2

|V ′(s)|
2

− g
2
− 3

4
b+ 1

23517

×
∫
R+

dh q2h+∥L∥(1)

∫
dLs ϕ

(
s·◦,hI⃗(s

·◦), lB⃗(s·◦),λV (s·◦)
) ∏
e∈I(s)

phe(δλ
e)

∏
e∈B⃗+(s)

p3le(δλ
e) .3518

3519

From the Euler characteristic formula, we obtain that |I⃗(s)|+ 2 |B⃗+(s)| = 2|E(s·◦)| =3520

2(6g + 2p+ b− 3) does not depend on s, and we remind that |V ′(s)| = 4g + 2p− 3 does3521

not either. Let us consider a dominant scheme d ∈ →
S⋆ and an integer n ∈ N. We let3522

dn ∈ →
S be the unique scheme compatible with ln and such that d·◦

n = d. Recall that this3523

is the scheme obtained from d by making into tadpoles the external vertices indexed by3524

{i > b : lin ≥ 1}. Since the above integral only involves s·◦, we have cdn
ϕ (L) = cdϕ(L), and3525

then3526

Z1(n) =
∑
s∈→

S

Zs
1(n) ∼

∑
d∈→

S⋆

Zdn
1 (n) ∼ n

5(g−1)
2

+k− b
4

∏
i>b : lin≥1

Plin(0)
∑
d∈→

S⋆

cd1 (L) ,3527
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and3528

E

[
ϕ

(
S·◦
n,

H
I⃗(S·◦n)
n√
2n

,
LB⃗(S·◦n)
n√
2n

,
ΛV (S·◦n)
n

(8n/9)1/4

)]
−→
n→∞

1∑
d∈→

S⋆

cd1 (L)

∑
d∈→

S⋆

cdϕ(L) . (74)3529

In passing, we obtain the following asymptotic formula for the cardinality of →
Q

[g]
n,ln

,3530

which readily yields Proposition 4 (corresponding to the case k = b), the unrooting giving3531

a factor 1/4n coming from (2). We define the continuous function in L ∈ (0,∞)b3532

tg(L) =
∑
d∈→

S⋆

cd1 (L) ,3533

and we add the excluded cases (g, k) = (0, 0) and (g, k, b) = (0, 1, 1), which are needed in3534

Section 1.5: we set3535

t0(∅) =
1

2
√
π

and t0(L) =
2−

9
4

π
√
L
e−

L2

2 .3536

Proposition 61. As n→ ∞, it holds that3537 ∣∣→Q[g]
n,ln

∣∣ ∼ 4 tg(L) 12n 8∥ln∥ n
5(g−1)

2
+k− b

4
e⋆

e⋆ + p♢n

∏
i>b : lin≥1

Plin(0) ,3538

where e⋆ = 6g + 2p+ b− 3 is the common number of edges of all dominant schemes, and3539

p♢n = |{i > b : lin ≥ 1}| is the number of external faces among hb+1, . . . , hk in the maps3540

of M[g]
n,ln

.3541

In the excluded cases (g, k) = (0, 0) and (g, k, b) = (0, 1, 1), a similar formula holds:3542 ∣∣→Q[0]
n,∅
∣∣ ∼ 4 t0(∅) 12n n− 5

2 and
∣∣→Q[0]

n,(ln)

∣∣ ∼ 4 t0(L) 12
n 8ln n− 7

43543

for L > 0 and ln ∼
√
2nL as n→ ∞.3544

Proof. Recall from Section 2.2 that →
M

[g]
n,ln

is in one-to-two correspondence with →
Q

[g]
n,ln0

,3545

and that (62) gives its cardinality. Using (3) then (62) and (63), we obtain that3546 ∣∣→Q[g]
n,ln

∣∣ = 2

n+ ∥ln∥+ 2− 2g − k

∣∣→M[g]
n,ln

∣∣
3547

= 2
2n+ ∥ln∥

n+ ∥ln∥+ 2− 2g − k
12n8∥ln∥

∑
s∈→

S

|I⃗(s)|+ 2|B⃗+(s)|
2 |E(s)|

Zs
1(n)3548

∼ 4× 12n 8∥ln∥
∑
d∈→

S⋆

|E(d)|
|E(dn)|

Zdn
1 (n)3549

∼ 4× 12n 8∥ln∥ n
5(g−1)

2
+k− b

4
e⋆

e⋆ + p♢n

∏
i>b : lin≥1

Plin(0)
∑
d∈→

S⋆

cd1 (L) ,3550

3551
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which gives the desired first statement.3552

The excluded cases (g, k) = (0, 0) and (g, k, b) = (0, 1, 1) are standard; they are3553

obtained similarly, by computing |→M[0]
n,∅
∣∣ and |→M[0]

n,(ln)

∣∣. More precisely, it is well known3554

that3555 ∣∣→M[0]
n,∅
∣∣ = 3n

(2n)!

n!(n+ 1)!
∼ 12n√

π
n− 3

2 , .3556

In order to compute the remaining cardinality, we proceed as in Section B.1 and obtain3557 ∣∣→M[0]
n,(ln)

∣∣ = 2n+ ln
ln

12n 8ln Qln(2n+ ln)Pln(0) ,3558

the division by ln taking into account the fact that seeing an element of →
M

[0]
n,(ln)

as a forest3559

amounts to choose a first tree among ln. From the equivalents (68) and (69), this yields3560 ∣∣→Q[0]
n,(ln)

∣∣ ∼ 2

n

2n√
2nL

12n 8ln
1

n
qL(1)

(8n
9

)− 1
4

p3L(0) ,3561

which gives the desired result.3562

Limiting distribution of the areas. We finally take into account the areas. To this3563

end, observe that, conditionally given3564 Ä
Sn,H

I⃗(Sn)
n ,LB⃗(Sn)

n

ä
,3565

the area vector A
E⃗(Sn)
n is distributed as follows. We arrange the half-edges e1, . . . , eκ3566

incident to the internal face of Sn according to the contour order, starting arbitrarily, and3567

let xi =
∑i

j=1 ℓj, where ℓj = H
ej
n if ej ∈ I⃗(Sn) or ℓj = L

ej
n if ej ∈ B⃗(Sn). Then, Ae1n ,3568

Ae1n +Ae2n , Ae1n +Ae2n +Ae3n , . . . , are distributed as the hitting times of the successive levels3569

−x1, −x1 − x2, −x1 − x2 − x3, . . . , by a simple random walk conditioned on hitting the3570

final level −
∑κ

j=1 xj = −∥Hn∥ − ∥Ln∥ at time 2n + ∥ln∥. The desired convergence (19)3571

easily follows from this together with (74), as well as the fact that, for every e ∈ B⃗0(Sn),3572

we have Aen + Len = Θ((Len)
2) in probability.3573

B.4 Boltzmann quadrangulations3574

We finally prove Theorem 5; in its setting,3575

W
(
F (Ωa−1(Q))1

Q
[g]
la0p

)
=

∑
n∈[a−1/K,a−1K]∩Z+

W
Ä
Q

[g]
n,la0p

ä
W
[
F
(
Ωa−1(Q)

) ∣∣ Q[g]
n,la0p

]
3576

= a−1

∫ a⌊a−1K⌋

a⌊a−1/K⌋
dAW

Ä
Q

[g]
⌊A/a⌋,la0p

ä
W
[
F
(
Ωa−1(Q)

) ∣∣ Q[g]
⌊A/a⌋,la0p

]
.3577

3578

By Theorem 1 and the definition of S[g]
A,L, it holds that3579

W
[
F
(
Ωa−1(Q)

) ∣∣ Q[g]
⌊A/a⌋,la0p

]
−→
a↓0

E
[
F
(
S
[g]
A,L0p

)]
,3580
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while Proposition 4 yields that3581

W
Ä
Q

[g]
⌊A/a⌋,la0p

ä
∼
a↓0

tg
(
L/

√
A
)
(A/a)

5g−7
2

+ 3b
4
+p .3582

Hence, Theorem 5 will be proved if we can show that the convergence in the last integral3583

expression is dominated. However, this is a direct consequence of the discussion of the3584

domination hypothesis around (72). Corollary 6 is proved is a very similar way, this time3585

summing over all possible values of the perimeters, which results in the integral with3586

respect to dL on (0,∞)b.3587
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