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Optimal control strategies in a generic class of bacterial growth
modelswithmultiple substrates ⋆

Agustín G. Yabo a

aMISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France

Abstract

Optimal control strategies are studied through the application of the Pontryagin’s Maximum Principle for a class of non-
linear differential systems that are commonly used to describe resource allocation during bacterial growth. The approach is
inspired by the optimality of numerous regulatory mechanisms in bacterial cells. In this context, we aim to predict natural
feedback loops as optimal control solutions so as to gain insight on the behavior of microorganisms from a control-theoretical
perspective. The problem is posed in terms of a control function u0(t) representing the fraction of the cell dedicated to protein
synthesis, and n additional controls ui(t) modeling the fraction of the cell responsible for the consumption of the available
nutrient sources in the medium. By studying the necessary conditions for optimality, it is possible to prove that the solutions
follow a bang-singular-bang structure, and that they are characterized by a sequential uptake pattern known as diauxic growth,
which prioritizes the consumption of richer substrates over poor nutrients. Numerical simulations obtained through an optimal
control solver confirm the theoretical results. Finally, we provide an application to batch cultivation of E. coli growing on
glucose and lactose. For that, we propose a state feedback law that is based on the optimal control, and we calibrate the
obtained closed-loop model to experimental data.
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1 Introduction

While most of the research advancements on control
and systems engineering have been focused on the devel-
opment and implementation of feedback loops, control
theory has also contributed substantially to our un-
derstanding of the underlying regulatory mechanisms
in living organisms. For instance, at the cellular level,
numerous phenomena are known to behave in a closed-
loop manner, by sensing—and reacting to—changes in
the environment. One of the most common ideas in cell
biology is that these regulatory mechanisms are a result
of the optimizing force of the natural selection, which
allows living beings to survive and outgrow competing
species. Under this hypothesis, optimization and opti-
mal control theory become instrumental in elucidating
the governing principles of these natural mechanisms.
Bacterial cells are constantly confronted with the prob-
lem of allocating resources to different cellular functions,
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such as the uptake and conversion of nutrients from
the environment into building blocks (metabolism),
the production of proteins from these building blocks
(gene expression), and the detection of—and reaction
to—environmental changes. Under the assumption that
bacteria have evolved internal regulatory mechanisms
to maximize growth rate [1], theoretical studies have
been able to predict these natural resource allocation
strategies from simple mathematical models using op-
timal control theory. Numerous examples can be found
in the literature [2,3,4,5]. For instance, the regulatory
action of the ppGpp molecule [6]—known to play a key
role in growth rate control—has been compared to opti-
mal control strategies obtained through simple bacterial
growth models [2]. Another example is a cellular mech-
anism called CCR (Carbon Catabolite Repression),
which plays a key role in how substitutable nutrients
(i.e. nutrients that do not need the presence of other
substrates to allow bacterial growth) are consumed from
the medium. In particular, when metabolizing nutrients
sequentially, the growth pattern is called diauxic growth.
As many empiric phenomena observed in bacteria,

diauxic growth is a behavior that can potentially be
predicted through optimization, provided that the ad-
equate objective function is chosen. Previous studies



have attempted so by using simple mathematical models
and numerical optimal control [7,8,9]. A more control-
theoretical point of view is adopted in [10], where au-
thors used optimal control theory to elucidate feedback
control strategies of substrate uptake. However, only
the case with two nutrient sources is studied, and no
intermediate quantities are considered: the substrates
are directly transformed into the final product, and thus
the interplay between substrate uptake and protein syn-
thesis is not captured in this simpler formulation.
The study of the feedback loops that arise in nature

yields very interesting theoretical problems, that have
the potential to inspire novel control strategies for non-
biological fields of research and engineering. In this
paper, we consider a generalized non-linear mathemat-
ical model of a population growing on n substitutable
sources si. The model captures two natural regulation
mechanisms of unicellular organisms: 1) the distribu-
tion of resources for the uptake of multiple substrates,
and 2) the trade-off between metabolism and gene ex-
pression (i.e. consuming nutrients and growing). The
latter bioregulation is modeled through a control func-
tion u0(t) representing the fraction of the cell dedicated
to protein synthesis, as a generalization of previous
bacterial growth models [2,11]. Additionally, n uptake
controls ui(t) model the fractions of the cell responsi-
ble for nutrient uptake, which can produce sequential
or simultaneous substrate consumption—which is an
extension of the preliminary results presented in [12].
The problem of finding the optimal control functions
(u0, u1, . . . , un) that comply with the natural objective
of maximizing biomass is written as an OCP (Optimal
Control Problem), and analyzed using PMP (Pontrya-
gin’s Maximum Principle). A thorough analysis of the
problem reveals that the optimal allocation strategies
behind the studied regulatory mechanisms have bang-
singular-bang structures, and can exhibit sequential
substrate uptake patterns depending on the concen-
tration and yield of the nutrients in the environment.
Using the optimality principles obtained through PMP,
we propose a control law that can be written as a func-
tion of the state of the system (i.e. feedback control)
while retaining the structure of the optimal control.
The approach is able to predict diauxic growth as the
optimal strategy when facing multiple sources, which
represents a control-theoretical argument supporting
the idea that diauxie is a naturally-evolved regulation
system that maximizes growth rate. Additionally, we
provide numerical simulations performed with an op-
timal control solver verifying the obtained analytical
results. Finally, a practical example is presented: the
model is calibrated to account for batch processing of
E. coli growing on glucose and lactose [13], and simu-
lations with the obtained closed-loop control law show
that the approach not only qualitatively predicts the
diauxic growth phenomenon, but also is able to match
real bacterial growth experiments.
The paper is organized as follows: in Section 2, the main
biological principles and constraints are explained, and

the general mathematical model is presented. In Section
3, the OCP is formulated, and the structure of the opti-
mal control strategies is studied using PMP. In Section
4, we show the trajectories obtained with an optimal
control solver to validate the theoretical results. Finally,
in Section 5, we introduce the feedback control law, and
we compare the closed-loop model with experimental
data from [13].

2 Model definition

We introduce a model representing a bacterial popula-
tion growing on n substitutable sources. Bacterial cells
consume the substrates s1, s2, . . . , sn from the medium
and transform them into intermediate metabolites m
with associated yield coefficients Y1, Y2, . . . , Yn. Essen-
tially, the coefficient Yi describes the units of intermedi-
ate metabolite produced per unit of substrate si. The in-
termediate metabolites are a generalization of the com-
pounds used to produce biomass in cells (that could rep-
resent aminoacids in bacteria, or cell quota in phyto-
plankton [14]). The uptake of the source si occurs at a
rate wi, and the synthesis rate of biomass is vR. The
mathematical model describes the time-evolution of the
concentration of the i-th substrate si(t), the concentra-
tion of intermediate metabolites m(t), and the volume of
the cell population x(t). The states are defined as non-
dimensional to simplify the computations. The dynam-
ical system can be written as

ṡi = −wi(si)x, i = 1, 2, . . . , n

ṁ =
∑n

i=1 Yiwi(si)− wR(m)(m+ 1),

ẋ = wR(m)x,

where wR(m) corresponds to the growth rate of the bac-
terial population. In this formulation, the dynamics of
the intermediate metabolites m are characterized by an
"outflow" term −wR(m) describing the rate of protein
synthesis, and a dilution term −wR(m)m resulting from
the increasing bacterial volume. The yield coefficients
are bounded to Yi ∈ (0, 1], and functions wi and wR are
subject to the following hypotheses producing the non-
linearity of the system.

Assumption 1 Functions wR(x) : R+ → R+ and
wi(x) : R+ → R+ for i = 1, 2, . . . , n are

• Continuously differentiable,
• Null at the origin: w(0) = 0,
• Strictly monotonically increasing: w′(x) > 0,∀x ≥ 0,
• Strictly concave downwards: w′′(x) < 0,∀x ≥ 0,
• Upper bounded: limx→∞ w(x) = k.

2



m

bacterial cell

s1

w
1

u
1

wu
2 2

wn
u n

wRu0

0u

1u 2u

nu

x
s2

sn

Fig. 1. Scheme of the controlled system. Each external sub-
strate si is metabolized into intermediate metabolites m at
rate uiwi. Then, the intermediate metabolites are used to
synthesize proteins at rate u0wR. The control u0 represents
the fraction of the cell responsible for the synthesis of biomass
(lower dotted line), while the remaining 1−u0 = u1+· · ·+un

represents the cellular resources dedicated to the consump-
tion of sources and production of m (upper dotted line).

2.1 Controlled dynamics

The first degree of freedom of the control problem is the
balance between the resources used to produce the in-
termediate compound m from the sources si, and the
resources used to produce biomass x from m. In the con-
text of cell biology, this question represents the trade-
off between metabolism and gene expression. We define
u0(t) ∈ [0, 1] as the control variable representing the
fraction of the cell responsible for the production of pro-
teins (i.e. biomass x) from the compounds m. Comple-
mentary, we define n control functions (u1, . . . , un) sat-
isfying ui(t) ∈ [0, 1], each one representing the fraction
of the cell assigned to the uptake and metabolization of
the i-th substrate si, and the synthesis of intermediate
metabolites m. In bacterial cells, these tasks are per-
formed by proteins of the gene expression machinery (i.e.
ribosomes) and proteins of the metabolic machinery (i.e.
enzymes), respectively. Following the literature on bac-
terial growth laws [15,16], we assume that the consump-
tion rate of the i-th substrate uptake is linear in ui(t),
while the rate of protein production is linear in u0(t).
Figure 1 shows a schematic representation of the process
here described. In this approach, cells are able to instan-
taneously stall growth (u0 = 0) or substrate consump-
tion (u0 = 1), as well as to switch to balanced strategies
between these two tasks (0 < u0 < 1). While this as-
sumption is not realistic from a physical point of view,
it can provide gold-standard control strategies that can
be then compared to the biologically feasible ones. The
control functions are subject to an inequality constraint
modeling the availability limitation of cellular resources:

n∑
i=0

ui(t) ≤ 1. (C)

The resulting controlled model becomes
ṡi = −uiwi(si)x, i = 1, 2, . . . , n

ṁ =
∑n

i=1 Yiuiwi(si)− u0wR(m)(m+ 1),

ẋ = u0wR(m)x.

(S)

2.2 Dynamics analysis

In this section, we provide a minimal study of the asymp-
totic behaviour of the controlled system (S) to set initial
conditions for the dynamical optimization problem.

Lemma 1 The set

Γ
.
=
{
(s1, . . . , sn,m, x) ∈ Rn+2 : si ≥ 0, m ≥ 0, x ≥ 0}

is positively invariant for system (S).

PROOF. This is easily verified by evaluating each dif-
ferential equation of (S) over the boundaries of Γ.

Thus, we set initial conditions for system (S) in Γ as

si(0) = si0 > 0, m(0) = m0 > 0, x(0) = x0 > 0. (IC)

for i = 1, 2, . . . , n, where m0 is chosen positive for
simplicity, even though the case m0 = 0 is also ad-
missible. Additionally, we introduce the notation
s0

.
= (s10, . . . , sn0). We define the total mass of the

system

x̄(t)
.
=

n∑
i=1

Yisi(t) + (m(t) + 1)x(t) (1)

for which the following result can be found.

Lemma 2 For every solution of system (S) with initial
conditions in Γ, the total mass x̄(t) is constant for all t,
and so x̄(t) = x̄, and every trajectory is bounded.

PROOF. The fact that quantity x̄(t) is constant can
be obtained by verifying that ˙̄x(t) = 0. As for the bound-
edness, ṡi ≤ 0 for all i, so si(t) ≤ si0 for all t. Then,
from (1), one can see that x̄ ≥ (m(t) + 1)x(t) ≥ x(t) for
all t. Finally, since ẋ(t) ≥ 0 for all t, we have x(t) ≥ x0

for all t, and so x̄ ≥ (m(t) + 1)x0, which implies that
m(t) ≤ x̄/x0 − 1 for all t, where x̄ ≥ x0 .
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Finally, since the vector field of (S) is Lipschitz contin-
uous, the Cauchy-Lipschitz theorem ensures no finite-
time convergence to the equilibrium si = m = 0.

Lemma 3 The substrate si and the intermediate
metabolites m cannot be completely consumed in finite
time (i.e. si(t) > 0 and m(t) > 0 for a.e. t ≥ 0).

3 Optimal control problem

The main assumption justifying an optimal control ap-
proach is that the feedback mechanisms regulating the
distribution of resources across cellular functions have
been optimized through adaptive evolution to maximize
instantaneous growth rate [17]. From a mathematical
perspective, the latter is equivalent to say that the con-
trol functions u .

= (u0, . . . , un) maximize the biomass af-
ter a certain period of time. Thus, the objective function
to maximize is x(tf ) for a fixed time interval [0, tf ]. It is
noteworthy that, as established in [5], the case tf → ∞
for this class of systems is trivial. Indeed, any combina-
tion of controls ui(t) taking the system asymptotically to
the equilibrium (s1, . . . , sn,m, x) = (0, . . . , 0, 0, x̄) when
t → ∞ is optimal, as x̄ is the maximum possible biomass.
The latter is a direct consequence of the mass conser-
vation property stated in Lemma 2 and (1). Exceptions
to this case can be obtained if not all nutrients are de-
pleted: for example, in trajectories where there exists i
and ϵ such that si(t) → ϵ when t → ∞, produced by a
control ui(t) = 0 for all t ≥ 0. Thus, in this paper we
focus on the finite-time problem.

3.1 Problem statement

The OCP writes

maximize J(u0, . . . , un)
.
=x(tf ),

subject to dynamics of (S),

initial conditions (IC),

u(·) ∈ U ,

(OCP)

with U being the set of admissible controllers, which are
Lebesgue measurable real-valued functions defined on
the interval [0, tf ] and satisfying the constraints ui ∈
[0, 1] and u0 + · · ·+ un ≤ 1. As (OCP) has no terminal
conditions, there are no controllability and reachabil-
ity issues. Additionally, controls are included in a com-
pact and convex set (as U is a simplex in Rn+1) and, as
proved in Lemma 2, every trajectory of (S) is bounded.
Thus, existence of solutions of (OCP) is guaranteed by
Filippov’s theorem [18]. Following PMP [19], we define
the adjoint state λ

.
= (λs1 , λs2 , . . . , λsn , λm, λx), and we

write the Hamiltonian as

H =

n∑
i=0

Hiui (H)

which is constant for a.e. t ∈ [0, tf ], as system (S) is
autonomous. Functions Hi are defined as

H0
.
= wR(m)(xλx − (m+ 1)λm), (2)

Hi
.
= wi(si)(Yiλm − xλsi), i = 1, 2, . . . , n

and the terminal conditions on the adjoint state are

λ(tf ) = (0, 0, . . . , 0, 0,−λ0). (TC)

The lack of terminal conditions on the state also allows
to discard abnormal extremals, and so, without loss of
generality, we can fix λ0 = −1. The dynamics of the
adjoint system is given by

λ̇si = −ui
w′

i(si)

wi(si)
Hi, i = 1, 2, . . . , n

λ̇m = u0wR(m)

(
λm − w′

R(m)

w2
R(m)

H0

)
,

λ̇x =

n∑
i=1

uiwi(si)λsi − u0wR(m)λx.

(AS)

Finally, for notation purposes, we define the function

ρ(s)
.
= max(Y1w1(s1), Y2w2(s2), . . . , Ynwn(sn)) (3)

where s
.
= (s1, . . . , sn) is the set of all si states; and the

regions of the state space

ω
.
=

{
(s,m) ∈ Rn+1 : ρ(s) >

w2
R(m)

w′
R(m)

}
,

ω
.
=

{
(s,m) ∈ Rn+1 : ρ(s) <

w2
R(m)

w′
R(m)

}
,

ω
.
=

{
(s,m) ∈ Rn+1 : ρ(s) =

w2
R(m)

w′
R(m)

}
,

that we will denote as the substrate abundant case ω,
the substrate deficient case ω and the limit case ω.

3.2 Analysis of the optimal control solutions

The use of Pontryagin’s Maximum Principle re-
duces problem (OCP) to finding the controls ui for
i = 0, 1, 2, . . . , n that maximize the Hamiltonian (H),
subject to (S), (IC), (C), (TC) and (AS). Let us first
establish the positivity of the Hamiltonian and the final
arc.

Lemma 4 Any optimal solution satisfies H(t) > 0 for
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a.e. t ∈ [0, tf ], and there exists ϵ such that u0(t) = 1 for
a.e. t ∈ [tf − ϵ, tf ].

PROOF. Evaluating the Hamiltonian at final time
yields H|t=tf = H0(tf )u0(tf ). Using Lemma 3, we have
H0(tf ) = wR(m(tf ))x(tf ) > 0. As the optimal control
at final time u0(tf ) maximizes the Hamiltonian, we see
that u0(tf ) = 1, and thus H > 0 for a.e. t (as, for au-
tonomous systems, the Hamiltonian is constant for a.e.
t ∈ [0, tf ]). The existence of an ϵ such that u0(t) = 1 for
a.e. t ∈ [tf − ϵ, tf ] is simply given by the continuity of
H0.

The Hamiltonian is a convex combination of functions
Hi. According to the maximization condition, any i-th
control is active (i.e. ui > 0) or non-active (i.e. ui = 0)
depending on the value of its associated functionHi with
respect to the others (H0, . . . ,Hn). In order to comply
with the positivity of the Hamiltonian, at least one func-
tion Hi is positive at every time instant. Let us define

I0(t)
.
=
{
i = 0, 1, 2, . . . , n | Hi = max(H0, . . . ,Hn)

}
,

I(t) .
=
{
i = 1, 2, . . . , n | Hi = max(H1, . . . ,Hn)

}
,

which are time-varying sets of subindexes at time t as-
sociated to the (single or multiple) maximal functions
Hi. Through this reasoning, we can obtain a necessary
condition for optimality of extremals.

Theorem 1 Any optimal control solution satisfies

n∑
i=0

ui = 1.

PROOF. Since H > 0, for a.e. t there exist i such
Hi(t) > 0. Thus, using Lemma 4 and (C), the maximiza-
tion of the Hamiltonian occurs when

H =

n∑
i=0

Hiui = max(H0, . . . ,Hn)

(∑
i∈I0

ui

)
,

which implies that the optimal controls ui satisfy∑
i∈I0

ui = 1, and so H = Hi for every i ∈ I0(t).

The latter theorem replaces the polyhedron defined by
the constraint (C) with a more strict constraint given
by a simple plane in Rn. As function Hi varies, every
optimal control solution is a concatenation of bang arcs
(u = 0 and u = 1) and singular arcs. Over an interval of
time [t1, t2] ⊂ [0, tf ], an arc is called:

G (pure-growth) arc if I0(t) = {0} for a.e. t ∈ [t1, t2],
which produces u0(t) = 1 for all t ∈ [t1, t2].

M (pure-metabolism) arc if 0 /∈ I0(t) for a.e.
t ∈ [t1, t2], and so u0(t) = 0 for all t ∈ [t1, t2], and thus
all the resources are used for substrate consumption.

S (singular) arc if 0 ∈ I0(t) and |I0(t)| > 1 for a.e.
t ∈ [t1, t2], which describes a mixed strategy with both
metabolism and growth.

Throughout this paper, and for simplicity of the nota-
tion, we refer to the initial arc of a solution as an arc
defined in the interval [0, ϵ] for ϵ ∈ (0, tf ), while the fi-
nal arc denotes an arc that occurs over [tf − η, tf ] for
η ∈ (0, tf ). Thus, Lemma 4 proves that the final arc of
every optimal solution is a G arc.

In nature, regulatory mechanisms act by sensing the
environment and cellular composition, and adjusting
metabolism and gene expression accordingly. In optimal
control theory, obtaining an optimal control strategy
depending solely on the state is a very challenging task
called optimal synthesis. We proceed to further inves-
tigate the optimal solutions in order to obtain explicit
expressions of the controls ui in feedback form. It is
noteworthy that, so far, an active control ui implies that
i ∈ I(t). However, the inverse is not necessarily true:
if H = Hi, then ui can be either active or non-active.
Hereunder, we analyze the dynamics of each type of arc.

3.2.1 Dynamics of the system over the arcs

G arcs are characterized by H = H0 > Hi for i ∈ I(t).
Along this arc, every function si(t) = s∗i and λsi(t) = λ∗

si
is constant for i = 1, 2, . . . , n, where s∗i and λ∗

si denote
those constant values over the arc; and ṁ ≤ 0. In M
arcs, H = Hi > 0 for all i in I(t). In this case, x(t) = x∗

and λm(t) = λ∗
m are constant, with x∗ and λ∗

m denoting
said values over the arc; and ṁ ≥ 0. The analysis of
singular arcs is more challenging as it requires computing
the successive derivatives of the function Hi, the first
one being, as detailed in Appendix A,

Ḣi = u0wR(m)

(
Hi − Yiwi(si)

w′
R(m)

w2
R(m)

H0

)
. (4)

The results are stated in the following lemma.

Lemma 5 On anS arc over the interval of time [t1, t2] ⊂
[0, tf ], the state (s,m) satisfies

Yiwi(si) =
w2

R(m)

w′
R(m)

with i ∈ I(t), (5)

5



which also means that

Yjwj(sj) = Ykwk(sk) with j ∈ I(t), k ∈ I(t). (6)

Additionally, every optimal control is in feedback
form u0(t) = u0,sing(s,m, x) ∈ (0, 1) and ui(t) =
ui,sing(s,m, x) ∈ (0, 1− u0,sing) for i ∈ I(t), with

ui,sing(s,m, x)
.
=

1− u0,sing(s,m, x)∑
j∈I

w′
i
(si)

w′
j
(sj)

, (7)

u0,sing(s,m, x)
.
=

x+ ϕ(s,m)wR(m)
w′

R
(m)

x+ ϕ(s,m)
(
m+ 1 + wR(m)

w′
R
(m)

) , (8)

where ϕ(s,m) > 0 is defined as

ϕ(s,m)
.
=

(
2w′

R(m)− wR(m)

w′
R(m)

w′′
R(m)

)∑
j∈I

1

w′
i(sj)

 .

Finally, the adjoint states λsi satisfy

λsj

Yj
=

λsk

Yk
> 0 with j ∈ I(t), k ∈ I(t), (9)

PROOF. By definition of an S arc, we have H = Hi =
H0 for every i ∈ I0(t) over [t1, t2]. This implies Ḣi = 0
for i ∈ I(t), and so replacing in (4) yields (5). Differ-
entiating (6) yields w′

j(sj)uj = w′
k(sk)uk, for j ∈ I(t),

k ∈ I(t). Then, by replacing the latter in
∑n

i=0 ui = 1,
we can solve for ui,sing(s, u0). Computing Ḧi = 0 yields
(8) (see Appendix B). The bounds of u0,sing can be easily
deduced from expression (8). Then, singular controls (7)
can be proven to satisfy ui,sing ∈ (0, 1− u0) for i ∈ I(t)
by showing that the denominator satisfies

∑
j∈I

w′
i(si)

w′
j(sj)

= 1 +
∑

j∈I\{i}

w′
i(si)

w′
j(sj)

> 1.

By writing Hj = Hk for j ∈ I(t), k ∈ I(t), we find
wj(sj)λsj = wk(sk)λsk for j ∈ I(t), k ∈ I(t) which,
using (6), yields (9). Then, λsi > 0 for i ∈ I(t) is a
consequence of λ̇si < 0.

Expression (5) implies that, along every singular arc, the
state is on the region ω ∪ ω (as, a priori, there could
be a non-active q-th control uq(t) associated to a sub-
strate satisfying Yqwq(sq) > Yiwi(si)). In next section,
we study the structure of the optimal solutions based on
the dynamics of the functions Hi.

3.3 Structure of the optimal solutions

As it is classical in optimal control theory, an extremal
is composed of a concatenation of arcs—in this case,
the three arcs presented before—determined by the time
evolution of the functions Hi. In this section, we show
that only a few of all possible combinations of arcs are
admissible. To this end, we analyze the dynamics of the
functions Hi on each arc.

Proposition 1 If, over an interval of time [t1, t2] ⊂
[0, tf ], the solution corresponds to a:

• G arc, we have H0 > Hi for i = 1, 2, . . . , n and

Ḣi = wR(m)

(
Hi − Yiwi(s

∗
i )
w′

R(m)

w2
R(m)

H0

)
, (10)

for i = 1, 2, . . . , n, and thus, every substrate si satisfying
Yiwi(si) > w2

R(m)/w′
R(m) also satisfies Ḣi < 0.

• M arc, we have Hi > H0 for i ∈ I(t) and

Ḣ0 = wR(m)

(
H0

w′
R(m)

w2
R(m)

∑
i∈I

Yiuiwi(si)−Hi

)
, (11)

for i ∈ I(t), and Ḣq = 0 for q /∈ I(t); and so Ḣ0 < 0 if
(s,m) ∈ ω.
• S arc, every function Hq for q /∈ I(t) has dynamics

Ḣq = wR(m)u0,sing(s,m, x)

(
Hq −

Yqwq(s
∗
q)

Yiwi(si)
Hi

)
,

(12)

and both sq(t) = s∗q and λsq (t) = λ∗
sq are constant, where

s∗q and λ∗
sq refer to the constant values of such functions

over the arc.

PROOF. Expressions (10) and (12) can be simply ob-
tained by replacing the dynamics of each arc in (4), while
(11) is the derivative of the function H0 defined in (2)
(see Appendix C).

In other words, every non-active control remains non-
active along an M arc. As the derivative of Hq can be
positive, it could happen that a non-active control be-
comes active. Figure 2 shows an example of the interplay
between the analyzed functions, to illustrate the class
of trajectories that functions Hi and H0 could present
along an extremal. Below, we exploit the dynamics of
these functions, and the terminal conditions on the ad-
joint state (TC), to further investigate the possible struc-
tures of the optimal control solutions.

6



0 t1 t2 t3 t4
t

0

H

Activation
of uj
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of uj
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Hj

Hk

 arc  arc  arc  arc

Fig. 2. Example of the evolution of functions Hi along a
trajectory of the system. In [0, t1], every Hi < H0, and so the
solution is a G arc until Hj reaches H = H0, and I(t1) = {j}.
At that point, a switch is produced to an S arc, and uj = 1.
At time t2, uk also becomes active until t = t3 where both
Hj and H0 decrease, producing the deactivation of uj and
a switch to an M arc. The latter arc is optimal until H0

again reaches H at t = t4, point at which the maximal Hk

decreases, producing a switch to a G arc.

Proposition 2 If the sources satisfy

Yiwi(si(t)) ≤
w2

R(m(t))

w′
R(m(t))

, ∀i ∈ I(t), (13)

for a.e. t ∈ [t1, t2] ⊂ [0, tf ], then an M arc is not admis-
sible on that interval.

PROOF. By way of contradiction, suppose that for a.e.
t ∈ [t1, t2] ⊂ [0, tf ], condition (13) holds and the optimal
solution is an M arc. Then, according to the dynam-
ics of the system over M arcs, condition (13) becomes
Yiwi(si(t)) < w2

R(m(t))/w′
R(m(t)) for a.e. t ∈ (t1, t2]

and for every i ∈ I(t) (since the right-hand side of the
inequality is increasing w.r.t. m, and ṁ(t) > 0 for a.e.
t ∈ [t1, t2]). Then,

∑
i∈I

Yiui(t)wi(si(t)) <
w2

R(m(t))

w′
R(m(t))

∑
i∈I

ui(t) <
w2

R(m(t))

w′
R(m(t))

for a.e. t ∈ (t1, t2]. Using (11), this means

Ḣ0(t) < wR(m(t)) (H0(t)−Hi(t)) < 0

for a.e. t ∈ (t1, t2], and thus the arc is optimal until
t2 = tf , as leaving the M arc requires Ḣ0 > 0 (so that
eventually H0 = H). But this contradicts Lemma 4, as
the process cannot end with an M arc, so the arc is not
admissible over the interval [t1, t2].

Condition (13) is less strict than (s,m) ∈ ω, as it only

applies to those substrates that are active. However, it
is useful to discard M arcs as intermediate arcs, as we
show in the following proposition.

Proposition 3 An M arc is only admissible over an in-
terval [0, t1] ⊂ [0, tf ] (i.e. at the beginning of the process).

PROOF. In order to prove the proposition, let us show
that an M arc cannot occur after an S arc or G arc. Sup-
pose that, over an interval [t1, t2] ⊂ [0, tf ], the optimal
solution is:

• an S arc. Then, every active control ui(t) with i ∈ I(t)
satisfies (5) for a.e. t ∈ [t1, t2], and so the solution cannot
enter an M arc at time t2, as stated in Proposition 2.
• a G arc. Then Hi(t) < H0(t) for every i = 1, 2, . . . , n
and for a.e. t ∈ [t1, t2]. Suppose that an M arc is optimal
for t ≥ t2. This implies that there exists j such that
Hj(t2) = H0(t2), and so j ∈ I(t2). Then, there exists
ϵ > 0 such that Ḣj(t) > 0 over an interval [t2 − ϵ, t2) ⊂
[0, tf ] (i.e. before the switch time). According to (10),
this can only happen if

Yjwj(sj(t)) < w2
R(m(t))/w′

R(m(t)) (14)

for a.e. t ∈ [t2 − ϵ, t2). The admissibility of the
M arc at t = t2 also implies that Yjwj(sj(t2)) >
w2

R(m(t2))/w
′
R(m(t2)) (otherwise, it contradicts Propo-

sition 2). Over the G arc (i.e. for a.e. t ∈ [t1, t2]) we have
ṡi(t) = 0 for every i = 1, 2, . . . , n and ṁ(t) < 0. Thus,
by continuity of the states, this implies the existence of
η > 0 such that Yjwj(sj(t)) ≥ w2

R(m(t))/w′
R(m(t)) for

a.e. t ∈ [t2 − η, t2] ⊂ [0, tf ]. But this contradicts (14),
and so the M arc is not admissible.

Lemma 6 Over a S arc over t ∈ [t1, t2] ⊂ [0, tf ],
max(Y1w1(s1(t)), . . . , Ynwn(sn(t))) = Yiwi(si(t)) for
i ∈ I(t), and for a.e. t ∈ [t1, t2], and so (s,m) ∈ ω.

PROOF. Over a S arc occurring over [t1, t2], the con-
ditions (5) holds for every i ∈ I(t) and for a.e. t ∈ [t1, t2].
By way of contradiction, suppose that at time t∗ ∈ [t1, t2]
there exists an sq(t) substrate with q /∈ I(t) (such that
sq(t) = s∗q) satisfying

Yqwq(s
∗
q) ≥ Yiwi(si(t

∗)) for i ∈ I(t).

Using (12), we have that Ḣq(t) < 0 for a.e. t ∈ [t∗, t2],
and thus q /∈ I(t) for a.e. t ∈ [t∗, t2], which also means
that Yqwq(s

∗
q) > w2

R(m(t))/w′
R(m(t)) for a.e. t ∈ [t∗, t2]

(as w2
R(m)/w′

R(m) is decreasing w.r.t. m). Additionally,
Hq(t) < Hi(t) for a.e. t ∈ [t∗, t2], which means

wq(s
∗
q)λ

∗
sq ≥ wi(si(t))λsi(t) > 0 (15)
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for a.e. t ∈ [t∗, t2], with λsi > 0, as shown in (9). It is
easy to see that q /∈ I(t) for a.e. t ≥ t∗, that is, until the
end of the process: the function w2

R(m)/w′
R(m) can only

increase along an M arc, which cannot occur for t ≥ t∗

(as established in Proposition 3). This means Yqwq(sq) =
w2

R(m)/w′
R(m) cannot be reached, and thus uq(t) = 0

for a.e. t > t∗. But, according to (TC), λsq (tf ) = 0, and
so λsq (t) = 0 for a.e. t ≥ t∗ (due to the fact that λ̇sq is
linear on uq(= 0), which contradicts (15)).

Lemma 6 establishes a first clear relation between the
consumption of the i-th substrate and its associated up-
take control ui. In order to maximize its growth, the sys-
tem should prioritize the metabolization of substrates
that are solutions of ρ(s), which implies favoring the
substrates that allow maximal synthesis of intermediate
metabolites from the nutrients in the environment. This
result is in accordance with those obtained in simpler
mathematical models of bacterial growth with no inter-
mediate metabolites [7,10], as well as with experimen-
tal observations of bacterial growth laws [13]. In other
words, over an S arc, the criterion for substrate con-
sumption I(t) = I(s), depending solely on environmen-
tal conditions (and not on t). In practice, under this con-
trol law, the i-th substrate corresponding to the maximal
function Yiwi(si) is consumed first, and so si decreases
until it reaches the second maximal function Yjwj(sj)
associated to the j-th substrate. At that point, both sub-
strates si and sj start being consumed simultaneously,
and the cycle is repeated until all the sources are (asymp-
totically) depleted, or until the end of the singular arc.
Another important consequence of Lemma 6 is that no
active control can become inactive. Indeed, if a substrate
stops being consumed along a singular arc, it would sat-
isfy Yqwq(sq) > w2

R(m)/w′
R(m), and so the state would

enter the region ω, which contradicts Lemma 6. Finally,
we proceed to enumerate the possible structures of the
optimal solutions.

Theorem 2 The optimal control solutions can be:

• A single G arc
• M− G for initial conditions in ω
• M− S − G for initial conditions in ω
• G − S − G for initial conditions in ω

PROOF. First, we state the fact that an optimal solu-
tion can admit at most one S arc, which is followed by
the final G arc. The proof is based on Lemma 6: suppose
that an S arc occurs over the interval [t1, t2] ⊂ [0, tf ].
Then, (s(t2),m(t2)) ∈ ω, and the solution enters a G arc
(as, according to Lemma 4 and Proposition 3, t2 ̸= tf ,
and there cannot be an M arc at t = t2). This means
that there exists ϵ > 0 such that ṁ(t) < 0 for a.e. t ∈
(t2, t2+ ϵ], and so (s(t),m(t)) ∈ ω for a.e. t ∈ (t2, t2+ ϵ].
As ω cannot be reached along the G arc, the process

finishes with the G arc (and, consequently, no other S
arc is allowed). Let us analyze the remaining admissible
structures, taking into account Proposition 3:

• If (s0,m0) ∈ ω and the initial arc is a G arc: the control
is a single G arc and (s(t),m(t)) ∈ ω for a.e. t ∈ [0, tf ].
• If (s0,m0) ∈ ω and the initial arc is an M arc, there
exists t1 ∈ (0, tf ) such that 0 ∈ I0(t1) (according to
Lemma 4). At that point, the solution can: 1) enter a S
arc if (s(t1),m(t1)) ∈ ω, and then the final G arc; or 2)
enter a G arc if (s(t1),m(t1)) ∈ ω (as Ḣi < 0).
• If (s0,m0) ∈ ω and the initial arc is an M arc: the
control is a single M arc, which contradicts Lemma 4.
• If (s0,m0) ∈ ω and the initial arc is a G arc, either:
1) 0 /∈ I0(t) for a.e. t ∈ [0, tf ], and thus the control is
a single G arc; or 2) there exists t1 ∈ (0, tf ) such that
0 ∈ I0(t1), and so the solution can:
· enter an S arc if (s(t1),m(t1)) ∈ ω, and then the final
G arc.

· continue over the G arc. Then, Ḣi(t1) = 0, as Ḣi(t) > 0

for a.e. t ∈ [0, t1) and there exists ϵ such that Ḣi(t) <
0 for a.e. t ∈ (t1, t1 + ϵ] (otherwise, the arc would
enter an S arc at t1). Thus, (s(t1),m(t1)) ∈ ω, and so
(s(t),m(t)) ∈ ω for a.e. t > t1, and the control is a
single G arc.

From a practical point of view, the control strategies
that do not admit a singular arc (G and M−G) are op-
timal when the state ω is not reachable. For example, an
optimal solution with (s0,m0) ∈ ω that does not reach
(s,m) ∈ ω results in a pure G control strategy, either be-
cause tf is too small with respect to the reaction rates,
or because ρ(s) ≪ w2

R(m)/w′
R(m). However, for large

values of tf , singular arcs become admissible. We will
then focus on the cases where tf is sufficiently large so
as to allow singular arcs, which reduces the analysis to
G−S−G and M−S−G solutions. In order to conclude
the analysis, it suffices to study the behavior of the opti-
mal trajectories along the initial arc. The initial arc can
be either G or M depending on the initial conditions. If
the initial conditions (s0,m0) ∈ ω, the initial arc is an
M arc. Along an initial M arc over the interval [0, t1],
every function Hi for i = 1, 2, . . . , n is constant, and
thus I(t) is constant for a.e. t ∈ [0, t1]. However, along
an M arc, it is possible to have ui = 0 for i ∈ I(t). As
there is no biomass production (and x is constant), the
pattern and order in which the substrates are consumed
does not affect the state at the junction between arcs t1
as long as the conditions for optimality are met. More
precisely, any combination of controls ui satisfying The-
orem 1 and taking the state from the initial condition
(IC) to ω is optimal. In the interest of homogenizing the
control criteria, one could choose the same strategy used
along the singular arc, by adopting the control law ob-
tained in (7). In next section, we validate the analytical
results with numerical simulations.
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4 Numerical simulations
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Fig. 3. Optimal trajectory of (OCP) obtained using Bocop.
Parameter values are k = 10 h−1, KR = 1, Ki = 0.1, Y1 = 1,
Y2 = 0.5 and Y3 = 0.2 and initial conditions are set to
s10 = 0.001, s20 = 0.002, s30 = 0.003, m0 = 0.001 and
x0 = 0.005. The shaded regions at the beginning and end
of each plot denote the time intervals where the optimal
solution is either an M or a G, while the non-shaded area
in the middle denotes the singular arc. Two dashed vertical
lines indicate the time instants where s2 and s3 start being
consumed.

In this section, we simulate a system with three sources
s1, s2 and s3, with associated yields satisfying Y1 > Y2 >
Y3 and initial conditions chosen to produce sequential
substrate uptake, such that Y1w1(s10) > Y2w2(s20) >
Y3w3(s30). We resort to the case where the reaction rates
are defined as Michaelis-Menten kinetics in terms of the
availability of the quantities as

wR(m) = kR
m

KR +m
, wi(si) = ki

si
Ki + si

where KR and Ki are the half-saturation constants of
the synthesis rates, and kR and ki are the maximal re-
action rates, that are fixed to kR = ki = k in the sim-
ulations (as the difference in the maximal rates can be
also set through the parameters Yi). The numerical opti-
mal trajectories are computed with Bocop [20], an open-
source toolbox that computes optimal solutions using

direct methods, by discretizing the time variable and
then solving a finite-dimensional optimization problem
that approximates the OCP. The discretization algo-
rithm used is Gauss II (implicit, 2-stage, order 4) with
10000 time steps. Parameter values are chosen to em-
phasize the structure of the optimal trajectory (rather
than the biological meaning). Figure 3 shows an opti-
mal trajectory with (s0,m0) ∈ ω where s1, s2 and s3 are
consumed sequentially. In this example, tf is relatively
small compared to biologically relevant values, and yet,
the solution admits a singular arc that represents more
than 95% of the time interval. This results in an op-
timal solution following a structure M − S − G. This
phenomenon is strongly related to the so-called turnpike
properties [21], where solutions of OCPs for sufficiently
large final times are described by a main arc spending
most of the time near a steady-state, enclosed by tran-
sient arcs at the beginning and end of the process. We
can also see that the sequential activation of controls ui

occurs when the previous substrate si−1 attains a very
low concentration level, and is followed by a phase where
ui reaches a maximum value—taking up most of the re-
sources dedicated to substrate uptake—and decreases
progressively until the next activation or the end of the
process. Figure 4 confirms the main theoretical results.
At t = 0, the solution of (3) is Y1w1(s1) and I(0) = {1}.
Thus, u1 is the only active control, and it remains the
only active control until the end of the initial M arc. As
expected, H0 and m increase until (s,m) ∈ ω, and H0

becomes equal to H1. At that point, the solution enters
a singular arc, and continues to adopt the uptake con-
trol strategy u1 = 1 until Y1w1(s1) = Y2w2(s2), which
occurs when H2 reaches H, activating the second con-
trol u2. The same sequence occurs for the 3rd substrate,
point at which all three substrates are being consumed
simultaneously until the final G arc. Once in the final
arc, (most of) the remaining intermediate metabolites
are converted into biomass and, simultaneously, all three
Hi functions converge to 0, while H0 remains constant.
Figure 5 shows another case with three substrates that
have the exact same initial concentration. The initial
metabolite concentration m0 is set to a high value so
that (s0,m0) ∈ ω, which produces an initial G arc. This
also increases the duration of the final G arc, as depleting
the pool of intermediate metabolites requires additional
time.

5 Application to experimental data

Previous studies showed that the bacterium Escherichia
coli exhibits sequential substrate uptake patterns in en-
vironments where the only available carbon sources are
glucose and lactose. The latter has been explained by
the fact that biomass yield on glucose is higher than on
lactose, a criterion that is successfully captured in the
singular control stated in Lemma 6. The objective of this
section is to use the theoretical results to predict the
natural behavior aforementioned. For that, we propose
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Fig. 4. Functions w2
R(m)/w′
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and H0 and Hi (upper plot) related to the trajectories plot-
ted in Figure 3. Shaded regions and dashed vertical lines in-
dicate arcs and uptake control activation, respectively. Func-
tions Hi associated to non-active controls increase until they
reach H, while functions Yiwi(si) decrease.

a feedback control law (i.e. a control function expressed
in terms of the state) that is based on the optimality
principles obtained through PMP. Then, we build a two-
substrate model representing E. coli growing on glucose
and lactose, and we match the results to experimental
data.

5.1 Feedback control law

The pool of intermediate metabolites m acts as a buffer
compartment regulated according to the phase of the
process. Its presence along the resource pathway re-
sults in the trade-off between gene expression and
metabolism—otherwise, consuming substrates and pro-
ducing proteins become the same task, as in the classical
Monod model. While the pool is regulated to optimal
levels throughout the singular arc, substrate uptake
becomes unnecessary towards the end of an optimal
bioprocess, as there is no time remaining to produce
biomass from the available intermediate metabolites.
This is the role of the final G arc, which engages all
the available cell resources to the task of emptying the
pool of intermediate metabolites while arresting sub-
strate uptake. As tf increases, the duration of the final
arc becomes negligible in comparison to the duration
of the singular arc, a classical behavior in solutions ex-
hibiting the turnpike phenomenon. Thus, in the interest
of studying the long-term perspective of the biological
phenomenon, we define a suboptimal control law that
can be expressed in feedback form by neglecting the
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Fig. 5. Optimal trajectory of (OCP) obtained using Bocop.
Parameter values are k = 10 h−1, KR = 1, Ki = 0.05,
Y1 = 1, Y2 = 0.3 and Y3 = 0.1 and initial conditions are set
to s10 = s20 = s30 = 0.0001, m0 = 0.1 and x0 = 0.02. The
shaded regions at the beginning and end of each plot denote
the time intervals where the optimal solution is a G arc,
and the non-shaded area in the middle shows the singular
arc. The two dashed vertical lines indicate the time instants
where s2 and s3 start being consumed.

final arc of the optimal control structure:

u0(s,m, x) =


0 if (s,m) ∈ ω,

1 if (s,m) ∈ ω,

u0,sing(s,m, x) if (s,m) ∈ ω,

ui(s,m, x) =


1− u0(s,m, x)∑

j∈I
w′

i(si)

w′
j(sj)

if i ∈ I(s),

0 otherwise,

I(s) = { i = 1, 2, . . . , n | ρ(s) = Yiwi(si) } .
(16)

for i = 1, 2, . . . , n. When applying the control law to
system (S), it produces trajectories G − S and M− S,
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depending on whether the initial conditions are in ω or
ω, respectively. Indeed, the closed-loop structure con-
sists of a single bang arc that takes the state to ω, and
"slides" over the singular surface until the end of the pro-
cess. Similar behaviors can be also found in the theory
of sliding mode control, where a discontinuous control
function forces the system to reach and stay in a partic-
ular region of the state space. Hereunder, we study the
case of a 2-substrate culture under the proposed state
feedback control and compare the results to experimen-
tal data of a batch process of E. coli.

5.2 Diauxic growth on glucose/lactose

The experimental data used in this section corresponds
to a batch process of a wild-type strain of E. coli grow-
ing on glucose and lactose [13], where the data points
are 15 measurements of the concentration of each sub-
strate and of the bacterial biomass. In order to model
the process, we define a system (S) with n = 2, where
the states s1 and s2 account for the concentrations of
glucose and lactose respectively, and thus Y1 > Y2.
The model is simulated in its closed-loop form, with
the feedback control law defined in (16). The closed-
loop model was calibrated by adjusting the parameters
θ

.
= (k,K1,K2, Y1, Y2) through a least-squares algo-

rithm minimizing the difference between model simula-
tion and experimental measurements, given by the cost
function

f(θ)
.
=

15∑
i=1

[
(s1(ti)− βŝi1)

2 + (s2(ti)− βŝi2)
2

+(x(ti)− βx̂i)2
]
,

where ŝi1, ŝi2 and x̂i correspond to the i-th measure-
ment of glucose, lactose and biomass respectively, and
ti is the time instant at which the i-th measurement has
been obtained. For calibration and simulation, the non-
dimensional quantities s1, s2 and x are divided by a pa-
rameter β = 0.003 L/g representing the inverse of the
cell density in E. coli [2], which yields concentrations in
grams per liter. The resulting calibrated parameters are
k = 1.77 h−1, K1 = 0.037 g/L, K2 = 0.01 g/L, Y1 =
0.77 and Y2 = 0.25, which are consistent with previous
studies [10,2]. For the numerical simulation, the initial
conditions are set to s1(t1) = 6.522 × 10−4, s2(t1) =
3.42 × 10−3, m(t1) = 0.01 and x(t1) = 9.477 × 10−5,
in accordance with the experimental data. Comparison
between the experiments and the model behavior are
shown in Figure 6. The model successfully predicts the
diauxic growth behavior as an optimal response to the
difference between carbon sources (in yield and concen-
tration). The largest deviation between model output
and data occurs when u2 becomes active: experiments
indicate that bacteria would fully exhaust the glucose in
the medium before switching to lactose, a strategy that
slightly differs from the optimal control approach. First,
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Fig. 6. Comparison with experimental measurements (of glu-
cose, lactose and biomass) from [13]. In the top plot, the data
from the experiment is represented in circles, while the sim-
ulation of model (S) is plotted in lines. The time-instant at
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a vertical dashed line. The shaded region at the beginning
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and as shown in Lemma 3, the model presented in this
paper does not allow for full consumption of the sub-
strates in finite time, as the depletion occurs—at worse—
at exponential rate. Additionally, when a certain control
becomes active, it remains active until the end of the
process. This means that, even though u1 ≈ 0 after the
switch, it cannot vanish exactly. Therefore, this behav-
ior is not captured by our approach. It is also notewor-
thy that the length of the initial M arc is marginal with
respect to the duration of the process (≈ 0.5% of the fi-
nal time). This is consistent with the fact that, in a real
biological process, bacteria alter their cellular composi-
tion progressively—constrained by the maximal synthe-
sis rates of proteins and resource availability—and not
instantaneously as modelled in this paper. However, the
approach remains applicable along the singular surface,
where cellular composition is governed by the expres-
sion defined in (8). When governed by this expression,
the resources allocated to protein synthesis u0 are grad-
ually decreased as (s,m) → 0. Rather than a biological
mechanism, the latter appears to be a mathematical arti-
fact consequence of the assumptions and simplifications
of the approach. In nature, additional cellular functions
come into play in long-term survival, e.g. related to the
feast/famine cycle of cells.

6 Conclusion

This paper addressed the optimal control of a generic
class of growth models, inspired by the naturally-evolved
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regulatory mechanisms employed by bacterial cells.
From a biological point of view, the model aims to pre-
dict how resources are divided across cellular functions
in order to maximize biomass. The problem is posed
in the context of optimal control, and necessary condi-
tions for optimality are derived by applying PMP. The
dynamics of the system and optimal control along each
type of arc are investigated, and the admissible struc-
tures of the optimal solutions are proven to be a simple
concatenation of the studied arcs. Based on the opti-
mality principles obtained with PMP, a simple feedback
control law is proposed, that retains the main features
of the optimal control. The resulting closed-loop model
that can be calibrated to represent batch processing of
E. coli on glucose and lactose. In spite of the simplicity
of the approach, the model is capable of reproducing
the substrate uptake pattern known as diauxic growth,
and to successfully fit experimental results.
While the approach aims to better understand the self-
adaptive capabilities of living organisms, and their—
sometimes hidden—naturally-evolved feedback loops,
its formulation draws upon a general non-linear dynam-
ical model which can be easily extrapolated to other
systems. As pointed out in previous works, biologically-
inspired resource distribution can be often related to
results from different disciplines, such as the law of equi-
marginal utility in economic theory [7]. In this line of
work, numerous natural phenomena remain unstudied,
that have the potential to provide guidance in designing
artificial control loops.
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A Computation of Ḣi

Differentiating Hi for any i yields

Ḣi =w′
i(si)(Yiλm − xλsi)ṡi + wi(si)(Yiλ̇m − ẋλsi − xλ̇si)

=− w′
i(si)(Yiλm − xλsi)uiwi(si)x

+ wi(si)Yiu0wR(m)

(
λm − w′

R(m)

w2
R(m)

H0

)
− wi(si)u0wR(m)xλsi

+ wi(si)xui
w′

i(si)

wi(si)
Hi

=

(((((((((((((((−w′
i(si) (Yiλm − xλsi)wi(si)︸ ︷︷ ︸

Hi

uix

+ u0wR(m)wi(si)(Yiλm − xλsi)︸ ︷︷ ︸
Hi

− wi(si)Yiu0wR(m)
w′

R(m)

w2
R(m)

H0

(((((((
+xuiw

′
i(si)Hi

=u0wR(m)

(
Hi − Yiwi(si)

w′
R(m)

w2
R(m)

H0

)
.

Along a S arc, if i ∈ I(t), we have Ḣi = 0 and Hi = H0,
which implies that

Yiwi(si) =
w2

R(m)

w′
R(m)

. (A.1)

Along a G arc, u0 = 1, and so

Ḣi = wR(m)

(
Hi − Yiwi(si)

w′
R(m)

w2
R(m)

H0

)
.

B Computation of singular controls from Ḧi

Along a S arc, using Theorem 1 and the fact that uj =
ukw

′
k(sk)/w

′
j(sj), we have

u0 + u1 + · · ·+ ui + · · ·+ un = 1

u0 + ui
w′

i(si)

w′
1(s1)

+ · · ·+ ui + · · ·+ ui
w′

i(si)

w′
n(sn)

= 1

u0 + ui

(
w′

i(si)

w′
1(s1)

+ · · ·+ 1 + · · ·+ w′
i(si)

w′
n(sn)

)
= 1

u0 + ui

∑
j∈I

w′
i(si)

w′
j(sj)

= 1

and so

ui(u0, s) =
1− u0∑
j∈I

w′
i
(si)

w′
j
(sj)

.

Then, by computing the derivative of (A.1), we obtain

0 =− Yiw
′
i(si)ṡi + wR(m)

(
2− wR(m)

w′
R(m)2

w′′
R(m)

)
ṁ

0 =Yiw
′
i(si)uiwi(si)x

+Φ(m)

(
n∑

i=1

Yiuiwi(si)− u0wR(m)(m+ 1)

)
,

with

Φ(m)
.
= wR(m)

(
2− wR(m)

w′
R(m)2

w′′
R(m)

)
.

Solving for u0 yields

0 = Yiwi(si)︸ ︷︷ ︸
w2

R
(m)/w′

R
(m)

w′
i(si)

1− u0∑
j∈I

w′
i
(si)

w′
j
(sj)

x

+Φ(m)

 Yiwi(si)︸ ︷︷ ︸
w2

R
(m)/w′

R
(m)

n∑
i=1

ui︸ ︷︷ ︸
1−u0

−u0wR(m)(m+ 1)


0 =

w2
R(m)

w′
R(m)

1− u0∑
j∈I

1
w′

j
(sj)

x

+Φ(m)

(
w2

R(m)

w′
R(m)

(1− u0)− u0wR(m)(m+ 1)

)
0 =

w2
R(m)

w′
R(m)

1∑
j∈I

1
w′

j
(sj)

x+Φ(m)
w2

R(m)

w′
R(m)

− u0

w2
R(m)

w′
R(m)

1∑
j∈I

1
w′

j
(sj)

x

+Φ(m)
w2

R(m)

w′
R(m)

+ Φ(m)wR(m)(m+ 1)

)
,

and so

u0(s,m, x) =
x+ ϕ(s,m)wR(m)

w′
R
(m)

x+ ϕ(s,m)
(
m+ 1 + wR(m)

w′
R
(m)

) ,
with

ϕ(s,m) =

(
2w′

R(m)− wR(m)

w′
R(m)

w′′
R(m)

)∑
j∈I

1

w′
j(sj)

 .

13



C Computation of Ḣ0 along a M arc

Differentiating H0 over an M arc gives

Ḣ0 =
(
w′

R(m)(xλx − (m+ 1)λm)− wR(m)λm

)
ṁ

+ wR(m)ẋλx + wR(m)xλ̇x − wR(m)(m+ 1)λ̇m

=
(
w′

R(m)(xλx − (m+ 1)λm)− wR(m)λm

)
×

(
n∑

i=1

Yiuiwi(si)− u0wR(m)(m+ 1)

)
+(((((((((

wR(m)u0wR(m)xλx

+ wR(m)x

(
n∑

i=1

uiwi(si)λsi −((((((u0wR(m)λx

)

− wR(m)(m+ 1)u0wR(m)

(
λm − w′

R(m)

w2
R(m)

H0

)
=
(
w′

R(m) (xλx − (m+ 1)λm)︸ ︷︷ ︸
H0/wR(m)

−wR(m)λm

)
×

n∑
i=1

Yiuiwi(si) + wR(m)x

n∑
i=1

uiwi(si)λsi

−
(
������������
w′

R(m) (xλx − (m+ 1)λm)︸ ︷︷ ︸
H0/wR(m)

(2) −�����wR(m)λm
(1)
)

× u0wR(m)(m+ 1)

− wR(m)(m+ 1)u0wR(m)

(
��λm

(1) −
�
�
��w′

R(m)

w2
R(m)

(2)H0

)
=wR(m)

(
w′

R(m)

w2
R(m)

H0 − λm

) n∑
i=1

Yiuiwi(si)

+ wR(m)x

n∑
i=1

uiwi(si)λsi

=wR(m)
w′

R(m)

w2
R(m)

H0

n∑
i=1

Yiuiwi(si)

− wR(m)

n∑
i=1

ui wi(si)(Yiλm + xλsi)︸ ︷︷ ︸
Hi︸ ︷︷ ︸

Hi

=wR(m)

(
H0

w′
R(m)

w2
R(m)

∑
i∈I

Yiuiwi(si)−Hi

)
.
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