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Optimal control strategies are studied through the application of the Pontryagin's Maximum Principle for a class of nonlinear differential systems that are commonly used to describe resource allocation during bacterial growth. The approach is inspired by the optimality of numerous regulatory mechanisms in bacterial cells. In this context, we aim to predict natural feedback loops as optimal control solutions so as to gain insight on the behavior of microorganisms from a control-theoretical perspective. The problem is posed in terms of a control function u0(t) representing the fraction of the cell dedicated to protein synthesis, and n additional controls ui(t) modeling the fraction of the cell responsible for the consumption of the available nutrient sources in the medium. By studying the necessary conditions for optimality, it is possible to prove that the solutions follow a bang-singular-bang structure, and that they are characterized by a sequential uptake pattern known as diauxic growth, which prioritizes the consumption of richer substrates over poor nutrients. Numerical simulations obtained through an optimal control solver confirm the theoretical results. Finally, we provide an application to batch cultivation of E. coli growing on glucose and lactose. For that, we propose a state feedback law that is based on the optimal control, and we calibrate the obtained closed-loop model to experimental data.

Introduction

While most of the research advancements on control and systems engineering have been focused on the development and implementation of feedback loops, control theory has also contributed substantially to our understanding of the underlying regulatory mechanisms in living organisms. For instance, at the cellular level, numerous phenomena are known to behave in a closedloop manner, by sensing-and reacting to-changes in the environment. One of the most common ideas in cell biology is that these regulatory mechanisms are a result of the optimizing force of the natural selection, which allows living beings to survive and outgrow competing species. Under this hypothesis, optimization and optimal control theory become instrumental in elucidating the governing principles of these natural mechanisms. Bacterial cells are constantly confronted with the problem of allocating resources to different cellular functions, ⋆ This work was partially supported by ANR project Maximic (ANR-17-CE40-0024-01) and Labex SIGNALIFE (ANR-11-LABX-0028-01).
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such as the uptake and conversion of nutrients from the environment into building blocks (metabolism), the production of proteins from these building blocks (gene expression), and the detection of-and reaction to-environmental changes. Under the assumption that bacteria have evolved internal regulatory mechanisms to maximize growth rate [START_REF] Dekel | Optimality and evolutionary tuning of the expression level of a protein[END_REF], theoretical studies have been able to predict these natural resource allocation strategies from simple mathematical models using optimal control theory. Numerous examples can be found in the literature [START_REF] Giordano | Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies[END_REF][START_REF] Yegorov | Optimal control of bacterial growth for the maximization of metabolite production[END_REF][START_REF] Gabriel Yabo | Optimal bacterial resource allocation: metabolite production in continuous bioreactors[END_REF][START_REF] Gabriel Yabo | Optimal bacterial resource allocation strategies in batch processing[END_REF]. For instance, the regulatory action of the ppGpp molecule [START_REF] Potrykus | ppGpp is the major source of growth rate control in E. coli[END_REF]-known to play a key role in growth rate control-has been compared to optimal control strategies obtained through simple bacterial growth models [START_REF] Giordano | Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies[END_REF]. Another example is a cellular mechanism called CCR (Carbon Catabolite Repression), which plays a key role in how substitutable nutrients (i.e. nutrients that do not need the presence of other substrates to allow bacterial growth) are consumed from the medium. In particular, when metabolizing nutrients sequentially, the growth pattern is called diauxic growth. As many empiric phenomena observed in bacteria, diauxic growth is a behavior that can potentially be predicted through optimization, provided that the adequate objective function is chosen. Previous studies have attempted so by using simple mathematical models and numerical optimal control [START_REF] Dhurjati | A cybernetic view of microbial growth: modeling of cells as optimal strategists[END_REF][START_REF] Kremling | An ensemble of mathematical models showing diauxic growth behaviour[END_REF][START_REF] Salvy | Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism[END_REF]. A more controltheoretical point of view is adopted in [START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF], where authors used optimal control theory to elucidate feedback control strategies of substrate uptake. However, only the case with two nutrient sources is studied, and no intermediate quantities are considered: the substrates are directly transformed into the final product, and thus the interplay between substrate uptake and protein synthesis is not captured in this simpler formulation. The study of the feedback loops that arise in nature yields very interesting theoretical problems, that have the potential to inspire novel control strategies for nonbiological fields of research and engineering. In this paper, we consider a generalized non-linear mathematical model of a population growing on n substitutable sources s i . The model captures two natural regulation mechanisms of unicellular organisms: 1) the distribution of resources for the uptake of multiple substrates, and 2) the trade-off between metabolism and gene expression (i.e. consuming nutrients and growing). The latter bioregulation is modeled through a control function u 0 (t) representing the fraction of the cell dedicated to protein synthesis, as a generalization of previous bacterial growth models [START_REF] Giordano | Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies[END_REF][START_REF] Agustín | Dynamical analysis and optimization of a generalized resource allocation model of microbial growth[END_REF]. Additionally, n uptake controls u i (t) model the fractions of the cell responsible for nutrient uptake, which can produce sequential or simultaneus substrate consumption-which is an extension of the preliminary results presented in [START_REF] Gabriel | Predicting microbial cell composition and diauxic growth as optimal control strategies[END_REF]. The problem of finding the optimal control functions (u 0 , u 1 , . . . , u n ) that comply with the natural objective of maximizing biomass is written as an OCP (Optimal Control Problem), and analyzed using PMP (Pontryagin's Maximum Principle). A thorough analysis of the problem reveals that the optimal allocation strategies behind the studied regulatory mechanisms have bang-singular-bang structures, and can exhibit sequential substrate uptake patterns depending on the concentration and yield of the nutrients in the environment. Using the optimality principles obtained through PMP, we propose a control law that can be written as a function of the state of the system (i.e. feedback control) while retaining the structure of the optimal control. The approach is able to predict diauxic growth as the optimal strategy when facing multiple sources, which represents a controltheoretical argument supporting the idea that diauxie is a naturally-evolved regulation system that maximizes growth rate. Additionally, we provide numerical simulations performed with an optimal control solver verifying the obtained analytical results. Finally, a practical example is presented: the model is calibrated to account for batch processing of E. coli growing on glucose and lactose [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF], and simulations with the obtained closedloop control law show that the approach not only qualitatively predicts the diauxic growth phenomenon, but also is able to match real bacterial growth experiments. The paper is organized as follows: in Section 2, the main biological principles and constraints are explained, and the general mathematical model is presented. In Section 3, the OCP is formulated, and the structure of the optimal control strategies is studied using PMP. In Section 4, we show the trajectories obtained with an optimal control solver to validate the theoretical results. Finally, in Section 5, we introduce the feedback control law, and we compare the closed-loop model with experimental data from [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF].

Model definition

We introduce a model representing a bacterial population growing on n substitutable sources. Bacterial cells consume the substrates s 1 , s 2 , . . . , s n from the medium and transform them into intermediate metabolites m with associated yield coefficients Y 1 , Y 2 , . . . , Y n . Essentially, the coefficient Y i describes the units of intermediate metabolite produced per unit of substrate s i . The intermediate metabolites are a generalization of the compounds used to produce biomass in cells (that could represent aminoacids in bacteria, or cell quota in phytoplankton [START_REF] Michaël R Droop | Vitamin B12 and marine ecology. IV. the kinetics of uptake, growth and inhibition in Monochrysis lutheri[END_REF]). The uptake of the source s i occurs at a rate w i , and the synthesis rate of biomass is v R . The mathematical model describes the time-evolution of the concentration of the i-th substrate s i (t), the concentration of intermediate metabolites m(t), and the volume of the cell population x(t). The states are defined as nondimensional to simplify the computations. The dynamical system can be written as

           ṡi = -w i (s i )x, i = 1, 2, . . . , n ṁ = n i=1 Y i w i (s i ) -w R (m)(m + 1), ẋ = w R (m)x,
where w R (m) corresponds to the growth rate of the bacterial population. In this formulation, the dynamics of the intermediate metabolites m are characterized by an "outflow" term -w R (m) describing the rate of protein synthesis, and a dilution term -w R (m)m resulting from the increasing bacterial volume. The yield coefficients are bounded to Y i ∈ (0, 1], and functions w i and w R are subject to the following hypotheses producing the nonlinearity of the system.

Assumption 1 Functions w R (x) : R + → R + and w i (x) : R + → R + for i = 1, 2, . . . , n are

• Continuously differentiable,

• Null at the origin: w(0) = 0,

• Strictly monotonically increasing: w ′ (x) > 0, ∀x ≥ 0,

• Strictly concave downwards: w ′′ (x) < 0, ∀x ≥ 0,

• Upper bounded: lim x→∞ w(x) = k. 

Controlled dynamics

The first degree of freedom of the control problem is the balance between the resources used to produce the intermediate compound m from the sources s i , and the resources used to produce biomass x from m. In the context of cell biology, this question represents the tradeoff between metabolism and gene expression. We define u 0 (t) ∈ [0, 1] as the control variable representing the fraction of the cell responsible for the production of proteins (i.e. biomass x) from the compounds m. Complementary, we define n control functions (u 1 , . . . , u n ) satisfying u i (t) ∈ [0, 1], each one representing the fraction of the cell assigned to the uptake and metabolization of the i-th substrate s i , and the synthesis of intermediate metabolites m. In bacterial cells, these tasks are performed by proteins of the gene expression machinery (i.e. ribosomes) and proteins of the metabolic machinery (i.e. enzymes), respectively. Following the literature on bacterial growth laws [START_REF] Hui | Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria[END_REF][START_REF] David W Erickson | A global resource allocation strategy governs growth transition kinetics of Escherichia coli[END_REF], we assume that the consumption rate of the i-th substrate uptake is linear in u i (t), while the rate of protein production is linear in u 0 (t). Figure 1 shows a schematic representation of the process here described. In this approach, cells are able to instantaneously stall growth (u 0 = 0) or substrate consumption (u 0 = 1), as well as to switch to balanced strategies between these two tasks (0 < u 0 < 1). While this assumption is not realistic from a physical point of view, it can provide gold-standard control strategies that can be then compared to the biologically feasible ones. The control functions are subject to an inequality constraint modeling the availability limitation of cellular resources:

n i=0 u i (t) ≤ 1. (C)
The resulting controlled model becomes

           ṡi = -u i w i (s i )x, i = 1, 2, . . . , n ṁ = n i=1 Y i u i w i (s i ) -u 0 w R (m)(m + 1), ẋ = u 0 w R (m)x.
(S)

Dynamics analysis

In this section, we provide a minimal study of the asymptotic behaviour of the system to set initial conditions for the dynamical optimization problem.

Lemma 1 The set

Γ . = (s 1 , . . . , s n , m, x) ∈ R n+2 : s i ≥ 0, m ≥ 0, x ≥ 0}
is positively invariant for the initial value problem.

PROOF. This is easily verified by evaluating each differential equation of (S) over the boundaries of Γ.

Thus, we set initial conditions in Γ as

s i (0) = s i0 > 0, m(0) = m 0 > 0, x(0) = x 0 > 0. (IC)
for i = 1, 2, . . . , n, where m 0 is chosen positive for simplicity, even though the case m 0 = 0 is also admissible. Additionally, we introduce the notation s 0 . = (s 10 , . . . , s n0 ).

Lemma 2 Every solution of system (S) satisfies s i (t) ≤ s i0 , m(t) ≤ m and x(t) ≤ x for all t ≥ 0, with

x . = n i=1 Y i s i0 + (m 0 + 1)x 0 , m . = x x 0 - 1 
PROOF. The lemma can be proved by observing that the quantity X . = n i=1 Y i s i + (m + 1)x, corresponding to the total mass in the system, is constant (as Ẋ = 0) and equal to x along a process starting in (IC). Then, evaluating the expression in the boundaries allows to obtain bounds on the states. Lemma 3 s i (t) > 0 and m(t) > 0 for every t ≥ 0.

PROOF. Using the fact that there exists c i and c m such that w i (s i ) < c i s i for all s i , and w R (m) < c m m for all m, we can bound the derivatives

ṡi ≥ -c i s i x, i = 1, 2, . . . , n ṁ ≥ -c m m( m + 1),
showing that s i and m decay, at worst, exponentially, and thus cannot attain 0 in finite time.

3 Optimal control problem

Problem statement

The main assumption justifying an optimal control approach is that the feedback mechanisms regulating the distribution of resources across cellular functions have been optimized through adaptive evolution to maximize instantaneous growth rate [START_REF] Richard | Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations[END_REF][START_REF] Nathan E Lewis | Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models[END_REF]. From a mathematical perspective, the latter is equivalent to say that the control functions (u 0 , . . . , u n ) should maximize the biomass after a certain period of time. Thus, the objective function to maximize is

x(t f ) for a fixed time interval [0, t f ].
It is noteworthy that, as established in [START_REF] Gabriel Yabo | Optimal bacterial resource allocation strategies in batch processing[END_REF], the problem of maximizing the biomass in infinite time for this class of systems is trivial. Indeed, using the asymptotic behavior of (S) and Lemma 2, it can be proved that every combination of controls u i is optimal when t f → ∞, as x(t) → x for every control u i (t) (except if there exists i such that u i (t) = 0 for all t ≥ 0). Thus, the finite-time problem writes

                         maximize J(u 0 , . . . , u n ) . = x(t f ),
subject to dynamics of (S), initial conditions (IC),

availability constraint (C), u i (•) ∈ U, i = 0, 1, 2, . . . , n (OCP) 
with U being the set of admissible controllers, which are Lebesgue measurable real-valued functions defined on the interval [0, t f ] and satisfying the constraint u i ∈ [0, 1]. As (OCP) has no terminal conditions, there are no controllability and reachability issues. Additionally, controls are included in a compact and convex set and, as proved in Lemma 2, every trajectory of (S) is bounded. Thus, existence of solutions of (OCP) is guaranteed by Filippov's theorem [START_REF] Mi Zelikin | Control theory from the geometric viewpoint[END_REF]. Following PMP [START_REF] Semenovich | Mathematical theory of optimal processes[END_REF], we define the adjoint state λ . = (λ s1 , λ s2 , . . . , λ sn , λ m , λ x ), and we write the Hamiltonian as

H = n i=0 H i u i (H)
which is constant for all t ∈ [0, t f ], as system (S) is autonomous. Functions H i are defined as

H 0 . = w R (m)(xλ x -(m + 1)λ m ), H i . = w i (s i )(Y i λ m -xλ si ), i = 1, 2, . . . , n
and the terminal conditions on the adjoint state are

λ(t f ) = (0, 0, . . . , 0, 0, -λ 0 ). (TC)
The lack of terminal conditions on the state also allows to discard abnormal extremals, and so we can fix λ 0 < 0.

The dynamics of the adjoint system is given by

                 λsi = -u i w ′ i (s i ) w i (s i ) H i , i = 1, 2, . . . , n λm = u 0 w R (m) λ m - w ′ R (m) w 2 R (m) H 0 , λx = n i=1 u i w i (s i )λ si -u 0 w R (m)λ x . (AS)
Finally, for notation purposes, we define the function

ρ(s) . = max(Y 1 w 1 (s 1 ), Y 2 w 2 (s 2 ), . . . , Y n w n (s n )) (1) 
where s . = (s 1 , . . . , s n ) is the set of all s i states; and the regions of the state space

ω . = (s, m) ∈ R n+1 : ρ(s) > w 2 R (m) w ′ R (m) , ω . = (s, m) ∈ R n+1 : ρ(s) < w 2 R (m) w ′ R (m) , ω . = (s, m) ∈ R n+1 : ρ(s) = w 2 R (m) w ′ R (m)
, that we will denote as the substrate abundant case ω, the substrate deficient case ω and the limit case ω.

Analysis of the optimal control solutions

The use of Pontryagin's Maximum Principle reduces problem (OCP) to finding the controls u i for i = 0, 1, 2, . . . , n that maximize the Hamiltonian (H), subject to (S), (IC), (C), (TC) and (AS). Let us first establish the positivity of the Hamiltonian and the final arc.

Lemma 4 Any optimal solution satisfies H(t) > 0 for every t ∈ [0, t f ], and there exists ϵ such that u 0

(t) = 1 for every t ∈ [t f -ϵ, t f ].

PROOF. Evaluating the Hamiltonian at final time yields H| t=t

f = H 0 (t f )u 0 (t f ). Using Lemma 3, we have H 0 (t f ) = w R (m(t f ))x(t f ) > 0.
As the optimal control at final time u 0 (t f ) should maximize the Hamiltonian, we see that u 0 (t f ) = 1, and thus H > 0 for all t (as, for autonomous systems, the Hamiltonian is constant for all t ∈ [0, t f ]). The existence of an ϵ such that u 0 (t) = 1 for every t ∈ [t f -ϵ, t f ] is simply given by the continuity of H 0 .

The Hamiltonian is a convex combination of functions H i , which means that controls u i (t) are determined by the value of each function H i . Thus, the i-th control is active (i.e. u i > 0) or non-active (i.e. u i = 0) depending on the value of its associated function H i with respect to the others (H 0 , . . . , H n ). In order to comply with the positivity of the Hamiltonian, at least one function H i should be positive. Let us define

I 0 (t) . = i = 0, 1, 2, . . . , n | H i = max(H 0 , . . . , H n ) , I(t) . = i = 1, 2, . . . , n | H i = max(H 1 , . . . , H n ) ,
which are time-varying sets of subindexes at time t associated to the (single or multiple) maximal functions H i . Through this reasoning, we can obtain a necessary condition for optimality of extremals.

Theorem 1 Any optimal control solution should satisfy

n i=0 u i = 1.
PROOF. Using Lemma 4 and (C), the maximization of the Hamiltonian occurs when

H = n i=0 H i u i = max(H 0 , . . . , H n ) i∈I0 u i .
which implies that the controls u i should satisfy i∈I0 u i = 1, and so H = H i for every i ∈ I 0 (t).

The latter theorem replaces the polyhedron defined by the constraint (C) with a more strict constraint given by a simple plane in R n . As function H i vary, every optimal control solution is a concatenation of bang arcs (u = 0 and u = 1) and singular arcs. Over an interval of time

[t 1 , t 2 ] ⊂ [0, t f ],
an arc is called:

G (pure-growth) arc if I 0 (t) = {0} for all t ∈ [t 1 , t 2 ], which produces u 0 (t) = 1 for all t ∈ [t 1 , t 2 ].
M (pure-metabolism) arc if 0 / ∈ I 0 (t) for all t ∈ [t 1 , t 2 ], and so u 0 (t) = 0 for all t ∈ [t 1 , t 2 ], and thus all the resources are used for substrate consumption. S (singular) arc if 0 ∈ I 0 (t) and |I 0 (t)| > 1 for all t ∈ [t 1 , t 2 ], which describes a mixed strategy with both metabolism and growth. Throughout this paper, and for simplicity of the notation, we refer to the initial arc of a solution as an arc defined in the interval [0, ϵ] for ϵ ∈ (0, t f ), while the final arc denotes an arc that occurs over [t f -η, t f ] for η ∈ (0, t f ). Thus, Lemma 4 proves that the final arc of every optimal solution is a G arc.

In nature, regulatory mechanisms act by sensing the environment and cellular composition, and adjusting metabolism and gene expression accordingly. In optimal control theory, obtaining an optimal control strategy depending solely on the state is a very challenging task called optimal synthesis. We proceed to further investigate the optimal solutions in order to obtain explicit expressions of the controls u i in feedback form. It is noteworthy that, so far, an active control u i implies that i ∈ I(t). However, the inverse is not necessarily true: if H = H i , then u i can be either active or non-active. Hereunder, we analyze the dynamics of each type of arc.

Dynamics of the system over the arcs

G arcs are characterized by H = H 0 > H i for i ∈ I(t). Along this arc, every function s i (t) = s * i and λ si (t) = λ * si is constant for i = 1, 2, . . . , n, where s * i and λ * si denote those constant values over the arc; and ṁ ≤ 0. In M arcs, H = H i > 0 for all i in I(t). In this case, x(t) = x * and λ m (t) = λ * m are constant, with x * and λ * m denoting said values over the arc; and ṁ ≥ 0. The analysis of singular arcs is more challenging as it requires computing the successive derivatives of the function H i , and so the results are stated in the following lemma.

Lemma 5 On an S arc over the interval of time

[t 1 , t 2 ] ⊂ [0, t f ], the state (s, m) satisfies Y i w i (s i ) = w 2 R (m) w ′ R (m) with i ∈ I(t), (2) 
which also means that

Y j w j (s j ) = Y k w k (s k ) with j ∈ I(t), k ∈ I(t). (3) 
Additionally, every optimal control is in feedback form u 0 (t) = u 0,sing (s, m, x) ∈ (0, 1) and u i (t) = u i,sing (s, m, x) ∈ (0, 1 -u 0,sing ) for i ∈ I(t), with u 0,sing (s, m, x) . =

x + ϕ(s, m) w R (m)

w ′ R (m) x + ϕ(s, m) m + 1 + w R (m) w ′ R (m) , (4) 
u i,sing (s, m, x) . = 1 -u 0,sing (s, m, x) j∈I w ′ i (s i ) w ′ j (s j ) , (5) 
where ϕ(s, m) > 0 is defined as

ϕ(s, m) . = 2w ′ R (m) - w R (m) w ′ R (m) w ′′ R (m)   j∈I 1 w ′ i (s j )   -1
.

Finally, the adjoint states λ si satisfy

λ sj Y j = λ s k Y k > 0 with j ∈ I(t), k ∈ I(t), (6) 
PROOF. By definition of an S arc, we have H = H i for every i ∈ I 0 (t) over [t 1 , t 2 ]. This implies Ḣi = 0 for i ∈ I(t), which yields (2). Differentiating (3) yields

w ′ j (s j )u j = w ′ k (s k )u k , for j ∈ I(t), k ∈ I(t)
. Then, by using Theorem 1, we can solve for u i,sing (s, u 0 ). Computing Ḧi = 0 yields (4). The bounds of u 0,sing can be easily deduced from expression (4). Then, singular controls (5) can be proven to satisfy u i,sing ∈ (0, 1 -u 0 ) for i ∈ I(t) by showing that the denominator satisfies

j∈I w ′ i (s i ) w ′ j (s j ) = 1 + j∈I\{i} w ′ i (s i ) w ′ j (s j ) > 1.
By writing H j = H k for j ∈ I(t), k ∈ I(t), we find w j (s j )λ sj = w k (s k )λ s k for j ∈ I(t), k ∈ I(t) which, using (3), yields [START_REF] Potrykus | ppGpp is the major source of growth rate control in E. coli[END_REF]. Then, λ si > 0 for i ∈ I(t) is a consequence of λsi < 0.

Expression (2) implies that, along every singular arc, the state is on the region ω ∪ ω (as, a priori, there could be a non-active q-th control u q (t) associated to a substrate satisfying Y q w q (s q ) > Y i w i (s i )). In next section, we study the structure of the optimal solutions based on the dynamics of the functions H i .

Structure of the optimal solutions

As it is classical in optimal control theory, an extremal is composed of a concatenation of arcs-in this case, the three arcs presented before-determined by the time evolution of the functions H i . In this section, we show that only a few of all possible combinations of arcs are admissible. To this end, we analyze the dynamics of the functions H i on each arc.

Proposition 1 If, over an interval of time [t 1 , t 2 ] ⊂ [0, t f ],
the solution is on a:

• G arc, we have H 0 > H i for i = 1, 2, . . . , n and

Ḣi = w R (m) H i -Y i w i (s * i ) w ′ R (m) w 2 R (m) H 0 , (7) 
for i = 1, 2, . . . , n, and thus, every substrate s i satisfying

Y i w i (s i ) > w 2 R (m)/w ′ R (m) also satisfies Ḣi < 0. • M arc, we have H i > H 0 for i ∈ I(t) and Ḣ0 = w R (m) H 0 w ′ R (m) w 2 R (m) i∈I Y i u i w i (s i ) -H i , (8) 
for i ∈ I(t), and Ḣq = 0 for q / ∈ I(t); and so Ḣ0 < 0 if (s, m) ∈ ω.

• S arc, every function H q for q / ∈ I(t) has dynamics

Ḣq = w R (m)u 0,sing (s, m, x) H q - Y q w q (s * q ) Y i w i (s i ) H i , (9) 
and both s q (t) = s * q and λ sq (t) = λ * sq are constant, where s * q and λ * sq refer to the constant values of such functions over the arc.

PROOF. Expressions ( 7), ( 8) and ( 9) can be simply obtained by computing the derivative o In other words, every non-active control remains nonactive along an M arc. As the derivative of H q can be positive, it could happen that a non-active control becomes active. Figure 2 shows an example of the interplay between the analyzed functions, to illustrate the class of trajectories that functions H i and H 0 could present along an extremal. Below, we exploit the dynamics of these functions, and the terminal conditions on the adjoint state (TC), to further investigate the possible structures of the optimal control solutions.

Proposition 2 If every i-th source for i ∈ I(t) satisfies

Y i w i (s i ) ≤ w 2 R (m) w ′ R (m) for i ∈ I(t), (10) 
then an M arc is not admissible.

PROOF. By way of contradiction, suppose that for all t ∈ [t 1 , t 2 ] ⊂ [0, t f ], condition [START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF] holds and the optimal

0 t 1 t 2 t 3 t 4 t 0 H Activation of u j Activation of u k Deactivation of u j H 0 H j H k  arc  arc  arc  arc
Fig. 2. Example of the evolution of functions Hi along a trajectory of the system. In [0, t1], every Hi < H0, and so the system is on a G arc until Hj reaches H = H0, and I(t1) = {j}. At that point, a switch is produced to an S arc, and uj = 1. At time t2, u k also becomes active until t = t3 where both Hj and H0 decrease, producing the deactivation of uj and a switch to an M arc. The latter arc is optimal until H0 again reaches H at t = t4, point at which the maximal H k decreases, producing a switch to a G arc.

solution is an M arc. Along an M arc, one has ṁ > 0, and every control u i with i ∈ I(t) satisfies ṡi ≤ 0. Then, condition [START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF] becomes

Y i w i (s i ) < w 2 R (m)/w ′ R (m 
) for all t ∈ (t 1 , t 2 ] and for every i ∈ I(t). Additionally, there exists k ∈ I(t) such that i∈I

Y i u i w i (s i )≤ Y k w k (s k ) < w 2 R (m) w ′ R (m)
for every t ∈ (t 1 , t 2 ]. Using [START_REF] Kremling | An ensemble of mathematical models showing diauxic growth behaviour[END_REF], this means

Ḣ0 < w R (m) (H 0 -H i ) < 0
for every t ∈ (t 1 , t 2 ], and thus the arc is optimal until t 2 = t f , as entering an S arc or G arc would require Ḣ0 to be positive. But this contradicts Lemma 4, as the process cannot end with an M arc, so the arc is not admissible over the interval [t 1 , t 2 ].

Condition [START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF] is less strict than (s, m) ∈ ω, as it only applies to those substrates that are active. However, it is useful to discard M arcs as intermediate arcs, as we show in the following proposition.

Proposition 3 An M arc is only admissible over an interval [0, t 1 ] ⊂ [0, t f ] (i.e. at the beginning of the process).

PROOF. In order to prove the proposition, let us show that an M arc cannot occur after an S arc or G arc. Suppose that, over an interval [t 1 , t 2 ] ⊂ [0, t f ], the optimal solution is:

• an S arc. Then, every active control u i with i ∈ I(t) satisfies (2) for every t ∈ [t 1 , t 2 ], and so the solution cannot be an M arc at time t 2 , as this contradicts Proposition 2.

• a G arc. Then H i < H 0 for every i = 1, 2, . . . , n. Suppose that an M arc is optimal for t ≥ t 2 . This implies that, at time t 2 , there exists a function H j = H 0 and so j ∈ I(t 2 ). Then, there exists ϵ > 0 such that Ḣj (t) > 0 over an interval [t 2 -ϵ, t 2 ) ⊂ [0, t f ] before the switch time. According to [START_REF] Dhurjati | A cybernetic view of microbial growth: modeling of cells as optimal strategists[END_REF], this can only happen if

Y j w j (s j ) < w 2 R (m)/w ′ R (m) (11) 
for all t ∈ [t 2 -ϵ, t 2 ). The admissibility of the M arc at t = t 2 also implies that Y j w j (s

j (t 2 )) > w 2 R (m(t 2 ))/w ′ R (m(t 2 )
) (otherwise, it contradicts Proposition 2). Over the G arc at [t 1 , t 2 ] we have ṡi = 0 for every i = 1, 2, . . . , n and ṁ < 0. Thus, by continuity of the states, this implies the existence of η > 0 such that [START_REF] Agustín | Dynamical analysis and optimization of a generalized resource allocation model of microbial growth[END_REF], and so the M arc is not admissible.

Y j w j (s j ) ≥ w 2 R (m)/w ′ R (m) for t ∈ [t 2 -η, t 2 ] ⊂ [0, t f ]. But this contradicts

Lemma 6 Over a S arc over

t ∈ [t 1 , t 2 ] ⊂ [0, t f ], max(Y 1 w 1 (s 1 ), . . . , Y n w n (s n )) = Y i w i (s i ) for i ∈ I(t),
and for all t ∈ [t 1 , t 2 ], and so (s, m) ∈ ω.

PROOF. Over a S arc ocurring over [t 1 , t 2 ], the conditions (2) holds for every i ∈ I(t) and for every t ∈ [t 1 , t 2 ]. By way of contradiction, suppose that at time t * ∈ [t 1 , t 2 ] there exists a s q substrate with q / ∈ I(t) satisfying Y q w q (s * q ) ≥ Y i w i (s i ) for i ∈ I(t).

Using (9), we have that Ḣq < 0 for every t ∈ [t * , t 2 ], and thus q / ∈ I(t) for every t ∈ [t * , t 2 ], which also means that Y q w q (s * q ) > w 2 R (m)/w ′ R (m) for every t ∈ [t * , t 2 ] (as

w 2 R (m)/w ′ R (m) is decreasing). Additionally, H q < H i for every t ∈ [t * , t 2 ], which means w q (s * q )λ * sq ≥ w i (s i )λ si > 0 (12) 
for every t ∈ [t * , t 2 ], with λ si > 0, as shown in [START_REF] Potrykus | ppGpp is the major source of growth rate control in E. coli[END_REF]. It is easy to see that q / ∈ I(t) for every t ≥ t * , that is, until the end of the process: the function w 2 R (m)/w ′ R (m) can only increase along an M arc, which cannot occur for t ≥ t * (as established in Proposition 3). This means Y q w q (s q ) = w 2 R (m)/w ′ R (m) cannot be reached, and thus u q (t) = 0 for every t > t * . But, according to (TC), λ sq (t f ) = 0, and so λ sq (t) = 0 for every t ≥ t * (due to the fact that λsq is linear on u q (= 0), which contradicts [START_REF] Gabriel | Predicting microbial cell composition and diauxic growth as optimal control strategies[END_REF]. Lemma 6 establishes a first clear relation between the consumption of the i-th substrate and its associated up-take control u i . In order to maximize its growth, the system should prioritize the metabolization of substrates that are solutions of ρ(s), which implies favoring the substrates that allow maximal synthesis of intermediate metabolites from the nutrients in the environment. This result is in accordance with those obtained in simpler mathematical models of bacterial growth with no intermediate metabolites [START_REF] Dhurjati | A cybernetic view of microbial growth: modeling of cells as optimal strategists[END_REF][START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF], as well as with experimental observations of bacterial growth laws [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF]. In other words, over an S arc, the criterion for substrate consumption I(t) = I(s), depending solely on environmental conditions (and not on t). In practice, under this control law, the i-th substrate corresponding to the maximal function Y i w i (s i ) is consumed first, and so s i decreases until it reaches the second maximal function Y j w j (s j ) associated to the j-th substrate. At that point, both substrates s i and s j start being consumed simultaneously, and the cycle is repeated until all the sources are (asymptotically) depleted, or until the end of the singular arc. Another important consequence of Lemma 6 is that no active control can become inactive. Indeed, if a substrate stops being consumed along a singular arc, it would satisfy Y q w q (s q ) > w 2 R (m)/w ′ R (m), and so the state would enter the region ω, which contradicts Lemma 6. Finally, we proceed to enumerate the possible structures of the optimal solutions. Theorem 2 The optimal control solutions can be:

• A single G arc • M -G for initial conditions in ω • M -S -G for initial conditions in ω • G -S -G for initial conditions in ω
PROOF. First, we state the fact that an optimal solution can admit at most one S arc, which is followed by the final G arc. The proof is based on Lemma 6: suppose that an S arc occurs over the interval [t 1 , t 2 ] ⊂ [0, t f ]. Then, (s, m) ∈ ω at t = t 2 , and the solution enters a G arc (as, according to Lemma 4 and Proposition 3, t 2 ̸ = t f , and there cannot be an M arc at t = t 2 ). This means that ṁ(t) < 0 for t ∈ (t 2 , t 2 + ϵ] and for a certain ϵ > 0, and so (s, m) ∈ ω for t ∈ (t 2 , t 2 + ϵ]. As ω cannot be reached along the G arc, the process finishes with the G arc (and, consequently, no other S arc is allowed). Let us analyze the remaining admissible structures, taking into account Proposition 3:

• If (s 0 , m 0 ) ∈ ω and the initial arc is a G arc: the control is a single G arc and (s, m) ∈ ω for all t ∈ [0, t f ]. • If (s 0 , m 0 ) ∈ ω
and the initial arc is an M arc, there exists t 1 ∈ (0, t f ) such that 0 ∈ I 0 (t 1 ) (according to Lemma 4). At that point, the solution can: 1) enter a S arc if (s, m) ∈ ω at t = t 1 , and then the final G arc; or 2) enter a G arc if (s, m) ∈ ω at t = t 1 (as Ḣi should be negative).

• If (s 0 , m 0 ) ∈ ω and the initial arc is an M arc: the control is a single M arc, which contradicts Lemma 4.

• If (s 0 , m 0 ) ∈ ω and the initial arc is a G arc, either: 1) 0 / ∈ I 0 (t) for all t ∈ [0, t f ], and thus the control is a single G arc; or 2) 0 ∈ I 0 (t 1 ) for a certain t 1 ∈ (0, t f ), time at which the solution can:

• enter an S arc if (s, m) ∈ ω at t = t 1 , and then the final G arc. • continue over the G arc. Then, Ḣi (t 1 ) = 0, as Ḣi (t) > 0 for every t ∈ [0, t 1 ) and there exists ϵ such that Ḣi (t) < 0 for every t ∈ (t 1 , t 1 + ϵ] (otherwise, the arc would enter an S arc at t 1 ). Thus, (s, m) ∈ ω at t = t 1 , and so (s, m) ∈ ω for t > t 1 , and the control is a single G arc.

From a practical point of view, the control strategies that do not admit a singular arc (G and M -G) are optimal when the state ω is not reachable. For example, an optimal solution with (s 0 , m 0 ) ∈ ω that does not reach (s, m) ∈ ω results in a pure G control strategy, either because t f is too small with respect to the reaction rates, or because ρ(s) ≪ w 2 R (m)/w ′ R (m). However, for large values of t f , singular arcs become admissible. We will then focus on the cases where t f is sufficiently large so as to allow singular arcs, which reduces the analysis to G -S -G and M -S -G solutions.

In order to conclude the analysis, it suffices to study the behavior of the optimal trajectories along the initial arc. The initial arc can be either G or M depending on the initial conditions. If the initial conditions (s 0 , m 0 ) ∈ ω, the initial arc is an M arc. Along an initial M arc over the interval [0, t 1 ], every function H i for i = 1, 2, . . . , n is constant, and thus I(t) is constant for all t ∈ [0, t 1 ]. However, along an M arc, it is possible to have u i = 0 for i ∈ I(t). As there is no biomass production (and x is constant), the pattern and order in which the substrates are consumed does not affect the state at the junction between arcs t 1 as long as the conditions for optimality are met. More precisely, any combination of controls u i satisfying Theorem 1 and taking the state from the initial condition (IC) to ω is optimal. In the interest of homogenizing the control criteria, one could choose the same strategy used along the singular arc, by adopting the control law obtained in [START_REF] Gabriel Yabo | Optimal bacterial resource allocation strategies in batch processing[END_REF]. In next section, we validate the analytical results with numerical simulations.

Numerical simulations

In this section, we simulate a system with three sources s 1 , s 2 and s 3 , with associated yields satisfying Y 1 > Y 2 > Y 3 and initial conditions chosen to produce sequential substrate uptake, such that Y 1 w 1 (s 10 ) > Y 2 w 2 (s 20 ) > Y 3 w 3 (s 30 ). We resort to the case where the reaction rates are defined as Michaelis-Menten kinetics in terms of the availability of the quantities as where K R and K i are the half-saturation constants of the synthesis rates, and k R and k i are the maximal reaction rates, that are fixed to k R = k i = k in the simulations (as the difference in the maximal rates can be also set through the parameters Y i ). The numerical optimal trajectories are computed with Bocop [START_REF]Bocop: an open source toolbox for optimal control[END_REF], an opensource toolbox that computes optimal solutions using direct methods, by discretizing the time variable and then solving a finite-dimensional optimization problem that approximates the OCP. The discretization algorithm used is Gauss II (implicit, 2-stage, order 4) with 10000 time steps. Parameter values are chosen to emphasize the structure of the optimal trajectory (rather than the biological meaning). Figure 3 shows an optimal trajectory with (s 0 , m 0 ) ∈ ω where s 1 , s 2 and s 3 are consumed sequentially. In this example, t f is relatively small compared to biologically relevant values, and yet, the solution admits a singular arc that represents more 

w R (m) = k R m K R + m , w i (s i ) = k i s i K i + s i
Y 2 w M (s 2 ) Y 3 w M (s 3 ) Fig. 4. Functions w 2 R (m)/w ′ R (m)
and Yiwi(si) (lower plot) and H0 and Hi (upper plot) related to the trajectories plotted in Figure 3. Shaded regions and dashed vertical lines indicate arcs and uptake control activation, respectively. Functions Hi associated to non-active controls increase until they reach H, while functions Yiwi(si) decrease.

than 95% of the time interval. This results in an optimal solution following a structure M -S -G. This phenomenon is strongly related to the so-called turnpike properties [START_REF] Trélat | The turnpike property in finite-dimensional nonlinear optimal control[END_REF], where solutions of OCPs for sufficiently large final times are described by a main arc spending most of the time near a steady-state, enclosed by transient arcs at the beginning and end of the process. We can also see that the sequential activation of controls u i occurs when the previous substrate s i-1 attains a very low concentration level, and is followed by a phase where u i reaches a maximum value-taking up most of the resources dedicated to substrate uptake-and decreases progressively until the next activation or the end of the process. Figure 4 confirms the main theoretical results. At t = 0, the solution of ( 1) is Y 1 w 1 (s 1 ) and I(0) = {1}. Thus, u 1 is the only active control, and it remains the only active control until the end of the initial M arc. As expected, H 0 and m increase until (s, m) ∈ ω, and H 0 becomes equal to H 1 . At that point, the solution enters a singular arc, and continues to adopt the uptake control strategy u 1 = 1 until Y 1 w 1 (s 1 ) = Y 2 w 2 (s 2 ), which occurs when H 2 reaches H, activating the second control u 2 . The same sequence occurs for the 3rd substrate, point at which all three substrates are being consumed simultaneously until the final G arc. Once in the final arc, (most of) the remaining intermediate metabolites are converted into biomass and, simultaneously, all three H i functions converge to 0, while H 0 remains constant. Figure 5 shows another case with three substrates that have the exact same initial concentration. The initial metabolite concentration m 0 is set to a high value so that (s 0 , m 0 ) ∈ ω, which produces an initial G arc. This also increases the duration of the final G arc, as depleting the pool of intermediate metabolites requires additional time. 

Application to experimental data

Previous studies showed that the bacterium Escherichia coli exhibits sequential substrate uptake patterns in environments where the only available carbon sources are glucose and lactose. The latter has been explained by the fact that biomass yield on glucose is higher than on lactose, a criterion that is successfully captured in the singular control stated in Lemma 6. The objective of this section is to use the theoretical results to predict the natural behavior aforementioned. For that, we propose a feedback control law (i.e. a control function expressed in terms of the state) that is based on the optimality principles obtained through PMP. Then, we build a twosubstrate model representing E. coli growing on glucose and lactose, and we match the results to experimental data.

Feedback control law

The pool of intermediate metabolites m acts as a buffer compartment regulated according to the phase of the process. Its presence along the resource pathway results in the trade-off between gene expression and metabolism-otherwise, consuming substrates and producing proteins become the same task, as in the classical Monod model. While the pool is regulated to optimal levels throughout the singular arc, substrate uptake becomes unnecessary towards the end of an optimal bioprocess, as there is no time remaining to produce biomass from the available intermediate metabolites. This is the role of the final G arc, which engages all the available cell resources to the task of emptying the pool of intermediate metabolites while arresting substrate uptake. As t f increases, the duration of the final arc becomes negligible in comparison to the duration of the singular arc, a classical behavior in solutions exhibiting the turnpike phenomenon. Thus, in the interest of studying the long-term perspective of the biological phenomenon, we define a suboptimal control law that can be expressed in feedback form by neglecting the final arc of the optimal control structure:

u 0 (s, m, x) =        0 if (s, m) ∈ ω, 1 if (s, m) ∈ ω, u 0,sing (s, m, x) if (s, m) ∈ ω, u i (s, m, x) =          1 -u 0 (s, m, x) j∈I w ′ i (s i ) w ′ j (s j ) if i ∈ I(s), 0 otherwise, I(s) = { i = 1, 2, . . . , n | ρ(s) = Y i w i (s i ) } . ( 13 
)
for i = 1, 2, . . . , n. When applying the control law to system (S), it produces trajectories G -S and M -S, depending on whether the initial conditions are in ω or ω, respectively. Indeed, the closed-loop structure consists of a single bang arc that takes the state to ω, and "slides" over the singular surface until the end of the process. Similar behaviors can be also found in the theory of sliding mode control, where a discontinuous control function forces the system to reach and stay in a particular region of the state space. Hereunder, we study the particular case of a 2-substrate culture under the proposed state feedback control and compare the results to experimental data of a batch process of E. coli.

Diauxic growth on glucose/lactose

The experimental data used in this section corresponds to a batch process of a wild-type strain of E. coli growing on glucose and lactose [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF], where the data points are 15 measurements of the concentration of each substrate and of the bacterial biomass. In order to model the process, we define a system (S) with n = 2, where the states s 1 and s 2 account for the concentrations of glucose and lactose respectively, and thus

Y 1 > Y 2 .
The model is simulated in its closed-loop form, with the feedback control law defined in [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF]. The closedloop model was calibrated by adjusting the parameters θ

. = (k, K 1 , K 2 , Y 1 , Y 2
) through a least-squares algorithm minimizing the difference between model simulation and experimental measurements, given by the cost function

f (θ) . = 15 i=1 (s 1 (t i ) -βŝ i 1 ) 2 + (s 2 (t i ) -βŝ i 2 ) 2 +(x(t i ) -β xi ) 2 ,
where ŝi 1 , ŝi 2 and xi correspond to the i-th measurement of glucose, lactose and biomass respectively, and t i is the time instant at which the i-th measurement has been obtained. For calibration and simulation, the nondimensional quantities s 1 , s 2 and x are divided by a parameter β = 0.003 L/g representing the inverse of the cell density in E. coli [START_REF] Giordano | Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies[END_REF], which yields concentrations in grams per liter. The resulting calibrated parameters are k = 1.77 h -1 , K 1 = 0.037 g/L, K 2 = 0.01 g/L, Y 1 = 0.77 and Y 2 = 0.25, which are consistent with previous studies [START_REF] Aravinda | Optimal control analysis of the dynamic growth behavior of microorganisms[END_REF][START_REF] Giordano | Dynamical allocation of cellular resources as an optimal control problem: novel insights into microbial growth strategies[END_REF]. For the numerical simulation, the initial conditions are set to s 1 (t 1 ) = 6.522 × 10 -4 , s 2 (t 1 ) = 3.42 × 10 -3 , m(t 1 ) = 0.01 and x(t 1 ) = 9.477 × 10 -5 , in accordance with the experimental data. Comparison between the experiments and the model behavior are shown in Figure 6. The model successfully predicts the diauxic growth behavior as an optimal response to the difference between carbon sources (in yield and concentration). The largest deviation between model output and data occurs when u 2 becomes active: experiments indicate that bacteria would fully exhaust the glucose in the medium before switching to lactose, a strategy that slightly differs from the optimal control approach. First, and as shown in Lemma 3, the model presented in this paper does not allow for full consumption of the substrates in finite time, as the depletion occurs-at worseat exponential rate. Additionally, when a certain control becomes active, it remains active until the end of the process. This means that, even though u 1 ≈ 0 after the switch, it cannot vanish exactly. Therefore, this behavior is not captured by our approach. It is also noteworthy that the length of the initial M arc is marginal with respect to the duration of the process (≈ 0.5% of the fi- Fig. 6. Comparison with experimental measurements (of glucose, lactose and biomass) from [START_REF] Bettenbrock | A quantitative approach to catabolite repression in Escherichia coli[END_REF]. In the top plot, the data from the experiment is represented in circles, while the simulation of model (S) is plotted in lines. The time-instant at which Y1w1(s1) becomes equal to Y2w2(s2) is marked with a vertical dashed line. The shaded region at the beginning of each plot indicates the initial M arc. nal time). This is consistent with the fact that, in a real biological process, bacteria alter their cellular composition progressively-constrained by the maximal synthesis rates of proteins and resource availability-and not instantaneously as modelled in this paper. However, the approach remains applicable along the singular surface, where cellular composition is governed by the expression defined in (4).

Conclusion

This paper addressed the optimal control of a generic class of growth models, inspired by the naturally-evolved regulatory mechanisms employed by bacterial cells. From a biological point of view, the model aims to predict how resources are divided across cellular functions in order to maximize biomass. The problem is posed in the context of optimal control, and necessary conditions for optimality are derived by applying PMP. The dynamics of the system and optimal control along each type of arc are investigated, and the admissible structures of the optimal solutions are proven to be a simple concatenation of the studied arcs. Based on the optimality principles obtained with PMP, a simple feedback control law is proposed, that retains the main features of the optimal control. The resulting closed-loop model that can be calibrated to represent batch processing of E. coli on glucose and lactose. In spite of the simplicity of the approach, the model is capable of reproducing the substrate uptake pattern known as diauxic growth, and to successfully fit experimental results. While the approach aims to better understand the selfadaptive capabilities of living organisms, and theirsometimes hidden-naturally-evolved feedback loops, its formulation draws upon a general non-linear dynamical model which can be easily extrapolated to other systems. As pointed out in previous works, biologicallyinspired resource distribution can be often related to results from different disciplines, such as the law of equimarginal utility in economic theory [START_REF] Dhurjati | A cybernetic view of microbial growth: modeling of cells as optimal strategists[END_REF]. In this line of work, numerous natural phenomena remain unstudied, that have the potential to provide guidance in designing artificial control loops.

Fig. 1 .

 1 Fig. 1. Scheme of the controlled system. Each external substrate si is metabolized into intermediate metabolites m at rate uiwi. Then, the intermediate metabolites are used to synthesize proteins at rate u0wR. The control u0 represents the fraction of the cell responsible for the synthesis of biomass (lower dotted line), while the remaining 1-u0 = u1 +• • •+un represents the cellular resources dedicated to the consumption of sources and production of m (upper dotted line).

Fig. 3 .

 3 Fig. 3. Optimal trajectory of (OCP) obtained using Bocop. Parameter values are k = 10 h -1 , KR = 1, Ki = 0.1, Y1 = 1, Y2 = 0.5 and Y3 = 0.2 and initial conditions are set to s10 = 0.001, s20 = 0.002, s30 = 0.003, m0 = 0.001 and x0 = 0.005. The shaded regions at the beginning and end of each plot denote the time intervals where the optimal solution is either an M or a G, while the non-shaded area in the middle denotes the singular arc. Two dashed vertical lines indicate the time instants where s2 and s3 start being consumed.

Fig. 5 .

 5 Fig. 5. Optimal trajectory of (OCP) obtained using Bocop. Parameter values are k = 10 h -1 , KR = 1, Ki = 0.05, Y1 = 1, Y2 = 0.3 and Y3 = 0.1 and initial conditions are set to s10 = s20 = s30 = 0.0001, m0 = 0.1 and x0 = 0.02. The shaded regions at the beginning and end of each plot denote the time intervals where the optimal solution is a G arc, and the non-shaded area in the middle shows the singular arc. The two dashed vertical lines indicate the time instants where s2 and s3 start being consumed.
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