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NULL-CONTROLLABILITY FOR THE WEAKLY DISSIPATIVE FRACTIONAL HEAT

EQUATIONS

PAUL ALPHONSE AND ARMAND KOENIG

Abstract. We prove that the fractional heat equations posed on the whole Euclidean space ℝn and
associated with the operators (−∆)s∕2 are exactly null-controllable from control supports which are suf-
ficiently “exponentially thick”, when 0 < s ≤ 1. This is a first positive null-controllability result in
this weak dissipation regime. When 0 < s < 1, we also give a necessary condition of the same form.
This notion of exponential thickness is stronger than the geometric notion of thickness known to be a
necessary and sufficient condition to obtain positive null-controllability results in the strong dissipation
regime s > 1. Inspired by the construction of the Smith-Volterra-Cantor sets, we also provide examples
of non-trivial exponentially thick control supports.

1. Introduction

This paper is part of the study of the null-controllability of the fractional heat equations

(Es) {()t + (−∆)s∕2)f(t, x) = 1!u(t, x), (t, x) ∈ ℝ+ ×ℝn,
f(0, ⋅) = f0 ∈ L2(ℝn),

where s > 0 is a positive real number and ! ⊂ ℝn is a measurable set with positive measure whose
geometry is to be understood.
Although the null-controllability properties of parabolic equations posed on bounded domains

of ℝn are known for years [11], the same study for parabolic equations considered on the whole
Euclidean space ℝn, as the equations (Es), is quite recent. It follows from the works [1, 2, 3, 5, 6, 7,
13, 16, 17] that the null-controllability properties of such models, and also their approximate null-
controllability or the stabilization properties, are associated with the geometric notion of thickness,
defined as follows

Definition 1. Given  ∈ (0, 1) and L > 0, the set ! ⊂ ℝn is said to be -thick at scale L when it is
measurable and satisfies

∀x ∈ ℝn, Leb(! ∩ B(x, L)) ≥  Leb(B(x, L)),
where Leb denotes the Lebesgue measure in ℝn.

It was in particular proven in the works [1, 6, 17] that in the strong dissipation regime s > 1,
the thickness is a necessary and sufficient geometric condition that allows to obtain positive null-
controllability results for the equation (Es). The present paper addresses the question of the null-
controllability of the equation (Es) in the low-dissipation regime 0 < s ≤ 1, for which very few results
have been obtained so far. It is for example stated in the works [9, 12] that in dimension n = 1, the
equation (Es) is not null-controllable from a control support !which is a strict open subset ofℝ. We
refine this result by proving that the null-controllability properties of the equation (Es) is associated
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with the following geometric condition for the control support !, which we will call “exponential
thickness”

Definition 2. Given � > 0, the set ! ⊂ ℝn is said to be �-exponentially thick when it is measurable
and there exist C > 0, c > 0 and L0 > 0 such that for every 0 < L < L0 and x ∈ ℝn,

Leb(! ∩ B(x, L)) ≥ ce−CL−� Leb(B(x, L)).
This definition can be rephrased as “! is ce−CL−� -thick at every scale 0 < L < L0”. The notion of

exponential thickness is therefore far stronger than the notion of thickness. Our first result states that
in the weak dissipation regime 0 < s < 1, the fractional heat equation (Es) is not null-controllable
from a control support ! ⊂ ℝn which is not 2s∕(1 − s)-exponentially thick. We also prove that in
the case 0 < s ≤ 1, the equation (Es) is exactly null-controllable from any �-exponentially thick set
! ⊂ ℝn, with 0 < � < s, and in any positive time T > 0.
An example of �-exponential thick is of course the whole space ℝn, but it might be difficult to

vizualize non trivial examples of sets satisfying this property. In dimension n = 1, inspired by the
construction of the Cantor-Smith-Volterra sets, we give examples of subsets of ℝ which are exactly
�-exponentially thick, in the sense that they are not �′-exponentially thick with �′ > �.

Outline of the work. In Section 2, we present in details the main results contained in this work. Sec-
tion 3 is then devoted to prove that the fractional heat equations are null-controllable from exponen-
tially thick control supports, the necessity of this geometric condition being investigated in Section
4. In Section 5, we construct examples of exponentially thick sets.

2. Main results

This section is devoted to present in details the main results contained in this work.

2.1. Null-controllability. Let us first recall the definition of null-controllability.

Definition 3. Let T > 0 and ! ⊂ ℝn be a measurable set with positive measure. The equation (Es)
is said to be null-controllable from the control support ! in time T > 0 when for all f0 ∈ L2(ℝn),
there exists a control u ∈ L2((0, T) × !) such that the mild solution of (Es) satisfies f(T, ⋅) = 0.
By the Hilbert Uniqueness Method (see, e.g., [4, Theorem 2.44]), the null-controllability of the

fractional heat equation (Es) is equivalent to the observability of the fractional heat semigroup,whose
we recall in the following definition.

Definition 4. LetT > 0, and let! ⊂ ℝn bemeasurable. The fractional heat semigroup (e−t(−∆)s∕2)t≥0
is said to be exactly observable from the set ! at time T if there exists a positive constant C!,T > 0
such that for all g ∈ L2(ℝn),

‖e−T(−∆)s∕2g‖2L2(ℝn) ≤ C!,T∫
T

0 ‖e−t(−∆)s∕2g‖2L2(!) dt.
We first prove that the exponential thickness is a necessary geometric condition to prove exact

null-controllability results for the equation (Es) in the weak dissipation regime 0 < s < 1.
Theorem 5. Let s ∈ (0, 1), T > 0 and ! ⊂ ℝn be measurable. If the fractional heat equation (Es) is
null-controllable from ! at time T, then ! is 2s∕(1 − s)-exponentially thick.
Remark 6. Wedo not consider the critical case s = 1, whose understanding remains an openproblem.

We thenprove that the exponential thickness is not only a necessary condition for the null-controllability
of the equation (Es), but is also a sufficient condition.
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Theorem 7. For all s ∈ (0, 1], the fractional heat equation (Es) is null-controllable from any �-
exponentially thick set ! ⊂ ℝn, with 0 < � < s, and in any positive time T > 0. Moreover, there
exists a positive constant C > 0 such that for all T > 0 and f ∈ L2(ℝn),

‖e−T(−∆)s∕2f‖2L2(ℝn) ≤ C exp ( C
T�∕(s−�) )

1T ∫T

0 ‖e−t(−∆)s∕2f‖2L2(!) dt.
Remark 8. This provides a positive null-controllability result for the fractional heat equation (Es) in
the regime 0 < s ≤ 1 (notice that the critical case s = 1 is also allowed). Recall from [15, Theorem
3.8] or [1, Remark 1.13] that in the regime s > 1, the following exact observability estimates have
been obtained for all thick set ! ⊂ ℝn, T > 0 and f ∈ L2(ℝn)

‖e−T(−∆)s∕2f‖2L2(ℝn) ≤ C exp ( C
T1∕(s−1) )

1T ∫T

0 ‖e−t(−∆)s∕2f‖2L2(!) dt.
The above observability estimate holds in particular for any �-exponential thick set ! ⊂ ℝn.

2.2. Examples. To end this section, we present examples of exponentially thick control supports.
Their construction is based on the one of the Smith-Volterra-Cantor sets, defined as follows

Definition 9 (Smith-Volterra-Cantor sets). Let (rn)n∈ℕ be a sequence of real numbers such that0 < rn < 1. For n ∈ ℕ, let Kn be the closed subset of [0, 1], finite union of closed disjoint intervals,
defined inductively by the following procedure.

∙ K0 ∶= [0, 1].∙ If Kn = ⋃
k Ink , where the (Ink)k are disjoint closed intervals, remove from Ink the middle

part of size rn Leb(Ink) and call the resulting sets1 I′nk . Then set Kn+1 ∶=⋃
k I′nk .

Let K ∶=⋂
n∈ℕ Kn. The set K is the Smith-Volterra-Cantor set associated to the sequence (rn)n.

Theorem 10. Let � > 0, c ∈ (0, 1) and C > 0. Set rn ∶= c exp(−C2n�). Let K be the associated
Smith-Volterra-Cantor set and ! ∶= ℝ ⧵ K. There exist c′, C′, L0 > 0 such that for every 0 < L < L0,

c′ exp(−C′L−�) ≤ inf
x∈ℝ

Leb(! ∩ B(x, L))
Leb(B(x, L)) ≤ C′ exp(−c′L−�).

In other words, ! is �-exponentially thick, and not better.
The set ! defined in the statement of theorem 10 is �-exponentially thick, but does not have full

measure. It is in fact the simplest of such sets that we could think of.
The! defined in theorem10 is a subset ofℝ. To get non-trivial�-exponentially thick sets in higher

dimension, we can just take !n.
3. Sufficient condition

This section is devoted to the proof of Theorem7, which states that in the weak dissipation regimes ∈ (0, 1], the fractional heat equation (Es) is exactly null-controllable from any �-exponentially
thick set ! ⊂ ℝn, with 0 < � < s, and in any positive time T > 0. This done in two steps: first
proving a spectral estimate reminiscent of Jerison and Lebeau’s spectral inequality [8, Theorem14.6]
or Logvinenko-Sereda-Kovrijkine estimate [10], and second using Lebeau and Robbiano’s method,
as stated in the following theorem that was proved byMiller [14, Theorem2.2] (see also [15, Theorem
2.8]).

1I.e., if Ink = [ank , bnk], set b′nk ∶= (ank(1 + rn) + bnk(1 − rn))∕2 and a′nk = (ank(1 − rn) + bnk(1 + rn))∕2, and finallyI′nk ∶= [ank , b′nk] ∪ [a′nk , bnk].
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Theorem 11. Let A be a non-negative selfadjoint operator on L2(ℝn), and let ! ⊂ ℝd be measurable.
Suppose that there are d0 > 0, d1 ≥ 0, and � ∈ (0, 1) such that for all � ≥ 0 and f ∈ Ran1(−∞,�](A),

‖f‖L2(ℝn) ≤ d0ed1��‖f‖L2(!).
Then, there exist positive constants c1, c2, c3 > 0, only depending on �, such that for all T > 0 andg ∈ L2(ℝn) we have the observability estimate

‖e−TAg‖2L2(ℝn) ≤ CobsT ∫T

0 ‖e−tAg‖2L2(!) dt,
where the positive constant Cobs > 0 is given by

Cobs = c1d0(2d0 + 1)c2 exp (c3( d1T� )
1

1−� ).
In the rest of this section, in order to alleviate the text, we will denote the spectral subspaces

associated with the Laplacian as follows

ℰ� = Ran1(−∞,�](−∆), � ≥ 0.
Let us now prove the following spectral estimates.

Proposition 12. Let � ∈ (0, 1) and let ! ⊂ ℝn be a measurable set that is �-exponentially thick. Then,
there exists a positive constant c > 0 such that

∀� > 0,∀f ∈ ℰ�, ‖f‖L2(ℝn) ≤ cec��∕2‖f‖L2(!).
Remark 13. Recall from Kovrikine’s estimate [10, Theorem 3] that there exists a universal positive
constant K > 0 depending only on the dimension n such that for all (, L)-thick set ! ⊂ ℝn, with ∈ (0, 1] and L > 0, we have

(1) ∀� ≥ 0,∀f ∈ ℰ� , ‖f‖L2(ℝn) ≤ (K
)K(1+L√�)‖f‖L2(!).

Our spectral estimates therefore improve the ones known for the thick sets.

Proof of proposition 12. Let us consider some � > 0 and f ∈ ℰ� be fixed. Since an �-exponentially
thick set is ce−CL−� -thick at every scale 0 < L < L0, for some c > 0, C > 0 and L0 > 0, we deduce
from (1) that

∀L ∈ (0, L0), ‖f‖L2(ℝn) ≤ ( K
ce−CL−�

)K(1+L√�)‖f‖L2(!).
Assume for a moment that � ≥ 1. Then, by choosing L = L0∕√� in the above estimate, we obtain
that

‖f‖L2(ℝn) ≤ (Kc
)K(1+L0)

eCK(1+L0)L−�0 ��∕2‖f‖L2(!).
This is the expected estimate when � ≥ 1. For the case 0 < � < 1, we use again Kovrijkine’s estimate
to find a C1 such that for every f ∈ ℰ� ⊂ ℰ1, ‖f‖L2(ℝn) ≤ C1‖f‖L2(!). Therefore, for any c0 > 0, and
in particular for c0 = CL(1 + L0)L−�0

‖f‖L2(ℝn) ≤ C1ec0��∕2‖f‖L2(!).
This ends the proof of proposition 12. �
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Proof of theorem 7. Given a positive timeT > 0 and a �-exponentially thick set! ⊂ ℝn, with 0 < � <s, we are now in position to prove an exact observability estimate for the fractional heat semigroup
from ! at time T. First notice that

1(−∞,�]((−∆)s∕2) = 1(−∞,�2∕s](−∆), � ≥ 0.
We therefore deduce from Proposition 12 that there exists a positive constant c > 0 such that

∀� > 0,∀f ∈ Ran1(−∞,�]((−∆)s∕2), ‖f‖L2(ℝn) ≤ cec��∕s‖f‖L2(!).
Theorem 11 then implies that there exists a positive constant C > 0 such that for all T > 0 andg ∈ L2(ℝn),

‖e−T(−∆)s∕2g‖2L2(ℝn) ≤ C exp ( C
T�∕(s−�) )

1T ∫T

0 ‖e−t(−∆)s∕2g‖2L2(!) dt.
This is the expected estimate. �

4. Necessary condition

The aim of this section is to prove Theorem 5. This necessary condition is proved by testing the
observability inequality on coherent states, as in [9].

Proof of theorem 5. Wedetail the proof in dimension 1. The proof in higher dimension is very similar.
Indeed, all the tools and theorems we use can be adapted in higher dimension (see [9, §4.3]).

Step 1: Observability inequality. — As in the proof of theorem7 (and see [4, Theorem2.44]), the exact
null-controllability of the fractional heat equation (Es) on ! in time T is equivalent to the following
observability inequality: for every g0 ∈ L2(ℝ), the solution g of ()t + (−∆)s∕2)g(t, x) = 0, g(0, ⋅) = g0
satisfies

(2) ‖g(T, ⋅)‖L2(ℝ) ≤ C‖g‖L2((0,T)×!).
Throughout this proof, c and C denote constants that can change from line to line.

Step 2: Construction of test functions. — We want to find a lower bound on Leb(! ∩ B(x, L)). Since
the fractional heat equation is invariant by translation, we may assume that x = 0.
Let �0 > 0 and � ∈ C∞c (−�0, �0) such that � ≡ 1 on a neighborhood of 0. For ℎ > 0, set

(3)

gℎ(t, x) ∶= ℎ∫
ℝ
�(ℎ� − �0)e−(ℎ�−�0)2∕2ℎ+ix�−t|�|s d�

∶=∫
ℝ
�(� − �0)e−(�−�0)2∕2ℎ+ix�∕ℎ−t|�|s∕ℎ−s d�.

Then gℎ is a solution to the fraction heat equation (Es).
Step 3: Estimates gℎ. — With the notations of [9, Section 3.2], we have gℎ(t, x) = It,ℎ,1(x) with�t(�) = −t�s . According to [9, Proposition 3.5] (with X = [0, T]), there exists � > 0 such that
uniformly in 0 ≤ t ≤ T and |x| < �,

(4) gℎ(t, x) = √
2�ℎeix�0∕ℎ−x2∕2ℎ−t(�0+ix)sℎ−s+O(ℎ1−2s)(1 + O(ℎ1−s)).

Hence,

(5) ‖gℎ(T, ⋅)‖L2(ℝ) ≥ ‖gℎ(T, ⋅)‖L2(|x|<�) ≥ ce−Cℎ−s .
Moreover, according to [9, Proposition 3.7] (with X = [0, T]), uniformly in 0 ≤ t ≤ T and |x| > �

(6) gℎ(t, x) = O(|x|−2e−c∕ℎ).
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Hence, for every ℎ > 0 small enough

‖gℎ‖2L2((0,T)×!) = ‖gℎ‖2L2((0,T)×{�<|x|}∩!) + ‖gℎ‖2L2((0,T)×{�<|x|}∩!)
≤ Ce−c∕ℎ + ‖gℎ‖2L2((0,T)×{|x|<�}∩!).

Now, set � ∶= (1 − s)∕2. According to the asymptotics (4), there exist C, c > 0 such that for everyr > 0 and every ℎ > 0 small enough so that rℎ� < �,
‖gℎ‖2L2((0,T)×!) ≤ Ce−c∕ℎ + ‖gℎ‖2L2(0,T)×{rℎ�<|x|<�}) + ‖gℎ‖2L2(0,T)×{|x|<rℎ�})

≤ Ce−c∕ℎ + Cℎe−cr2ℎ2�−1+O(ℎ1−2s) + Cℎ Leb(! ∩ B(0, rℎ�)).
Since 2� − 1 = −s and 1 − 2s > −s, there exist C, c > 0 such that for every r > 0 and every ℎ > 0
small enough (depending on r),

‖gℎ‖2L2((0,T)×!) ≤ Ce−cr2ℎ−s + Cℎ Leb(! ∩ B(0, rℎ�)).(7)

Step 4: Conclusion. — If the observability inequality (2) holds, according to eqs. (5) and (7), there
exist c, C > 0 such that for any r > 0 and every ℎ > 0 small enough (depending on r):

ce−Cℎ−s ≤ Ce−cr2ℎ−s + Cℎ Leb(! ∩ B(0, rℎ�)).
If we choose r large enough, we can absorb the e−cr2ℎ−s in the left-hand side. Hence, for every ℎ > 0
small enough,

e−Cℎ−s ≤ C Leb(! ∩ B(0, rℎ�)).
Setting L = rℎ� , i.e., ℎ = cL1∕� ,

Leb(! ∩ B(0, L)) ≥ ce−CL−s∕� = ce−CL−2s∕(1−s) . �

5. Examples of exponentially-thick sets

Let us first recall some basic facts about Smith-Volterra-Cantor sets. At each step in the construc-
tion of a Smith-Volterra-Cantor set, we remove a subset of measure (1 − rn) Leb(Kn) from Kn (see
definition 9), hence:

Proposition 14. With thenotations of definition 9,Leb(Kn) =∏n−1k=0(1−rn)andLeb(K) =∏+∞n=0(1 − rn).
In particular, Leb(K) > 0 if and only if

∑
n rn < +∞.

Our first result is a some upper and lower bounds on the thickness of the complement of Smith-
Volterra-Cantor sets.

Proposition 15. Let (rn)n ∈ (0, 1)ℕ. Assume that∑n rn < +∞. LetK be the associated Smith-Volterra-
Cantor set. Set c0 ∶= Leb(K) and ! ∶= ℝ ⧵ K. There exist c > 0, C > 0 and L0 > 0 such that for every
0 < L < L0,

c ∑
k≥log2(3c0∕L)

rk ≤ infx∈ℝ
Leb(! ∩ B(x, L))
Leb(B(x, L)) ≤ C ∑

k≥log2(c0∕4L)
rk ,

where log2 is the base 2 logarithm log2(x) = ln(x)∕ ln(2).
With a more careful analysis in the proof below, it seems we could improve this inequality by

replacing the log2(3c0∕L) by log2(�c0∕L) with some � < 3. We don’t know what the optimal � is.
We don’t pursue this because we don’t need such a sharp estimate. In fact proposition 15 is already
sharper than we need for our purposes.
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Proof. Remark that we only need to estimate Leb(! ∩ B(x, L)) for x ∈ [0, 1]. Indeed, if for instancex > 1, ! ∩ B(x, L) contains at least [x, x + L], hence Leb(! ∩ B(x, L))∕ Leb(B(x, L)) ∈ (1∕2, 1).
Step 1: Notations and preliminary computations. — In this proof, we denote by Ink the intervals that
appears in the construction of K, as defined in definition 9. We denote the length of Ink (which does
not depend on k) by ln. We have
(8) ln = 1 − rn−1

2 ln−1.
Notice that

Leb(Ink ∩ !) = Leb(Ink) − Leb(Ink ∩ K) = ln(1 −∏
k≥n

(1 − rk)).
In addition, we can estimate the right-hand side in the following way

1 −
∏
k≥n

(1 − rk) = 1 − exp
( ∑
k≥n

ln(1 − rk))

= 1 − exp
( ∑
k≥n

−rk(1 + ok(1)))

= 1 − exp
(
− (1 + on(1))∑k≥n rk

)

= 1 −
(
1 − (1 + on(1))∑k≥n rk

)

= (1 + on(1))∑k≥n rk.
In the third and fourth relations, we used that

∑
k rk < +∞. Thus,

(9) Leb(Ink ∩ !) = (1 + on(1))ln ∑k≥n rk.
Step 2: Lower bound when L is comparable to ln . — Let L > 0 and n ∈ ℕ be such that 2ln ≤ L ≤ 6ln.
Let x ∈ [0, 1].
If ! ∩ B(x, L) contains an interval of length ≥ ln∕2, Leb(! ∩ B(x, L)) ≥ ln∕2.
If that is not the case, then, distance(x, Kn) < ln∕4. Since L ≥ 2ln, this implies that B(x, L)

contains some Ink . Hence, according to eq. (9),
Leb(! ∩ B(x, L)) ≥ Leb(! ∩ Ink) = (1 + on(1))ln ∑k≥n rk .

Putting the two cases together:

infx∈ℝ
Leb(! ∩ B(x, L))
Leb(B(x, L)) ≥ ln

2L min
(c ∑

k≥n
rk , 12

) ≥ cln
2L

∑
k≥n

rk.
Since L ≤ 6ln,
(10) infx∈ℝ

Leb(! ∩ B(x, L))
Leb(B(x, L)) ≥ c ∑

k≥n
rk ,

this inequality being valid whenever 2ln ≤ L ≤ 6ln.
Step 3: Upper boundwhen L is comparable toln . — LetL > 0 andn ∈ ℕ be such thatln∕3 ≤ 2L ≤ ln.
Let x ∈ [0, 1] in the middle of a Ink , so that B(x,ln∕2) = Ink . Then B(x, L) ⊂ Ink, and according to
eq. (9),

Leb(! ∩ B(x, L)) ≤ Leb(Ink ∩ !) = (1 + on(1))ln ∑k≥n rk .
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Since, ln∕3 ≤ 2L,
(11) infx∈ℝ

Leb(! ∩ B(x, L))
Leb(B(x, L)) ≤ C ∑

k≥n
rk ,

this inequality being valid whenever ln∕3 ≤ 2L ≤ ln.
Step 4: Solving the inequality aln ≤ L ≤ bln. — Let L > 0 and 0 < � < 1. Set n(L) ∶= ⌈log2(c0∕L)⌉,
where ⌈⋅⌉ is the ceiling function. We aim to prove that for L small enough, �ln(L) ≤ L ≤ 2ln(L).

According to the definition of Ink, ln = 2−n∏n−1k=0(1 − rk). Recall that c0 = ∏+∞k=0(1 − rk) > 0.
Define �n by 1 + �n = (∏

k≥n(1 − rk))−1. Then �n > 0 and �n → 0 as n → +∞. With this notation,
we have the equivalences

�ln ≤ L ≤ 2ln ⇔ 2−n�c0(1 + �n) ≤ L ≤ 21−nc0(1 + �n)⇔ −n + log2(�c0(1 + �n)) ≤ log2(L) ≤ 1 − n + log2(c0(1 + �n))
⇔ log2

(c0L
)
+ log2(�) + log2(1 + �n) ≤ n ≤ log2

(c0L
)
+ 1 + log2(1 + �n). (12)

According to the definition of the ceiling function,

log2
(c0L

) ≤ n(L) < log2
(c0L

)
+ 1.

Since log2(�) < 0, log2(1 + �n) > 0 and �n → 0, the inequalities (12) are satisfied for n = n(L) and
small enough L > 0.
Step 5: Conclusion. — Applying the previous step with � = 2∕3, and replacing L by L∕3, we see that
lower bound (10) holds for n = ⌈

log2
( 3c0
L
)⌉
when L is small enough. Hence, the lower-bound stated

in proposition 15 holds.
Applying Step 4 with � = 2∕3 and L replaced by 4L, we get that the upper bound (11) holds withn = ⌈ log2

( c0
4L
)⌉
and L small enough, which gives the stated upper bound. �

Applying this general bound, we now prove that with the proper sequence (rn)n, the complement
of the associated Smith-Volterra-Cantor set is �-exponentially thick.
Proof of Theorem 10. Since rn = c exp(−C2n�) decays faster than exponentially,∑n rn < +∞. More-
over, as n → +∞ ∑

k≥n
rk = rn(1 + o(1)).

Plugging this into the bounds of proposition 15 proves the claimed bounds. �

Acknowledgements. The second author thanks Pierre Lissy for interesting discussions on this
topic.
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