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1. Introduction. For many years, continuous-time stochastic volatility models were predominantly based on stochastic differential equations driven by Brownian motion or Lévy processes. But more recently, [START_REF] Gatheral | Volatility is rough[END_REF] found empirical evidence that stochastic volatility is actually much rougher than semimartingales, in the sense that it locally resembles a fractional Brownian motion with Hurst index H < 0.5, a statement that was further supported by other empirical work based on both return data [START_REF] Bennedsen | Decoupling the short-and long-term behavior of stochastic volatility[END_REF][START_REF] Fukasawa | Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics[END_REF][START_REF] Gatheral | The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem[END_REF] and options data [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Fukasawa | Volatility has to be rough[END_REF][START_REF] Livieri | Rough volatility: Evidence from option prices[END_REF].

The data-driven approach of [START_REF] Gatheral | Volatility is rough[END_REF] to uncover rough volatility starts by considering highfrequency log-price data {x iδn : i = 0, . . . , [T /δ n ]}, where for example δ n = 5 min and T = 1 year. In a next step, daily realized variance estimates are calculated from the formula (1.1)

RV j = kn i=1 (δ n (j-1)kn+i x) 2 , j = 1, . . . , [T /(k n δ n )],
where δ n i x = x iδn -x (i-1)δn and k n = 78 is the number of 5 min increments during one trading day. On a one-year horizon, RV j can be viewed as daily spot volatility estimates. In a next step, realized power variations of log RV j , that is,

m(q, ∆) = 1 [T /∆] [T /∆] j=1
|log RV j∆ -log RV (j-1)∆ | q are computed for different values of q > 0 and ∆ ∈ {1 day, 2 days, . . .}. If log RV j were discrete observations of a continuous Itô semimartingale, then one would expect that m(q, ∆) scales as ∆ q/2 , implying that the slope ζ q in a regression of log m(q, ∆) on log ∆ satisfies

ζ q /q ≈ 1 2
However, for large set of high-frequency data, [START_REF] Gatheral | Volatility is rough[END_REF] consistently found values of ζ q /q < 1 2 , indicating that stochastic volatility locally behaves as a fractional Brownian motion with Hurst parameter H < 1 2 . As was pointed out by [START_REF] Bennedsen | Decoupling the short-and long-term behavior of stochastic volatility[END_REF][START_REF] Fukasawa | Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics[END_REF], the above approach rests on the assumption that realized variances have the same scaling behavior as the true unobserved volatility. At the same time, it is well known (see e.g., [START_REF] Aït-Sahalia | High-Frequency Financial Econometrics[END_REF]Chapter 8]) that in the absence of jumps and if volatility is a semimartingale, spot volatility estimators of the type (1.1) converge to true volatility plus a small modulated white noise. In a first attempt to take estimation errors for spot volatility into account, [START_REF] Bennedsen | Decoupling the short-and long-term behavior of stochastic volatility[END_REF][START_REF] Fukasawa | Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics[END_REF] assume that (1.2) log RV j = log true volatility j + ε j , where ε j is a zero-mean iid sequence that is independent of everything else. Under assumption (1.2), [START_REF] Bennedsen | Decoupling the short-and long-term behavior of stochastic volatility[END_REF][START_REF] Fukasawa | Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics[END_REF] derive consistent estimators of the roughness parameter H in parametric rough volatility models and uphold the conclusion of [START_REF] Gatheral | Volatility is rough[END_REF] that volatility is rough in a large set of financial time series. We also refer to [START_REF] Bolko | A GMM approach to estimate the roughness of stochastic volatility[END_REF], where the authors assume (1.2) with slightly different assumptions on (log RV j , ε j ), and to [START_REF] Szymanski | Optimal estimation of the rough Hurst parameter in additive noise[END_REF], where a central limit theorem (CLT) for H is established under (1.2) (see also [START_REF] Wang | Modeling and forecasting realized volatility with the fractional Ornstein-Uhlenbeck process[END_REF]). This paper aims to substantially generalize the aforementioned results in two directions: first, we establish consistent and asymptotically mixed normal estimators of H in a semiparametric setting, where except for H all other model ingredients are fully nonparametric; and second, we shall do so without assuming any relationship (such as (1.2)) between volatility proxies and true volatility. The rate of convergence of our best estimator is

(1.3) δ -1/(4H+2)
n , which as our companion paper [START_REF] Chong | Statistical inference for rough volatility: Minimax theory[END_REF] shows is optimal in a minimax sense in parametric rough volatility models. In follow-up work, we will discuss the finite-sample performance of our estimators and leverage the results of this paper into real data applications. Also, the inclusion of price jumps [START_REF] Aït-Sahalia | Testing for jumps in a discretely observed process[END_REF][START_REF] Jacod | Limit theorems for integrated local empirical characteristic exponents from noisy high-frequency data with application to volatility and jump activity estimation[END_REF] and the separation of volatility jumps from volatility roughness [START_REF] Chong | Short-time expansion of characteristic functions in a rough volatility setting with applications[END_REF] are left to future research. The remaining paper is structured as follows: in Section 2, after introducing the model assumptions, we state the main technical result of this paper, Theorem 2.1, a CLT for volatility of volatility (VoV) estimators in a rough volatility framework. The proof will be given in Section 3, with certain technical details postponed to Appendices A-C. Section 4 discusses how we turn Theorem 2.1 into rate-optimal and feasible estimators of H. In addition to a usual application of the delta method, the rough volatility setting requires us overcome two distinct challenges:

• eliminating a nonnegligible asymptotic bias term for which we do not have a sufficiently fast estimator; • constructing an optimal sequence k n for spot volatility estimation that depends on the unknown parameter H without losing a marginal bit of convergence rate.

Our final estimator H n for H is given in Equation (4.34). As Theorems 4.3 and 4.5 show, H n is a feasible and rate-optimal estimator of H if H ∈ (0, 1 2 ) and is equal to 1 2 with high probability if volatility is a continuous Itô semimartingale.

In what follows, we write A B if there is a constant C ∈ (0, ∞) that does not depend on any important parameter such that A ≤ CB. Furthermore, if A n (t) and B n (t) are stochastic processes, we write A n ≈ B n if E[sup t∈[0,T ] |A n (t) -B n (t)|] → 0 as n → ∞. For two sequences a n and b n we write a n ∼ b n if a n /b n → 1 as n → ∞. If x ∈ R n , we denote its Euclidean norm by |x|. For any α ∈ R, we write x α + = x α if x > 0 and x α + = 0 otherwise. We also use the notation N = {1, 2, . . . } and N 0 = {0, 1, 2, . . . }.

Model and CLT for

VoV estimators. On a filtered probability space (Ω, F, F = (F t ) t≥0 , P) satisfying the usual conditions, we assume that the log-price x of an asset is given by a continuous Itô semimartingale of the form (2.1)

x t = x 0 + t 0 b s ds + t 0 σ s dW s , t ≥ 0.
We assume that the squared volatility process c = σ (2.

3)

The ingredients of (2.1)-( 2.3) are assumed to satisfy the following conditions.

ASSUMPTION CLT. Suppose that the log-price process x is given by (2.1) with the following specifications:

1. There is H ∈ (0, 1 2 ] such that the squared volatility process c t = σ 2 t satisfies (2.2) with η and η given by (2.3). The variables x 0 , c 0 , η 2 0 and η2 0 are F 0 -measurable. 2. The processes a, b, a η and a η (resp., θ and ϑ) are adapted and locally bounded realvalued (resp., R 1×4 -dimensional) processes. Moreover, for all T > 0, we assume that 3. The processes η, θ and θ are adapted, locally bounded and for all T > 0, there is K T ∈ (0, ∞) such that

(2.5) sup s,t∈[0,T ] E[1 ∧ |η t -ηs |] + E[1 ∧ | θt -θs |] + E[1 ∧ | θt -θs |] ≤ K T |t -s| H .
4. The processes W and Ŵ are independent standard F-Brownian motions and W is a fourdimensional F-Brownian motion that is jointly Gaussian with (W, Ŵ ). The components of W may depend on each other and on (W, Ŵ ). 5. We have (2.6) g(t) = g H (t) + g 0 (t), g η (t) = g Hη (t) + g η 0 (t), g η(t) = g Hη (t) + g η 0 (t), g(t) = g H (t) + g0 (t), gη (t) = g Hη (t) + gη 0 (t), gη (t) = g Hη (t) + gη 0 (t), where

(2.7) g H (t) = K -1 H t H-1/2 + , K H = Γ(H + 1 
2 ) sin(πH)Γ(2H + [START_REF] Aït-Sahalia | Estimation of the continuous and discontinuous leverage effects[END_REF] , and H η , H η ∈ (0, 1 2 ], H, Hη , Hη ∈ [H, 1 2 ] and g 0 , g η 0 , g η 0 , g0 , gη 0 , gη 0 ∈ C 1 ([0, ∞)) are functions vanishing at t = 0.

Let us comment on the conditions imposed in Assumption CLT. Except for the parameter H, the assumptions on x, c, η and η are fully nonparametric and designed in such a way that it contains the rough Heston model [START_REF] El Euch | Roughening Heston[END_REF][START_REF] El Euch | The characteristic function of rough Heston models[END_REF] as an example, which is a particular important one as it is founded in the microstructure of financial markets [START_REF] El Euch | The microstructural foundations of leverage effect and rough volatility[END_REF][START_REF] Jusselin | No-arbitrage implies power-law market impact and rough volatility[END_REF]. Note that we allow c, η and η to have both a usual (differentiable) and a rough (non-differentiable) drift. Moreover, by considering W , Ŵ and W , we allow for the most general dependence between the Brownian motions driving x, c, η, η. Also note that H η and H η are not coupled with H, so the VoV processes η and η can be much rougher than the volatility process c itself.

We should also mention that, because of the various g 0 -functions in (2.6), the kernels in (2.2) and (2.3) are only specified around t = 0. In particular, H, H η and H η are parameters of roughness and are not related to long-range dependence / long-memory / persistence. This distinction is important as [START_REF] Bennedsen | Decoupling the short-and long-term behavior of stochastic volatility[END_REF][START_REF] Shi | Fractional stochastic volatility model[END_REF][START_REF] Shi | Volatility puzzle: Long memory or anti-persistency[END_REF] point out.

If c was directly observable, a classical way to feasibly estimate H would be to prove a joint CLT for realized autocovariances

δ 1-2H n [T /δn]- i=1 δ n i c δ n i+ c
with different values of ∈ N 0 and then to obtain an estimator of H from the ratio of two such functionals; see [START_REF] Barndorff-Nielsen | Multipower variation for Brownian semistationary processes[END_REF][START_REF] Chong | When frictions are fractional: Rough noise in high-frequency data[END_REF][START_REF] Chong | Rate-optimal estimation of mixed semimartingales[END_REF][START_REF] Corcuera | Asymptotic theory for Brownian semi-stationary processes with application to turbulence[END_REF][START_REF] Gloter | Estimation of the Hurst parameter from discrete noisy data[END_REF][START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF][START_REF] Liu | Discrete rough paths and limit theorems[END_REF]. Since we do not observe c, we first consider spot volatility estimators

ĉn t,s = 1 k n δ n Ĉn t,s , Ĉn t,s = [(t+s)/δn]-1 i=[t/δn] (δ n i x) 2 , δ n i x = x iδn -x (i-1)δn , (2.8)
where k n ∈ N and k n ∼ θδ -κ n for some κ, θ > 0. Then we form realized autocovariances of these spot volatility estimators by defining

Ṽ n, ,kn t = (k n δ n ) 1-2H 1 k n [t/δn]-( +2)kn+1 i=1 ĉn (i+kn)δn,knδn -ĉn iδn,knδn
× ĉn (i+( +1)kn)δn,knδn -ĉn

(i+ kn)δn,knδn (2.9) 
for ≥ 0. Note that we write [x] and {x} for the integer and fractional part of x, respectively. The normalization in the last line is chosen in such a way that Ṽ n, ,kn t converges in probability. In the semimartingale context (with H = 1 2 and = 0), the functional Ṽ n,0,kn t was used in [START_REF] Vetter | Estimation of integrated volatility of volatility with applications to goodness-of-fit testing[END_REF] to estimate the integrated VoV process t 0 (η 2 s + η2 s )ds (see also [START_REF] Gloter | Estimation du coefficient de diffusion de la volatilité d'un modèle à volatilité stochastique[END_REF][START_REF] Li | Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps[END_REF]). Still in the semimartingale framework, functionals similar to (2.9) have also been investigated in the literature to estimate the leverage effect; see [START_REF] Aït-Sahalia | Estimation of the continuous and discontinuous leverage effects[END_REF][START_REF] Aït-Sahalia | The leverage effect puzzle: Disentangling sources of bias at high frequency[END_REF][START_REF] Bandi | Time-varying leverage effects[END_REF][START_REF] Kalnina | Nonparametric estimation of the leverage effect: a trade-off between robustness and efficiency[END_REF][START_REF] Vetter | Estimation of correlation for continuous semimartingales[END_REF][START_REF] Wang | The estimation of leverage effect with high-frequency data[END_REF].

To state a CLT for Ṽ n, ,kn for H < 1 2 , we have to introduce some additional notation: for n ∈ N, h > 0 and a function f : R → R, we define the forward and central difference operators by

∆ n h f (t) = n i=0 (-1) n-i n i f (t + ih), δ n h f (t) = n i=0 (-1) i n i f (x + ( n 2 -i)h),
respectively. For n = 1, we simply write

∆ h f (t) = ∆ 1 h f (t) = f (t + h) -f (t) and δ h f (t) = δ 1 h f (t) = f (t + h 2 ) -f (t -h 2 ). Moreover, given α ∈ R, we use the shorthand notation ∆ n h t α + or ∆ n h |t| α for ∆ n h f (t) where f (t) = t α + or f (t) = |t| α (δ n h t α
+ and δ n h |t| α are used similarly). Finally, for any d ∈ N, we use st =⇒ to denote functional stable convergence in law in the space of càdlàg functions [0, ∞) → R d equipped with the local uniform topology. The following CLT is the main technical result of this paper. THEOREM 2.1. Let d ∈ N and 1 , . . . , d ≥ 2 be integers. Furthermore, consider deterministic integer sequences (k

(1) n ) n∈N , . . . , (k (d) n ) n∈N such that for some κ ∈ [ 2H 2H+1 , 1 2 ] and θ 1 , . . . , θ d ∈ (0, ∞) we have k (j) n ∼ θ j δ -κ
n for all j = 1, . . . , d. For each j = 1, . . . , d, let

(2.10) Z n,j t = δ -(1-κ)/2 n ( Ṽ n, j ,k (j) n t -V j t -A n, j ,k (j) n t ),
where for ≥ 2, we define

(2.11) V t = Φ H t 0 (η 2 s + η2 s )ds with Φ H = δ 4 1 | | 2H+2 2(2H + 1)(2H + 2) = ( + 2) 2H+2 -4( + 1) 2H+2 + 6 2H+2 -4( -1) 2H+2 + ( -2) 2H+2 2(2H + 1)(2H + 2) (2.12)
and for a general integer sequence k n ,

A n, ,kn t = - 2K -1 H H + 1 2 (k n δ n ) -1/2-H t 0 1 k n kn-1 i=0 ∆ 3 1 ( -1 -i+{u/δn} kn ) H+1/2 + × u [u/δn]δn σ v dW v (σ u η u -σ [u/δn]δn η [u/δn]δn )du.
(2.13)

Under Assumption CLT, the process

Z n t = (Z n,1 t , . . . , Z n,d t ) T satisfies the joint CLT (2.14) Z n st =⇒ Z,
where Z = ((Z 1 t , . . . , Z d t ) T ) t≥0 is a continuous R d -valued process that is defined on a very good filtered extension ( Ω, F, F = ( Ft ) t≥0 , P) of the original probability space (see e.g. [START_REF] Jacod | Discretization of Processes[END_REF]Chapter 2.1.4]) and conditionally on F is a centered Gaussian process with independent increments and F -conditional covariance function

(2.15) C jj t = Ē[Z j t Z j t | F] = 3 ν=1 γ j ,θj, j ,θ j ν (H)Γ ν (t).
In the last line,

(2.16) Γ 1 (t) = t 0 σ 8 s ds, Γ 2 (t) = t 0 (η 2 s + η2 s ) 2 ds, Γ 3 (t) = t 0 σ 4 s (η 2 s + η2 s )ds
and for arbitrary , ≥ 2 and θ, θ ∈ (0, ∞),

γ ,θ, ,θ 1 (H) = δ 4 θ δ 4 θ | θ -θ | 3 3(θθ ) 2H+2 1 κ = 2H 2H + 1 , γ ,θ, ,θ 2 (H) = Γ(1 + 2H) 2 (1 -1/ cos(2πH)) 4Γ(6 + 4H)(θθ ) 2H+2 × δ 4 θ δ 4 θ | θ -θ | 4H+5 + | θ + θ | 4H+5 , γ ,θ, ,θ 3 (H) = - δ 4 θ δ 4 θ [| θ + θ | 2H+4 + | θ -θ | 2H+4 ] 8(H + 1 2 )(H + 1)(H + 3 2 )(H + 2)(θθ ) 2H+2 1 κ = 2H 2H + 1 .
(2.17)

If H = 1 4 , γ ,θ, ,θ 2 (H) is defined via continuous extension by (2.18) γ ,θ, ,θ 2 ( 1 4 ) = δ 4 θ δ 4 θ | θ -θ | 6 log| θ -θ | + | θ + θ | 6 log| θ + θ | 5760(θ θ ) 5/2 .
A few remarks are in order. Theorem 2.1 is a joint functional stable CLT for d realized autocovariances of the form (2.9) with potentially different lags j and sequences k (j) n that are of the same asymptotic order δ -κ n but potentially with different constants θ j . We include this multivariate CLT not for the sole purpose of pursing utmost generality but really because we need it in Section 4, when we construct a rate-optimal estimator of H. For technical reasons, we need ≥ 3 in Section 4, which is why we only consider ≥ 2 in Theorem 2.1. (If = 0, 1, an additional dominating bias term appears; since we do not use this result, we refrain from stating it.) The upper bound on κ could be relaxed to some extent (we will not need this), but the lower bound cannot. Since taking the lower bound κ = 2H 2H+1 yields the optimal rate of convergence given in (1.3), one might be tempted to take a shortcut by just proving Theorem 2.1 for that value of κ, but unfortunately, we will need Theorem 2.1 with a general κ in Section 4. An informal argument why (1.3) is the optimal rate is given after Equation (3.10) below; a formal proof is the subject of our companion paper [START_REF] Chong | Statistical inference for rough volatility: Minimax theory[END_REF].

For any value of H ∈ (0, 1 2 ], the functional Ṽ n, ,kn t converges in probability to the law of large numbers (LLN) limit V t given in (2.11), which is given by integrated VoV times a constant Φ H (given in (2.12)). It is the dependence of this constant on H that allows us to construct an estimator of H from Ṽ n, ,kn t . If κ > 1 2H+2 , the proof below (more precisely, Lemma B.3) shows that A n, ,kn t = o P (δ

(1-κ)/2 n ), so Ṽ n, ,kn t satisfies a CLT with rate δ -(1-κ)/2 n
by (2.14). For the optimal κ = 2H 2H+1 , this is true if and only if H > 1 4 ( √ 5 -1) ≈ 0.3090. For other values of κ (in particular, for small H if we take the optimal κ), the bias term A n, ,kn t does not converge to 0 fast enough. Even worse, we were not able to find a debiasing statistic that converges to A n, ,kn t sufficiently fast. This is why we have to resort to a nonstandard debiasing procedure in Section 4. The distribution of the limit Z is mixed normal, with a fully explicit covariance function C t . To make this CLT feasible, we exhibit consistent estimators of C t in Proposition 4.4.

The next section is devoted to the main ideas in the proof of Theorem 2.1. The reader who wishes to first understand how this limit theory can be applied to feasible estimation of H can first jump to Section 4.

3. Proof of Theorem 2.1. The proof of Theorem 2.1 essentially consists of two parts: an approximation step (see Section 3.1), where we isolate terms that contribute to the limit Z in (2.14), and a CLT step (see Section 3.2), where we actually prove their stable convergence in law to Z.

Let us start with a remark about drifts: by the stochastic and ordinary Fubini theorem, (3.2)

t 0 g 0 (t -s)η s dW s = t 0 t s g 0 (r -s)drη s dW s = t 0 r 0 g 0 (
In the last display, the processes in parentheses are all locally bounded, and so are η, θ and θ. Therefore, there is no loss of generality to assume

(3.3) g 0 ≡ g0 ≡ g η 0 ≡ gη 0 ≡ g η 0 ≡ gη 0 ≡ 0, H, Hη , Hη ∈ (0, 1 2 ) if H ∈ (0, 1 2 ), η ≡ θ ≡ θ ≡ 0 if H = 1 2 .
In addition, as it is usual when infill asymptotics are considered, Assumption CLT can be localized (cf. [START_REF] Jacod | Discretization of Processes[END_REF]Lemma 4.4.9]). Therefore, there is no loss of generality if we assume the following strengthened hypotheses. ASSUMPTION CLT'. In addition to Assumption CLT, we have (3.3) and there is a deterministic constant K ∈ (0, ∞) such that

(3.4) sup t∈[0,∞) |a t | + |a η t | + |a η t | + |b t | + |η t | + | θt | + | θt | + |θ t | + |ϑ t | < K a.s.
In particular, all processes appearing in (2.1), (2.2) and (2.3) have uniformly bounded moments of all orders. In addition, for all p > 0, there is a constant K p ∈ (0, ∞) such that

(3.5) lim h→0 sup s,t∈[0,∞):|s-t|≤h E[|a t -a s | p ] + E[|b t -b s | p ] = 0 and (3.6) sup s,t∈[0,∞) E[|η t -ηs | p ] 1/p + E[| θt -θs | p ] 1/p + E[| θt -θs | p ] 1/p ≤ K p |t -s| H .
3.1. Main decomposition and approximations. Since the arguments can be applied component by component, there is no loss of generality to assume d = 1 in this subsection. For brevity, we also write

= 1 , k n = k (1)
n , θ = θ (1) and Ṽ n, t = Ṽ n, ,kn t . In a first step, write

(3.7) ĉn iδn,knδn = J n 1,i + J n 2,i
, where 

J n 1,i = 1 k n δ n kn-1 j=0 (δ n i+j x) 2 - (i+j)δn (i+j-1)δn c s ds , J n 2,i = 1 k n δ n kn-1 j=0 (i+j)δn (i+j-1)δn c s ds = 1 k n δ n (i-1+kn)δn (i-1)δn c s ds = C (i-1+kn)δn -C (i-
= Z n, 1,i + Z n, 2,i + Z n, 3,i + Z n, 3,i , (3.8) 
where

Z n, 1,i = (J n 1,i+kn -J n 1,i )(J n 1,i+( +1)kn -J n 1,i+ kn ), Z n, 2,i = (J n 2,i+kn -J n 2,i )(J n 2,i+( +1)kn -J n 2,i+ kn ), Z n, 3,i = (J n 1,i+kn -J n 1,i )(J n 2,i+( +1)kn -J n 2,i+ kn ), Z n, 3,i = (J n 2,i+kn -J n 2,i )(J n 1,i+( +1)kn -J n 1,i+ kn
). Correspondingly, we obtain the decomposition

(3.9) Ṽ n, t = Z n, 1 (t) + Z n, 2 (t) + Z n, 3 (t) + Z n, 3 (t) 
, where

Z n, 1|2 (t) = (k n δ n ) 1-2H k n [t/δn]-( +2)kn+1 i=1 (J n 1|2,i+kn -J n 1|2,i )(J n 1|2,i+( +1)kn -J n 1|2,i+ kn ), Z n, 3 (t) = (k n δ n ) 1-2H k n [t/δn]-( +2)kn+1 i=1 (J n 1,i+kn -J n 1,i )(J n 2,i+( +1)kn -J n 2,i+ kn ), Z n, 3 (t) = (k n δ n ) 1-2H k n [t/δn]-( +2)kn+1 i=1 (J n 2,i+kn -J n 2,i )(J n 1,i+( +1)kn -J n 1,i+ kn ), (3.10) 
and 1 | 2 means that we can take either 1 or 2 (consistently for the whole line).

We can now give an informal argument why κ = 2H 2H+1 is the optimal window size in our estimation procedure. Note that (k n δ n ) -H (J n 2,i+kn -J n 2,i ) is a normalized second-order increment of C over an interval of length k n δ n . Therefore, Z n, 2 (t) is nothing else but the normalized second-order quadratic variation of C (computed with a lag ). By definition, C is the integral of a fractional process. It is well known from [START_REF] Barndorff-Nielsen | Multipower variation for Brownian semistationary processes[END_REF][START_REF] Barndorff-Nielsen | Limit theorems for functionals of higher order differences of Brownian semi-stationary processes[END_REF] that the normalized higherorder quadratic variation of a fractional process, computed over a step size of k n δ n , converges to a limit at rate (k n δ n ) -1/2 , for all H ∈ (0, 1 2 ]. Of course, C is not a fractional process but rather its integral. Our analysis of Z n, 2 (t) below shows that the rate of convergence remains unchanged. In other words, if we were able to observe C t directly, we would have chosen k n = 1, and the optimal rate of convergence would be δ -1/2 n . But we do not observe C t directly, which means that we have an estimation error of C t in the form of J n 1,i . By the integration by parts formula for semimartingales,

J n 1,i = 2 k n δ n kn-1 j=0 (i+j)δn (i+j-1)δn (x s -x (i+j-1)δn )dx s = 2 k n δ n (i+kn-1)δn (i-1)δn (x s -x [s/δn]δn )dx s , (3.11) which shows that J n 1,i is a term of order k -1/2 n
, uniformly in i. Moreover, if we neglect the drift in x (which, of course, is fine as we will see below), then J n 1,i is a martingale increment with step size k n δ n , so J n 1,i+kn -J n 1,i will be a martingale increment, too, just with step size 2k n δ n . Because ≥ 2, if we take the product with J n 1,i+( +1)kn -J n 1,i+ kn in Z n, 1 (t) and apply integration by parts one more time, we only get martingale increments (with step size O(k n δ n )) but no quadratic variation / drift part. Therefore, the sum over i in Z n, 1 (t) will be of order O P ((k n δ n ) -1/2 ) and Z n, 1 (t) will be of order O P ((

k n δ n ) 1/2-2H k -1 n ). Thus, contrary to Z n 2 (t), the error term Z n 1 (t) is small if k n is large.
Of course, this is expected, for the larger the window size k n is, the better integrated volatility is approximated by realized variance. Nonchalantly ignoring Z n, 3 and Z n,

3
for the moment, we obtain the optimal convergence rate if κ is chosen such that

(k n δ n ) 1/2 and (k n δ n ) 1/2-2H k -1
n are of the same order. This precisely gives κ = 2H 2H+1 and the optimal rate of convergence of δ

-1/(4H+2) n .
This informal argument clearly does not prove that δ

-1/(4H+2) n
is the best possible rate. But in our companion paper [START_REF] Chong | Statistical inference for rough volatility: Minimax theory[END_REF], we actually show that this is the case in parametric rough volatility models. For now, let us make two more remarks before we return to the main line of the proof. First, in the above argument, we have neglected Z n, 3 and Z n, 3 , which are mixed terms and ought to be no worse than Z n, 1 and Z n, 2 in terms of rate. This is indeed true for the fluctuations, but with the caveat that with the optimal κ, Z n, 3 comes with an asymptotic bias term (given by (2.13)) that dominates the CLT if (and only if) H ≤ 1 4 ( √ 5 -1) ≈ 0.3090. Second, notice that the optimal rate of convergence of Ṽ n, ,kn t (after removing the bias) is δ

-1/(4H+2) n , which approaches δ -1/2 n as H ↓ 0 and δ -1/4 n as H ↑ 1
2 and is monotone in between. The fact that the convergence rate is faster for small H compared to the semimartingale case H = 1 2 (see [START_REF] Vetter | Estimation of integrated volatility of volatility with applications to goodness-of-fit testing[END_REF]) seems counter-intuitive since the spot volatility estimator ĉn t,s should be less precise if c is rough. This is true, and if one decided to first estimate c t and then extract H from variations of c t , the resulting estimator would definitely perform poorly for small H. But there is no need to estimate c t : recall from the discussion above that ĉn iδn,knδn is mainly an estimator of J n 2,i = (k n δ n ) -1 (C (i-1+kn)δn -C (i-1)δn ), an increment of integrated volatility, which as we shall see below contains as much information about H as an increment of c t . So the faster convergence rate of Ṽ n, ,kn t for small H is really due to the fact that the total error Z n,

1 (t) in pre-estimating Z n, 2 (t) is (k n δ n ) 1/2-2H k -1
n and hence smaller for small H for any given window size k n .

The following three propositions determine the main parts of Z n, 1 (t), Z n, 2 (t), Z n, 3 (t) and Z n, 3 (t) that contribute to the CLT. PROPOSITION 3.1. Let the assumptions be as in Theorem 2.1. Then for all κ ∈ [ 2H 2H+1 , 1 2 ] and integer sequences k n ∼ θδ -κ n with θ > 0, the following convergence holds:

(k n δ n ) -1/2 (Z n, 1 (t) -M n, 1 (t)) L 1 =⇒ 0, (3.12)
where using the notations y t = t 0 σ s dW s and χ(t) = -1 for t ∈ [0, 1 2 ] and

χ(t) = 1 for t ∈ ( 1 2 , 1], we define M n, 1 (t) = 4(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 )(y s -y [s/δn]δn )dy s × (i-1+( +2)kn)δn (i+ kn-1)δn χ( [s/δn]-i-kn+1 2kn-1 )(y s -y [s/δn]δn )dy s . (3.13) If κ ∈ ( 2H 2H+1 , 1 2 ],
we further have

(k n δ n ) -1/2 M n, 1 (t) L 1 =⇒ 0. (3.14) PROPOSITION 3.2.
Under the assumptions of Theorem 2.1, we have for all κ ∈ [ 2H 2H+1 , 1 2 ] and integer sequences k n ∼ θδ -κ n with θ > 0 that

(k n δ n ) -1/2 (Z n, 2 (t) -V t -M n, 2 (t)) L 1 =⇒ 0,
where

M n, 2 (t) = (k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+( +2)kn)δn 0 r 0 ∆ 2 knδn G H ((i -1)δ n -r) × ∆ 2 knδn G H ((i + k n -1)δ n -u) + ∆ 2 knδn G H ((i + k n -1)δ n -r) (3.15) × ∆ 2 knδn G H ((i -1)δ n -u) η u dW u η r dW r and (3.16) G H (t) = K -1 H H + 1 2 t H+1/2 + . PROPOSITION 3.3. Under the assumptions of Theorem 2.1, we have for all κ ∈ [ 2H 2H+1 , 1 2 ] and integer sequences k n ∼ θδ -κ n with θ > 0 that (k n δ n ) -1/2 (Z n, 3 (t) -A n, t -M n, 31 (t) -M n, 32 (t) 
)

L 1 =⇒ 0, (k n δ n ) -1/2 (Z n, 3 (t) -M n, 3 (t)) L 1 =⇒ 0,
where A n, t = A n, ,kn t and

M n, 31 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 )(y s -y [s/δn]δn ) × s 0 ∆ 2 knδn G H ((i -1 + k n )δ n -r)η r dW r dy s , M n, 32 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+( +2)kn)δn 0 ∆ 2 knδn G H ((i -1 + k n )δ n -r) × (i-1+2kn)δn∧r (i-1)δn χ( [s/δn]-i+1 2kn-1 )(y s -y [s/δn]δn )dy s η r dW r and M n, 3 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+( +2)kn)δn (i+ kn-1)δn χ( [s/δn]-i-kn+1 2kn-1
)

× (y s -y [s/δn]δn )dy s (i-1+2kn)δn 0 ∆ 2 knδn G H ((i -1)δ n -r)η r dW r .
(3.17)

If κ ∈ ( 2H 2H+1 , 1 2 ], we also have (k n δ n ) -1/2 (M n, 31 (t) + M n, 32 (t) + M n, 3 (t)) L 1 =⇒ 0.
We now give an overview of the proof of Proposition 3.2, with details delegated to Section A. Note that Z n, 2 (t) is the only term that contributes to the LLN and, furthermore, is the only term that contributes to the CLT for any κ ∈ [ 2H 2H+1 , 1 2 ]. The other three terms Z n, 1 (t), Z n, 3 (t) and Z n, 3 (t) never contribute to the LLN and, unless κ = 2H 2H+1 , do not contribute to the CLT, either. Also, the approximations we need to make for them are mostly similar to those for Z n, 2 (t). This is why we postpone the whole proof of Propositions 3.1 and 3.3 to Section B.

By (3.1), we have for any t ≥ 0 that

t+knδn t c s ds = c 0 k n δ n + t+knδn t A s ds + t+knδn 0 ∆ knδn G H (t -r)η r dW r .
Consequently,

(3.18) J n 2,i+knδn -J n 2,i = 1 k n δ n (i-1+kn)δn (i-1)δn (c s+knδn -c s )ds = 1 k n δ n (D n 1,i + D n 2,i ),
where

D n 1,i = (i-1+2kn)δn 0 ∆ 2 knδn G H ((i -1)δ n -r)η r dW r , D n 2,i = (i-1+kn)δn (i-1)δn (A s+knδn -A s )ds. (3.19)
We can safely remove the drift part D n 2,i :

LEMMA 3.4. Under Assumption CLT', we have (k n δ n ) -1/2 (Z n, 2 (t) -Zn, 2 (t) 
)

L 1
=⇒ 0, where

(3.20) Zn, 2 (t) = (k n δ n ) -1-2H 1 k n [t/δn]-( +2)kn+1 i=1 D n 1,i D n 1,i+ kn .
Next, an application of the integration by parts formula shows that

(3.21) Zn, 2 (t) = M n, 21 (t) + M n, 22 (t) + Q n, 2 (t) = M n, 2 (t) + Q n, 2 (t), where M n, 21 (t) = (k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+2kn)δn 0 ∆ 2 knδn G H ((i -1)δ n -r) × r 0 ∆ 2 knδn G H ((i + k n -1)δ n -u)η u dW u η r dW r , M n, 22 (t) = (k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+( +2)kn)δn 0 ∆ 2 knδn G H ((i + k n -1)δ n -r) × r 0 ∆ 2 knδn G H ((i -1)δ n -u)η u dW u η r dW r , Q n, 2 (t) = (k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 (i-1+2kn)δn 0 ∆ 2 knδn G H ((i -1)δ n -r) × ∆ 2 knδn G H ((i + k n -1)δ n -r)|η r | 2 dr.
For the proof of Proposition 3.2, we only have to further consider Q n, 2 (t). Interchanging summation and integration and factoring k n δ n out of ∆ 2 knδn G H , we obtain

Q n, 2 (t) = 1 k n ([t/δn]-kn)δn 0 [t/δn]-( +2)kn+1 i=([r/δn]-2kn+2)∨1 ∆ 2 1 G H ( i-1-r/δn kn ) × ∆ 2 1 G H ( i-1+ kn-r/δn kn )|η r | 2 dr. (3.22)
Writing r/δ n = [r/δ n ] + {r/δ n } as the sum of its integer and fractional part and changing

the index i -1 -[r/δ n ] to i result in Q n, 2 (t) = 1 k n ([t/δn]-kn)δn 0 [t/δn]-[r/δn]-( +2)kn i=(1-2kn)∨(-[r/δn]) ∆ 2 1 G H ( i-{r/δn} kn ) × ∆ 2 1 G H ( i+ kn-{r/δn} kn )|η r | 2 dr. (3.23)
The next lemma shows that we can replace the lower bound in the summation by 1 -2k n and the upper bound by +∞.

LEMMA 3.5. Under Assumption CLT', we have

(k n δ n ) -1/2 (Q n, 2 (t) -Qn, 2 (t) 
)

L 1
=⇒ 0, where

(3.24) Qn, 2 (t) = ([t/δn]-kn)δn 0 1 k n ∞ i=1-2kn ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn )|η r | 2 dr.
Since {r/δ n } ∈ [0, 1), the sum over i is a Riemann sum that converges as k n → ∞ to the limit

∞ -2 ∆ 2 1 G H (v)∆ 2 1 G H (v + )dv.
This integral is nothing else but Φ H defined in (2.12).

LEMMA 3.6. For any H ∈ (0, 1 2 ) and ≥ 2,

(3.25) Φ H = ∞ -2 ∆ 2 1 G H (v)∆ 2 1 G H (v + )dv.
As an immediate consequence, we obtain Qn, 2 (t)

L 1
=⇒ Φ H t 0 |η r | 2 dr = V t , the desired LLN limit. There is only one problem: the convergence rate. Even for a smooth function (which ∆ 2 1 G H (v) is not), a Riemann sum converges to its limit only with rate k n , which for small H and small κ (including the optimal κ = 2H 2H+1 ) is much slower than the needed (k n δ n ) -1/2 . Nevertheless, we shall prove LEMMA 3.7. Under Assumption CLT', we have

(k n δ n ) -1/2 ( Qn, 2 (t) -V t ) L 1 =⇒ 0.
This unexpected gain in convergence rate is only possible because we have a very special Riemann sum and a very special process η in (3.24). To understand what is so particular about the former, let us exploit the periodicity of the mapping u → {u} and change variables a few times to rewrite

Φ H = ∞ i=1-2kn i kn i-1 kn ∆ 2 1 G H (v)∆ 2 1 G H (v + )dv = 1 k n ∞ i=1-2kn 1 0 ∆ 2 1 G H ( i-v kn )∆ 2 1 G H ( i-v kn + )dv = 1 k n ∞ i=1-2kn δ -1 n ([r/δn]+1)δn ([r/δn])δn ∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i-{u/δn} kn + )du, (3.26) 
which is valid for any r > 0 and n ∈ N. Comparing the last line of the previous display with (3.24), we realize that there is no need to study how fast the sum over i approaches its limit since

Qn, 2 (t) -V t = Qn, (t) -Φ H ([t/δn]-kn)δn 0 |η u | 2 du + O P (k n δ n ) = 1 k n ∞ i=1-2kn ([t/δn]-kn)δn 0 ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn ) -δ -1 n ([r/δn]+1)δn ([r/δn])δn ∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i-{u/δn} kn + )du |η r | 2 dr + O P (k n δ n ).
What matters is therefore how fast the difference in parentheses goes to 0 (as long as we obtain a bound that is an integrable function of i kn ). With this in mind, we rewrite the last line in the previous display as

[t/δn]-kn j=1 1 k n δ n ∞ i=1-2kn jδn (j-1)δn jδn (j-1)δn ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn ) -∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i+ kn-{u/δn} kn ) du|η r | 2 dr + O P (k n δ n ).
The dudr-double integral on the right-hand side can be split into an jδn (j-1) r (j-1)δn -part and an jδn (j-1) jδn r -part. By symmetry, the latter is equal to

- jδn (j-1)δn r (j-1)δn ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn ) -∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i+ kn-{u/δn} kn ) |η u | 2 dudr, which implies that Qn, 2 (t) -V t = [t/δn]-kn j=1 1 k n δ n ∞ i=1-2kn jδn (j-1)δn r (j-1)δn ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn ) -∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i+ kn-{u/δn} kn ) (η 2 r -η 2 u + η2 r -η2 u )dudr + O P (k n δ n ).
(3.27)

In the last line, the regularity of η 2 and η2 starts to play a role. If η 2 and η2 were just any H-Hölder regular function, the best bound we can hope for is δ H n , which is clearly not enough if H is small. However, this bound can be significantly improved if we have some structure on η 2 and η2 . This is therefore the first (and only) place in this paper where the assumption (2.3) 

δ -(1-κ)/2 n M n, ,kn 1 (t) ≈ [t/δn] j=1 ζ n,j, ,kn 1 , δ -(1-κ)/2 n M n, ,kn 2 (t) ≈ [t/δn] j=1 ζ n,j, ,kn 2 , δ -(1-κ)/2 n (M n, ,kn 31 (t) + M n, ,kn 32 (t) + M n, ,kn 3 (t)) ≈ [t/δn] j=1 ζ n,j, , kn 3 , (3.28) 
where, with the notation

ξ(t) = ((1 -3|t|) ∨ (|t| -1))1 [-1,1](t) , (3.29) 
ζ n,j, ,kn

1 = 8δ -(1-κ)/2 n (k n δ n ) -1-2H jδn (j-1)δn σ 4 (j-1)δn ([s/δn]-( -2)kn)δn ([s/δn]-( +2)kn+1)δn ξ( [r/δn]-[s/δn]+ kn 2kn )(W r -W [r/δn]δn )dW r (W s -W [s/δn]δn )dW s and ζ n,j, ,kn 2 = δ -(1-κ)/2 n jδn (j-1)δn r r-knδ 1-ε n ∞ -2 ∆ 2 1 G H (v)∆ 2 1 G H (v + r-u knδn + ) + ∆ 2 1 G H (v)∆ 2 1 G H (v + r-u knδn -) dvη (j-1)δn dW u η (j-1)δn dW r (3.30)
and ζ n,j, ,kn

3 = ζ n,j, ,kn 31 + ζ n,j, ,kn 32 with ζ n,j, ,kn 31 = -2(k n δ n ) -1/2-H δ -(1-κ)/2 n jδn (j-1)δn σ 2 (j-1)δn × (j-1)δn s-knδ 1-ε n 1 0 ∆ 3 1 G H ( s-r knδn + -u -1) + ∆ 3 1 G H ( s-r knδn --u -1) duη (j-1)δn dW r (W s -W (j-1)δn )dW s , ζ n,j, ,kn 32 = -2(k n δ n ) -1/2-H δ -(1-κ)/2 n jδn (j-1)δn σ 2 (j-1)δn (j-1)δn r-( +2)knδn 1 0 ∆ 3 1 G H ( -r-s knδn -u -1)du(W s -W [s/δn]δn )dW s η (j-1)δn dW r . (3.31)
Now let us define (3.32)

ζ n t =     ζ n, 1 ,k (1) n t . . . ζ n, d,k (d) n t     = [t/δn] j=1     ζ n,j, 1,k (1) n 1 ζ n,j, 1 ,k (1) n 2 ζ n,j, 1,k (1) n 3 . . . . . . . . . ζ n,j, d ,k (d) n 1 ζ n,j, d ,k (d) n 2 ζ n,j, d ,k (d) n 3     .
By (3.29), (3.30) and (3.31), we see that the jth matrix on the right-hand side of (3.32) is F jδn -measurable with a zero F (j-1)δn -conditional expectation. In conjunction with the fact that 1. For any t > 0, m, m ∈ {1, . . . , d} and ν, ν ∈ {1, 2, 3} such that ν = ν , we have

Z n ≈ ζ n 1, 1 = (1,
[t/δn] j=1 E[ζ n,j, m,k (m) n ν ζ n,j, m ,k (m ) n ν | F (j-1)δn ] P -→ γ m,θm, m ,θ m ν (H)Γ ν (t), (3.33) [t/δn] j=1 E[ζ n,j, m,k (m) n ν ζ n,j, m ,k (m ) n ν | F (j-1)δn ] P -→ 0. (3.34)
2. For any m ∈ {1, . . . , d}, ν ∈ {1, 2, 3} and t > 0, we have

(3.35) [t/δn] j=1 E[(ζ n,j, m,k (m) n ν ) 4 | F (j-1)δn ] P -→ 0.
3. If N ∈ {W, Ŵ } or N is a bounded martingale on (Ω, F, F, P) that is orthogonal in the martingale sense to both W and Ŵ , then

(3.36) [t/δn] j=1 E[ζ n,j, m,k (m) n ν (N jδn -N (j-1)δn ) | F (j-1)δn ] P -→ 0.
The proof of these three properties will be given in Section C. This completes the proof of Theorem 2.1.

4. Debiasing and rate-optimal inference for H. There are two main challenges in deriving a rate-optimal estimator of H on the basis of Theorem 2.1: first, if H is small, Ṽ n,kn, t has a nonnegligible bias that dominates the CLT fluctuations; and second, the optimal rate to be achieved is δ

-1/(4H+2) n
and therefore depends on the unknown roughness parameter H itself.

In order to account for the asymptotic bias, our strategy is to consider multiple window sizes k n and combine the resulting Ṽ n, ,kn t 's in a very specific way that cancels the bias terms up to a negligible contribution. For M ∈ N, let us introduce the Vandermonde matrix (4.1)

V M =        1 1 1 • • • 1 1 2 -1 3 -1 • • • M -1 1 2 -2 3 -2 • • • M -2 . . . . . . . . . . . . . . . 1 2 -(M -1) 3 -(M -1) • • • M -(M -1)       
, which has an inverse V -1 M by a standard result from linear algebra. Thus, we can define

(4.2) w(M ) = V -1 M e M , e M = (0, . . . , 0, 1) T , w(M ) = w(M ) | w(M )| , so that w(M ) is the normalized last column of V -1 M .
The following proposition shows that a very specific linear combination of Ṽ n, ,mkn t for different m's removes the dominating part of the bias. While Theorem 2.1 only requires ≥ 2, we have to impose ≥ 3 from now on. PROPOSITION 4.1. Suppose that the conditions of Theorem 2.1 are satisfied with H ∈ (0, 1 2 ] and that k n ∼ θδ -κ n for some θ > 0 and κ ∈ [ 2H 2H+1 , 1 2 ]. Furthermore, assume that ≥ 3. Defining

(4.3) M = M (H) = [ 1 2 -H + 1 4H ] + 1, we have that (4.4) M m=1 w(M ) m m 1/2+H Ṽ n, ,mkn t -V t M m=1 w(M ) m m 1/2+H = O P ((k n δ n ) 1/2 ).
Of course, the left-hand side of (4.4) multiplied by (k n δ n ) -1/2 satisfies a CLT, but since we do not need this in the following, we only prove the simpler version (4.4).

PROOF OF PROPOSITION 4.1. By Theorem 2.1, it suffices to show that (4.5)

M m=1 w(M ) m m 1/2+H A n, ,mkn t = o P ((k n δ n ) 1/2 ), where A n, ,kn t is defined in (2.13). For ≥ 3, the function v → ∆ 3 1 G H ( -1 -i kn + v) is smooth on [-1 2 , 0],with derivatives (∆ 3 1 G H ) (j) ( -1 -i kn + v) that are uniformly bounded in v ∈ [-1 2
, 0], i, k n and j = 0, . . . , M . Thus, by (2.13) and Taylor's theorem,

A n, ,kn t = -2(k n δ n ) -1/2-H M -1 j=0 1 j! t 0 1 k n kn-1 i=0 (∆ 3 1 G H ) (j) ( -1 -i kn ) -{u/δn} kn j × (y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du + O P (k -1/2-H-M n ). (4.6) 
As the reader can verify, by our definition of M in (4.3), we have that k

-1/2-H-M n = o((k n δ n ) 1/2 ).
Next, we recognize that the sum over i is a Riemann sum approximation of the integral

1 0 (∆ 3 1 G H ) (j) ( -1 -v)dv.
By the Euler-Maclaurin formula (see e.g., [31, Theorem 1]), there are finite numbers ξ j,j such that

1 k n kn-1 i=0 (∆ 3 1 G H ) (j) ( -1 -i kn ) = M -1 j =0 ξ j,j k -j n + O(k -M n ).
Inserting this back into (4.6), we can ignore the O(k -M n )-term as before. In fact, we only have to keep those terms for which j + j ≤ M -1. Thus, letting

Ξ n, p (t) = -2δ -1/2-H n M -1 j,j =0 1 {j+j =p} ξ j,j j! × t 0 (-{u/δ n }) j (y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du,
we have that

A n, ,kn t = k -1/2-H n M -1 p=0 Ξ n, p (t)k -p n + o P ((k n δ n ) 1/2 ).
Note that Ξ n, p (t) depends on δ n but not on k n . Therefore, applying the previous identity to mk n for m = 1, . . . , M , we arrive at the following systems of equations:

(4.7) m 1/2+H A n, ,mkn t = M -1 p=0 m -p Ξ n, p (t)k -1/2-H-p n + o P ((k n δ n ) 1/2 ), m = 1, . . . , M.
Thus, introducing

A n, ,kn t = (1 1/2+H A n, ,kn t , . . . , M 1/2+H A n, ,M kn t ) T , Ξ n, (t) = (Ξ n, 0 (t)k -1/2-H-0 n , . . . , Ξ n, M -1 (t)k -1/2-H-(M -1) n ) T ,
we can rewrite (4.7) as

A n, ,kn t = V T M Ξ n, (t) + o P ((k n δ n ) 1/2 )
, where V M is the Vandermonde matrix (4.1). Thus, by the definition of w(M ) (see (4.2)),

M m=1 w(M ) m m 1/2+H A n, ,mkn t = w(M ) T A n, ,kn t = | w(M )| -1 e T M (V -1 M ) T V T M Ξ n, (t) + o P ((k n δ n ) 1/2 ) = | w(M )| -1 Ξ n, M -1 (t)k -1/2-H-(M -1) n + o P ((k n δ n ) 1/2 ).
Since Ξ n, M -1 (t) = O P (1), (4.5) follows from our choice of M .

We now explain how to implement this debiasing procedure in practice. For the remaining part of this section, we assume that (4.8) 

Hn = ϕ -1 V n, 1 , kn t V n, 2, kn t ,
where ϕ :

H → Φ H 1 /Φ H 2 is assumed to be a diffeomorphism and (4.11) kn = [δ -1/2 n ].
This choice of kn has the advantage that it makes Hn a consistent estimator of H, which furthermore satisfies a bias-free central limit theorem regardless of the value of H ∈ (0, 1 2 ). On the downside, its rate is poor if H is small. In the following, we therefore propose an iterative approach to improve the rate, which at the same time retains the bias-free property of the resulting estimators. To this end, let

H = {H (j) = 1
4 ( 4j 2 -4j + 5 -2j + 1) : j ∈ N} = {0.3090, 0.1514, 0.0963, 0.0700, . . . }, (4.12) which is precisely the set of values of H for which 1 2 -H -1 4H (as it appears in (4.3)) is an integer. Therefore, if H (j) < H ≤ H (j-1) for j ∈ N (where

H (0) = 1
2 ), then M = j. Using the pilot estimator Hn , we now define (4.13) Mn = 1 2 -Hn + ] will typically jump between two consecutive integers as n increases. To avoid that, we have included δ

1/4 n log δ -1
n in the definition of Mn , which is asymptotically bigger than the δ and therefore guarantees that we have P( Mn = M ) → 1 for H ∈ H as well.

Having defined Mn , we now set H(0) n = Hn and define consecutively

(4.15) H(j) n = ϕ -1 j m=1 w(j) m m 1/2-H(j-1) n V n, 1,m k(j) n t j m=1 w(j) m m 1/2-H(j-1) n V n, 2,m k(j) n t , k(j) n = [δ -2H (j) /(2H (j) +1) n ],
for j = 1, . . . , Mn -1 and let (4.16) Hn = H( Mn-1) n .

PROPOSITION 4.2. Suppose that the conditions of Theorem 2.1 are satisfied with H ∈ (0, 1 2 ) and assume (4.8). Further fix two lags 1 , 2 ≥ 3 such that the function ϕ :

H → Φ H 1 /Φ H 2 ,
where Φ H is defined in (2.12), is a diffeomorphism on (0, 1 2 ). For any j ∈ N 0 , if H ≤ H (j) , then

(4.17) H(j) n -H = O P (( k(j) n δ n ) 1/2 ).
PROOF. We prove the claim by induction, and since the base case j = 0 corresponds to the CLT of Hn , we can consider j ≥ 1 and assume that (4.17) is true for j -1. We rewrite

H(j) n = ϕ -1 j m=1 w(j) m m 1/2-H(j-1) n +2H (m k(j) n δ n ) -2H V n, 1,m k(j) n t j m=1 w(j) m m 1/2-H(j-1) n +2H (m k(j) n δ n ) -2H V n, 2,m k(j) n t = ϕ -1 j m=1 w(j) m m 1/2-H(j-1) n +2H Ṽ n, 1 ,m k(j) n t j m=1 w(j) m m 1/2-H(j-1) n +2H Ṽ n, 2 ,m k(j) n t (4.18)
and recall (2.11), (2.13) and that ϕ is a diffeomorphism. Therefore, defining ψ(x 1 , x 2 ) = ϕ -1 (x 1 /x 2 ), we can use the mean-value theorem to find (ξ n,1 t , ξ n,2 t ) satisfying 

ξ n,ι t P -→ j m=1 w(j) m m 1/2+H Φ H ι for ι = 1, 2 such that H(j) n -H = ι=1,2 ∂ xι ψ(ξ n,1 t , ξ n,2 t ) j m=1 w(j) m m 1/2-H(j-1) n +2H A n, ι ,m k(j) n t + ι=1,2 ∂ xι ψ(ξ n,1 t , ξ n,2 t ) j m=1 w(j) m m 1/2-H(j-1) n +2H × ( Ṽ n, ι ,m k(j) n t -A n, ι,m k(j) n t -V ι t ). (4.19) By Theorem 2.1, Ṽ n, ι ,m k(j) n t -A n, ι ,m k(j) n t -V ι t = O P (( k(j) n δ n ) 1/2
j m=1 w(j) m m 1/2-H(j-1) n +2H A n, ,m k(j) n t = O P (( k(j) n δ n ) 1/2 ). By Lemma B.3, A n, ,m k(j) n t = O P (( k(j) n ) -1/2-H ) = o P (δ H (j) /(1+2H (j) ) n (4.20) 
). At the same time, for any m = 1, . . . , j, we have that m 1/2-H(j-1)

n +2H -m 1/2+H = O P (( k(j-1) n δ n ) 1/2 ) = O P (δ 1/(4H (j-1) +2) n
) by the induction hypothesis. So if we replace m 1/2-H(j-1) n +2H by m 1/2+H in (4.20), the overall error is o P (δ H (j) /(1+2H (j) )+1/(4H (j-1) +2) n

), which can be shown to be o P (δ 1/(4H (j) +2) n

) by using the explicit formula for H (j) from (4.12). Now once we have replaced m 1/2-H(j-1) n +2H by m 1/2+H , (4.20) follows from Proposition 4.1 (or, more directly, from (4.5)). By (4.14) and the previous proposition, Hn is our best estimator so far: it is bias-free and satisfies a CLT with rate δ 1/(4H (j-1) +2) n , where j ∈ N is such that H (j) < H ≤ H (j-1) . Unless H ∈ H, this rate is close but still not equal to the optimal one, which is δ 1/(4H+2) n . As alluded to before, the remaining obstacle to rate efficiency is the fact that the optimal window size k n should be of order δ -2H/(2H+1) n , which depends on the parameter H to be estimated. While Hn is not rate-optimal in general, it is nevertheless consistent for H, so one might be tempted to use ǩn = [δ -2 Hn/(2 Hn+1) n ] as a new window size and to construct a new estimator similarly to (4.15) with ǩn substituted for kn and Mn substituted for j. While this is a natural approach, there is a pitfall inherent in any such plug-in estimator: the sequence ǩn is random as it depends on the data through Hn . As Theorem 2.1 was shown with a deterministic window size, it cannot be applied with ǩn .

In order tackle this problem, we use the randomization approach of [START_REF] Szymanski | Optimal estimation of the rough Hurst parameter in additive noise[END_REF] that relies on the following-seemingly paradoxical-idea: Add more randomness to ǩn in order to reduce its randomness! To see what this means and why it works, consider an auxiliary probability space (Ω , F , P ) equipped with a uniform random variable U . As usual, we form the product space Ω = Ω × Ω , F = F ⊗ F , P = P ⊗ P and extend all random variables on (Ω, F, P) to the new space in the canonical fashion. To simplify the notation, we keep writing P in the following, but whenever U appears, of course, it stands for P. In addition, we choose two sequences q n ∼ q/ log δ -1 n for some q > 0 and r n → ∞ such that δ 

-1/4 n /r n → ∞
k U n = [δ -2H U n /(2H U n +1) n ], H U n = [r n (H + q n ) + U ] + 1 r n .
Note that k U n only depends on U but no longer on F , in particular, no longer on the data. This is what we mean by "reducing randomness." In conclusion, what the randomization approach really does it to exchange data-dependent randomness for data-independent randomness in the sequence kn . And this clearly pays off: conditionally on U , the sequence k U n is deterministic, to which we can apply all limit theorems obtained so far. Thus, our rate-optimal estimator of H is (4.25)

Ĥn = ϕ -1 Mn m=1 w( Mn ) m m 1/2-Hn V n, 1,m kn t Mn m=1 w( Mn ) m m 1/2-Hn V n, 2,m kn t ,
whose asymptotic behavior is given in the following theorem, our main result. THEOREM 4.3. Grant Assumption CLT and suppose that q n ∼ q/ log δ -1 n for some q > 0 and r n is an increasing sequence such that δ -1/4 n /r n → ∞ and log δ -1 n /r n → 0. Moreover, fix two lags 1 , 2 ≥ 3 such that the function ϕ :

H → Φ H 1 /Φ H 2 ,
where Φ H is defined in (2.12), is a diffeomorphism on (0, 1 2 ). Assuming (4.8) and using the notations (4.26)

β(H) = e 2q/(2H+1) 2 and w(M, H) = (w(M, H) 1 , . . . , w(M, H) M ) T , w(M, H) m = w(M ) m m 1/2+H M m=1 w(M ) m m 1/2+H (4.27)
and

(4.28) γ , ν (H) = (γ ,β(H)m, ,β(H)m ν (H)) M m,m =1 ∈ R M ×M , ν = 1, 2, 3, , ≥ 3, 
we have for any

H ∈ (0, 1 2 ) that δ -1/(4H+2) n ( Ĥn -H) st -→ N 0, ϕ(H) ϕ (H) 2 ι,ι =1,2 (-1) ι+ι Φ H ι Φ H ι 3 ν=1 [w(M, H) T γ ι , ι ν (H)w(M, H)]Γ ν (t) , (4.29) 
where M = M (H) is the number from (4.3) and the limit in the previous line is independent of F .

PROOF. By (4.14) and (4.23), it suffices to prove (4.29) for (4.30)

H n = ϕ -1 M m=1 w(M ) m m 1/2-Hn V n, 1 ,mk U n t M m=1 w(M ) m m 1/2-Hn V n, 2,mk U n t
instead of Ĥn . And by the definition of stable convergence in law, it suffices to do so conditionally on U because U does not appear in the limit. Next, similarly to (4.18) and (4.19), we can write

H n = ϕ -1 M m=1 w(M ) m m 1/2-Hn+2H Ṽ n, 1,mk U n t M m=1 w(M ) m m 1/2-Hn+2H Ṽ n, 2,mk U n t and find (ζ n,1 t , ζ n,2 t ) such that δ -1/(4H+2) n (H n -H) = δ -1/(4H+2) n ι=1,2 ∂ xι ψ(ζ n,1 t , ζ n,2 t ) M m=1 w(M ) m m 1/2-Hn+2H A n, ι ,mk U n t + ι=1,2 ∂ xι ψ(ζ n,1 t , ζ n,2 t ) M m=1 w(M ) m m 1/2-Hn+2H × δ -1/(4H+2) n ( Ṽ n, ι ,mk U n t -A n, ι ,mk U n t -V ι t ). (4.31) 
Conditionally on U , the sequence k U n is deterministic. Furthermore, since q n ∼ q log δ -1 n and log δ -1 n /r n → 0, we have k U n /δ -2H/(2H+1) n → e 2q/(2H+1) 2 . By Theorem 2.1, we know that (δ

-1/(4H+2) n ( Ṽ n, ι ,mk U n t -A n, ι,mk U n t -V ι t
)) ι=1,2,m=1,...,M satisfies a joint CLT, so a tedious but entirely straightforward variance computation shows that the second line of the previous display converges stably to the right-hand side of (4.29). Analogously to how we proved (4.20), we can first use Proposition 4.2 to replace m 1/2-Hn+2H by m 1/2+H and then apply Proposition 4.1 to show that the first term on the right-hand side of (4.31) is o P (δ

1/(4H+2) n
), completing the proof.

In order to make Theorems 2.1 and 4.3 feasible, we need to find consistent estimators of Γ 1 (t), Γ 2 (t) and Γ 3 (t) from (2.16). The following estimators are adapted from [3, Theorem 8.12]. PROPOSITION 4.4.

Let Kn = kn [δ -λ n ],
where kn is defined in (4.21) and λ ∈ (0, 1 2 ). Moreover, define

δ n i X = X i Knδn -X (i-1) Knδn , δ n i ĉ = 1 kn δ n ( Ĉn (1+i Kn)δn, knδn -Ĉn (1+(i-1) Kn)δn, knδn ) (4.32)
and 

Γn 1 (t) = 1 9δ 3 n [t/( Knδn)]-1 i=1 (δ n i X) 4 (δ n i+1 X) 4 , Γn 2 (t) = ( Kn δ n ) 1-4 Ĥn 3 [t/( Knδn)]-2 i=1 (δ n i ĉ) 4 , Γn 3 (t) = ( Kn δ n ) -1-2 Ĥn 3 [t/( Knδn)]-2 i=1 (δ n i ĉ) 2 (δ n i+1 X) 4 .
U n ) = 1, where K U n ∼ Θ δ -2H/(2H+1)-λ n
for some Θ > 0 (and almost all realizations of U ). Thus, it suffices to show

Γn 1 L 1 =⇒ Γ 1 , Γn 2 L 1 =⇒ Γ 2 , Γn 3 L 1 =⇒ Γ 3 ,
assuming Assumption CLT'. The first convergence is a consequence of [START_REF] Jacod | Discretization of Processes[END_REF]Theorem 8.4.1].

For the remaining two, we make the following observation: by (3.7), we have that

δ n i c -δ n i c = J n 1,1+iKn -J n 1,1+(i-1)Kn + 1 k n δ n (iKn+kn)δn iKnδn (c s -c iKnδn )ds + 1 k n δ n ((i-1)Kn+kn)δn (i-1)Knδn (c s -c (i-1)Knδn )ds.

It is not hard to see from the definition that

J n i is of size k -1/2 n
, uniformly in i. Moreover, the last two terms on the right-hand side of the previous display are of size (k n δ n ) H , uniformly in i. Therefore, if we define Γ n 2 (t) and Γ n 3 (t) in the same way as Γn 2 (t) and Γn 3 (t) but with δ n i c replaced by δ n i c, then

E sup t∈[0,T ] | Γn 2 (t) -Γ n 2 (t)| + | Γn 3 (t) -Γ n 3 (t)| ( Kn δ n ) -H (k -1/2 n + (k n δ n ) H ) → 0 as n → ∞. Consequently, it remains to show Γ n 2 L 1 =⇒ Γ 2 and Γ n 3 L 1 =⇒ Γ 3 .
The first convergence was shown in [6, Theorem 3], while the second is easily obtained from standard techniques of high-frequency statistics (involving drift removal, localization of σ, η and η, and a LLN in the case where X is a Brownian motion and c is a fractional Brownian motion) and the fact that

E[(W H 1 ) 2 (W 2 -W 1 ) 4 ] = E[( Ŵ H 1 ) 2 (W 2 -W 1 ) 4 ] = 3.
This could have been the end of our construction of a rate-optimal and feasible estimator of H if it was not for a crucial detail that we have overlooked so far. It turns out that all estimators considered in this section (including Ĥn ) break down if H = 1 2 , that is, if volatility is not rough but just a semimartingale. This is because Φ 1/2 = 0 for any ≥ 3, which implies by Theorem 2.1 that ( Ṽ n, and thus the estimator Hn converges in distribution (not in probability) to a random variable with a density. In other words, naïvely applying Hn if H = 1 2 can output any value in the interval (0, 1 2 ) just by chance! There are at least two ways of remedying this problem. One possibility is to choose 2 ∈ {0, 1} in (4.10), which ensures that Φ 1/2 2 = 0. However, in this case, Z n, 2 1 (t) will have a dominating bias term that has to be removed (even for the LLN; see [START_REF] Aït-Sahalia | High-Frequency Financial Econometrics[END_REF]Section 8.3]). But more importantly, the latent bias term A n, ,kn t from (2.13) (which will also have a slightly different form) involves the function v → ∆ 3 1 ( 2 -1 -v), which is no longer smooth in v ∈ [0, 3 2 ]. This has the consequence that the debiasing procedure from Proposition 4.1 has to be modified. We propose a different, quicker, solution. Loosely speaking, we first use the limit theory of Ṽ n, 

H n = Ĥn 1 Rn ( V n, 2 , kn t ) + 1 2 1 R\Rn ( V n, 2 , kn t ),
where

(4.35) R n = x ∈ R : |x| > δ 3/4 n log δ -1 n 3 ν=1 γ 2,1, 2,1 ν ( 1 2 ) Γn ν (t) 1/2
and Γn ν (t) is defined in (4.33).

THEOREM 4.5. Under the assumptions of Theorem 4.3 and Proposition 4.4, we have

   lim n→∞ P(H n = Ĥn ) = 1 if H ∈ (0, 1 2 ), lim n→∞ P(H n = 1 2 ) = 1 if H = 1 2 .
In particular, if H ∈ (0, 

V n = δ -3/4 n V n, 2, kn t /( 3 ν=1 γ 2,1, 2,1 ν ( 1 2 ) Γν (t)) 1/2 d -→ N (0, 1), so P(H n = 1 2 ) = P(|V n | ≤ log δ -1 n ) → 1. Similarly, if H ∈ (0, 1 
2 ), we know from Theorem 2.1 that

V n = δ 1/2-H n V n 3 ν=1 γ 2,1, 2 ,1 ν ( 1 2 ) Γν (t) 1/2 (γ 2 ,1, 2,1 2 (H) Γ2 (t)) 1/2 d -→ N (0, 1),
which shows that

P(H n = Ĥn ) = P |V n | > δ 1/2-H n log δ -1 n 3 ν=1 γ 2,1, 2,1 ν ( 1 2 ) Γν (t) 1/2 (γ 2,1, 2 ,1 2 (H) Γ2 (t)) 1/2 → 1.
APPENDIX A: DETAILS OF THE PROOF OF PROPOSITION 3.2

We start with a lemma on the regularity of the process A from (3.2).

LEMMA A.1. For any T > 0, we have that

E[(A t+h -A t ) 2 ] 1/2 + E[(A η t+h -A η t ) 2 ] 1/2 + E[(A η t+h -A η t ) 2 ] 1/2 (1 + t -H )h (2H+1/2)∧1 ∧ h H ,
with a constant that is uniform for t ∈ [0, T ], h > 0 and i = 0, . . . , L. If H = 1 2 , the previous bound can be improved to

E[(A t+h -A t ) 2 ] 1/2 + E[(A η t+h -A η t ) 2 ] 1/2 + E[(A η t+h -A η t ) 2 ] 1/2 h.
PROOF. The statement is obvious for H = 1 2 , so we assume H ∈ (0, 1 2 ) in the following. We only consider increments of A t ; the bounds for A η and A η can be derived in the same way. Since the first term in the definition of A t is differentiable almost surely with L 2 -bounded derivative, we only need to consider the second term. To avoid introducing additional notation, we assume that g 0 ≡ g 0 ≡ 0 such that A t = (g H * η)(t), where (f * g)(t) = R f (t -s)g(s)ds denotes the convolution of two integrable functions. Note that we used the convention η(i)

s = 0 for s < 0. Since E[(A t+h -A t ) 2 ] 1/2 ≤ t 0 E[(η t+h-s -ηt-s ) 2 ] 1/2 g H (s)ds + t+h t E[(η t+h-s ) 2 ] 1/2 g H (s)ds h H + [(t + h) H+1/2 -t H+1/2 ] h H + h H+1/2 h H ,
we have shown the second upper bound. To get the first one, observe that

E[(∆ 2 h A t ) 2 ] 1/2 = E[(∆ 2 h (g H * η)(t)) 2 ] 1/2 = E[(∆ h g H * ∆ h η)(t)) 2 ] 1/2 ≤ t+h -h |g H (s + h) -g H (s)||E[(η t+h-s -ηt-s ) 2 ] 1/2 ds.
The last integral splits into three parts, according to whether s ∈ (-h, 0), s ∈ (t, t + h) or s ∈ (0, t). Bounding them by

0 -h g H (s + h)E[(η t+h-s -ηt-s ) 2 ] 1/2 ds h H 0 -h g H (s + h)ds h H+ H+1/2 , t+h t |g H (s + h) -g H (s)|E[(η t+h-s ) 2 ] 1/2 ds t+h t |g H (s + h) -g H (s)|ds h H+1/2 ∧ t H-3/2 h 2 ≤ t -H h H+ H+1/2 , t 0 |g H (s + h) -g H (s)|E[(η t+h-s -ηt-s ) 2 ] 1/2 ds ≤ h H t 0 |g H (s + h) -g H (s)|ds h H+ H+1/2 ,
we obtain the assertion of the lemma from [START_REF] Ra Čkauskas | Central limit theorems in Hölder topologies for Banach space valued random fields[END_REF]Proposition 2].

PROOF OF LEMMA 3.4. We start with H ∈ (0, 1 2 ). Consider the first

[(k n /δ n ) 1/2 δ ε n ] terms in the sum over i in the definition of Z n, 2 (t) in (3.10). Since E[|c s+knδn -c s | 2 ] 1/2 (k n δ n ) H , their contribution to Z n, 2 (t), multiplied by the rate (k n δ n ) -1/2 , is of order at most (k n δ n ) 1/2-2H k -1 n (k n /δ n ) 1/2 δ ε n (k n δ n ) 2H = δ ε n and hence asymptotically negligible. Simi- larly, because (A.1) ∆ 2 1 G H (u) u H-3/2 ∧ 1, we have that E[|D n 1,i | 2 ] 1/2 (k n δ n ) 1/2+H (i-1+2kn)δn 0 (∆ 2 1 G H ( i-1-r/δn kn )) 2 dr 1/2 (k n δ n ) 1+H i-1 kn -2 (∆ 2 1 G H (u)) 2 du 1/2 (k n δ n ) 1+H , (A.2)
uniformly in i, so the first [(k n /δ n ) 1/2 δ ε n ] terms in the sum over i in (3.20) are negligible as well. Furthermore, by Lemma A.1,

E[|D n 2,i | 2 ] 1/2 (k n δ n ) (2H+1/2)∧1 (i-1+kn)δn (i-1)δn s -H ds (k n δ n ) 1+(2H+1/2)∧1 (k n δ n ) -H (A.3) uniformly for i ≥ [(k n /δ n ) 1/2 δ ε n ],
it follows from the mean-value theorem and the Cauchy-Schwarz inequality that the difference Z n, 2 (t) -Zn,

2 (t), with summation restricted to i ≥ [(k n /δ n ) 1/2 δ ε n ], is of order (k n δ n ) -1-2H (k n δ n ) -1 (k n δ n ) 1+H (k n δ n ) 1-H+(2H+1/2)∧1 , which is o((k n δ n ) 1/2 ) for H ∈ (0, 1 2 ) if ε > 0 is small enough. If H = 1
2 , we note that

D n 1,i = (i-1+2kn)δn (i-1)δn ∆ 2 knδn G 1/2 ((i -1)δ n -r)η r dW r = O P ((k n δ n ) 3/2 ) and D n 2,i = O P ((k n δ n ) 2
). Thus, decomposing

(k n δ n ) -1/2 (Z n, 2 (t) -Zn, 2 (t)) = (k n δ n ) -2 1 k n [t/δn]-( +2)kn+1 i=1 D n 1,i D n 2,i+ kn + (k n δ n ) -2 1 k n [t/δn]-( +2)kn+1 i=1 D n 2,i D n 1,i+ kn + (k n δ n ) -2 1 k n [t/δn]-( +2)kn+1 i=1 D n 2,i D n 2,i+ kn ,
we easily notice that the last term is O P (k n δ n ) and therefore negligible. Let us consider the first expression on the right-hand side; the second one can be treated similarly. Bounding term by term, we notice that it is of order O P (1). This means two things: to show convergence to zero, we need to find a better way of bounding this expression. But at the same time, we are allowed to make any modification that leads to an o P (1) error. In particular, thanks to (3.5), we may replace D n 2,i+ kn by (recall that we may assume A t = t 0 a s ds)

Dn 2,i+ kn = (i-1+( +1)kn)δn (i-1+ kn)δn s+knδn s a (i-1)δn drds,
which has the advantage that it is F (i-1)δn -measurable. Therefore, the product

D n 1,i D n 2,i+ kn is F (i-1+2kn
)δn -measurable with zero F (i-1)δn -conditional expectation. By a martingale size estimate (see [11, Appendix A]), it follows that

E sup t∈[0,T ] (k n δ n ) -2 1 k n [t/δn]-( +2)kn+1 i=1 D n 1,i Dn 2,i+ kn (k n δ n ) -2 1 k n (k n /δ n ) 1/2 (k n δ n ) 3/2 (k n δ n ) 2 = k n δ n → 0.
PROOF OF LEMMA 3.5. We first remove ∨(-[r/δ n ]) from the lower bound of i. Since this is only relevant for r ≤ 2k n δ n and the two ∆ 2 1 G H -terms are uniformly bounded for i ∈ {1 -2k n , . . . , 0}, this removal only incurs an error of order k

-1 n (k n δ n )k n = k n δ n , which is smaller than the desired convergence rate of (k n δ n ) 1/2 .
It remains to replace the upper bound of the sum by +∞. In order to justify this, observe that

(A.4) |∆ 2 1 G H ( i-{r/δn} kn )| i kn H-3/2 ∧ 1 ( and 
1 {i≤2kn+1} if H = 1 2 ),
uniformly in n, i and r. If H ∈ (0, 1 2 ), we now choose some p

> 1 + (1 -κ)/(4κ(1 -H)). For any κ ∈ [ 2H 2H+1 , 1 2 ],
if p is sufficiently close to the lower bound, we still have k p n δ n → 0. So if we consider the two cases t -r ≥ k p n δ n and t -r ≤ k p n δ n separately, we observe in the former case that

E 1 k n t-k p n δn 0 ∞ i=[t/δn]-[r/δn]-( +2)kn+1 ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn )|η r | 2 dr 1 k n ∞ i=k p n/2 i k n 2H-3 t-k p n δn 0 E[|η r | 2 ]dr k (2-2H)(1-p) n = o((k n δ n ) 1/2 ) (A.5)
by our choice of p. If t -r ≤ k p n δ n , we pick some ε > 0 to be specified later and, for the moment, small enough such that we have the bound

|∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn )| ≤ i kn 2H-3 ∧ 1 ≤ i kn -1-ε ∧ 1. Then E 1 k n ([t/δn]-kn)δn t-k p n δn ∞ i=[t/δn]-[r/δn]-( +2)kn+1 ∆ 2 1 G H ( i-{r/δn} kn ) × ∆ 2 1 G H ( i+ kn-{r/δn} kn )|η r | 2 dr 1 k n k 1+ε n ([t/δn]-kn)δn t-k p nδn E[|η r | 2 ]dr k ε+p n δ n . (A.6)
The reader can verify that for any

H ∈ (0, 1 2 ), if p is close enough to 1 + (1 -κ)/(4κ(1 -H)) and ε is small enough, then k ε+p n δ n = o((k n δ n ) 1/2 ). If H = 1 2 , we choose p ∈ (1, 3 
2 ). By (A.4), the left-hand side of (A.5) is simply zero because p > 1. Similarly, the summation in (A.6) only involves O(k n ) many terms, so the left-hand side of (A.6

) is O(k p n δ n ), which is (k n δ n ) 1/2 since p < 3 2 . PROOF OF LEMMA 3.6. If H = 1 2 , we have ∆ 2 1 G 1/2 (v) = 0 for v / ∈ (-2, 0). Thus, Φ 1/2 = 0 for all ≥ 2. For H ∈ (0, 1 2 
), it is possible to compute Φ H using properties of fractional Brownian motion and integration by parts. But in order to prepare for upcoming (and more involved) calculations, we show how to obtain (3.25) using Fourier methods. An advantage of this approach is that it yields a formula for arbitrary ∈ R (not just ∈ {2, 3, . . . }), without the need to differentiate between multiple cases. First notice that there is no harm to extend the integral in (3.25) 

to -∞, because ∆ 2 1 G H (v) = 0 for all v < -2. Therefore, by Parseval's formula, ∞ -2 ∆ 2 1 G H (v)∆ 2 1 G H (v + )dv = 1 2π R F[∆ 2 1 G H ](ξ)F[∆ 2 1 G H ](ξ)e -i ξ dξ,
where F[ϕ](ξ) = R ϕ(x)e -ixξ dξ denotes the Fourier transform of an L 2 -function (which can be extended to the space of tempered distributions) and z denotes the complex conjugate of z ∈ C. We need a few definitions and facts regarding Fourier transforms, which can be found in [25, Section 3.2 and Example 7.1.17]: for α ∈ C \ {0, -1, -2, . . . }, (A.7)

x α ± = (±x) α 1 {±x>0} , F[x α ± ](ξ) = Γ(α + 1)e ∓iπ(α+1)/2 (ξ ∓ i0) -α-1 , (x ± i0) α = x α + + e ±iπα x α -, F[(x ± i0) α ](ξ) = 2πe ±iπα/2 Γ(-α) -1 ξ -α-1 ± .
In particular, still for α ∈ C \ {0, -1, -2, . . . },

F[|x| α ](ξ) = Γ(α + 1)(e -iπ(α+1)/2 (ξ -i0) -α-1 + e iπ(α+1)/2 (ξ + i0) -α-1 ) = 2Γ(α + 1) cos( π(α+1) 2 )|ξ| -α-1 . (A.8)
Moreover, by the fact that

F[ϕ(• + h)](ξ) = e ihξ F[ϕ](ξ)
, the operator ∆ 2 1 in the time domain corresponds to multiplication with e 2iξ -2e iξ + 1 in the Fourier domain. Therefore, recalling (3.16), we have the right-hand side of (3.25) equals

K -2 H Γ(H + 3 2 ) 2 2π(H + 1 2 ) 2 R e -i ξ e -1 2 iπ(H+ 3 2 ) (ξ -i0) -H-3/2 e 1 2 iπ(H+ 3 2 ) (ξ + i0) -H-3/2
× (e 2iξ -2e iξ + 1)(e -2iξ -2e -iξ + 1)dξ.

Observe that

(e 2iξ -2e iξ + 1)(e -2iξ -2e -iξ + 1) = e 2iξ -4e iξ + 6 -4e -iξ + e -2iξ = (e 1 2 ix -e -1 2 ix ) 4 ,
which corresponds to δ 4 1 in the time domain. Moreover, by (A.7),

(ξ -i0) -α (ξ + i0) -α = ξ -2α + + e iπα ξ -α -ξ -α + + ξ -α + e -iπα ξ -α -+ ξ -2α - = ξ -2α + + ξ -2α - = |ξ| -2α .
(A.9)

Therefore, using the last formula in (A.7) and with the convention that δ 4 1 acts on the variable , we obtain

Φ H = K -2 H Γ(H + 3 2 ) 2 2π(H + 1 2 ) 2 R e -i ξ (ξ -i0) -H-3/2 (ξ + i0) -H-3/2 (e 1 2 ix -e -1 2 ix ) 4 dξ = Γ(H + 1 2 ) 2 Γ(-2H -2) 2πK 2 H δ 4 1 (e iπ(H+1) ( -i0) 2H+2 + e -iπ(H+1) ( + i0) 2H+2 ) = Γ(H + 1 2 ) 2 Γ(-2H -2) 2πK 2 
H (e iπ(H+1) + e -iπ(H+1) )δ 4 1

( 2H+2 + + 2H+2 - ) = 2 cos(π(H + 1))Γ(H + 1 2 ) 2 Γ(-2H -2) 2πK 2 H δ 4 1 | | 2H+2 .
Using (2.7) and properties of the Gamma function, one can show that the factor in front of

δ 4 1 | | 2H+2 is equal to 1/(2(2H + 1)(2H + 2)), proving (3.25).
PROOF OF LEMMA 3.7. Recall (3.1). In a first step, we show that the contributions of A η and A η to (3.27) are negligible at a rate of (k n δ n ) 1/2 . We only consider A η , as our arguments apply to A η analogously. If j ≤ (k n /δ n ) 1/2 , then [(kn/δn) 1/2 ] j=1 1 knδn jδn (j-1)δn r (j-1)δn is of size (δ n /k n ) 1/2 , the sum over i of the terms in {• • • } can be bounded by a multiple of k 1+ε n , where ε > 0 can be as small as we want (cf. (A.6)), and A η r -A η u is of size δ H n by Lemma A.1. So in total, the contribution of terms with j

≤ (k n /δ n ) 1/2 is of size (k n δ n ) 1/2 k ε n δ H n , which is o((k n δ n ) 1/2 ) if ε is sufficiently small. If j > (k n /δ n ) 1/2 , then u ≥ (k n δ n ) 1/2
and therefore, by similar arguments, the contribution of the terms with j > 

(k n /δ n ) 1/2 is of size k -1 n k 1+ε n (k n δ n ) -H/2 δ (2H+1/2)∧1 n , which is o((k n δ n ) 1/2 ) if
ξ n j = 1 k n δ n ∞ i=1-2kn jδn (j-1)δn r (j-1)δn ∆ 2 1 G H ( i-{r/δn} kn )∆ 2 1 G H ( i+ kn-{r/δn} kn ) -∆ 2 1 G H ( i-{u/δn} kn )∆ 2 1 G H ( i+ kn-{u/δn} kn ) r 0 ∆ r-u g Hη (u -s)θ s d Ws dudr (A.10)
and ξn j is defined in the same way but with ϑ instead of θ. Clearly, it suffices to consider ξ n j . To this end, if H η ∈ (0, 1 2 ), we consider a sequence of numbers

0 = λ 0 < λ 1 < • • • < λ Q < λ Q+1 = ∞,
whose values shall be determined at a later stage, and define λ

(q) n = [δ -λq n ] for all q = 0, . . . , Q + 1. In particular, 1 = λ (0) n λ (1) n • • • λ (Q) n < λ (Q+1) n = ∞.
Accordingly, we can define ξ n,q j by the same formula as in (A.10), except we replace

r 0 • • • d Ws by (j+1-λ (q) n )δn∧r (j+1-λ (q+1) n )δn • • • d Ws . Then clearly [t/δn]-kn j=1 ξ n j = Q q=0 [t/δn]-kn j=1 ξ n,q j .
Since u, r ∈ ((j -1)δ n , jδ n ), we have by the mean-value theorem (for q = 1, . . . , Q) and a change of variables (for q = 0) that

(j+1-λ (q) n )δn∧r (j+1-λ (q+1) n )δn (∆ r-u g Hη (u -s)) 2 ds            δ 2 n (j+1-λ (q) n )δn (j+1-λ (q+1) n )δn (u -s) 2Hη-3 ds if q ≥ 1, δ 2Hη n r/δn j+1-λ (1) n 
(∆ r-u knδn g Hη ( u δn -s)) 2 ds if q = 0.

δ 2Hη n (λ (q) n ) 2Hη-2 , (A.11)
which, in combination with previous arguments for the contribution of A η , shows that (A.12) E[(ξ n,q j ) 2 ] 1/2 k ε n δ 1+Hη n (λ (q) n ) Hη-1 uniformly in n and j, with arbitrarily small ε > 0. Next, observe that ξ n j is F jδn -measurable with E[ξ n j | F (j+1-λ (q+1) n

)δn ] = 0. Therefore, using a martingale size estimate for q = 0, . . . , Q -1 and a standard size estimate for q = Q (see [11, Appendix A]), we obtain

E sup t∈[0,T ] [t/δn]-kn j=1 ξ n,q j 2 1/2 (λ (q+1) n /δ n ) 1/2 k ε n δ 1+Hη n (λ (q) n ) Hη-1 if q ≤ Q -1, k ε n δ Hη n (λ (Q) n ) Hη-1 if q = Q. (A.13)
We want this to go to zero faster than (k n δ n ) 1/2 for all q = 0, . . . , Q. Because we can replace ε by 1 2 ε in the last display, it suffices to start with λ 0 = 0 and then define λ 1 , λ 2 , . . . iteratively using the relation

-1 2 λ q+1 + ( 1 2 -ε)κ + H η + (1 -H η )λ q = 0 ⇐⇒ λ q+1 = (1 -2ε)κ + 2H η + 2(1 -H η )λ q . (A.14)
The solution to this recurrence equation is

(A.15) λ q = ((1 -2ε)κ + 2H η )((2 -2H η ) q -1) 1 -2H η ,
from which we see that λ q → ∞ if we keep iterating. Let Q be the smallest Q such that λ Q , computed from the formula (A. [START_REF] Corcuera | Asymptotic theory for Brownian semi-stationary processes with application to turbulence[END_REF], is bigger than ( 1-κ 2 + κε -H η )/(1 -H η ), which is smaller than 1 if ε is small. Replacing λ Q by a number between this threshold and 1 (if λ Q from (A.15) exceeds 1), we obtain E[sup t∈[0,T ] (

[t/δn]-kn j=1 ξ n,q j ) 2 ] 1/2 = o((k n δ n ) 1/2
) for all q = 0, . . . , Q, proving the lemma for H η ∈ (0, 1 2 ). If H η = 1 2 , things are much simpler. Indeed, in this case,

r 0 ∆ r-u g Hη (u -s)θ s d Ws = r u θ s d Ws , so (k n δ n ) -1/2 [t/δn]-kn j=1 ξ n j = O P (δ -1/4 n δ -1 n (k n δ n ) -1 k n δ 2 n δ 1/2 n ) = O P (δ 1/4 n ).
APPENDIX B: PROOF OF PROPOSITIONS 

(k n δ n ) -1/2 (Z n, 3 (t) -Zn, 3 (t) 
) PROOF. We only consider the approximation of Z n, 3 (t); the arguments for Z n, 3 (t) are analogous. Using the equality xy -x 0 y 0 = (x -x 0 )y 0 + x(y -y 0 ), we can decompose the difference Z n, 3 (t) -Zn,

L 1 =⇒ 0 and (k n δ n ) -1/2 (Z n, 3 (t) -M n, 3 (t)) L 1 =⇒ 0 as n → ∞, where Zn, 3 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1
3 (t) = E n 1 (t) + E n 2 (t) + E n 3 (t)
, where

E n 1 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 D n 1,i+ kn × (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 ) s [s/δn]δn b r drdy s , E n 2 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 D n 1,i+ kn × (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 )(x s -x [s/δn]δn )b s ds, E n 3 (t) = 2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 D n 2,i+ kn × (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 )(x s -x [s/δn]δn )dx s .
The first term is the easiest to deal with. The dy s -integral is of order δ n (k n δ n ) 1/2 , while D n 1,i+ kn is of order (k n δ n ) 1+H by (A.2). Hence, 

E n 1 (t) = O P (k n δ n ) -2-2H δ n (k n δ n ) 1/2 (k n δ n ) 1+H = o((k n δ n ) 1/
E n 3 (t) = 2(k n δ n ) -1-2H k n ([t/δn]-kn)δn knδn [s/δn]-kn+1 i=[s/δn]-( +1)kn+2
Y n i (A s+knδn -A s )ds.

The sum ranges over O(k n ) many terms only. Thus, by Lemma A.1,

E sup t∈[0,T ] |E n 3 (t)| (k n δ n ) -1-2H δ 1/2 n (k n δ n ) 1/2 (k n δ n ) (2H+1/2)∧1 T 0 (1 + s -H )ds.
Distinguishing the two cases H ≤ 1 4 and H ∈ ( 1 4 , 1 2 ), one can verify that the last line is o((k n δ n ) 1/2 ) for all κ ∈ [ 2H 2H+1 , 1 2 ] and H ∈ (0, 1 2 ). We postpone the analysis of

E n 3 (t) if H = 1
2 to the end of this proof. The term E n 2 (t) is more complicated. Let us first try a power-counting argument as before: the dy s -integral is of order δ

1/2 n k n δ n , while D n 1,i+ kn = O P ((k n δ n ) 1+H ), so E n 2 (t) = O P ((k n δ n ) -2-2H δ 1/2 n k n δ n (k n δ n ) 1+H ), which as the reader can check, is o P ((k n δ n ) 1/2 if κ > 2H 2H+1 but unfortunately only O P ((k n δ n ) 1/2 ) if κ = 2H 2H+1 .
While this simple approach fails for the boundary case κ = 2H 2H+1 , it shows one important point: when trying to improve the bound, we are allowed to make any modifications that generate an asymptotically vanishing error (the speed can be arbitrarily slow). For instance, we may replace x by y and, thanks to (3.5), b s by b (i-1)δn in the definition of E n 2 (t), so that we only have to analyze 

2(k n δ n ) -1-2H k n [t/δn]-( +2)kn+1 i=1 b (i-1)δn (i-1+2kn)δn (i-1)δn χ( [s/δn]-i+1 2kn-1 )(y s -y [s/δn]δn )ds × (i-1+( +2)kn)δn 0 ∆ 2 knδn G H ((i + k n -1)δ n -r)(η
(t) = (k n δ n ) -1-2H 2 k n [t/δn]-( +2)kn+1 i=1 b (i-1)δn (i-1+2kn)δn (i-1)δn ψ n r σ r × r 0 ∆ 2 knδn G H ((i + k n -1)δ n -u)(η u dW u + ηu d Ŵu )dW r , E n 22 (t) = (k n δ n ) -1-2H 2 k n [t/δn]-( +2)kn+1 i=1 b (i-1)δn × (i-1+( +2)kn)δn (i-1)δn ∆ 2 knδn G H ((i + k n -1)δ n -r) × r (i-1)δn ψ n u σ u dW u (η r dW r + ηr d Ŵr ), E n 23 (t) = (k n δ n ) -1-2H 2 k n [t/δn]-( +2)kn+1 i=1 b (i-1)δn × (i-1+2kn)δn (i-1)δn ∆ 2 knδn G H ((i + k n -1)δ n -r)ψ n r σ r η r dr. Since (B.3) (i-1+2kn)δn (i-1)δn |∆ 2 knδn G H ((i + k n -1)δ n -r)|dr = (k n δ n ) H+3/2 -2 |∆ 2 1 G H (r)|dr, we have that E n 23 (t) = O P ((k n δ n ) -2-2H (k n δ n ) H+3/2 δ 3/2 n ) = o P ((k n δ n ) 1/2 ) for all κ ≥ 2H 2H+1 .
For both E n 21 (t) and E n 22 (t), note that the ith term is F (i-1+( +2)kn)δn -measurable with zero F (i-1)δn -conditional expectation. Moreover, using (A.2), we have that each summand is of order

(k n δ n ) 1+H (k n δ n ) 1/2 δ 3/2
n . We can therefore apply a martingale size estimate (see [11, Appendix A]) to both terms and obtain

(B.4) E sup t∈[0,T ] |E n 21 (t)+E n 22 (t)| (k n δ n ) -1-2H k -1 n (k n /δ n ) 1/2 (k n δ n ) 1+H (k n δ n ) 1/2 δ 3/2 n , which is o((k n δ n ) 1/2 ). Lastly, let us come back to E n 3 (t) if H = 1 2 .
As in the case of E n 2 (t), bounding term by term leads to an O P ((k n δ n ) 1/2 ) estimate, which is just not enough at the considered rate. But we are allowed to modify E n 3 (t) in the following way at no cost: we replace σ (which appears in y) by σ (i-1)δn and a r (which appears in A s+knδn -A s , which in turn appears in D n 2,i+ kn ) by a (i-1)δn . Once these changes are made, the ith term in E n 3 (t) will be F (i-1+2kn)δn -measurable with zero F (i-1)δn -conditional expectation, so we can conclude by a martingale size estimate.

Next, using integration by parts, we have that Zn,

3 (t) = M n, 31 (t) + M n, 32 (t) + Q n, 3 (t) 
, where

Q n, 3 (t) = (k n δ n ) -1-2H 2 k n [t/δn]-( +2)kn+1 i=1 (i-1+2kn)δn (i-1)δn ∆ 2 knδn G H ((i -1 + k n )δ n -u) × χ( [u/δn]-i+1 2kn-1 )(y u -y [u/δn]δn )σ u η u du. LEMMA B.2. Under Assumption CLT', if κ > 2H 2H+1 , then M n, 31 + M n, 32 + M n, 3 L 1 =⇒ 0.
PROOF. By (A.2), the ith term in the summation in M n, 31 (t), M n, 32 (t) and M n,

3 (t) is of order (k n δ n ) 1+H (k n δ n ) 1/2 δ 1/2
n . Therefore, by a martingale size argument, very similarly to how we obtained (B.4), it follows that

E sup t∈[0,T ] |M n, 31 (t) + M n, 32 (t) + M n, 3 (t)| (k n δ n ) -1-2H k -1 n (k n /δ n ) 1/2 (k n δ n ) 1+H (k n δ n ) 1/2 δ 1/2 n , which is o((k n δ n ) 1/2 ) if (and only if) κ > 2H 2H+1 . LEMMA B.3. Under Assumption CLT', we have (k n δ n ) -1/2 (Q n, 3 (t) -A n, ,kn t ) L 1
=⇒ 0 for any ≥ 2, where A n, ,kn t is defined in (2.13). In addition, we have that A n, ,kn t

= O P (k -1/2-H n ). In particular, if κ > 1 2+2H , then (k n δ n ) -1/2 A n, ,kn L 1 =⇒ 0. The last condition is satisfied with κ = 2H 2H+1 if and only if H > 1 4 ( √ 5 -1) ≈ 0.3090.
PROOF. In a first step, we decompose

Q n, 3 (t) = Q n, 31 (t) + Q n, 32 (t), where Q n, 31 (t) = 2(k n δ n ) -1-2H 1 k n [t/δn]-( +2)kn+1 i=1 2kn-1 j=0 χ( j 2kn-1 ) × (i+j)δn (i-1+j)δn ∆ 2 knδn G H ((i -1 + k n )δ n -u) × (y u -y (i+j-1)δn )(σ u η u -σ (i+j-1)δn η (i+j-1)δn )du, Q n, 32 (t) = 2(k n δ n ) -1-2H 1 k n [t/δn]-( +2)kn+1 i=1 2kn-1 j=0 χ( j 2kn-1 ) × (i+j)δn (i-1+j)δn ∆ 2 knδn G H ((i -1 + k n )δ n -u)
× (y u -y (i+j-1)δn )σ (i-1+j)δn η (i-1+j)δn du.

(B.5)

Let us consider Q n, 32 (t) first and interchange the sums over i and j. For every fixed j, we observe that the ith term is F (i+j)δn -measurable with vanishing F (i+j-1)δn -conditional expectation. Moreover, similarly to (B.3),

(i+j)δn (i-1+j)δn |∆ 2 knδn G H ((i + k n -1)δ n -u)|du = (k n δ n ) H+3/2 -j kn -j+1 kn |∆ 2 1 G H (u)|du (k n δ n ) H+3/2 k n .
Therefore, for every j, the sum over i is a martingale sum, which yields

E sup t∈[0,T ] |Q n, 32 (t)| (k n δ n ) -1-2H (k n δ n ) H+3/2 k n δ -1/2 n δ 1/2 n = o((k n δ n ) 1/2 )
for all κ ≥ 2H 2H+1 .

Consequently, we only have to consider Q n, 31 (t) further, which can be rewritten as

Q n, 31 (t) = 2(k n δ n ) -1/2-H 1 k n [t/δn]-( +2)kn+1 i=1 (i+2kn-1)δn (i-1)δn χ( [u/δn]-i+1 2kn-1 ) × ∆ 2 1 G H ( i-1-u/δn kn + )(y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du = 2(k n δ n ) -1/2-H 1 k n ([t/δn]-kn)δn 0 ([u/δn]+1)∧([t/δn]-( +2)kn+1) i=([u/δn]-2kn+2)∨1 χ( [u/δn]-i+1 2kn-1 ) × ∆ 2 1 G H ( i-1-u/δn kn + )(y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du = 2(k n δ n ) -1/2-H 1 k n ([t/δn]-kn)δn 0 0∧([t/δn]-[u/δn]-( +2)kn) i=(1-2kn)∨(-[u/δn]) χ( -i 2kn-1 ) × ∆ 2 1 G H ( i-{u/δn} kn + )(y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du.
Similarly to how we proved Lemma 3.5, one can use (A.4) to show that

(k n δ n ) -1/2 (Q n, 31 (t)- Qn, 31 (t) 
)

L 1 =⇒ 0, where Qn, 31 (t) = 2(k n δ n ) -1/2-H 1 k n ([t/δn]-kn)δn 0 2kn-1 i=0 χ( i 2kn-1 )∆ 2 1 G H ( -i-{u/δn} kn + ) × (y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du.
In fact, we can further change the upper bound of the integral and replace Qn, 31 (t) by Qn,

31 (t) = 2(k n δ n ) -1/2-H 1 k n t 0 2kn-1 i=0 χ( i 2kn-1 )∆ 2 1 G H ( -i-{u/δn} kn + ) × (y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du. (B.6) Indeed, by (A.4), E[sup t∈[0,T ] | Qn, 31 (t) -Qn, 31 (t)|] (k n δ n ) 1/2-H δ 1/2+H n = o((k n δ n ) 1/2
). Now recall the definition of χ(t), which is -1 for t < 1 2 and 1 for t ≥ 1 2 . Therefore, Let us make three observations: First, for any of the three terms in (C.4), by a straightforward power-counting argument, if we restrict the inner integral to ((j -1)δ n , s) or ((j -1)δ n , r), respectively, the second moment of the resulting term will be of order δ And finally, because ∆ 2 1 G H (v) = 0 for v ≤ -2, there is no harm in extending the du-integral in ζn,j, ,kn 

Qn, 31 (t) = 2(k n δ n ) -1/2-H k n t 0 kn-1 i=0 ∆ 2 1 G H ( -i-{u/δn} kn + -1) -∆ 2 1 G H ( -i-{u/δn} kn + ) (y u -y [u/δn]δn )(σ u η u -σ [u/δn]δn η [u/δn]δn )du = - 2(k n δ n ) -1/2-H k n t 0 kn-1 i=0 ∆ 3 1 G H ( -1 -i+{u/δn} kn ) × (y u -y [u/δn]δn )(σ u η u -σ [u/

  [0,T ],|s-t|≤h E[1 ∧ |b t -b s |] + E[1 ∧ |a t -a s |] = 0.

(4. 33 )

 33 Then under the assumptions of Theorem 4.3, we have Γn ν P =⇒ Γ ν for each ν = 1, 2, 3. PROOF. Let δ n i c and Γn ν (t), ν = 1, 2, 3, be defined in the same way as the corresponding quantities in (4.32) and (4.33) except that kn and Kn are replaced by some deterministic sequences k n ∼ θδ -2H/(2H+1) n and K n ∼ Θδ -2H/(2H+1)-λ n with θ, Θ > 0. Similarly to (4.23), we have P( Kn = K

  χ( [s/δn]-i+1 2kn-1 )(y s -y [s/δn]δn )dy s . (B.1)

2 PROOF OF PROPOSITION 3 . 8 .-) × ∆ 2 1 G 2 | 2 n 31 = 2 (- 32 = 2 (k n δ n ) - 1 1 ) × ∆ 2 1 G 3 = 2 (k n δ n ) - 1 1 ) × ∆ 2 1 G 31 = 2 ( 1 G 32 = 2 ( 1 G 3 = 2 ( 1 G

 2381223123221113211131213221321 δ n ) -1-2H k -1 n k n /δ n k n δ 2 n = o((k n δ n ) 1/2 )for κ > 2H 2H+1 .APPENDIX C: DETAILS FOR SECTION 3.Let us start with M n, ,kn 2 (t). Interchanging summation over i with the dW r -integral in(3.15) and breaking the latter into small pieces of length δ n , we can rewriteδ δn]-( +2)kn+1 i=([r/δn]-( +2)kn+2)∨1 × ∆ 2 knδn G H ((i -1)δ n -r)∆ 2 knδn G H ((i + k n -1)δ n -u) + ∆ 2 knδn G H ((i + k n -1)δ n -r)∆ 2 knδn G H ((i -1)δ n -u) η u dW u η r dW r = δ -(1-κ)δn]-[r/δn]-( +2)kn i=(1-( +2)kn)∨(-[r/δn]) ∆ 2 1 G H ( i-{r/δn} kn H ( i-{r/δn} kn + r-u knδn + ) + [t/δn]-[r/δn]-2kn i=(1-2kn)∨( kn-[r/δn]) ∆ 2 1 G H ( i-{r/δn} kn ) × ∆ 2 1 G H ( i-{r/δn} kn + r-u knδn -) η u dW u η r dW r . (C.1)Let us bound the pth moment of ζn,j, ,kn 2 for p ≥ 2 and draw some conclusions. By the Burkholder-Davis-Gundy inequality and similar steps to (3.22) and (3.23), we have thatE[| ζn,j, ,kn p ] δ -(1-κ)p/2 2kn-1 )χ( -i+m 2kn-1 ) = 2k n ξ( m 2kn ),the first approximation in(3.28) follows by replacing all σ's by σ [s/δn]δn .Regarding the last approximation in (3.28), we have analogously to (C.1) thatδ -(1-κ)/k n δ n ) -1/2-H δ t/δn]-[s/δn]-( +2)kn) i=(1-2kn)∨(-[s/δn]) χ( -i 2kn-1 ) × ∆ 2 1 G H ( i-{s/δn} kn + s-r kn + )η r dW r (y s -y [s/δn]δn )σ s dW s , ζn,j, ,kn r∧([t/δn]-kn)δn ([r/δn]-( +2)kn+1)δn∨0(y s -y [s/δn]δn ) × 0∧([t/δn]-[s/δn]-( +2)kn) i=(1-2kn)∨([r/δn]-[s/δn]-( +2)kn+1)∨(-[s/δn]) χ( -i 2kn-H ( i-{s/δn} kn -r-s kn + )σ s dW s η r dW r , ζ n,j, ,kn /δn]-( -2)kn)δn∧([t/δn]-kn)δn 0 σ s × (y s -y [s/δn]δn ) 0∧([t/δn]-[s/δn]-2kn) i=(1-2kn)∨([r/δn]-[s/δn]+( -2)kn+1)∨( kn-[s/δn])χ( -i 2kn-H ( i-{s/δn} kn + s-r kn -)η r dW r dW s .Since κ = 2H 2H+1 , it can be shown similarly to (C.2) and the subsequent paragraph that each of the three terms defined in (C.3) is of order O P (1). Therefore, by the same type of modifications (i.e., discretization of η and σ, dropping ∧(• • • ) and ∨(• • • ) in the summation over i, approximating sums by integrals, and restricting the dW r -integral in ζn,j, ,kn 31 and ζ n,j, ,kn31 to r ≥ s -k n δ 1-ε n ), we obtain δ -(1-κ)/2 n (M n, ,kn 31|32 (t) -M n, ,kn 31|32 (t)) k n δ n ) -1/2-H δ -(1-κ)H ( s-r knδn + -u)du η (j-1)δn dW r (W s -W (j-1)δn )dW s , ζn,j, ,kn k n δ n ) -1/2-H δ -(1-κ)/δn]-( +2)kn+1)δn (W s -W [s/δn]δn ) H ( -r-s knδn -u)dudW s η (j-1)δn dW r , ζ n,j, ,kn k n δ n ) -1/2-H δ -(1-κ)H ( s-r knδn --u)duη (j-1)δn dW r dW s .(C.4)

1 G 1 G

 11 1+2H/(2H+1) n = o(δ n ),showing that the latter is asymptotically negligible (cf. (C.2) and the subsequent arguments). Second, by the definition of χ(t), H ( s-r knδn + -u)du = -H ( s-r knδn + -u -1)du.

32 and ζ n,j, ,kn 3 up to the upper bound 2 . 22 , 2 ∆ 2 1 G

 323222221 The aforementioned modifications turn ζn,j, ,kn 32 into ζ n,j, ,kn 32 and the sum ζn,j, ,kn 31 + ζ n,j, ,kn 3 into ζ n,j, ,kn 31 , which establishes the last relation in (3.28). PROOF OF EQUATION (3.35). For any ν ∈ {1, 2, 3}, we have seen in the proof of Proposition 3.8 that E[|ζ n,j, ,kn ν | p ] δ p/2 n , uniformly in j. Setting p = 4, we easily obtain that the left-hand side of (3.35) is O P (δ n ).PROOF OFEQUATION (3.36). We only show(3.36) for ν = 2 as the arguments for ν = 1 and ν = 3 are similar. Note that ζ n,j, ,kn 2 can be decomposed into two parts, ζ n,j, ,kn 21 and ζ n,j, ,kn which are defined in the same way as ζ n,j, ,kn 2 in (3.30), except that the dW uintegral is restricted to (r -k n δ 1-ε n , (j -1)δ n ) and ((j -1)δ n , r), respectively. By definition, ζ n,j, ,kn 22 belongs to the second Wiener chaos with respect to W , conditionally on F (j-1)δn . Thus, E[ζ n,j, ,kn22(N jδn -N (j-1)δn ) | F (j-1)δn ] = 0 by the orthogonality of Wiener chaoses of different orders if N ∈ {W, Ŵ } and by the orthogonality of N and W otherwise. If N is orthogonal to W , we also have E[ζ n,j, ,kn 21 (N jδn -N (j-1)δn ) | F (j-1)δn ] = 0, so let us assume that N = W or N = Ŵ . Since the two cases are completely analogous, we take N = W . ThenE[ζ n,j, ,kn 21 (N jδn -N (j-1)δn ) | F (j-1)δn ] = δ -(1-κ)/2 n jδn (j-1)δn (j-1)δn r-knδ 1-ε n ∞ -H (v)∆ 2 1 G H (v + r-u knδn + ) | F (j-1)δn ] = 0 because E[W s -W (j-1)δn | F (j-1)δn ] = 0.Thus, it remains to find the limits of (C.11) R n, 1,kn , 2,k n 31|32,31|32 (t) = [t/δn] j=1 E[ζ n,j, 1 ,kn 31|32 ζ n,j, 2 ,k n 31|32| F (j-1)δn ].

  r -s)η s dW s dr,

	where η t = (η t , ηt ), W t = (W t , Ŵt ) T and	
			t			s						s		t
	A t =			a s +			g 0 (s -r)η r dW r +	g 0 (s -r)η r dr ds +	g H (t -s)η s ds,
		0			0							0		0
	A η t =	0	t	a η s +	0	s	(g η 0 ) (s -r)θ r d Wr +	0	s	(g η 0 ) (s -r) θr dr ds +	0	t	g Hη (t -s) θs ds,
	A η t =	0	t	a η s +	0	s	(g η 0 ) (s -r)ϑ r d Wr +	0	s	(g η 0 ) (s -r) θr dr ds +	0	t	g Hη (t -s) θs ds.
				t							t	t		t	r
				g0 (t -s)η s ds =	g 0 (r -s)drη s ds =	g 0 (r -s)η s dsdr,
			0								0	s		0	0
	and similarly for other integrals, so we can rewrite (2.2) and (2.3) as
		c t = c 0 + A t +	t	g H (t -s)η s dW s ,	η 2 t = η 2 0 + A η t +	t	g Hη (t -s)θ s d Ws ,
	(3.1)	η2 t = η2 0 + A η t +	0	t	g Hη (t -s)ϑ s d Ws ,	0
								0					

  is used. Leveraging (2.3) into a sufficiently good bound in (3.27) is still nontrivial, so we complete the proof of Lemma 3.7 in Section A.

	PROOF OF PROPOSITION 3.2. Proposition 3.2 follows by combining Lemma 3.4, Equa-
	tion (3.21), Lemma 3.5 and Lemma 3.7.			
	3.2. Multivariate stable convergence in law. In a first step, we carry out a few approxi-
	mations of M n, ,kn 1	(t), M n, ,kn 2	(t), M n, ,kn 31	(t), M n, ,kn 32	(t) and M n, ,kn 3	(t). The proof can be
	found in Section C.				
	PROPOSITION 3.8. Under the conditions of Theorem 2.1, we have	

  is actually a statistic since it does not depend on the unknown H. We construct a first pilot estimator of H by fixing two lags 1 , 2 ≥ 3 and then defining(4.10) 

					t
					(η 2 s + η2 s )ds > 0 a.s.
				0
	(or, equivalently, all forthcoming statements are valid without (4.8) but in restriction to the set { t 0 (η 2 s + η2 s )ds > 0}). Define
				[t/δn]-( +2)kn+1	
	(4.9)	V n, ,kn t	= δ n	i=1	(ĉ n (i+kn)δn,knδn -ĉn iδn,knδn )
					× (ĉ n (i+( +1)kn)δn,knδn -ĉn (i+ kn)δn,knδn )
	for ≥ 3 and k n ∈ N, which clearly satisfies V n, ,kn t Ṽ n, ,kn t	= (k n δ n ) 2H Ṽ n, ,kn t	but in contrast to

  as an estimator of the number M from (4.3). Since Hn is a consistent estimator of H and δ

			1 4 Hn	+ δ 1/4 n log δ -1 n	+ 1
	1/4 n log δ -1 n → 0, if H / ∈ H, we have	
	(4.14)	lim	
	If H ∈ H, then we still have 1 2 -Hn + 1 4 Hn	→ 1 2 -H + 1 4H in probability, but since the limit
	is an integer, after rounding, [ 1 2 -Hn + 1 4 Hn

n→∞ P( Mn = M ) = 1.

  ). It remains to show that the first term on the right-hand side of (4.19) is O

P (( k(j) n δ n ) 1/2 ). Let us fix ι. Since ∂ xι ψ(ξ n,1

t , ξ n,2 t ) converges in probability, we only have to show that for any ≥ 3,

  and log δ -1 n /r n → 0. We then define the oracle sequence (4.[START_REF] Gatheral | Volatility is rough[END_REF] kn = [δ -2 HU

				n	n /(2 HU n +1)	],
	where		
	(4.22)	HU n =	[r n ( Hn + q n ) + U ] + 1 r n
	is a randomized version of Hn . Note that HU n depends both on the data (through Hn ) and
	on U , which is what we mean by "adding randomness." The success of the randomization
	approach pivots on the following oracle property, proved in [38, Lemma 9]:
	(4.23)	lim n→∞	P( kn = k U n ) = 1,
	where		
	(4.24)		

  ε is small. It remains to analyze the expressions

	[t/δn]-kn j=1	ξ n j and	[t/δn]-kn j=1	ξn j , where

  3.1 AND 3.3 PROOF OF PROPOSITION 3.3. The proposition follows from Lemmas B.1-B.3. LEMMA B.1. Recall (3.19) and that y t = t 0 σ s dW s . Under Assumption CLT', we have

  (k n δ n ) 1/2 ,uniformly in n and i. Interchanging summation over i with the integral defining D n 2,i+ kn in (3.19), we have that

		2 )
	for any κ ≥ 2H 2H+1 .
	δ	Next, consider E n 3 (t) and denote the ds-integral by Y n i . Clearly, we have E[(Y n i ) 2 ] 1/2 1/2

n

  δn]δn σ r dW r , we can use the stochastic Fubini theorem to rewrite the ds-integral above as )(y s -y [s/δn]δn )dsσ r dW r .

	(B.2)
	Since y s -y [s/δn]δn =
	(i-1+2kn)δn (i-1)δn 2kn-1 We do not really need the explicit form of the new ds-integral, so let us denote it by ψ n (r+δn)∧(i-1+2kn)δn r χ( [s/δn]-i+1 r and only remark that E[sup r∈[0,T ] |ψ n 3/2 n for all p > 0. Using integration by parts, we r | p ] 1/p δ can now write (B.2) as E n 21 (t) + E n 22 (t) + E n 23 (t), where
	E n 21

r dW r + ηr d Ŵr ).

s [s/

  δn]δn η [u/δn]δn )du, which shows that Qn, 31 (t) is nothing else but the bias term A n, ,kn t . This establishes the first claim of the lemma. The second follows from (2.13) by observing that ∆3 1 G H is a bounded function (and, of course, that y u -y [u/δn]δn and σ u η u -σ [u/δn]δn η [u/δn]δn are of order δ 1/2 n and δ H n , respectively). The last two assertions are obvious.will have a zero F (i+ kn-1)δn -conditional expectation, so applying another martingale size estimate yieldsF n 1 (t) = o P ((k n δ n ) 1/2). It remains to prove the last statement of the proposition. Because ≥ 2, it is easy to see that the ith term in (3.13) is F (i-1+( +2)kn)δn -measurable while having a zero F (i-1+ kn)δnconditional mean. By yet another martingale size estimate, it follows that

	E sup
	t∈[0,T ]

| F (j-1)δn ] ≡ 0. Funding. Yanghui Liu is supported by the PSC-CUNY Award 64353-00 52. Mathieu Rosenbaum and Grégoire Szymanski gratefully acknowledge the financial support of the École Polytechnique chairs Deep Finance and Statistics and Machine Learning and Systematic Methods.

PROOF OF PROPOSITION 3.1. By (3.11), we have that Clearly, the last term is O P ( δ n /k n ), while J n 1,i+kn -J n 1,i = O P ( 1/k n ). Therefore, the contribution of the former to Z n,

), which, as the reader may verify, is o P ((k n δ n ) 1/2 ) for all κ ∈ [ 2H 2H+1 , 1 2 ]. Therefore,

, where Because ≥ 2, the ith term in F n 2 (t) is F (i+( +2)kn-1)δn -measurable with a vanishing F (i+ kn-1)δn -conditional expectation. Thus, by a martingale size estimate (see [11, Appendix A]) and the bounds found in the previous paragraph, we obtain that

, observe that if we just applied a term-by-term size estimate, we would obtain

To handle the latter case, note that we can replace b s in F n 1 (t) by b (i-1)δn (by the preceding arguments and (3.5), the error is o P ((k n δ n ) 1/2 )). After doing so, the ith in F n 1 (t)

Consequently, ζn,j, ,kn

. This is, of course, expected because (3.15) is supposed to contribute to the CLT. But what this calculation also shows is that before we try to find the limit of (3.15), we can make any modifications that lead to an o P (1) error. For example, we can replace η r by η (j-1)δn (this incurs an O P (δ H n ) error) and replace 1 kn times the two sums after second equality in (C.1) by

(for modifying the upper and lower bounds of the summation, see the discussion after (3.23); for the integral approximation, the error is at most k

continuous). We will make two more changes, after which we will arrive at ζ n,j, ,kn , where ε > 0 is a small but fixed number. Similarly to (C.2), one can show that the resulting error is δ

. And second, we replace η u first by η r-knδ 1-ε n and then by η (j-1)δn , which leads to an O P ((k n δ 1-ε n ) H ) error. Similar arguments can be employed to show the other two approximations in (3.28). Note that thanks to Proposition 3.1 and Lemma B.2, we only have to consider the case where κ = 2H 2H+1 . In order to show the first approximation in (3.28), we interchange summation and double integration in (3.13) and obtain M n, ,kn

)χ( [r/δn]-i+1 2kn-1 )

× (y r -y [r/δn]δn )σ r dW r (y s -y [s/δn]δn )σ s dW s .

We change i + k n -1 -[s/δ n ] to i and, with similar arguments to those after (C.2), omit the last ∧(• • • ) and ∨(• • • ) in the boundaries of both the dW r -integral and the sum over i. As a result, 

)

Since taking conditional expectation is a contraction on L 2 , this term is still of size O P (δ n ).

Consequently, for the purpose of showing (3.36), we may replace η (j-1)δn and η (j-1)δn in the previous display by η (j-1-knδ -ε n )δn and η (j-1-knδ -ε n )δn , respectively. Once we have done so, the resulting expression will be F (j-1)δn -measurable with vanishing F (j-1-knδ -ε n )δnconditional expectation. Therefore, by a martingale size estimate (see [11, Appendix A]), it follows that

PROOF OF EQUATION (3.33). Again let us start with ν = 2. There is no loss of generality to restrict ourselves to m = 1 and m = 2, in which case we simply write

n . We want to find the limit of

where

Moreover, by the flexibility we have in the truncation of the dW u -integral in (3.30), we may and will assume that it runs from r - 

, and hence they do not contribute to the limit of (C.6). So only

By (2.12) (and its extension to ∈ R as shown in the proof), the right-hand side equals

where the second step follows by symmetry. By Parseval's identity,

(C.9)

The product (e 

where the last step is valid for all H ∈ (0, 

by L'Hôpital's rule.

Next, we consider ν = 1. As in (C.6) we want to find the limit of

where

Further conditioning on F [s/δn]δn = F (j-1)δn , we can replace (W s -W [s/δn]δn ) 2 simply by s -(j -1)δ n . Hereafter, we can further remove the boundaries of the two dW r -integrals because ξ(t) = 0 for |t| > 1. Consequently,

Computing the duds-integrals and observing that δ κ n ∞ i=-∞ and δ n [t/δn j=1 are Riemann sums, we have that

Next, we realize that ξ(t) is equal to

It remains to derive a closed-form expression for the integral. By Parseval's identity and (A.8) (and a limit argument noting that 2Γ(α + 1) cos( π(α+1)

2

) → π 6 as α → -4), it is given by

which completes the proof of (3.33) for ν = 1.

Finally, let us consider ν = 3 and, as a first step, note that 

and

In (C.14), changing (s -r)/δ 1-κ n to u and s -(j -1)δ n to v, we obtain Rn,

)

Similarly, changing (r -s)/δ 

Note that the last dr-integral equals δn 0 rdr = 

Using the fact that δ 4 1 G H (t) = 0 for t ≤ -2, we can extend the previous integral up to +∞, which shows that ρ 1,θ1, 2,θ2 31,31

We want to show that this is exactly γ 1,θ1, 2,θ2 3 (H), which would then finish the proof of (3.33). Switching to the Fourier domain, we use (A.7), (A.8), (A.9) and (2.7) to obtain

R e iξ( 1θ1-2θ2) e -iπ(H+5/2)/2 (ξ -i0) -H-5/2 × e iπ(H+5/2)/2 (ξ + i0) -H-5/2 (e

for H ∈ (0, 1 2 ). The last fraction is equal to -1/(32(H + 1 2 )(H + 1)(H + 3 2 )(H + 2)), which shows that ρ 1,θ1, 2,θ2 31,31

2 ). As before, the expression for H = 1 2 can be obtained by letting H → 1 2 , and since there is no singularity at H = 1 2 in the formula defining γ 1 ,θ1, 

For each j, we know from the analysis of R ), uniformly in i. Therefore, we are free to modify terms in the previous display as long as it leads to an asymptotically vanishing error. For example, for any fixed j, we may replace σ 2 (j-1)δn η 2 (j-1)δn and η (j-1)δn by σ 2

and η (j-1-k n δ -ε n )δn , respectively. Once we have done so, the resulting term, for fixed j, will be F (j-1)δn -measurable with vanishing F (j-1-k n δ -ε n )δn -conditional expectation. Thus, by a martingale size estimate (see [11, Appendix A]), the sum over j will be of magnitude ∆ 2 1 G H (v) ∆ 2 1 G H (v + r-w knδn + 1 ) + ∆ 2 1 G H (v + r-w knδn -1 ) dvη (j-1)δn dW w dr. We can now use integration by parts to expand the product of the dW s -integral and the dW wintegral. As in the analysis of R