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DISPERSAL DENSITY ESTIMATION ACROSS SCALES

By Marc Hoffmann† and Mathias Trabs∗,†

Université Paris-Dauphine and Karlsruhe Institute of Technology
We consider a space structured population model generated by

two point clouds: a homogeneous Poisson process M with intensity
n→∞ as a model for a parent generation together with a Cox point
process N as offspring generation, with conditional intensity given
by the convolution of M with a scaled dispersal density σ−1f(·/σ).
Based on a realisation of M and N , we study the nonparametric
estimation of f and the estimation of the physical scale parameter
σ > 0 simultaneously for all regimes σ = σn. We establish that the
optimal rates of convergence do not depend monotonously on the
scale and we construct minimax estimators accordingly whether σ is
known or considered as a nuisance, in which case we can estimate it
and achieve asymptotic minimaxity by plug-in. The statistical recons-
truction exhibits a competition between a direct and a deconvolution
problem. Our study reveals in particular the existence of a least
favourable intermediate inference scale, a phenomenon that seems
to be new.

1. Introduction.

1.1. Statistical inference across scales. Data may behave differently at different scales.
Depending on the interplay between the information parameter (the number of observations,
the inverse of a noise level or the time length of measurement) and the physical scale of the
data, the structure of the underlying statistical model may exhibit different properties. We
may encode this idea by viewing rather a statistical experiment as family

(1) E =
{
Pnf,σ : f ∈ Θ

}
n≥1,σ>0

where the probability measures Pnf,σ are simultaneously indexed by the information parameter
n ≥ 1 and a physical scale σ > 0, and that we shall refer to as a (family of) statistical
experiment(s) across scales. Depending on the choice of the scale σ = σn varying with
the information n, the statistical geometrical properties of E (such as LAN type conditions
or asymptotic equivalence features Le Cam (2012); van der Vaart (2002)) may differ. In
particular, the choice of an optimal procedure may be dictated by different regimes governed
by σn.

It is therefore desirable to understand the larger picture given by (1) simultaneously for all
subsequences σn. In an asymptotic setting, we may attempt to realise the following program:

∗Corresponding author.
†We thank our colleagues Marie Doumic and Alexander Goldenshluger for helpful discussions. We are

grateful to the comments of three referees that convinced us to extend the results of a former version to the
case of an unknown scale parameter. M.T. has been financially supported by DFG via the Heisenberg grant
TR 1349/4-1.

AMS 2000 subject classifications: Primary 62G05; secondary 62G07, 62M30, 60G57
Keywords and phrases: Nonparametric estimation and minimax theory, point processes, statistical inference

across scales, dispersal models, deconvolution
1



2 MARC HOFFMANN AND MATHIAS TRABS

• Identify the optimal estimation for f (in an asymptotic minimax sense for a given loss
function) for an arbitrary (but known) σ = σn.

• Considering σ = σn as unknown, estimate simultaneously σ and f and achieve optimality
for f in this setting.

In this paper, we build a family of statistical experiments across spatial scales that exhibit
nontrivial behaviours at certain critical levels and for which different estimation procedures
with different rates of convergence enter into competition as the scale varies. This can be of
crucial importance in practice, and is in stark contrast with the results in Duval and Hoffmann
(2011); Nickl et al. (2016); Chorowski (2018) where some robustness of estimation methods
and of the minimax rates of convergence is observed across time scales for Lévy and diffusion
processes.

1.2. A model for dispersal estimation.

Informal description. We start with two random points X,Y ∈ Rd, where X ∈ O for
some domain O ⊆ Rd represents the trait of a parent in a spatially structured population,
and Y ∈ Rd is the location of (one of) its children. We are interested in recovering the dispersal
distribution of Y −X. This means that Y −X has a density function

(2) fσ(z) = σ−df(z/σ), z ∈ Rd,

with a physical (dispersal) scale parameter σ > 0 which determines the order of E[|Y −X|2]1/2,
where | · | denotes the Euclidean distance. The parameter of interest is the density function
f . If we observe an n-sample (Xi, Yi)1≤i≤n, the Yi−Xi have common distribution fσ, and we
are in a classical density estimation framework; the scale σ is irrelevant. Assume now that we
are rather given two point clouds X and Y in Rd, with

X = {Xi : i = 1, . . . , n} and Y = {Yj : j = 1, . . . n},

i.e. we do not know the match between a parent and its offspring, hence we do not observe
the variables Yi −Xi anymore. This is the topic of the paper.

The scale parameter σ now becomes crucial. Heuristically, if σ � n−1/d, i.e. the dispersal
scale is small with respect to the typical distance between the locations of the parents
population X , then we may guess the parents-offspring match by a nearest distance procedure,
i.e. take X(j) solution to

|Yj −X(j)| = min
{
|Yj −Xi| : i = 1, . . . , n

}
,

and proceed as if the Yj −X(j) were an n-sample with distribution fσ, up to controlling the
mismatch error. However, if σ � n−1/d, the mismatch error explodes and alternative methods
need to be found. For instance, in dimension d = 1, for a child trait Yj with parent trait Xij ,
writing Yj = Xij + σDj , we see that Dj has density f , therefore, if the parent distribution p
is known, then the Yj have common distribution p∗fσ, where ∗ denotes convolution. We may
then implement a deconvolution approach to recover f and ignore the potential information
given by the point cloud of the parent traits X . This has some price, namely the ill-posedness
of an inverse problem, and has to be assessed with some care. Our objective is to formalise
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this model and these approaches in order to encompass potential applications as described
in Section 1.3 below. In particular, we need not impose that X and Y have the same size,
allowing for a random number of parents and children. To provide a complete and transparent
picture, we will greatly simplify our approach by restricting ourselves to the one-dimensional
case d = 1, with O = [0, 1]. Extensions to more general domains O for the state space of the
parents as well as in higher dimension d > 1 are available and discussed in Section 4.

Formal construction of the model. Random point clouds are equivalently represented by
random finite point measures. The location traits of the parent generation, i.e. the point cloud
X ⊆ O = [0, 1] is represented by the realisation of a homogeneous Poisson point process

M(dx) =
∑
j

δXj (dx)

on the unit interval [0, 1] with intensity measure m(dx) = nλdx, where n→∞ and λ > 0 is
fixed. Note that the size |X | is random, with E[|X |] = nλ. Given a realisation of M , the point
cloud Y ⊆ R that represent the traits of the offspring is generated by a Cox point process

N(dy) =
∑
j

δYj (dy)

with (conditional) intensity measure

µ
(
M ∗ fσ

)
(y)dy =

∑
i

µfσ(y −Xi)dy,

where the dispersal density is fσ = σ−1f(·/σ) as in (2) with dispersal scale parameter σ > 0.
The parameter µ > 0 represents the average number of an offspring given one parent. Hence,
fσ describes the distribution of the random variable Yj−Xij (when the child j has parent ij).
The distance between the traits of the children and the trait of their parent is of order σ. The
expected size of the offspring population (i.e. the average size of Y) is thus nλµ. In Figure 1
we simulate a realisation of the (M,N) process, for different values of σ = σn depending on n.

Keeping up with Section 1.1, we study a statistical experiment of the form (1), generated
by the observation of (X ,Y) or equivalently (M,N), with information n and scale σ. The
unknown parameter is f and, for simplicity, λ, µ are assumed to be known. Our aim is to
reconstruct f asymptotically in a minimax sense as n→∞, for all scaling regimes σ = σn.

1.3. Dispersal inference in applications. We briefly present some specific application dom-
ains compatible with the approach of dispersal inference as described in Section 1.2. Admit-
tedly, further adjustments may be needed in order to be directly applicable in a given
application; in particular, there might be a natural one-to-one correspondence between parents
and children or not.

Example 1: Service time estimation in M/G/∞ queuing models. Dating back to Brown
(1970), certain M/G/∞ queuing models are embedded in our approach, see in particular the
recents results of Goldenshluger (2016, 2018); Goldenshluger and Koops (2019). Here, the
state space of the parents O ⊆ R represents time. The parent location trait is identified with
an input arrival of a request to a server, according to Poisson arrivals at rate λ. Once the
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Fig 1. A realisation of (M,N) for different values of σ = σn = n−a, with a = 0, 0.5, 1, 1.5. The match between
parents traits (blue points) and their offspring traits (red diamonds) is graphically obvious for small σn = n−1.5

but becomes more difficult if not impossible as σn increases. In the statistical experiment generated by (M,N),
we are only given one horizontal line at a scale σn.

(random) service time of the request is fullfilled, an output is observed, that corresponds to
the location trait of an offspring. See for instance Baccelli et al. (2009) where the emphasis is
put on queueing systems where the service time cannot be observed. A small σ compared to
1/λ indicates that the service time is small compared to the order of magnitude of a typical
interarrival between two queries, in which case one may take the time between an input and
an output as a proxy for the service time. Otherwise, this is no longer true and alternative
methods must be sought. Most aforementioned studies assume σλ = 1. The case where σ is
larger than 1/λ has been adressed by Blanghaps et al. (2013) where it is still required that
λσ is bounded.

The goal is to estimate the density of service time, that matches exactly with the dispersal
density f of our model. However, in the M/G/∞, model, to an incoming call, one associate
one output exactly, which is slightly more stringent than having µ = 1 only. See also Hall and
Park (2004) and Section 4.1 for a more specific discussion in that direction.

Example 2: Poisson random convolution in functional genomics. This is actually the
application that originated our approach, following informal discussions with our colleague
Marie Doumic, that are formulated in Hunt et al. (2018). See also the recent work by Bonnet
et al. (2022). The objective is to propose a model of distance interaction between motifs
(or occurences of transcription regulatory elements) along DNA sequences. Related literature
using point processes alternatives is developed for instance in Gusto and Schbath (2005);
Carstensen et al. (2010).

Dispersal inference proposes an alternative approach compatible with Hunt et al. (2018), at
least at a conceptual level: along the DNA sequence, transcription binding sites are observed
according to a Poisson rate λ and serve as a parent generation model. Conditional to their
parent location, transcription start sites (TSS) along the sequence are drawn via a random
distribution f that we wish to infer, the dispersal distribution. Depending on the dispersal
scale σ, we are back to our original problem and we obtain a continuous nonparametric
alternative to the model described in Hunt et al. (2018).
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Example 3: Dispersal distance in plants genetics. Introgression from cultivated to wild
plants is a challenging problem for evolutionary ecology, especially in the context of genetically
engineered crops. The study of gene flow from crops to wild relatives starts with understanding
the typical dispersal distribution – in a spatial sense – between plants and their offspring.
Although our model is too simple to account for various heterogeneity in natural environment,
we emphasise some encouraging similarities: in the study of Arnaud et al. (2003), plants of
interest and their offspring are distributed along a river bank. This accounts for a dispersal
density a state space understood as a one-dimensional manifold (a curve), which is similar
(and rate equivalent) to estimating a one-dimensional density, cf. Berenfeld and Hoffmann
(2021).

Beyond the specific case of measuring dispersal along such idealised geometric features,
the problem of estimating the distance between parents and saplings (accounting for seed
dispersal from maternal or paternal parents plus pollen movement) is explicitly addressed in
Isagi et al. (2000) via microsatellite analysis. Other plant based dispersal issues such as seed
versus pollen dispersal from spatial genetic structure are discussed in Heuertz et al. (2003),
see also Lavorel et al. (1995) and the references therein.

Example 4: Estimating diffusivity based on counting occupation numbers of particles. In a
suspension of particles in a fluid, a Poissonian number of particles is recorded as they enter
a fixed domain A and likewise when they leave A. Applications in fluctuation spectroscopy
enables one to infer the diffusivity (or other parameters) from such counting data, assuming
that the particles have velocity (Vt)t≥0 with random dynamics governed by a diffusion process

dVt = −βVtdt+
√

2βDdWt

where (Wt)t≥0 is a Wiener process and β > 0 is a thermal relaxation parameter. There exist
explicit formulae that relate the sojourn time of a particle within A and the diffusivity D,
when the process is at equilibrium, see in particular Bingham and Dunham (1997). We thus
have a typical dispersal inference problem, where the dispersal density corresponds here to
the sojourn time of the particles. See also the recent paper by Goldenshluger and Jacobovic
(2021).

1.4. Results and organisation of the paper. We first analyse the interaction between parents
X and children Y via the correlation structure between the measures M(dx) and N(dy). In
Proposition 1 in Section 2.1 below, building on the approach of Goldenshluger (2018), we
establish the formula

(3) 1
nλµ

E
[M(dx)N(dy)

dxdy
]

= nλ(fσ ∗ p)(y) + fσ(x− y),

where p = 1[0,1] denotes the density function of the parent distribution. Formula (3) reveals
the competition between a direct approach and a convolution problem, as mentioned above.
From the observation of (M,N), we have access to empirical averages of the form∑

i,j

ϕ(Xi, Yj) =
∫

[0,1]×R
ϕ(x, y)M(dx)N(dy),

for test functions ϕ. We can take advantage of the information given by the first term in
the right-hand side of (3) by picking ϕ of the form ϕ(x, y) = ψ(y) and thus ignoring the
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Fig 2. Dependence of the optimal convergence rate rn on the dispersal rate σn in a (logn σn, logn rn)-plot.

information given by the parents generation. For the second integral, we pick ϕ of the form
ϕ(x, y) = ψ

(
(x − y)/σ)

)
and we can take benefit from the interplay between the parent

generation and its offspring. This results in generic estimators of the form

(4)
∑
i,j

ϕ?
(
Yj , (Xi − Yj)/σ

)
for a specific choice of ϕ?. Whereas these heuristics give an overall flavour of the statistical
model structure, the general situation is more subtle. In Section 2.1, we elaborate on the
properties of the point process (M,N) to obtain an estimator of f(z0) for an arbitrary point
z0 ∈ R. It takes the form

f̂?h1,h2(z0) =


1

nλh1
f̂h1,h2(z0), for large scales,

1
h2
f̂h1,h2(z0)− σnλ, for small scales

where

f̂h1,h2(z0) = 1
nλµσh1

∑
i,j

ψ′
( z0
h2
− Yj
σh2

)
ψ
( z0
h1
− Yj −Xi

σh1

)
is inspired by (4) for a suitable kernel ψ (and ψ′ its derivative). For a suitable choice of the
bandwidths h1 and h2, we prove in Theorem 6 that

sup
f

E
[(
f̂?h1,h2(z0)− f(z0)

)2]1/2
. rn,

where the notation A . B is equivalent to the Landau notation A = O(B), the supremum is
taken over Hölder balls of regularity s > 0 locally around z0, and

(5) rn =


n−s/(2s+1), if σ 6 n−1

σs/(2s+1), if σ ∈ [n−1, n−(2s+1)/(2s+2)),
σ
√
n, if σ ∈

[
n−(2s+1)/(2s+2), n−(4s+3)/(6s+6)),

(nσ)−s/(2s+3), if σ ∈ [n−(4s+3)/(6s+6), 1].
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The shape of the rate of convergence rn = rn(σ) as σ = σn varies is illustrated in Figure 2.
We prove in Theorem 7 that this result is indeed optimal:

lim inf
n→∞

inf
ϑ̂

sup
f
r−1
n Ef

[(
ϑ̂− f(z0)

)2]1/2
> 0,

where the infimum is taken over all estimators ϑ̂ built upon the point clouds X and Y, and
the supremum is taken over Hölder balls of regularity s > 0 locally around z0.

As illustrated in Figure 3, a direct estimation regime with minimax rate rn = n−s/(2s+1)

dominates for σ � n−1 (the far left side of the picture), whereas for fixed σ, we have
rn = n−s/(2s+3), i.e. the minimax rate of convergence of an inverse problem of order one (the
far right side of the picture). However, when σn slowly goes to 0, the inverse problem minimax
rates deteriorates to (nσn)−s/(2s+3). Surprisingly, other regimes appear in the intermediate
regime σn ∈ [n−1, n−(4s+3)/(6s+6)]. In particular, we find a worst case region, around the
scale σn ≈ n−(4s+3)/(6s+6) that yields the exotic minimax rate n−s/(6s+6). We discuss this
phenomenon in detail in Section 2.2. In Section 3, we consider the case of an unknown
scale σ = σn. We first show that it is possible to estimate σ so that we can ultimately
decide whether nσ is sufficiently large to apply the nσ → ∞ asymptotics. We establish in
particular in Section 3.1 a bound for the relative error (σ̂−σ)/σ of our estimator σ̂. This is the
gateway for a plug-in strategy to estimate f optimally when σ is unknown and considered as a
nuisance parameter as we demonstrate in Section 3.2. The sensitivity of the plug-in estimator
f̂?h1,h2

(z0) = f̂?h1,h2
(z0)(σ̂) is controlled via the smoothness of the process σ 7→ f̂?h1,h2

(z0)(σ)
via a chaining argument based on Kolmogorov-Chentsov criterion. We show that the optimal
rates are achievable in probability.

The rest of the paper is organised as follows: In Section 2.1 we construct an estimator of
f(z0) that takes X and Y as inputs and that adjusts to the scale σ = σn. Convergence rates for
the estimator and matching minimax lower bounds are given in Section 2.2 and Section 2.3,
respectively. The estimation of σ is studied in Section 3.1 while the estimation of f when σ is
unknown via plug-in is undertaken in Section 3.2. A discussion with possible extensions is the
content of Section 4. A short numerical simulation study is proposed in Section 5. All proofs
are postponed to Section 6.

2. Main results.

2.1. Construction of estimators across scales.

The correlation structure of (M,N). The starting point of our estimation approach lies
in the analysis of the correlation structure between M and N , that builds upon the approach
by Goldenshluger (2018). In our study, the fact that the parent data X are distributed on a
bounded interval has a considerable impact on the correlation structure.

Proposition 1. Let (Ai)1≤i≤I and (Bj)1≤j≤J be two families of disjoint subsets of [0, 1]
and R, respectively. Then for any (η1, . . . , ηI) ∈ RI and (ξ1, . . . , ξJ) ∈ RJ we have

logE
[

exp
( I∑
i=1

ηjM(Ai) +
J∑
j=1

ξjN(Bj)
)]

(6)
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= nλ
I∑
i=1

(eηi − 1)|Ai|+ nλ

∫ 1

0

(
exp

(
µ

J∑
j=1

(eξj − 1)
∫
Bj

fσ(y − x)dy
)
− 1

)
dx

+ nλ
I∑
i=1

(eηi − 1)
∫
Ai

(
exp

(
µ

J∑
j=1

(eξj − 1)
∫
Bj

fσ(y − x)dy
)
− 1

)
dx,

where |A| denotes the Lebesgue measure of A ⊆ R.

The proof relies on Campbell’s exponential formula and is given in Section 6.1. Differentiating
the result of Proposition 1, we obtain the following explicit representation of the correlation
structure of M and N .

Corollary 2. For any A ⊆ [0, 1] and any bounded B ⊆ R we have

E
[
M(A)N(B)

]
= n2λ2µ|A|

∫ 1

0

∫
B
fσ(y − x) dy dx+ nλµ

∫
A

∫
B
fσ(y − x) dy dx.

Corollary 2 reveals the infinitesimal correlation structure

E[M(dx)N(dy)] = nλµ
(
nλ(fσ ∗ p)(y) + fσ(y − x)

)
dy dx,

with p = 1[0,1]. Applied to a well-behaved test function ϕ : [0, 1]× R→ R we obtain
1
nλµ

E
[ ∫

[0,1]×R
ϕ(x, y)M(dx)N(dy)

]
= nλ

∫ 1

0

∫
R
ϕ(x, y)(fσ ∗ p)(y)dydx+

∫ 1

0

∫
R
ϕ(x, x+ σz)f(z)dzdx.

In order to obtain information on f from the first integral, ϕ(x, y) should depend on y solely,
while in the second integral, ϕ(x, y) should rather depend on (y − x)/σ. We therefore pick a
test function of the form

ϕ?(x, y) = ψ1(y)ψ2
(
(y − x)/σ

)
.

In the limit n→∞, we expect the empirical mean to be close to its expectation so that the
approximation ∑

i,j

ϕ?(Xi, Yj) ≈ E
[∑
i,j

ϕ?(Xi, Yj)
]

is valid. Hence, we asymptotically have access to

(7) 1
nλµ

E
[ ∫

[0,1]×R
ψ1(y)ψ2

(
(y − x)/σ

)
M(dx)N(dy)

]
= σnλUσ(f ∗ p) + Vσ(f),

where
Uσ(f ∗ p) =

∫
R
ψ1(y)(ψ2 ∗ 1[0,1/σ])(y/σ)(fσ ∗ p)(y)dy

and
Vσ(f) =

∫
R

(ψ1 ∗ 1[−1,0])(σz)ψ2(z)f(z)dz.

It is noteworthy that

|Uσ(f ∗ p)| 6 ‖ψ1‖L1‖ψ2‖L1 and |Vσ(f)| 6 ‖f‖∞‖ψ1‖L1‖ψ2‖L1 ,

showing that 1) the functionals Uσ and Vσ are not sensitive to the order of magnitude of
σ, and 2) the influence of the test functions ψi is bounded in L1-norm, hence they can be
subsequently chosen as kernels that weakly converge to a Dirac mass as n→∞.
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The deconvolution approach via Uσ(f ∗ p). Pick ψ2 = 1 as a constant function in (7) to
obtain

E
[
|X |

∑
j

ψ1(Yj)
]

= n2λ2µ

∫
R
ψ1(y)(fσ ∗ p)(y)dy + nλ

∫ 1

0

∫
R
ψ1(x+ σz)f(z)dzdx

= n2λ2µ
( ∫

R
ψ1(y)(fσ ∗ p)(y)dy +O(n−1)

)
,

where |X | = M([0, 1]) = λn + OP(n1/2) is the total (random) number of parents. Ignoring
remainder terms and using the fact that |Y| = N(R) = nλµ + OP(n1/2) we also have the
approximation

(8) 1
|Y|

∑
j

ψ1(Yj) ≈
∫
R
ψ1(y)(fσ ∗ p)(y)dy.

The empirical estimate (8) is transparent: each child with trait Yj has a parent with trait
Xij such that Yj = Xij + σDj , where Dj is distributed according to the dispersal density
f . With Xij ∼ p, we obtain Yj ∼ fσ ∗ p. However, the parent trait distribution p is uniform
on [0, 1], its Fourier transform oscillates and vanishes on a discrete set, hence a classical
deconvolution estimators based on spectral approaches cannot be readily applied. While there
are some general constructions in the literature to overcome this problem (see e.g. Meister
(2007); Delaigle and Meister (2011); Belomestny and Goldenshluger (2021) and the references
therein), we take a more explict route.

We elaborate on the approach of Groeneboom and Jongbloed (2003), relying on the specific
structure of a uniform p = 1[0,1]. (The case of more general parent trait distribution is
discussed in Section 4.2). Denoting by F the cumulative distribution of Dij and writing
gσ = fσ ∗ p, we have

gσ(y) =
∫
R
1[0,1](y − z)fσ(z)dz =

∫
R
1[y−1,y](z)fσ(z)dz = F

( y
σ

)
− F

(y−1
σ

)
.

Hence, the representation

F
( y
σ

)
= gσ(y) + F

(y−1
σ

)
= gσ(y) + gσ(y − 1) + F

(y−2
σ

)
= · · · =

∑
`≥0

gσ(y − `)(9)

is valid for all y ∈ R. Based on the observation Y, the density gσ can be estimated at z0 ∈ R
by a kernel density estimator with kernel K and bandwidth h > 0

ĝσ,h(z0) = 1
|Y|

∑
j

1
h
K
(σz0 − Yj

h

)
and then use representation (9) to obtain an estimator of F (z0) via

(10) F̂h(z0) = 1
|Y|

∑
j

∑
`≥0

1
h
K
(σz0 − `− Yj

h

)
.

Note that for compactly supported kernels the sum in ` is finite. For simplicity, we further
consider the case where f is compactly supported and will adjust our assumptions accordingly.
With no loss of generality, we assume

Supp f ⊆
[
− 1

2 ,
1
2
]
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so that only the term for ` = 0 appears in the above sum.
Finally, we obtain a nonparametric estimator of f(z0) by taking the derivative of F̂h(z0) in

(10). We take a bandwidth h = σh1 that scales with σ that will prove technically convenient.
We obtain a deconvolution estimator of f(z0) by setting

f̂dec
h1 (z0) = 1

|Y|
∑
j

1
σh2

1
K ′
( z0
h1
− Yj
σh1

)
.

We recover the representation (8) with

(11) ψ1 = 1
σh2

1
K ′
( z0
h1
− ·
σh1

)
.

Note that the convolution term in (7) is uninformative if M is a homogeneous Poisson point
process on whole real line as in Goldenshluger (2018) or on the torus as in Hunt et al. (2018).

The interaction approach via Vσ(f). While the deconvolution approach ignores the information
of the parents, an estimator based on the interaction of parents and their offspring can be
constructed via ψ2, taking now ψ1 = 1 to be constant. From (7), we obtain

E
[∑
i,j

ψ2
(Yj −Xi

σ

)]
= nλµ

∫
R
ψ2(z)f(z)dz + n2σλ2µ

∫
R

(ψ2 ∗ 1[0,1/σ])(y/σ)(fσ ∗ p)(y)dy

= nλµ
( ∫

R
ψ2(y)f(z)dz +O(nσ)

)
.

The bias is small only if nσ is small, a result which is consistent with the heuristics of Section
1.2. Beyond that scale, as soon as σ ≈ n−1 the situation is a bit more involved.

More specifically, when σ � n−1, the offspring traits concentrate around their parents:
we expect roughly to have nσh parental traits in a σh-neighbourhood of the trait of a child
Yj = Xij +σDj . With overwhelming probability only the true parent trait Xij of Yj is actually
present in this neighbourhood. Then the sum in i over all parents in vanishes and we expect
the approximation ∑

i,j

ψ2
(
(Yj −Xi)/σ

)
≈
∑
j

ψ2(Dj)

to be valid, while the sum is of order nλµ. More precisely, we expect

(12) 1
|Y|

∑
i,j

ψ2
(
(Yj −Xi)/σ

)
≈
∫
R
ψ2(z)f(z)dz.

Applying kernel density estimator with kernel K with bandwidth h2 > 0, we obtain an
interaction estimator of f(z0) by setting

(13) f̂int
h2 (z0) = 1

|Y|
∑
i,j

1
h2
K
( z0
h2
− Yj −Xi

σh2

)
.

We obtain the representation (12) with

(14) ψ2 = 1
h2
K
( z0
h2
− ·
h2

)
.
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Whenever nσ & 1, the relevance of a procedure like (13) is less obvious. In particular, it is not
clear whether the parent traits in the neighbourhood of an offsping can be used to estimate
f . For nσ = 1 (and λ = µ = 1) Brown (1970) constructed an estimator based on an explicit
formula that relates f to the distribution function of the distance of an offspring to its nearest
parents. An interaction estimator was also applied by Goldenshluger (2018) in a setting where
the intensity measure of N is the Lebesgue measure on whole real line and which corresponds
to nσ = 1. As we will see below the interaction estimator is still applicable if σ > 1/n as
long as σ is not too large. However, the interaction estimator then requires to incorporate a
non-trivial kernel ψ1 and a bias correction. A naive estimator could rely on simply counting
the number of parents in a neighbourhood of the trait of a children, as already mentioned in
Section 1.2.

An estimator across scales. Thanks to the heuristics developed for the construction of
f̂dec
h1

(z0) and f̂int
h2

(z0), we are ready to implement an estimator across all scales σ, when the
scale σ is known. We will treat the case of an unknown σ in Section 3 below. We first define

f̂h1,h2(z0) = 1
nλµσh1

∑
i,j

K ′
( z0
h1
− Yj
σh1

)
K
( z0
h2
− Yj −Xi

σh2

)
,

where K is a smooth compactly supported kernel with derivative K ′. We formally retrieve
the preceding representation f̂h1,h2(z0) = h1h2

nλµ

∑
i,j ψ1(Yj)ψ2

(Yj−Xi
σ

)
with ψ1 defined in (11)

and ψ2 in (14). Next, we elaborate on the properties we require for the kernel function K:

Assumption 3. The function K : R→ R is differentiable, symmetric, bounded and satisfies

Supp(K) ⊆ [−1, 1], K(z) = 1 for |z| ≤ 1
4 ,∫

[−1,1]
z`K(z)dz = 1{`=0} for ` = 0, . . . , `K

for some `K ≥ 0 (the order of the kernel K).

For `K = 0 or 1, which is generally sufficient in practice, Assumption 3 is simply obtained
from any suitably dilated and translated compactly supported symmetric (even) density
function, see Section 5. Finally we define the appropriate normalisations and bias corrections
that need to be tuned depending on which scale we work. This is done as follows:

Definition 4. Let K be a kernel satisfying Assumption 3. We define the following estimators
across scales:

(i) (Deconvolution or large scales.) For h1 ∈ [(σn)−1, 1] and h2 = 8/σ set

f̂
(1)
h1

(z0) = 1
nλh1

f̂h1,8/σ(z0)

= 1
σnλµh2

1

∑
j

K ′
( z0
h1
− Yj
σh1

)( 1
nλ

∑
i

K
(σz0

8 − Yj −Xi

8
))
.(15)

(ii) (direct or small scales.) Let σ < 1/8, h1 = 1/(2σ). We set for h2 ∈ (0, 1]:

f̂
(2)
h2

(z0) = 1
h2
f̂1/(2σ),h2(z0)− σnλ

= 1
nλµh2

∑
i,j

2K ′
(
2(σz0 − Yj)

)
K
( z0
h2
− Yj −Xi

σh2

)
− σnλ.(16)
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For the deconvolution estimator f̂ (1)
h1

(z0) we could also set ψ2 = 1. In this case the second
factor in the right-hand side of (15) equals |X |nλ ≈ 1 and we recover f̂dec

h1
(z0) from above. A

similar simplication for f̂ (2)
h2

(z0) is not possible across all scales. As soon as σn→∞, the small
scales estimator crucially profits from the specific structure of ψ1 which excludes all offspring
traits Yj outside of an annulus with radius of order 1/σ, see Proposition 19(ii) for details.

2.2. Rates of convergence. Recall that, given some neighbourhood Uz0 of z0 ∈ R, the
function f : R → R belongs to the local Hölder class Hs(z0) with s > 0 if f is bsc times
continuously differentiable for every z, z′ ∈ Uz0 and

(17) |f (bsc)(z)− f (bsc)(z′)| ≤ C|z − z′|s−bsc

where bsc is the largest integer stricty smaller than s, and f (n) denotes n-fold derivation
(with f (0) = f). The definition depends on Uz0 , further omitted in the notation. We obtain
a semi-norm |f |Hs(z0) by taking the smallest constant C for which (17) holds. Moreover, as
explained in Section 2.1, we assume for technical convenience that f is bounded and supported
in [−1

2 ,
1
2 ] which yields the following nonparametric class of densities1

Gs(z0, L) :=
{
f : R→ [0,∞) : |f |Hs(z0) 6 L, ‖f‖∞ 6 L,Supp(f) ⊆ [−1

2 ,
1
2 ],
∫
f(z)dz = 1

}
.

We first exhibit rates of convergence for f̂ (1)
h1

(z0) and f̂
(2)
h2

(z0) of Definition 4 built upon
f̂h1,h2(z0).

Proposition 5.

(i) If h1 6 1 6 σn, then we have for any z0 ∈ (−1
2 ,

1
2)

(18) sup
f∈Gs(z0,L)

E
[(
f̂

(1)
h1

(z0)− f(z0)
)2]1/2

. hs1 +
(
nσh3

1
)−1/2

,

up to a constant that depends on L, s, K and z0. Choosing h1 = (nσ)−1/(2s+3), we
obtain the optimised rate

E
[(
f̂

(1)
h1

(z0)− f(z0)
)2]1/2

. (nσ)−s/(2s+3).

(ii) Let σ < 1/8. For any h2 ∈ (0, 1] and z0 ∈ (−1
2 ,

1
2), we have

(19) sup
f∈Gs(z0,L)

E
[(
f̂

(2)
h2

(z0)− f(z0)
)2]1/2

. hs2 + max
(
(nh2)−1/2, σ1/2h

−1/2
2 , n1/2σ

)
,

up to a constant that depends on L, s, K and z0. Choosing h2 = (n∧ σ−1)−1/(2s+1), we
obtain the optimised rate

E
[(
f̂

(2)
h2

(z0)− f(z0)
)2]1/2

. max
(
(n ∧ σ−1)−s/(2s+1), n1/2σ

)
.

1We omit a slight ambiguity in our definition: the neighbourhood Uz0 in the definition of |f |Hs(z0) is
implicitly taken independently of f .
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Some remarks are in order: 1) The rate (nσ)−2s/(2s+3) in (i) reflects the ill-posedness of
degree one due to the convolution with the indicator function. Moreover, we see that the rate is
determined by nσ instead of n solely: the information about f is concentrated at the boundary
[−σ

2 ,
σ
2 ]∪ [1− σ

2 , 1 + σ
2 ] of the support of the parent distribution since in the interior we have

1[0,1]∗fσ(y) = 1 for all y ∈ (σ2 , 1−
σ
2 ). Since the number of children in this boundary is of order

nσ, the latter can be understood as effective sample size. In particular, the convergence rate
deteriorates for σ → 0 and the deconvolution estimator is only consistent as long as nσ →∞.
2) In (ii) we obtain the classical rate of convergence n−2s/(2s+1) for nonparametric density
estimation as long as σn . 1. For large scaling factors the bias correction −σnλ becomes
crucial and the rate gets slower, i.e. the local interaction between parents and children becomes
less informative. We obtain the rate σ2s/(2s+1)∨ (nσ2). In particular, the interaction approach
is only consistent as long as σ = o(n−1/2). This limitation is a consequence of the non-
negligible correlations between two different offspring traits in a σ-neighborhood of a parent.
3) Interestingly, there is an intermediate regime σ ∈ [n−1, n−1/2] where both approaches are
applicable and we can choose the estimator with the faster rate.

We wrap together the results of Proposition 5 to obtain our main result:

Theorem 6. Let s > 0. For any z0 ∈ (−1/2, 1/2), there exists an estimator f̂(z0)
depending on σ, λ, µ and s, explicitly obtained from Proposition 5 above such that

sup
f∈Gs(z0,L)

E
[(
f̂(z0)− f(z0)

)2]1/2
. rn,

up to a constant that depends on L, s, K and y, and with rate of convergence from (5).

Some remarks again: 1) The graph of log rn as a function of τ for σ = n−τ is illustrated in
Figure 3. Quite surprisingly, the dependence of the convergence rate on the scaling parameter
σ is not monotonic which is a consequence of (7): The information on f in the deconvolution
term decreases if σ gets smaller, while the second information based on interaction decreases
if σ gets larger. The elbows between the regimes correspond to the points where

σ = n−(2s+1)/(2s+2) i.e.
√
nσ = σs/(2s+1)

and
σ = n−(4s+3)/(6s+6) i.e.

√
nσ = (nσ)−s/(2s+3).

In particular, the best estimator uses the deconvolution approach if σ > n−(4s+3)/(6s+6) and
the interaction approach otherwise. 2) For the construction of the estimator, we need to know
λ, µ and σ. A canonical estimator for λ is given by λ̂ = n−1|X | = n−1M([0, 1]) ∼ n−1Poiss(λn)
satisfying E[|λ̂/λ− 1|2] = (nλ)−1. Hence, it should not be a problem to replace λ by λ̂ in the
weighting of f̂h1,h2 . Similarly, we can estimate µ. The scaling parameter σ is more critical,
because even the parametric accuracy is not sufficient to construct an estimator which is
adaptive in σ: We have to decide whether σ > n−(4s+3)/(6s+6) or not and the boundary
n−(4s+3)/(6s+6) is o(n−1/2) as soon as s > 2 (additionally the boundary dependence on
the typically unknown regularity s). Since the usual construction principles for adaptive
estimators rely on a monotonic dependence of the rate, more precisely of an upper bound
for the stochastic error, the observed dependence on σ might complicate the construction of
an adaptive estimator considerably.
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2.3. Minimax optimality. For σ 6 1/n the rate n−s/(2s+1) is optimal: a lower bound is
obtained by noting that it is more informative to observe the point cloud of the parent
traits Y and the dispersal realisation (Dj) via a Poisson point process with intensity nλµf .
The offspring point N process can then the be constructed via uniformly distributing the
children around the parents. Observing (Dj), the classical minimax rate for estimating f(z0)
is n−s/(2s+1). Less obviously, for nσ →∞, the rate rn is optimal too:

Theorem 7. Let z0 ∈ (−1/2, 1/2), s > 0 and L > 0. Suppose σn| log σ|−1 → ∞ for
σ = σn ∈ (0, 1) as n→∞. Then we have

lim inf
n→∞

inf
ϑ̂

sup
f∈Gs(z0,L)

r−1
n Ef

[(
ϑ̂− f(z0)

)2]1/2
> 0,

where the infimum is taken over all estimators ϑ̂ built upon X and Y, with rn given by (5).

Hence, rn is the minimax rate of convergence in squared pointwise error for nonparametric
dispersal estimation. In order to prove a sharp lower bound, we have to show that the parents
indeed become uninformative if nσ →∞ such that ignoring the Xi is then the best we can do.
This argument is based on the following insight: Given a number of parents |X | ∼ Poiss(λn)
the distribution of a child trait Y , conditional on the parents satisfies:

P(Y ∈ dy |X1, . . . , X|X |
)

= 1
|X |

|X |∑
i=1

fσ(y −Xi)dy

=
∫ 1

0
fσ(y − x)dxdy +

( 1
|X |

|X |∑
i=1

fσ(y −Xj)− E[fσ(y −X1)]
)
dy,

where, conditional on |X |,

Var
( 1
|X |

|X |∑
i=1

fσ(y −Xi)
∣∣∣|X |) = 1

|X |
Var(fσ(y −X1)) 6 1

|X |σ
‖f‖2L2 .

Since E[|X |] = λn, the influence of the parent traits becomes uninformative if nσ → ∞. See
Section 6.3 for a rigorous proof.

3. The case of unknown scale parameter σ. In practice, it well may be the case that
the scale σ is unknown itself. We address this issue in a two-steps strategy: first, we study
the estimation of σ as a statistical problem in its own right. In particular, we need to be able
to distinguish from the data in which regime we stand (nσ → ∞ versus nσ bounded). Also,
we need an accurate estimator σ̂ of σ with respect to the relative error σ̂/σ − 1 since σ itself
may vanish as n→∞. This is done in Section 3.1 below. Second, we use the estimator σ̂ and
the associated decision rules to determine the underlying scale to cook-up a σ-adaptive and
final estimator f̃(z0) by plug-in that proves to be optimal in all regimes (in probability, for
simplicity). This is done in Section 3.2 below.

3.1. Estimation of σ. In view of the different regimes for the estimation procedure the
first question to settle is how to decide whether nσ is sufficiently large to apply nσ → ∞
asymptotics or not. To quantify nσ empirically, we define

T̂ := N(R \ [0, 1]).
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Since the support of the offspring point process N is given by [−σ
2 , 1 + σ

2 ] and the intensity
of N is of the order n, we expect that T̂ is indeed of order nσ.

Lemma 8. Let Supp f ⊆ [−1
2 ,

1
2 ] and set If :=

∫
R |x|f(x)dx. For any σ ∈ (0, 1] and n ∈ N

we have
E[T̂ ] = nσλµIf and Var(T̂ ) 6 nσλ(µ+ µ2).

In particular, Chebychev’s inequality shows for any κ > 0 that

P(T̂ 6 κ)→

 0, if nσ →∞,
1, if nσ 6 κ

2λµIf .

We cannot use T̂ to estimate σ since the quantity If is unknown, but we can further exploit
the support [−σ

2 , 1+σ
2 ] of the offspring location traits Yj . Namely, we can construct a boundary

type estimator for σ. We focus on left boundary, but the method can be easily modified to the
right boundary or a combination of both. For l ∈ {1, . . . , |Y|} the order statistics are denoted
by Y(l). A naive estimator for σ is thus −2Y(1) = −2 minj Yj . We actually need to improve
this estimator by taking the parent location traits near the left boundary into account. The
resulting estimator is defined as

σ̂(1) := −2Y(1) + 2X (̂l) with X(l) := 1
l

l∑
j=1

X(j), l̂ := κn

√
T̂ .

If f is bounded away from zero on its support [−1
2 ,

1
2 ], the corresponding c.d.f. F admits at

least a linear growth at the boundary.

Proposition 9. Suppose the dispersal c.d.f. F satisfies

(20) F (z − 1
2) > (γz) ∨ 0 for z 6 1

for some constant γ > 0. If σn → ∞ and σ̂(1) is specified with some sequence κn → ∞ that
can be taken arbitrarily slowly diverging, then

σ̂(1)

σ
− 1 = OP

( κn√
σn

)
.

While for constant σ we obtain the typical parametric rate, the error bound is considerably
improved if σ → 0. Most importantly, the relative estimation error σ̂(1)−σ

σ is small as soon as
σn→∞.

The estimator σ̂(1) works well for large scale parameters. On the other side, when σ � n−1,
we almost can guess the relationship Yj = Xij + σDj between an offspring trait Yj and its
parent trait Xij such that we can estimate σ by a local boundary estimation approach around
the distinct parent traits. To use this local information we specifically use the kernel

ψ† := (1− |x|)+ = 1[−1/2,1/2] ∗ 1[−1/2,1/2]

and write
1
µλn

∑
i,j

ψ†
(
(Yj −Xi)/h

)
=: P

(
σ|D1| 6

h

2
)

+ nλh+ ξ(h),
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where the stochastic noise term ξ(h) defined via the last display satisfies

E[ξ(h)] = E
[ 1
µλn

∑
i,j

ψ†
(
(Yj −Xi)/h

)]
− P

(
σ|D1| 6

h

2
)
− nλh

= O(nh(σ + h) + h),

cf. Step 1 in the proof of Lemma 24. Due to Proposition 20 we moreover have for h 6 σ:

Var
(
ξ(h)

)
.

1
n

(
(nσ + n2σ2)h

2

σ2 + (nσ + 1)h
σ

)
.
h2

σ
+ nh2 + h+ h

nσ
. nh2 + 1

n
.(21)

Since h 7→ P(σ|D1| 6 h
2 ) is increasing and equals one as soon as h reaches σ, we define for

some sequence κn > 0:

σ̂(2) := min
{
h > 0 : 1

µλn

∑
i,j

ψ†
(
(Yj −Xi)/h

)
> nλh+ 1−

√
nh2 + n−1κn

}
.

Proposition 10. Suppose nσ3/2 → 0 and (20). Then we have for some κn → ∞
(arbitrarily slowly) that

σ̂(2)

σ
− 1 = OP

(
κn
√
nσ2 + n−1).

Note that the condition nσ3/2 → 0 exactly characterises the regime where the rate of σ̂(2)

is faster than the rate of σ̂(1). Combining the estimators σ̂(1) and σ̂(2) with the decision rule
{T̂ > κn} that enables us to decide whether we are in the regime nσ →∞ or not, we define
our final estimator for σ as:

(22) σ̂ :=
{
σ̂(1) on {T̂ > κn} ∩ {σ̂(1) > n−2/3}
σ̂(2) otherwise.

We conclude:

Theorem 11. Under the boundary condition (20) the estimator σ̂ defined above with
κn = logn satisfies

σ̂

σ
− 1 = OP

(
(logn)

(√
nσ2 + n−1 ∧ 1√

nσ

))
.

The performance of σ̂ in terms of its fluctuations in relative error are shown in Figure 3.
They will be sufficient to implement an optimal scale adaptive plug-in strategy for the
estimation of f , as developed in the next section.

3.2. Estimation of f when σ is unknown. Recall that the optimal rate of convergence is
achieved by the interaction estimator or the deconvolution estimator depending whether

σ 6 n−(4s+3)/(6s+6) or σ > n−(4s+3)/(6s+6)
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0
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1
2
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2s+1
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6s+6

s
2s+3

− 2s+1
2s+2 − 4s+3
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logn σn

lo
g n
r n

σ̂(1)σ̂(2)

σ̂(2)

Fig 3. The rates of convergence of σ̂ = σ̂(1) or σ̂(2) depending on the decision rule (22), as a function the
dispersal rate σ on a log-log plot (in solid red). The minimax rate rn in a log-log plot (in dashed black). The
red curve always dominates the black one.

respectively. Theorem 11 implies that σ̂n(4s+3)/(6s+6) = (1+oP(1))σn(4s+3)/(6s+6) in all regimes
for σ. In turn, we can decide for the best estimator in a data-driven way by setting

f̃n(z0) =


f̃

(1)
σ̂

(z0) on
{
σ̂n(4s+3)/(6s+6) ≥ 1

}
f̃

(1)
σ̂

(z0) otherwise.

where σ̂ is specified in Theorem 11, and we use the plug-in counterparts to the deconvolution
estimator from (15) and the interaction estimator from (16), respectively, given by

f̃
(1)
σ̂

(z0) := 1
σ̂ĥ2

1|Y|

∑
j

K ′
( z0

ĥ1
− Yj

σ̂ĥ1

)( 1
|X |

∑
i

K
( σ̂z0

9 − Yj −Xi

9
))
,

specified by ĥ1 = (nσ̂)−1/(2s+3), and

f̃
(2)
σ̂

(z0) = 1
|Y|ĥ2

∑
i,j

2K ′
(
2(σ̂z0 − Yj)

)
K
( z0

ĥ2
− Yj −Xi

σ̂ĥ2

)
− σ̂|X |,

specified by ĥ2 = (n ∧ σ̂−1)−1/(2s+1).

Theorem 12. Let s, L > 0, z0 ∈ (−1
2 ,

1
2) and suppose K fulfills Assumption 3 with order

`K ≥ bsc. The following holds uniformly for f ∈ Gs(z0, L) with property (20):

(i) If nσ/(logn)2 →∞, we have

f̃
(1)
σ̂

(z0)− f(z0) = OP(un), with un = (σn)−s/(2s+3).

(ii) If nσ2 → 0 and s > 3/2, we have

f̃
(2)
σ̂

(z0)− f(z0) = OP(vn), with vn = (n ∧ σ−1)−s/(2s+1) +
√
nσ.
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In particular, we achieve σ-adaptation in the following sense:

f̃n(z0)− f(z0) = OP(rn),

where rn is the minimax rate for the estimation of f(z0) in squared error loss, given in (5),
according to Theorems 6 and 7.

Our final Theorem 12 shows that under our set of assumptions, it is possible to achieve
optimality for the pointwise estimation of the dispersal density f(z0) across scales without
any prior knowledge of the scale σ. The proof is based upon the study of the smoothness
of the interaction and convolution estimators as random processes indexed by σ together
with sharp estimation rates for σ̂ provided by Theorem 11. For technical reason, we have the
additional restriction s > 3/2 for the smoothness of f locally around z0 and our bounds are
in the probability and not expectation.

4. Discussion.

4.1. One-to-one correspondence between parents and children. In some applications, e.g.
Example 1 in Section 1.3, it is desirable to impose a one-to-one correspondence between
parents and their children. Each parent has exactly one child and in particular |X | = |Y|. The
point process N of the offspring generation should be modified as follows. For M = ∑

i δXi
as parent generating process, the offspring of a specific parent trait Xi is given by

(23) Yj = Xj + σDj

for independent random variables (Dj)j≥1 distributed according to the dispersal density f
and with the scaling parameter σ ∈ (0, 1]. The offspring point process is then simply given by

N(dy) =
∑
j

δYj (dy) =
∑
j

δXj+σDj (dy).

Let us compare this one-to-one model with the original model of Section 1.2: Here, we have
an urn model without replacement and a fixed number |X | of draws while in Section 1.2 we
have an urn model with replacement and random number of draws. In this modified case we
can proceed analogously to Goldenshluger (2018, Proposition 1) and we obtain the following
counterpart to Proposition 1 with µ = 1:

Proposition 13. Let (Ai)1≤i≤I and (Bj)1≤j≤J be two families of disjoint subsets of [0, 1]
and R, respectively. Then for any (η1, . . . , ηI) ∈ RI and (ξ1, . . . , ξJ) ∈ RJ we have

logE
[

exp
( I∑
i=1

ηiM(Ai) +
J∑
j=1

ξjN(Bj)
)]

= nλ
I∑
i=1

(eηi − 1)|Ai|+ nλ
J∑
j=1

(eξk − 1)Qσ([0, 1], Bj) + nλ
I∑
i=1

J∑
j=1

(eηi − 1)(eξj − 1)Qσ(Ai, Bj),

where |A| denotes the Lebesgue measure of A and Qσ(A,B) =
∫
A

∫
B fσ(y − x) dy dx.
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Note that this modified exponential formula coincides with the result of Proposition 1 if we
apply a first order approximation of the exponential functions on the right-hand side of (6)
and set µ = 1. As a consequence, differentiation yields the same form of the intensity measure

1
nλ

E
[M(dx)N(dy)

dxdy
]

= nλ(fσ ∗ 1[−1,1])(y) + fσ(y − x)

as in Proposition 1 while second order properties differ. In fact, higher order integrals in the
one-to-one setting are a bit simpler, see Remark 17 below. We can thus apply exactly the
same estimator as before and Theorem 6 remains true in the one-to-one setting.

Corollary 14. Let z0 ∈ (−1/2, 1/2), and s, L > 0. Based on the observations M =∑
i δXi and N = ∑

j δYj = ∑
j δXj+σDj with Dj from (23) there is an estimator f̂(z0)

depending on λ, σ and s such that

sup
f∈Gs(z0,L)

E
[(
f̂(z0)− f(z0)

)2]1/2
. rn,

where the rate of convergence is given by (5).

4.2. The multidimensional case with arbitrary parent distributions. We investigate briefly
in this section two essential extensions of our approach and the results of Theorem 6:

1) How will the rate change in the deconvolution regime if we consider multidimensional
observations, i.e. when X ⊆ O ⊆ Rd and Y ⊆ Rd with d > 1?

2) How does the parent distribution affects the problem when p is not uniform over O?

For the first question, we argue that Theorem 6 and 7 generalise to a parent point process
in Rd with intensity measure λ1O for a rectangular set O ⊆ Rd. In general, the smoothing
properties of a convolution with p = |O|−1

1O for a bounded set O ⊆ Rd considerably
depends on the geometry of O and its boundary ∂O in particular, see e.g. Randol (1969).
More specifically, a more regular boundary results in a faster decay of the characteristic
function of the uniform distribution on O. As a consequence, the statistical deconvolution
problems depends on the geometry, too. To investigate the impact of the regularity properties
of the parent distribution p, we assume in this section that the characteristic function of the
parent distribution is bounded away from zero. In this case the classical spectral approach
is applicable and allows for a transparent analysis of statistical estimation, even in the
multidimensional case d > 1.

Let M = ∑
i δXi(dx) be Poisson point process with intensity λnp(x)dx on Rd, where

p : Rd → [0,∞) is a bounded probability density function. As before the point process N
on Rd of offspring traits has conditional intensity µ(M ∗ fσ(y))dy with fσ from (2). The
decomposition (7) generalises to

(24) 1
nλµ

E
[ ∫
O×Rd

ψ1(y)ψ2
(
(y − x)/σ

)
M(dx)N(dy)

]
= σdnλUσ(f ∗ p) + Vσ(f),

with
Uσ(f ∗ p) =

∫
Rd
ψ1(y)

(
ψ2 ∗ p(σ·)

)
(y/σ)(fσ ∗ p)(y)dy
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and
Vσ(f) =

∫
Rd

(
ψ1 ∗ p(−·)

)
(σz)ψ2(z)f(z)dz.

To deconvolve fσ ∗ p in Uσ(f ∗ p), we denote the characteristic function of p by ϕp(u) =
F [p](u) =

∫
Rd e

iu>xp(x)dx, u ∈ Rd, and assume that ϕp(u) 6= 0 for all u ∈ Rd. Then we can
choose the spectral deconvolution kernel

ψ1 = F−1
[FK(h1u)
ϕp(u/σ)

]
(z0 − ·/σ), z0 ∈ Rd,

with inverse Fourier transform F−1[h(u)](x) = (2π)−d
∫
Rd e

−iu>xh(u)du for any h ∈ L1(Rd)
and where K : Rd → R is a band limited kernel with bandwidth h1 > 0. Plancherel’s identity
and F [(f ∗ p)(σ·)](u) = σ−dF [f ](u)ϕp(u/σ) indeed yields∫

Rd
ψ1(z)(fσ ∗ p)(z)dz = σd

(2π)d
∫
Rd
e−iu

>zFK(h1u)
ϕp(u/σ) F

[
(f ∗ p(σ·))

]
(u)du

= 1
(2π)d

∫
Rd
e−iu

>zF [Kh1 ](u)F [f ](u)du = (Kh1 ∗ f)(z).(25)

Using ψ1 from above and ψ2 = 1, we define the following spectral deconvolution estimator on
Rd:

f̂sd
h1 (z0) = 1

nλµ

∑
j

F−1
[FK(h1u)
ϕp(u/σ)

](
z0 −

Yj
σ

)
.

If the parent distribution is unknown, then we can profit from the observations X by
replacing ϕp with its empirical counterpart ϕ̂p(u) = |X |−1∑

j e
iX>j u as demonstrated in the

classical (univariate) deconvolution literature, see e.g. Neumann (2007); Comte and Lacour
(2011); Dattner et al. (2016).

The rate of convergence will be determined by the decay of ϕp(u). Note that ϕp(u) should
decay at least as |u|−d in order to allow for a bounded density h = F−1ϕp. In the multivariate
case, the extensions Hsd(z0) and Gsd(z0, L) of the local Hölder classes Hs(z0) and the class of
Hölder regular, bounded densities Gs(z0, L), respectively, from the univariate case to Rd is
straightfroward by considering partial derivatives. A kernel K of order `K > bsc in dimension
d can be constructed, for instance by tensorisation of the one dimensional case. We keep-up
with the notation | · | to denote the Euclidean norm on Rd.

Theorem 15. Let z ∈ Rd and f ∈ Gsd(z0, L) for some s > 0 and let p be a bounded
probability density on Rd with ϕp(u) 6= 0 for all u ∈ Rd. If K is a kernel or order `K > bsc
that satisfies SuppFK ⊆ {u ∈ Rd : |u| 6 1}, then we have

sup
f∈Gs

d
(z0,L)

E
[∣∣f̂ sp

h1
(z0)− f(z0)

∣∣2]1/2 . hs + σd

n1/2

( ∫
{u∈Rd:|u|61/(σh)}

|ϕp(u)|−2du
)1/2

.

In the mildly ill-posed case with |ϕp(u)| & (1 + |u|2)−t/2 for some t > d, we obtain

sup
f∈Gs

d
(z0,L)

E
[∣∣f̂ sp

h1
(z0)− f(z0)

∣∣2] . (nσ2t−d)−2s/(2s+2t+d).

for the choice h1 = (nσ2t−d)1/(2s+2t+d).
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In the severely ill-posed case |ϕp(u)| & e−γ|u|
β for some γ, β > 0, we obtain

sup
f∈Gs

d
(z0,L)

E
[∣∣f̂ (d)

h1
(z0)− f(z)

∣∣2]1/2 . σ−s(logn)−s/β

for the choice h1 = σ−1( 1
4γ logn)−1/β.

Several remarks are in order: 1) for d = 1, the uniform distribution corresponds to the
degree of ill-posedness t = 1 for which we indeed recover the rate (nσ)2s/(2s+3). 2) For more
regular distributions with t > 1 the dependence of the deconvolution rate on the scaling
parameter σ is even more severe. For t = 3

2d the deconvolution estimator is only consistent if
nσ2d →∞. Since the analysis of the variance of an interaction approach in the general setting
reveals a term of order nσ2d, cf. Remark 22, we conjecture that there is a regime where f
cannot be estimated consistently if t > 3

2d.
To discuss the behaviour of an interaction estimator similiar to (13), we note first that

our variance estimates in Section 6.2 can be generalised to other parent distributions with
bounded densities and to higher dimensions, see in particular Remark 22 at the end of Section
6.2. A soon as the bias due to Uσ(f ∗ p) in the interaction regime can be controlled, one can
in principle build an estimator f̂int

h (z0) with mean squared-error of order

E
[(
f̂int
h (z0)− f(z0)

)2]1/2
. hs + max

( 1
n1/2hd/2

,
σd/2

hd/2
, n1/2σd

)
for f ∈ Gsd(z0, L). An optimised choice of h = (n ∧ σ−d)−1/(2s+d) then yields

E
[(
f̂int
h (z0)− f(z0)

)2]1/2
. max

(
(n ∧ σ−d)−s/(2s+d), n1/2σd

)
.

However, the analysis of the bias due to Uσ(f ∗ p) is quite delicate and we do not have a clear
understanding of its behaviour at the moment. Note also that the analysis of the interaction
estimator is applicable to a generating parent trait point process with intensity λn1O(x)dx
for any Borel set O ⊆ Rd without additional difficulties.

5. A numerical example. In order to illustrate the main results, we will apply the
estimators from Definition 4 together with the pure deconvolution estimator and the interaction
estimator from (11) and (14), respectively, on simulated observations.

We choose n = 1000, λ = µ = 1 and consider the Beta(2, 3)-distribution (shifted by −1/2)
for the dispersal, i.e.

f(z) = 1
12
(1

2 + z
)(1

2 − z
)2
1[−1/2,1/2](z), z ∈ R.

For the estimators we choose the kernel

K(z) :=


1, |z| 6 1

4 ,((32
15(|z| − 1

4)
)2 − 1

)2
, |z| ∈ (1

4 ,
23
32 ],

0, otherwise,

which is continuously differentiable, non-negative and satisfies Assumption 3 with order `K =
1. The bandwidths are chosen as h1 = 0.7(nσ)−1/7 and h2 = 0.7 min(n, σ−1)−1/5 according
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Fig 4. Logarithmic plot of the root mean squared error of f̂ (1)
h1

(purple), f̂ (2)
h2

(green) as well as f̂dec
h1 (purple,

dashed), f̂ int
h2 (green, dashed) at z0 = 0 depending on σn based on a Monte Carlo simulation.

to Proposition 5. In the numerical experiments we note a considerable sensitivity of the small
scale estimator f̂ (2)

h2
to the choice of h1. While the estimator achieves the optimal rate with

h1 = 1/(2σ), the proofs reveal that the conditions h1 +h2 < σ−1 and h1 > 4 are sufficient for
the bias analysis and the variance grows by the factor (σh1)−1. Hence, h1 should be as large
as possible and we choose h1 = max(4, σ−1 − 1.1h2) for f̂ (2)

h2
.

A Monte Carlo simulation confirms our theoretical findings. Figure 4 shows the root mean
squared error at point z0 = 0 based on a Monte Carlo simulation with 500 Monte Carlo
iterations. In each of these iterations the same random variables are drawn to define the point
clouds X and Y along a grid of scaling parameters σn = nτ , τ ∈ {−2,−1.8, . . . ,−0.2, 0}.
We see that f̂ (1)

h1
is much better for large scales, but its error increases as σ decreases. For

σ < n−0.6 ≈ 0.016 the direct estimator f̂ (2)
h2

is better and its error improves when σ decreases
further. As we can see in this figure f̂ (1)

h1
and f̂dec

h1
behave similarly. In contrast, there is a

notable difference between f̂ (2)
h2

and f̂ int
h2

. More precisely, our numerical experiments indicate
that the stochastic error of f̂ int

h2
is smaller across all scales, but even before σ = n−1 the bias

effect drastically kicks in.
For a more detailed impression on the behaviour of our main estimators Figure 5 shows

20 realisations of the estimators f̂ (1)
h1

and f̂ (2)
h2

for two different choices the scaling parameter
σ ∈ {n−1/20, n−19/20}. While the deconvolution estimator f̂ (1)

h1
fluctuates around the true

density for the rather large scale σ = n−1/20 ≈ 0.71, its result is completely useless at the
small scale σ = n−19/20 ≈ 0.0014. The direct estimator f̂ (2)

h2
reveals the opposite behaviour. At

the small scale f̂ (2)
h2

concentrates around f , but its shape is unrelated to the dispersal density
if σ is large.

6. Proofs.

6.1. The covariance structure of (M,N).
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Fig 5. 20 realisations of f̂ (1)
h1

( left) and f̂ (2)
h2

( right) and true density (dashed) in the point process model with
parameters n = 1000, λ = µ = 1 and scaling parameters σ = n−1/20 ≈ 0.71 ( top) and σ = n−19/20 ≈ 0.0014
(bottom).

Proof of Proposition 1. Conditional on M we obtain from Campbell’s formula

E
[

exp
( J∑
j=1

ηjM(Aj) +
K∑
k=1

ξkN(Bk)
)∣∣∣(Xj)

]

= exp
( J∑
j=1

ηjM(Aj)
)
E
[

exp
( K∑
k=1

ξkN(Bk)
)∣∣∣(Xj)

]

= exp
( J∑
j=1

ηjM(Aj)
)

exp
( ∫

(e
∑

k
ξk1Bk (y) − 1)µ

∑
l

fσ(y −Xl)dy
)

= exp
( J∑
j=1

ηjM(Aj) +
K∑
k=1

∫
Bk

(eξk − 1)µ
∑
l

fσ(y −Xl)dy
)

= exp
( ∫

gdM
)

for

g(x) :=
J∑
j=1

ηj1Aj (x) + h(x), h(x) := µ
K∑
k=1

(eξk − 1)
∫
Bk

fσ(y − x)dy.

Applying again Campbell’s formula yields

logE
[

exp
( J∑
j=1

ηjM(Aj) +
K∑
k=1

ξkN(Bk)
)]

= nλ

∫ 1

0

(
eg(x) − 1

)
dx.

If we plug in g(x), we obtain

nλ

∫ 1

0

(
eg(x) − 1

)
dx = nλ

J∑
j=1

∫
Aj

(
eηj+h(x) − 1

)
dx+ nλ

∫
(
⋃
j
Aj)c

(
eh(x) − 1)dx
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= nλ
J∑
j=1

(eηj − 1)
∫
Aj

(eh(x) − 1)dx+ nλ
J∑
j=1

(eηj − 1)|Aj |+ nλ

∫ 1

0

(
eh(x) − 1)dx.

We conclude by differentiating the previous exponential formula.

Proof of Corollary 2. It suffices to note that

Ψ(η, ξ) :=E
[
eηM(A)+ξN(B)

]
= exp

(
nλ(eη − 1)|A|+ nλ

∫ 1

0

(
eψB(ξ,x) − 1)dx+ nλ(eη − 1)

∫
A

(eψB(ξ,x) − 1)dx
)
,

where ψB(ξ, x) := µ(eξ − 1)
∫
B fσ(y − x)dy, satisfies

∂ξΨ(η, ξ) = Ψ(η, ξ)
(
nλ

∫ 1

0
eψB(ξ,x)∂ξψB(ξ, x)dx+ nλ(eη − 1)

∫
A
eψB(ξ,x)∂ξψB(ξ, x)dx

)
and

∂η∂ξΨ(η, ξ) = Ψ(η, ξ)
(
nλeη|A|+ nλeη

∫
A

(eψB(ξ,x) − 1)dx
)

×
(
nλ

∫ 1

0
eψB(ξ,x)∂ξψB(ξ, x)dx+ nλ(eη − 1)

∫
A
eψB(ξ,x)∂ξψB(ξ, x)dx

)
+ Ψ(η, ξ)λeη

∫
A
eψB(ξ,x)∂ξψB(ξ, x)dx.

Hence, due to Ψ(0, 0) = 1, ψB(0, x) = 0 and ∂ξψB(0, x) = µ
∫
B fσ(y − x)dy, the claimed

formula is given by ∂η∂ξΨ(0, 0).

The previous proof also shows that

(26) E[N(B)] = nλµ

∫ 1

0

∫
B
fσ(y − x) dydx, B ⊆ R,

by calculating ∂ξΨ(0, 0). While Corollary 2 determines the mean of linear functionals of M
and N the following lemma investigates the covariance structure.

Lemma 16. For

Qσ(A,B) :=
∫
A

∫
B
fσ(y−x) dy dx, Q2

σ(A,B1, B2) :=
∫
A

∫
B1

∫
B2
fσ(y1−x)fσ(y2−x) dy2 dy1 dx

we have:

(i) If B1, B2 ⊆ R are intervals such that B1 ∩B2 = ∅, then

E[N(B1)N(B2)] = n2λ2Qσ([0, 1], B1)Qσ([0, 1], B2) + nλµ2Q2
σ([0, 1], B1, B2)

= E[N(B1)]E[N(B2)] + nλµ2Q2
σ([0, 1], B1, B2).(27)

(ii) If A1, A2 ⊆ [0, 1] and B ⊆ R are intervals such that A1 ∩A2 = ∅, then

E[M(A1)M(A2)N(B)] = n3λ3µ|A1||A2|Qσ([0, 1], B) + n2λ2µ|A2|Qσ(A1, B)
+ n2λ2µ|A1|Qσ(A2, B)(28)
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(iii) If A ⊆ [0, 1] and B1, B2 ⊆ R are intervals such that B1 ∩B2 = ∅, then

E[M(A)N(B1)N(B2)] = n3λ3µ2|A|Qσ([0, 1], B1)Qσ([0, 1], B2)
(29)

+ n2λ2µ2Qσ(A,B1)Qσ([0, 1], B2) + n2λ2µ2Qσ([0, 1], B1)Qσ(A,B2)
+ n2λ2µ2|A1|Q2

σ([0, 1], B1, B2) + nλµ2Q2
σ(A,B1, B2).

(iv) For A1, A2 ⊆ [0, 1] and B1, B2 ⊆ R with A1 ∩A2 = ∅ and B1 ∩B2 = ∅ we have

E[M(A1)M(A2)N(B1)N(B2)]
= E[M(A1)N(B1)]E[M(A2)N(B2)]

+ n3λ3µ2
(
|A1|Qσ(A2, B1)Qσ([0, 1], B2) + |A2|Qσ([0, 1], B1)Qσ(A1, B2)

+ |A1||A2|Q2
σ([0, 1], B1, B2)

)
+ n3λ2µ2

(
Qσ(A2, B1)Qσ(A1, B2) + |A1|Q2

σ(A2, B1, B2) + |A2|Q2
σ(A1, B1, B2)

)
.

The proof is similiar to the proof of Corollary 2, but using forth order partial derivatives
(6). We postpone the details to the appendix.

Remark 17. Amodified proof shows that in the one-to-one case the formulas in Lemma 16
remain true if we set Q2

σ(A) = 0.

6.2. Bias and variance bounds. The two integrals Uσ(f∗p) and Vσ(f) from (7) are analysed
in the following two propositions.

Proposition 18. For s, L > 0 let f ∈ Gs(z0, L). Suppose that ψ1 and ψ2 are given by
(11) and (14), respectively, with K satisfying Assumption 3 with `K ≥ bsc.

(i) If σh2 > 8 for σ ∈ (0, 1], then we have for all z0 ∈ (−1/2, 1/2), and h1 ∈ (0, h2
8 ]

Uσ(f ∗ p) = 1
σh2

f(z0) +O
( hs1
σh2

)
.

(ii) If h1 ∈ [4, σ−1) for σ ∈ (0, 1/4), then we have for all y ∈ (−1/2, 1/2), and h2 ∈
(0, σ−1 − h1]

Uσ(f ∗ p) = 1
h1
.

Proof. (i) Noting that (fσ ∗ 1[0,1])(y) = F
( y
σ

)
− F

(y−1
σ

)
for the cumulative distribution

function F of f , we plug in the choice of ψ1 and substitute z = z0 − x
σ to obtain

Uσ(f ∗ p) = 1
σh2

1

∫
R

(ψ2 ∗ 1[0,1/σ])(x/σ)K ′
( z0
h1
− x

σh1

)(
F
(x
σ

)
− F

(x− 1
σ

))
dx

= 1
h2

1

∫
R

(ψ2 ∗ 1[0,1/σ])
(
z0 − z

)
K ′
( z
h1

)(
F
(
z0 − z

)
− F

(
z0 − z −

1
σ

))
dz.(30)

Moreover, we have

(ψ2 ∗ 1[0, 1
σ

])
(
z0 − z

)
= 1
h2

∫
R
K
(z0 − x

h2

)
1[0, 1

σ
]
(
z0 − z − x

)
dx = 1

h2

∫
R
K
( x
h2

)
1[0, 1

σ
]
(
x− z

)
dx.
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Denoting the anti-derivative of K by K(−1)(z) :=
∫ z
−∞K(x)dx, we obtain

(31) (ψ2 ∗ 1[0,1/σ])
(
z0 − z

)
= K(−1)( z

h2
+ 1
σh2

)
−K(−1)( z

h2

)
.

On the assumptions that K(x) = 1 for |x| 6 1
4 , h1 6 h2

8 and σh2 > 8, we have z+1/σ
h2

, zh2
∈

[−1
4 ,

1
4 ] for any |z| 6 h1 and thus (ψ2∗1[0,1/σ])

(
z0−z

)
= 1

σh2
. Since the boundary terms vanish

by the compact support of K, we conclude from (30) together with integration by parts

Uσ(f ∗ p) = 1
σh2h2

1

∫
R
K ′
( z
h1

)(
F
(
z0 − z

)
− F

(
z0 − z − σ−1))dz

= 1
σh1h2

∫
R
K
( z
h1

)(
f
(
z0 − z

)
− f

(
z0 − z − σ−1))dz

= 1
σh2

(( 1
h1
K
( ·
h1

)
∗ f
)
(z0)−

( 1
h1
K
( ·
h1

)
∗ f
)(
z0 − σ−1))

= 1
σh2

(
f(z0) + f(z0 − σ−1)

)
+O

( hs1
σh2

)
,

where the last bound is due to the usual bias estimate based on the Hölder regularity of f .
Note that f(z0 − σ−1) = 0 since σ 6 1 and |z0| < 1/2 and, especially, f has arbitrary Hölder
regularity in a small neighborhood arround z0x− σ−1.

(ii) If h1 + h2 <
1
σ , then

z
h2

+ 1
σh2

> 1 for any |z| 6 h1 and thus (31) reads as

(ψ2 ∗ 1[0,1/σ])
(
z0 − z

)
= 1−K(−1)( z

h2

)
.

If σ < 1/2, we moreover have F (z0−z−σ−1) = 0 for all z0 ∈ (−1/2, 1/2) and z ∈ [−h1, h1] ⊆
[−(2σ)−1, (2σ)−1]. Using that K(x) = 1 for |x| 6 1/4 and using F (x) = 0 for x < −1/2 and
F (x) = 1 for x > 1/2, we obtain from (30) for h1 > 4

Uσ(f ∗ p) = 1
h2

1

∫
|z|>h1/4

(
1−K(−1)(z/h2)

)
K ′
( z
h1

)
F
(
z0 − z

)
dz

= 1
h2

1

∫ −h1/4

−∞

(
1−K(−1)(z/h2)

)
K ′
( z
h1

)
dz

= 1
h2

1

∫ 0

−∞

(
1−K(−1)(z/h2)

)
K ′
( z
h1

)
dz

= 1
h1

(
1−K(−1)(0)

)
K
(
0
)

+ 1
h2

∫ 0

−∞
K
( z
h2

)
K
( z
h1

)
dz
)

= 1
2h2

+ 1
h1h2

∫ 0

−∞
K
( z
h1

)
K
( z
h2

)
dz

where we have used integration by parts and symmetry of K. Since K(·/h1) is constant one
on [−h1

4 ,
h1
4 ], the last line simplifies for h2 6 h1

4 to

Uσ(f ∗ p) = 1
2h2

+ 1
h1h2

∫ 0

−∞
K
( z
h1

)
dz = 1

h1
.

Proposition 19. For s, L > 0 let f ∈ Gs(z0, L). Suppose that ψ1 and ψ2 are given by
(11) and (14), respectively, with K satisfying Assumption 3 with `K ≥ bsc. Let σ ∈ (0, 1].
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(i) If h2 6 h1
4 and h1 + h2 < 1/σ, then

Vσ(f) = h−1
1 f(z0) +O

(
h−1

1 hs2
)
.

(ii) We have for all σ, h1, h2 > 0∣∣Vσ(f)
∣∣ 6 h−1

1 ‖K‖L1‖K ′‖L1‖f‖∞.

Proof. (i) We use

(ψ1 ∗ 1[−1,0])(σz) = 1
σh2

1

∫ 0

−1
K ′
(z0 − z

h1
+ t

σh1

)
dt

= 1
h1

∫ 0

−1/(σh1)
K ′
(z0 − z

h1
+ t
)
dt = 1

h1

(
K
(z0 − z

h1

)
−K

(z0 − z
h1

− 1
σh1

))
.

Noting that z ∈ [z0 − h2, z0 + h2] by the support of ψ2 and using h1 + h2 < 1/σ, we have
|z0−z− 1

σ | >
1
σ−h2 > h1 and thus K

( z0−z
h1
− 1
σh1

)
= 0. Since K

( z0−z
h1

)
= 1 for | z0−z

h1
| 6 h2

h1
6 1

4 ,
we obtain ∫

(ψ1 ∗ 1[−1,0])(σz)ψ2(z)f(z)dz = 1
h1h2

∫
R
K
(z0 − z

h1

)
K
(z0 − z

h2

)
f(z)dz.

= 1
h1h2

∫
R
K
(z0 − z

h2

)
f(z)dz.(32)

Applying again the usual bias estimates on (h−1
2 K(·/h2) ∗ f)(z0), we conclude∫

(ψ1 ∗ 1[−1,0])(σz)ψ2(z)f(z)dz = h−1
1 f(z0) +O(h−1

1 hs2).

(ii) The second bound easily follows form Young’s inequality:∣∣∣ ∫ (ψ1 ∗ 1[−1,0])(σz)ψ2(z)f(z)dz
∣∣∣ 6 ‖ψ1 ∗ 1[−1,0]‖∞‖ψ2‖L1‖f‖∞

6 ‖ψ1‖L1‖ψ2‖L1‖f‖∞ 6 h−1
1 ‖K‖L1‖K ′‖L1‖f‖∞.

The next step is to investigate the variance based on Lemma 16.

Proposition 20. If f is bounded and ϕ?(x, y) := ψ1(y)ψ2
(y−x

σ

)
for some kernels ψ1 ∈

L1 ∩ L2, ψ2 ∈ L2, then there is some C > 0 such that

Var
(∑
j,k

ϕ?(Xj , Yk)
)
6 Cnλµ(1 ∨ ‖f‖∞)

×
(
(µ+ 1)

(
nλσ + n2λ2σ2)‖ψ2‖2L1 + (nλσ + µ+ 1)‖ψ2‖2L2

)
‖ψ1‖2L2 .

Proof. We decompose

Var
(∑
j,k

ϕ?(Xj , Yk)
)

= E
[(∑

j,k

ϕ?(Xj , Yk)
)2]
− E

[∑
j,k

ϕ?(Xj , Yk)
]2

= E
[∑
j,k

ϕ?(Xj , Yk)2
]

+ E
[ ∑
j1 6=j2,k

ϕ?(Xj1 , Yk)ϕ?(Xj2 , Yk)
]
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+ E
[ ∑
j,k1 6=k2

ϕ?(Xj , Yk1)ϕ?(Xj , Yk2)
]

+
(
E
[ ∑
j1 6=j2,k1 6=k2

ϕ?(Xj1 , Yk1)ϕ?(Xj2 , Yk2)
]
− E

[∑
j,k

ϕ?(Xj , Yk)
]2)

=: J1 + J2 + J3 + J4.

Due to (7) and Young’s inequality we have

J1 = n2λ2µ

∫ 1

0

∫
R
ψ2

2
(y − x

σ

)
ψ2

1(y)(fσ ∗ 1[0,1])(y)dydx+ nλµ

∫ 1

0

∫
R
ψ2

2
(
z
)
ψ2

1(x+ σz)f(z)dzdx

= n2λ2µσ

∫
R

(ψ2
2 ∗ 1[0,1/σ])(y/σ)ψ2

1(y)(fσ ∗ 1[0,1])(y)dy

+ nλµ

∫
(ψ2

1 ∗ 1[−1,0])(σz)ψ2
2(z)f(z)dz.

6 n2λ2µσ‖ψ2
2 ∗ 1[0,1/σ]‖∞‖ψ1‖2L2‖fσ ∗ 1[0,1]‖∞ + nλµ‖ψ2

1 ∗ 1[−1,0]‖∞‖ψ1‖2L2‖f‖∞
6 µ

(
n2λ2σ + nλ‖f‖∞

)
‖ψ1‖2L2‖ψ2‖2L2 .

From Lemma 16(ii) and (iii), we deduce for x1 6= x2 in [0, 1] and y ∈ R

E
[
dM(x1)dM(x2)dN(y)

]
= n2λ2µ

(
nλ(fσ ∗ 1[0,1])(y) + fσ(y − x1) + fσ(y − x2)

)
dy dx1dx2

as well as for x ∈ [0, 1] and y1 6= y2

E
[
dM(x)dN(y1)dN(y2)

]
= n2λ2µ2

(
nλ(fσ ∗ 1[0,1])(y1)(fσ ∗ 1[0,1])(y2)

+ fσ(y1 − x)(fσ ∗ 1[0,1])(y2) + fσ(y2 − x)(fσ ∗ 1[0,1])(y1)

+
∫ 1

0
fσ(y1 − t)fσ(y2 − t)dt+ λfσ(y1 − x)fσ(y2 − x)

)
dy1dy2dx.

Therefore,

J2 = E
[ ∫ 1

0

∫ 1

0

∫
R
ϕ?(x1, y)ϕ?(x2, y)1{x1 6=x2}M(dx1)M(dx2)N(dy)

]
= µ(J2,1 + 2J2,2)

with

J2,1 := n3λ3
∫ 1

0

∫ 1

0

∫
R
ψ2
(y − x1

σ

)
ψ2
(y − x2

σ

)
ψ2

1(y)(fσ ∗ 1[0,1])(y)dy dx1dx2

= n3λ3σ2
∫
R

(ψ2 ∗ 1[0,1/σ])2(y/σ)ψ2
1(y)(fσ ∗ 1[0,1])(y)dy

6 n3λ3σ2‖ψ1‖2L2‖ψ2‖2L1 and

J2,2 := n2λ2
∫ 1

0

∫ 1

0

∫
R
ψ2
(y − x1

σ

)
ψ2
(y − x2

σ

)
ψ2

1(y)fσ(y − x1)dy dx1dx2

= n2λ2σ

∫ 1

0

∫
R

(ψ2 ∗ 1[0,1/σ])
(
z + x1

σ

)
ψ2

1(x1 + σz)ψ2
(
z
)
f(z)dz dx1

6 n2λ2σ‖ψ2‖L1‖ψ1‖2L2

∫
R
|ψ2
(
z
)
f(z)|dz = n2λ2σ‖ψ1‖2L2‖ψ2‖2L1‖f‖∞.
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For the third term we have

J3 = E
[ ∫ 1

0

∫
R

∫
R
ϕ?(x, y1)ϕ?(x, y2)1{y1 6=y2}M(dx)N(dy1)N(dy2)

]
= µ2(J3,1+2J3,2+J3,3+J3,4),

where

J3,1 := n3λ3
∫

[0,1]×R2
ψ2
(y1 − x

σ

)
ψ2
(y2 − x

σ

)
ψ1(y1)ψ1(y2)(fσ ∗ 1[0,1])(y1)(fσ ∗ 1[0,1])(y2)dy1dy2dx

= n3λ3
∫ 1

0

(
ψ2(− · /σ) ∗

(
ψ1(fσ ∗ 1[0,1])

))
(x)2dx

6 n3λ3‖ψ2(·/σ)‖2L1‖ψ1‖2L2 = n3λ3σ2‖ψ1‖2L2‖ψ2‖2L1 ,

J3,2 := n2λ2
∫

[0,1]×R2
ψ2
(y1 − x

σ

)
ψ2
(y2 − x

σ

)
ψ1(y1)ψ1(y2)fσ(y1 − x)(fσ ∗ 1[0,1])(y2)dy1dy2dx

= n2λ2
∫ 1

0

((
ψ2(− · /σ)fσ

)
∗ ψ1

)
(x)
(
ψ2(− · /σ) ∗

(
ψ1(fσ ∗ 1[0,1])

))
(x)dx

6 n2λ2‖ψ2(− · /σ)fσ‖L1‖ψ1‖2L2‖ψ2(− · /σ)‖L1

= n2λ2σ‖ψ2(−·)f‖L1‖ψ2‖L1‖ψ1‖2L2 6 n2λ2σ‖f‖∞‖ψ1‖2L2‖ψ2‖2L1 ,

J3,3 := n2λ2
∫

[0,1]2×R2
ψ2
(y1 − x

σ

)
ψ2
(y2 − x

σ

)
ψ1(y1)ψ1(y2)fσ(y1 − t)fσ(y2 − t)dy1dy2 dtdx

= n2λ2
∫

[0,1]2×R2
ψ2
(
z1 + t− x

σ

)
ψ2
(
z2 + t− x

σ

)
ψ1(σz1 + t)ψ1(σz2 + t)f(z1)f(z2)dz1dz2 dtdx

6 n2λ2σ

∫
R4

∣∣ψ2
(
z1 + x

)
ψ2
(
z2 + x

)
ψ1(σz1 + t)ψ1(σz2 + t)

∣∣f(z1)f(z2)dz1dz2 dxdt

= n2λ2σ

∫
R2

(|ψ2| ∗ |ψ2|)(z1 − z2)(|ψ1| ∗ |ψ1|)
(
σ(z1 − z2)

)
f(z1)f(z2)dz1dz2

6 n2λ2σ‖ψ1‖2L2

∫
R2

(|ψ2| ∗ |ψ2|)(z1)f(z1 + z2)f(z2)dz1dz2 6 n2λ2σ‖ψ1‖2L2‖ψ2‖2L1‖f‖∞,

J3,4 := nλ

∫
[0,1]×R2

ψ2
(y1 − x

σ

)
ψ2
(y2 − x

σ

)
ψ1(y1)ψ1(y2)fσ(y1 − x)fσ(y2 − x)dy1dy2 dx

= nλ

∫ 1

0

(
(fσψ2(·/σ)) ∗ ψ1

)
(x)2dx

6 nλ‖ψ1‖2L2‖fσψ2(·/σ)‖2L1

6 nλ‖ψ1‖2L2‖f‖∞‖f‖L1‖ψ2‖2L2 6 nλ‖f‖∞‖ψ1‖2L2‖ψ2‖2L2 .

Finally, we have due to Lemma 16(iv) for x1 6= x2 and y1 6= y2 that

E
[
dM(x1)dM(x2)dN(y1)dN(y2)

]
− E

[
dM(x1)dN(y1)

]
E
[
dM(x2)dN(y2)

]
= n2λ2µ2

(
nλfσ(y1 − x2)(fσ ∗ 1[0,1])(y2) + nλfσ(y2 − x1)(fσ ∗ 1[0,1])(y1)

+ nλ

∫ 1

0
fσ(y1 − t)fσ(y2 − t)dt+ fσ(y1 − x2)fσ(y2 − x1)

+ fσ(y1 − x1)fσ(y2 − x1) + fσ(y1 − x2)fσ(y2 − x2)
)
dy1dy2dx1dx2

and thus J4 = µ2(2J4,1 + J4,2 + J4,3 + 2J4,4) with

J4,1 := n3λ3
∫

[0,1]2×R2
ψ2
(y1 − x1

σ

)
ψ2
(y2 − x2

σ

)
ψ1(y1)ψ1(y2)
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× fσ(y1 − x2)(fσ ∗ 1[0,1])(y2)dy1dy2dx1dx2

= n3λ3
∫

[0,1]×R

(
ψ2( ·

σ
) ∗ 1[0,1]

)
(y1)

(
ψ2(− ·

σ
) ∗
(
(fσ ∗ 1[0,1])ψ1

))
(x2)ψ1(y1)fσ(y1 − x2)dy1dx2

= n3λ3
∫ 1

0

(
fσ ∗

(
(ψ2(·/σ) ∗ 1[0,1])ψ1

))
(x2)

(
ψ2(·/σ) ∗

(
(fσ ∗ 1[0,1])ψ1

))
(x2)dx2

6 n3λ3‖ψ1‖2L2‖ψ2(·/σ)‖2L1

= n3λ3σ2‖ψ1‖2L2‖ψ2‖2L1 ,

J4,2 := n3λ3
∫

[0,1]3×R2
ψ2
(y1 − x1

σ

)
ψ2
(y2 − x2

σ

)
ψ1(y1)ψ1(y2)fσ(y1 − t)fσ(y2 − t)dy1dy2dtdx1dx2

= n3λ3σ2
∫

[0,1]×R2
(ψ2 ∗ 1[0,1/σ])

(
z1 + t/σ

)
(ψ2 ∗ 1[0,1/σ])

(
z2 + t/σ

)
ψ1(σz1 + t)ψ1(σz2 + t)

× f(z1)f(z2)dz1dz2dt

= n3λ3σ2
∫ 1

0

((
(ψ2 ∗ 1[0,1/σ])ψ1(σ·)

)
∗ f(−·)

)
(t/σ)2dt

6 n3λ3σ3‖
(
(ψ2 ∗ 1[0,1/σ])ψ1(σ·)

)
‖2L2

6 n3λ3σ2‖ψ1‖2L2‖ψ2‖2L1 ,

J4,3 := n2λ2
∫

[0,1]2×R2
ψ2
(y1 − x1

σ

)
ψ2
(y2 − x2

σ

)
ψ1(y1)ψ1(y2)

× fσ(y1 − x2)fσ(y2 − x1)dy1dy2dx1dx2

6 n2λ2
∫
R4

∣∣ψ2
(
z1 −

x1
σ

)
ψ2
(
z2 + x1

σ

)
× ψ1(x2)ψ1(x1 + x2 + σ(z2 − z1))

∣∣f(z1)f(z2)dz1dz2dx1dx2

= n2λ2
∫
R2

(f ∗ |ψ2|)
(x1
σ
− z1

)
|ψ2|

(x1
σ

)
(|ψ1| ∗ |ψ1|)(σz1 − x1)f(z1)dz1dx1

= n2λ2σ

∫
R

(
f ∗

(
(f ∗ |ψ2|)(|ψ1| ∗ |ψ1|)(σ·)

))
(x1)|ψ2|(x1)dx1

6 n2λ2σ‖ψ1‖2L2‖ψ2‖2L1‖f‖∞,

J4,4 := n2λ2
∫

[0,1]2×R2
ψ2
(y1 − x1

σ

)
ψ2
(y2 − x2

σ

)
ψ1(y1)ψ1(y2)fσ(y1 − x1)fσ(y2 − x1)dy1dy2dx1dx2

= n2λ2σ

∫ 1

0

(
(ψ2f) ∗ ψ1(σ·)

)
(−x1/σ)

(
f ∗ ((ψ2 ∗ 1[0,1/σ])ψ1(σ·))

)
(−x1/σ)dx1

6 n2λ2σ2‖(ψ2f) ∗ ψ1(σ·)‖L2‖f ∗ ((ψ2 ∗ 1[0,1/σ])ψ1(σ·))‖L2

6 n2λ2σ‖ψ1‖2L2‖ψ2‖2L1‖f‖∞.

Combining all estimates yields for some C > 0

Var
( ∑
j,k∈Z

ϕ?(Xj , Yk)
)
6Cnλµ(1 + ‖f‖∞)‖ψ1‖2L2

×
(
(µ+ 1)

(
nλσ + n2λ2σ2)‖ψ2‖2L1 + (nλσ + 1 + µ)‖ψ2‖2L2

)
.

If the test function only depends on Yk, we obtain the following simplified version:

Lemma 21. We have Var
(∑

j ψ1(Yj)
)
6 nλ(µ+ µ2)‖ψ1‖2L2.
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Proof. We decompose

Var
(∑

j

ψ1(Yj)
)

= E
[∑

j

ψ1(Yj)2
]

+ E
[ ∑
j1 6=j2

ψ1(Yj1)ψ1(Yj2)
]
− E

[∑
j

ψ1(Yj)
]2

= nλµ

∫
R
ψ1(y)2(fσ ∗ 1[0,1])(y)dy

+ nλµ2
∫ 1

0

∫
R

∫
R
ψ1(y1)ψ1(y2)fσ(y1 − x)fσ(y2 − x)dy1dy2dx

=: J1 + J2.

These terms can be bounded by

J1 6 nλµ‖ψ1‖2L2‖fσ ∗ 1[0,1]‖∞ 6 nλµ‖ψ1‖2L2 and
J2 6 nλµ2‖(fσ ∗ ψ1)2

1[0,1]‖L1 6 nλµ2‖fσ ∗ ψ1‖2L2 6 nλµ2‖ψ1‖2L2 .

Remark 22. With only minor modifications the same proofs applies to point processes
M and N in Rd where M has intensity nλp with bounded probability density function p
on Rd and where N has conditional intensity µ(N ∗ fσ) as before. In this case all indicator
functions 1[0,1] have to be replaced by p, all integrals of the type

∫ 1
0 . . . dx have to be replaced

by
∫
Rd . . . p(x)dx and the factors σ in the above estimates have to be replaced by σd. We

obtain the following variance bounds:

Var
(∑
j,k

ϕ?(Xj , Yk)
)
6Cnλµ(1 + ‖f‖∞)(‖p‖∞ + ‖p‖3∞)

×
(
(µ+ 1)

(
nλσd + n2λ2σ2d)‖ψ2‖2L1 + (nλσd + 1 + µ)‖ψ2‖2L2

)
‖ψ1‖2L2 ,(33)

Var
(∑

k

ϕ?(Yk)
)
6nλ(µ+ µ2)‖p‖∞‖ψ1‖2L2 .

6.3. Proof of upper and lower bounds. Based on the previous bounds, we can prove our
main results.

Proof of Theorem 6. The theorem is an immediate consequence of Proposition 5.

Proof of Proposition 5. From (7) and Propositions 18 and 19, we conclude

E
[ 1
nλh1

f̂h1,h2(z0)
]

= σh2 Uσ(f ∗ p) + h2
nλ
Vσ(f)

= f(z0) +O
(
hs1
)

+O
( h2
nh1

)
, for h1 6

h2
8 , σh2 > 8, σ 6 1,(34)

E
[ 1
h2
f̂h1,h2(z0)

]
= h1Vσ(f) + σnλh1 Uσ(f ∗ p)

= f(z0) +O
(
hs2
)

+ σnλ, for h2 6 min(1, 1
σ
− h1), h1 ∈ [4, 1

σ
], σ < 1

4(35)

Since the kernels from (11) and (14) satisfy

‖ψ1‖2L2 = O(σ−1h−3
1 ), ‖ψ2‖2L1 = O(1), ‖ψ2‖2L2 = O(h−1

2 ),
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Proposition 20 yields with a constant µ

Var
( 1
nλh1

f̂h1,h2(z0)
)
.
h2

2σ
2

nσh3
1

(
1 + 1

nσ
+ 1
h2nσ

+ 1
h2(nσ)2

)
,

Var
( 1
h2
f̂h1,h2(z0)

)
.

1
nh2

(
1 + nσ + h2nσ + h2(nσ)2

) 1
σh1

with the constants depending on ‖f‖∞, λ and µ. Combining these bounds, we conclude:
(i) If nσ > 1 > h1 and h2 = 8/σ we obtain

E
[(
f̂

(1)
h1

(z0)− f(z0)
)2] = E

[( 1
nλh1

f̂h1,8/σ(z0)− f(z0)
)2]

. h2s
1 + (h2σ)2

(nσh1)2 + (h2σ)2

nσh3
1

(
1 + 1

h2nσ

)
. h2s

1 + 1
nσh3

1
.

(ii) We have for h1 = 1
2σ and h2 ∈ (0, 1] and σ 6 1/8

E
[(
f̂

(2)
h2

(z0)− f(z0)
)2] = E

[( 1
h2
f̂h1,h2(z0)− f(z0)− σnλ

)2]
. h2s

2 + 1
nh2
∨ σ

h2
∨ nσ2.

Proof of Theorem 7. Without loss of generality let z0 = 0. Consider the density f0(z) =
6(1

4 − z2)1[−1/2,1/2](z) ∈ Gs(0, L). Let K ∈ Cs+1 ∩ C2(R) be a function with SuppK ⊆
[−1/2, 1/2] and K ′(0) > 0. Set for some ε, h > 0

f1(z) := f0(z) + εhsK ′(z/h), z ∈ R,

where K ′ denotes the derivative of K. Since the compact support of K implies
∫
K ′(z)dz = 0

and because K ′ is uniformly bounded, the function f1 is a density supported on [−1/2, 1/2]
if h is small enough. Due to

‖f1‖Cs 6 ‖f0‖Cs + εhs‖K ′(x/h)‖Cs = O(‖f0‖Cs + ε‖K ′‖Cs) = O(‖f0‖Cs + ε‖K‖Cs+1),

we also conclude |f1|Hs(0) 6 L. Therefore, we have constructed two alternatives f0, f1 ∈
Gs(0, L) satisfying

f0(0)− f1(0) = hsK ′(0) & hs.

Hence, the lower bounds on the point-wise loss follow from Tsybakov (2009, Thm. 2.2), if
the total variation distance of the corresponding observations laws remains bounded for the
choices

(36) h =


σ1/(2s+1), if nσ(2s+2)/(2s+1) < 1,
(σ
√
n)1/s, if nσ(2s+2)/(2s+1) > 1 and σ < n−(4s+3)/(6s+6),

(nσ)−1/(2s+3) if σ > n−(4s+3)/(6s+6).

We denote by P0,n and P1,n the joint distribution of the point processes M and N where
the coniditional intensity measure of N is given by M ∗ f0,σ and M ∗ f1,σ, respectively. By
conditioning on the number nx = M([0, 1]) ∼ Poiss(λn) of parents, the number ny = N(R) ∼
Poiss(µnx)|nx of children and the location of the parents traits (Xi)i=1,...,nx

i.i.d∼ U([0, 1])|nx
we obtain

‖P1,n − P0,n‖TV =
∑
nx>1

(nλ)nx
nx! e−λn

∑
ny>0

(µnx)ny
ny!

e−µnxd(P1,n,P0,n|nx, ny) where

(37)
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d(P1,n,P0,n|nx, ny) :=
∫

[0,1]nx

∥∥∥PY1,...,Yny |X1=x1,...,Xnx=xnx
1,n − PY1,...,Yny |X1=x1,...,Xnx=xnx

0,n

∥∥∥
TV

dx,

taking into account that on the event {M([0, 1]) = 0} the conditional distributions coincide.
Conditional on Xj = xj , j = 1, . . . , nx, the offspring (Yi) are i.i.d. Estimating the total
variation distance by the χ2-distance, we thus have

d(P1,n,P0,n|nx, ny)2 6
∫

[0,1]nx

∥∥PY1,...,Yny |X1=x1,...,Xnx=xnx
1,n − PY1,...,Yny |X1=x1,...,Xnx=xnx

0,n
∥∥2
TV

dx

6
∫

[0,1]nx
χ2(PY1,...,Yny |X1=x1,...,Xnx=xnx

1,n ,PY1,...,Yny |X1=x1,...,Xnx=xnx
0,n

)
∧ 1 dx

=
∫

[0,1]nx

((
1 + χ2(PY1|X1=x1,...,Xnx=xnx

1,n ,PY1|X1=x1,...,Xnx=xnx
0,n )

)ny
− 1

)
∧ 1 dx

6 e

∫
[0,1]nx

(
nyχ

2(PY1|X1=x1,...,Xnx=xnx
1,n ,PY1|X1=x1,...,Xnx=xnx

0,n )
)
∧ 1 dx.

Under PY1|X1=x1,...,Xnx=xnx
k,n , k ∈ {0, 1}, Y1 is distributed according to the density

g(k)
n,σ(y|x) = 1

nx

nx∑
j=1

fk,σ(y − xj).

Therefore,

(PY1|X1=x1,...,Xnx=xnx
1,n ,PY1|X1=x1,...,Xnx=xnx

0,n
)

=
∫
g

(0)
n,σ>0

(g(1)
n,σ(y|x)− g(0)

n,σ(y|x))2

g
(0)
n,σ(y|x)

dy

= ε2h2s

σ2

∫
g

(0)
n,σ>0

( 1
nx

nx∑
j=1

K ′
( y
σh
− xj
σh

))2 dy
g

(0)
n,σ(y|x)

.

In order to estimate the previous integral, we need a lower bound for the denominator g(0)
n,σ

on the support

Supp
nx∑
j=1

K ′
( y
σh
− xj
σh

)
⊆
[
− σh/2, 1 + σh/2

]
.

Defining the event A := {∀y ∈ [−σh/2, 1 + σh/2] : g(0)
n,σ(y|X) > c}, we obtain

d(P1,λ,P0,λ|m,n)2 6 eEn
[(
mχ2(PY1|X1,...,Xn

1,1 ,PY1|X1,...,Xn
0,1 )

)
∧ 1
]

6
e

c2En
[mε2h2s

σ2

∫ ( 1
n

n∑
j=1

K ′
( y
σh
− Xj

σh

))2
dy
]

+ ePn
(
Ac
)
.

where X1, . . . , Xnx
i.i.d.∼ U([0, 1]) under Pn and En denotes the expectation with respect to Pn.

Applying Lemma 23 from below, we have ePn
(
Ac
)
6 C

√
log σ−1

nxσ
=: rn. Hence,

(38) d
(
P1,λ,P0,λ|nx, ny

)2
6

e

c2 ε
nyh

2s+1

σ

∫
En
[( 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

))2]
dy + rn.
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To obtain a sharp upper bound, we will use two different approaches to estimate the previous
display. While the first one will use a stochastic integral approximation of

∫ 1/(σh)
0 K ′(y−x)dx,

the second approach relies on a numerical approximation.
In the first case we represent (38) via

d
(
P1,n,P0,n|nx, ny

)2
6
e

c2 ε
2nyh

2s+1

σ

∫
En
[ 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

)]2
+ Varn

( 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

))
dy + rn.(39)

Owing to

E
[ 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

)]
= E

[
K ′
(
y − X1

σh

)]
= σh

∫ 1/(σh)

0
K ′(y − x)dx,

the first term is bounded by

nyh
2s+1

σ

∫
En
[ 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

)]2
dy = nyσh

2s+3
∫ ( ∫ 1/(σh)

0
K ′
(
y − x

)
dx
)2

dy

= nyσh
2s+3

∫ (
K
(
y − 1

σh

)
−K(y)

)2dy

6 2nyσh2s+3‖K‖2L2 .(40)

The variance term in (39) can be estimated by

Varn
( 1
nx

nx∑
j=1

K ′
(
y − Xj

σh

))
= 1
nx

Varn
(
K ′
(
y − X1

σh

))
6

1
nx

E
[(
K ′
(
y − X1

σh

)2]
.

Therefore,

nyh
2s+1

σ

∫
Varn

( 1
nx

nx∑
j=1

K ′
(
y−Xj

σh

))
dy 6

ny
nx

h2s+1

σ
En
[ ∫ (

K ′
(
y−X1

σh

)2
dy
]

= ny
nx

h2s+1

σ
‖K ′‖2L2 .

Together with (39) and (40) we conclude for some constant C > 0.

(41) d2(P1,n,P0,n|ny, nx
)
6 Cε2

(
nyσh

2s+3 + ny
nx

h2s+1

σ

)
+ rn.

In the second and third regime we need a different bound. Applying a Riemann sum
motivated approximation, we decompose

1
nx

nx∑
j=1

K ′
(
y − Xj

σh

)
=

nx∑
j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx
K ′
(
y − Xj

σh

)
dx

=
nx∑
j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx
K ′
(
y − x

σh

)
dx

+
nx∑
j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx

(
K ′
(
y − Xj

σh

)
−K ′

(
y − x

σh

))
dx
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=: I1(y) + I2(y).

Therefore, we obtain an alternative bound for (38):

d
(
P1,n,P0,n|ny, nx

)2
6
eε2

c2
nyh

2s+1

σ

∫
En
[
I1(y)2

]
dy + eε2

c2
nyh

2s+1

σ

∫
En
[
I2(y)2

]
dy + rn.

(42)

For the first term, we calculate

En
[
I1(y)2

]
=
∑
j,j′

∑
k,k′

Pn
(
Xj ∈

[k − 1
nx

,
k

nx

)
, Xj′ ∈

[k′ − 1
nx

,
k′

nx

))
︸ ︷︷ ︸

=n−2 if j 6=j′ and =n−1 if j=j′,k=k′

×
∫ k/nx

(k−1)/nx

∫ k′/nx

(k′−1)/nx
K ′
(
y − x

σh

)
K ′
(
y − x′

σh

)
dx′dx

=
∑
k,k′

(n2
x − nx
n2
x

+ nx
nx

) ∫ k/nx

(k−1)/nx

∫ k′/nx

(k′−1)/nx
K ′
(
y − x

σh

)
K ′
(
y − x′

σh

)
dx′dx

=
(
2− 1

nx

)( ∫ 1

0
K ′
(
y − x

σh

)
dx
)2

6 2(σh)2
( ∫ 1/σh

0
K ′(y − x)dx

)2
= 2(σh)2(K(y)−K

(
y − 1/(σh)

))2
.

Hence,

nyh
2s+1

σ

∫
En
[
I1(y)2

]
dy 6 2nyσh2s+3

∫ (
K(y)−K

(
y − 1/(σh)

))2dy 6 4‖K‖2L2nyσh
2s+3.

The second term in (42) can be bounded as follows:

En
[
I2(y)2

]
= En

[( nx∑
j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx

(
K ′
(
y − Xj

σh

)
−K ′

(
y − x

σh

))
dx
)2]

6 En
[( nx∑

j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx

∫
[(x∧Xj)/(σh),(x∨Xj)/(σh)]

|K ′′(y − z)|dzdx
)2]

6 En
[( nx∑

j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/nx

(k−1)/nx

∫ k/(nxσh)

(k−1)/(nxσh)
|K ′′(y − z)|dzdx

)2]

= En
[( 1
nx

nx∑
j=1

nx∑
k=1

1[(k−1)/nx,k/nx)(Xj)
∫ k/(nxσh)

(k−1)/(nxσh)
|K ′′(y − z)|dz

)2]
.

With an analogous calculation as for E[I1(x)2] we obtain

nyh
2s+1

σ

∫
En
[
I2(y)2

]
dy 6 2nyh

2s+1

n2
xσ

∫ ( ∫ 1/(σh)

0
|K ′′(y − z)|dz

)2
dy

6 2nyh
2s+1

n2
xσ

‖K ′′‖L1

∫ 1/(σh)

0

∫
|K ′′(y − z)| dydz 6 2‖K ′′‖2L1

nyh
2s

n2
xσ

2 .

Therefore, we conclude from (42) for some constant C ′ > 0

d
(
P1,n,P0,n|ny, nx

)2
6 C ′ε

(
nyσh

2s+3 + nyh
2s

n2
xσ

2
)

+ rn.
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In combination with (41) we obtain for some constant C ′′ > 0

d
(
P1,n,P0,n|ny, nx

)2
6 C ′′min

(
nyσh

2s+3 + ny
nx

h2s+1

σ
, nyσh

2s+3 + nyh
2s

n2
xσ

2

)
+ C

( log σ−1

nxσ

)1/2
.

If we plug this estimate into (37) and we deduce :

‖P1,n − P0,n‖2TV 6 C ′′εmin
(
E[N(R)]σh2s+3 + E

[ N(R)
M([0, 1])

]h2s+1

σ
,

E[N(R)]σh2s+3 + E
[ N(R)
M([0, 1])21{M([0,1])>0}

]h2s

σ2

)
+ C

( log σ−1

σ
E
[ 1
M([0, 1])1{M([0,1])>0}

])1/2
.

Using that E[N(R)|M([0, 1])] = µM([0, 1]), the remaining expectations are given by

E[N(R)] = µλn, E
[ N(R)
M([0, 1])

]
= µ,

E
[ N(R)
M([0, 1])21{M([0,1])>0}

]
= µE

[1{M([0,1])>0}
M([0, 1])

]
= µe−λ

∑
n>1

λn

n · n! 6
2µ
λ
e−λ

∑
n>1

λn+1

(n+ 1)! 6
2µ
λn
.

Therefore,

‖P1,n − P0,n‖2TV 6 C ′′′ε2 min
(
σnλµh2s+3 + µh2s+1

σ
, σnλµh2s+3 + µh2s

λnσ2

)
+ C ′′′

( log σ−1

λnσ

)1/2

where the last term is o(1) by assumption. Based on this estimate, the theorem follows by
verifying that this upper bound remains bounded for h from (36).

Lemma 23. For g(0)
n,σ(y|x) = 1

n

∑n
j=1 f0,σ(y− xj) and f0(z) = 6(1

4 − z
2)1[−1/2,1/2](z) there

is some C > 0 such that the event A :=
{
∀y ∈ [−σh/2, 1 + σh/2] : g(0)

n,σ(y|X) > 1/14
}
for

X1, . . . , Xn
i.i.d.∼ U([0, 1]) satisfies P(A) > 1− C

√
log σ−1

nσ .

Proof. We first bound the expectation

E[g(0)
n,σ(y|X)]) =

∫ 1

0
f0,σ(y − x)dx =

∫ 1/σ

0
f0
( y
σ
− x

)
dx = f0 ∗ 1[0,1/σ]

( y
σ

)
uniformly from below: For any h ∈ (0, 1/2) we have

inf
y∈[−σh/2,1+σh/2]

f0 ∗ 1[0,1/σ]
( y
σ

)
= inf

y∈[−σh/2,1+σh/2]
6
∫ 1/2

−1/2

(1
4 − z

2)
1[0,1/σ]

( y
σ
− z

)
dz

= 6
∫ 1/2

h/2

(1
4 − z

2)dz > 1
7 .

By continuity of f0 we deduce

P(Ac) = P
(

inf
y∈[−σh/2,1+σh/2]∩Q

g(0)
n,σ(y|X) < 1

14
)
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6 P
(

sup
y∈[−σh/2,1+σh/2]∩Q

∣∣∣ 1
nσ

n∑
j=1

f0
(
(y −Xj)/σ

)
− E

[
f0
(
(y −Xj)/σ

)])∣∣∣ > 1
14
)

6
14
σ
√
n
E
[

max
y∈[−σh/2,1+σh/2]∩Q

∣∣∣ 1√
n

n∑
j=1

f0
(
(y −Xj)/σ

)
− E

[
f0
(
(y −Xj)/σ

)])∣∣∣].
To bound the previous expectation we will apply an entropy bound: Since f0 is of bounded
variation, the transition class

F =
{
[0, 1] 3 x 7→ f0((y − x)/σ)

∣∣y ∈ [−σh/2, 1 + σh/2] ∩Q
}

is of Vapnik-Cervonenkis type satisfying the covering number boundN(F , L2(W), ε) 6 (A/ε)2w

for any probability measure W, any w > 3 and some constant A which does not depend on
the dialation parameter σ (Giné and Nickl, 2016, Proposition 3.6.12). Moreover, F admits
the envelope Fσ := 3

21[−1,2](·/σ) since supz f0(z/σ) = 3
2 and Supp f0((y − x)/σ) ⊆ SuppFσ

for any y ∈ [−σh/2, 1 + σh/2]. Theorem 3.5.4 and Remark 3.5.5 by Giné and Nickl (2016)
thus yield for some C > 0

E
[

max
y∈[−σh/2,1+σh/2]∩Q

∣∣∣ 1√
n

n∑
j=1

f0
(
(y −Xj)/σ

)
− E

[
f0
(
(y −Xj)/σ

)])∣∣∣]
6 8
√

2‖Fσ‖L2(PX1 )

∫ 1

0
sup
W

√
log 2N(F , L2(W), τ‖Fσ‖L2(PX1 ))dτ

6 C‖Fσ‖L2(PX1 )| log(‖Fσ‖L2(PX1 ))|1/2.

Since ‖Fσ‖2L2(PX1 ) = 9
4
∫ 1

0 1[−1,2](x/σ)dx 6 27
4 σ, we conclude P(Ac) 6 C

√
log σ−1

nσ .

Proof of Theorem 15. Due to (26) and (25), we have E[f̂ sd
h1

(z0)] = Kh1∗f(z0). Together
with the bias-variance decomposition and a standard bias estimate, we obtain

E
[
|f̂ sd
h1 (z0)− f(z0)|2

]
. h2s

1 + Var
(
f̂ sd
h1 (z0)

)
.

A bound for the variance of f̂ sp
h1

(z0) = (nλµ)−1∑
j ψ1(Yj) is given in Remark 22. Applying

Plancherel’s identity we have

Var
(
f̂ sd
h1 (z0)

)
.

1
n
‖ψ1‖2L2 = 1

n
‖Fψ2‖2L2

.
σd

n

∫
Rd

∣∣∣e−iu>yFK(hu)
ϕp(u/σ)

∣∣∣2du .
σ2d

n
‖K‖2L1

∫
|u|61/(σh)

|ϕp(u)|−2du

We conlcude the first inequality in Theorem 15.
In the mildly ill-posed case |ϕp(u)| & (1+ |u|2)−t/2 we have

∫
{u∈Rd:|u|61/(σh)} |ϕp(u)|−2du .

(σh)−2t−d. Therefore,

E
[
|f̂ (d)

1,h(z0)− f(z0)|2
]
. h2s + σ2d

n(hσ)2t+d = h2s + 1
nσ2t−dh2t+d .

For h = (nσ2t+d−2)1/(2s+2t+d) we thus obtain the asserted rate of convergence. In the severely
ill-posed case |ϕp(u)| & e−γ|u|

β we obtain

E
[
|f̂h(z0)− f(z0)|2

]
. h2s + σ2d

nhσ
e2γ(hσ)−β

which yields the claimed rate for h = σ−1( 1
4γ logn)−1/β.
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6.4. Proofs for the scaling estimators.

Proof of Lemma 8. We denote the c.d.f. corresponding to fσ by Fσ. Using (26) and
integration by parts, we obtain for some random variable D ∼ f

E[T̂ ] = E[N(R \ [0, 1])] = nλµ
( ∫ 1

0

∫ 0

−∞
fσ(y − x)dydx+

∫ 1

0

∫ ∞
1

fσ(y − x)dydx
)

= nλµ
( ∫ 1

0
Fσ(−x)dx+ 1−

∫ 1

0
Fσ(1− x)dx

)
= nσλµ

( ∫ 1/σ

0
F (−x)dx+

∫ 1/σ

0

(
1− F (x)

)
dx
)

= nσλµ

∫ 1/σ

0
P(D 6 −x) + P(D > x)dx

= nσλµ

∫ 1/σ

0
P(|D| > x)dx

= nσλµE[|D|]

where the last equality exploits that P(|D| > x) = 0 for any x > 1/2 and 1/σ > 1/2. The
bound for the variance of T̂ follows from Lemma 21 with ψ1 := 1[−σ/2,0] + 1[1,1+σ/2].

Proof of Proposition 9. First we note, that l 7→ X(l) is increasing. Indeed, we have

X(l+1) > X(l) ⇐⇒
l+1∑
j=1

X(j) >
l + 1
l

l∑
j=1

X(j) ⇐⇒ X(l+1) >
1
l

l∑
j=1

X(j)

which holds true since X(j) are ordered increasingly. Furthermore, Lemma 8 yields

P
(∣∣∣ l̂

κnE[T̂ ]1/2
− 1

∣∣∣ > 1
2
)

= P
(∣∣∣ T̂

E[T̂ ]
− 1

∣∣∣ > 1
2
∣∣∣ T̂

E[T̂ ]
+ 1

∣∣∣)
6 P

(∣∣∣ T̂

E[T̂ ]
− 1

∣∣∣ > 1
2
)
6 2Var(T̂ )

E[T̂ ]
.

4
nσ
→ 0.

Consequently,
Λ := {l 6 l̂ 6 3l} with l := κn

2 E[T̂ ]1/2

satisfies P(Λ)→ 1 and l is of order κn
√
σn.

For some large C > 0 set

ε := C
l

n
and R := X(l+1) −X(l) ∈ [0, 1].

We calculate

P
(
|σ̂(1) − σ| > 2ε

)
= P

(
σ̂(1) − σ > 2ε

)
+ P

(
σ − σ̂(1) > 2ε

)
6 P

(
σ̂(1) − σ > 2ε

)
+ P

(
σ − σ̂(1) > 2R

)
+ P(R > ε)

=: T1 + T2 + T3.
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We will consider all three terms separately. For T1 we write on the event Λ

σ̂(1) = −2(min
j
Yj −X(1))− 2X(1) + 2X (̂l) 6 σ − 2X(1) + 2X(3l).

Since conditional on |X | = nx it holds X(l) ∼ Beta(l, nx + 1− l), we obtain

T1 = P
(
σ̂(1) − σ > 2ε

)
6 P

(
− 2X(1) + 2X(3l) > 2C l

n

)
+ P(Λc)

6
n

Cl
E
[
X(3l)

]
+ o(1) = n

Cl
E
[ 1
3l

3l∑
i=1

i

|X |+ 1
]

+ o(1) 6 n

Cl
E
[ 1 + 3l
|X |+ 1

]
+ o(1).

Due to |X | ∼ Poiss(λn), T1 is arbitrarily small for sufficiently large C.
To bound T2, we note that R is a random variable depending only on X . Conditional on

X , the offspring trait Y1 has the distribution function Fσ|X (z) := 1
|X |
∑
i Fσ(z − Xi) where

Fσ = F (·/σ) is the c.d.f. corresponding to the scaled dispersal density fσ. Therefore, we write
T2 as

T2 = P(σ(1) < σ − 2R) 6 P
(

min
j
Yj > R− σ

2 +X(l)
)

+ P(Λc)

= P
(
∀j : Yj > X(l+1) −

σ

2
)

+ o(1)

= E
[
P
(
∀j : Yj > X(l+1) −

σ

2
∣∣X , |Y|)]+ o(1)

= E
[
P
(
Y1 > X(l+1) −

σ

2
∣∣X )|Y|]+ o(1)

= E
[(

1− Fσ|X
(
X(l+1) −

σ

2
))|Y|]+ o(1).

The boundary assumption on F yields

Fσ|X
(
X(l+1) −

σ

2
)

= 1
|X |

∑
i

Fσ
(
X(l+1) −

σ

2 −Xi
)

>
γ

σ|X |
∑
i

(
0 ∨

(
X(l+1) −Xi

))
= γ

σ|X |
∑

i:Xi<X(l+1)

(
X(l+1) −Xi

)

= γ

σ|X |

l∑
i=1

(
X(l+1) −X(i)

)
= γlR

σ|X |
.

We conclude for some C1 > 0

T2 6 E
[(

1− γlR

σ|X |
)|Y|]

6 E
[(

1− γC1
|X |

)|Y|]+ P(lR < C1σ)

6 exp(−γC1/3
1 ) + P(|Y| < C

−1/3
1 n) + P(|X | > C

1/3
1 n) + P(lR < C1σ)
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using (1−κ)ny 6 exp(ny log(1−κ)) 6 exp(−nyκ) for κ = γC2/3/n→ 0. Since |X | ∼ Poiss(λn)
and conditional on |X | we have |Y| ∼ Poiss(µ|X |), we conclude for an arbitrary small δ and
sufficiently large C1 = C1(δ, λ, µ, γ) that

T2 6 δ + P(lR < C1σ).

We bound T3 + P(lR < C1σ) in the same line of arguments, having

T3 + P(lR < C1σ) = P(R > ε) + P(R < C1
σ

l
).

6 ε−1E[R] + P(R− E[R| |X |] < C1
σ

l
− E[R| |X |])

6 ε−1E[R] + E
[ Var(R| |X |)
(E[R| |X |]− C1

σ
l )2

]
.

Note that P(|X | = 0)→ 0 as n→∞. For nx > 1 we calculate

E[R| |X | = nx] = E
[
X(l+1) −X(l)| |X | = nx

]
= l + 1
nx + 2 −

1
l

l∑
j=1

j

nx + 1

= l + 1
nx + 2 −

(l + 1)
2(nx + 1)

= nx(l + 1)
2(nx + 1)(nx + 2) ∈

( l

12nx
,
l

nx

)
.

The properties of order statistics under the uniform distribution yield Cov(X(j), X(k)| |X | =
nx) = j(nx−k+1)

(nx+1)2(nx+2) 6 l+1
n2
x

for 1 6 j 6 k 6 l + 1. We infer

Var(R| |X | = nx) = Var(X(l+1)| |X | = nx)− 2
l

l∑
j=1

Cov(X(j), X(l+1)| |X | = nx)

+ 1
l2

l∑
j1,j2=1

Cov(X(j1), X(j2)| |X | = nx) . l + 1
n2
x

.

Therefore,

T3 + P(lR < C1σ) . l

εn
+ l

n2

( l

24n − C1
σ

l

)−2

= 1
C

+ 1
l

( 1
24 − C1

nσ

l2

)−2
.

1
C

+O
( 1
κn
√
σn

)
.

This upper bound is arbitrary small for sufficiently large C and n.

Proof of Proposition 10. We decompose for some c ∈ (0, 1)

P
(∣∣ σ̂(2)

σ
− 1

∣∣ > ε
)

= P
(∣∣σ̂(2) − σ

∣∣ > σε
)

6 P
(
σ̂(2) − σ > σε

)
+ P

(
σ − σ̂(2) > σε

)
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6 P
(
σ̂(2) > σ(1 + ε)

)
+ P

(
σ(1− ε) > σ̂(2) > cσ

)
+ P

(
σ̂(2) < cσ

)
=: P1 + P2 + P3.

In the following we will prove that all three probabilities tend to zero. To this end, note that
we can write σ̂(2) as

σ̂(2) = min
{
h > 0 : P

(
σ|D1| 6

h

2
)

+ ξ(h) > 1−
√
nh2 + n−1κn

}
.

For the first term P1, we set h◦ = σ such that the support of D1 implies P(σ|D1| 6 h◦

2 ) =
P(|D1| 6 1

2) = 1. Therefore,

P2 6 P(σ̂(2) > h◦) 6 P
(
ξ(h◦) + P

(
σ|D1| 6

h◦

2
)
< 1−

√
n(h◦)2 + n−1κn

)
= P

(
− ξ(h◦) >

√
n(h◦)2 + n−1κn

)
6 P(Ξc)→ 0

with the good event Ξ from Lemma 24.
To bound the second probability P2, we set h∗ = σ(1 − ε) ∈ (0, 1/2) and estimate on

Ξ ∩ {h∗ > σ̂(2) > cσ}

P
(
σ|D1| 6

h∗

2
)

+
√
n(h∗)2 + n−1κn > P

(
σ|D1| 6

σ̂(2)

2
)

+
√
n(σ̂(2))2 + n−1)κn

> P
(
σ|D1| 6

σ̂(2)

2
)

+ ξ(σ̂(2))

> 1−
√
n(σ̂(2))2 + n−1)κn

> 1−
√
n(h∗)2 + n−1κn.

Since Supp f ⊆ [−1/2, 1/2] and f is bounded from below, we conclude on Ξ∩{h∗ > σ̂(2) > cσ},

2
√
n(h∗)2 + n−1κn > P

(
σ|D1| >

h∗

2
)

= P(|D1| >
1− ε

2 ) > ε min
|x|61/2

f(x).

Hence, for ε = 3(min|x|61/2 f(x))−1√nσ2 + n−1κn > 2(min|x|61/2 f(x))−1√n(h∗)2 + n−1κn,
we have

P2 6 P(Ξc)→ 0.

It remains to prove P3 → 0. Since ψ† is a triangle kernel, the function h 7→ ψ†(x/h) is non
decreasing, and so is h 7→ 1

µλn

∑
i,j ψ

†((Yj −Xi)/h
)
. Therefore, on the event {h > σ̂(2) > h}

for any 0 6 h < h < σ that

1
µλn

∑
i,j

ψ†
(
(Yj −Xi)/h

)
>

1
µλn

∑
i,j

ψ†
(
(Yj −Xi)/σ̂(2))

> nλσ̂(2) + 1−
√
n(σ̂(2))2 + n−1κn

> nλh+ 1−
√
nσ2 + n−1κn.
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Therefore, assuming κn is such that
√
nσ2 + n−1κn = o(1), a choice which is always possible

and under the condition and nλ(h− h) < P(|D1| > h
2σ ), Markov’s inequality yields

P
(
h > σ̂(2) > h

)
6 P

( 1
µλn

∑
i,j

ψ†
(
(Yj −Xi)/h

)
> nλh+ 1− o(1)

)

= P
(
ξ(h) > nλ(h− h) + 1− P

(
σ|D1| 6

h

2
)
− o(1)

)
6 P

(
ξ(h) > P

(
|D1| >

h

2σ
)
− nλ(h− h)− o(1)

)
6

Var
(
ξ(h))

)(
P(|D1| > h/(2σ))− nλ(h− h)− E[ξ(h)]− o(1)

)2
= nh

2 + n−1(
P(|D1| > h/(2σ))− nλ(h− h) + o(1)

)2 ,(43)

where we used (21) for the last estimate. In the case nσ 6 c1 := P(|D1| > 1/4)/λ, we can
choose h = 0, h = σ/2 and conclude

P
(
σ̂(2) 6

σ

2
)
.

nσ2 + n−1(
P(|D1| > 1/4)− nσλ/2 + o(1)

)2 → 0.

If nσ > c1, we first note that (43) with h = 0, h = 1/(2n) yields

P
(
σ̂(2) 6

1
2n
)
.

n−1(
P(|D1| > 1/(4nσ))− σλ/2 + o(1)

)2
.

n−1(
P(|D1| > 1/(4c1)) + o(1)

)2 → 0.

To improve this bound in the case σ > 1
n , we choose hi := 1

2n + c1
2
i
n ∈ [ 1

2n ,
1

2n + σ
2 ] for

0 6 i 6 I := d nc1

(
σ − 1

n

)
e = O(σn) and estimate using (43)

P
(
σ̂(2) 6

σ

2
)
6 P(σ̂(2) 6

1
2n) +

I∑
i=1

P
(
hi−1 < σ̂(2) 6 hi

)
6

I∑
i=1

nh2
i + n−1(

P(|D1| > hi/(2σ))− nλ(h− h) + o(1)
)2 + o(1)

6
I∑
i=1

nh2
i + n−1(

P(|D1| > 1/(4σn) + 1
4)− c1λ/2 + o(1)

)2 + o(1)

6
I∑
i=1

nh2
i + n−1(

P(|D1| > 1
4)/2 + o(1)

)2 + o(1)

.
I

n
+ 1
n

I∑
i=1

i2 + o(1)

.
I

n
+ I3

n
+ o(1) . σ + n2σ3.
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Lemma 24. Let c ∈ (0, 1) and
√
nσ = O(1). There is for all ε > 0 some κ > 0 such that

P(Ξc) 6 ε for Ξ :=
{

sup
h∈[cσ,σ]

|ξ(h)|√
nh2 + n−1

6 κ
}
.(44)

Proof. Step 1: We first bound E[ξ(h)]. For ψ† = 1[− 1
2 ,

1
2 ] ∗ 1[− 1

2 ,
1
2 ] and D ∼ f , we have

Y ∼ fσ ∗ p

E
[ 1
µλn

∑
i,j

ψ†((Yj −Xi)/h)
]

=
∫
ψ†(z/h)fσ(z)dz + nλ

∫ 1

0

∫
ψ†(y + x

h
)(fσ ∗ p)(y)dydx

= E[ψ†(σD/h)] + nλh

∫ 1

0
E[ψ†h(Y + x)]dx

= E[ψ†(σD/h)] + nλh− nλh
∫
R\[0,1]

E[ψ†h(Y + x)]dx,

using
∫
R E[ψ†h(Y + x)]dx =

∫
ψ†h(x)dx = 1. Since ‖fσ ∗ p‖∞ 6 1 we have∫

R\[0,1]
E[ψ†h(Y + x)]dx = E

[ ∫
(−∞,Y−1]∪[Y,∞)

ψ†h(x)dx
]

6 h−1‖ψ†‖∞E
[
1{−h<Y−1}

(
h ∧ (Y − 1) + h

)
+ 1{Y <h}

(
h− (−h ∨ Y )

)]
6 2‖ψ†‖∞P({Y > 1− h} ∪ {Y < h})
6 2‖ψ†‖∞(2h+ σ).

With the notation K = 1[− 1
2 ,

1
2 ] we have ψ†(z/h) = 1[−h/2,h/2] ∗ Kh(z) and since f has a

bounded density, we obtain

E[ψ†(σD/h)] = P
(
σ|D1| 6

h

2
)

+ (F ∗Kh − F )
( h
2σ
)
− (F ∗Kh − F )

(
− h

2σ
)

= P
(
σ|D1| 6

h

2
)

+O(h).

Therefore,

E[ξ(h)] = E
[ 1
µλn

∑
i,j

1
∗2
[−h/2,h/2](Yj −Xi)

]
− P

(
σ|D1| 6

h

2
)
− nλh = O(nh(h+ σ) + h).

In particular, since σ ≤ nσ2 + n−1 always, we have for all h ∈ (0, σ)

|E[ξ(h)]|√
nh2 + n−1

6
nh(σ + h)√

nh
+
√
nh 6 3

√
nσ

which is uniformly bounded.
Step 2: It remains to prove tightness of

sup
h∈[cσ,σ]

|ξ(h)− E[ξ(h)]|√
nh2 + n−1

.

To this end, we apply the Kolmogorov-Chentsov criterion to the process

Vt := ξ(ht)− E[ξ(ht)]√
nh2

t + n−1
, ht := tσ, t ∈ (c, 1].
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Due to (21), we have Vc = OP(1). For 0 < s < t 6 1 we decompose increments into

Vt − Vs = 1
nλµ

∑
i,j

(
∆s,t(Yj −Xi)− E[∆s,t(Yj −Xi)]

)
,

∆s,t(z) := 1√
nh2

t + n−1
ψ†(z/ht)−

1√
nh2

s + n−1ψ
†(z/hs).

Proposition 20 with ψ2 = ∆s,t(σ·) and ψ1 = 1[−2,2] yields

Var
( 1
nλµ

∑
i,j

(
∆s,t(Yj −Xi)

)
.

1
n

(
(nσ + n2σ2)σ−2‖∆s,t‖2L1 + (nσ + 1)σ−1‖∆s,t‖2L2

)
= (σ−1 + n)‖∆s,t‖2L1 + (1 + (nσ)−1)‖∆s,t‖2L2 .(45)

We can bound the above L1-norm by

‖∆s,t‖2L1 6 2
( 1√

nh2
t + n−1

− 1√
nh2

s + n−1

)2( ∫
|ψ†(z/ht)|dz

)2

+ 2
nh2

s + n−1

( ∫
|ψ†(z/ht)− ψ(z/hs)|dz

)2
= 2T 2

1 + 2T 2
2 .

Using 1√
a
− 1√

b
= b−a√

ab(
√
a+
√
b) 6 b−a√

ab
, a+ b > 2

√
ab and s 6 t, we estimate

(σ−1 + n)T 2
1 6 (σ−1 + n) n2h2

t (h2
t − h2

s)2

(nh2
t + n−1)2(nh2

s + n−1)
( ∫
|ψ†(z)|dz

)2

. (σ−1 + n) n2σ6(t2 − s2)2

(nσ2t2 + n−1)2(nσ2s2 + n−1)

.
n2σ5(t− s)2(t+ s)2

n2σ5t3s2 + n3σ6(t− s)2(t+ s)2

n3σ6t4s2 . c−4(t− s)2

For T2 the mean value theorem yields

(σ−1 + n)T 2
2 6

σ−1 + n

nh2
s + n−1 sup

r∈[s,t]

( ∫ ∣∣∣ z
ht
− z

hs

∣∣∣∣∣(ψ†)′( z
hr

)∣∣dz)2

= σ−1 + n

nh2
s + n−1 sup

r∈[s,t]
h2
r

(hr
hs
− hr
ht

)2( ∫
|z|
∣∣(ψ†)′(z)∣∣dz)2

.
σ + nσ2

nσ2s2 + n−1 sup
r∈[s,t]

r2
(r
s
− r

t

)2

.
t4

s2

( t− s
ts

)2
6 c−4(t− s)2.

Similarly we proceed with the L2-norm in (45):

‖∆s,t‖2L2 6 2
( 1√

nh2
t + n−1

− 1√
nh2

s + n−1

)2 ∫
|ψ†(z/ht)|2dz

+ 2
nh2

s + n−1

∫
|ψ†(z/ht)− ψ†(z/hs)|2dz =: 2S2

1 + 2S2
2 .
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with

(1 + (nσ)−1)S2
1 .

(
1 + 1

nσ

)
ht
( 1√

nh2
t + n−1

− 1√
nh2

s + n−1

)2

6
(
1 + 1

nσ

) n2ht(h2
t − h2

s)2

(nh2
t + n−1)2(nh2

s + n−1)

.
(
1 + 1

nσ

) n2σ4(t+ s)2(t− s)2

(nσ2t2 + n−1)(nσ2s2 + n−1)

.
n2σ4(t+ s)2

n2σ4t2s2 (t− s)2 + nσ3(t+ s)2

nσ3t2s2 (t− s)2 . c−2(t− s)2

and

(1 + (nσ)−1)S2
2 .

1 + (nσ)−1

nh2
s + n−1 sup

r∈[s,t]

∫ ∣∣∣ z
ht
− z

hs

∣∣∣2∣∣(ψ†)′( z
hr

)∣∣2dz

.
1 + (nσ)−1

nh2
s + n−1 sup

r∈[s,t]
hr
(hr
hs
− hr
ht

)2
.

σ + n−1

nσ2s2 + n−1
t3

t2s2 (t− s)2 . c−3(t− s)2.

These calculations verify

E
[
(Vt − Vs)2] = Var

( 1
nλµ

∑
i,j

(
∆s,t(Yj −Xi)

)
. (t− s)2.

Hence, (Vt) has an α-Hölder regular modification for any α ∈ (0, 1/2) implying tightness.

6.5. Proofs for the plug-in estimators.

Proof of Theorem 12. (i) We analyse the deconvolution estimator in four steps.
Step 1: Prefactor. Defining

f
(1)
σ̂

(x0) := 1
σ̂ĥ2

1λµn

∑
j

K ′
( z0

ĥ1
− Yj

σ̂ĥ1

)( 1
nλ

∑
i

K
( σ̂z0

9 − Yj −Xi

9
))
,

we have

f̃
(1)
σ̂

(z0)− f(z0) = λµn

|Y|
λn

|X |
(
f σ̂(z0)− f(z0)

)
+
(λµn
|Y|

λn

|X |
− 1

)
f(z0).

For τn →∞ the event

Λ :=
{∣∣∣ |Y|
λµn

− 1
∣∣∣ 6 τn√

n

}
∪
{∣∣∣ |X |
λn
− 1

∣∣∣ 6 τn√
n

}
satisfies

P(Λc) 6 P
(∣∣∣ |Y|
λµn

− 1
∣∣∣ > τn√

n

)
+ P

(∣∣∣ |X |
λn
− 1

∣∣∣ > τn√
n

)
6

n

τ2
n(λµn)2E

[
Var

(
|Y|

∣∣ |X |)]+ n

τ2
n(λn)2 Var(|X |)

= 1
τ2
n(λµ)2n

E[µ|X |] + 1
τ2
nλ
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= 1
τ2
nλµ

+ 1
τ2
nλ
→ 0,

due to |Y|
∣∣|X | ∼ Poiss(µ|X |) and |X | ∼ Poiss(λn). On Λ we have for τn/

√
n 6 1/2 that

λµn

|Y|
λn

|X |
− 1 =

(λµn
|Y|
− 1

) λn
|X |

+ λn

|X |
− 1

=
( 1− |Y|/(λµn)

1− (1− |Y|/λµn)
) λn
|X |

+ 1− |X |/(λn)
1− (1− |X |/λn) 6 6τn/

√
n.

Since rn is always slower than n−1/2, we conclude

r−1
n

∣∣f̃ (1)
σ̂

(z0)− f(z0)
∣∣ = OP

(
r−1
n

∣∣f (1)
σ̂

(z0)− f(z0)
∣∣)+ oP(1).

Step 2: From σ̂ to σ. Consider the event

Σ :=
{
σ̂ ∈ [σ(1− εn), σ(1 + εn)]

}
, εn = logn√

σn

satisfying

P(Σc) = P(|σ̂ − σ| > εnσ) = P
(
| σ̂
σ
− 1| > logn√

σn

)
→ 0

due to Theorem 11. Writing h1 = (nσ)−1/(2s+3) for any σ > 0, we have on Σ

r−1
n

∣∣f (1)
σ̂

(z0)− f(z0)
∣∣ 6 sup

σ:|σ−σ|6εnσ
r−1
n

∣∣∣f (1)
σ (z0)− E[f (1)

σ (z0)]−
(
f(z0)− E[f (1)

σ (z0)]
)∣∣∣

6 sup
σ:|σ−σ|6εnσ

√
σnh

3
1

rn

√
σnh

3
1

∣∣∣f (1)
σ (z0)− E[f (1)

σ (z0)]
∣∣∣+ sup

σ:|σ−σ|6εnσ

h
−s
1

rnh
−s
1

∣∣∣(f(z0)− E[f (1)
σ (z0)]

)∣∣∣

. sup
σ:|σ−σ|6εnσ

√
σnh

3
1

∣∣∣f (1)
σ (z0)− E[f (1)

σ (z0)]
∣∣∣+ sup

σ:|σ−σ|6εnσ
h
−s
1

∣∣∣(f(z0)− E[f (1)
σ (z0)]

)∣∣∣
(46)

using in the last step that the minimax rate satisfies rn = (h1)s =
(
nσ(h1)3)−1/2 and thus

1
r2
nσnh

3
1

= σn(h1)3

σnh
3
1

=
(σ
σ

)2s/(2s+3)
6 (1− εn)−2s/(2s+3),

1
rnh
−s
1

=
(h1
h1

)s
=
(σ
σ

)s/(2s+3)
6 (1 + εn)s/(2s+3).

Subsequently, we will bound both terms in (46) separately. To this end, we proceed similarly
to the proof of Proposition 5(i). To incorporate σ we set

(47) ψ1 := 1
σh

2
1
K ′
( z0

h1
− ·
σh1

)
and ψ2 := 1

h2
K
( z0

h2
− ·
h2

)
.

where h2 := 9/σ.
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Step 3: Bias. The analog to decomposition (7) leads to

Uσ(f∗p) =
∫
R
ψ1(y)(ψ2∗1[0,1/σ])(y/σ)(fσ∗p)(y)dy, Vσ(f) =

∫
R

(ψ1∗1[−1,0])(σz)ψ2(z)f(z)dz

where σ is the true data-generating parameter. Along the lines of the proof of Propositions 18(i)
and 19(ii) we obtain

E[Uσ(f ∗ p)] = 1
σh2

fσ/σ(z0) +O
( hs1
σh2

)
and E[Vσ(f)] . h

−1
1 .

Note that

fσ/σ(z0)− f(z0) = σ

σ

(
f(σz0/σ)− f(z0)

)
+
(σ
σ
− 1

)
f(z0) .

( log(nσ)
nσ

)(1∧s)/2
.

Therefore, we obtain the following modification of (34):

E
[
f

(1)
σ (z0)

]
= σh2 Uσ(f ∗ p) + h2

nλ
Vσ(f)

= f(z0) +O
(
hs1 +

( log(nσ)
nσ

)(1∧s)/2
+ h2
nh1

)
.

We conclude

sup
σ:|σ−σ|6εnσ

h
−s
1

∣∣∣(f(z0)− E[f (1)
σ (z0)]

)∣∣∣ . 1 +
( log(σn)

σn

)(1∧s)/2
r−1
n + r−1

n

nσh1
. 1.

Step 4: Stochastic error term. Define

σt := σ(1− εn + 2εnt), ht := (nσt)−1/(2s+3), t ∈ [0, 1],

as well as

Vt :=
√
σtnh3

t

(
f

(1)
σt (z0)− E[f (1)

σt (z0)]
)

We thus have to prove tightness of the process (Vt)t∈[0,1] that is supt∈[0,1] |Vt| = OP(1). As in
the proof of Proposition 10, we apply the Kolmogorov-Chentsov criterion. Writing

Vt − Vs = 1
(λµ
√
n)(λn)

∑
i,j

(
∆(1)
s,t (Xi, Yj)− E[∆(1)

s,t (Xi, Yj)]
)

+ 1
(λµ
√
n)(λn)

∑
i,j

(
∆(2)
s,t (Xi, Yj)− E[∆(2)

s,t (Xi, Yj)]
)

with

∆(1)
s,t (x, y) =

( 1√
σtht

K ′
(z0
ht
− y

σtht

)
− 1√

σshs
K ′
( z0
hs
− y

σshs

)
︸ ︷︷ ︸

=:∆(1,1)
s,t (y)

)
K
(σtz0

9 − y − x
9

)
︸ ︷︷ ︸

=:∆(1,2)
t ((y−x)/σ)

,
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∆(2)
s,t (x, y) = 1√

σshs
K ′
( z0
hs
− y

σshs

)
︸ ︷︷ ︸

=:∆(2,1)
s (y)

(
K
(σtz0

9 − y − x
9

)
−K

(σsz0
9 − y − x

9
)

︸ ︷︷ ︸
=:∆(2,2)

s,t ((y−x)/σ)

)
.

Proposition 20 yields

E[(Vt − Vs)2] .
(
(σ
n

+ σ2)
∥∥∆(1,2)

t

∥∥2
L1 + (σ

n
+ 1
n2 )

∥∥∆(1,2)
t

∥∥2
L2

)∥∥∆(1,1)
s,t

∥∥2
L2

+
(
(σ
n

+ σ2)
∥∥∆(2,2)

s,t

∥∥2
L1 + (σ

n
+ 1
n2 )

∥∥∆(2,2)
s,t

∥∥2
L2

)∥∥∆(2,1)
s

∥∥2
L2(48)

.
( 1
nσ

+ 1 + 1
n

+ 1
n2σ

)∥∥∆(1,1)
s,t

∥∥2
L2

+
(
(σ
n

+ σ2)
∥∥∆(2,2)

s,t

∥∥2
L1 + (σ

n
+ 1
n2 )

∥∥∆(2,2)
s,t

∥∥2
L2

)
We have to bound the norms in the previous line. We have

‖∆(1,1)
s,t ‖2L2 6 3

( 1√
σtht

− 1√
σshs

)2 ∫
K ′
(z0
ht
− y

σtht

))2
dy

+ 3
σshs

∫ (
K ′
(z0
ht
− y

σtht

)
−K ′

( z0
hs
− y

σths

))2
dy

+ 3
σshs

∫ (
K ′
( z0
hs
− y

σths

)
−K ′

( z0
hs
− y

σshs

))2
dy

=: 3T1 + 3T2 + 3T3.

Using K ′ ∈ L2, we have

T1 .
(
1−
√
σtht√
σshs

)2
=
(
1−

(σt
σs

)(s+1)/(2s+3))2
.
(σs − σt

σs

)2
. (t− s)2.

Moreover, for some intermediate point r ∈ [s, t] we have

T2 = 1
hs

∫ (
K ′
( y
ht

)
−K ′

( y
hs

))2
dy = 1

hs

∫ ( y
ht
− y

hs

)2
K ′′
( y
hr

)2
dy

6 sup
r∈[s,t]

hr
hs

(hr
ht
− hr
hs

)2 ∫
y2K ′′(y)2dy

. (t− s)2,

and

T3 = 1
σs

∫ (
K ′
( z0
hs
− y

σt

)
−K ′

( z0
hs
− y

σs

))2
dy = 1

σs

∫ ( y
σt
− y

σs

)2
K ′′
( z0
hs
− y

σr

)2
dy

6 sup
r∈[s,t]

σr
σs

(σr
σt
− σr
σs

)2 ∫
y2K ′′( z0

hs
− y)2dy

.
(σt − σs)2

σ2
sh

2
s

.
ε2
n(t− s)2

h2
s

. (t− s)2
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because ε2
nh
−2
s → 0. For ∆(2,2)

s,t we have similarly

∥∥∆(2,2)
s,t

∥∥
L1 =

∫ ∣∣∣K(σtz0
9 − σz

9
)
−K

(σsz0
9 − σz

9
)∣∣∣dz

= 1
81

∫ ∣∣σtz0 − σsz0
∣∣∣∣∣K(σrz0

9 − σz

9
)∣∣∣dz . |σt − σs|

σ
. |t− s|,

and ∥∥∆(2,2)
s,t

∥∥2
L2 =

∫ (
K
(σtz0

9 − σz

9
)
−K

(σsz0
9 − σz

9
))2

dz

= 1
81

∫ (
σtz0 − σsz0

)2
K
(σrz0

9 − σz

9
)))2

dz. . (σt − σs)2

σ
. σ(t− s)2

It follows that E
[(
Vt− Vs

)2]
. (t− s)2 and (Vt) has an α-Hölder regular modification for any

α ∈ (0, 1/2) implying tightness. We have shown (i).

(ii) We verify the convergence rate for the direct estimator similiarly to (i).
Step 1: Reduction. We define

f
(2)
σ̂

(z0) = 1
ĥ2λµn

∑
i,j

2K ′
(
2(σ̂z0 − Yj)

)
K
( z0

ĥ2
− Yj −Xi

σ̂ĥ2

)
− σ̂|X |.

Exactly as in Step 1 of the proof of (i), we see that

r−1
n

∣∣f̃ (2)
σ̂

(z0)− f(z0)
∣∣ = OP

(
r−1
n

∣∣f (2)
σ̂

(z0)− f(z0)
∣∣)+ oP(1).

For σ = o(n−2/3) we have P(Σc)→ 0 for Σ :=
{
σ̂ ∈ [σ(1− εn), σ(1 + εn)]

}
with

εn = κn
(√

nσ2 + n−1 ∧ 1√
nσ

)
, κn = logn

due to Theorem 11. Writing h2 = (n ∧ σ−1)−1/(2s+1) for σ ∈ [σ(1 − εn), σ(1 + εn)] we note
that

rnh
−s
2 &

(
(n ∧ σ−1)−s(2s+1) +

√
nσ2)h−s2 >1 and

rn
(
(n ∧ σ−1)−1/2h

−1/2
2 +

√
nσ2)−1

&1.

Hence, as in Step 2 of the proof of (i) we have on Σ

r−1
n

∣∣f (2)
σ̂

(z0)− f(z0)
∣∣ . sup

σ:|σ−σ|6εnσ

√
min(nh2, σ−1h2, (nσ2)−1)

∣∣∣f (2)
σ (z0)− E[f (2)

σ (z0)]
∣∣∣

+ sup
σ:|σ−σ|6εnσ

h
−s
2

∣∣∣(f(z0)− E[f (1)
σ (z0)]

)∣∣∣(49)

Step 2: Bias. We will use the notation ψ1 and ψ2 from (47) and the resulting Uσ(f ∗ p)
and Vσ(f). Note that h1 = 1/(2σ) in this case. With minor modifications in the proofs of
Propositions 18(ii) and 19(i) we obtain

E[Uσ(f ∗ p)] = 1
h1

and E[Vσ(f)] = h
−1
1 f(z0) +O(h−1

1 hs2).
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Therefore, we obtain the following modification of (35):

E
[
f

(2)
σ (z0)

]
= h1Vσ(f) + σnλh1 Uσ(f ∗ p)− σE[|X |] = f(z0) +O

(
hs2
)
.

We conclude
sup

σ:|σ−σ|6εnσ
h
−s
2

∣∣∣(f(z0)− E[f (2)
σ (z0)]

)∣∣∣ . 1.

Step 3: Stochastic error term. First note that due to the bias correction we have the
additional stochastic error term:

sup
σ:|σ−σ|6εnσ

√
min(nh2, σ−1h2, (nσ2)−1)

∣∣∣σ|X | − σnλ∣∣∣ 6 1
σn1/2 2σ

∣∣|X | − nλ∣∣ = OP(1),

where we used |X | ∼ Poiss(nλ). To bound the stochastic error due to the terms involving ψ1
and ψ2, we use again the Kolmogorov-Chentsov criterion for the process

Vt := $t

(
f

(1)
σt (z0)− E[f (1)

σt (z0)] + σt(|X | − nλ)
)

with
$t :=

√
min(nht, σ−1ht, (nσ2)−1),

σt := σ(1− εn + 2εnt), ht := (n ∧ σ−1
t )−1/(2s+1), t ∈ [0, 1].

We decompose

Vt − Vs = 1
λµ
√
n

∑
i,j

(
∆(1)
s,t (Xi, Yj)− E[∆(1)

s,t (Xi, Yj)]
)

+ 1
λµ
√
n

∑
i,j

(
∆(2)
s,t (Xi, Yj)− E[∆(2)

s,t (Xi, Yj)]
)

with

∆(1)
s,t (x, y) =

(
2K ′

(
2(σtz0 − y)

)
− 2K ′

(
2(σsz0 − y)

)︸ ︷︷ ︸
=:∆(1,1)

s,t (y)

) $t√
nht

K
(z0
ht
− y − x

σtht

)
︸ ︷︷ ︸

=:∆(1,2)
t ((y−x)/σ)

,

∆(2)
s,t (x, y) = 2K ′

(
2(σsz0 − y)

)︸ ︷︷ ︸
=:∆(2,1)

s (y)

( $t√
nht

K
(z0
ht
− y − x

σtht

)
− $s√

nhs
K
( z0
hs
− y − x
σshs

)
︸ ︷︷ ︸

=:∆(2,2)
s,t ((y−x)/σ)

)
.

With these definitions, the bound (48) remains valid up to a factor n2 (coming from the
missing factor 1

n in Vt − Vs) and we obtain

E[(Vt − Vs)2] . $t

(
σ + nσ2 + σ

ht
+ 1
nht

)∥∥∆(1,1)
s,t

∥∥2
L2

+ (σn+ σ2n2)
∥∥∆(2,2)

s,t

∥∥2
L1 + (σn+ 1)

∥∥∆(2,2)
s,t

∥∥2
L2

.
∥∥∆(1,1)

s,t

∥∥2
L2 + (σn+ (σn)2)

∥∥∆(2,2)
s,t

∥∥2
L1 + (σn+ 1)

∥∥∆(2,2)
s,t

∥∥2
L2 .
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Next, we have

‖∆(1,1)
s,t ‖2L2 = 4

∫ (
K ′
(
2(σtz0 − y)

)
− 2K ′

(
2(σsz0 − y)

))2
dy

= 8(σt − σs)2z0

∫
K ′′
(
2(ξ − y)

)2dy . σ(t− s)2 . (t− s)2.

Moreover, the term ‖∆(2,2)
s,t ‖L1 is bounded above by∣∣∣ $t√

nht
− $s√

nhs

∣∣∣ ∫ ∣∣∣K(z0
ht
− σz

σtht

)∣∣∣dz
+ $s√

nhs

∫ ∣∣∣K(z0
ht
− σz

σtht

)
−K

( z0
hs
− σz

σths

)∣∣∣dz
+ $s√

nhs

∫ ∣∣∣K( z0
hs
− σz

σths

)
−K

( z0
hs
− σz

σshs

)∣∣∣dz
6
∣∣∣ $t√
nht
− $s√

nhs

∣∣∣ht + $s√
nhs

sup
r∈[s,t]

σ2
t h

2
r

σ2
∣∣ σ

σtht
− σ

σths

∣∣∣+ $s√
nhs

sup
r∈[s,t]

σ2
rhs
σ2

∣∣ σ

σths
− σ

σshs

∣∣∣
.
∣∣∣ $t√
nht
− $s√

nhs

∣∣∣ht + $s√
nhs

(
hs|t− s|+

|σt − σs|
σ

)
.

Since hs and hs are of the same order in terms of n and σ both minima in the above difference
are obtained at the same argument. Separate upper bounds in all three cases yield

(σn+ σ2n2)
∥∥∆(2,2)

s,t

∥∥2
L1 . σnh2

t

(
h−1/2
s − h−1/2

t

)2
1σ<n−(2s+1)/(2s+2) + h2

t

(
h−1
t − h−1

s

)2
+
(σn
hs
1σ<n−(2s+1)/(2s+2) + 1

h2
s

1σ>n−(2s+1)/(2s+2)

)(
h2
s + ε2

n

)
|t− s|2

. |t− s|2,

noting that nσht 6 1 as well as σnε2
n

hs
< n(2−2s)/2s+2 6 1 for σ < n−(2s+1)/(2s+2) and s > 1

while εn
hs

= κn min
(
n1/2σ

2s
2s+1 , n−1/2σ−

2s+3
4s+2

)
. κnn

(3−2s)/(12s+6) . 1 for σ > n−(2s+1)/(2s+2)

and s > 3/2. Similarly, ‖∆(2,2)
s,t ‖2L2 is less than∣∣∣ $t√

nht
− $s√

nhs

∣∣∣2 ∫ ∣∣∣K(z0
ht
− σz

σtht

)∣∣∣2dz

≤ $s

nh2
s

∫ ∣∣∣K(z0
ht
− σz

σtht

)
−K

( z0
hs
− σz

σths

)∣∣∣2dz + $s

nh2
s

∫ ∣∣∣K( z0
hs
− σz

σths

)
−K

( z0
hs
− σz

σshs

)∣∣∣2dz

6
∣∣∣ $t√
nht
− $s√

nhs

∣∣∣2ht + $2
s

nh2
s

sup
r∈[s,t]

σ3
t h

3
r

σ3

∣∣∣ σ

σtht
− σ

σths

∣∣∣2 + $s√
nhs

sup
r∈[s,t]

σ3
rhs
σ3

∣∣∣ σ

σths
− σ

σshs

∣∣∣2
.
∣∣∣ $t√
nht
− $s√

nhs

∣∣∣2ht + $s

nh2
s

(
hs|t− s|2 + |σt − σs|

2

σ2hs

)
and thus we conclude(

σn+ 1
)∥∥∆(2,2)

s,t

∥∥2
L2 . ht

(
h−1/2
s − h−1/2

t

)2 + ht
σn

(
h−1
t − h−1

s

)2
1σ>n−(2s+1)/(2s+2)

+
(
σn+ 1

)min(nhs, σ−1hs, (nσ2)−1)
nh2

s

(
hs + ε2

n

hs

)
|t− s|2 . |t− s|2
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by distinguishing the three different cases where the minima can be attained. In particular,
we have for the last term:

(
σn+ 1

)min(nhs, hsσ ,
1
nσ2 )

nh3
s

ε2
n .


κ2
n

n2h2
s

= κ2
nn
−4s/(2s+1), σ 6 n−1,

κ2
nσ

2n
h2
s

6 κ2
nn
−(s−1)/(s+1), n−1 < σ < n−

2s+1
2s+2 ,

κ2
nσ
h3
s

= κ2
nσ

(2s−2)/(2s+1), otherwise,

which is uniformly bounded if s > 1.

APPENDIX A: REMAINING PROOFS
A.1. Proof of the covariance structure of (M,N).

Proof of Lemma 16. (i) to (iii): For A1, A2 ⊆ [−1, 1] and B1, B2 ⊆ R with A1 ∩A2 = ∅
and B1 ∩B2 = ∅ we write in view of Proposition 1:

Ψ(η1, η2, ξ1, ξ2) :=E
[
eη1M(A1)+η2M(A2)+ξ1N(B1)+ξ2N(B2)

]
= exp

(
nλ(eη1 − 1)|A1|+ nλ(eη2 − 1)|A2|+ nλ

∫ 1

0

(
eψ1(ξ1,x)+ψ2(ξ2,x) − 1)dx

+ nλ
2∑
i=1

(eηi − 1)
∫
Ai

(eψ1(ξ1,x)+ψ2(ξ2,x) − 1)dx
)
.

where
ψj(ξ, x) := µ(eξ − 1)

∫
Bj

fσ(y − x)dy.

We moreover abbreviate

h(x) := (eψ1(ξ1,x)+ψ2(ξ2,x) − 1), h′j(x) := ∂ξjh(x) = eψ1(ξ1,x)+ψ2(ξ2,x)∂ξjψj(ξj , x).
h′′(x) := ∂ξ1∂ξ2h(x) = eψ1(ξ1,x)+ψ2(ξ2,x)∂ξ1ψ1(ξ1, x)∂ξ2ψ2(ξ2, x).

Then the first order partial derivatives are given by:

∂η1Ψ(η1, η2, ξ1, ξ2) = Ψ(η1, η2, ξ1, ξ2)nλeη1
(
|A1|+

∫
A1
h(x)dx

)
,

∂ξ1Ψ(η1, η2, ξ1, ξ2) = Ψ(η1, η2, ξ1, ξ2)nλ
( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
)
.

We moreover need the second order derivatives

∂η1∂η2Ψ(η1, η2, ξ1, ξ2) = Ψ(η1, η2, ξ1, ξ2)n2λ2eη1+η2
(
|A1|+

∫
A1
h(x)dx

)(
|A2|+

∫
A2
h(x)dx

)
,

∂ξ1∂ξ2Ψ(η1, η2, ξ1, ξ2) = Ψ(η1, η2, ξ1, ξ2)n2λ2
( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
)

×
( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ Ψ(η1, η2, ξ1, ξ2)nλ
( ∫ 1

0
h′′(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′′(x)dx
)
.(50)
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Therefore,

∂η1∂η2∂ξ1Ψ(η1, η2, ξ1, ξ2)
Ψ(η1, η2, ξ1, ξ2) =n3λ3eη1+η2

(
|A1|+

∫
A1
h(x)dx

)(
|A2|+

∫
A2
h(x)dx

)
×
( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
)

+ n2λ2eη1+η2
( ∫

A1
h′1(x)dx

)(
|A2|+

∫
A2
h(x)dx

)
+ n2λ2eη1+η2

(
|A1|+

∫
A1
h(x)dx

)( ∫
A2
h′1(x)dx

)
(51)

and

∂η1∂ξ1∂ξ2Ψ(η1, η2, ξ1, ξ2)
Ψ(η1, η2, ξ1, ξ2)

= n3λ3eη1
(
|A1|+

∫
A1
h(x)dx

)( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
)

×
( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ n2λ2eη1

∫
A1
h′1(x)dx

( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ n2λ2eη1
( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
) ∫

A1
h′2(x)dx

+ n2λ2eη1
(
|A1|+

∫
A1
h(x)dx

)( ∫ 1

0
h′′(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′′(x)dx
)

+ nλeη1

∫
A1
h′′(x)dx.(52)

Evaluating (50), (51) and (52) at η1 = η2 = ξ1 = ξ2 = 0 yields (i), (ii) and (iii), respectively.
(iv) It remains to calculate ∂η1∂η2∂ξ1∂ξ2Ψ(η1, η2, ξ1, ξ2) which can be deduced straightfroward

from the previous formulas:

∂η1∂η2∂ξ1∂ξ2Ψ(η1, η2, ξ1, ξ2)
Ψ(η1, η2, ξ1, ξ2)

= n4λ4eη1+η2
(
|A1|+

∫
A1
h(x)dx

)(
|A2|+

∫
A2
h(x)dx

)
×
( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
)( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ n3λ3eη1+η2
(
|A1|+

∫
A1
h(x)dx

) ∫
A2
h′1(x)dx

( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ n3λ3eη1+η2
(
|A1|+

∫
A1
h(x)dx

)( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
) ∫

A2
h′2(x)dx
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+ n3λ3eη1+η2
(
|A2|+

∫
A2
h(x)dx

) ∫
A1
h′1(x)dx

( ∫ 1

0
h′2(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′2(x)dx
)

+ n2λ2eη1+η2

∫
A1
h′1(x)dx

∫
A2
h′2(x)dx

+ n3λ3eη1+η2
(
|A2|+

∫
A2
h(x)dx

)( ∫ 1

0
h′1(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′1(x)dx
) ∫

A1
h′2(x)dx

+ n2λ2eη1+η2

∫
A2
h′1(x)dx

∫
A1
h′2(x)dx

+ n3λ3eη1+η2
(
|A1|+

∫
A1
h(x)dx

)(
|A2|+

∫
A2
h(x)dx

)
×
( ∫ 1

0
h′′(x)dx+

2∑
i=1

(eηi − 1)
∫
Ai

h′′(x)dx
)

+ n2λ2eη1+η2
((
|A1|+

∫
A1
h(x)dx

) ∫
A2
h′′(x)dx+

(
|A2|+

∫
A2
h(x)dx

) ∫
A1
h′′(x)dx

)
.

Evaluating this partial derivative at 0 yields

E[M(A1)M(A2)N(B1)N(B2)]
= n4λ4µ2|A1||A2|Qσ([0, 1], B1)Qσ([0, 1], B2)

+ n3λ3µ2(|A1|Qσ(A2, B1)Qσ([0, 1], B2) + |A1|Qσ([0, 1], B1)Qσ(A2, B1)
)

+ n3λ3µ2(|A2|Qσ(A1, B1)Qσ([0, 1], B2) + |A2|Qσ([0, 1], B1)Qσ(A1, B2)
)

+ n3λ3µ2|A1||A2|Q2
σ([0, 1])

+ n2λ2µ2(Qσ(A1, B1)Qσ(A2, B2) +Qσ(A2, B1)Qσ(A1, B2)
)

+ n2λ2µ2(|A1|Q2
σ(A2) + |A2|Q2

σ(A1)
)
.

Combining this formula with Corollary 2 yields the assertion.
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