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We consider a space structured population model generated by two point clouds: a homogeneous Poisson process M with intensity n → ∞ as a model for a parent generation together with a Cox point process N as offspring generation, with conditional intensity given by the convolution of M with a scaled dispersal density σ -1 f (•/σ). Based on a realisation of M and N , we study the nonparametric estimation of f and the estimation of the physical scale parameter σ > 0 simultaneously for all regimes σ = σn. We establish that the optimal rates of convergence do not depend monotonously on the scale and we construct minimax estimators accordingly whether σ is known or considered as a nuisance, in which case we can estimate it and achieve asymptotic minimaxity by plug-in. The statistical reconstruction exhibits a competition between a direct and a deconvolution problem. Our study reveals in particular the existence of a least favourable intermediate inference scale, a phenomenon that seems to be new.

Introduction.

1.1. Statistical inference across scales. Data may behave differently at different scales. Depending on the interplay between the information parameter (the number of observations, the inverse of a noise level or the time length of measurement) and the physical scale of the data, the structure of the underlying statistical model may exhibit different properties. We may encode this idea by viewing rather a statistical experiment as family (1)

E = P n f,σ : f ∈ Θ n≥1,σ>0
where the probability measures P n f,σ are simultaneously indexed by the information parameter n ≥ 1 and a physical scale σ > 0, and that we shall refer to as a (family of) statistical experiment(s) across scales. Depending on the choice of the scale σ = σ n varying with the information n, the statistical geometrical properties of E (such as LAN type conditions or asymptotic equivalence features Le [START_REF] Cam | Asymptotic methods in statistical decision theory[END_REF]; [START_REF] Van Der Vaart | The statistical work of Lucien Le Cam[END_REF]) may differ. In particular, the choice of an optimal procedure may be dictated by different regimes governed by σ n .

It is therefore desirable to understand the larger picture given by (1) simultaneously for all subsequences σ n . In an asymptotic setting, we may attempt to realise the following program:

• Identify the optimal estimation for f (in an asymptotic minimax sense for a given loss function) for an arbitrary (but known) σ = σ n . • Considering σ = σ n as unknown, estimate simultaneously σ and f and achieve optimality for f in this setting.

In this paper, we build a family of statistical experiments across spatial scales that exhibit nontrivial behaviours at certain critical levels and for which different estimation procedures with different rates of convergence enter into competition as the scale varies. This can be of crucial importance in practice, and is in stark contrast with the results in [START_REF] Duval | Statistical inference across time scales[END_REF]; [START_REF] Nickl | High-frequency Donsker theorems for Lévy measures[END_REF]; [START_REF] Chorowski | Nonparametric volatility estimation in scalar diffusions: Optimality across observation frequencies[END_REF] where some robustness of estimation methods and of the minimax rates of convergence is observed across time scales for Lévy and diffusion processes.

A model for dispersal estimation.

Informal description. We start with two random points X, Y ∈ R d , where X ∈ O for some domain O ⊆ R d represents the trait of a parent in a spatially structured population, and Y ∈ R d is the location of (one of) its children. We are interested in recovering the dispersal distribution of Y -X. This means that Y -X has a density function

(2) f σ (z) = σ -d f (z/σ), z ∈ R d ,
with a physical (dispersal) scale parameter σ > 0 which determines the order of E[|Y -X| 2 ] 1/2 , where | • | denotes the Euclidean distance. The parameter of interest is the density function f . If we observe an n-sample (X i , Y i ) 1≤i≤n , the Y i -X i have common distribution f σ , and we are in a classical density estimation framework; the scale σ is irrelevant. Assume now that we are rather given two point clouds X and Y in R d , with X = {X i : i = 1, . . . , n} and Y = {Y j : j = 1, . . . n},

i.e. we do not know the match between a parent and its offspring, hence we do not observe the variables Y i -X i anymore. This is the topic of the paper.

The scale parameter σ now becomes crucial. Heuristically, if σ n -1/d , i.e. the dispersal scale is small with respect to the typical distance between the locations of the parents population X , then we may guess the parents-offspring match by a nearest distance procedure, i.e. take X (j) solution to |Y j -X (j) | = min |Y j -X i | : i = 1, . . . , n , and proceed as if the Y j -X (j) were an n-sample with distribution f σ , up to controlling the mismatch error. However, if σ n -1/d , the mismatch error explodes and alternative methods need to be found. For instance, in dimension d = 1, for a child trait Y j with parent trait X i j , writing Y j = X i j + σD j , we see that D j has density f , therefore, if the parent distribution p is known, then the Y j have common distribution p * f σ , where * denotes convolution. We may then implement a deconvolution approach to recover f and ignore the potential information given by the point cloud of the parent traits X . This has some price, namely the ill-posedness of an inverse problem, and has to be assessed with some care. Our objective is to formalise this model and these approaches in order to encompass potential applications as described in Section 1.3 below. In particular, we need not impose that X and Y have the same size, allowing for a random number of parents and children. To provide a complete and transparent picture, we will greatly simplify our approach by restricting ourselves to the one-dimensional case d = 1, with O = [0, 1]. Extensions to more general domains O for the state space of the parents as well as in higher dimension d > 1 are available and discussed in Section 4. where the dispersal density is f σ = σ -1 f (•/σ) as in (2) with dispersal scale parameter σ > 0. The parameter µ > 0 represents the average number of an offspring given one parent. Hence, f σ describes the distribution of the random variable Y j -X i j (when the child j has parent i j ). The distance between the traits of the children and the trait of their parent is of order σ. The expected size of the offspring population (i.e. the average size of Y) is thus nλµ. In Figure 1 we simulate a realisation of the (M, N ) process, for different values of σ = σ n depending on n.

Keeping up with Section 1.1, we study a statistical experiment of the form (1), generated by the observation of (X , Y) or equivalently (M, N ), with information n and scale σ. The unknown parameter is f and, for simplicity, λ, µ are assumed to be known. Our aim is to reconstruct f asymptotically in a minimax sense as n → ∞, for all scaling regimes σ = σ n . 1.3. Dispersal inference in applications. We briefly present some specific application domains compatible with the approach of dispersal inference as described in Section 1.2. Admittedly, further adjustments may be needed in order to be directly applicable in a given application; in particular, there might be a natural one-to-one correspondence between parents and children or not.

Example 1: Service time estimation in M/G/∞ queuing models. Dating back to [START_REF] Brown | An M/G/∞ estimation problem[END_REF], certain M/G/∞ queuing models are embedded in our approach, see in particular the recents results of [START_REF] Goldenshluger | Nonparametric estimation of service time distribution in the M/G/∞ queue[END_REF][START_REF] Goldenshluger | The M/G/∞ estimation problem revisited[END_REF]; [START_REF] Goldenshluger | Nonparametric estimation of service time characteristics in infinite-server queues with nonstationary Poisson input[END_REF]. Here, the state space of the parents O ⊆ R represents time. The parent location trait is identified with an input arrival of a request to a server, according to Poisson arrivals at rate λ. Once the A realisation of (M, N ) for different values of σ = σn = n -a , with a = 0, 0.5, 1, 1.5. The match between parents traits (blue points) and their offspring traits (red diamonds) is graphically obvious for small σn = n -1.5 but becomes more difficult if not impossible as σn increases. In the statistical experiment generated by (M, N ), we are only given one horizontal line at a scale σn.

(random) service time of the request is fullfilled, an output is observed, that corresponds to the location trait of an offspring. See for instance [START_REF] Baccelli | Inverse problems in queueing theory and Internet probing[END_REF] where the emphasis is put on queueing systems where the service time cannot be observed. A small σ compared to 1/λ indicates that the service time is small compared to the order of magnitude of a typical interarrival between two queries, in which case one may take the time between an input and an output as a proxy for the service time. Otherwise, this is no longer true and alternative methods must be sought. Most aforementioned studies assume σλ = 1. The case where σ is larger than 1/λ has been adressed by [START_REF] Blanghaps | Sojourn time estimation in an M/G/∞ queue with partial information[END_REF] where it is still required that λσ is bounded.

The goal is to estimate the density of service time, that matches exactly with the dispersal density f of our model. However, in the M/G/∞, model, to an incoming call, one associate one output exactly, which is slightly more stringent than having µ = 1 only. See also [START_REF] Hall | Nonparametric inference about service time distribution from indirect measurements[END_REF] and Section 4.1 for a more specific discussion in that direction.

Example 2: Poisson random convolution in functional genomics. This is actually the application that originated our approach, following informal discussions with our colleague Marie Doumic, that are formulated in [START_REF] Hunt | A data-dependent weighted LASSO under Poisson noise[END_REF]. See also the recent work by [START_REF] Bonnet | Uniform deconvolution for poisson point processes[END_REF]. The objective is to propose a model of distance interaction between motifs (or occurences of transcription regulatory elements) along DNA sequences. Related literature using point processes alternatives is developed for instance in [START_REF] Gusto | FADO: a statistical method to detect favored or avoided distances between occurrences of motifs using the Hawkes models[END_REF]; [START_REF] Carstensen | Multivariate Hawkes process models of the occurrence of regulatory elements[END_REF].

Dispersal inference proposes an alternative approach compatible with [START_REF] Hunt | A data-dependent weighted LASSO under Poisson noise[END_REF], at least at a conceptual level: along the DNA sequence, transcription binding sites are observed according to a Poisson rate λ and serve as a parent generation model. Conditional to their parent location, transcription start sites (TSS) along the sequence are drawn via a random distribution f that we wish to infer, the dispersal distribution. Depending on the dispersal scale σ, we are back to our original problem and we obtain a continuous nonparametric alternative to the model described in [START_REF] Hunt | A data-dependent weighted LASSO under Poisson noise[END_REF].

Example 3: Dispersal distance in plants genetics. Introgression from cultivated to wild plants is a challenging problem for evolutionary ecology, especially in the context of genetically engineered crops. The study of gene flow from crops to wild relatives starts with understanding the typical dispersal distribution -in a spatial sense -between plants and their offspring. Although our model is too simple to account for various heterogeneity in natural environment, we emphasise some encouraging similarities: in the study of [START_REF] Arnaud | Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages[END_REF], plants of interest and their offspring are distributed along a river bank. This accounts for a dispersal density a state space understood as a one-dimensional manifold (a curve), which is similar (and rate equivalent) to estimating a one-dimensional density, cf. [START_REF] Berenfeld | Density estimation on an unknown submanifold[END_REF].

Beyond the specific case of measuring dispersal along such idealised geometric features, the problem of estimating the distance between parents and saplings (accounting for seed dispersal from maternal or paternal parents plus pollen movement) is explicitly addressed in [START_REF] Isagi | Microsatellite analysis of the regeneration process of Magnolia obovata Thunb[END_REF] via microsatellite analysis. Other plant based dispersal issues such as seed versus pollen dispersal from spatial genetic structure are discussed in [START_REF] Heuertz | Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash[END_REF], see also [START_REF] Lavorel | Dispersal of annual plants in hierarchically structured landscapes[END_REF] and the references therein.

Example 4: Estimating diffusivity based on counting occupation numbers of particles. In a suspension of particles in a fluid, a Poissonian number of particles is recorded as they enter a fixed domain A and likewise when they leave A. Applications in fluctuation spectroscopy enables one to infer the diffusivity (or other parameters) from such counting data, assuming that the particles have velocity (V t ) t≥0 with random dynamics governed by a diffusion process dV t = -βV t dt + 2βDdW t where (W t ) t≥0 is a Wiener process and β > 0 is a thermal relaxation parameter. There exist explicit formulae that relate the sojourn time of a particle within A and the diffusivity D, when the process is at equilibrium, see in particular [START_REF] Bingham | Estimating diffusion coefficients from count data: Einsteinsmoluchowski theory revisited[END_REF]. We thus have a typical dispersal inference problem, where the dispersal density corresponds here to the sojourn time of the particles. See also the recent paper by [START_REF] Goldenshluger | Smoluchowski processes and nonparametric estimation of functionals of particle displacement distributions from count data[END_REF].

1.4. Results and organisation of the paper. We first analyse the interaction between parents X and children Y via the correlation structure between the measures M (dx) and N (dy). In Proposition 1 in Section 2.1 below, building on the approach of Goldenshluger (2018), we establish the formula

(3) 1 nλµ E M (dx)N (dy) dxdy = nλ(f σ * p)(y) + f σ (x -y),
where p = 1 [0,1] denotes the density function of the parent distribution. Formula (3) reveals the competition between a direct approach and a convolution problem, as mentioned above.

From the observation of (M, N ), we have access to empirical averages of the form

i,j ϕ(X i , Y j ) = [0,1]×R ϕ(x, y)M (dx)N (dy),
for test functions ϕ. We can take advantage of the information given by the first term in the right-hand side of (3) by picking ϕ of the form ϕ(x, y) = ψ(y) and thus ignoring the
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Dependence of the optimal convergence rate rn on the dispersal rate σn in a (log n σn, log n rn)-plot.

information given by the parents generation. For the second integral, we pick ϕ of the form ϕ(x, y) = ψ (x -y)/σ) and we can take benefit from the interplay between the parent generation and its offspring. This results in generic estimators of the form

(4) i,j ϕ Y j , (X i -Y j )/σ
for a specific choice of ϕ . Whereas these heuristics give an overall flavour of the statistical model structure, the general situation is more subtle. In Section 2.1, we elaborate on the properties of the point process (M, N ) to obtain an estimator of f (z 0 ) for an arbitrary point z 0 ∈ R. It takes the form

f h 1 ,h 2 (z 0 ) =        1 nλh 1 f h 1 ,h 2 (z 0 ), for large scales, 1 h 2 f h 1 ,h 2 (z 0 ) -σnλ,
for small scales where

f h 1 ,h 2 (z 0 ) = 1 nλµσh 1 i,j ψ z 0 h 2 - Y j σh 2 ψ z 0 h 1 - Y j -X i σh 1
is inspired by (4) for a suitable kernel ψ (and ψ its derivative). For a suitable choice of the bandwidths h 1 and h 2 , we prove in Theorem 6 that

sup f E f h 1 ,h 2 (z 0 ) -f (z 0 ) 2 1/2 r n ,
where the notation A B is equivalent to the Landau notation A = O(B), the supremum is taken over Hölder balls of regularity s > 0 locally around z 0 , and

(5)

r n =              n -s/(2s+1) , if σ n -1 σ s/(2s+1) , if σ ∈ [n -1 , n -(2s+1)/(2s+2) ), σ √ n, if σ ∈ n -(2s+1)/(2s+2) , n -(4s+3)/(6s+6) , (nσ) -s/(2s+3) , if σ ∈ [n -(4s+3)/(6s+6) , 1].
The shape of the rate of convergence r n = r n (σ) as σ = σ n varies is illustrated in Figure 2. We prove in Theorem 7 that this result is indeed optimal:

lim inf n→∞ inf ϑ sup f r -1 n E f ϑ -f (z 0 ) 2 1/2 > 0,
where the infimum is taken over all estimators ϑ built upon the point clouds X and Y, and the supremum is taken over Hölder balls of regularity s > 0 locally around z 0 .

As illustrated in Figure 3, a direct estimation regime with minimax rate r n = n -s/(2s+1) dominates for σ n -1 (the far left side of the picture), whereas for fixed σ, we have r n = n -s/(2s+3) , i.e. the minimax rate of convergence of an inverse problem of order one (the far right side of the picture). However, when σ n slowly goes to 0, the inverse problem minimax rates deteriorates to (nσ n ) -s/(2s+3) . Surprisingly, other regimes appear in the intermediate regime 6s+6) ]. In particular, we find a worst case region, around the scale σ n ≈ n -(4s+3)/(6s+6) that yields the exotic minimax rate n -s/(6s+6) . We discuss this phenomenon in detail in Section 2.2. In Section 3, we consider the case of an unknown scale σ = σ n . We first show that it is possible to estimate σ so that we can ultimately decide whether nσ is sufficiently large to apply the nσ → ∞ asymptotics. We establish in particular in Section 3.1 a bound for the relative error ( σ -σ)/σ of our estimator σ. This is the gateway for a plug-in strategy to estimate f optimally when σ is unknown and considered as a nuisance parameter as we demonstrate in Section 3.2. The sensitivity of the plug-in estimator

σ n ∈ [n -1 , n -(4s+3)/(
f h 1 ,h 2 (z 0 ) = f h 1 ,h 2 (z 0 )( σ) is controlled via the smoothness of the process σ → f h 1 ,h 2 (z 0 )(σ)
via a chaining argument based on Kolmogorov-Chentsov criterion. We show that the optimal rates are achievable in probability.

The rest of the paper is organised as follows: In Section 2.1 we construct an estimator of f (z 0 ) that takes X and Y as inputs and that adjusts to the scale σ = σ n . Convergence rates for the estimator and matching minimax lower bounds are given in Section 2.2 and Section 2.3, respectively. The estimation of σ is studied in Section 3.1 while the estimation of f when σ is unknown via plug-in is undertaken in Section 3.2. A discussion with possible extensions is the content of Section 4. A short numerical simulation study is proposed in Section 5. All proofs are postponed to Section 6.

Main results.

Construction of estimators across scales.

The correlation structure of (M, N ). The starting point of our estimation approach lies in the analysis of the correlation structure between M and N , that builds upon the approach by [START_REF] Goldenshluger | The M/G/∞ estimation problem revisited[END_REF]. In our study, the fact that the parent data X are distributed on a bounded interval has a considerable impact on the correlation structure.

Proposition 1. Let (A i ) 1≤i≤I and (B j ) 1≤j≤J be two families of disjoint subsets of [0, 1] and R, respectively. Then for any (η 1 , . . . , η I ) ∈ R I and (ξ 1 , . . . , ξ J ) ∈ R J we have

log E exp I i=1 η j M (A i ) + J j=1 ξ j N (B j ) (6) = nλ I i=1 (e η i -1)|A i | + nλ 1 0 exp µ J j=1 (e ξ j -1) B j f σ (y -x)dy -1 dx + nλ I i=1 (e η i -1) A i exp µ J j=1 (e ξ j -1) B j f σ (y -x)dy -1 dx,
where |A| denotes the Lebesgue measure of A ⊆ R.

The proof relies on Campbell's exponential formula and is given in Section 6.1. Differentiating the result of Proposition 1, we obtain the following explicit representation of the correlation structure of M and N .

Corollary 2. For any A ⊆ [0, 1] and any bounded B ⊆ R we have

E M (A)N (B) = n 2 λ 2 µ|A| 1 0 B f σ (y -x) dy dx + nλµ A B f σ (y -x) dy dx.
Corollary 2 reveals the infinitesimal correlation structure

E[M (dx)N (dy)] = nλµ nλ(f σ * p)(y) + f σ (y -x) dy dx, with p = 1 [0,1] . Applied to a well-behaved test function ϕ : [0, 1] × R → R we obtain 1 nλµ E [0,1]×R ϕ(x, y)M (dx)N (dy) = nλ 1 0 R ϕ(x, y)(f σ * p)(y)dydx + 1 0 R ϕ(x, x + σz)f (z)dzdx.
In order to obtain information on f from the first integral, ϕ(x, y) should depend on y solely, while in the second integral, ϕ(x, y) should rather depend on (y -x)/σ. We therefore pick a test function of the form ϕ (x, y) = ψ 1 (y)ψ 2 (y -x)/σ .

In the limit n → ∞, we expect the empirical mean to be close to its expectation so that the approximation

i,j ϕ (X i , Y j ) ≈ E i,j ϕ (X i , Y j )
is valid. Hence, we asymptotically have access to

(7) 1 nλµ E [0,1]×R ψ 1 (y)ψ 2 (y -x)/σ M (dx)N (dy) = σnλ U σ (f * p) + V σ (f ), where U σ (f * p) = R ψ 1 (y)(ψ 2 * 1 [0,1/σ] )(y/σ)(f σ * p)(y)dy and V σ (f ) = R (ψ 1 * 1 [-1,0] )(σz)ψ 2 (z)f (z)dz.
It is noteworthy that

|U σ (f * p)| ψ 1 L 1 ψ 2 L 1 and |V σ (f )| f ∞ ψ 1 L 1 ψ 2 L 1 ,
showing that 1) the functionals U σ and V σ are not sensitive to the order of magnitude of σ, and 2) the influence of the test functions ψ i is bounded in L 1 -norm, hence they can be subsequently chosen as kernels that weakly converge to a Dirac mass as n → ∞.

The deconvolution approach via U σ (f * p). Pick ψ 2 = 1 as a constant function in (7) to obtain

E |X | j ψ 1 (Y j ) = n 2 λ 2 µ R ψ 1 (y)(f σ * p)(y)dy + nλ 1 0 R ψ 1 (x + σz)f (z)dzdx = n 2 λ 2 µ R ψ 1 (y)(f σ * p)(y)dy + O(n -1 ) ,
where

|X | = M ([0, 1]) = λn + O P (n 1/2
) is the total (random) number of parents. Ignoring remainder terms and using the fact that |Y| = N (R) = nλµ + O P (n 1/2 ) we also have the approximation

(8) 1 |Y| j ψ 1 (Y j ) ≈ R ψ 1 (y)(f σ * p)(y)dy.
The empirical estimate ( 8) is transparent: each child with trait Y j has a parent with trait X i j such that Y j = X i j + σD j , where D j is distributed according to the dispersal density f . With X i j ∼ p, we obtain Y j ∼ f σ * p. However, the parent trait distribution p is uniform on [0, 1], its Fourier transform oscillates and vanishes on a discrete set, hence a classical deconvolution estimators based on spectral approaches cannot be readily applied. While there are some general constructions in the literature to overcome this problem (see e.g. [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF]; [START_REF] Delaigle | Nonparametric function estimation under Fourier-oscillating noise[END_REF]; [START_REF] Belomestny | Density deconvolution under general assumptions on the distribution of measurement errors[END_REF] and the references therein), we take a more explict route.

We elaborate on the approach of [START_REF] Groeneboom | Density estimation in the uniform deconvolution model[END_REF], relying on the specific structure of a uniform p = 1 [0,1] . (The case of more general parent trait distribution is discussed in Section 4.2). Denoting by F the cumulative distribution of D ij and writing g σ = f σ * p, we have

g σ (y) = R 1 [0,1] (y -z)f σ (z)dz = R 1 [y-1,y] (z)f σ (z)dz = F y σ -F y-1 σ .
Hence, the representation

F y σ = g σ (y) + F y-1 σ = g σ (y) + g σ (y -1) + F y-2 σ = • • • = ≥0 g σ (y -) (9)
is valid for all y ∈ R. Based on the observation Y, the density g σ can be estimated at z 0 ∈ R by a kernel density estimator with kernel K and bandwidth h > 0

g σ,h (z 0 ) = 1 |Y| j 1 h K σz 0 -Y j h
and then use representation (9) to obtain an estimator of F (z 0 ) via

(10) F h (z 0 ) = 1 |Y| j ≥0 1 h K σz 0 --Y j h .
Note that for compactly supported kernels the sum in is finite. For simplicity, we further consider the case where f is compactly supported and will adjust our assumptions accordingly.

With no loss of generality, we assume

Supp f ⊆ - 1 2 , 1 2
so that only the term for = 0 appears in the above sum. Finally, we obtain a nonparametric estimator of f (z 0 ) by taking the derivative of F h (z 0 ) in (10). We take a bandwidth h = σh 1 that scales with σ that will prove technically convenient. We obtain a deconvolution estimator of f (z 0 ) by setting

f dec h 1 (z 0 ) = 1 |Y| j 1 σh 2 1 K z 0 h 1 - Y j σh 1 .
We recover the representation ( 8) with ( 11)

ψ 1 = 1 σh 2 1 K z 0 h 1 - • σh 1 .
Note that the convolution term in ( 7) is uninformative if M is a homogeneous Poisson point process on whole real line as in [START_REF] Goldenshluger | The M/G/∞ estimation problem revisited[END_REF] or on the torus as in [START_REF] Hunt | A data-dependent weighted LASSO under Poisson noise[END_REF].

The interaction approach via V σ (f ). While the deconvolution approach ignores the information of the parents, an estimator based on the interaction of parents and their offspring can be constructed via ψ 2 , taking now ψ 1 = 1 to be constant. From (7), we obtain

E i,j ψ 2 Y j -X i σ = nλµ R ψ 2 (z)f (z)dz + n 2 σλ 2 µ R (ψ 2 * 1 [0,1/σ] )(y/σ)(f σ * p)(y)dy = nλµ R ψ 2 (y)f (z)dz + O(nσ) .
The bias is small only if nσ is small, a result which is consistent with the heuristics of Section 1.2. Beyond that scale, as soon as σ ≈ n -1 the situation is a bit more involved. More specifically, when σ n -1 , the offspring traits concentrate around their parents: we expect roughly to have nσh parental traits in a σh-neighbourhood of the trait of a child Y j = X i j +σD j . With overwhelming probability only the true parent trait X i j of Y j is actually present in this neighbourhood. Then the sum in i over all parents in vanishes and we expect the approximation

i,j ψ 2 (Y j -X i )/σ ≈ j ψ 2 (D j )
to be valid, while the sum is of order nλµ. More precisely, we expect

(12) 1 |Y| i,j ψ 2 (Y j -X i )/σ ≈ R ψ 2 (z)f (z)dz.
Applying kernel density estimator with kernel K with bandwidth h 2 > 0, we obtain an interaction estimator of f (z 0 ) by setting

(13) f int h 2 (z 0 ) = 1 |Y| i,j 1 h 2 K z 0 h 2 - Y j -X i σh 2 .
We obtain the representation ( 12) with ( 14)

ψ 2 = 1 h 2 K z 0 h 2 - • h 2 .
Whenever nσ 1, the relevance of a procedure like ( 13) is less obvious. In particular, it is not clear whether the parent traits in the neighbourhood of an offsping can be used to estimate f . For nσ = 1 (and λ = µ = 1) [START_REF] Brown | An M/G/∞ estimation problem[END_REF] constructed an estimator based on an explicit formula that relates f to the distribution function of the distance of an offspring to its nearest parents. An interaction estimator was also applied by [START_REF] Goldenshluger | The M/G/∞ estimation problem revisited[END_REF] in a setting where the intensity measure of N is the Lebesgue measure on whole real line and which corresponds to nσ = 1. As we will see below the interaction estimator is still applicable if σ > 1/n as long as σ is not too large. However, the interaction estimator then requires to incorporate a non-trivial kernel ψ 1 and a bias correction. A naive estimator could rely on simply counting the number of parents in a neighbourhood of the trait of a children, as already mentioned in Section 1.2.

An estimator across scales. Thanks to the heuristics developed for the construction of f dec h 1 (z 0 ) and f int h 2 (z 0 ), we are ready to implement an estimator across all scales σ, when the scale σ is known. We will treat the case of an unknown σ in Section 3 below. We first define

f h 1 ,h 2 (z 0 ) = 1 nλµσh 1 i,j K z 0 h 1 - Y j σh 1 K z 0 h 2 - Y j -X i σh 2 ,
where K is a smooth compactly supported kernel with derivative K . We formally retrieve the preceding representation

f h 1 ,h 2 (z 0 ) = h 1 h 2 nλµ i,j ψ 1 (Y j )ψ 2 Y j -X i σ
with ψ 1 defined in (11) and ψ 2 in ( 14). Next, we elaborate on the properties we require for the kernel function K: Assumption 3. The function K : R → R is differentiable, symmetric, bounded and satisfies

Supp(K) ⊆ [-1, 1], K(z) = 1 for |z| ≤ 1 4 , [-1,1] z K(z)dz = 1 { =0} for = 0, . . . , K
for some K ≥ 0 (the order of the kernel K).

For K = 0 or 1, which is generally sufficient in practice, Assumption 3 is simply obtained from any suitably dilated and translated compactly supported symmetric (even) density function, see Section 5. Finally we define the appropriate normalisations and bias corrections that need to be tuned depending on which scale we work. This is done as follows: Definition 4. Let K be a kernel satisfying Assumption 3. We define the following estimators across scales:

(i) (Deconvolution or large scales.) For h 1 ∈ [(σn) -1 , 1] and h 2 = 8/σ set f (1) h 1 (z 0 ) = 1 nλh 1 f h 1 ,8/σ (z 0 ) = 1 σnλµh 2 1 j K z 0 h 1 - Y j σh 1 1 nλ i K σz 0 8 - Y j -X i 8 . ( 15 
)
(ii) (direct or small scales.) Let σ < 1/8, h 1 = 1/(2σ). We set for h 2 ∈ (0, 1]:

f (2) h 2 (z 0 ) = 1 h 2 f 1/(2σ),h 2 (z 0 ) -σnλ = 1 nλµh 2 i,j 2K 2(σz 0 -Y j ) K z 0 h 2 - Y j -X i σh 2 -σnλ. ( 16 
)
For the deconvolution estimator f

(1) h 1 (z 0 ) we could also set ψ 2 = 1. In this case the second factor in the right-hand side of (15) equals |X | nλ ≈ 1 and we recover f dec h 1 (z 0 ) from above. A similar simplication for f

(2) h 2 (z 0 ) is not possible across all scales. As soon as σn → ∞, the small scales estimator crucially profits from the specific structure of ψ 1 which excludes all offspring traits Y j outside of an annulus with radius of order 1/σ, see Proposition 19(ii) for details.

2.2. Rates of convergence. Recall that, given some neighbourhood

U z 0 of z 0 ∈ R, the function f : R → R belongs to the local Hölder class H s (z 0 ) with s > 0 if f is s times continuously differentiable for every z, z ∈ U z 0 and (17) |f ( s ) (z) -f ( s ) (z )| ≤ C|z -z | s-s
where s is the largest integer stricty smaller than s, and f (n) denotes n-fold derivation (with f (0) = f ). The definition depends on U z 0 , further omitted in the notation. We obtain a semi-norm |f | H s (z 0 ) by taking the smallest constant C for which (17) holds. Moreover, as explained in Section 2.1, we assume for technical convenience that f is bounded and supported in [-1 2 , 1 2 ] which yields the following nonparametric class of densities 1

G s (z 0 , L) := f : R → [0, ∞) : |f | H s (z 0 ) L, f ∞ L, Supp(f ) ⊆ [-1 2 , 1 2 ], f (z)dz = 1 .
We first exhibit rates of convergence for f

(1)

h 1 (z 0 ) and f (2) h 2 (z 0 ) of Definition 4 built upon f h 1 ,h 2 (z 0 ). Proposition 5. (i) If h 1 1 σn, then we have for any z 0 ∈ (-1 2 , 1 2 ) (18) sup f ∈G s (z 0 ,L) E f (1) h 1 (z 0 ) -f (z 0 ) 2 1/2 h s 1 + nσh 3 1 -1/2 ,
up to a constant that depends on L, s, K and z 0 . Choosing h 1 = (nσ) -1/(2s+3) , we obtain the optimised rate E f

(1)

h 1 (z 0 ) -f (z 0 ) 2 1/2 (nσ) -s/(2s+3) . (ii) Let σ < 1/8. For any h 2 ∈ (0, 1] and z 0 ∈ (-1 2 , 1 2 ), we have (19) sup f ∈G s (z 0 ,L) E f (2) h 2 (z 0 ) -f (z 0 ) 2 1/2 h s 2 + max (nh 2 ) -1/2 , σ 1/2 h -1/2 2 , n 1/2 σ ,
up to a constant that depends on L, s, K and z 0 . Choosing h 2 = (n ∧ σ -1 ) -1/(2s+1) , we obtain the optimised rate

E f (2) h 2 (z 0 ) -f (z 0 ) 2 1/2 max (n ∧ σ -1 ) -s/(2s+1) , n 1/2 σ .
Some remarks are in order: 1) The rate (nσ) -2s/(2s+3) in (i) reflects the ill-posedness of degree one due to the convolution with the indicator function. Moreover, we see that the rate is determined by nσ instead of n solely: the information about f is concentrated at the boundary

[-σ 2 , σ 2 ] ∪ [1 -σ 2 , 1 + σ 2 ]
of the support of the parent distribution since in the interior we have

1 [0,1] * f σ (y) = 1 for all y ∈ ( σ 2 , 1-σ 2 )
. Since the number of children in this boundary is of order nσ, the latter can be understood as effective sample size. In particular, the convergence rate deteriorates for σ → 0 and the deconvolution estimator is only consistent as long as nσ → ∞.

2) In (ii) we obtain the classical rate of convergence n -2s/(2s+1) for nonparametric density estimation as long as σn 1. For large scaling factors the bias correction -σnλ becomes crucial and the rate gets slower, i.e. the local interaction between parents and children becomes less informative. We obtain the rate σ 2s/(2s+1) ∨ (nσ 2 ). In particular, the interaction approach is only consistent as long as σ = o(n -1/2 ). This limitation is a consequence of the nonnegligible correlations between two different offspring traits in a σ-neighborhood of a parent. 3) Interestingly, there is an intermediate regime σ ∈ [n -1 , n -1/2 ] where both approaches are applicable and we can choose the estimator with the faster rate.

We wrap together the results of Proposition 5 to obtain our main result: Theorem 6. Let s > 0. For any z 0 ∈ (-1/2, 1/2), there exists an estimator f (z 0 ) depending on σ, λ, µ and s, explicitly obtained from Proposition 5 above such that

sup f ∈G s (z 0 ,L) E f (z 0 ) -f (z 0 ) 2 1/2 r n ,
up to a constant that depends on L, s, K and y, and with rate of convergence from (5). Some remarks again: 1) The graph of log r n as a function of τ for σ = n -τ is illustrated in Figure 3. Quite surprisingly, the dependence of the convergence rate on the scaling parameter σ is not monotonic which is a consequence of (7): The information on f in the deconvolution term decreases if σ gets smaller, while the second information based on interaction decreases if σ gets larger. The elbows between the regimes correspond to the points where

σ = n -(2s+1)/(2s+2) i.e. √ nσ = σ s/(2s+1) and σ = n -(4s+3)/(6s+6) i.e. √ nσ = (nσ) -s/(2s+3) .
In particular, the best estimator uses the deconvolution approach if σ > n -(4s+3)/(6s+6) and the interaction approach otherwise. 2) For the construction of the estimator, we need to know λ, µ and σ. A canonical estimator for λ is given by λ

= n -1 |X | = n -1 M ([0, 1]) ∼ n -1 Poiss(λn) satisfying E[| λ/λ -1| 2 ] = (nλ) -1
. Hence, it should not be a problem to replace λ by λ in the weighting of f h 1 ,h 2 . Similarly, we can estimate µ. The scaling parameter σ is more critical, because even the parametric accuracy is not sufficient to construct an estimator which is adaptive in σ: We have to decide whether σ > n -(4s+3)/(6s+6) or not and the boundary n -(4s+3)/(6s+6) is o(n -1/2 ) as soon as s > 2 (additionally the boundary dependence on the typically unknown regularity s). Since the usual construction principles for adaptive estimators rely on a monotonic dependence of the rate, more precisely of an upper bound for the stochastic error, the observed dependence on σ might complicate the construction of an adaptive estimator considerably.

Minimax optimality.

For σ 1/n the rate n -s/(2s+1) is optimal: a lower bound is obtained by noting that it is more informative to observe the point cloud of the parent traits Y and the dispersal realisation (D j ) via a Poisson point process with intensity nλµf . The offspring point N process can then the be constructed via uniformly distributing the children around the parents. Observing (D j ), the classical minimax rate for estimating f (z 0 ) is n -s/(2s+1) . Less obviously, for nσ → ∞, the rate r n is optimal too:

Theorem 7. Let z 0 ∈ (-1/2, 1/2), s > 0 and L > 0. Suppose σn| log σ| -1 → ∞ for σ = σ n ∈ (0, 1) as n → ∞. Then we have lim inf n→∞ inf ϑ sup f ∈G s (z 0 ,L) r -1 n E f ϑ -f (z 0 ) 2 1/2 > 0,
where the infimum is taken over all estimators ϑ built upon X and Y, with r n given by ( 5).

Hence, r n is the minimax rate of convergence in squared pointwise error for nonparametric dispersal estimation. In order to prove a sharp lower bound, we have to show that the parents indeed become uninformative if nσ → ∞ such that ignoring the X i is then the best we can do. This argument is based on the following insight: Given a number of parents |X | ∼ Poiss(λn) the distribution of a child trait Y , conditional on the parents satisfies:

P(Y ∈ dy |X 1 , . . . , X |X | = 1 |X | |X | i=1 f σ (y -X i )dy = 1 0 f σ (y -x)dxdy + 1 |X | |X | i=1 f σ (y -X j ) -E[f σ (y -X 1 )] dy,
where, conditional on |X |,

Var 1 |X | |X | i=1 f σ (y -X i ) |X | = 1 |X | Var(f σ (y -X 1 )) 1 |X |σ f 2 L 2 .
Since E[|X |] = λn, the influence of the parent traits becomes uninformative if nσ → ∞. See Section 6.3 for a rigorous proof.

The case of unknown scale parameter σ.

In practice, it well may be the case that the scale σ is unknown itself. We address this issue in a two-steps strategy: first, we study the estimation of σ as a statistical problem in its own right. In particular, we need to be able to distinguish from the data in which regime we stand (nσ → ∞ versus nσ bounded). Also, we need an accurate estimator σ of σ with respect to the relative error σ/σ -1 since σ itself may vanish as n → ∞. This is done in Section 3.1 below. Second, we use the estimator σ and the associated decision rules to determine the underlying scale to cook-up a σ-adaptive and final estimator f (z 0 ) by plug-in that proves to be optimal in all regimes (in probability, for simplicity). This is done in Section 3.2 below.

Estimation of σ.

In view of the different regimes for the estimation procedure the first question to settle is how to decide whether nσ is sufficiently large to apply nσ → ∞ asymptotics or not. To quantify nσ empirically, we define

T := N (R \ [0, 1]).
Since the support of the offspring point process N is given by [-σ 2 , 1 + σ 2 ] and the intensity of N is of the order n, we expect that T is indeed of order nσ.

Lemma 8. Let Supp f ⊆ [-1 2 , 1 2 ] and set I f := R |x|f (x)dx. For any σ ∈ (0, 1] and n ∈ N we have E[ T ] = nσλµI f and Var( T ) nσλ(µ + µ 2 ).
In particular, Chebychev's inequality shows for any κ > 0 that

P( T κ) →    0, if nσ → ∞, 1, if nσ κ 2λµI f .
We cannot use T to estimate σ since the quantity I f is unknown, but we can further exploit the support [-σ 2 , 1+ σ 2 ] of the offspring location traits Y j . Namely, we can construct a boundary type estimator for σ. We focus on left boundary, but the method can be easily modified to the right boundary or a combination of both. For l ∈ {1, . . . , |Y|} the order statistics are denoted by Y (l) . A naive estimator for σ is thus -2Y (1) = -2 min j Y j . We actually need to improve this estimator by taking the parent location traits near the left boundary into account. The resulting estimator is defined as

σ (1) := -2Y (1) + 2X ( l) with X (l) := 1 l l j=1 X (j) , l := κ n T .
If f is bounded away from zero on its support [-1 2 , 1 2 ], the corresponding c.d.f. F admits at least a linear growth at the boundary.

Proposition 9. Suppose the dispersal c.d.f. F satisfies

(20) F (z - 1 2 ) (γz) ∨ 0 for z 1
for some constant γ > 0. If σn → ∞ and σ (1) is specified with some sequence κ n → ∞ that can be taken arbitrarily slowly diverging, then

σ (1) σ -1 = O P κ n √ σn .
While for constant σ we obtain the typical parametric rate, the error bound is considerably improved if σ → 0. Most importantly, the relative estimation error σ (1) -σ σ is small as soon as σn → ∞.

The estimator σ (1) works well for large scale parameters. On the other side, when σ n -1 , we almost can guess the relationship Y j = X i j + σD j between an offspring trait Y j and its parent trait X i j such that we can estimate σ by a local boundary estimation approach around the distinct parent traits. To use this local information we specifically use the kernel

ψ † := (1 -|x|) + = 1 [-1/2,1/2] * 1 [-1/2,1/2]
and write

1 µλn i,j ψ † (Y j -X i )/h =: P σ|D 1 | h 2 + nλh + ξ(h),
where the stochastic noise term ξ(h) defined via the last display satisfies

E[ξ(h)] = E 1 µλn i,j ψ † (Y j -X i )/h -P σ|D 1 | h 2 -nλh = O(nh(σ + h) + h), cf.
Step 1 in the proof of Lemma 24. Due to Proposition 20 we moreover have for h σ:

Var ξ(h) 1 n (nσ + n 2 σ 2 ) h 2 σ 2 + (nσ + 1) h σ h 2 σ + nh 2 + h + h nσ nh 2 + 1 n . (21) Since h → P(σ|D 1 | h 2 )
is increasing and equals one as soon as h reaches σ, we define for some sequence κ n > 0:

σ (2) := min h > 0 : 1 µλn i,j ψ † (Y j -X i )/h nλh + 1 -nh 2 + n -1 κ n .
Proposition 10. Suppose nσ 3/2 → 0 and (20). Then we have for some

κ n → ∞ (arbitrarily slowly) that σ (2) σ -1 = O P κ n nσ 2 + n -1 .
Note that the condition nσ 3/2 → 0 exactly characterises the regime where the rate of σ (2) is faster than the rate of σ (1) . Combining the estimators σ (1) and σ (2) with the decision rule { T > κ n } that enables us to decide whether we are in the regime nσ → ∞ or not, we define our final estimator for σ as:

(22) σ := σ (1) on { T > κ n } ∩ { σ (1) > n -2/3 } σ (2) otherwise.
We conclude:

Theorem 11. Under the boundary condition (20) the estimator σ defined above with

κ n = log n satisfies σ σ -1 = O P (log n) nσ 2 + n -1 ∧ 1 √ nσ .
The performance of σ in terms of its fluctuations in relative error are shown in Figure 3. They will be sufficient to implement an optimal scale adaptive plug-in strategy for the estimation of f , as developed in the next section.

Estimation of f when σ is unknown.

Recall that the optimal rate of convergence is achieved by the interaction estimator or the deconvolution estimator depending whether

σ n -(4s+3)/(6s+6) or σ > n -(4s+3)/(6s+6) 0 -1 0 1 2 s 2s+1 s 2s+2 s 6s+6 s 2s+3 -2s+1 2s+2 -4s+3 6s+6 log n σn log n rn σ (1) σ (2) σ (2) Fig 3.
The rates of convergence of σ = σ (1) or σ (2) depending on the decision rule (22), as a function the dispersal rate σ on a log-log plot (in solid red). The minimax rate rn in a log-log plot (in dashed black). The red curve always dominates the black one.

respectively. Theorem 11 implies that σn (4s+3)/(6s+6) = (1+o P (1))σn (4s+3)/(6s+6) in all regimes for σ. In turn, we can decide for the best estimator in a data-driven way by setting

f n (z 0 ) =        f (1) σ (z 0 ) on σn (4s+3)/(6s+6) ≥ 1 f (1) σ (z 0 ) otherwise.
where σ is specified in Theorem 11, and we use the plug-in counterparts to the deconvolution estimator from (15) and the interaction estimator from ( 16), respectively, given by 2s+3) , and

f (1) σ (z 0 ) := 1 σ h 2 1 |Y| j K z 0 h 1 - Y j σ h 1 1 |X | i K σz 0 9 - Y j -X i 9 , specified by h 1 = (n σ) -1/(
f (2) σ (z 0 ) = 1 |Y| h 2 i,j 2K 2( σz 0 -Y j ) K z 0 h 2 - Y j -X i σ h 2 -σ|X |, specified by h 2 = (n ∧ σ -1 ) -1/(2s+1) .
Theorem 12. Let s, L > 0, z 0 ∈ (-1 2 , 1 2 ) and suppose K fulfills Assumption 3 with order K ≥ s . The following holds uniformly for f ∈ G s (z 0 , L) with property (20): 2s+3) .

(i) If nσ/(log n) 2 → ∞, we have f (1) σ (z 0 ) -f (z 0 ) = O P (u n ), with u n = (σn) -s/(
(ii) If nσ 2 → 0 and s > 3/2, we have

f (2) σ (z 0 ) -f (z 0 ) = O P (v n ), with v n = (n ∧ σ -1 ) -s/(2s+1) + √ nσ.
In particular, we achieve σ-adaptation in the following sense:

f n (z 0 ) -f (z 0 ) = O P (r n ),
where r n is the minimax rate for the estimation of f (z 0 ) in squared error loss, given in (5), according to Theorems 6 and 7.

Our final Theorem 12 shows that under our set of assumptions, it is possible to achieve optimality for the pointwise estimation of the dispersal density f (z 0 ) across scales without any prior knowledge of the scale σ. The proof is based upon the study of the smoothness of the interaction and convolution estimators as random processes indexed by σ together with sharp estimation rates for σ provided by Theorem 11. For technical reason, we have the additional restriction s > 3/2 for the smoothness of f locally around z 0 and our bounds are in the probability and not expectation.

Discussion.

4.1. One-to-one correspondence between parents and children. In some applications, e.g. Example 1 in Section 1.3, it is desirable to impose a one-to-one correspondence between parents and their children. Each parent has exactly one child and in particular |X | = |Y|. The point process N of the offspring generation should be modified as follows. For M = i δ X i as parent generating process, the offspring of a specific parent trait X i is given by ( 23)

Y j = X j + σD j for independent random variables (D j ) j≥1 distributed according to the dispersal density f and with the scaling parameter σ ∈ (0, 1]. The offspring point process is then simply given by

N (dy) = j δ Y j (dy) = j δ X j +σD j (dy).
Let us compare this one-to-one model with the original model of Section 1.2: Here, we have an urn model without replacement and a fixed number |X | of draws while in Section 1.2 we have an urn model with replacement and random number of draws. In this modified case we can proceed analogously to Goldenshluger (2018, Proposition 1) and we obtain the following counterpart to Proposition 1 with µ = 1:

Proposition 13. Let (A i ) 1≤i≤I and (B j ) 1≤j≤J be two families of disjoint subsets of [0, 1] and R, respectively. Then for any (η 1 , . . . , η

I ) ∈ R I and (ξ 1 , . . . , ξ J ) ∈ R J we have log E exp I i=1 η i M (A i ) + J j=1 ξ j N (B j ) = nλ I i=1 (e η i -1)|A i | + nλ J j=1 (e ξ k -1)Q σ ([0, 1], B j ) + nλ I i=1 J j=1 (e η i -1)(e ξ j -1)Q σ (A i , B j ),
where |A| denotes the Lebesgue measure of A and

Q σ (A, B) = A B f σ (y -x) dy dx.
Note that this modified exponential formula coincides with the result of Proposition 1 if we apply a first order approximation of the exponential functions on the right-hand side of ( 6) and set µ = 1. As a consequence, differentiation yields the same form of the intensity measure

1 nλ E M (dx)N (dy) dxdy = nλ(f σ * 1 [-1,1] )(y) + f σ (y -x)
as in Proposition 1 while second order properties differ. In fact, higher order integrals in the one-to-one setting are a bit simpler, see Remark 17 below. We can thus apply exactly the same estimator as before and Theorem 6 remains true in the one-to-one setting.

Corollary 14. Let z 0 ∈ (-1/2, 1/2), and s, L > 0. Based on the observations M = i δ X i and N = j δ Y j = j δ X j +σD j with D j from (23) there is an estimator f (z 0 ) depending on λ, σ and s such that

sup f ∈G s (z 0 ,L) E f (z 0 ) -f (z 0 ) 2 1/2 r n ,
where the rate of convergence is given by ( 5).

4.2.

The multidimensional case with arbitrary parent distributions. We investigate briefly in this section two essential extensions of our approach and the results of Theorem 6:

1) How will the rate change in the deconvolution regime if we consider multidimensional observations, i.e. when X ⊆ O ⊆ R d and Y ⊆ R d with d > 1? 2) How does the parent distribution affects the problem when p is not uniform over O?

For the first question, we argue that Theorem 6 and 7 generalise to a parent point process in R d with intensity measure λ1 O for a rectangular set O ⊆ R d . In general, the smoothing properties of a convolution with p = |O| -1 1 O for a bounded set O ⊆ R d considerably depends on the geometry of O and its boundary ∂O in particular, see e.g. [START_REF] Randol | On the asymptotic behavior of the Fourier transform of the indicator function of a convex set[END_REF]. More specifically, a more regular boundary results in a faster decay of the characteristic function of the uniform distribution on O. As a consequence, the statistical deconvolution problems depends on the geometry, too. To investigate the impact of the regularity properties of the parent distribution p, we assume in this section that the characteristic function of the parent distribution is bounded away from zero. In this case the classical spectral approach is applicable and allows for a transparent analysis of statistical estimation, even in the multidimensional case d > 1.

Let M = i δ X i (dx) be Poisson point process with intensity λnp(x)dx on R d , where p : R d → [0, ∞) is a bounded probability density function. As before the point process N on R d of offspring traits has conditional intensity µ(M * f σ (y))dy with f σ from (2). The decomposition (7) generalises to

(24) 1 nλµ E O×R d ψ 1 (y)ψ 2 (y -x)/σ M (dx)N (dy) = σ d nλ U σ (f * p) + V σ (f ), with U σ (f * p) = R d ψ 1 (y) ψ 2 * p(σ•) (y/σ)(f σ * p)(y)dy and V σ (f ) = R d ψ 1 * p(-•) (σz)ψ 2 (z)f (z)dz.
To deconvolve f σ * p in U σ (f * p), we denote the characteristic function of p by ϕ p (u) = F[p](u) = R d e iu x p(x)dx, u ∈ R d , and assume that ϕ p (u) = 0 for all u ∈ R d . Then we can choose the spectral deconvolution kernel

ψ 1 = F -1 FK(h 1 u) ϕ p (u/σ) (z 0 -•/σ), z 0 ∈ R d , with inverse Fourier transform F -1 [h(u)](x) = (2π) -d R d e -iu x h(u)du for any h ∈ L 1 (R d ) and where K : R d → R is a band limited kernel with bandwidth h 1 > 0. Plancherel's identity and F[(f * p)(σ•)](u) = σ -d F[f ](u)ϕ p (u/σ) indeed yields R d ψ 1 (z)(f σ * p)(z)dz = σ d (2π) d R d e -iu z FK(h 1 u) ϕ p (u/σ) F (f * p(σ•)) (u)du = 1 (2π) d R d e -iu z F[K h 1 ](u)F[f ](u)du = (K h 1 * f )(z). ( 25 
)
Using ψ 1 from above and ψ 2 = 1, we define the following spectral deconvolution estimator on

R d : f sd h 1 (z 0 ) = 1 nλµ j F -1 FK(h 1 u) ϕ p (u/σ) z 0 - Y j σ .
If the parent distribution is unknown, then we can profit from the observations X by replacing ϕ p with its empirical counterpart ϕ p (u) = |X | -1 j e iX j u as demonstrated in the classical (univariate) deconvolution literature, see e.g. [START_REF] Neumann | Deconvolution from panel data with unknown error distribution[END_REF]; [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]; [START_REF] Dattner | Adaptive quantile estimation in deconvolution with unknown error distribution[END_REF].

The rate of convergence will be determined by the decay of ϕ p (u). Note that ϕ p (u) should decay at least as |u| -d in order to allow for a bounded density h = F -1 ϕ p . In the multivariate case, the extensions H s d (z 0 ) and G s d (z 0 , L) of the local Hölder classes H s (z 0 ) and the class of Hölder regular, bounded densities G s (z 0 , L), respectively, from the univariate case to R d is straightfroward by considering partial derivatives. A kernel K of order K s in dimension d can be constructed, for instance by tensorisation of the one dimensional case. We keep-up with the notation | • | to denote the Euclidean norm on R d .

Theorem 15. Let z ∈ R d and f ∈ G s d (z 0 , L)
for some s > 0 and let p be a bounded probability density on

R d with ϕ p (u) = 0 for all u ∈ R d . If K is a kernel or order K s that satisfies Supp FK ⊆ {u ∈ R d : |u| 1}, then we have sup f ∈G s d (z 0 ,L) E f sp h 1 (z 0 ) -f (z 0 ) 2 1/2 h s + σ d n 1/2 {u∈R d :|u| 1/(σh)} |ϕ p (u)| -2 du 1/2 .
In the mildly ill-posed case with |ϕ p (u)| (1 + |u| 2 ) -t/2 for some t d, we obtain 2s+2t+d) .

sup f ∈G s d (z 0 ,L) E f sp h 1 (z 0 ) -f (z 0 ) 2 (nσ 2t-d ) -2s/(
for the choice h 1 = (nσ 2t-d ) 1/(2s+2t+d) .

In the severely ill-posed case |ϕ p (u)| e -γ|u| β for some γ, β > 0, we obtain

sup f ∈G s d (z 0 ,L) E f (d) h 1 (z 0 ) -f (z) 2 1/2 σ -s (log n) -s/β
for the choice

h 1 = σ -1 ( 1 4γ log n) -1/β .
Several remarks are in order: 1) for d = 1, the uniform distribution corresponds to the degree of ill-posedness t = 1 for which we indeed recover the rate (nσ) 2s/(2s+3) . 2) For more regular distributions with t > 1 the dependence of the deconvolution rate on the scaling parameter σ is even more severe. For t = 3 2 d the deconvolution estimator is only consistent if nσ 2d → ∞. Since the analysis of the variance of an interaction approach in the general setting reveals a term of order nσ 2d , cf. Remark 22, we conjecture that there is a regime where f cannot be estimated consistently if t > 3 2 d. To discuss the behaviour of an interaction estimator similiar to (13), we note first that our variance estimates in Section 6.2 can be generalised to other parent distributions with bounded densities and to higher dimensions, see in particular Remark 22 at the end of Section 6.2. A soon as the bias due to U σ (f * p) in the interaction regime can be controlled, one can in principle build an estimator f int h (z 0 ) with mean squared-error of order

E f int h (z 0 ) -f (z 0 ) 2 1/2 h s + max 1 n 1/2 h d/2 , σ d/2 h d/2 , n 1/2 σ d for f ∈ G s d (z 0 , L). An optimised choice of h = (n ∧ σ -d ) -1/(2s+d) then yields E f int h (z 0 ) -f (z 0 ) 2 1/2 max (n ∧ σ -d ) -s/(2s+d) , n 1/2 σ d .
However, the analysis of the bias due to U σ (f * p) is quite delicate and we do not have a clear understanding of its behaviour at the moment. Note also that the analysis of the interaction estimator is applicable to a generating parent trait point process with intensity λn1 O (x)dx for any Borel set O ⊆ R d without additional difficulties.

A numerical example.

In order to illustrate the main results, we will apply the estimators from Definition 4 together with the pure deconvolution estimator and the interaction estimator from ( 11) and ( 14), respectively, on simulated observations.

We choose n = 1000, λ = µ = 1 and consider the Beta(2, 3)-distribution (shifted by -1/2) for the dispersal, i.e.

f (z) = 1 12 1 2 + z 1 2 -z 2 1 [-1/2,1/2] (z), z ∈ R.
For the estimators we choose the kernel

K(z) :=        1, |z| 1 4 , 32 15 (|z| -1 4 ) 2 -1 2 , |z| ∈ ( 1 4 , 23 32 ], 0, otherwise,
which is continuously differentiable, non-negative and satisfies Assumption 3 with order K = 1. The bandwidths are chosen as h 1 = 0.7(nσ) -1/7 and h 2 = 0.7 min(n, σ -1 ) -1/5 according
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Logarithmic plot of the root mean squared error of f

(1)

h 1 ( purple), f (2) 
h 2 ( green) as well as f dec h 1 ( purple, dashed), f int h 2 ( green, dashed) at z0 = 0 depending on σn based on a Monte Carlo simulation.

to Proposition 5. In the numerical experiments we note a considerable sensitivity of the small scale estimator f

(2)

h 2 to the choice of h 1 . While the estimator achieves the optimal rate with h 1 = 1/(2σ), the proofs reveal that the conditions h 1 + h 2 < σ -1 and h 1 4 are sufficient for the bias analysis and the variance grows by the factor (σh 1 ) -1 . Hence, h 1 should be as large as possible and we choose

h 1 = max(4, σ -1 -1.1 h 2 ) for f (2) h 2 .
A Monte Carlo simulation confirms our theoretical findings. Figure 4 shows the root mean squared error at point z 0 = 0 based on a Monte Carlo simulation with 500 Monte Carlo iterations. In each of these iterations the same random variables are drawn to define the point clouds X and Y along a grid of scaling parameters σ n = n τ , τ ∈ {-2, -1.8, . . . , -0.2, 0}. We see that f

(1) h 1 is much better for large scales, but its error increases as σ decreases. For σ < n -0.6 ≈ 0.016 the direct estimator f

(2) h 2 is better and its error improves when σ decreases further. As we can see in this figure f (1) h 1 and f dec h 1 behave similarly. In contrast, there is a notable difference between f

(2) h 2 and f int h 2 . More precisely, our numerical experiments indicate that the stochastic error of f int h 2 is smaller across all scales, but even before σ = n -1 the bias effect drastically kicks in.

For a more detailed impression on the behaviour of our main estimators Figure 5 shows 20 realisations of the estimators f

(1)

h 1 and f (2)
h 2 for two different choices the scaling parameter σ ∈ {n -1/20 , n -19/20 }. While the deconvolution estimator f

(1) h 1 fluctuates around the true density for the rather large scale σ = n -1/20 ≈ 0.71, its result is completely useless at the small scale σ = n -19/20 ≈ 0.0014. The direct estimator f

(2) h 2 reveals the opposite behaviour. At the small scale f

(2) h 2 concentrates around f , but its shape is unrelated to the dispersal density if σ is large.

Proofs.

6.1. The covariance structure of (M, N ). Proof of Proposition 1. Conditional on M we obtain from Campbell's formula

E exp J j=1 η j M (A j ) + K k=1 ξ k N (B k ) (X j ) = exp J j=1 η j M (A j ) E exp K k=1 ξ k N (B k ) (X j ) = exp J j=1 η j M (A j ) exp (e k ξ k 1 B k (y) -1)µ l f σ (y -X l )dy = exp J j=1 η j M (A j ) + K k=1 B k (e ξ k -1)µ l f σ (y -X l )dy = exp gdM for g(x) := J j=1 η j 1 A j (x) + h(x), h(x) := µ K k=1 (e ξ k -1) B k f σ (y -x)dy.
Applying again Campbell's formula yields log E exp x) -1 dx.

J j=1 η j M (A j ) + K k=1 ξ k N (B k ) = nλ 1 0 e g(
If we plug in g(x), we obtain

nλ 1 0 e g(x) -1 dx = nλ J j=1 A j e η j +h(x) -1 dx + nλ ( j A j ) c e h(x) -1)dx = nλ J j=1
(e η j -1)

A j (e h(x) -1)dx + nλ J j=1 (e η j -1)|A j | + nλ 1 0 e h(x) -1)dx.
We conclude by differentiating the previous exponential formula.

Proof of Corollary 2. It suffices to note that Ψ(η, ξ) :=E e ηM (A)+ξN (B)

= exp nλ(e η -1)|A| + nλ 1 0 e ψ B (ξ,x) -1)dx + nλ(e η -1)

A (e ψ B (ξ,x) -1)dx ,

where ψ B (ξ, x) := µ(e ξ -1) B f σ (y -x)dy, satisfies

∂ ξ Ψ(η, ξ) = Ψ(η, ξ) nλ 1 0 e ψ B (ξ,x) ∂ ξ ψ B (ξ, x)dx + nλ(e η -1) A e ψ B (ξ,x) ∂ ξ ψ B (ξ, x)dx and ∂ η ∂ ξ Ψ(η, ξ) = Ψ(η, ξ) nλe η |A| + nλe η A (e ψ B (ξ,x) -1)dx × nλ 1 0 e ψ B (ξ,x) ∂ ξ ψ B (ξ, x)dx + nλ(e η -1) A e ψ B (ξ,x) ∂ ξ ψ B (ξ, x)dx + Ψ(η, ξ)λe η A e ψ B (ξ,x) ∂ ξ ψ B (ξ, x)dx.
Hence, due to Ψ(0, 0) = 1, ψ B (0, x) = 0 and ∂ ξ ψ B (0, x) = µ B f σ (y -x)dy, the claimed formula is given by ∂ η ∂ ξ Ψ(0, 0).

The previous proof also shows that

(26) E[N (B)] = nλµ 1 0 B f σ (y -x) dydx, B ⊆ R,
by calculating ∂ ξ Ψ(0, 0). While Corollary 2 determines the mean of linear functionals of M and N the following lemma investigates the covariance structure.

Lemma 16. For

Q σ (A, B) := A B f σ (y-x) dy dx, Q 2 σ (A, B 1 , B 2 ) := A B 1 B 2 f σ (y 1 -x)f σ (y 2 -x) dy 2 dy 1 dx
we have:

(i) If B 1 , B 2 ⊆ R are intervals such that B 1 ∩ B 2 = ∅, then E[N (B 1 )N (B 2 )] = n 2 λ 2 Q σ ([0, 1], B 1 )Q σ ([0, 1], B 2 ) + nλµ 2 Q 2 σ ([0, 1], B 1 , B 2 ) = E[N (B 1 )]E[N (B 2 )] + nλµ 2 Q 2 σ ([0, 1], B 1 , B 2 ). (27) (ii) If A 1 , A 2 ⊆ [0, 1] and B ⊆ R are intervals such that A 1 ∩ A 2 = ∅, then E[M (A 1 )M (A 2 )N (B)] = n 3 λ 3 µ|A 1 ||A 2 |Q σ ([0, 1], B) + n 2 λ 2 µ|A 2 |Q σ (A 1 , B) + n 2 λ 2 µ|A 1 |Q σ (A 2 , B) (28) (iii) If A ⊆ [0, 1] and B 1 , B 2 ⊆ R are intervals such that B 1 ∩ B 2 = ∅, then E[M (A)N (B 1 )N (B 2 )] = n 3 λ 3 µ 2 |A|Q σ ([0, 1], B 1 )Q σ ([0, 1], B 2 ) (29) + n 2 λ 2 µ 2 Q σ (A, B 1 )Q σ ([0, 1], B 2 ) + n 2 λ 2 µ 2 Q σ ([0, 1], B 1 )Q σ (A, B 2 ) + n 2 λ 2 µ 2 |A 1 |Q 2 σ ([0, 1], B 1 , B 2 ) + nλµ 2 Q 2 σ (A, B 1 , B 2 ). (iv) For A 1 , A 2 ⊆ [0, 1] and B 1 , B 2 ⊆ R with A 1 ∩ A 2 = ∅ and B 1 ∩ B 2 = ∅ we have E[M (A 1 )M (A 2 )N (B 1 )N (B 2 )] = E[M (A 1 )N (B 1 )]E[M (A 2 )N (B 2 )] + n 3 λ 3 µ 2 |A 1 |Q σ (A 2 , B 1 )Q σ ([0, 1], B 2 ) + |A 2 |Q σ ([0, 1], B 1 )Q σ (A 1 , B 2 ) + |A 1 ||A 2 |Q 2 σ ([0, 1], B 1 , B 2 ) + n 3 λ 2 µ 2 Q σ (A 2 , B 1 )Q σ (A 1 , B 2 ) + |A 1 |Q 2 σ (A 2 , B 1 , B 2 ) + |A 2 |Q 2 σ (A 1 , B 1 , B 2 ) .
The proof is similiar to the proof of Corollary 2, but using forth order partial derivatives (6). We postpone the details to the appendix.

Remark 17. A modified proof shows that in the one-to-one case the formulas in Lemma 16 remain true if we set Q 2 σ (A) = 0.

Bias and variance bounds.

The two integrals U σ (f * p) and V σ (f ) from ( 7) are analysed in the following two propositions.

Proposition 18. For s, L > 0 let f ∈ G s (z 0 , L). Suppose that ψ 1 and ψ 2 are given by (11) and (14), respectively, with K satisfying Assumption 3 with K ≥ s .

(i) If σh 2 8 for σ ∈ (0, 1], then we have for all z 0 ∈ (-1/2, 1/2), and

h 1 ∈ (0, h 2 8 ] U σ (f * p) = 1 σh 2 f (z 0 ) + O h s 1 σh 2 . (ii) If h 1 ∈ [4, σ -1
) for σ ∈ (0, 1/4), then we have for all y ∈ (-1/2, 1/2), and

h 2 ∈ (0, σ -1 -h 1 ] U σ (f * p) = 1 h 1 . Proof. (i) Noting that (f σ * 1 [0,1] )(y) = F y σ -F y-1 σ
for the cumulative distribution function F of f , we plug in the choice of ψ 1 and substitute z = z 0 -x σ to obtain

U σ (f * p) = 1 σh 2 1 R (ψ 2 * 1 [0,1/σ] )(x/σ)K z 0 h 1 - x σh 1 F x σ -F x -1 σ dx = 1 h 2 1 R (ψ 2 * 1 [0,1/σ] ) z 0 -z K z h 1 F z 0 -z -F z 0 -z - 1 σ dz. (30) Moreover, we have (ψ 2 * 1 [0, 1 σ ] ) z 0 -z = 1 h 2 R K z 0 -x h 2 1 [0, 1 σ ] z 0 -z -x dx = 1 h 2 R K x h 2 1 [0, 1 σ ] x -z dx.
Denoting the anti-derivative of K by K (-1) (z) := z -∞ K(x)dx, we obtain (31)

(ψ 2 * 1 [0,1/σ] ) z 0 -z = K (-1) z h 2 + 1 σh 2 -K (-1) z h 2 .
On the assumptions that K(x) = 1 for |x|

1 4 , h 1 h 2 8 and σh 2 8, we have z+1/σ h 2 , z h 2 ∈ [-1 4 , 1 4 ] for any |z| h 1 and thus (ψ 2 * 1 [0,1/σ] ) z 0 -z = 1 σh 2 .
Since the boundary terms vanish by the compact support of K, we conclude from (30) together with integration by parts

U σ (f * p) = 1 σh 2 h 2 1 R K z h 1 F z 0 -z -F z 0 -z -σ -1 dz = 1 σh 1 h 2 R K z h 1 f z 0 -z -f z 0 -z -σ -1 dz = 1 σh 2 1 h 1 K • h 1 * f (z 0 ) - 1 h 1 K • h 1 * f z 0 -σ -1 = 1 σh 2 f (z 0 ) + f (z 0 -σ -1 ) + O h s 1 σh 2 ,
where the last bound is due to the usual bias estimate based on the Hölder regularity of f . Note that f (z 0 -σ -1 ) = 0 since σ 1 and |z 0 | < 1/2 and, especially, f has arbitrary Hölder regularity in a small neighborhood arround z 0

x -σ -1 . (ii) If h 1 + h 2 < 1 σ , then z h 2 + 1 σh 2 >
1 for any |z| h 1 and thus (31) reads as

(ψ 2 * 1 [0,1/σ] ) z 0 -z = 1 -K (-1) z h 2 .
If σ < 1/2, we moreover have F (z 0 -z -σ -1 ) = 0 for all z 0 ∈ (-1/2, 1/2) and z ∈

[-h 1 , h 1 ] ⊆ [-(2σ) -1 , (2σ) -1 ].
Using that K(x) = 1 for |x| 1/4 and using F (x) = 0 for x < -1/2 and F (x) = 1 for x 1/2, we obtain from (30) for h 1 4

U σ (f * p) = 1 h 2 1 |z|>h 1 /4 1 -K (-1) (z/h 2 ) K z h 1 F z 0 -z dz = 1 h 2 1 -h 1 /4 -∞ 1 -K (-1) (z/h 2 ) K z h 1 dz = 1 h 2 1 0 -∞ 1 -K (-1) (z/h 2 ) K z h 1 dz = 1 h 1 1 -K (-1) (0) K 0 + 1 h 2 0 -∞ K z h 2 K z h 1 dz = 1 2h 2 + 1 h 1 h 2 0 -∞ K z h 1 K z h 2 dz
where we have used integration by parts and symmetry of K. Since K(•/h 1 ) is constant one on [-h 1 4 , h 1 4 ], the last line simplifies for h 2

h 1 4 to U σ (f * p) = 1 2h 2 + 1 h 1 h 2 0 -∞ K z h 1 dz = 1 h 1 .
Proposition 19. For s, L > 0 let f ∈ G s (z 0 , L). Suppose that ψ 1 and ψ 2 are given by (11) and ( 14), respectively, with K satisfying Assumption 3 with K ≥ s . Let σ ∈ (0, 1].

(i) If h 2 h 1 4 and h 1 + h 2 < 1/σ, then V σ (f ) = h -1 1 f (z 0 ) + O h -1 1 h s 2 .
(ii) We have for all σ, h 1 , h 2 > 0

V σ (f ) h -1 1 K L 1 K L 1 f ∞ . Proof. (i) We use (ψ 1 * 1 [-1,0] )(σz) = 1 σh 2 1 0 -1 K z 0 -z h 1 + t σh 1 dt = 1 h 1 0 -1/(σh 1 ) K z 0 -z h 1 + t dt = 1 h 1 K z 0 -z h 1 -K z 0 -z h 1 - 1 σh 1 .
Noting that z ∈ [z 0 -h 2 , z 0 + h 2 ] by the support of ψ 2 and using h 1 + h 2 < 1/σ, we have

|z 0 -z -1 σ | 1 σ -h 2 > h 1 and thus K z 0 -z h 1 -1 σh 1 = 0. Since K z 0 -z h 1 = 1 for | z 0 -z h 1 | h 2 h 1 1 4 , we obtain (ψ 1 * 1 [-1,0] )(σz)ψ 2 (z)f (z)dz = 1 h 1 h 2 R K z 0 -z h 1 K z 0 -z h 2 f (z)dz. = 1 h 1 h 2 R K z 0 -z h 2 f (z)dz. (32)
Applying again the usual bias estimates on (h -1 2 K(•/h 2 ) * f )(z 0 ), we conclude

(ψ 1 * 1 [-1,0] )(σz)ψ 2 (z)f (z)dz = h -1 1 f (z 0 ) + O(h -1 1 h s 2 ).
(ii) The second bound easily follows form Young's inequality:

(ψ 1 * 1 [-1,0] )(σz)ψ 2 (z)f (z)dz ψ 1 * 1 [-1,0] ∞ ψ 2 L 1 f ∞ ψ 1 L 1 ψ 2 L 1 f ∞ h -1 1 K L 1 K L 1 f ∞ .
The next step is to investigate the variance based on Lemma 16.

Proposition 20. If f is bounded and ϕ (x, y) := ψ 1 (y)ψ 2

y-x σ

for some kernels

ψ 1 ∈ L 1 ∩ L 2 , ψ 2 ∈ L 2 , then there is some C > 0 such that Var j,k ϕ (X j , Y k ) Cnλµ(1 ∨ f ∞ ) × (µ + 1) nλσ + n 2 λ 2 σ 2 ψ 2 2 L 1 + (nλσ + µ + 1) ψ 2 2 L 2 ψ 1 2 L 2 .
Proof. We decompose

Var j,k ϕ (X j , Y k ) = E j,k ϕ (X j , Y k ) 2 -E j,k ϕ (X j , Y k ) 2 = E j,k ϕ (X j , Y k ) 2 + E j 1 =j 2 ,k ϕ (X j 1 , Y k )ϕ (X j 2 , Y k ) + E j,k 1 =k 2 ϕ (X j , Y k 1 )ϕ (X j , Y k 2 ) + E j 1 =j 2 ,k 1 =k 2 ϕ (X j 1 , Y k 1 )ϕ (X j 2 , Y k 2 ) -E j,k ϕ (X j , Y k ) 2 =: J 1 + J 2 + J 3 + J 4 .
Due to (7) and Young's inequality we have

J 1 = n 2 λ 2 µ 1 0 R ψ 2 2 y -x σ ψ 2 1 (y)(f σ * 1 [0,1] )(y)dydx + nλµ 1 0 R ψ 2 2 z ψ 2 1 (x + σz)f (z)dzdx = n 2 λ 2 µσ R (ψ 2 2 * 1 [0,1/σ] )(y/σ)ψ 2 1 (y)(f σ * 1 [0,1] )(y)dy + nλµ (ψ 2 1 * 1 [-1,0] )(σz)ψ 2 2 (z)f (z)dz. n 2 λ 2 µσ ψ 2 2 * 1 [0,1/σ] ∞ ψ 1 2 L 2 f σ * 1 [0,1] ∞ + nλµ ψ 2 1 * 1 [-1,0] ∞ ψ 1 2 L 2 f ∞ µ n 2 λ 2 σ + nλ f ∞ ψ 1 2 L 2 ψ 2 2 L 2 .
From Lemma 16(ii) and (iii), we deduce for

x 1 = x 2 in [0, 1] and y ∈ R E dM (x 1 )dM (x 2 )dN (y) = n 2 λ 2 µ nλ(f σ * 1 [0,1] )(y) + f σ (y -x 1 ) + f σ (y -x 2 ) dy dx 1 dx 2 as well as for x ∈ [0, 1] and y 1 = y 2 E dM (x)dN (y 1 )dN (y 2 ) = n 2 λ 2 µ 2 nλ(f σ * 1 [0,1] )(y 1 )(f σ * 1 [0,1] )(y 2 ) + f σ (y 1 -x)(f σ * 1 [0,1] )(y 2 ) + f σ (y 2 -x)(f σ * 1 [0,1] )(y 1 ) + 1 0 f σ (y 1 -t)f σ (y 2 -t)dt + λf σ (y 1 -x)f σ (y 2 -x) dy 1 dy 2 dx.
Therefore,

J 2 = E 1 0 1 0 R ϕ (x 1 , y)ϕ (x 2 , y)1 {x 1 =x 2 } M (dx 1 )M (dx 2 )N (dy) = µ(J 2,1 + 2J 2,2 ) with J 2,1 := n 3 λ 3 1 0 1 0 R ψ 2 y -x 1 σ ψ 2 y -x 2 σ ψ 2 1 (y)(f σ * 1 [0,1] )(y)dy dx 1 dx 2 = n 3 λ 3 σ 2 R (ψ 2 * 1 [0,1/σ] ) 2 (y/σ)ψ 2 1 (y)(f σ * 1 [0,1] )(y)dy n 3 λ 3 σ 2 ψ 1 2 L 2 ψ 2 2 L 1 and J 2,2 := n 2 λ 2 1 0 1 0 R ψ 2 y -x 1 σ ψ 2 y -x 2 σ ψ 2 1 (y)f σ (y -x 1 )dy dx 1 dx 2 = n 2 λ 2 σ 1 0 R (ψ 2 * 1 [0,1/σ] ) z + x 1 σ ψ 2 1 (x 1 + σz)ψ 2 z f (z)dz dx 1 n 2 λ 2 σ ψ 2 L 1 ψ 1 2 L 2 R |ψ 2 z f (z)|dz = n 2 λ 2 σ ψ 1 2 L 2 ψ 2 2 L 1 f ∞ .
For the third term we have

J 3 = E 1 0 R R ϕ (x, y 1 )ϕ (x, y 2 )1 {y 1 =y 2 } M (dx)N (dy 1 )N (dy 2 ) = µ 2 (J 3,1 +2J 3,2 +J 3,3 +J 3,4 ),
where

J 3,1 := n 3 λ 3 [0,1]×R 2 ψ 2 y 1 -x σ ψ 2 y 2 -x σ ψ 1 (y 1 )ψ 1 (y 2 )(f σ * 1 [0,1] )(y 1 )(f σ * 1 [0,1] )(y 2 )dy 1 dy 2 dx = n 3 λ 3 1 0 ψ 2 (-• /σ) * ψ 1 (f σ * 1 [0,1] ) (x) 2 dx n 3 λ 3 ψ 2 (•/σ) 2 L 1 ψ 1 2 L 2 = n 3 λ 3 σ 2 ψ 1 2 L 2 ψ 2 2 L 1 , J 3,2 := n 2 λ 2 [0,1]×R 2 ψ 2 y 1 -x σ ψ 2 y 2 -x σ ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -x)(f σ * 1 [0,1] )(y 2 )dy 1 dy 2 dx = n 2 λ 2 1 0 ψ 2 (-• /σ)f σ * ψ 1 (x) ψ 2 (-• /σ) * ψ 1 (f σ * 1 [0,1] ) (x)dx n 2 λ 2 ψ 2 (-• /σ)f σ L 1 ψ 1 2 L 2 ψ 2 (-• /σ) L 1 = n 2 λ 2 σ ψ 2 (-•)f L 1 ψ 2 L 1 ψ 1 2 L 2 n 2 λ 2 σ f ∞ ψ 1 2 L 2 ψ 2 2 L 1 , J 3,3 := n 2 λ 2 [0,1] 2 ×R 2 ψ 2 y 1 -x σ ψ 2 y 2 -x σ ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -t)f σ (y 2 -t)dy 1 dy 2 dtdx = n 2 λ 2 [0,1] 2 ×R 2 ψ 2 z 1 + t -x σ ψ 2 z 2 + t -x σ ψ 1 (σz 1 + t)ψ 1 (σz 2 + t)f (z 1 )f (z 2 )dz 1 dz 2 dtdx n 2 λ 2 σ R 4 ψ 2 z 1 + x ψ 2 z 2 + x ψ 1 (σz 1 + t)ψ 1 (σz 2 + t) f (z 1 )f (z 2 )dz 1 dz 2 dxdt = n 2 λ 2 σ R 2 (|ψ 2 | * |ψ 2 |)(z 1 -z 2 )(|ψ 1 | * |ψ 1 |) σ(z 1 -z 2 ) f (z 1 )f (z 2 )dz 1 dz 2 n 2 λ 2 σ ψ 1 2 L 2 R 2 (|ψ 2 | * |ψ 2 |)(z 1 )f (z 1 + z 2 )f (z 2 )dz 1 dz 2 n 2 λ 2 σ ψ 1 2 L 2 ψ 2 2 L 1 f ∞ , J 3,4 := nλ [0,1]×R 2 ψ 2 y 1 -x σ ψ 2 y 2 -x σ ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -x)f σ (y 2 -x)dy 1 dy 2 dx = nλ 1 0 (f σ ψ 2 (•/σ)) * ψ 1 (x) 2 dx nλ ψ 1 2 L 2 f σ ψ 2 (•/σ) 2 L 1 nλ ψ 1 2 L 2 f ∞ f L 1 ψ 2 2 L 2 nλ f ∞ ψ 1 2 L 2 ψ 2 2 L 2 .
Finally, we have due to Lemma 16(iv) for x 1 = x 2 and y 1 = y 2 that

E dM (x 1 )dM (x 2 )dN (y 1 )dN (y 2 ) -E dM (x 1 )dN (y 1 ) E dM (x 2 )dN (y 2 ) = n 2 λ 2 µ 2 nλf σ (y 1 -x 2 )(f σ * 1 [0,1] )(y 2 ) + nλf σ (y 2 -x 1 )(f σ * 1 [0,1] )(y 1 ) + nλ 1 0 f σ (y 1 -t)f σ (y 2 -t)dt + f σ (y 1 -x 2 )f σ (y 2 -x 1 ) + f σ (y 1 -x 1 )f σ (y 2 -x 1 ) + f σ (y 1 -x 2 )f σ (y 2 -x 2 ) dy 1 dy 2 dx 1 dx 2 and thus J 4 = µ 2 (2J 4,1 + J 4,2 + J 4,3 + 2J 4,4 ) with J 4,1 := n 3 λ 3 [0,1] 2 ×R 2 ψ 2 y 1 -x 1 σ ψ 2 y 2 -x 2 σ ψ 1 (y 1 )ψ 1 (y 2 ) × f σ (y 1 -x 2 )(f σ * 1 [0,1] )(y 2 )dy 1 dy 2 dx 1 dx 2 = n 3 λ 3 [0,1]×R ψ 2 ( • σ ) * 1 [0,1] (y 1 ) ψ 2 (- • σ ) * (f σ * 1 [0,1] )ψ 1 (x 2 )ψ 1 (y 1 )f σ (y 1 -x 2 )dy 1 dx 2 = n 3 λ 3 1 0 f σ * (ψ 2 (•/σ) * 1 [0,1] )ψ 1 (x 2 ) ψ 2 (•/σ) * (f σ * 1 [0,1] )ψ 1 (x 2 )dx 2 n 3 λ 3 ψ 1 2 L 2 ψ 2 (•/σ) 2 L 1 = n 3 λ 3 σ 2 ψ 1 2 L 2 ψ 2 2 L 1 , J 4,2 := n 3 λ 3 [0,1] 3 ×R 2 ψ 2 y 1 -x 1 σ ψ 2 y 2 -x 2 σ ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -t)f σ (y 2 -t)dy 1 dy 2 dtdx 1 dx 2 = n 3 λ 3 σ 2 [0,1]×R 2 (ψ 2 * 1 [0,1/σ] ) z 1 + t/σ (ψ 2 * 1 [0,1/σ] ) z 2 + t/σ ψ 1 (σz 1 + t)ψ 1 (σz 2 + t) × f (z 1 )f (z 2 )dz 1 dz 2 dt = n 3 λ 3 σ 2 1 0 (ψ 2 * 1 [0,1/σ] )ψ 1 (σ•) * f (-•) (t/σ) 2 dt n 3 λ 3 σ 3 (ψ 2 * 1 [0,1/σ] )ψ 1 (σ•) 2 L 2 n 3 λ 3 σ 2 ψ 1 2 L 2 ψ 2 2 L 1 , J 4,3 := n 2 λ 2 [0,1] 2 ×R 2 ψ 2 y 1 -x 1 σ ψ 2 y 2 -x 2 σ ψ 1 (y 1 )ψ 1 (y 2 ) × f σ (y 1 -x 2 )f σ (y 2 -x 1 )dy 1 dy 2 dx 1 dx 2 n 2 λ 2 R 4 ψ 2 z 1 - x 1 σ ψ 2 z 2 + x 1 σ × ψ 1 (x 2 )ψ 1 (x 1 + x 2 + σ(z 2 -z 1 )) f (z 1 )f (z 2 )dz 1 dz 2 dx 1 dx 2 = n 2 λ 2 R 2 (f * |ψ 2 |) x 1 σ -z 1 |ψ 2 | x 1 σ (|ψ 1 | * |ψ 1 |)(σz 1 -x 1 )f (z 1 )dz 1 dx 1 = n 2 λ 2 σ R f * (f * |ψ 2 |)(|ψ 1 | * |ψ 1 |)(σ•) (x 1 )|ψ 2 |(x 1 )dx 1 n 2 λ 2 σ ψ 1 2 L 2 ψ 2 2 L 1 f ∞ , J 4,4 := n 2 λ 2 [0,1] 2 ×R 2 ψ 2 y 1 -x 1 σ ψ 2 y 2 -x 2 σ ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -x 1 )f σ (y 2 -x 1 )dy 1 dy 2 dx 1 dx 2 = n 2 λ 2 σ 1 0 (ψ 2 f ) * ψ 1 (σ•) (-x 1 /σ) f * ((ψ 2 * 1 [0,1/σ] )ψ 1 (σ•)) (-x 1 /σ)dx 1 n 2 λ 2 σ 2 (ψ 2 f ) * ψ 1 (σ•) L 2 f * ((ψ 2 * 1 [0,1/σ] )ψ 1 (σ•)) L 2 n 2 λ 2 σ ψ 1 2 L 2 ψ 2 2 L 1 f ∞ .
Combining all estimates yields for some

C > 0 Var j,k∈Z ϕ (X j , Y k ) Cnλµ(1 + f ∞ ) ψ 1 2 L 2 × (µ + 1) nλσ + n 2 λ 2 σ 2 ψ 2 2 L 1 + (nλσ + 1 + µ) ψ 2 2 L 2 .
If the test function only depends on Y k , we obtain the following simplified version:

Lemma 21. We have Var j ψ 1 (Y j ) nλ(µ + µ 2 ) ψ 1 Proof. We decompose Var j ψ 1 (Y j ) = E j ψ 1 (Y j ) 2 + E j 1 =j 2 ψ 1 (Y j 1 )ψ 1 (Y j 2 ) -E j ψ 1 (Y j ) 2 = nλµ R ψ 1 (y) 2 (f σ * 1 [0,1] )(y)dy + nλµ 2 1 0 R R ψ 1 (y 1 )ψ 1 (y 2 )f σ (y 1 -x)f σ (y 2 -x)dy 1 dy 2 dx =: J 1 + J 2 .
These terms can be bounded by

J 1 nλµ ψ 1 2 L 2 f σ * 1 [0,1] ∞ nλµ ψ 1 2 L 2
and

J 2 nλµ 2 (f σ * ψ 1 ) 2 1 [0,1] L 1 nλµ 2 f σ * ψ 1 2 L 2 nλµ 2 ψ 1 2 L 2 .
Remark 22. With only minor modifications the same proofs applies to point processes M and N in R d where M has intensity nλp with bounded probability density function p on R d and where N has conditional intensity µ(N * f σ ) as before. In this case all indicator functions 1 [0,1] have to be replaced by p, all integrals of the type 1 0 . . . dx have to be replaced by R d . . . p(x)dx and the factors σ in the above estimates have to be replaced by σ d . We obtain the following variance bounds:

Var j,k ϕ (X j , Y k ) Cnλµ(1 + f ∞ )( p ∞ + p 3 ∞ ) × (µ + 1) nλσ d + n 2 λ 2 σ 2d ψ 2 2 L 1 + (nλσ d + 1 + µ) ψ 2 2 L 2 ψ 1 2 L 2 , (33) Var k ϕ (Y k ) nλ(µ + µ 2 ) p ∞ ψ 1 2 L 2 .
6.3. Proof of upper and lower bounds. Based on the previous bounds, we can prove our main results.

Proof of Theorem 6. The theorem is an immediate consequence of Proposition 5.

Proof of Proposition 5. From ( 7) and Propositions 18 and 19, we conclude

E 1 nλh 1 f h 1 ,h 2 (z 0 ) = σh 2 U σ (f * p) + h 2 nλ V σ (f ) = f (z 0 ) + O h s 1 + O h 2 nh 1 , for h 1 h 2 8 , σh 2 8, σ 1, (34) E 1 h 2 f h 1 ,h 2 (z 0 ) = h 1 V σ (f ) + σnλh 1 U σ (f * p) = f (z 0 ) + O h s 2 + σnλ, for h 2 min(1, 1 σ -h 1 ), h 1 ∈ [4, 1 σ ], σ < 1 4 (35)
Since the kernels from ( 11) and ( 14) satisfy

ψ 1 2 L 2 = O(σ -1 h -3 1 ), ψ 2 2 L 1 = O(1), ψ 2 2 L 2 = O(h -1 2 ),
Proposition 20 yields with a constant µ

Var 1 nλh 1 f h 1 ,h 2 (z 0 ) h 2 2 σ 2 nσh 3 1 1 + 1 nσ + 1 h 2 nσ + 1 h 2 (nσ) 2 , Var 1 h 2 f h 1 ,h 2 (z 0 ) 1 nh 2 1 + nσ + h 2 nσ + h 2 (nσ) 2 1 σh 1
with the constants depending on f ∞ , λ and µ. Combining these bounds, we conclude:

(i) If nσ 1 h 1 and h 2 = 8/σ we obtain E f (1) h 1 (z 0 ) -f (z 0 ) 2 = E 1 nλh 1 f h 1 ,8/σ (z 0 ) -f (z 0 ) 2 h 2s 1 + (h 2 σ) 2 (nσh 1 ) 2 + (h 2 σ) 2 nσh 3 1 1 + 1 h 2 nσ h 2s 1 + 1 nσh 3 1 . (ii) We have for h 1 = 1 2σ and h 2 ∈ (0, 1] and σ 1/8 E f (2) h 2 (z 0 ) -f (z 0 ) 2 = E 1 h 2 f h 1 ,h 2 (z 0 ) -f (z 0 ) -σnλ 2 h 2s 2 + 1 nh 2 ∨ σ h 2 ∨ nσ 2 .
Proof of Theorem 7. Without loss of generality let z 0 = 0. Consider the density f 0

(z) = 6( 1 4 -z 2 )1 [-1/2,1/2] (z) ∈ G s (0, L). Let K ∈ C s+1 ∩ C 2 (R) be a function with Supp K ⊆ [-1/2, 1/2] and K (0) > 0. Set for some ε, h > 0 f 1 (z) := f 0 (z) + εh s K (z/h), z ∈ R,
where K denotes the derivative of K. Since the compact support of K implies K (z)dz = 0 and because K is uniformly bounded, the function f 1 is a density supported on [-1/2, 1/2] if h is small enough. Due to

f 1 C s f 0 C s + εh s K (x/h) C s = O( f 0 C s + ε K C s ) = O( f 0 C s + ε K C s+1 ), we also conclude |f 1 | H s (0) L. Therefore, we have constructed two alternatives f 0 , f 1 ∈ G s (0, L) satisfying f 0 (0) -f 1 (0) = h s K (0) h s .
Hence, the lower bounds on the point-wise loss follow from Tsybakov (2009, Thm. 2.2), if the total variation distance of the corresponding observations laws remains bounded for the choices

(36) h =        σ 1/(2s+1) , if nσ (2s+2)/(2s+1) < 1, (σ √ n) 1/s , if nσ (2s+2)/(2s+1) 1 and σ < n -(4s+3)/(6s+6) , (nσ) -1/(2s+3) if σ n -(4s+3)/(6s+6) .
We denote by P 0,n and P 1,n the joint distribution of the point processes M and N where the coniditional intensity measure of N is given by M * f 0,σ and M * f 1,σ , respectively. By conditioning on the number n x = M ([0, 1]) ∼ Poiss(λn) of parents, the number n y = N (R) ∼ Poiss(µn x )|n x of children and the location of the parents traits (X i ) i=1,...,nx taking into account that on the event {M ([0, 1]) = 0} the conditional distributions coincide. Conditional on X j = x j , j = 1, . . . , n x , the offspring (Y i ) are i.i.d. Estimating the total variation distance by the χ 2 -distance, we thus have

i.i.d ∼ U([0, 1])|n x we obtain P 1,n -P 0,n T V = nx 1 (nλ) nx n x ! e -
d(P 1,n , P 0,n |n x , n y ) 2 [0,1] nx P Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x 1,n -P Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x 0,n 2 T V dx [0,1] nx χ 2 P Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x 1,n , P Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x 0,n ∧ 1 dx = [0,1] nx 1 + χ 2 (P Y 1 |X 1 =x 1 ,...,Xn x =xn x 1,n , P Y 1 |X 1 =x 1 ,...,Xn x =xn x 0,n ) ny -1 ∧ 1 dx e [0,1] nx n y χ 2 (P Y 1 |X 1 =x 1 ,...,Xn x =xn x 1,n , P Y 1 |X 1 =x 1 ,...,Xn x =xn x 0,n ) ∧ 1 dx. Under P Y 1 |X 1 =x 1 ,...,Xn x =xn x k,n , k ∈ {0, 1}, Y 1 is distributed according to the density g (k) n,σ (y|x) = 1 n x nx j=1 f k,σ (y -x j ).
Therefore, (P

Y 1 |X 1 =x 1 ,...,Xn x =xn x 1,n , P Y 1 |X 1 =x 1 ,...,Xn x =xn x 0,n = g (0) n,σ >0 (g (1) 
n,σ (y|x) -g

(0) n,σ (y|x)) 2 g (0) n,σ (y|x) dy = ε 2 h 2s σ 2 g (0) n,σ >0 1 n x nx j=1 K y σh - x j σh 2 dy g (0)
n,σ (y|x)

.

In order to estimate the previous integral, we need a lower bound for the denominator g

(0) n,σ on the support Supp nx j=1 K y σh - x j σh ⊆ -σh/2, 1 + σh/2 . Defining the event A := {∀y ∈ [-σh/2, 1 + σh/2] : g (0)
n,σ (y|X) c}, we obtain

d(P 1,λ , P 0,λ |m, n) 2 eE n mχ 2 (P Y 1 |X 1 ,...,Xn 1,1 , P Y 1 |X 1 ,...,Xn 0,1 ) ∧ 1 e c 2 E n mε 2 h 2s σ 2 1 n n j=1 K y σh - X j σh 2 dy + eP n A c .
where X 1 , . . . , X nx i.i.d.

∼ U([0, 1]) under P n and E n denotes the expectation with respect to P n . Applying Lemma 23 from below, we have

eP n A c C log σ -1 nxσ =: r n . Hence, ( 38 
) d P 1,λ , P 0,λ |n x , n y 2 e c 2 ε n y h 2s+1 σ E n 1 n x nx j=1 K y - X j σh 2 dy + r n .
To obtain a sharp upper bound, we will use two different approaches to estimate the previous display. While the first one will use a stochastic integral approximation of 1/(σh) 0 K (y -x)dx, the second approach relies on a numerical approximation.

In the first case we represent (38) via

d P 1,n , P 0,n |n x , n y 2 e c 2 ε 2 n y h 2s+1 σ E n 1 n x nx j=1 K y - X j σh 2 + Var n 1 n x nx j=1 K y - X j σh dy + r n . ( 39 
)
Owing to

E 1 n x nx j=1 K y - X j σh = E K y - X 1 σh = σh 1/(σh) 0 K (y -x)dx,
the first term is bounded by

n y h 2s+1 σ E n 1 n x nx j=1 K y - X j σh 2 dy = n y σh 2s+3 1/(σh) 0 K y -x dx 2 dy = n y σh 2s+3 K y - 1 σh -K(y) 2 dy 2n y σh 2s+3 K 2 L 2 . ( 40 
)
The variance term in (39) can be estimated by

Var n 1 n x nx j=1 K y - X j σh = 1 n x Var n K y - X 1 σh 1 n x E K y - X 1 σh 2 .
Therefore,

n y h 2s+1 σ Var n 1 n x nx j=1 K y- X j σh dy n y n x h 2s+1 σ E n K y- X 1 σh 2 dy = n y n x h 2s+1 σ K 2 L 2 .
Together with ( 39) and ( 40) we conclude for some constant C > 0.

(41)

d 2 P 1,n , P 0,n |n y , n x Cε 2 n y σh 2s+3 + n y n x h 2s+1 σ + r n .
In the second and third regime we need a different bound. Applying a Riemann sum motivated approximation, we decompose

1 n x nx j=1 K y - X j σh = nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx K y - X j σh dx = nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx K y - x σh dx + nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx K y - X j σh -K y - x σh dx =: I 1 (y) + I 2 (y).
Therefore, we obtain an alternative bound for (38):

d P 1,n , P 0,n |n y , n x 2 eε 2 c 2 n y h 2s+1 σ E n I 1 (y) 2 dy + eε 2 c 2 n y h 2s+1 σ E n I 2 (y) 2 dy + r n . ( 42 
)
For the first term, we calculate

E n I 1 (y) 2 = j,j k,k P n X j ∈ k -1 n x , k n x , X j ∈ k -1 n x , k n x =n -2 if j =j and =n -1 if j=j ,k=k × k/nx (k-1)/nx k /nx (k -1)/nx K y - x σh K y - x σh dx dx = k,k n 2 x -n x n 2 x + n x n x k/nx (k-1)/nx k /nx (k -1)/nx K y - x σh K y - x σh dx dx = 2 - 1 n x 1 0 K y - x σh dx 2 2(σh) 2 1/σh 0 K (y -x)dx 2 = 2(σh) 2 K(y) -K y -1/(σh) 2 .
Hence,

n y h 2s+1 σ E n I 1 (y) 2 dy 2n y σh 2s+3 K(y) -K y -1/(σh) 2 dy 4 K 2 L 2 n y σh 2s+3 .
The second term in (42) can be bounded as follows:

E n I 2 (y) 2 = E n nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx K y - X j σh -K y - x σh dx 2 E n nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx [(x∧X j )/(σh),(x∨X j )/(σh)] |K (y -z)|dzdx 2 E n nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/nx (k-1)/nx k/(nxσh) (k-1)/(nxσh) |K (y -z)|dzdx 2 = E n 1 n x nx j=1 nx k=1 1 [(k-1)/nx,k/nx) (X j ) k/(nxσh) (k-1)/(nxσh) |K (y -z)|dz 2 .
With an analogous calculation as for E[I 1 (x) 2 ] we obtain

n y h 2s+1 σ E n I 2 (y) 2 dy 2 n y h 2s+1 n 2 x σ 1/(σh) 0 |K (y -z)|dz 2 dy 2 n y h 2s+1 n 2 x σ K L 1 1/(σh) 0 |K (y -z)| dydz 2 K 2 L 1 n y h 2s n 2
x σ 2 . Therefore, we conclude from (42) for some constant C > 0

d P 1,n , P 0,n |n y , n x 2 C ε n y σh 2s+3 + n y h 2s n 2 x σ 2 + r n .
In combination with (41) we obtain for some constant C > 0

d P 1,n , P 0,n |n y , n x 2 C min n y σh 2s+3 + n y n x h 2s+1 σ , n y σh 2s+3 + n y h 2s n 2 x σ 2 + C log σ -1 n x σ 1/2 .
If we plug this estimate into (37) and we deduce :

P 1,n -P 0,n 2 T V C ε min E[N (R)]σh 2s+3 + E N (R) M ([0, 1]) h 2s+1 σ , E[N (R)]σh 2s+3 + E N (R) M ([0, 1]) 2 1 {M ([0,1])>0} h 2s σ 2 + C log σ -1 σ E 1 M ([0, 1]) 1 {M ([0,1])>0} 1/2 . Using that E[N (R)|M ([0, 1])] = µM ([0, 1]
), the remaining expectations are given by

E[N (R)] = µλn, E N (R) M ([0, 1]) = µ, E N (R) M ([0, 1]) 2 1 {M ([0,1])>0} = µE 1 {M ([0,1])>0} M ([0, 1]) = µe -λ n 1 λ n n • n! 2µ λ e -λ n 1 λ n+1 (n + 1)! 2µ λn .
Therefore,

P 1,n -P 0,n 2 T V C ε 2 min σnλµh 2s+3 + µh 2s+1 σ , σnλµh 2s+3 + µh 2s λnσ 2 + C log σ -1 λnσ 1/2
where the last term is o(1) by assumption. Based on this estimate, the theorem follows by verifying that this upper bound remains bounded for h from (36).

Lemma 23. For g

(0) n,σ (y|x) = 1 n n j=1 f 0,σ (y -x j ) and f 0 (z) = 6( 1 4 -z 2 )1 [-1/2,1/2] (z) there is some C > 0 such that the event A := ∀y ∈ [-σh/2, 1 + σh/2] : g (0) n,σ (y|X) 1/14 for X 1 , . . . , X n i.i.d. ∼ U([0, 1]) satisfies P(A) 1 -C log σ -1 nσ .
Proof. We first bound the expectation

E[g (0) n,σ (y|X)]) = 1 0 f 0,σ (y -x)dx = 1/σ 0 f 0 y σ -x dx = f 0 * 1 [0,1/σ] y σ
uniformly from below: For any h ∈ (0, 1/2) we have

inf y∈[-σh/2,1+σh/2] f 0 * 1 [0,1/σ] y σ = inf y∈[-σh/2,1+σh/2] 6 1/2 -1/2 1 4 -z 2 1 [0,1/σ] y σ -z dz = 6 1/2 h/2 1 4 -z 2 dz 1 7 .
By continuity of f 0 we deduce

P(A c ) = P inf y∈[-σh/2,1+σh/2]∩Q g (0) n,σ (y|X) < 1 14 P sup y∈[-σh/2,1+σh/2]∩Q 1 nσ n j=1 f 0 (y -X j )/σ -E f 0 (y -X j )/σ > 1 14 14 σ √ n E max y∈[-σh/2,1+σh/2]∩Q 1 √ n n j=1 f 0 (y -X j )/σ -E f 0 (y -X j )/σ .
To bound the previous expectation we will apply an entropy bound: Since f 0 is of bounded variation, the transition class

F = [0, 1] x → f 0 ((y -x)/σ) y ∈ [-σh/2, 1 + σh/2] ∩ Q is of Vapnik-Cervonenkis type satisfying the covering number bound N (F, L 2 (W), ε) (A/ε) 2w
for any probability measure W, any w > 3 and some constant A which does not depend on the dialation parameter σ (Giné and Nickl, 2016, Proposition 3.6.12). Moreover, F admits the envelope

F σ := 3 2 1 [-1,2] (•/σ) since sup z f 0 (z/σ) = 3
2 and Supp f 0 ((y -x)/σ) ⊆ Supp F σ for any y ∈ [-σh/2, 1 + σh/2]. Theorem 3.5.4 and Remark 3.5.5 by [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] thus yield for some C > 0

E max y∈[-σh/2,1+σh/2]∩Q 1 √ n n j=1 f 0 (y -X j )/σ -E f 0 (y -X j )/σ 8 √ 2 F σ L 2 (P X 1 ) 1 0 sup W log 2N (F, L 2 (W), τ F σ L 2 (P X 1 ) )dτ C F σ L 2 (P X 1 ) | log( F σ L 2 (P X 1 ) )| 1/2 . Since F σ 2 L 2 (P X 1 ) = 9 4 1 0 1 [-1,2] (x/σ)dx 27 4 σ, we conclude P(A c ) C log σ -1 nσ .
Proof of Theorem 15. Due to ( 26) and ( 25), we have

E[ f sd h 1 (z 0 )] = K h 1 * f (z 0 )
. Together with the bias-variance decomposition and a standard bias estimate, we obtain

E | f sd h 1 (z 0 ) -f (z 0 )| 2 h 2s 1 + Var f sd h 1 (z 0 ) . A bound for the variance of f sp h 1 (z 0 ) = (nλµ) -1 j ψ 1 (Y j ) is given in Remark 22. Applying Plancherel's identity we have Var f sd h 1 (z 0 ) 1 n ψ 1 2 L 2 = 1 n Fψ 2 2 L 2 σ d n R d e -iu y FK(hu) ϕ p (u/σ) 2 du σ 2d n K 2 L 1 |u| 1/(σh) |ϕ p (u)| -2 du
We conlcude the first inequality in Theorem 15.

In the mildly ill-posed case 2s+2t+d) we thus obtain the asserted rate of convergence. In the severely ill-posed case |ϕ p (u)| e -γ|u| β we obtain

|ϕ p (u)| (1 + |u| 2 ) -t/2 we have {u∈R d :|u| 1/(σh)} |ϕ p (u)| -2 du (σh) -2t-d . Therefore, E | f (d) 1,h (z 0 ) -f (z 0 )| 2 h 2s + σ 2d n(hσ) 2t+d = h 2s + 1 nσ 2t-d h 2t+d . For h = (nσ 2t+d-2 ) 1/(
E | f h (z 0 ) -f (z 0 )| 2 h 2s + σ 2d nhσ e 2γ(hσ) -β
which yields the claimed rate for h = σ -1 ( 1 4γ log n) -1/β . 6.4. Proofs for the scaling estimators.

Proof of Lemma 8. We denote the c.d.f. corresponding to f σ by F σ . Using (26) and integration by parts, we obtain for some random variable D ∼ f

E[ T ] = E[N (R \ [0, 1])] = nλµ 1 0 0 -∞ f σ (y -x)dydx + 1 0 ∞ 1 f σ (y -x)dydx = nλµ 1 0 F σ (-x)dx + 1 - 1 0 F σ (1 -x)dx = nσλµ 1/σ 0 F (-x)dx + 1/σ 0 1 -F (x) dx = nσλµ 1/σ 0 P(D -x) + P(D > x)dx = nσλµ 1/σ 0 P(|D| > x)dx = nσλµE[|D|]
where the last equality exploits that P(|D| > x) = 0 for any x > 1/2 and 1/σ > 1/2. The bound for the variance of T follows from Lemma 21 with

ψ 1 := 1 [-σ/2,0] + 1 [1,1+σ/2] .
Proof of Proposition 9. First we note, that l → X (l) is increasing. Indeed, we have

X (l+1) X (l) ⇐⇒ l+1 j=1 X (j) l + 1 l l j=1 X (j) ⇐⇒ X (l+1) 1 l l j=1 X (j)
which holds true since X (j) are ordered increasingly. Furthermore, Lemma 8 yields

P l κ n E[ T ] 1/2 -1 > 1 2 = P T E[ T ] -1 > 1 2 T E[ T ] + 1 P T E[ T ] -1 > 1 2 2 Var( T ) E[ T ] 4 nσ → 0. Consequently, Λ := {l l 3l} with l := κ n 2 E[ T ] 1/2
satisfies P(Λ) → 1 and l is of order κ n √ σn. For some large C > 0 set

ε := C l n and R := X (l+1) -X (l) ∈ [0, 1].
We calculate

P | σ (1) -σ| > 2ε = P σ (1) -σ > 2ε + P σ -σ (1) > 2ε P σ (1) -σ > 2ε + P σ -σ (1) > 2R + P(R > ε) =: T 1 + T 2 + T 3 .
We will consider all three terms separately. For T 1 we write on the event Λ

σ (1) = -2(min j Y j -X (1) ) -2X (1) + 2X ( l) σ -2X (1) + 2X (3l) .
Since conditional on |X | = n x it holds X (l) ∼ Beta(l, n x + 1 -l), we obtain

T 1 = P σ (1) -σ > 2ε P -2X (1) + 2X (3l) > 2C l n + P(Λ c ) n Cl E X (3l) + o(1) = n Cl E 1 3l 3l i=1 i |X | + 1 + o(1) n Cl E 1 + 3l |X | + 1 + o(1).
Due to |X | ∼ Poiss(λn), T 1 is arbitrarily small for sufficiently large C.

To bound T 2 , we note that R is a random variable depending only on X . Conditional on X , the offspring trait Y 1 has the distribution function

F σ|X (z) := 1 |X | i F σ (z -X i ) where F σ = F (•/σ
) is the c.d.f. corresponding to the scaled dispersal density f σ . Therefore, we write T 2 as

T 2 = P(σ (1) < σ -2R) P min j Y j > R - σ 2 + X (l) + P(Λ c ) = P ∀j : Y j > X (l+1) - σ 2 + o(1) = E P ∀j : Y j > X (l+1) - σ 2 X , |Y| + o(1) = E P Y 1 > X (l+1) - σ 2 X |Y| + o(1) = E 1 -F σ|X X (l+1) - σ 2 |Y| + o(1).
The boundary assumption on F yields

F σ|X X (l+1) - σ 2 = 1 |X | i F σ X (l+1) - σ 2 -X i γ σ|X | i 0 ∨ X (l+1) -X i = γ σ|X | i:X i <X (l+1) X (l+1) -X i = γ σ|X | l i=1 X (l+1) -X (i) = γlR σ|X | .
We conclude for some C 1 > 0

T 2 E 1 - γlR σ|X | |Y| E 1 - γC 1 |X | |Y| + P(lR < C 1 σ) exp(-γC 1/3 1 ) + P(|Y| < C -1/3 1 n) + P(|X | > C 1/3 1 n) + P(lR < C 1 σ)
using (1-κ) ny exp(n y log(1-κ)) exp(-n y κ) for κ = γC 2/3 /n → 0. Since |X | ∼ Poiss(λn) and conditional on |X | we have |Y| ∼ Poiss(µ|X |), we conclude for an arbitrary small δ and sufficiently large C 1 = C 1 (δ, λ, µ, γ) that

T 2 δ + P(lR < C 1 σ).
We bound T 3 + P(lR < C 1 σ) in the same line of arguments, having

T 3 + P(lR < C 1 σ) = P(R > ε) + P(R < C 1 σ l ). ε -1 E[R] + P(R -E[R| |X |] < C 1 σ l -E[R| |X |]) ε -1 E[R] + E Var(R| |X |) (E[R| |X |] -C 1 σ l ) 2 . Note that P(|X | = 0) → 0 as n → ∞. For n x 1 we calculate E[R| |X | = n x ] = E X (l+1) -X (l) | |X | = n x = l + 1 n x + 2 - 1 l l j=1 j n x + 1 = l + 1 n x + 2 - (l + 1) 2(n x + 1) = n x (l + 1) 2(n x + 1)(n x + 2) ∈ l 12n x , l n x .
The properties of order statistics under the uniform distribution yield Cov(X (j) , X (k

) | |X | = n x ) = j(nx-k+1) (nx+1) 2 (nx+2) l+1 n 2
x for 1 j k l + 1. We infer

Var(R| |X | = n x ) = Var(X (l+1) | |X | = n x ) - 2 l l j=1 Cov(X (j) , X (l+1) | |X | = n x ) + 1 l 2 l j 1 ,j 2 =1 Cov(X (j 1 ) , X (j 2 ) | |X | = n x ) l + 1 n 2 x .
Therefore,

T 3 + P(lR < C 1 σ) l εn + l n 2 l 24n -C 1 σ l -2 = 1 C + 1 l 1 24 -C 1 nσ l 2 -2 1 C + O 1 κ n √ σn .
This upper bound is arbitrary small for sufficiently large C and n.

Proof of Proposition 10. We decompose for some c ∈ (0, 1)

P σ (2) σ -1 ε = P σ (2) -σ σε P σ (2) -σ σε + P σ -σ (2) σε P σ (2) σ(1 + ε) + P σ(1 -ε) σ (2) cσ + P σ (2) < cσ =: P 1 + P 2 + P 3 .
In the following we will prove that all three probabilities tend to zero. To this end, note that we can write σ (2) as

σ (2) = min h > 0 : P σ|D 1 | h 2 + ξ(h) 1 -nh 2 + n -1 κ n .
For the first term P 1 , we set h • = σ such that the support of D 1 implies P(σ|D

1 | h • 2 ) = P(|D 1 | 1
2 ) = 1. Therefore,

P 2 P( σ (2) > h • ) P ξ(h • ) + P σ|D 1 | h • 2 < 1 -n(h • ) 2 + n -1 κ n = P -ξ(h • ) > n(h • ) 2 + n -1 κ n P(Ξ c ) → 0
with the good event Ξ from Lemma 24.

To bound the second probability P 2 , we set h * = σ(1 -ε) ∈ (0, 1/2) and estimate on Ξ ∩ {h * σ (2) > cσ}

P σ|D 1 | h * 2 + n(h * ) 2 + n -1 κ n P σ|D 1 | σ (2) 2 + n( σ (2) ) 2 + n -1 )κ n P σ|D 1 | σ (2) 2 + ξ( σ (2) ) 1 -n( σ (2) ) 2 + n -1 )κ n 1 -n(h * ) 2 + n -1 κ n .
Since Supp f ⊆ [-1/2, 1/2] and f is bounded from below, we conclude on Ξ∩{h * σ (2) cσ},

2 n(h * ) 2 + n -1 κ n P σ|D 1 | > h * 2 = P(|D 1 | > 1 -ε 2 ) ε min |x| 1/2 f (x).
Hence, for ε = 3(min

|x| 1/2 f (x)) -1 √ nσ 2 + n -1 κ n > 2(min |x| 1/2 f (x)) -1 n(h * ) 2 + n -1 κ n , we have P 2 P(Ξ c ) → 0.
It remains to prove P 3 → 0. Since ψ † is a triangle kernel, the function h → ψ † (x/h) is non decreasing, and so is h → 1 µλn i,j ψ † (Y j -X i )/h . Therefore, on the event {h σ (2) > h} for any 0 h < h < σ that

1 µλn i,j ψ † (Y j -X i )/h 1 µλn i,j ψ † (Y j -X i )/ σ (2) nλ σ (2) + 1 -n( σ (2) ) 2 + n -1 κ n nλh + 1 -nσ 2 + n -1 κ n .
Therefore, assuming κ n is such that √ nσ 2 + n -1 κ n = o(1), a choice which is always possible and under the condition and nλ(h -h) < P(|D 1 | h 2σ ), Markov's inequality yields

P h σ (2) > h P 1 µλn i,j ψ † (Y j -X i )/h nλh + 1 -o(1) = P ξ(h) nλ(h -h) + 1 -P σ|D 1 | h 2 -o(1) P ξ(h) P |D 1 | > h 2σ -nλ(h -h) -o(1)
Var ξ(h))

P(|D 1 | > h/(2σ)) -nλ(h -h) -E[ξ(h)] -o(1) 2 = nh 2 + n -1 P(|D 1 | > h/(2σ)) -nλ(h -h) + o(1) 2 , ( 43 
)
where we used (21) for the last estimate. In the case nσ c 1 := P(|D 1 | > 1/4)/λ, we can choose h = 0, h = σ/2 and conclude

P σ (2) σ 2 nσ 2 + n -1 P(|D 1 | > 1/4) -nσλ/2 + o(1) 2 → 0.
If nσ > c 1 , we first note that ( 43) with h = 0, h = 1/(2n) yields

P σ (2) 1 2n n -1 P(|D 1 | > 1/(4nσ)) -σλ/2 + o(1) 2 n -1 P(|D 1 | > 1/(4c 1 )) + o(1) 2 → 0.
To improve this bound in the case σ > 1 n , we choose

h i := 1 2n + c 1 2 i n ∈ [ 1 2n , 1 2n + σ 2 ] for 0 i I := n c 1 σ -1 n
= O(σn) and estimate using (43)

P σ (2) σ 2 P( σ (2) 1 2n ) + I i=1 P h i-1 < σ (2) h i I i=1 nh 2 i + n -1 P(|D 1 | > h i /(2σ)) -nλ(h -h) + o(1) 2 + o(1) I i=1 nh 2 i + n -1 P(|D 1 | > 1/(4σn) + 1 4 ) -c 1 λ/2 + o(1) 2 + o(1) I i=1 nh 2 i + n -1 P(|D 1 | > 1 4 )/2 + o(1) 2 + o(1) I n + 1 n I i=1 i 2 + o(1) I n + I 3 n + o(1) σ + n 2 σ 3 .
Lemma 24. Let c ∈ (0, 1) and √ nσ = O(1). There is for all ε > 0 some κ > 0 such that

P(Ξ c ) ε for Ξ := sup h∈[cσ,σ] |ξ(h)| √ nh 2 + n -1 κ . (44) Proof. Step 1: We first bound E[ξ(h)]. For ψ † = 1 [-1 2 , 1 2 ] * 1 [-1 2 , 1 2 ] and D ∼ f , we have Y ∼ f σ * p E 1 µλn i,j ψ † ((Y j -X i )/h) = ψ † (z/h)f σ (z)dz + nλ 1 0 ψ † ( y + x h )(f σ * p)(y)dydx = E[ψ † (σD/h)] + nλh 1 0 E[ψ † h (Y + x)]dx = E[ψ † (σD/h)] + nλh -nλh R\[0,1] E[ψ † h (Y + x)]dx, using R E[ψ † h (Y + x)]dx = ψ † h (x)dx = 1. Since f σ * p ∞ 1 we have R\[0,1] E[ψ † h (Y + x)]dx = E (-∞,Y -1]∪[Y,∞) ψ † h (x)dx h -1 ψ † ∞ E 1 {-h<Y -1} h ∧ (Y -1) + h + 1 {Y <h} h -(-h ∨ Y ) 2 ψ † ∞ P({Y > 1 -h} ∪ {Y < h}) 2 ψ † ∞ (2h + σ).
With the notation

K = 1 [-1 2 , 1 2 ] we have ψ † (z/h) = 1 [-h/2,h/2] * K h (z)
and since f has a bounded density, we obtain

E[ψ † (σD/h)] = P σ|D 1 | h 2 + (F * K h -F ) h 2σ -(F * K h -F ) - h 2σ = P σ|D 1 | h 2 + O(h).
Therefore,

E[ξ(h)] = E 1 µλn i,j 1 * 2 [-h/2,h/2] (Y j -X i ) -P σ|D 1 | h 2 -nλh = O(nh(h + σ) + h).
In particular, since σ ≤ nσ 2 + n -1 always, we have for all h ∈ (0, σ)

|E[ξ(h)]| √ nh 2 + n -1 nh(σ + h) √ nh + √ nh 3 √ nσ
which is uniformly bounded.

Step 2: It remains to prove tightness of

sup h∈[cσ,σ] |ξ(h) -E[ξ(h)]| √ nh 2 + n -1 .
To this end, we apply the Kolmogorov-Chentsov criterion to the process

V t := ξ(h t ) -E[ξ(h t )] nh 2 t + n -1 , h t := tσ, t ∈ (c, 1].
Due to (21), we have V c = O P (1). For 0 < s < t 1 we decompose increments into

V t -V s = 1 nλµ i,j ∆ s,t (Y j -X i ) -E[∆ s,t (Y j -X i )] ,
∆ s,t (z) := 1

nh 2 t + n -1 ψ † (z/h t ) - 1 nh 2 s + n -1 ψ † (z/h s ).
Proposition 20 with ψ 2 = ∆ s,t (σ•) and

ψ 1 = 1 [-2,2] yields Var 1 nλµ i,j ∆ s,t (Y j -X i ) 1 n (nσ + n 2 σ 2 )σ -2 ∆ s,t 2 L 1 + (nσ + 1)σ -1 ∆ s,t 2 L 2 = (σ -1 + n) ∆ s,t 2 L 1 + (1 + (nσ) -1 ) ∆ s,t 2 L 2 . ( 45 
)
We can bound the above L 1 -norm by

∆ s,t 2 L 1 2 1 nh 2 t + n -1 - 1 nh 2 s + n -1 2 |ψ † (z/h t )|dz 2 + 2 nh 2 s + n -1 |ψ † (z/h t ) -ψ(z/h s )|dz 2 = 2T 2 1 + 2T 2 2 . Using 1 √ a -1 √ b = b-a √ ab( √ a+ √ b) b-a √ ab , a + b 2 √ ab and s t, we estimate (σ -1 + n)T 2 1 (σ -1 + n) n 2 h 2 t (h 2 t -h 2 s ) 2 (nh 2 t + n -1 ) 2 (nh 2 s + n -1 ) |ψ † (z)|dz 2 (σ -1 + n) n 2 σ 6 (t 2 -s 2 ) 2 (nσ 2 t 2 + n -1 ) 2 (nσ 2 s 2 + n -1 ) n 2 σ 5 (t -s) 2 (t + s) 2 n 2 σ 5 t 3 s 2 + n 3 σ 6 (t -s) 2 (t + s) 2 n 3 σ 6 t 4 s 2 c -4 (t -s) 2
For T 2 the mean value theorem yields

(σ -1 + n)T 2 2 σ -1 + n nh 2 s + n -1 sup r∈[s,t] z h t - z h s (ψ † ) z h r dz 2 = σ -1 + n nh 2 s + n -1 sup r∈[s,t] h 2 r h r h s - h r h t 2 |z| (ψ † ) z dz 2 σ + nσ 2 nσ 2 s 2 + n -1 sup r∈[s,t] r 2 r s - r t 2 t 4 s 2 t -s ts 2 c -4 (t -s) 2 .
Similarly we proceed with the L 2 -norm in (45):

∆ s,t 2 L 2 2 1 nh 2 t + n -1 - 1 nh 2 s + n -1 2 |ψ † (z/h t )| 2 dz + 2 nh 2 s + n -1 |ψ † (z/h t ) -ψ † (z/h s )| 2 dz =: 2S 2 1 + 2S 2 2 . with (1 + (nσ) -1 )S 2 1 1 + 1 nσ h t 1 nh 2 t + n -1 - 1 nh 2 s + n -1 2 1 + 1 nσ n 2 h t (h 2 t -h 2 s ) 2 (nh 2 t + n -1 ) 2 (nh 2 s + n -1 ) 1 + 1 nσ n 2 σ 4 (t + s) 2 (t -s) 2 (nσ 2 t 2 + n -1 )(nσ 2 s 2 + n -1 ) n 2 σ 4 (t + s) 2 n 2 σ 4 t 2 s 2 (t -s) 2 + nσ 3 (t + s) 2 nσ 3 t 2 s 2 (t -s) 2 c -2 (t -s) 2 and (1 + (nσ) -1 )S 2 2 1 + (nσ) -1 nh 2 s + n -1 sup r∈[s,t] z h t - z h s 2 (ψ † ) z h r 2 dz 1 + (nσ) -1 nh 2 s + n -1 sup r∈[s,t] h r h r h s - h r h t 2 σ + n -1 nσ 2 s 2 + n -1 t 3 t 2 s 2 (t -s) 2 c -3 (t -s) 2 . These calculations verify E (V t -V s ) 2 = Var 1 nλµ i,j ∆ s,t (Y j -X i ) (t -s) 2 .
Hence, (V t ) has an α-Hölder regular modification for any α ∈ (0, 1/2) implying tightness.

Proofs for the plug-in estimators.

Proof of Theorem 12. (i) We analyse the deconvolution estimator in four steps.

Step 1: Prefactor. Defining

f (1) σ (x 0 ) := 1 σ h 2 1 λµn j K z 0 h 1 - Y j σ h 1 1 nλ i K σz 0 9 - Y j -X i 9 , we have f (1) σ (z 0 ) -f (z 0 ) = λµn |Y| λn |X | f σ (z 0 ) -f (z 0 ) + λµn |Y| λn |X | -1 f (z 0 ). For τ n → ∞ the event Λ := |Y| λµn -1 τ n √ n ∪ |X | λn -1 τ n √ n satisfies P(Λ c ) P |Y| λµn -1 > τ n √ n + P |X | λn -1 > τ n √ n n τ 2 n (λµn) 2 E Var |Y| |X | + n τ 2 n (λn) 2 Var(|X |) = 1 τ 2 n (λµ) 2 n E[µ|X |] + 1 τ 2 n λ = 1 τ 2 n λµ + 1 τ 2 n λ → 0, due to |Y| |X | ∼ Poiss(µ|X |) and |X | ∼ Poiss(λn). On Λ we have for τ n / √ n 1/2 that λµn |Y| λn |X | -1 = λµn |Y| -1 λn |X | + λn |X | -1 = 1 -|Y|/(λµn) 1 -(1 -|Y|/λµn) λn |X | + 1 -|X |/(λn) 1 -(1 -|X |/λn) 6τ n / √ n.
Since r n is always slower than n -1/2 , we conclude

r -1 n f (1) σ (z 0 ) -f (z 0 ) = O P r -1 n f (1) σ (z 0 ) -f (z 0 ) + o P (1).
Step 2: From σ to σ. Consider the event

Σ := σ ∈ [σ(1 -ε n ), σ(1 + ε n )] , ε n = log n √ σn satisfying P(Σ c ) = P(| σ -σ| > ε n σ) = P | σ σ -1| > log n √ σn → 0 
due to Theorem 11. Writing h 1 = (nσ) -1/(2s+3) for any σ > 0, we have on Σ

r -1 n f (1) σ (z 0 ) -f (z 0 ) sup σ:|σ-σ| εnσ r -1 n f (1) σ (z 0 ) -E[f (1) σ (z 0 )] -f (z 0 ) -E[f (1) σ (z 0 )] sup σ:|σ-σ| εnσ σnh 3 1 r n σnh 3 1 f (1) σ (z 0 ) -E[f (1) σ (z 0 )] + sup σ:|σ-σ| εnσ h -s 1 r n h -s 1 f (z 0 ) -E[f (1) σ (z 0 )] sup σ:|σ-σ| εnσ σnh 3 1 f (1) σ (z 0 ) -E[f (1) σ (z 0 )] + sup σ:|σ-σ| εnσ h -s 1 f (z 0 ) -E[f (1) σ (z 0 )] (46) 
using in the last step that the minimax rate satisfies r n = (h 1 ) s = nσ(h 1 ) 3 -1/2 and thus 1 2s+3) .

r 2 n σnh 3 1 = σn(h 1 ) 3 σnh 3 1 = σ σ 2s/(2s+3) (1 -ε n ) -2s/(2s+3) , 1 r n h -s 1 = h 1 h 1 s = σ σ s/(2s+3) (1 + ε n ) s/(
Subsequently, we will bound both terms in (46) separately. To this end, we proceed similarly to the proof of Proposition 5(i). To incorporate σ we set (47)

ψ 1 := 1 σh 2 1 K z 0 h 1 - • σh 1 and ψ 2 := 1 h 2 K z 0 h 2 - • h 2 .
where h 2 := 9/σ.

Step 3: Bias. The analog to decomposition (7) leads to

U σ (f * p) = R ψ 1 (y)(ψ 2 * 1 [0,1/σ] )(y/σ)(f σ * p)(y)dy, V σ (f ) = R (ψ 1 * 1 [-1,0] )(σz)ψ 2 (z)f (z)dz
where σ is the true data-generating parameter. Along the lines of the proof of Propositions 18(i) and 19(ii) we obtain

E[U σ (f * p)] = 1 σh 2 f σ/σ (z 0 ) + O h s 1 σh 2 and E[V σ (f )] h -1 1 .
Note that

f σ/σ (z 0 ) -f (z 0 ) = σ σ f (σz 0 /σ) -f (z 0 ) + σ σ -1 f (z 0 ) log(nσ) nσ (1∧s)/2
. Therefore, we obtain the following modification of ( 34):

E f (1) σ (z 0 ) = σh 2 U σ (f * p) + h 2 nλ V σ (f ) = f (z 0 ) + O h s 1 + log(nσ) nσ (1∧s)/2 + h 2 nh 1 . We conclude sup σ:|σ-σ| εnσ h -s 1 f (z 0 ) -E[f (1) σ (z 0 )] 1 + log(σn) σn (1∧s)/2 r -1 n + r -1 n nσh 1 1.
Step 4: Stochastic error term. Define

σ t := σ(1 -ε n + 2ε n t), h t := (nσ t ) -1/(2s+3) , t ∈ [0, 1],
as well as

V t := σ t nh 3 t f (1) σt (z 0 ) -E[f (1) σt (z 0 )]
We thus have to prove tightness of the process (

V t ) t∈[0,1] that is sup t∈[0,1] |V t | = O P (1).
As in the proof of Proposition 10, we apply the Kolmogorov-Chentsov criterion. Writing

V t -V s = 1 (λµ √ n)(λn) i,j ∆ (1) s,t (X i , Y j ) -E[∆ (1) s,t (X i , Y j )] + 1 (λµ √ n)(λn) i,j ∆ (2) s,t (X i , Y j ) -E[∆ (2) s,t (X i , Y j )] with ∆ (1) s,t (x, y) = 1 √ σ t h t K z 0 h t - y σ t h t - 1 √ σ s h s K z 0 h s - y σ s h s =:∆ (1,1) s,t (y) K σ t z 0 9 - y -x 9 =:∆ (1,2) t ((y-x)/σ) , ∆ (2) s,t (x, y) = 1 √ σ s h s K z 0 h s - y σ s h s =:∆ (2,1) s (y) K σ t z 0 9 - y -x 9 -K σ s z 0 9 - y -x 9 =:∆ (2,2) s,t ((y-x)/σ) . Proposition 20 yields E[(V t -V s ) 2 ] ( σ n + σ 2 ) ∆ (1,2) t 2 L 1 + ( σ n + 1 n 2 ) ∆ (1,2) t 2 L 2 ∆ (1,1) s,t 2 L 2 + ( σ n + σ 2 ) ∆ (2,2) s,t 2 L 1 + ( σ n + 1 n 2 ) ∆ (2,2) s,t 2 L 2 ∆ (2,1) s 2 L 2 (48) 1 nσ + 1 + 1 n + 1 n 2 σ ∆ (1,1) s,t 2 L 2 + ( σ n + σ 2 ) ∆ (2,2) s,t 2 L 1 + ( σ n + 1 n 2 ) ∆ (2,2) s,t 2 L 2
We have to bound the norms in the previous line. We have

∆ (1,1) s,t 2 L 2 3 1 √ σ t h t - 1 √ σ s h s 2 K z 0 h t - y σ t h t 2 dy + 3 σ s h s K z 0 h t - y σ t h t -K z 0 h s - y σ t h s 2 dy + 3 σ s h s K z 0 h s - y σ t h s -K z 0 h s - y σ s h s 2 dy =: 3T 1 + 3T 2 + 3T 3 . Using K ∈ L 2 , we have T 1 1 - √ σ t h t √ σ s h s 2 = 1 - σ t σ s (s+1)/(2s+3) 2 σ s -σ t σ s 2 (t -s) 2 .
Moreover, for some intermediate point r ∈ [s, t] we have

T 2 = 1 h s K y h t -K y h s 2 dy = 1 h s y h t - y h s 2 K y h r 2 dy sup r∈[s,t] h r h s h r h t - h r h s 2 y 2 K (y) 2 dy (t -s) 2 ,
and

T 3 = 1 σ s K z 0 h s - y σ t -K z 0 h s - y σ s 2 dy = 1 σ s y σ t - y σ s 2 K z 0 h s - y σ r 2 dy sup r∈[s,t] σ r σ s σ r σ t - σ r σ s 2 y 2 K ( z 0 h s -y) 2 dy (σ t -σ s ) 2 σ 2 s h 2 s ε 2 n (t -s) 2 h 2 s (t -s) 2 because ε 2 n h -2 s → 0. For ∆ (2,2) s,t we have similarly ∆ (2,2) s,t L 1 = K σ t z 0 9 - σz 9 -K σ s z 0 9 - σz 9 dz = 1 81 σ t z 0 -σ s z 0 K σ r z 0 9 - σz 9 dz |σ t -σ s | σ |t -s|, and ∆ (2,2) s,t 2 L 2 = K σ t z 0 9 - σz 9 -K σ s z 0 9 - σz 9 2 dz = 1 81 σ t z 0 -σ s z 0 2 K σ r z 0 9 - σz 9 2 dz. (σ t -σ s ) 2 σ σ(t -s) 2 It follows that E V t -V s 2 (t -s) 2
and (V t ) has an α-Hölder regular modification for any α ∈ (0, 1/2) implying tightness. We have shown (i).

(ii) We verify the convergence rate for the direct estimator similiarly to (i).

Step 1: Reduction. We define

f (2) σ (z 0 ) = 1 h 2 λµn i,j 2K 2( σz 0 -Y j ) K z 0 h 2 - Y j -X i σ h 2 -σ|X |.
Exactly as in Step 1 of the proof of (i), we see that

r -1 n f (2) σ (z 0 ) -f (z 0 ) = O P r -1 n f (2) σ (z 0 ) -f (z 0 ) + o P (1). For σ = o(n -2/3 ) we have P(Σ c ) → 0 for Σ := σ ∈ [σ(1 -ε n ), σ(1 + ε n )] with ε n = κ n nσ 2 + n -1 ∧ 1 √ nσ , κ n = log n due to Theorem 11. Writing h 2 = (n ∧ σ -1 ) -1/(2s+1) for σ ∈ [σ(1 -ε n ), σ(1 + ε n )] we note that r n h -s 2 (n ∧ σ -1 ) -s(2s+1) + √ nσ 2 h -s 2 1 and r n (n ∧ σ -1 ) -1/2 h -1/2 2 + √ nσ 2 -1 1.
Hence, as in Step 2 of the proof of (i) we have on Σ ) σ (z 0 )] (49)

r -1 n f (2) σ (z 0 ) -f (z 0 ) sup σ:|σ-σ| εnσ min(nh 2 , σ -1 h 2 , (nσ 2 ) -1 ) f (2) σ (z 0 ) -E[f (2) σ (z 0 )] + sup σ:|σ-σ| εnσ h -s 2 f (z 0 ) -E[f (1 
Step 2: Bias. We will use the notation ψ 1 and ψ 2 from (47) and the resulting U σ (f * p) and V σ (f ). Note that h 1 = 1/(2σ) in this case. With minor modifications in the proofs of Propositions 18(ii) and 19(i) we obtain

E[U σ (f * p)] = 1 h 1 and E[V σ (f )] = h -1 1 f (z 0 ) + O(h -1 1 h s 2 ).
Therefore, we obtain the following modification of ( 35):

E f (2) σ (z 0 ) = h 1 V σ (f ) + σnλh 1 U σ (f * p) -σE[|X |] = f (z 0 ) + O h s 2 .
We conclude sup

σ:|σ-σ| εnσ h -s 2 f (z 0 ) -E[f (2) 
σ (z 0 )] 1.

Step 3: Stochastic error term. First note that due to the bias correction we have the additional stochastic error term: where we used |X | ∼ Poiss(nλ). To bound the stochastic error due to the terms involving ψ 1 and ψ 2 , we use again the Kolmogorov-Chentsov criterion for the process

V t := t f (1) σt (z 0 ) -E[f (1) σt (z 0 )] + σ t (|X | -nλ)
with t := min(nh t , σ -1 h t , (nσ 2 ) -1 ),

σ t := σ(1 -ε n + 2ε n t), h t := (n ∧ σ -1 t ) -1/(2s+1) , t ∈ [0, 1].
We decompose by distinguishing the three different cases where the minima can be attained. In particular, we have for the last term:

V t -V s = 1 λµ √ n i,j ∆ ( 
σn + 1 min(nh s , hs σ , 1 nσ 2 ) nh 3 s ε 2 n          κ 2 n n 2 h 2 s = κ 2
n n -4s/(2s+1) , σ n -1 , κ 2 n σ 2 n h 2 s κ 2 n n -(s-1)/(s+1) , n -1 < σ < n -2s+1 2s+2 , κ 2 n σ h 3 s = κ 2 n σ (2s-2)/(2s+1) , otherwise, which is uniformly bounded if s > 1.

APPENDIX A: REMAINING PROOFS A.1. Proof of the covariance structure of (M, N ).

Proof of Lemma 16. (i) to (iii): For A 1 , A 2 ⊆ [-1, 1] and B 1 , B 2 ⊆ R with A 1 ∩ A 2 = ∅ and B 1 ∩ B 2 = ∅ we write in view of Proposition 1: Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) :=E e η 1 M (A 1 )+η 2 M (A 2 )+ξ 1 N (B 1 )+ξ 2 N (B 2 ) = exp nλ(e η 1 -1)|A 1 | + nλ(e η 2 -1)|A 2 | + nλ 1 0 e ψ 1 (ξ 1 ,x)+ψ 2 (ξ 2 ,x) -1)dx + nλ 2 i=1 (e η i -1)

A i (e ψ 1 (ξ 1 ,x)+ψ 2 (ξ 2 ,x) -1)dx .

where ψ j (ξ, x) := µ(e ξ -1)

B j
f σ (y -x)dy.

We moreover abbreviate h(x) := (e ψ 1 (ξ 1 ,x)+ψ 2 (ξ 2 ,x) -1), h j (x) := ∂ ξ j h(x) = e ψ 1 (ξ 1 ,x)+ψ 2 (ξ 2 ,x) ∂ ξ j ψ j (ξ j , x).

h (x) := ∂ ξ 1 ∂ ξ 2 h(x) = e ψ 1 (ξ 1 ,x)+ψ 2 (ξ 2 ,x) ∂ ξ 1 ψ 1 (ξ 1 , x)∂ ξ 2 ψ 2 (ξ 2 , x).

Then the first order partial derivatives are given by:

∂ η 1 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) nλe η 1 |A 1 | + A 1 h(x)dx , ∂ ξ 1 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) nλ 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx .
We moreover need the second order derivatives

∂ η 1 ∂ η 2 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = Ψ(η 1 , η 2 , ξ 1 , ξ 2 )n 2 λ 2 e η 1 +η 2 |A 1 | + A 1 h(x)dx |A 2 | + A 2 h(x)dx , ∂ ξ 1 ∂ ξ 2 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = Ψ(η 1 , η 2 , ξ 1 , ξ 2 )n 2 λ 2 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx × 1 0 h 2 (x)dx + 2 i=1
(e η i -1)

A i h 2 (x)dx + Ψ(η 1 , η 2 , ξ 1 , ξ 2 )nλ 1 0 h (x)dx + 2 i=1
(e η i -1)

A i h (x)dx . (50) Therefore, ∂ η 1 ∂ η 2 ∂ ξ 1 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) =n 3 λ 3 e η 1 +η 2 |A 1 | + A 1 h(x)dx |A 2 | + A 2 h(x)dx × 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx + n 2 λ 2 e η 1 +η 2 A 1 h 1 (x)dx |A 2 | + A 2 h(x)dx + n 2 λ 2 e η 1 +η 2 |A 1 | + A 1 h(x)dx A 2 h 1 (x)dx (51)
and

∂ η 1 ∂ ξ 1 ∂ ξ 2 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = n 3 λ 3 e η 1 |A 1 | + A 1 h(x)dx 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx × 1 0 h 2 (x)dx + 2 i=1
(e η i -1)

A i h 2 (x)dx + n 2 λ 2 e η 1 A 1 h 1 (x)dx 1 0 h 2 (x)dx + 2 i=1
(e η i -1)

A i h 2 (x)dx + n 2 λ 2 e η 1 1 0 h 1 (x)dx + 2 i=1
(e η i -1) (e η i -1)

A i h 1 (x)dx
A i h (x)dx + nλe η 1 A 1 h (x)dx. (52)
Evaluating ( 50), ( 51) and ( 52) at η 1 = η 2 = ξ 1 = ξ 2 = 0 yields (i), (ii) and (iii), respectively.

(iv) It remains to calculate

∂ η 1 ∂ η 2 ∂ ξ 1 ∂ ξ 2 Ψ(η 1 , η 2 , ξ 1 , ξ 2 )
which can be deduced straightfroward from the previous formulas:

∂ η 1 ∂ η 2 ∂ ξ 1 ∂ ξ 2 Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) Ψ(η 1 , η 2 , ξ 1 , ξ 2 ) = n 4 λ 4 e η 1 +η 2 |A 1 | + A 1 h(x)dx |A 2 | + A 2 h(x)dx × 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx 1 0 h 2 (x)dx + 2 i=1
(e η i -1)

A i h 2 (x)dx + n 3 λ 3 e η 1 +η 2 |A 1 | + A 1 h(x)dx A 2 h 1 (x)dx 1 0 h 2 (x)dx + 2 i=1
(e η i -1)

A i h 2 (x)dx + n 3 λ 3 e η 1 +η 2 |A 1 | + A 1 h(x)dx 1 0 h 1 (x)dx + 2 i=1
(e η i -1)

A i h 1 (x)dx A 2 h 2 (x)dx + n 3 λ 3 e η 1 +η 2 |A 2 | + A 2 h(x)dx A 1 h 1 (x)dx 1 0 h 2 (x)dx + 2 i=1
(e η i -1) (e η i -1)

A i h 2 (x)dx + n 2 λ 2 e η 1 +η 2 A 1 h 1 (x)dx
A i h 1 (x)dx A 1 h 2 (x)dx + n 2 λ 2 e η 1 +η 2 A 2 h 1 (x)dx A 1 h 2 (x)dx + n 3 λ 3 e η 1 +η 2 |A 1 | + A 1 h(x)dx |A 2 | + A 2 h(x)dx × 1 0 h (x)dx + 2 i=1
(e η i -1)

A i h (x)dx + n 2 λ 2 e η 1 +η 2 |A 1 | + A 1 h(x)dx A 2 h (x)dx + |A 2 | + A 2 h(x)dx A 1 h (x)dx .
Evaluating this partial derivative at 0 yields

E[M (A 1 )M (A 2 )N (B 1 )N (B 2 )] = n 4 λ 4 µ 2 |A 1 ||A 2 |Q σ ([0, 1], B 1 )Q σ ([0, 1], B 2 ) + n 3 λ 3 µ 2 |A 1 |Q σ (A 2 , B 1 )Q σ ([0, 1], B 2 ) + |A 1 |Q σ ([0, 1], B 1 )Q σ (A 2 , B 1 ) + n 3 λ 3 µ 2 |A 2 |Q σ (A 1 , B 1 )Q σ ([0, 1], B 2 ) + |A 2 |Q σ ([0, 1], B 1 )Q σ (A 1 , B 2 ) + n 3 λ 3 µ 2 |A 1 ||A 2 |Q 2 σ ([0, 1]) + n 2 λ 2 µ 2 Q σ (A 1 , B 1 )Q σ (A 2 , B 2 ) + Q σ (A 2 , B 1 )Q σ (A 1 , B 2 ) + n 2 λ 2 µ 2 |A 1 |Q 2 σ (A 2 ) + |A 2 |Q 2 σ (A 1 ) .
Combining this formula with Corollary 2 yields the assertion.

Formal

  construction of the model. Random point clouds are equivalently represented by random finite point measures. The location traits of the parent generation, i.e. the point cloud X ⊆ O = [0, 1] is represented by the realisation of a homogeneous Poisson point process M (dx) = j δ X j (dx) on the unit interval [0, 1] with intensity measure m(dx) = nλdx, where n → ∞ and λ > 0 is fixed. Note that the size |X | is random, with E[|X |] = nλ. Given a realisation of M , the point cloud Y ⊆ R that represent the traits of the offspring is generated by a Cox point process N (dy) = j δ Y j (dy) with (conditional) intensity measure µ M * f σ (y)dy = i µf σ (y -X i )dy,

  Fig 1.A realisation of (M, N ) for different values of σ = σn = n -a , with a = 0, 0.5, 1, 1.5. The match between parents traits (blue points) and their offspring traits (red diamonds) is graphically obvious for small σn = n -1.5 but becomes more difficult if not impossible as σn increases. In the statistical experiment generated by (M, N ), we are only given one horizontal line at a scale σn.

  Fig 5. 20 realisations of f (1) h 1 ( left) and f (2) h 2 ( right) and true density ( dashed) in the point process model with parameters n = 1000, λ = µ = 1 and scaling parameters σ = n -1/20 ≈ 0.71 ( top) and σ = n -19/20 ≈ 0.0014 ( bottom).

  sup σ:|σ-σ| εnσ min(nh 2 , σ -1 h 2 , (nσ 2 ) -1 ) σ|X | -σnλ 1 σn 1/2 2σ |X | -nλ = O P (1),

  Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x 1,n -P Y 1 ,...,Yn y |X 1 =x 1 ,...,Xn x =xn x

	[0,1] nx	P	0,n	T V	dx,

λn ny 0 (µn x ) ny n y ! e -µnx d(P 1,n , P 0,n |n x , n y ) where (37) d(P 1,n , P 0,n |n x , n y ) :=

  With these definitions, the bound (48) remains valid up to a factor n 2 (coming from the missing factor1 n in V t -V s ) and we obtain K 2(σ t z 0 -y) -2K 2(σ s z 0 -y) -σ s ) 2 z 0 K 2(ξ -y) 2 dy σ(t -s) 2 (t -s) 2 .Since h s and h s are of the same order in terms of n and σ both minima in the above difference are obtained at the same argument. Separate upper bounds in all three cases yield (σn + σ 2 n 2 ) ∆

	Next, we have												
							∆ (1,1) s,t	2 L 2 = 4					2	dy
	= 8(σ t Moreover, the term ∆ (2,2) s,t L 1 is bounded above by
		t nh t √	-	√	s nh s		K	z 0 h t	-	σz σ t h t	dz
	+	√	s nh s			K		z 0 h t	-	σz σ t h t		-K	z 0 h s	-	σz σ t h s	dz
	+	√	s nh s			K		z 0 h s	-	σz σ t h s		-K	z 0 h s	-	σz σ s h s	dz
			√	t nh t	-	√	s nh s	h t +	√	s nh s	sup r∈[s,t]	σ 2 t h 2 r σ 2	σ σ t h t	-	σ σ t h s	+	s nh s √	sup r∈[s,t]	σ 2 r h s σ 2	σ σ t h s	-	σ σ s h s
			√	t nh t	-												
												(2,2) s,t	2 L 1			σnh 2 t h -1/2 s	-h -1/2 t	2 1 σ<n -(2s+1)/(2s+2) + h 2 t h -1 t -h -1 s	2
																+		σn h s	1 σ<n -(2s+1)/(2s+2) +	1 s h 2	(1) s,t (X i , Y j )] 1 σ n -(2s+1)/(2s+2) h 2 s + ε 2 n |t -s| 2
	noting that nσh t		+ |t -s| 2 , 1 λµ √ 1 as well as σnε 2 n i,j n hs < n (2-2s)/2s+2 ∆ (2)	(2) s,t (X i , Y j )] 1 for σ < n -(2s+1)/(2s+2) and s	1
	with while εn hs = κ n min n 1/2 σ	2s 2s+1 , n -1/2 σ -2s+3 4s+2	κ n n (3-2s)/(12s+6)	1 for σ	n -(2s+1)/(2s+2)
	∆ and s > 3/2. Similarly, ∆ (1) (2,2) s,t	2 L 2 is less than	√	t nh t	K	z 0 h t	-	y -x σ t h t	,
	√ ≤	=:∆ (1,1) s,t (y) s,t (x, y) = 2K 2(σ s z 0 -y) (2) =:∆ (2,1) s (y) t √ nh t -∆ s √ nh s 2 K z 0 h t -σz 2 dz σ t h t s nh t t nh 2 s K z 0 h t -σz σ t h t -K z 0 h s -σz σ t h s t √ nh t -s √ nh s 2 h t + 2 s nh 2 s sup r∈[s,t] σ 3 t h 3 r σ 3 σ K 2 dz + z 0 h t σ t h t -σ t h s -y -x σ t h t =:∆ s nh 2 s (2,2) -K z 0 =:∆ √ nh s (1,2) t s K ((y-x)/σ) z 0 h s -h s -σz σ t h s -K y -x σ s h s z 0 h s -s,t ((y-x)/σ) σ 2 + s √ nh s sup r∈[s,t] σ 3 r h s σ 3 σ σ t h s σ s h s . σz σ s h s -σ 2	2	dz
	t nh t and thus we conclude √ -s √ nh s 2 h t +	s nh 2 s	σ h t h s |t -s| 2 +	+ |σ t -σ s | 2 σ 2 h s 1 nh t ∆	(1,1) s,t	2 L 2
			σn + 1 ∆	(2,2) s,t	2 L 2	+ (σn + σ 2 n 2 ) ∆ ∆ (1,1) s,t 2 L 2 + (σn + (σn) 2 ) ∆ (2,2) s,t 2 L 1 + (σn + 1) ∆ (2,2) s,t (2,2) s,t 2 L 1 + (σn + 1) ∆ 2 L 2 h t h -1/2 s -h -1/2 t 2 + h t σn h -1	(2,2) s,t	2 L 2 .

1) s,t (X i , Y j ) -E[∆ s,t (X i , Y j ) -E[∆ s,t (x, y) = 2K 2(σ t z 0 -y) -2K 2(σ s z 0 -y) E[(V t -V s ) 2 ] t σ + nσ 2 + s √ nh s h t + s √ nh s h s |t -s| + |σ t -σ s | σ . t -h -1 s 2 1 σ n -(2s+1)/(2s+2) + σn + 1 min(nh s , σ -1 h s , (nσ 2 ) -1 ) nh 2 s h s + ε 2 n h s |t -s| 2 |t -s| 2

 

We omit a slight ambiguity in our definition: the neighbourhood Uz 0 in the definition of |f | H s (z 0 ) is implicitly taken independently of f .

L 2 .
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