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We consider a ferromagnetic nanowire, with an energy functional E with easy-axis in the direction e 1 , and which takes into account the Dzyaloshinskii-Moriya interaction. We consider configurations of the magnetization which are perturbations of two well separated domain wall, and study their evolution under the Landau-Lifshitz-Gilbert flow associated to E.

Our main result is that, if the two walls have opposite speed, these configurations are asymptotically stable, up to gauges intrinsic to the invariances of the energy E. Our analysis builds on the framework developed in [4], taking advantage that it is amenable to space localisation.

INTRODUCTION

A model for a ferromagnetic nanowire

We model a ferromagnetic nanowire by a straight line Re 1 ⊂ R 3 (of infinite length) where

e 1 =   1 0 0   , e 2 =   0 1 0   , e 3 =   0 0 1  
is the canonical basis of R 3 . The magnetization m = (m 1 , m 2 , m 3 ) : R → S 2 of this nanowire takes its values into the unit sphere S 2 ⊂ R 3 , and we associate to it the energy functional

E γ (m) = 1 2 R |∂ x m| 2 + 2γ∂ x m • (e 1 ∧ m) + (1 -m 2 1 ) dx, (1.1) 
where x is the variable in direction e 1 of the nanowire and γ ∈ R is a given constant with |γ| < 1; it will be convenient to denote

Γ := 1 -γ 2 .
Here, • and ∧ are the scalar and cross product in R 3 . The term with γ accounts for the Dzyaloshinskii-Moriya interaction. We refer to [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] where this model was derived from the full 3D system by Γ-convergence in a special regime.

We are interested in the evolution of the magnetization under the Landau-Lifshitz-Gilbert flow associated to E γ , that is the equation:

∂ t m = m ∧ H(m) -αm ∧ (m ∧ H(m)), (LLG) 
where now m : I × R → S 2 is the time dependent magnetization (I is interval of time of R), α > 0 is the damping coefficient, and the magnetic field H is given by H(m) = -δE γ (m) + h(t)e 1 .

δE γ (m) is the variation of the energy, which writes

δE γ (m) = -∂ 2 xx m -2γe 1 ∧ ∂ x m + m 2 e 2 + m 3 e 3 .
(recall that m 2 1 + m 2 2 + m 2 3 = 1). Finally, the function h : I → R is the (given) intensity of an applied external field, which we stress that it depends solely on the time variable t, and is oriented on the axis e 1 .

The (LLG) flow is equivariant under the following set of transformations:

• translations in space τ y m(x) = m(x -y) for y ∈ R, and

• rotations R φ =   1 
0 0 0 cos φ -sin φ 0 sin φ cos φ   about the axis e 1 and angle φ ∈ R.

There is another symmetry: if m solves (LLG) with parameter γ, then ♯ m(t, x) := m(t, -x) solves (LLG) with parameter -γ. We nonetheless leave this last symmetry aside (it does not play any role in modulation theory for example), and we are lead to define the group

G := R × R/2πZ
which naturally acts on function w : R → R 3 as follows: if g = (y, φ) ∈ G, g.w := R φ τ y w. The action of G preserves S 2 valued functions, and so acts on magnetizations; it also extends naturally to functions of space and time, for which it preserves solutions to (LLG). Also, we endow G with the natural quotient distance over R 2 : ∀g = (y, φ) ∈ G, |g| := |y| + inf{|φ + 2kπ|, k ∈ Z}.

Our main object of interest here are (precessing) domain walls. These are explicit solutions studied in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] (to which we refer for further details): given σ = (σ 1 , σ 2 ) ∈ {±1} 2 They connect -σ 1 e 1 at -∞ to σ 1 e 1 at +∞. The case γ = 0 (i.e., absence of DMI) corresponds to (in-plane) static domain walls where a rotation in θ * of 180 • takes place along the nanowire axis e 1 ; these transitions are called Bloch walls (see e.g. [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Kühn | Reversal modes in magnetic nanowires[END_REF]).

For future reference, we note that θ * : R → (0, π) solves the first order ODE 1. if T + < +∞, then m(t) H 1 → +∞ as t ↑ T + ;

2. for T < T + (with T + finite or infinite), the map m0 ∈ H s → m ∈ C([0, T ], H s ) is continuous in a small H s neighbourhood of m 0 (for every initial data m0 in that neighborhood, the maximal time of the corresponding solution m satisfies T + ( m0 ) > T ); (1.11)

Statement of the main result

In [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF], the flow of (LLG) around the domains wall (1.5) was studied: for small H 1 perturbation, and under a small applied field h (in L ∞ t ((0, +∞)), domains walls were proved to be (exponentially) asymptotically stable, up to a gauge. This work thus extended previous results in two directions: in the absence of Dzyaloshinskii-Moriya interaction (case γ = 0), precessing domain walls were reported in [START_REF] Goussev | Domain-wall motion in ferromagnetic nanowires driven by arbitrary timedependent fields: An exact result[END_REF], and their linear asymptotic stability was proved in [START_REF] Gou | Stability of precessing domain walls in ferromagnetic nanowires[END_REF] (it however completely disregards the gauge involved); nonlinear stability was also checked numerically in [START_REF] Gou | Stability of precessing domain walls in ferromagnetic nanowires[END_REF]. We can also mention earlier studies of stability for Bloch or Walker wall (which are travelling fronts, not precessing) under some variant of (LLG) (the DMI interaction is not taken into account in the energy E γ ): we refer for example to [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Jizzini | Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field[END_REF][START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF][START_REF] Carbou | Metastability of wall configurations in ferromagnetic nanowires[END_REF][START_REF] Takasao | Stability of travelling wave solutions for the Landau-Lifshitz equation[END_REF].

In the present paper, we are further interested to study the dynamics of solutions to (LLG) in the presence of several domain walls. This question is not only academically relevant for the long time dynamics, but also motivated by application of this model to data storage: domain walls encode information, and their stability property is important for the persistence of this storage over time.

The simplest case to tackle is the interaction of domain walls decoupling with time: in view of y * , there is essentially one such configuration, where the speeds are opposite (the transition of these domains wall are centered at y * (t) and -y * (t) respectively, up to a fixed translation). This corresponds to studying the evolution of a perturbation of

g (1,σ2) * (t).w + * (x) + g (-1,σ ′ 2 ) * Theorem 1.2.
There exist L 0 , δ 0 > 0 and C, λ > 0 such that the following holds. Assume that h satisfies

h L ∞ ((0,∞)) < δ 0 , (1.13)
and that ∞ 0 q(2y * (t)) dt < +∞ where, for r ∈ R, q(r) := (1 + |r|)e -Γr .

(1.14)

Denote for t ≥ 0, κ(t) = e -Γy * (t) + t 0 e -2λ(t-s) q(2y * (s))ds

1/2 . (1.15) Let m 0 ∈ H 1 such that that there exist L ≥ L 0 and ζ + , ζ -∈ G >L with δ := m 0 -ζ + .w + * + ζ -.w - * + e 1 H 1 < δ 0 . (1.16)
Then the solution m to (LLG) is global for forward times and there exist 2 gauges g + , g

-∈ W 1,∞ (R + , G), such that, ∀t ≥ 0, m(t) -g + .w + * + g -.w - * + e 1 H 1 ≤ C(δ + q(2L))e -λt + C q(2L))κ(t).
(1.17)

Moreover, there exist two gauges g ± ∞ ∈ G such that ∀t ≥ 0, ι∈{±} |g ι (t) -(g ι * (t) + g ι ∞ )| ≤ C(δ + q(2L))e -λt + C q(2L) +∞ t κ(s)ds. (1.18)
As it will be seen from Lemma 1.3, κ → 0 as t → +∞ and is integrable in time, so that the estimates (1.17)-(1.18) yield convergence results. Notice that κ depends on h alone, whereas λ is essentially a coercivity constant, which depends on γ (it is related to the closeness of |γ| to 1). The decay functions e -λt and κ(t) are therefore unrelated, even though in most cases (for example, as soon as h → 0), κ(t) ≫ e -λt . Theorem 1.2 therefore quantifies how and under which condition the structure made of two decoupled domain walls persists over time. Assumption (1.13) ensure that the external magnetic field is not too strong: this is required even for configuration with one domain wall not to be destroyed. Our second assumption (1.14) states that the free evolution of the center of the domain wall should separate them indefinitely: in order to have asymptotic stability (that is convergence of the gauge g ± ), a requirement of the type y * → +∞ is in order. It turns out that, for our analysis to work, we need a somewhat stronger integrability condition, which however remains rather mild (see Lemma 1.3).

This result is a stability statement for well prepared data, which bear some resemblance with the stability of the sum of decoupled solitons for non linear dispersive model: we refer for example to [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] for the generalised Korteweg-de Vries equation, or to [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] for the nonlinear Schrödinger equation. An important difference though, is that in these settings, each soliton bears its own dynamic, which is leading order (solitons are assumed to have distinct speeds), whereas in the present context, the dynamics is determined by the external magnetic field represented by h.

Our analysis relies on the framework developed in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF], which combines modulation techniques to split the evolution between some geometric parameters (the gauge) and a remainder term; energy estimates to control the remainder; and dynamical arguments (consequence of energy dissipation) for the gauge.

An important point of this paper, and a novelty with respect to [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF], is that this framework is amenable to space localization, and is therefore suitable to study the interactions of domain walls: we believe that is much less so for earlier methods and results (referred to at the beginning of this paragraph), which relied on spectral properties of the linearized (LLG) flow around domain walls. We localize the coercivity properties of the energy around each domain walls, as well as the energy dissipation equality. For these two results to make sense, one must first modulate around a sum of two domain walls. These three results are stated at the beginning of section 2, and proven in sections 4, 5 and 6 respectively. Section 3 gives some preliminary results, in particular about a frame adapted to the domain wall and the control of the nonlinearity, and first introduced in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF].

The proof of stability is done in section 2, and consists in a bootstrap argument: on a time interval on which one can modulate the magnetization around two domain walls, and one has sufficient control on the gauges involved and the remainder terms, we combine the localized energy dissipation and coercivity to improve these controls. We give a special attention to the decay of the remainder term in order to make the assumption on the external field h as mild as possible: this is a delicate part of the analysis. Before going to the proof of the main results, we conclude this section by giving some consequences of the assumptions (1.17)-(1.18) for h, on the behavior of y * .

On the assumptions on the external field h

We recall that the distance between the two domains walls is essentially 2y * (t), and it will turn out that q(2y * (t)) measures correctly the interaction between them.

The assumptions on h are relatively mild: apart from uniform smallness (required to ensure stability, even for one domain wall), some oscillation and decay are allowed as long as the external field still pushes the domain walls away, so that their interaction enjoys some integrability in time. This is quantified in the simple computation below. Lemma 1.3. 1) Assume that h satisfies (1.13) and (1.14). Then if t, τ ≥ 0 are such that |t -τ | ≤ 1, |y * (τ ) -y * (t)| ≤ 1. As a consequence, y * (t) → +∞ as t → +∞, and there exists C > 0 such that for all t, τ ≥ 0 with |t -τ | ≤ 1, q(2y * (τ )) ≤ Cq(2y * (t)).

( 

|q(r + h) -q(r)| = |(r + h)e -Γ(r+h) -re -Γr) | ≤ re -Γr e |h| + he -Γ(r-1) ≤ C|h|q(r).
In particular, sup

h∈[-1,1] q(r + h) ≤ Cq(r).
Together with the fact that for |t -τ | ≤ 1, |y * (t) -y * (τ )| ≤ δ, yields (1.19).

2)

The assumption on y * writes that for some a > 1, and some T ≥ 2,

∀t ≥ T, y * (t) ≥ a Γ ln t.
As q is eventually decreasing to 0,

+∞ T q(2y * (t)) dt +∞ T √ 1 + ln t dt t a < +∞.
The condition on h implies that on y * by direct integration.

Lemma 1.4. The function κ defined in (1.15) has the properties:

κ(t) → 0 as t → +∞ and +∞ 0 κ(τ )dτ < +∞.
Proof. We already saw that y * → +∞ so that e -Γy * (t) → 0 and is integrable on [0, +∞). For the integral term, this is merely a convolution: as we made the hypothesis that q(2y * ) is integrable, convergence to zero is straightforward:

t 0 e -2λ(t-s) q(2y * (s))ds ≤ q(2y * ) L ∞ ([0,+∞)) t/2 0 e -2λ(t-s) + t t/2
q(2y * (s))ds

≤ e -λt q(2y * ) L ∞ ([0,+∞)) + q(2y * ) L ∞ ([t/2,+∞)) +∞ t/2
q(2y * (s))ds → 0.

For the integrability, we need an extra ingredient: the previous Lemma 1.3 allows to relate to a series. To avoid side effect, first observe that there is no integrability issue on [0, 1]:

1 0 t 0 e -2λ(t-s) q(2y * (s))dsdt ≤ q(2y * ) L ∞ ([0,1]) .
If t ∈ [n, n + 1) for some integer n ≥ 1, using (1.19) there hold t 0 e -2λ(t-s) q(2y * (s))ds ≤ C n+1 0 e -2λ(n-s) q(2y * (s))ds ≤ C n k=0 e -2λ(n-k) q(2y * (k))

Hence, using that

√ a + b ≤ √ a + √ b, we infer t 0 e -2λ(t-s) q(2y * (s))ds ≤ C n k=0 e -λ(n-k) q(2y * (k)) ≤ C t 0
e -λ(t-s) q(2y * (s))ds.

( e -λ(t-s) q(2y * (s))dsdt.

For this last integral we split the integration domain

{(s, t) : t ≥ 1, 0 ≤ s ≤ t} = {(s, t) : 0 ≤ s ≤ 1 ≤ t} ∪ {(s, t) : 1 ≤ s ≤ t}.
In both subdomains, we integrate first in t: there hold 0≤s≤1≤t e -λ(t-s) q(2y * (s))dsdt = 1 λ 1 0 e -λ(1-s) q(2y * (s))ds < +∞, and 1≤s≤t e -λ(t-s) q(2y * (s))dsdt = 1 λ +∞ 1 q(2y * (s))ds < +∞, by assumption.

PROOF OF THE STABILITY

Preliminary results

Lemma 2.1 (Decomposition of the magnetization). There exist δ 1 > 0, L 1 ≥ 1 and C 1 > 0 such that the following holds. Let T > 0, h ∈ L ∞ ((0, T )) and m ∈ C ([0, T ], H 2 ) solution to (LLG), assume that for all t ∈ [0, T ], and for some L ≥ L 1 ,

δ := inf ζ + ∈G>L+1, ζ -∈G<-L-1 m(t) -ζ + .w + * + ζ -.w - * + e 1 H 1 < δ 1
Then there exists three functions :

• g + = (y + , φ + ) : [0, T ] → G >L Lipschitz, • g -= (y -, φ -) : [0, T ] → G <-L Lipschitz, • ε : [0, T ] → H 2 continuous,
such that, for w + = g + .w + * and w -= g -.w - * ,

• m = w + + w -+ e 1 + ε, • ε satisfies for ι ∈ {±1} ε • ∂ x w ι dx = ε • (e 1 ∧ w ι ) dx = 0, (2.1) 
• the following bounds hold for all t ∈ [0, T ] and ι ∈ {±}:

| ġι (t) -ġι * (t)| ≤ C 1 ε(t) H 1 + q(y + -y -) , (2.2) 
ε(t) H 1 ≤ C 1 δ + q(y + -y -) . (2.3)
Remark 2.2. This decomposition also holds with T = +∞, mutatis mutandis. This result will be proved in Section 6.

The proof of the stability relies on two main estimates. The first one shows an equivalence between the energy E and the norm of ε which will be defined thanks to Lemma 2.1. For this, we recall that E γ (w + * ) = E γ (w - * ), denoted by E(w * ) hereafter.

Proposition 2.3 (Coercivity of the energy).

There exists 0 < δ 2 ≤ δ 1 /3, L 2 ≥ L 1 , C 2 > 0 and λ 2 > 0 such that the following holds. Under the assumptions (and notations) of Lemma 2.1, assuming further δ ≤ δ 2 , L ≥ L 2 , there hold, for any 0 < R ≤ L/2 and for all t ∈ [0, T ]

C 2 ε 2 H 1 + (e 2Γ(R-y + ) + e 2Γ(R+y -) ) ≥ E(m) -2E(w * ) ≥ 4λ 2 - C 2 R 2 ε 2 H 1 -C 2 ε 3 H 1 + (e 2Γ(R-y + ) + e 2Γ(R+y -) ) . (2.4)
The second result is an estimate of the evolution of the energy. It shows that, up to some quantities which are negligible enough in some sense, the energy is almost decreasing.

Proposition 2.4 (Localised energy dissipation).

There exists 0 < δ 3 ≤ δ 1 /3, L 3 ≥ L 1 , C 3 > 0 and λ 3 such that the following holds. Under the same assumptions and notations as Proposition 2.3, assuming further δ ≤ δ 3 , L ≥ L 3 and for any 0 < R ≤ L/2, there holds, for all t ∈ [0, T ]

d dt E(m) + 4αλ 3 - C 3 R 2 ε 2 H 2 ≤ C 3 (|h| + e Γ(R-y + ) + e Γ(R+y -) ) ε 2 H 1 + ε H 1 ε 2 H 2 + C 3 e 2Γ(R-y + ) + e 2Γ(R+y -) + q(y + -y -) (2.5)
Proof of Theorem 1.2 assuming Lemma 2.1 and Propositions 2.3 and 2.4. We assume in the following that m 0 ∈ H 2 , so that all the computations are justified. When m 0 ∈ H 1 , one can use a limiting argument as in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]; we will not develop it further here.

Step 1. Main boostrap Let T + (m) be the maximum time of existence of the solution m to (LLG). Let δ 0 , L 0 > 0, and M ≥ 2 be an extra large parameter to be fixed later. Assume already that M δ 0 ≤ min(δ 2 , δ 3 ), and L 0 > L 1 so large that q(2L 0 ) ≤ 1 and q is non increasing on [L 0 , +∞). Define T 1 as the supremum of

T ∈ (0, T + (m)) : ∀t ∈ [0, T ], inf ζ + ∈G>L+2, ζ -∈G<-L-2 m(t) -(ζ + .w + * + ζ -.w - * + e 1 ) H 1 < M (δ + q(2L)) ,
By continuity of the flow of (LLG) and the assumption on the initial data as M > 1 and L ≥ L 0 > L 1 , the above set is non empty and T 0 > 0. We aim at proving that

T 1 = T + (m) = +∞.
As M δ 0 ≤ δ 1 , m satisfies the assumptions of Lemma 2.1 on [0, T ] for any T ∈ (0, T 1 ): it provides us with the functions g + = (y + , φ + ), g -= (y -, φ -) and ε satisfying its conclusions, on the interval [0, T 1 ). Also, at time 0, we have the improved bound:

ε(0) H 1 ≤ C 1 (δ + q(2L)). (2.6) 
We recall that the domain walls with initial data g ± (0).w ± * have center y ± * (t) = ±y * (t) + y ± (0) where

y * (t) = - α Γ t 0 h(s) ds.
Let T 2 be the supremum of

{T ′ ∈ (0, T 1 ) : ∀t ∈ [0, T ′ ], ∀ι ∈ {±}, |y ι (t) -(y ι (0) + ιy * (t))| < 1} .
By continuity of y * and y ± , we know that T 2 > 0 (we will show that T 2 = T 1 as well). We choose T ∈ (0, T 2 ], and we work on the interval [0, T ].

Step 2. Deriving convenient bounds on ε and g ± . First observe that for t ∈ [0, T ], y + (t) ≥ L + y * (t) and y -(t) ≤ -L -y * (t) so that e -2Γy + ≤ e -2Γ(L+y * ) , e 2Γy -≤ e -2Γ(L+y * ) , (

q(y + -y -) ≤ q(2y * + 2L) ≤ e -2ΓL q(2y * ) + q(2L 0 )e -2Γy * ≤ 2q(2L)q(2y * ).

(2.8)

This allows to take care of the terms in y ± in the estimates. We now choose R so that we gain some coercivity in (2.4) and (2.5). For this we impose that

δ 0 ≤ δ 4 := min 1 4 √ λ 2 C 2 , 1 4 √ αλ 3 C 3 and R = 1 2δ 4 , (2.9) so that C3 R 2 ≤ αλ 3 and C2 R 2 ≤ λ 2 . Hence for C 4 = max(C 2 , C 3 )R 2 e 2ΓR (which depends only on C 2 , C 3 and λ 2 , λ 3 ), for all t ∈ [0, T 1 ] there hold E(m) -2E(w * ) ≥ 2λ 2 ε 2 H 1 -C 4 ε 3 H 1 + e -2ΓL e -2Γy * , E(m) -2E(w * ) ≤ C 4 ε 2 H 1 + e -2ΓL e -2Γy * , d dt E(m) + 3αλ 3 ε 2 H 2 ≤ C 4 (|h| ε 2 H 1 + ε H 1 ε 2 H 2 ) + q(2L)q(2y * ) .
We also want to make use of the smallness of h and ε to get rid of terms which are cubic or higher in (ε, h). We therefore assume that

δ 0 ≤ αλ 3 C 3 , (2.10) 
so that for all t ≥ 0, C 3 |h(t)| ≤ αλ 3 . Recall that y * → +∞, so that inf y * > -∞: we choose L 0 such that

L 0 ≥ -2 inf y * .
Then on [0, T ], y + -y -≥ 2(L + y * ) ≥ L ≥ L 0 and as q is decreasing on [L 0 , +∞), q(y + -y -) ≤ q(L). Thus, due to (2.3)

ε H 1 ≤ C 1 M (δ + q(2L)) + C 1 q(L).
We therefore assume that δ 0 ≤ δ 5 and L 0 ≥ L 5 where δ 5 > 0 and L 5 > 0 are such that

δ 5 + q(L 5 ) ≤ min(λ 2 , αλ 3 ) M C 1 C 4 (2.11) 
and we infer that on [0, T ]

C 4 ε H 1 ≤ min(λ 2 , αλ 3 ).
Therefore, we obtained that

E(m) -2E(w * ) ≥ λ 2 ε 2 H 1 -C 4 e -2ΓL e -2Γy *
(2.12)

E(m) -2E(w * ) ≤ C 4 ε 2 H 1 + e -2ΓL e -2Γ2y * (2.13) d dt E(m) + αλ 3 ε 2 H 2 ≤ C 4 q(2L)q(2y * ). (2.14) Step 3. Decay of ε. Let τ, t ∈ [0, T ] such that τ ≤ t. Integrating (2.14) on [τ, t], we infer E(m(t)) + αλ 3 t τ ε 2 H 2 ≤ E(m(τ )) + C 4 q(2L) t τ q(2y * (s))ds.
From there, together with (2.12) and (2.13), we infer

λ 2 ε(t) 2 H 1 + αλ 3 t τ ε(s) 2 H 2 ds ≤ C 4 ε(τ ) 2 H 1 + e -2ΓL (e -2Γy * (τ ) + e -2Γy * (t) ) + q(2L) t τ q(2y * (s))ds ≤ 2C 4 ( ε(τ ) 2 H 1 + q(2L)κ 0 (τ, t)). (2.15)
where for τ ≤ t, κ 0 (τ, t) := e -2Γy * (τ ) + e -2Γy * (t) + t τ q(2y * (s))ds.

In particular, with τ = 0, we obtain a uniform bound:

λ 2 ε(t) 2 H 1 + αλ 3 t 0 ε(s) 2 H 2 ds ≤ 2C 4 ε(0) 2 H 1 + q(2L)κ 0 (0, +∞) , (2.16) 
where κ 0 (0, +∞) = 1 + +∞ 0 q(2y * (s))ds < +∞.

(2.17)

Going back to (2.15), fixing for now t and seeing τ as a variable, we have

∂ ∂τ e αλ 3 C 4 τ t τ ε(s) 2 H 1 ds = e αλ 3 C 4 τ αλ 3 C 4 t τ ε(s) 2 H 1 ds -ε(τ ) 2 H 1 ≤ 2C 4 e αλ 3 C 4 τ q(2L)κ 0 (τ, t). Now integrate this estimate on [0, τ ] (for τ ≤ t) to get e αλ 3 C 4 τ t τ ε(s) 2 H 1 ds ≤ τ 0 ε(s) 2 H 1 ds + 2C 4 q(2L) τ 0 e αλ 3 C 4 
s κ 0 (s, t)ds.

Assume for now that t ≥ 1. In view of (2.16) with τ = t -1, we infer that for λ = αλ3 2C4 ,

t t-1 ε(s) 2 H 1 ds ≤ e -2λt 1 λ ( ε(0) 2 H 1 + q(2L 0 )κ 0 (0, +∞)) + 2C 4 q(2L) t 0 e -2λ(t-s) κ 0 (s, t)ds. Let τ ∈ [t -1, t] such that ε(τ ) 2 H 1 ≤ t t-1 ε(s) 2 H 1 ds.
(we use the mean value theorem). Then (2.15) now writes

λ 2 ε(t) 2 H 1 ≤ e -2λ4t C 4 λ 4 ( ε(0) 2 H 1 + q(2L)κ 0 (0, +∞)) + 2C 4 q(2L) t 0 e -2λ(t-s) κ 0 (s, t)ds. (2.18) Observe that t 0 e -2λ(t-s) κ 0 (s, t)ds = t 0 e -2λ(t-s) e -2Γy * (s) + e -2Γy * (t) + t s q(2y * (u)du ds ≤ 1 2λ
e -2Γy * (t) + t 0 e -2λ(t-s) q(2y * (s))ds + 0≤s≤u≤t e -2λ(t-s) q(2y * (u))duds After integrating in s, notice that the last double integral is bounded by

1 2λ t u=0
e -2λ(t-u) q(2y * (u))du.

We can therefore simplify (2.18): recall the initial estimate (2.6) on ε(0), we also use that

√ a + b ≤ √ a + √ b for a, b ≥ 0, and 
C 1 ≥ 1, q(2L) ≤ 1. For C 5 = C 1 2λ 2 max C 4 λ 4 (1 + κ 0 (0, +∞)), C 4 (1 + 1 λ ) , we obtain the bound ∀t ∈ [0, T ], ε(t) H 1 ≤ C 5 e -λt δ + C 5 q(2L)(e -λt + κ(t)), (2.19) 
where κ is defined in (1.15). Let us also recall at this point that due to Lemma 1.4, κ → 0 at ∞ and is integrable on [0, +∞). In particular, κ is bounded.

Step 4.

T 1 = T 2 = +∞.
Let us first define M and choose δ 0 and L 0 . For this, we recall (2.2) and (2.8): there hold for ι ∈ {±} and t ∈ [0, T 1 ]

|y ι (t) -(y ι (0) + ιy * (t))| ≤ C 1 t 0 ε(s) H 1 ds + 2C 1 q(2L) t 0 q(2y * (s))ds. (2.20) Define M 1 = 2C 1 C 5 1 λ + +∞ 0 q(2y * (t))dt + +∞ 0 κ(t)dt , (2.21) 
and

M = 2C 5 (1 + κ L ∞ ([0,+∞)) ).
Now that M has been determined, choose δ 0 and L 0 so as to satisfies the constraints in the previous steps, namely (2.9), (2.10) and (2.11), and also so that δ 0 ≤ 1/(4M 1 ) and 2q(L 0 ) ≤ 1/(4M 1 ).

From (2.20) and the definition of M 1 (2.21), we obtain t ∈ [0, T ]

|y ± (t) -(y ± (0) ± y * (t))| ≤ C 1 M 1 (δ + 2q(L)) ≤ 1 2 < 1.
Using a continuity argument, this last bound implies that T 2 = T 1 . Now, from (2.19) and the definition of M , we get that

∀t ∈ [0, T ], ε(t) H 1 ≤ M 2 (δ + q(2L)).
Again, a continuity argument yields that T 1 = +∞.

Step 5. Convergence of m and g.

The bound (2.19) now holds for all t ≥ 0, and (together with the estimate on ε(0) H 1 ) gives a rate of convergence of ε → 0, which is precisely (1.17).

Finally, (2.2) writes

∀t, ≥ 0, | ġ[i] - ġ[i] * | ≤ C 1 ( ε(t) H 1 + q(2L 0 )q(2y * (t)
)) so that as ε H 1 and q(2y * ) are integrable in time,

g [i] (t) - ġ[i] * (t) admits a limit g [i]
∞ as t → +∞, and

|g [i] (t) -(g [i] ∞ + g [i] * (t))| ≤ C 1 +∞ t ( ε(s) H 1 + q(2L)q(2y * (s)))ds ≤ C 1 C 5 λ (δ + q(2L))e -λt + C 1 C 5 (1 + q(2L) q(2y * ) L ∞ ([0,+∞)) ) q(2L) +∞ t κ(s)ds.
and (as q is bounded) this gives (1.18).

LOCALISATION AND ASSOCIATED BASIS

In order to prove Propositions 2.3 and 2.4, we need to introduce a localisation function ψ R and the basis related to w + * and w - * . This is the content of this section, along with several miscellaneous notations and results. From now on, C will be a universal positive constant which may change from line to line.

Interaction of domain walls

From the explicit formula of the domain walls, there holds the following.

Lemma 3.1. There exists C > 0 which does not depend on γ ∈ (-1, 1) such that, for all j ∈ {0, 1, 2}

∂ j x (w (1,σ2) * -e 1 )(x) ≤ C e -Γx if x ≥ 0, ∂ j x (w (1,σ2) * + e 1 )(x) ≤ C e -Γ|x| if x ≤ 0.
Similar estimates for w σ * follow, mutatis mutandis.

Corollary 3.2.

There exists C > 0 such that for all g + ∈ G >0 and g -∈ G <0 , for all x ∈ R and j ∈ {0, 1, 2}, there holds

∂ j x (g + .w (1,σ2) * -e 1 ) ∂ j x (g -.w (-1,σ ′ 2 ) * + e 1 ) ≤ Ce -Γ(2x-y + -y -) if x ≥ y + , ∂ j x (g + .w (1,σ2) * + e 1 ) ∂ j x (g -.w (-1,σ ′ 2 ) * + e 1 ) ≤ Ce -Γ(y + -y -) if y -≤ x ≤ y + , ∂ j x (g + .w (1,σ2) * + e 1 ) ∂ j x (g -.w (-1,σ ′ 2 ) * -e 1 ) ≤ e Γ(2x-y + +y -) if x ≤ y -, ∂ x (g + .w (1,σ2) * ) + e 1 ∧ g + .w (1,σ2) * ∂ x (g -.w (-1,σ ′ 2 ) * ) + e 1 ∧ (g -.w (-1,σ ′ 2 ) * ) ≤ Ce -Γ(y + -y -) ×      e -2Γ(x-y + ) if x ≥ y + 1 if x ∈ [y -, y + ] e 2Γ(x-y -) if x ≤ y - . ∂ x (g + .w (1,σ2) * ) • g -.w (-1,σ ′ 2 ) * + e 1 ≤ Ce -Γ(y + -y -) ×      e -2Γ(x-y + ) if x ≥ y + 1 if x ∈ [y -, y + ] e Γ(x-y -) if x ≤ y - . g + .w (1,σ2) * + e 1 g -.(β * w (-1,σ ′ 2 ) * ) ≤ Ce -Γ(y + -y -) ×      e -2Γ(x-y + ) if x ≥ y + e -Γ(x-y -) if x ∈ [-y -, y + ] e 2Γ(x-y -) if x ≤ y - . Lemma 3.3 ([4, Lemma 3.

2]

). There holds

∂ x w σ * • √ ψ ∈ W 3,∞ (R).
Then, we take some R ≥ 1 large to be fixed later and we define a localisation function ψ R (x) := ψ x R and a localised scalar product:

(f, g) ψR = f (x)g(x)ψ R (x) dx, defined for all f, g ∈ L 2 (ψ R (x) dx) := {h ∈ L 2 loc (supp ψ R ), h 2 L 2 (ψR(x) dx) := (h, h) ψR < ∞}.
We can also define, in a classical way, H k (ψ R (x) dx) for all k ∈ N. Moreover, observe that for all R ≥ 1 and integer k,there holds

∂ k x ψ R L ∞ = 1 R k ∂ k x ψ L ∞ , ∂ k x ( ψ R ) L ∞ = 1 R k ∂ k x ψ L ∞ . (3.1) 
We also show a result with respect to the localised H 1 and H 2 norms.

Lemma 3.5. There exists C > 0 such that, for any f ∈ H 1 (R) and any y 0 with ψ 0 := τ y0 ψ R , there holds for k = 0, 1, 2

ψ 0 f 2 H k -f 2 H k (ψ0(x) dx) ≤ C R 2 f 2 L 2 (supp ∂xψ0) .
Proof. First, it is easy to see that

ψ 0 f 2 L 2 = f 2 L 2 (ψ0(x) dx) .
As for the homogeneous H 1 (semi-)norm, we compute :

∂ x ψ 0 f = ψ 0 ∂ x f + f ∂ x ψ 0 .
Therefore,

∂ x ψ 0 f 2 L 2 = ∂ x f 2 L 2 (ψ0(x) dx) + 2 ψ 0 ∂ x f • f ∂ x ψ 0 dx + f ∂ x ψ 0 2 dx = ∂ x f 2 L 2 (ψ0(x) dx) + 1 2 ∂ x |f | 2 ∂ x ψ 0 dx + |f | 2 ∂ x ψ 0 2 dx = ∂ x f 2 L 2 (ψ0(x) dx) + |f | 2 ∂ x ψ 0 2 - 1 2 ∂ 2 xx ψ 0 dx.
The conclusion easily follows from the estimate of the

L ∞ norm of ∂ x √ ψ 0 2 -1 2 ∂ 2 xx ψ 0 with (3.1)
. Morover, there holds

∂ 2 xx ψ 0 f = ψ 0 ∂ 2 xx f + 2∂ x ψ 0 ∂ x f + f ∂ 2 xx ψ 0 , so that ∂ 2 xx ψ 0 f 2 -ψ 0 (∂ 2 xx f ) 2 = 2 ψ 0 ∂ 2 xx f 2∂ x ψ 0 ∂ x f + f ∂ 2 xx ψ 0 + 2∂ x ψ 0 ∂ x f + f ∂ 2 xx ψ 0 2 .
Expanding the first term of the right-hand side and integrating, we get

ψ 0 ∂ 2 xx f ∂ 2 xx ψ 0 f dx = f ∂ 2 xx f ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx (3.2) = -(∂ x f ) 2 ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx -f ∂ x f ∂ x ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx, ψ 0 ∂ 2 xx f ∂ x ψ 0 ∂ x f dx = 1 4 ∂ x ψ 0 ∂ x (∂ x f ) 2 dx = - 1 4 ∂ 2 xx ψ 0 (∂ x f ) 2 dx, (3.3) 
and the conclusion follows from obvious estimation.

Localized multilinear estimates in Sobolev spaces

Definition 3.6. For k ≥ 0 and ℓ ≥ 1, and given a (possibly vector valued) function f = (f j ) 1≤j≤J , we use the notation

g = O ℓ k (f )
for a (possibly vector valued) function g if each component of g is an homogeneous polynomial of degree ℓ in the components of f and their derivatives such that the total number of derivatives in each term is at most k, and whose coefficients are C ∞ b (R) functions. g is then the sum of terms of the form

α J j=1 k κ=0 (∂ κ x f j ) ℓj,κ
, where j,κ ℓ j,κ = ℓ, and

j,κ l j,κ κ ≤ k, and α ∈ C ∞ b . Lemma 3.7. 1. If k ′ ≥ k, then O ℓ k (f ) = O ℓ k ′ (f ). 2. If α ∈ C ∞ b , then αO ℓ k (f ) = O ℓ k (f ). 3. O ℓ k (f 1 )O ℓ ′ k ′ (f 2 ) = O ℓ+ℓ ′ k+k ′ (f 1 , f 2 ). 4. ∂ x O ℓ k (f ) = O ℓ k+1 (f ), 5. O ℓ k (f 1 + f 2 ) = O ℓ k (f 1 , f 2 )
. This notation has been used in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] to express pointwise bounds that turn into Sobolev bounds with linear dependence in the highest term. We will generalize these estimates for localised integrations :

Lemma 3.8. 1. Assume g = O ℓ k (f ). Then there holds if k ≥ 2 g L 2 (supp ψR) f H k (supp ψR) f ℓ-1 H k-1 (supp ψR) . If k = 1, g L 2 (supp ψR) f ℓ H 1 (supp ψR) . 2. If f ∈ H 1 , we have for ℓ ≥ 2, O ℓ 2 (f )ψ R (x) dx f ℓ H 1 (supp ψR) ,
and

, if g ∈ H 1 , O 1 2 (f )g(x)ψ R (x) dx f H 1 (supp ψR) g H 1 (supp ψR) . 3. If f ∈ H 2 , we have for ℓ ≥ 2 O ℓ 3 (f )ψ R (x) dx f ℓ-1 H 1 (supp ψR) f H 2 (supp ψR) , O ℓ 4 (f )ψ R (x) dx f ℓ-2 H 1 (supp ψR) f 2 H 2 (supp ψR) .
The proof of all these estimates is similar to that of [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF], and we refer to it. We emphasize that all the integrals involved are indeed on the support of ψ R , but also that for all j ≥ 1, R,∞) is an unbounded interval.

H j (supp ψ R ) ֒→ L ∞ (supp ψ R ) with uniform constant since supp ψ R = (-

Coercivity of a Schrödinger operator

We also define the following operator for Γ = 1 -γ 2 which was already used in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] :

L Γ v = -∂ 2 xx v + Γ 2 (cos 2 θ * -sin 2 θ * )v.
We recall the main properties of this operator.

Lemma 3.9 ([4, Lemma 4.10]). L Γ is a self-adjoint operator on L 2 (R) with dense domain H 2 (R). It admits 0 as a simple eigenvalue with eigenfunction sin θ * , and its spectrum is [Γ 2 , +∞). As a consequence, there exists λ 0 > 0 such that, for all

v ∈ H 1 (R), (L Γ v, v) ≤ 2 v 2 H 1 and (L Γ v, v) ≥ 4λ 0 v H 1 - 1 λ 0 v sin(θ * ) dx 2 ,
and for all v ∈ H 2 ,

L Γ v L 2 ≥ 4λ 0 v H 2 - 1 λ 0 v sin(θ * ) dx 2 .
However, we will not be able to apply directly this lemma on the same functions as in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]. Indeed, the localisation function needs to be taken into account, as follows.

Lemma 3.10. There exists C > 0 such that, for any f ∈ H 2 (R) and any y 0 with ψ 0 := τ y0 ψ R ,

2 f 2 H 1 (ψ0(x) dx) + C R 2 f 2 L 2 (supp ∂xψ0) ≥ L Γ f, f ψ0 ≥ 4λ 0 f 2 H 1 (ψ0(x) dx) - 1 λ 0 ψ 0 f sin(θ * ) dx 2 - C R 2 f 2 L 2 (supp ∂xψ0) , and 
L Γ f 2 L 2 (ψ ± R dx) ≥ 4λ 0 f 2 H 2 (ψ0(x) dx) - 1 λ 0 ψ 0 f sin(θ * ) dx 2 - C R 2 f H 1 supp ∂xψ0(x) dx .
Proof. First, remark that we constructed ψ R so that √ ψ 0 f ∈ H 2 as soon as f ∈ H 2 . Then, we also have

(L Γ f, f ) ψ0 = ψ 0 L Γ f, ψ 0 f .
From the definition of L Γ , there holds

L Γ ( ψ 0 f ) -ψ 0 L Γ f = -∂ 2 xx ψ 0 f + ψ 0 ∂ 2 xx f = ∂ 2 xx ψ 0 f + 2∂ x ψ 0 ∂ x f. (3.4)
Thus,

(L Γ f, f ) ψ0 -L Γ ψ 0 f , ψ 0 f = -∂ 2 xx ψ 0 f, ψ 0 f -2 ∂ x ψ 0 ∂ x f, ψ 0 f = - ψ 0 ∂ 2 xx ψ 0 f, f -2 ψ 0 ∂ x ψ 0 ∂ x f, f .
Therefore, after an integration by parts in the last term,

(L Γ f, f ) ψ0 -L Γ ψ 0 f , ψ 0 f = - ψ 0 ∂ 2 xx ψ 0 f, f + ∂ x ψ 0 ∂ x ψ 0 f, f = ∂ x ψ 0 2 f, f .
Therefore, we get

L Γ f, f ψ0 -L Γ ψ 0 f , ψ 0 f ≤ C R 2 f 2 L 2 (supp ∂xψ0) .
The conclusion follows by applying Lemma 3.9 to L Γ √ ψ 0 f , √ ψ 0 f and with Lemma 3.5. As for the second estimate, from (3.4), we also get

L Γ ψ 0 f 2 = L Γ f 2 ψ 0 + 2 ψ 0 L Γ f ∂ 2 xx ψ 0 f + 2∂ x ψ 0 ∂ x f + ∂ 2 xx ψ 0 f + 2∂ x ψ 0 ∂ x f 2 .
For the second term, expanding L Γ f , we obtain by integrating the following terms

ψ 0 ∂ 2 xx f ∂ 2 xx ψ 0 f dx = f ∂ 2 xx f ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx (3.5) = -(∂ x f ) 2 ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx -f ∂ x f ∂ x ∂ 2 xx ψ 0 -∂ x ψ 0 2 dx, ψ 0 ∂ 2 xx f ∂ x ψ 0 ∂ x f dx = 1 4 ∂ x ψ 0 ∂ x (∂ x f ) 2 dx = - 1 4 ∂ 2 xx ψ 0 (∂ x f ) 2 dx, (3.6) 
and also

ψ 0 Γ 2 (cos 2 θ * -sin 2 θ * )∂ 2 xx ψ 0 f 2 dx and 1 2 Γ 2 (cos 2 θ * -sin 2 θ * )∂ x ψ 0 f ∂ x f dx.
From straightforward estimates thanks to (3.1), we get

L Γ f 2 L 2 (ψ ± R dx) -L Γ ψ ± R f 2 L 2 ≤ C R f 2 H 1 (supp ∂xψ ± R ) .
The estimate then comes by applying Lemma 3.9 to

L Γ ψ ± R f 2 L 2
and Lemma 3.5 again.

Expansion in the associated basis

The computations made in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] shows that the following frame is better adapted to a S 2 -valued magnetisation m close to a domain wall w σ * for some σ = (σ 1 , σ 2 ) ∈ {±1} 2 . Define

n σ * := - 1 sin θ * w σ * ∧ (e 1 ∧ w σ * ), p σ * := w σ * ∧ n * .
(w * (x), n * (x), p * (x)) is thus an orthonormal basis in R 3 for all x ∈ R. One important observation, which motivates the introduction of this basis, is the following. Let m = w + η ∈ S 2 with η small: if one decomposes η = µw * + νn * + ρp * , then µ is quadratic in η, whose norm is thus equivalent to that of ν and ρ. This is a pointwise in x, and is can be globalized or localized.

The precise statement is as follows.

Lemma 3.11. There exists δ 3 > 0 and C 2 > 0 such that the following holds. Let w * := w σ * for some σ = (σ 1 , σ 2 ) ∈ {±1} 2 be a domain wall. Let m = w * + η : R → S 2 and x 0 > 0 be such that

η H 1 ((-x0,∞)) < δ 3 .
We decompose η in the (w * , n * , p * ) basis pointwise in x:

η = µw * + νn * + ρp * where µ := η • w * , ν = η • n * , ρ = η • p * . Then µ, ν, ρ ∈ H 1 ((-x 0 , ∞)), with µ H 1 ((-x0,∞)) ≤ C 2 η 2 H 1 ((-x0,∞)) , 1 C 2 η H 1 ((-x0,∞)) ≤ (ν, ρ) H 1 ((-x0,∞)) ≤ C 2 η H 1 ((-x0,∞)) . (3.7) 
Moreover, as soon as x 0 ≥ R, there also holds

µ H 1 (ψR dx) ≤ C 2 η H 1 (ψR dx) η H 1 (supp ψR) , 1 C 2 η H 1 (ψR dx) ≤ (ν, ρ) H 1 (ψR dx) ≤ C 2 η H 1 (ψR dx) . (3.8) In particular, µ = 1 2 |η| 2 = O 2 0 (η). If furthermore η ∈ H 2 , then µ, ν, ρ ∈ H 2 and (ν, ρ) H 2 ((-x0,∞)) ≤ C 2 η H 2 ((-x0,∞))
Last, there also hold

ρ sin θ * = η • (e 1 ∧ w * ), σ 1 sin θ * ν = 1 Γ 2 η • ∂ x w * -γη • (e 1 ∧ w * ) (3.9)
Proof. The proof is similar to the first step of the proof of [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]Proposition 4.16]. First, the relations between µ, ν, ρ and η along with Lemma 3.8 give

µ H k ((-x0,∞)) + ν H k ((-x0,∞)) + ρ H k ((-x0,∞)) η H k ((-x0,∞)) .
On the other side, η = µw * + νn * + ρp * and therefore

η H k ((-x0,∞)) µ H k ((-x0,∞)) + ν H k ((-x0,∞)) + ρ H k ((-x0,∞)) .
µ = 1 2 |η| 2 comes from the expansion of |w * + η| 2 = 1, which gives the first inequality of (3.7) with Lemma 3.8. As soon as η H 1 ((-x0,∞)) is small enough the second inequality is then straightforward. In a similar way, we also get ∂ x µ = η • ∂ x η, and the first inequality of (3.8) is then easily proved. If supp ψ R ⊂ (-x 0 , ∞), then η H 1 (supp ψR) < δ 3 from the assumption and the second inequality of (3.8) is proved similarly.

Eventually, the last equalities comes from the formulas (see (1.8) for the first one)

∂ x w * = Γ 2 sin θ * (σ 1 n * + γp * ), e 1 ∧ w * = sin θ * p * .
With this result, the magnetization can be decomposed in a similar way when it is close to a 2-domain wall structure (with the two domain walls far away enough). Lemma 3.12. There exists δ ′ 2 > 0 and L 0 > R such that the following holds. Let L > L 0 , g ± = (y ± , φ ± ) such that g + ∈ G >L and g -∈ G <-L . Let m = w + + w -+ e 1 + ε for some w + = g + .w

(1,σ2) * and w -= g -.w

(-1,σ ′ 2 ) * , with ε ∈ H 1 and m ∈ H 1 (R, S 2
). Define also η ± := (-g ± ).m -w ± * = (-g ± ).(w ∓ + e 1 + ε). η ± can be decomposed in the (w ± * , n ± , p ± ) basis associated to w ± * :

η ± = µ ± w ± * + ν ± n ± * + ρ ± p ± * .
Finally, define

ψ ± R (x) = ψ R (±x -y ± ). Then, if ε H 1 < δ ′ 2 , there hold η ± H k (ψ ± R dx) ≤ η ± H k (supp ψ ± R ) ≤ ε H k + Ce Γ(R±y ∓ ) , (3.10) 
ε H k ≤ η + H k (ψ + R (x) dx) + η - H k (ψ - R (x) dx)
+ C e Γ(R-y + ) + e Γ(R+y -) .

(3.11)

Moreover, there also holds

1 C (ν ± , ρ ± ) H k (supp ψ ± R ) ≤ η ± H k (supp ψ ± R ) ≤ C (ν ± , ρ ± ) H k (supp ψ ± R ) ,
(3.12) Remark 3.13. This lemma shows that, as soon as ε H 1 is small enough, estimating ε H 1 is equivalent to estimating both

(ν ± , ρ ± ) H k (supp ψ ± R
) and e Γ(R±y ± ) for i = 1, 2. This property will be intensively used in the following.

Proof. The first inequality of (3.10) comes from the fact that 0 ≤ ψ ± R ≤ 1. The second one can be easily deduced from the following computation :

η + H k (supp ψ + R ) = (-g + ).(w -+ e 1 + ε) H k (supp ψ + R ) = w -+ e 1 + ε H k (supp ψR) ≤ w -+ e 1 H k (supp ψR) + ε H k (supp ψR) ≤ g -.(w - * + e 1 ) H k ((-R,∞)) + ε H k ≤ w - * + e 1 H k ((-R-y -,∞)) + ε H k ,
and the conclusion with Lemma 3.1. The computations for η -are similar. We also have

ε 2 H k = ε 2 H k (ψR(x) dx) + ε 2 H k (ψR(-x) dx) ,
and, similarly,

ε H k (ψR(x) dx) = g + .η + -(w -+ e 1 ) H k (ψR(x) dx) ≤ g + .η + H k (ψR(x) dx) + w -+ e 1 H k (ψR(x) dx) ≤ η + H k (ψ + R (x) dx) + w -+ e 1 H k (supp ψR) ≤ η + H k (ψ + R (x) dx) + Ce Γ(R+y -) .
Once again, the computation for ε H k (ψR(-x) dx) is similar and symmetric. Eventually, (3.12) comes from Lemma 3.11 and the fact that supp ψ

+ R ⊂ [-R -y + , ∞) and supp ψ - R ⊂ (-∞, R -y -].
The goal is to use the previous lemma with the decomposition provided by Lemma 2.1. However, the localisation function will still remain in the integrals we compute. Therefore, we won't be able to get the same vanishing integrals as in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] when we apply Lemma 3.9. However, the integrals we will obtain are still small enough : the reminiscence of the localisation function gives only negligible terms, as shown in the following lemma. Lemma 3.14 (Almost orthogonality). With the same assumptions and notations as in Lemma 2.1, define η ± , µ ± , ν ± , ρ ± and ψ ± R as in Lemma 3.12. Then there holds

ψ ± R ρ ± sin θ * dx + ψ ± R ν ± sin θ * dx ≤ C q(y + -y -) + ε L 2 e Γ(R∓y ± )
Proof. From (3.9), we get

ψ ± R ρ ± sin θ * dx = ψ ± R η ± • (e 1 ∧ w ± * ) dx, σ 1 ψ ± R ν ± sin θ * dx = 1 Γ ψ ± R η ± • ∂ x w ± * dx -γ ψ ± R η ± • (e 1 ∧ w ± * ) dx.
On the other hand, by the expression of η ± ,

ψ ± R η ± • (e 1 ∧ w ± * ) dx = ψ R (±x)(g ∓ .w ∓ * + e 1 ) • (e 1 ∧ g ± .w ± * ) dx + ψ R (±x) ε • (e 1 ∧ g ± .w ± * ) dx.
For the first term, we can estimate by using the fact that R < L < min (y + , -y -) and with Corollary 3.2:

ψ R (g -.w - * + e 1 ) • (e 1 ∧ g + .w + * ) dx ≤ ∞ -R g -.w - * + e 1 e 1 ∧ g + .w + * dx ≤ C(1 + y + -y -)e -Γ(y + -y -) .
For the second term, by using the orthogonality conditions (2.1), we get

ψ R ε • (e 1 ∧ g + .w + * ) dx = ψ R -1 ε • (e 1 ∧ g + .w + * ) dx ≤ R -∞ |ε| e 1 ∧ g + .w + * dx ≤ C ε L 2 e Γ(R-y + ) .
Similar estimates hold for

ψ - R η -• (e 1 ∧ w - * ) dx and for ψ ± R η ± • ∂ x w ± * dx
, and thus the conclusion

LOCALISED ENERGIES

In this section, we prove Proposition 2.3. For this, we localise the energy thanks to the localisation ψ R , which is a classical technique for to study multi-solitons for nonlinear dispersive equations.

We define the localised energies :

E + (m) := 1 2 |∂ x m| 2 + 2γ∂ x m • (e 1 ∧ m) + (1 -m 2 1 ) ψ R (x) dx, E -(m) := 1 2 |∂ x m| 2 + 2γ∂ x m • (e 1 ∧ m) + (1 -m 2 1 ) ψ R (-x) dx
By the properties of ψ R , we know that E + + E -= E γ . Then, we define the following modified energies :

Ẽ+ (m) := E + (τ y + m) = 1 2 |∂ x m| 2 + 2γ∂ x m • (e 1 ∧ m) + (1 -m 2 1 ) ψ + R (x) dx where ψ + R := τ -y + ψ R = ψ R (x + y + ), and 
Ẽ-(m) := E -(τ y -m) = 1 2 |∂ x m| 2 -2γ∂ x m • (e 1 ∧ m) + (1 -m 2 1 ) ψ - R (x) dx,
where

ψ - R := τ -y -ψ R (-x) = ψ R (-x + y -).
4.1. First estimate on the localised energies First, we want to expand the localised energies defined previously. For this, we define η ± , and then µ ± , ν ± and ρ ± like in Lemma 3.12. With similar computations as in [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF], we show that, up to some additional negligible terms, the expansion of the localised energies gives no term of order 1 and nice terms of order 0 and 2. Proposition 4.1. Let the assumptions of Lemma 3.12 be satisfied. Then,

E ± (m) -Ẽ± (w ± * ) + 1 2 (L Γ ν ± , ν ± ) ψ ± R + (L Γ ρ ± , ρ ± ) ψ ± R ≤ C ε 3 H 1 + 1 R 2 ε 2 L 2 + e 2Γ(R-y + ) + e 2Γ(R+y -) ,
Proof. The pointwise estimate of steps 2 and 3 of the proof of [4, Proposition 4.16] still hold, both for η + and η -. In particular, we have :

δE γ (η ± ) = O 2 2 (η ± ) ± 2(∂ 2 xx θ * ν ± + ∂ x θ * ∂ x ν ± )w ± * + (-∂ 2 xx ν ± + Γν ± )n ± * + (-∂ 2 xx ρ ± + Γρ ± )p ± * , η ± • δE γ ± (w ± * ) = β * η ± • w ± * = - 1 2 β * η ± 2 , (4.1) 
η ± • δE γ ± (η ± ) = O 3 2 (η ± ) -ν ± ∂ 2 xx ν ± + Γ 2 (ν ± ) 2 -ρ ± ∂ 2 xx ρ ± + Γ 2 (ρ ± ) 2 (4.2) 
Moreover, even if E ± consists only in quadratic terms of m, it is not invariant under translation due to the localisation term ψ R (±x), and one should also take care about the integrations by part, so that the relations of the step 4 of the proof of [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]Proposition 4.11] are different :

E ± (m) = Ẽ± (η ± + w ± * ) = Ẽ± (w ± * ) + η ± • δE γ (w ± * )ψ ± R (x) dx + 1 2 η ± • δE γ (η ± )ψ ± R (x) dx -η ± • ∂ x w ± * ∂ x ψ ± R (x) dx - 1 2 η ± • ∂ x η ± ∂ x ψ ± R (x) dx -γ η ± • (e 1 ∧ w ± * )∂ x ψ ± R (x) dx.
Using both (4.1) and (4.2) along with Lemma 3.8, we get

E ± (m) -Ẽ± (w ± * ) = O( η ± 3 H 1 (supp ψ ± R ) ) - 1 2 β * η ± 2 ψ ± R (x) dx + 1 2 (-∂ 2 xx ν ± + Γ 2 ν ± )ν ± + (-∂ 2 xx ρ ± + Γ 2 ρ ± )ρ ± ψ ± R (x) dx -η ± • ∂ x w ± * ∂ x ψ ± R (x) dx -γ η ± • (e 1 ∧ w ± * )∂ x ψ ± R (x) dx + 1 4 η ± 2 ∂ 2 xx ψ ± R (x) dx.
We now use the fact that

η ± 2 = (µ ± ) 2 + (ν ± ) 2 + (ρ ± ) 2 = (ν ± ) 2 + (ρ ± ) 2 + 1 4 η ± 4 .
Then we also use the fact that

Γ 2 -β * = Γ 2 (cos 2 θ * -sin 2 θ * ), (4.3) 
so that

- 1 2 β * η ± 2 ψ ± R (x) dx + 1 2 (-∂ 2 xx ν ± + Γ 2 ν ± )ν ± + (-∂ 2 xx ρ ± + Γ 2 ρ ± )ρ ± ψ ± R (x) dx = 1 2 (L Γ ν ± , ν ± ) ψ ± R + (L Γ ρ ± , ρ ± ) ψ ± R - 1 8 β ± * η ± 4 ψ ± R (x) dx.
Moreover, using (3.1), we get

η ± • ∂ x w ± * ∂ x ψ ± R (x) dx ≤ C R η ± L 2 (supp ∂xψ ± R ) ∂ x w ± * L 2 (supp ∂xψ ± R ) , η ± • (e 1 ∧ w ± * )∂ x ψ ± R (x) dx ≤ C R η ± L 2 (supp ∂xψ ± R ) e 1 + w ± * L 2 (supp ∂xψ ± R ) , η ± 2 ∂ 2 xx ψ ± R (x) dx ≤ C R 2 η ± 2 L 2 (supp ∂xψ ± R )
. Therefore, there holds

E ± -Ẽ± (w ± ) + 1 2 (L Γ ν ± , ν ± ) ψ ± R + (L Γ ρ ± , ρ ± ) ψ ± R ≤ C η ± 3 H 1 (supp ψ ± R ) + 1 R η ± L 2 (supp ∂xψ ± R ) ∂ x w ± * L 2 (supp ∂xψ ± R ) + 1 R η ± L 2 (supp ∂xψ ± R ) e 1 + w ± * L 2 (supp ∂xψ ± R ) + 1 R 2 η ± 2 L 2 (supp ∂xψ ± R )
, and the conclusion comes from (3.10) and Lemma 3.1.

Localised energy of the domain wall

However, in the previous lemma, Ẽ± (w ± * ) is not a constant : it still depends on the localisation ψ ± R , and therefore on y ± . The following lemma estimates how far this quantity is from the constant E(w * ) := E γ (w ± * ). Lemma 4.2. There exists C > 0 such that, for any y ± such that y ± -R > 0 for i = 1 and 2, there holds

Ẽ± (w ± * ) -E(w * ) ≤ C e 2Γ(R-y ± ) .
Proof. By the properties of w ± and ψ ± R , we have

Ẽ± (w ± ) -E(w * ) = 1 2 ∂ x w ± * 2 + 2γ∂ x w ± * • (e 1 ∧ w ± * ) + sin 2 θ * (1 -ψ ± R (x)) dx ≤ C w ± * + e 1 2 H 1 (I±)
, where I + := (-∞, R -y + ) and I -:= (-R -y -, ∞), and the conclusion follows from Lemma 3.1.

Estimates on the quadratic terms

As for the quadratic terms in Proposition 4.1, we can estimate them by applying Lemma 3.10 to ν ± and ρ ± . Applying also Lemma 3.12, the following estimates hold. 

L Γ ν ± , ν ± ψ ± R ≥ 4λ 0 ν ± 2 H 1 (ψ ± R (x) dx) - 1 λ 0 ψ ± R ν ± sin(θ * ) dx 2 - C R 2 ε 2 L 2 + e 2Γ(R±y ∓ ) , L Γ ρ ± , ρ ± ψ ± R ≥ 4λ 0 ρ ± 2 H 1 (ψ ± R (x) dx) - 1 λ 0 ψ ± R ρ ± sin(θ * ) dx 2 - C R 2 ε 2 L 2 + e 2Γ(R±y ∓ ) , L Γ ν ± , ν ± ψ ± R ≤ 2 ν ± 2 H 1 (ψ ± R (x) dx) + C R 2 ε 2 L 2 + e 2Γ(R±y ∓ ) , L Γ ρ ± , ρ ± ψ ± R ≤ 2 ρ ± 2 H 1 (ψ ± R (x) dx) + C R 2 ε 2 L 2 + e 2Γ(R±y ∓ ) ,

Equivalence between localised energy and H 1 norm

Putting everything together, we get bounds by below and above for E ± (m).

Corollary 4.4. Under the assumptions of Lemma 2.1 and assuming L 1 > R, there exists C > 0 such that the following holds.

With same notations as in the conclusion of Lemma 2.1, for all t ∈ [0, T ],

2C 2 2 η ± 2 H 1 (ψ ± R dx) + C ε 2 H 1 + e 2Γ(R-y + ) + e 2Γ(R+y -) ≥ E ± (m) -E(w * ) ≥ 2λ 0 C 2 η ± 2 H 1 (ψ ± R dx) -C ε 3 H 1 + 1 R 2 ε 2 H 1 + e -2Γ(R-y + ) + e 2Γ(R+y -) .
Proof. We use Proposition 4.1 whose assumptions are satisfied thanks to the conclusion of Lemma 2.1. Thus, we get for all t ∈ [0, T ]

E ± (m) -Ẽ± (w ± * ) ≥ 1 2 (L Γ ν ± , ν ± ) ψ ± R + (L Γ ρ ± , ρ ± ) ψ ± R -C ε 3 H 1 + 1 R 2 ε 2 L 2 + e 2(R-y + ) + e 2(R+y -) ,
From this inequality, we can substitute Ẽ± (w ± * ) into E(w * ) thanks to Lemma 4.2. Then, both

(L Γ ν ± , ν ± ) ψ ± R and (L Γ ρ ± , ρ ± ) ψ ± R
can be estimated by below by using Corollary 4.3. Moreover, the terms

ψ ± R ν ± sin(θ * ) dx 2 and ψ ± R ρ ± sin(θ * ) dx 2
are controlled by the "almost-orthogonality" estimates of Lemma 3.14. From this estimate, we have

q(y + -y -) 2 ≤ e -Γ(y + -y -) ≤ e -2Γy + + e 2Γy -,
and thus the conclusion. The estimate by above is obtained with similar computations.

Proposition 2.3 follows by taking the sum of the two estimates and applying (3.11) from Lemma (3.12).

EVOLUTION OF THE ENERGY

In this section, we prove Proposition 2.4. The evolution of the energy is already known from [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]. We recall it here. 

1]

). There holds

d dt E γ (m) = -α (|δE γ (m)| 2 -|m • δE γ (m)| 2 ) dx + αh(t) (m ∧ e 1 ) • (m ∧ δE γ (m)) dx.
From this result, we define the so-called dissipation term

D := (|δE γ (m)| 2 -|m • δE γ (m)| 2 ) dx,
and the forcing term

F := (m ∧ e 1 ) • (m ∧ δE γ (m)) dx.
In particular, there holds d dt E γ (m) = -αD + αh(t)F.

Localisation

Like previously, we will localise each of these terms :

D ± (m) := (|δE γ (m)| 2 -|m • δE γ (m)| 2 )ψ R (±x) dx, F ± (m) := (m ∧ e 1 ) • (m ∧ δE γ (m))ψ R (±x) dx, sin θ * L Γ ν ± ψ ± R (x) dx = 2 ∂ x (sin θ * )ν ± ∂ x ψ ± R (x) dx + sin θ * ν ± ∂ 2 xx ψ ± R (x) dx.
Estimating these terms by using the fact that supp

∂ x ψ ± R ⊂ [-y ± -R, -y ± + R] (and the same for ∂ 2 xx ψ ± R ), we get ∂ x (sin θ * )ν ± ∂ x ψ ± R (x) dx ≤ ∂ x ψ L ∞ R ∂ x sin θ * L 2 ((-y ± -R,-y ± +R)) ν ± L 2 ((-y ± -R,-y ± +R)) ≤ C ∂ x ψ L ∞ R e Γ(R±y ∓ ) ν ± L 2 ((-y ± -R,-y ± +R)) , sin θ * ν ± ∂ 2 xx ψ ± R (x) dx ≤ ∂ 2 xx ψ L ∞ R 2 sin θ * L 2 ((-y ± -R,-y ± +R)) ν ± H 1 ((-y ± -R,-y ± +R)) ≤ C ∂ 2 xx ψ L ∞ R 2 e Γ(R±y ∓ ) ν ± H 1 ((-y ± -R,-y ± +R))
. Thus, we obtain

sin θ * L Γ ν ± ψ ± R (x) dx ≤ C R 2 ν ± 2 H 1 ((-y ± -R,-y ± +R)
) + e 2Γ(R±y ∓ ) , and the conclusion follows in the same way, using again Lemma 3.8.

By summing for ι = ±1, we get an estimate for F . 

d dt E γ (m) + λ 5 ε 2 H 2 ≤ Cα ε 2 H 2 ε H 1 + e Γ(R-y + ) + e Γ(R+y -) + 1 R + |h(t)| ε 2 H 1 + Cα|h(t)| e 2Γ(R-y + ) + e 2Γ(R+y -) + α λ 0 2 i=1 ψ ± R ν ± sin(θ * ) dx 2 + ψ ± R ρ ± sin(θ * ) dx 2 .
The conclusion follows by applying Lemma 3.14 to the last terms of the right-hand side.

PROOF OF THE DECOMPOSITION OF THE MAGNETIZATION

In this section, we prove Lemma 2.1 which decomposes the magnetization with two nice gauges. For g ± ∈ G such that ±y ± ≥ 0, we define the profile P g + ,g -:= g + .w + * +g -.w - * +e 1 . We also call P 0,g -:= P (0,0),g -. First, we prove an intermediate result for P g + ,g -in the same context as Lemma 3.4. Lemma 6.1. For all g [1] , g [2] , g [3] , g [4] ∈ G, there holds P g [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] ,g [START_REF] Carbou | Metastability of wall configurations in ferromagnetic nanowires[END_REF] -P g [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] ,g [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] H 1 ≤ C g [1] -g [3] + g [2] -g [4] .

Moreover, there exists y min > 0 such that, if (-1) i y [i] ≥ y 0 ≥ y min for all i for some y 0 , there also holds g [1] .w + * -g [3] .w + * 2 H 1 + g [2] .w - * -g [4] .w - From Lemma 3.4, assuming for instance y [1] ≤ y [3] and y [4] ≤ y [2] , we have for j ∈ {0, 1}

∂ j x g [1] .w + * (x) -∂ j x g [3] w + * (x) ≤ Ce -Γ max (0,x-y [3] ,y [1] -x) , ∂ j x g [2] .w - * (x) -∂ j x g [4] w - * (x) ≤ Ce -Γ max (0,x-y [2] ,y [4] -x) . Then, we can show that ∂ j

x g [1] .w + * (x) -∂ j x g [3] w + * (x) ∂ j x g [2] .w - * (-x) -∂ j x g [4] w - * (-x)

≤ Ce -Γ(y [1] -y [2] ) ×     
e -Γ(x-y [1] ) if x ≥ y [1] 1 if x ∈ [-y [2] , y [1] ] e Γ(x-y [2] ) if x ≤ -y [2] .

Therefore, we are able to prove that g [1] .w + * -g [3] .w + * , (g [2] .w - * -g [4] .w - * )(-x) H 1 ≤ C(y [1] -y [2] )e -Γ(y [1] -y [2] ) ≤ Cy 0 e -2Γy0 , and the conclusion follows.

Definition and properties of the functional Define

F : (L 2 + L ∞ ) × G 2 → R 4 (m, g + , g -) →     m • (g + .∂ x w + * ) dx m • (e 1 ∧ (g + .w + * )) dx m • (g -.∂ x w - * ) dx m • (e 1 ∧ (g -.w - * )) dx     . and F : H 1 × G 2 → R 4 (m, g + , g -) →     ε • (g + .∂ x w + * ) dx ε • (e 1 ∧ (g + .w + * )) dx ε • (g -.∂ x w - * ) dx ε • (e 1 ∧ (g -.w - * )) dx     ,
where H 1 := H 1 + e 1 , ε := m -P g + ,g -∈ H 1 , so that F (m, g + , g -) = F (m -P g + ,g -, g + , g -). Remark also that F (•, g + , g -) is linear. Then we also define

M := H 1 ∩ L ∞ (R, S 2 ).
Proposition 6.2. There exists C > 0 such that there holds for all m ∈ X and all g + , g -∈ G

F(m, g + , g -) ≤ C m X , for X = L 2 or L ∞ .
Proof. The result easily follows the fact that both ∂ x w ± * and e 1 ∧ w ± * are bounded and decay exponentially at infinity (for i = 1, 2) thanks to Lemma 3.1. Corollary 6.3. There exists C > 0 such that there holds for all m, m ′ ∈ X and all g ± ∈ G

F (m, g + , g -) -F (m ′ , g + , g -) ≤ C m -m ′ X , F (m, g + , g -) ≤ C m -P g + ,g -X , for X = L 2 or L ∞ .
Proof. Those estimates can be easily deduced from Proposition 6.2 and the definition of F , which gives in particular F (m, g + , g -)-

F (m ′ , g + , g -) = F (m -m ′ , g + , g -).
Similarly, we prove a similar property for D g + ,g -F .

Lemma 6.4. There exists C > 0 such that there holds for all m, m ′ ∈ X and all g ± ∈ G

D g + ,g -F (m, g + , g -) ≤ C m X , for X = L 2 or L ∞ .
Proof. From the definition of F , we see that

∂ y + F (m, g + , g -) =     -m • (g + .∂ 2 xx w + * ) dx -m • (e 1 ∧ (g + .∂ x w + * )) dx 0 0     , ∂ φ + F (m, g + , g -) =     m • (e 1 ∧ (g + .∂ x w + * )) dx m • (e 1 ∧ (e 1 ∧ (g + .w + * ))) dx 0 0     .
Therefore, since ∂ 2

x w + * , e 1 ∧ ∂ x w + * and e 1 ∧ w + * decay exponentially at infinity thanks to Lemma 3.1, we get the conclusion for these two differentiates. As for ∂ y -F and ∂ φ -F , the same arguments give the conclusion.

Let also define F 0 (ζ + , ζ -, g + , g -) := F (P ζ + ,ζ -, g + , g -) for any ζ ι , g ι ∈ G, and

A := 2 Γ     1 γ 0 0 -γ -1 0 0 0 0 1 γ 0 0 -γ -1    
We point out that A is invertible as soon as γ 2 < 1.

Lemma 6.5. For all g ± ∈ G such that y + -y -≥ y min , there holds

D ζ + ,ζ -F 0 (g + , g -, g + , g -) + A ≤ C(y + -y -)e -Γ(y + -y -) .
Proof. From the definition of F 0 and by noting ζ ι = (z ι , α ι ), we know that

∂ z + F 0 (ζ + , ζ -, g + , g -) = F (∂ z + (P ζ + ,ζ -), g + , g -) = -F(ζ + .∂ x w + * , g + , g -).
Therefore, taking ζ + = g + and applying Lemma 3.3, we get

∂ z + F 0 (g + , g -, g + , g -) = - 2 Γ     1 -γ 0 0     -     0 0 g + .∂ x w + * (-x) • (g -.∂ x w - * ) dx g + .∂ x w + * (-x) • (e 1 ∧ (g -.w - * )) dx     .
The last term can be estimated thanks to Corollary 3.2. Then, there also holds

∂ α + F 0 (ζ + , ζ -, g + , g -) = F (∂ φ + (P ζ + ,ζ -), g + , g -) = F (e 1 ∧ ζ + .w + * , g + , g -).
Thus, applying Lemma 3.3 again,

∂ α + F 0 (g + , g -, g + , g -) = - 2 Γ     γ -1 0 0     -     0 0 e 1 ∧ g + .w + * (-x) • (g -.∂ x w - * ) dx e 1 ∧ g + .w + * (-x) • (e 1 ∧ (g -.w - * )) dx     ,
and the last term can be estimated again with Corollary 3.2. Similar computations for ∂ z -F 0 (g + , g -, g + , g -) and ∂ φ -F 0 (g + , g -, g + , g -) give the conclusion.

Lemma 6.6. For any m ∈ M and any g ± ∈ G such that y + -y -≥ y min , there holds

D g + ,g -F (m, g + , g -) -A ≤ C m -P g + ,g -H 1 + (y + -y -)e -Γ(y + -y -)
Proof. From the definition of F and , there holds

F (m, g + , g -) = F (m, g + , g -) -F (P g + ,g -, g + , g -).
Therefore, using the fact that F (•, g + , g -) is linear and then so is D g + ,g -F (•, g + , g -), we obtain

D g + ,g -F (m, g + , g -) = D g + ,g -F (m, g + , g -) -D g + ,g -F (P g + ,g -, g + , g -) -D ζ + ,ζ -F 0 (g + , g -, g + , g -) = D g + ,g -F (m -P g + ,g -, g + , g -) -D ζ + ,ζ -F 0 (g + , g -, g + , g -).
The conclusion is reached by applying Lemma 6.4 to the first term of the right-hand side and Lemma 6.5 to the second term.

Implicit function theorem

Lemma 6.7.

1. There exists C > 0, y min > 0 and δ 0 > 0 such that, for all m ∈ M and g 0 ∈ G satisfying y 0 < -y min and δ := m -P 0,g0 H 1 < δ 0 , there exists unique g ± ∈ G such that

• g --g 0 ≤ Cδ and g + ≤ Cδ,

• m -P g + ,g -H 1 ≤ Cδ,

• F (m, g + , g -) = 0.

2. Moreover, up to taking δ 0 > 0 smaller and y min larger, (g + , g -) does not depend on g 0 .

The application

{m ∈ e 1 + H 1 | inf y0>ymin m -P 0,g0 H 1 < δ 0 } → G 2 m → (g + , g -) satisfying the previous properties is C ∞ with respect to the H 1 topology
Proof. 1st step : Existence and uniqueness First, remark that F (m, g + , g -) = 0 is equivalent to p = p -A -1 F (m, p) where p = (g + , g -). We define G(m, p) = p -A -1 F (m, p) for any p ∈ R 4 and we look for a fixed point for this function. Moreover, there holds D p G(m, p) = I 4 -A -1 D p F (m, p). Therefore, by applying Lemma 6.6, there holds

D p G(m, p) ≤ A -1 D p F (m, p) -A ≤ C A -1 q(y + -y -) + m -P g + ,g -H 1
Therefore, if we take p ∈ B p0 (ξ) (where p 0 := ((0, 0), g 0 )) for some ξ > 0 to be defined later and assuming ξ < 1 < y min , we get thanks to Lemma 6.1:

D p G(m, p) ≤ C A -1 q(y 0 ) + δ + g + + g --g 0 ≤ C A -1 q(y 0 ) + δ + ξ . Hence, D p G(m, p) ≤ 1 2 as soon as C A -1 q(y 0 ) + δ + ξ ≤ 1 2 . ( 6.1) 
On the other hand, we know that |F (m, p 0 )| ≤ C m -P p0 H 1 thanks to Lemma 6.2. Thus,

|G(m, p 0 ) -p 0 | ≤ A -1 |F (m, p 0 )| ≤ C A -1 δ.
Moreover, by assuming (6.1) so that D p G(m, .) ≤ 1 2 on B p0 (ξ), we get for all p ∈ B p0 (ξ),

|G(m, p) -G(m, p 0 )| ≤ 1 2 |p -p 0 | ≤ ξ 2 , which yields |G(m, p) -p 0 | ≤ C A -1 δ + ξ 2 .
This means that G(m, p) ∈ B p0 (ξ) as soon as

C A -1 δ + ξ 2 ≤ ξ, i.e. C A -1 δ ≤ ξ 2 . (6.2) 
From the previous computations, we conclude that G(m, •) is a contraction on B p0 (ξ) as soon as (6.1) and (6.2) hold. Taking ξ = 2C A -1 δ, (6.2) is thus satisfied and (6.1) is then also satisfied as soon as y 0 is large enough and δ small enough: to be more precise, as soon as C((y 0 + 1)e -Γy0 + δ) ≤ 1 2 .

The conclusion then follows from the fixed point theorem for a contraction. Remark that we could have also taken ξ = 2C A -1 δ 0 with δ 0 > 0 small enough, which also gives that the solution is unique in B p0 (2C A -1 δ 0 ).

2nd step : Dependence on g 0 Let δ ′ 0 > 0 and y ′ min > 0 and assume that there exists g 0 and g ′ 0 in G such that y 0 > -y ′ min and m -P 0,g0 < δ ′ 0 and the same for g ′ 0 . Then, there holds P 0,g ′ 0 -P 0,g0 H 1 ≤ m -P 0,g ′ 0 H 1 + m -P 0,g0 H 1 < 2δ ′ 0 .

On the other hand, P 0,g ′ 0 -P 0,g0 = g ′ 0 .w - * -g 0 .w - * , therefore, as soon as δ ′ 0 is small enough, we can apply Lemma 3.4 and get

|g ′ 0 -g 0 | ≤ Cδ ′ 0 .
Moreover, using Step 1, we get g + + g --g 0 ≤ Cδ ′ 0 , and the same for g ι′ with g ′ 0 . At the end, we get

g + ′ + g -′ -g 0 ≤ Cδ 0 ′ .
Thus, taking δ 0 ′ > 0 small enough, we get that (g + ′ , g -′ ) ∈ B p0 (2C A -1 δ 0 ). By uniqueness of (g + , g -) in this ball, we get (g + ′ , g -′ ) = (g + , g -). This is in particular true for (g + , g -). Therefore, the regularity of the application at m can be deduced from the implicit function theorem applied on F (which is a C ∞ function since ∂ x w ι * and e 1 ∧ w + * are H ∞ ) at the point (m, g + , g -). for some y 0 > y min , there exists g ι = (y ι , φ ι ) : I T → G for i = 1, 2 and ε ∈ C (I T , H 2 ) such that, for all t ∈ I T ,

• ιy ι (t) ≥ y 0 -1 ≥ y min -1,

• m(t) = g + (t).w + * + g -(t).w - * + e 1 + ε(t), • F (m(t), g + , g -) = F (ε(t), g + , g -) = 0,

• ε(t) H 1 ≤ C δ + q(y + -y -) .

Moreover, if m is C 1 (I T , H 1 ) (resp. W 1,∞ loc (I T , H 1 )), then both g ι are C 1 (I T ) (resp. locally Lipschitz).

Proof. As m ∈ C (I T , H 1 ), m is uniformly continuous on I T if T < ∞ or on every [0, T ′ ] for T ′ < ∞ if T = ∞. We assume T < ∞, since the proof can be easily adapted for the case T = ∞. We can thus find 0 = t 0 < t 

  (we equivalently use the notation ± instead of ±1), denote∀x ∈ R, w σ * (x) :=   cos(θ * (σ 1 x)) σ 2 sin(θ * (σ 1 x)) cos(γx) σ 1 σ 2 sin(θ * (σ 1 x)) sin(γx)   with θ * (x) := 2 arctan(e -Γx ),(1.2)and g σ * := (σ 1 y * , φ σ2 * ) where (1.3) for t ≥ 0, y * (t) :=x) → g σ * (t).w σ * (x) (1.5) is a solution to (LLG), which we call a domain wall. Recall that w σ * are the only solutions, up to a gauge in G, to the static equation w ∧ δE γ (w) = 0. Moreover, they satisfy δE(w σ * ) = β * w σ * where β * := 2Γ 2 sin 2 θ * . (1.6)

3. if s ≥ 2 ,

 2 one has the energy dissipation identity : t → E(m(t)) is a locally Lipschitz function in [0, T + ) (even C 1 provided h is continuous) and for all t ∈ [0, T + ),d dt E(m) = -α (|δE(m)| 2 -|m • δE(m)| 2 ) dx + αh(t) (m ∧ e 1 )• (m ∧ δE(m)) dx.
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 55 Under the assumptions of Proposition 4.1, there existsC > 0 such that, if ε H 1 ≤ 1, |F (m)| ≤ C( ε 2 H 1 + e 2Γ(R-y + ) + e 2Γ(R+y -) ) (5.3)5.3. Dissipation estimate Now, we prove Proposition 2.4 thanks to the previous lemmas. By definition, we have d dt E γ (m) = -αD + αh(t)F . From the estimates of Corollaries 5.3 and 5.5 on D and F respectively, we get

  3rd step : Regularity of the application In Step 1, we only considered p such thatD p F (m, p) -A ≤ 1 2 A -1 ,and thus D p F (m, p) is invertible sinceA -1 D p F (m, p) = I 4 -(I 4 -A -1 D p F (m, p)), with I 4 -A -1 D p F (m, p) H 1 ≤ A -1 D p F (m, p) -A ≤ 1 2 .
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 368 Decomposition near a 2-domain wall For any T > 0 possibly infinite, defineI T := [0, T ] if T < ∞ or I T := [0, ∞) if T = ∞There exist δ 2 > 0 and y min > 0 such that for all T > 0 possibly infinite and all m ∈ C (I T , H 1 ) satisfyingδ := sup t∈IT inf ζ ± ∈G ±y ± ≥y0 m(t) -P ζ + ,ζ -H 1 < δ 2

+ 3 H 1 )

 31 O (y + -y -)e -Γ(y + -y -) + O( ε H 1 ) + O( ε

  Recall that δ 0 ≤ 1, so that the first bound is immediate from the mean value theorem. Assume that for some, R ≥ 1, there exists t n → +∞ such that y * (t n ) ≤ R. We can assume that R ≥ 1/Γ is so large that q is decreasing on [R -1, +∞), and that t n+1 ≥ t n + 1 for all n. Then, in view of the Lipschitz bound on y * induced by (1.13), y * (t) ∈ [R -1, R + 1] for all t ∈ [t n , t n + 1] so that

									1.19)
	2) If lim inf t→+∞	y * (t) ln t	>	1 Γ	then (1.14) is fulfilled. This is in particular the case if lim sup t→+∞	th(t) < -	1 α	.
	Proof. 1) ∞			tn+1
					0	q(y * (t))dt ≥	n≥0	tn	q(y * (t))dt ≥	n	q(R + 1) = +∞,
	a contradiction with (1.14). Hence y * (t) → +∞ as t → +∞. Now for any r ≥ 1 and h ∈ [-1, 1],

  1 < • • • < t N = T such that, for all 0 ≤ 0 ≤ N -1 and t ∈ [t k , t k+1 ], there holds m(t) -m(t k ) H 1 ≤ δ. Then, for any k, we can find g ι k ∈ G (ι = ±1) such that y ι k ≥ y 0 and m(t) -P g + ≤ 25δ 2 + Cy 0 e -2Γy0 .Therefore, if we assume that δ is small enough and y 0 large enough, we can apply[START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] Claim 4.12] and get integers n +Consider now gι 1 affine on each segment [t k , t k+1 ] such that gι 1 (t k ) = g ι k for k = 0, . . . , N , and then consider smooth functions gι 0 such that gι 0 -gι 1 C (IT ) ≤ µ. Thus we get for any t ∈ [t k , t k+1 ] by applying Lemma 3.4gι 1 (t).w ι * -gι 1 (t k ).w ι * H 1 ≤ C|g ι 1 (t) -gι 1 (t k )| ≤ C|g ι 1 (t k+1 ) -gιLast, there also holdsm ∧ (m ∧ H(m)) = h(t) g + .(w + * ∧ (w + = ẏ+ ε • (g + .∂ 2 xx w + * ) dx -φ+ ε • (e 1 ∧ g + .∂ x w + × 4 matrix M 0 (ε) such that M 0 (ε) ≤ C ε H 1 .On the other hand, we can also compute F (∂ t ε, g + , g -) with the relation (6.3), and use Lemma 3.3 for the zeroth order terms, Corollary 3.2 for the terms involving both w + * and w - * , Proposition 6.2 for the terms in O(f y + ,y -(x)) and [4, Claim 4.9] for O ℓ 2 (ε). For example, one of the terms involving both w + -.∂ x w - * ) • (g + .∂ x w + * ) dx ≤ Cq(y + -y -).

					ẏ+	
				   	φ+ ẏ-	   	,	(6.4)
						
		k ,g -k	H 1	< 2δ. φ-
	In particular, for all k, From Lemma 6.1, we thus get g + k+1 .w + * -g + k .w + * n -k+1 such that, by noting µ = δ + √ y 0 e -Γy0 g ι k+1 + (0, 2πn ι P g + k+1 ,g -k+1 2 H 1 + g -k+1 .w --P g + k ,g -k * -g -k .w -H 1 < 5δ. * 2 H 1 k+1 and k+1 ) -g ι k ≤ C g ι k+1 .w ι * -g ι k .w ι * H 1 ≤ Cµ. with a 4 From this, we obtain
	We can then change every φ ι k by adding 2πn ι k	′ for some well chosen n ι k	′ ∈ Z such that, for all k,
	F (∂ t ε, g + , g -	g ι k+1 -g ι k ≤ Cµ.	

1 (t k )| ≤ Cµ,

and therefore, by using Lemma 6.1,

m(t) -P g+ 0 (t),g - 0 (t) H 1 ≤ m(t) -m(t k ) H 1 + m(t k ) -P g+ 1 (t k ),g - 1 (t k ) H 1 + P g+ 1 (t k ),g - 1 (t k ) -P g+ 1 (t),g - 1 (t) H 1 + P g+ 1 (t),g - 1 (t) -P g+ 0 (t),g - 0 (t) H 1 * ) dx = M 1 (ε) ẏ+ φ+ ,

where the 2

× 2 matrix M 1 (ε) satisfies M 1 (ε) ≤ C ε H 1 .

More generally, we obtain

F (∂ t ε, g + , g -) = M 0 (ε) * and w - * is (g -.∂ x w - * ) • (g + .∂ x w + * ) dx,

and from Corollary 3.2, we can estimate (g

L 2 = e 1 ∧ w σ * 2 L 2 = 2 Γ, (e 1 ∧ w σ
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-αh(t) g + .(w + * ∧ (w + *

Therefore, we have F = F + + F -and D = D + + D -. We also define, in a similar way as previously,

5.2. Estimates on the localised terms 5.2.1. Dissipation term. First, we show that the dissipation term is positive and can be estimated up to some negligible terms.

Lemma 5.2. Under the assumptions of Proposition 4.1, there exists C > 0 such that, if ε H 1 ≤ 1,

) + e 3Γ(R±y ∓ ) .

(5.1)

Proof. First, we recall that m = g + .(η

Once again, the pointwise estimate of the steps 3 and 5 of the proof of [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF]Proposition 4.16] still holds here, so that we get:

Using (4.3) and Lemma 3.8, we get

. The conclusion follows from (3.10) and the fact that both ε H 1 ≤ 1 and e Γ(R-y ± ) ≤ 1.

Once again, the localisation remains in the quadratic terms of the left-hand side. Applying Lemma 3.10 to both ν ± and ρ ± , along with Lemma 3.12, we obtain the following estimates: Corollary 5.3. Under the assumptions of Proposition 4.1, there exists C, λ 5 > 0 such that, for i = 1, 2 and j = 3 -i and R ≥ 1,

By assuming µ small enough, i.e. δ small enough and y 0 large enough, we can assume

where δ 0 comes from Lemma 6.7 and g+ 0 = (ỹ + 0 , φ+ 0 ) gives (g + 0 ) ′ = (ỹ + 0 , -φ+ 0 ). Moreover, for any t ∈ [t k , t k+1 ], we have

for µ small enough. Therefore, we can apply Lemma 6.7 to (-g + 0 (t)).m(t), which gives some g + 0 (t), g - 0 (t) ∈ G for any t ∈ I such that

′ . These gauges satisfy F (m(t), g + (t), g -(t)) = 0, and also |g ι (t) -gι 0 (t)| ≤ Cµ, which means that

for µ small enough and where g ι = (y ι , φ ι ). Moreover, since g+ 0 is smooth, (-g + 0 ).m has the same regularity as m. Therefore, if m is C 1 (I T , H 1 ), then the regularity result of Lemma 6.7 gives that g ι 0 ∈ C 1 (I T ) and so are g ι . Similar arguments when m ∈ W 1,∞ (I T , H 1 ) give the conclusion.

Decomposition under LLG flow

Lemma 6.9. If m ∈ C (I T , H 2 ) is a solution of (LLG), then both g ι given by Lemma 6.8 are Lipschitz and satisfy, for a.e.

Proof. Let assume first that m ∈ C (I T , H 3 ). From (LLG), we get ∂ t m ∈ C (I T , H 1 ). Therefore, both g ι given by Lemma 6.8 are C 1 (I T ). Then, we can compute using the fact that ε ∈ C 1 (I T , H 1 ):

Then, δE γ is linear and δE γ (w ± * ) = β * w ± * , so

with δE γ (ε) = O 1 2 (ε). Then, we also have

by using Corollary 3.2 and where

. and B 0 is a 4 × 4 matrix which satisfies B 0 ≤ C(y + -y -)e -Γ(y + -y -) . Hence, (6.4) and (6.5) imply

We know that B γ is invertible because γ 2 < 1, with inverse Γ -2 B γ , and thus B is also invertible. Therefore, as soon as y 0 e -2Γy0 + δ is small enough, B + B0 is invertible with inverse hence the conclusion for the H 3 case. We point out that this estimate only depends on the H 1 norm of ε. Therefore, for the general case m ∈ C (I T , H 2 ), we can use a limiting argument. See [START_REF] Côte | Asymptotic stability of precessing domain walls for the landau-lifshitz-gilbert equation in a nanowire with dzyaloshinskii-moriya interaction[END_REF] for further details.