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Abstract

In this paper, we consider a system of fully non linear second order parabolic par-
tial differential equations with interconnected obstacles and boundary conditions on
non smooth time dependent domains. We prove existence and uniqueness of a con-
tinuous viscosity solution. This system is the Hamilton-Jacobi-Bellman system of
equations associated with a m-switching problem in finite horizon, when the state pro-
cess is the solution of an obliquely reflected stochastic differential equation in non
smooth time-dependent domain. Our approach is based on the study of related sys-
tem of reflected generalized backward stochastic differential equations with oblique
reflection. We show that this system has a unique solution which is the optimal payoff
and provides the optimal strategy for the switching problem. Methods of the theory of
generalized BSDEs and their connection with PDEs with boundary condition are then
used to give a probabilistic representation for the solution of the PDEs system.

Keywords:Viscosity solution, Fully nonlinear partial differential equations, Obliquely re-
flected diffusion, non-smooth time-dependent domain, Generalized Backward stochastic
differential systems, Optimal switching
MSC Classification: 49L25, 60J50, 60H30, 60J60

1 Introduction

Let d ≥ 1, T > 0 and define the time-dependent domain D = D′∩
(
[0,T ]×Rd

)
, given D′,

a bounded open connected subset of R1+d . For each t ∈ [0,T ], we define the time sections
of D as Dt = {x : (t,x) ∈ D}. The aim of this paper is to investigate the existence and
uniqueness of a solution of the following PDEs system with interconnected obstacles and
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oblique derivative boundary conditions: ∀T > 0, ∀i = 1, ...,m,

min{vi(t,x)−max
j ̸=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v j(t,x)) j=1,...,m,σ
⊤(t,x)Dxv j(t,x))}= 0, (t,x) ∈ Do;

∂vi

∂γ
(t,x)+ψi(t,x,(v j(t,x)) j=1,...,m) = 0, (t,x) ∈ ∂D;

vi(T,x) = hi(x), x ∈ DT .

(1.1)

The set DT is the adherence of DT and Do, ∂D are defined by:

Do = D′∩
(
(0,T )×Rd),

∂D =
(
D′ \D′)∩ ((0,T )×Rd).

The operator L is given by L = 1
2 Tr{(σσ⊤)Dxx(.)}+ b⊤Dx(.) and at a boundary point

(t,x) ∈ ∂D, the quantity ∂

∂γ
is referred to as the oblique derivative along a given direction γ .

The system (1.1) is the Hamilton-Jacobi-Bellman (H-J-B) system of equations associ-
ated with a multidimensional switching problem when the diffusion is reflected in the non
smooth time-dependent domain D. Switching problems are used in many applied fields like
energy storage and finance. This has been investigated in several works (see e.g., [2, 3, 4],
etc.). In its general form, when the state process is the solution of a standard SDE which
takes its values in Rd , the m-switching problem is given by the solution of a system of
reflected BSDEs with oblique reflection. We mention the paper by Hamadene and Zhang
[13] that solves a system of reflected BSDEs under a specific monotonicity condition on the
driver function f = ( fi)i=1,...,m, where each component fi depends on the whole solution.
Based on the latter results, the study of the related H-J-B system of equations was carried on
by Hamadene and Morlais [12]. The authors proved that under the monotonicity condition,
there exists a unique continuous viscosity solution of the system of PDEs with intercon-
nected obstacles. Later on, Chassagneux, Elie and Kharroubi [5] proved the existence of a
unique solution for the system of reflected BSDEs without the monotonicity assumption on
the function f . Then, the related PDEs system with interconnected obstacles has been inves-
tigated by Hamadene, Mnif and Neffati [11], where a unique continuous viscosity solution
has been provided without the monotonicity condition. Afterwards, when the diffusion is
required to stay in a bounded time-independent domain, the switching problem has been
considered by Boufoussi, Hamadene and Jakani [1]. The existence and uniqueness of an
optimal strategy and optimal yield are provided by the unique solution of the associated sys-
tem of reflected generalized BSDE with oblique reflection. We underline that in this work
the results were obtained under monotonicity conditions on both f and the driver function
ψ in the generalized integral with respect to an increasing continuous process. This requires
that for each i = 1, . . . ,m, fi is non-decreasing with respect to the i-th component of y⃗ when
the other components are fixed. The second assumption on ψi, which is allowed to depend
only on the i-th component of y⃗, requires that ψi is non-increasing. The studies conducted
on standard generalized BSDEs given in Pardoux and Zhang [22] and the results on reflected
generalized BSDEs established in Ren and Xia [23], the solution of the reflected general-
ized BSDEs system with interconnected obstacles is obtained as the increasing limit of a se-
quence of reflected generalized BSDEs. In these two papers, when randomness comes from
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a normally reflected diffusion in a bounded time-independent domain, probabilistic repre-
sentations for solutions of semilinear partial differential equations with Neumann boundary
conditions are obtained. This is the key tool to solve the H-J-B system of equations consid-
ered in [1]. In the same framework, Lundström and Olofsson [19] deal with similar system
of PDEs. The authors prove the existence of a unique viscosity solution of fully nonlinear
parabolic partial differential equations system with interconnected obstacles and Neumann
boundary conditions using Perron’s method.

The main goal of this work is to consider a new class of reflected diffusions in which
we allow the domain to vary along time. More precisely, we consider the following type
of obliquely reflected SDE in the time-dependent domain D along the oblique direction γ:
∀s ∈ [t,T ],

X t,x
s = x+

∫ s
t b(r,X t,x

r )dr+
∫ s

t σ(r,X t,x
r )dWr +

∫ s
t γ(r,X t,x

r )d|Λt,x|r;

X t,x
s ∈ D̄s, |Λt,x|s =

∫ s
0 χ

{Xt,x
r ∈∂Dr}

d|Λt,x|r.
(1.2)

This type of reflected SDEs has been first introduced by Costantini,Gobet and El Karoui
[6] for smooth time-dependent domains when the direction of reflection is normal. Exis-
tence and uniqueness of the solution is then established. This result has been generalized by
Lundsrtom and Onskog in [20], where the authors have showed the existence and unique-
ness of the solution of the reflected SDE (1.2) in non smooth time dependent domain with
oblique reflection. In addition, using a pure PDE approach the authors proved existence and
uniqueness of a unique viscosity solution of a system of fully non linear PDEs with bound-
ary conditions on time-dependent domain. In the same geometric setting, we consider a
more general system that involves interconnected obstacles.

The purpose of this paper is to solve the system of variational inequalities (1.1) and
to give a probabilistic representation for its solution using systems of reflected generalized
BSDEs with oblique reflection. The approach used in this paper is different from the one
used in [1]. The main tool to tackle the PDEs system (1.1) is to establish first the link be-
tween standard generalized BSDEs in the case where the state process is a reflected SDE
in a time-dependent domain and some PDEs system with boundary conditions as will be
stated in section 2. This step requires that the time sections of D should be increasing in
time, in other words, Dt ⊂ Dt ′ , whenever t ⩽ t ′.

Under the above-mentioned geometric setting, let (X ,Λ) be the solution of the reflected
SDE (1.2). An example of application is the production of electricity in a hydro-power plant
that has several working modes. The water is collected in the reservoir, then it is released
into turbines, each of them has its mode of production of electricity. This installation raises
two concerns:
- The water in the reservoir should be sustained at a certain level.
- The choice of most profitable mode of production.
Let Xs be the level of water in the reservoir at time s. For safety reasons, the level of water
should not exceed the capacity of the reservoir that will be denoted lmax. On the other hand,
the water level should remain above a threshold level lmin(s), which itself is likely to drop
off at each time s. Therefore, at each time s, actions should be made in order to satisfy the
condition Xs ∈ D̄s := [lmin(s), lmax] and to cope with the demand of the power at each time
s. As a consequence, the working mode of the station is chosen according to parameters
which include the level of water X in the dam which is a reflected stochastic process in the
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bounded time dependent domain D. More precisely, let α be a strategy of management of
the hydro-power station, then its yield from s to T is given by:

Γs(α) := E
[∫ T

s
fα(r,X t,x

r )dr+
∫ T

s
ψα(r,X t,x

r )d|Λt,x|r −Gα
T +hα(X

t,x
T )
]
. (1.3)

The quantity hα(X
t,x
T ) is the terminal profit,

∫ T
s fα(r,X

t,x
r )dr is the running payoff, whereas∫ T

s ψα(r,X
t,x
r )d|Λt,x|r stands for the cost of maintaining the level of the dam in the appro-

priate zone. Finally, the power plan manager aims maximising Γs(α) by switching between
modes at some stopping times. This, induces the total switching cost Gα

T .

The switching problem is related to system of reflected GBSDEs of the following form:
∀t ⩽ s ⩽ T , i = 1, ...,m

Y i
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,Y⃗ t,x

r ,Zi
r)dr+

∫ T
s ψi(r,X

t,x
r ,Y⃗ t,x

r )d|Λt,x|r

+Ki
T −Ki

s −
∫ T

s Zi
rdWr,

Y i
s ⩾ max

j ̸=i
(Y j

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i

s −max
j ̸=i

(Y j
s −gi j(s,X

t,x
s ))}dKi

s = 0.

(1.4)

This system is different from the one studied in [1]. We allow the generator ψ to depend
on the whole solution. Moreover, without assuming any assumption on neither f nor ψ , we
establish the existence of unique solution for the generalized reflected BSDEs system which
provides the optimal strategy and the optimal yield as well as the solution of the PDEs sys-
tem (1.1).

This paper is organized as follows. In the next section, we present the assumptions we
need on the time-dependent domain D and the direction of reflection γ . We collect also
some results on the reflected SDE in the time dependent domain (1.2) and we give some
estimates for the solution. Then we make the link between standard generalized BSDEs in
the markovian setting i.e., when randomness comes from X solution of (1.2), and systems
of fully non linear PDEs and boundary conditions on time-dependent domains. In section 3,
we establish existence and uniqueness of the solution for the reflected generalized BSDEs
with oblique reflection. We also give a representation of the solution as the value function
of our switching problem. Section 4 is devoted to the study of the system of PDEs with
interconnected obstacles and boundary conditions on time dependent domain. First, we
establish a comparison principle for a particular system of PDEs. Then we make use of the
results of sections 2 and 3 to prove the existence of a viscosity solution. Finally, we prove
the existence and uniqueness in the general case by a Picard iteration argument.

2 Preliminaries and notations

2.1 Geometry

We consider a non-smooth time-dependent domain as defined in [20]. More precisely, given
d ≥ 1, T > 0 and a bounded open connected set D′ ⊂ R1+d . We will refer to
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D = D′∩
(
[0,T ]×Rd

)
, as a time-dependent domain. Given D and t ∈ [0,T ], we define the

time sections of D as Dt = {x : (t,x) ∈ D}. We assume that:

Dt ̸=∅, and that Dt is open connected for every t ∈ [0,T ]. (2.1)

In order to establish the link between generalized BSDEs and PDEs when the state pro-
cess is a reflected diffusion in some time-dependent domain, we assume that the following
assumption holds throughout this paper:

Dt ⊂ Dt ′ , whenever t ≤ t ′, t, t ′ ∈ [0,T ]. (2.2)

Let ∂Dt for t ∈ [0,T ] denote the boundary of Dt , the direction of reflection γ is oblique at
each boundary point x ∈ ∂Dt for t ∈ [0,T ] and we assume that γ satisfies:

γ ∈ C 1,2
b (R1+d ,B(0,1)). (2.3)

and γ(t,x) ∈ S(0,1), ∀(t,x) ∈V where V is an open subset such that Dc
t ⊂V , ∀t ∈ [0,T ].

Moreover, there exists a constant ρ ∈ (0,1) such that the exterior condition holds: ∀t ∈
[0,T ], x ∈ ∂Dt ,

∪
0⩽ξ⩽ρ

B(x−ξ γ(t,x),ξ ρ)⊂ Dc
t , (2.4)

then γ points into the domain.
Finally, regarding the temporal variation of the domain, we define d(t,x) := inf

y∈Dt
|y− x|,

∀t ∈ [0,T ], x ∈ Rd that is assumed to satisfy for some p ∈ (1,∞), ∀x ∈ Rd

d(.,x) ∈ W 1,p([0,T ], [0,∞]), (2.5)

where W 1,p([0,T ], [0,∞]) denotes the Sobolev space of functions whose first order weak
derivatives belong to Lp([0,T ]) with Sobolev norm uniformly bounded in space and such
that ∂td(t,x) the first weak derivative in the sense of distribution is jointly measurable in
(t,x). Taking into account (2.4), we can deduce that the interior cone condition is satisfied
as well:

∪
0⩽ξ⩽ρ

B(x+ξ γ(t,x),ξ ρ)⊂ Dt , ∀t ∈ [0,T ], x ∈ ∂Dt . (2.6)

Then similarly to Remark 2.1 in [20], we deduce that for all θ ∈ (0,1), such that θ 2 > 1−ρ2,
there exists δ > 0 such that

⟨y− x,γ(t,x)⟩ ≥ −θ |y− x|, ∀x ∈ ∂Dt , y ∈ Dt , t ∈ [0,T ], (2.7)

for x,y satisfying |x− y|⩽ δ .
Moreover, by Remark 2.2 in [20], there exists α̂ = 1−1/p ∈ (0,1) and K ∈ (0,∞) such that
for all s, t ∈ [0,T ], x ∈ Rd ,

|d(s,x)−d(t,x)| ≤ K|s− t|α̂ . (2.8)

Then, if we consider the function l(r) = sup
s,t∈[0,T ]
|s−t|⩽r

sup
x∈D̄s

inf
y∈D̄t

|s− y| introduced in [6], then by

recalling Remark 2.4 in [20], the condition (2.8) is equivalent to l(r)⩽ Krα̂ .
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2.2 Reflected SDEs in time-dependent domain

Let (Ω,F ,P) be a fixed probability space on which is defined an n-dimensional Brownian
motion W = (Wt)0⩽t⩽T , where F = (Ft)0≤t≤T is the completed filtration of (σ(Ws,0 ≤
s ≤ t))t≤T with all P−null sets of F0. Let b : [0,T ]×Rd −→ Rd and σ : [0,T ]×Rd −→
Rd ×Rn be continuous functions. Let us now introduce the notion of reflected SDEs in
time-dependent domain that we will adopt throughout our work as it has been considered in
[20]. We start by giving a definition which is borrowed from the same work:

Definition 2.1 A strong solution to the reflected SDEs in D̄ driven by W and with coef-
ficients b and σ , direction of reflection along γ and initial condition (t,x) ∈ D̄0 is a Ft-
adapted stochastic process Xt which satisfies P-almost surely, whenever t ∈ [0,T ],

Xt = x+
∫ t

0 b(r,Xr)dr+
∫ t

0 σ(r,Xr)dWr +Λt ;

Xt ∈ D̄t , |Λ|t =
∫ t

0 χ{Xr∈∂Dr}
d|Λ|r < ∞.

Λt =
∫ t

0 γ(r,Xr)d|Λ|r.

(2.9)

We introduce the following assumptions:

(a) The functions b and σ are Lipschitz continuous with respect to x, i.e., there exists a
positive constant C such that

|b(t,x)−b(t,x′)|+ |σ(t,x)−σ(t,x′)| ≤C|x− x′|, ∀(t,x,x′) ∈ [0,T ]×Rd ×Rd .
(2.10)

(b) The functions b and σ are of linear growth in (t,x), i.e., there exists a positive constant
C such that

|b(t,x)|+ |σ(t,x)| ≤C(1+ |x|), ∀(t,x) ∈ [0,T ]×Rd . (2.11)

Next, we recall the following result on existence and uniqueness of solution for the reflected
SDE (2.9):

Theorem 2.1 Let D be a time-dependent domain satisfying (2.1),(2.2) and (2.5). If assump-
tion (2.10) holds. Then, the reflected SDE (2.9) has a unique strong solution.

The next proposition states some crucial properties of the reflected SDE (2.9) that will be
needed in the study of our generalized BSDE and PDEs system:

Proposition 2.1 For each t ∈ [0,T ], there exists a constant C such that for all x,x′ ∈ D0,

E[ sup
0⩽s⩽T

| Xx
s −Xx′

s |4]≤C | x− x′ |4,

E[ sup
0⩽s⩽T

| |Λx|s −|Λx′ |s |4]≤C | x− x′ |4 . (2.12)

Moreover, for each µ > 0, s ∈ [0,T ], there exists C(µ,s) such that for all x ∈ D0,

E(eµ|Λx|s)≤C(µ,s). (2.13)
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The proof of Proposition 2.1 relies on the following two lemmas. The first one estab-
lishes the existence of a class of test functions that interact with γ in a suitable way. The
second lemma provides the existence of a non negative test function C 1,2(D̄,R) with a gra-
dient aligned with γ at the boundary.

Lemma 2.1 For any θ ∈ (0,1), there exist a family {wα}α>0 of functions wα ∈C 1,2([0,T ]×
Rd ×Rd ,R) and positive constants ξ ,C such that for all (t,x,y) ∈ [0,T ]×Rd ×Rd ,

wα(t,x,y)⩾ ξ α|x− y|2, (2.14)

wα(t,x,y)⩽C
( 1

α
+α|x− y|2

)
. (2.15)

If x ∈ ∂Dt , we have:

⟨Dxwα(t,x,y),γ(t,x)⟩⩽Cα|x− y|2, whenever ⟨y− x,γ(t,x)⟩ ≥ −θ |y− x|, (2.16)

and

⟨Dywα(t,x,y),γ(t,x)⟩⩽ 0, whenever x ∈ ∂Dt ,⟨x− y,γ(t,x)⟩ ≥ −θ |y− x|. (2.17)

If y ∈ ∂Dt ,

⟨Dywα(t,x,y),γ(t,y)⟩⩽Cα|x− y|2, whenever ⟨x− y,γ(t,y)⟩ ≥ −θ |y− x|. (2.18)

Moreover,
|∂twα(t,x,y)|⩽Cα|x− y|2, (2.19)

|Dywα(t,x,y)|⩽Cα|x− y|, (2.20)

|Dxwα(t,x,y)+Dywα(t,x,y)|⩽Cα|x− y|2. (2.21)

Finally,

Dxxwα(t,x,y)⩽Cα

(
I −I
−I I

)
+Cα|x− y|2

(
I 0
0 I

)
. (2.22)

Lemma 2.2 There exists a nonnegative function α ∈ C 1,2(D̄,R) such that for x ∈ ∂Dt ,
t ∈ [0,T ],

⟨Dxα(t,x),γ(t,x)⟩⩾ 1. (2.23)

PROOF.[Proof of Theorem 2.1] The proof of (2.12) is a result of Lemma 5.1 in [20]. To
prove (2.13), let α ∈ C 1,2(D̄,R) be the positive function defined in the previous lemma,
then by applying Itô formula to α(s,Xs) we get:

α(t,Xt) = α(0,X0)+
∫ t

0
∂sα(s,Xs)ds+

∫ t

0
⟨Dxα(s,Xs),b(s,Xs)⟩ds

+
∫ t

0
⟨Dxα(s,Xs),γ(s,Xs)⟩d|Λ|s +

∫ t

0
⟨Dxα(s,Xs),σ(s,Xs)dWs⟩

+
1
2

∫ t

0
Dxxα(s,Xs)σ(s,Xs)ds.
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This implies that,∫ t

0
⟨Dxα(s,Xs),γ(s,Xs)⟩d|Λ|s ⩽ α(t,Xt)−

∫ t

0
∂sα(s,Xs)ds

−
∫ t

0
⟨Dxα(s,Xs),b(s,Xs)⟩ds−

∫ t

0
⟨Dxα(s,Xs),σ(s,Xs)dWs⟩

− 1
2

∫ t

0
Dxxα(s,Xs)σ(s,Xs)ds.

Note that thanks to Lemma 2.2, we have:∫ t

0
⟨Dxα(s,Xs),γ(s,Xs)⟩d|Λ|s ⩾ |Λ|t . (2.24)

Since α ∈ C 1,2(D̄,R) and thanks to assumption (2.11) together with the compactness of D̄,
we have:

α(t,Xt)−
∫ t

0
[∂s +L ]α(s,Xs)ds ⩽ c(1+ t),

where c is a positive constant depending only on α,b,σ and D. It follows that,

|Λ|t ⩽ c(1+ t)−
∫ t

0
⟨Dxα(s,Xs),σ(s,Xs)dWs⟩. (2.25)

Then, by denoting Mt =−
∫ t

0⟨Dxα(s,Xs),σ(s,Xs)dWs⟩ we have: ∀µ > 0

eµMt = 1−
∫ t

0
µeµMsdMs −

∫ t

0
µeµMsd⟨M⟩s

1−µ

∫ t

0
eµMs⟨Dxα(s,Xs),σ(s,Xs)dWs⟩+µ

2eµMs |Dxα(s,Xs)||σ(s,Xs)|ds

By the boundedness of σ ,α and Dxα on D̄, the process
∫ .

0 eµMs⟨Dxα(s,Xs),σ(s,Xs)dWs⟩ is
a local martingale and we have:

E(eµMt )≤ 1+ cµ
2
∫ t

0
E(eµMs)ds.

Using Gronwall’s lemma we deduce that

E(eµMt )≤ ecµ2t , ∀t ⩾ 0.

Then, back to (2.25) and by taking the exponential on both hand sides, we obtain: ∀µ > 0,

E(eµ|Λ|t )≤ ecµ(1+t)+cµ2t ≤ cµ,T , ∀t ⩾ 0.

Hence, for t = T and p ⩾ 1, we can see that:

E|Λ|pT ≤ E(ep|Λ|T )≤ c.

Next, let (t,x) ∈ D be fixed, we define (X t,x
s ,Λt,x

s )t⩽s⩽T as the unique solution of:
X t,x

s = x+
∫ s

t b(r,X t,x
r )dr+

∫ s
t σ(r,X t,x

r )dWr +
∫ s

t γ(r,X t,x
r )d|Λt,x|r;

X t,x
s ∈ D̄s, |Λt,x|s =

∫ s
0 χ

{Xt,x
r ∈∂Dr}

d|Λt,x|r.
(2.26)
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2.3 Associated generalized BSDE and PDE

Let (X t,x
s ,Λt,x

s )t⩽s⩽T be the unique solution of the reflected SDE (2.26). Then, consider the
following functions:

f : (t,x,y,z) ∈ [0,T ]×Rd+m+k 7−→ f (t,x,y,z) ∈ Rm,

ψ : (t,x,y) ∈ [0,T ]×Rd+m 7−→ ψ(t,x,y) ∈ Rm,

h : x ∈ Rd 7−→ h(x) ∈ Rm.

We should emphasize that each component fi of the function f may depend only on the i-th
row of Z, then assume that:

(H0) The function h is continuous.

(H1) (i) (t,x) 7−→ f (t,x, y⃗,z) and (t,x) 7−→ ψ(t,x, y⃗) are uniformly continuous with re-
spect to (⃗y,z) and y⃗ respectively.

(ii) f and ψ are lipschitz continuous with respect to (⃗y,z) and y⃗ respectively.

(iii) ∃β < 0 such that ⟨y− ȳ,ψ(t,x,y)−ψ(t,x, ȳ)⟩ ≤ β | y− ȳ |2.

Then, thanks to [22], the following generalized BSDE: ∀t ⩽ s ⩽ T ,

Y t,x
s = h(X t,x

T )+
∫ T

s
f (r,X t,x

r ,Y t,x
r ,Zt,x

r )dr+
∫ T

s
ψ(r,X t,x

r ,Y t,x
r )d|Λt,x|r

−
∫ T

s
Zt,x

r dWr, (2.27)

has a unique solution. Moreover, taking into account Lemma (2.1), the following estimates
hold:

E
[

sup
t⩽s⩽T

| Y t,x
s |2 +

∫ T

t
| Y t,x

r |2 d|Λt,x|r +
∫ T

t
||Zt,x

r ||2dr

]
< ∞. (2.28)

Now, we define:

u(t,x) := Y t,x
t . (2.29)

This quantity is deterministic since (Y t,x
s )t⩽s⩽T is measurable with respect to the σ -algebra

σ(Wr −Wt , t ⩽ r ⩽ s). Next, let D be the time-dependent domain defined in paragraph 2.1.
and set D̃ = D′ ∩

(
[0,T ]×Rd

)
. It holds that the function u is continuous on D̃. Then it is

bounded on D̃.

Remark 2.1 The continuity of u is proven using similar arguments to the case of standard
reflected SDEs. Indeed, under the assumptions that we have made on the domain D and the
reflection γ , it turns out that the pair of processes (X t,x,Λt,x) has the similar properties of the
solutions of SDEs with reflection in bounded connected closed time-independent domains
(we refer the reader to [21] for further details).
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In order to study the associated PDE system, we introduce some spaces following the nota-
tions of [20]:

Do = D′∩
(
(0,T )×Rd),

∂D =
(
D′ \D′)∩ ((0,T )×Rd). (2.30)

Then, we consider the following system of PDEs: ∀i = 1, ...,m,
∂tui(t,x)+L ui(t,x)+ fi(t,x,u(t,x),σ⊤(t,x)Dxui(t,x)) = 0, (t,x) ∈ Do;

∂ui

∂γ
(t,x)+ψi(t,x,u(t,x)) = 0, (t,x) ∈ ∂D;

u(T,x) = h(x), x ∈ DT ,

(2.31)

where the operator L is defined by L = 1
2 Tr(σσ⊤)D2

xx(.)+b⊤Dx(.) and at a point (t,x) ∈
∂D we set ∂

∂γ
= ⟨γ(t,x),Dx(.)⟩.

Definition 2.2 (i) A function u ∈ USC(D̃) is a viscosity subsolution of (2.31) if for any
i ∈ {1, ...,m} and ϕ ∈ C 1,2([0,T ]×Rd), whenever (t,x) ∈ D̃ is a local maximum of ui −ϕ ,
then: ∀i = 1, ...,m

−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x))≤ 0, (t,x) ∈ Do,

min{−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x));

−⟨γ(t,x),Dxϕ(t,x)⟩−ψi(t,x,u(t,x))} ≤ 0, (t,x) ∈ ∂D,

ui(T,x)≤ hi(x), x ∈ DT .

(2.32)

(ii) A function u ∈ LSC(D̃) is a viscosity supersolution of (2.31) if for any i ∈ {1, ...,m}
and for any ϕ ∈ C 1,2([0,T ]×Rd) whenever (t,x) ∈ D̃ is a local minimum of ui −ϕ , then:
∀i = 1, ...,m

−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x))≥ 0, (t,x) ∈ Do,

max{−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x));

−⟨γ(t,x),Dxϕ(t,x)⟩−ψi(t,x,u(t,x))} ≥ 0, (t,x) ∈ ∂D,

ui(T,x)≥ hi(x), x ∈ DT .

(2.33)

(iii) Finally, u is a viscosity solution if and only if it is a viscosity supersolution and a
subsolution of the system of PDEs (2.31).

Theorem 2.2 The function defined by (2.29) is a viscosity solution of the system of PDEs
(2.31) in the sense of Definition 2.2.

PROOF. Step: 1 In the first step, we show that the function u is a viscosity subsolution
of (2.31). Let (t0,x0) ∈ D̃ and ϕ ∈ C 1,2([0,T ]×Rd) such that ϕ(t0,x0) = ui(t0,x0) and
ϕ(t,x)⩾ ui(t,x) for any (t,x) ∈ D̃.
1st case: We consider the case (t0,x0) ∈ Do and such that the following holds:

−∂tϕ(t0,x0)−L ϕ(t0,x0)− fi(t0,x0,u(t0,x0),σ
⊤(t0,x0)Dxϕ(t0,x0))> 0.
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We then will find a contradiction. Note that by continuity of the data we can find ε > 0 and
α > 0 such that for each (t,x) ∈ {t : |t − t0|⩽ α}×{x : |x− x0|⩽ α} ⊂ Do, we have:

−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x))⩾ ε. (2.34)

Define

τ = inf{s ⩾ t0 : X t0,x0
s /∈ Dt0}∧ inf{s ⩾ t0 : |X t0,x0

s − x0|> α}∧ (t0 +α),

then thanks to assumption (2.2) we have Dt0 ⊂ Ds ⊂ Dt0+α which implies that d|Λt0,x0 |s = 0
over [t0,τ]. Then, for all t0 ⩽ s ⩽ τ , we have:

Y t0,x0,i
s = Y t0,x0,i

τ +
∫ T

s
fi(r,X t0,x0

r ,Y t0,x0
r ,Zt0,x0,i

r )dr−
∫ T

s
Zt0,x0,i

r dWr.

On the other hand, by applying Itô’s to ϕ(s,X t0,x0
s ), we get:

ϕ(τ,X t0,x0
τ ) = ϕ(s,X t0,x0

s )+
∫

τ

s
∂rϕ(r,X t0,x0

r )dr+
∫

τ

s
L ϕ(r,X t0,x0

r )dr

−
∫

τ

s
σ
⊤(r,X t0,x0

r )Dxϕ(r,X t0,x0
r )dWr.

By inequality (2.34), we deduce that,

−[∂rϕ +Lrϕ](r,X t0,x0
r )− fi(r,X t0,x0

r ,u(r,X t0,x0
r ),(Dxϕσ)(r,X t0,x0

r ))⩾ ε.

Note that ϕ(τ,X t0,x0
τ )⩾ ui(τ,X t0,x0

τ ) =Y t0,x0,i
τ .Then, since ϕ(t0,x0)> ϕ(t0,X

t0,x0
t0 )−ε(τ − t0)

and

ϕ(s,X t0,x0
s )−

∫
τ

s
εdr = ϕ(τ,X t0,x0

τ )−
∫

τ

s
εdr−

∫
τ

s
{[∂rϕ +Lrϕ](r,X t0,x0

r )+ ε}dr

−
∫

τ

s
σ
⊤(r,X t0,x0

r )Dxϕ(r,X t0,x0
r )dWr,

we deduce from comparison theorem 1.4 in [22] that:

ϕ(t0,x0)− ε(τ − t0)⩾ ui(t0,x0) = ui(t0,x0).

This means that ϕ(t0,x0)> ui(t0,x0) which is a contradiction.
2sd case: If (t0,x0) ∈ ∂D and if we assume that the following holds,

min{−∂tϕ(t0,x0)−L ϕ(t0,x0)− fi(t0,x0,u(t0,x0),σ
⊤(t0,x0)Dxϕ(t0,x0));

−⟨γ(t0,x0),Dxϕ(t0,x0)⟩−ψi(t0,x0,u(t0,x0))}> 0.

Then on a neighborhood of (t0,x0), there exists ε > 0 and α > 0 such that for each (t,x) ∈
{t : |t − t0|⩽ α}×{x : |x− x0|⩽ α} ⊂ ∂D, we have:

min{−∂tϕ(t,x)−L ϕ(t,x)− fi(t,x,u(t,x),σ⊤(t,x)Dxϕ(t,x));

−⟨γ(t,x),Dxϕ(t,x)⟩−ψi(t,x,u(t,x))}⩾ ε. (2.35)

Next, we set:

τ = inf{s ⩾ t0 : |X t0,x0
s − x0|> α}∧ (t0 +α).
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Then, for all t0 ⩽ s ⩽ τ , we have:

Y t0,x0,i
s = Y t0,x0,i

τ +
∫ T

s
fi(r,X t0,x0

r ,Y t0,x0
r ,Zt0,x0,i

r )dr

+
∫ T

s
ψi(r,X t0,x0

r ,Y t0,x0
r )d|Λt0,x0 |r −

∫ T

s
Zt0,x0,i

r dWr.

Again, by applying Itô’s for ϕ(s,X t0,x0
s ) we get:

ϕ(s,X t0,x0
s ) = ϕ(τ,X t0,x0

τ )−
∫

τ

s
∂rϕ(r,X t0,x0

r )dr−
∫

τ

s
L ϕ(r,X t0,x0

r )dr

+
∫

τ

s
⟨γ(r,X t0,x0

r ),Dxϕ(r,X t0,x0
r )⟩d|Λt0,x0 |r

−
∫

τ

s
σ
⊤(r,X t0,x0

r )Dxϕ(r,X t0,x0
r )dWr.

It follows from (2.35) that for any t0 ⩽ s ⩽ τ ,

min{−[∂rϕ +Lrϕ](r,X t0,x0
r )− fi(r,X t0,x0

r ,u(r,X t0,x0
r ),(Dxϕσ)(r,X t0,x0

r ));

−⟨γ(r,X t0,x0
r ),Dxϕ(r,X t0,x0

r )⟩−ψi(r,X t0,x0
r ,Y t0,x0

r )}⩾ ε.

Similarly, as in the first case it suffices to use the comparison for GBSDE [22] to obtain:

ϕ(t0,x0)> ϕ(t0,x0)− ε(τ − t0)⩾ ui(t0,X
t0,x0
t0 ) = ui(t0,x0),

which is contradictory.
Step: 2 By the same reasoning, we can show that u is a viscosity supersolution of the PDEs
system (2.31).

3 System of reflected GBSDEs with oblique reflection

In this section we study a system of reflected GBSDEs with interconnected obstacles. We
establish existence and uniqueness of the solution. Our main tool is the relation between
reflected generalized BSDEs and optimal m-states switching problem which enables us to
write the solution as its value function. A fact that we will often use throughout this paper.
Let us introduce the following spaces:

H 2 = {(ψt)0⩽t⩽T Ft-progressively measurable/E[
∫ T

0
| ψt |2 dt]< ∞};

S 2 = {(ψt)0⩽t⩽T Ft-progressively measurable/E[ sup
0≤t≤T

| ψt |2]< ∞};

A 2 = {(Kt)0⩽t⩽T Ft-adapted continuous increasing/K0 = 0,E[K2
T ]< ∞}.

We will work within a Markovian setting, and we assume that randomness stems from
(X t,x

s ,Λt,x
s )t⩽s⩽T the solution of the reflected SDE (2.26). Let us introduce the following

assumptions: ∀i ∈ J := {1, ...,m},

(H0) hi : Rd −→ R is continuous such that

hi(x)≥ max
j ̸=i

(h j(x)−gi j(T,x)), ∀x ∈ Rd . (3.1)
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(H1) Let fi : [0,T ]×Rd×m×k −→ Rd×m×k and ψi : [0,T ]×Rd×m −→ R be such that

(i) (t,x) −→ fi(t,x, y⃗,z) and (t,x) −→ ψi(t,x, y⃗) are continuous uniformly w.r.t.
(⃗y,z) and y⃗ respectively;

(ii) fi and ψi are Lipschitz continuous with respect to (⃗y,z) and y⃗ respectively;

(H2) For any j ∈ {1, ...,m}, we have:

(i) gi j : [0,T ]×Rd −→ R is continuous, non-negative such that gii = 0;

(ii) gi j satisfies the non-free loop property, i.e.,∀(t,x) ∈ [0,T ]×Rd , ∀i1, ..., ik such
that i1 ̸= i2, i1 = ik and card{i1, ..., ik}= k−1, we have:

gi1i2(t,x)+ ...+gik−1ik(t,x)> 0. (3.2)

The system of interest is of the following type: ∀t ⩽ s ⩽ T , i = 1, ...,m

Y i,t,x ∈ S 2, Ki,t,x ∈ A 2, Zi,t,x ∈ H 2,d ;

Y i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,Y⃗ t,x

r ,Zi,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r ,Y⃗ t,x

r )d|Λt,x|r

+Ki,t,x
T −Ki,t,x

s −
∫ T

s Zi,t,x
r dWr,

Y i,t,x
s ⩾ max

j ̸=i
(Y j,t,x

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i,t,x

s −max
j ̸=i

(Y j,t,x
s −gi j(s,X

t,x
s ))}dKi,t,x

s = 0.

(3.3)

Theorem 3.1 Assume that the data (hi)i∈J , ( fi)i∈J,(ψi)i∈J and (gi j)(i, j)∈J2 satisfy the as-
sumptions (H0), (H1) and (H2). There exists a unique solution of the system of generalized
reflected BSDEs (3.3).

PROOF. The proof consists in several steps.
Step 1: Let µ > 0 and λ > 0 be fixed and let M 2

µ,λ (|Λ
t,x|) denote the set of progressively

measurable processes (ρs)t⩽s⩽T such that the following norm is finite:

∥ρ∥M 2
µ,λ (|Λt,x|) := E

(∫ T

t
eµs+λ |Λt,x|s | ρs |2 ds+

∫ T

t
eµs+|Λt,x|s | ρs |2 d|Λt,x|s

)
. (3.4)

Let −→u be fixed in (S 2)m. It follows from Proposition 2.1 that ũi ∈ M 2
µ,λ (|Λ

t,x|), for every
i = 1, ...,m. Then, we consider the following system: ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Y u,i ∈ S 2, Zu,i ∈ H 2,d , Ku,i ∈ A 2;

Y u,i
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r , u⃗r,Z

u,i
r )dr+

∫ T
s ψi(r,X

t,x
r , u⃗r)d|Λt,x|r

+Ku,i
T −Ku,i

s −
∫ T

s Zu,i
s dWr,

Y u,i
s ≥ max

j ̸=i
(Y u, j

s −gi j(s,X
t,x
s )),

∫ T
0 [Y u,i

s −max
j ̸=i

(Y u, j
s −gi j(s,X

t,x
s ))]dKu,i

s = 0.

(3.5)
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Note that the data in the above system does no longer depend on the solution. Then under
assumptions (H0), (H1)(ii)− (iii) and (H2), and since u⃗ ∈ (M 2

µ,λ (|Λ
t,x|))m we deduce from

Theorem 2.1 in [1] that there exists a triple of processes (Y u,Ku,Zu) which is a solution of
the system (3.5). Now, let us introduce the following mapping:

Φ(⃗u) = (Y u,i)i=1,...,m,

Our goal is to show that Φ is a strict contraction on the space M 2
µ,λ (|Λ

t,x|) equipped with the
norm ∥.∥M 2

µ,λ (|Λt,x|). The presence of the obstacles does not allow to proceed in a classical
way. To handle this, we represent Y u as the value function of our switching problem. This
is related to the solution of a specific standard generalized BSDE which will be given in the
next step.
Step 2: Switching problem
First, let us give some notations and definitions related to our optimal switching problem.
To begin with, we recall that a switching control α is a pair of subsequences (τn,θn)n≥0,
where τn are stopping times such that τn ≤ τn+1 and θn is a random variable with values in
{1, . . . ,m}. If P [τn < T,∀n ≥ 0] = 0, we say that α is admissible.
Let i ∈ {1, . . . ,m} and s ∈ [t,T ], we define the following class of admissible switching
controls:

D i
s =
{

α = ((τn)n≥0,(θn)n≥0) ∈ D , θ0 = i, τ0 = 0,τ1 ≥ s and E(Gα
T )

2 < ∞
}
,

where D denotes the set of admissible switching controls and Gα
s is the cumulative switch-

ing costs up to time s, expressed by:

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn≤s], s < T and Gα

T = lim
s→T

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn<T ].

Let α = ((τn)n≥0,(θn)n≥0) ∈ D i
t . Then, we introduce hα(x), fα(s,X

t,x
s ) and ψα(s,X

t,x
s ) that

stand for the reward received at time T , the running reward received on Ds and the additional
reward once the boundary ∂Ds is reached under the strategy α .

hα(x) =∑
n≥0

ξ
θn χ[τn≤T<τn+1[,

fα(s,x,−→y ,z) =∑
n≥0

fθn(s,x,
−→y ,z)χ[τn≤s<τn+1[,

ψα(s,x,−→y ) =∑
n≥0

ψθn(s,
−→y )χ[τn≤s<τn+1[. (3.6)

Next, let us introduce the following switching equation:
Pα càdlàg, E( sup

t≤s≤T
| Pα

s |2)< ∞ and Qα ∈ H 2,k;

Pα
s = hα(X

t,x
T )+

∫ T
s fα(r,X

t,x
r , u⃗r,Qα

r )dr+
∫ T

s ψα(r,X
t,x
r , u⃗r)d|Λt,x|r

−
∫ T

t Qα
r dWr − (Gα

T −Gα
s ), t ⩽ s ⩽ T.

(3.7)

By setting Pα

t := Pα
t −Gα

t , we see that the equation (3.7) is a standard Generalized BSDE.
In fact, the terminal value satisfies E[(hα(X t,x

T )−Gα
T )

2]<∞ and Gα is {Fs}− adapted, then
there exists a unique solution (Pα ,Qα) for (3.7) thanks to [22].
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Our aim is to get a representation of Y u,i in terms of Pα . To this end, we recall system (3.5)
and (3.6) to write the equation of Y u,i between s and τ1:

Y u,i
s =Y u,i

τ1 +
∫

τ1

s
fi(r,X t,x

r , u⃗r,Zu,i
r )ds+

∫
τ1

s
ψi(r,X t,x

r , u⃗r)d|Λt,x|r

+Ku,i
τ1 −Ku,i

s −
∫

τ1

s
Zu,i

r dWs

=Y u,i
τ1 χ[τ1=T ]+Y u,i

τ1 χ[τ1<T ]+
∫

τ1

s
fα(r, u⃗r,Zα

r )dr+
∫

τ1

s
ψα(r,X t,x

r , u⃗r)d|Λt,x|r

+Ku,i
τ1 −Ku,i

s −
∫

τ1

s
Zα

r dWs,

where Zα
r = Zu,θ0

r χ[τ0≤r<τ1[ = Zu,i
r on [s,τ1]. Besides, observe that

Y u,i
τ1 ≥ max

j ̸=i
(Y u, j

τ1 −gi j(τ1,X
t,x
τ1 ))≥ Y u,θ1

τ1 −giθ1(τ1,X
t,x
τ1 ).

Thus, ∀s ∈ [t,τ1], ∀i = 1, ...,m,

Y u,i
s =hi=θ0(X t,x

T )χ[τ1=T ]+
∫

τ1

s
fα(r,X t,x

r ,−→ur ,Zα
r )dr+

∫
τ1

s
ψα(r, ,X t,x

r , u⃗r)d|Λt,x|r

+(Y u,θ1
τ1 −gi,θ1(τ1,X

t,x
τ1 ))χ[τ1<T ]+Ku,i

τ1 −Ku,i
s −

∫
τ1

s
Zα

s dWr;

≥hθ0(X t,x
T )χ[τ1=T ]+Y u,θ1

τ2 χ[τ1<T ]+
∫

τ2

s
fα(r,X t,x

r , u⃗r,Zα
r )dr

+
∫

τ2

s
ψα(r, ,X t,x

r , u⃗α
r )d|Λt,x|r −gi,θ1(τ1,X

t,x
τ1 )χ[τ1<T ]+(Ku,θ1

τ2 −Ku,θ1
τ1 )

+(Ku,i
τ1 −Ku,i

t )−
∫

τ2

s
Zα

r dWr.

The last inequality follows from the definition of Y u,θ1 between [τ1,τ2]. By (3.6) and by
repeating the same procedure as many times as necessary, we obtain:

Y u,i
s ≥ hα(X t,x

T )+
∫ T

s
f (r,X t,x

r , u⃗r,Zα
r )dr+

∫ T

s
ψα(r,X t,x

r , u⃗r)d|Λt,x|r

−Gα
T + K̃α

T −
∫ T

s
Zα

r dWr.

By letting K̃α
T := Ku,i

τ1 −Ku,i
s + ∑

n≥1
(Ku,θn

τn+1 −Ku,θn
τn ) which is non negative, we deduce that

Y u,i
s ≥ hα(X t,x

T )+
∫ T

s
fα(r,X t,x

r , u⃗r,Zα
r )dr+

∫ T

s
ψα(r,X t,x

r , u⃗r)d|Λt,x|r

−Gα
T −

∫ T

s
Zα

r dWr.

Hence, if (Pα ,Qα) is the solution of the GBSDE (3.7), we have:

Y u,i
s − (Pα

s −Gα
s )≥

∫ T

s

[
fα(r,X t,x

r , u⃗r,Zα
r )− fα(r,X t,x

r , u⃗r,Qα
r )
]

dr

−
∫ T

s
(Zα

r −Qα
r )dWr.
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Under assumptions (H1)(ii) and (iii) and by Girsanov’s Theorem there exists a probability
measure P̃ such that dP̃= ε(M)T dP, where ε(M)s = eMs− 1

2 ⟨M⟩s and Ms is defined by: ∀t ⩽
s ⩽ T ,

Ms =
∫ s

0
χ{Zα

r ̸=Qα
r }[ fα(r,X t,x

r , u⃗r,Zα
r )− fα(r,X t,x

r , u⃗r,Qα
r )](Z

α
r −Qα

r )
−1dWr.

This implies that the process defined by:∀t ⩽ s ⩽ T ,

W̃s :=Ws −
∫ s

0
χ{Zα

r ̸=Qα
r }[ fα(r,X t,x

r , u⃗r,Zα
r )− fα(r,X t,x

r , u⃗r,Qα
r )](Z

α
r −Qα

r )
−1dr,

is a Brownian motion under P̃. Therefore, the following inequality holds:

Y u,i
s − (Pα

s −Gα
s )≥

∫ T

s
(Zα

r −Qα
r )dW̃r.

Then by taking the conditional expectation, we obtain: ∀t ⩽ s ⩽ T ,

Y u,i
s ≥ Pα

s −Gα
s , P- a.s. ∀α ∈ D i

s.

Finally, let α∗ = (τ∗
n ,θ

∗
n )n≥0 be the switching strategy defined as follows:

τ
∗
0 = 0, θ

∗
0 = i,

τ
∗
n+1 = inf{s ≥ τ

∗
n , Y u,θ ∗

n
s = max

j ̸=θ ∗
n

(Y u, j
s −gθ ∗

n , j(s,X
t,x
s ))}∧T,

θ
∗
n+1 = argmax

j ̸=θ ∗
n

(Y u, j
τ∗n+1

−gθ ∗
n , j(τ

∗
n+1,X

t,x
τ∗n+1

)). (3.8)

We can show that α∗ by showing that P [τ∗
n < T, ∀n ≥ 0] = 0 and E(Gα∗

T )2 <∞. This follows
easily from the non-free loop property (consult [1]). Moreover, the following representation
holds true

Y u,i
s = esssup

α∈D i
s

(Pα
s −Gα

s ) = Pα∗
s −Gα∗

s . (3.9)

Therefore, the solution of system of reflected GBSDEs (3.5) is unique.
Step 3: Using the last representation, we give estimates for Y u,i in terms of Pα

s −Gα
s . In fact,

for u⃗ and v⃗ fixed in M 2
µ,λ (|Λ

t,x|) we set:

Fi(s,X t,x
s ,z) = fi(s,X t,x

s , u⃗s,z)∨ fi(s,X t,x
s , v⃗s,z),

Ψi(s,X t,x
s ) = ψi(s,X t,x

s ,ui
s)∨ψi(s,X t,x

s ,vi
s).

Next, we introduce the following system of generalized BSDEs with oblique reflection:
∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Ỹ i
s = hi(X

t,x
T )+

∫ T
s Fi(r,X

t,x
r , Z̃i

r)dr+
∫ T

s Ψi(r,X
t,x
r )d|Λt,x|r + K̃i

T − K̃i
s

−
∫ T

s Z̃i
sdWr,

Ỹ i
s ≥ max

j ̸=i
(Ỹ j

s −gi j(s,X
t,x
s )),

∫ T
0 [Ỹ i

s −max
j ̸=i

(Ỹ j
s −gi j(s,X

t,x
s ))]dK̃i

s = 0.

(3.10)
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Thanks to the previous step, the system (3.10) has unique solution. Then, consider the
associated switching equation with the same data, namely:

P̃α càdlàg, E( sup
t≤s≤T

| P̃α
s |2)< ∞ and Q̃α ∈ H 2,k;

P̃α
s = hα(X

t,x
T )+

∫ T
s Fα(r,X

t,x
r , Q̃α

r )dr+
∫ T

s Ψα(r,X
t,x
r )d|Λt,x|r −

∫ T
t Q̃α

r dWr

−(Gα
T −Gα

s ), t ⩽ s ⩽ T.

(3.11)

By relying on (3.9), we have similar representation for Ỹ : ∀t ⩽ s ⩽ T,

Ỹ i
s = esssup

α∈D i
s

(P̃α
s −Gα

t ) = P̃α̃∗
t −Gα̃∗

t , (3.12)

where α̃∗ is the optimal strategy associated with the switching equation (3.11). We now
recall the comparison theorem for system of generalized reflected BSDEs with oblique re-
flection (see Proposition 2.1 [1]). It should be pointed out that the result is applicable in our
case since the generators do not depend on the solution. Therefore, the following inequali-
ties hold:

Y u,i ≤ Ỹ i;

Y v,i ≤ Ỹ i. (3.13)

Then by letting (P′α ,Q′α) be the unique solution of the switching equation (3.7) with data
(hα(X

t,x
T ), fα(r,X

t,x
r , v⃗r,Qα

r ),ψα(r,X
t,x
r , v⃗r)) and taking into account (3.9) and (3.12), we ob-

tain: ∀i = 1 . . .m, ∀t ⩽ s ⩽ T,

Pα̃∗
s −Gα̃∗

s ≤ Y u,i
s ≤ Ỹ i

s = P̃α̃∗
s −Gα̃∗

s ;

P′α̃∗

s −Gα̃∗
s ≤ Y v,i

s ≤ Ỹ i
s = P̃α̃∗

s −Gα̃∗
s . (3.14)

It yields, ∀i = 1 . . .m, ∀t ⩽ s ⩽ T,

| Y u,i
s −Y v,i

s |≤| P̃α̃∗
s −Pα̃∗

s |+ | P̃α̃∗
s −P′α̃∗

s | . (3.15)

Step 4: Φ is a contraction
To start with, note that (P̃α∗ − Pα∗

, Q̃α∗ −Qα∗
) is the unique solution for the following

generalized BSDE: ∀t ⩽ s ⩽ T.

P̃α̃∗
s −Pα̃∗

s =
∫ T

s
[Fα̃∗(r,X t,x

r , Q̃α̃∗
r )− fα̃∗(r,X t,x

r , u⃗r,Qα̃∗
r )]dr

+
∫ T

s
[Ψα̃∗(r,X t,x

r )−ψα̃∗(r,X t,x
r , u⃗r)]d|Λt,x|r −

∫ T

s
(Q̃α̃∗

r −Qα̃∗
r )dWr. (3.16)

Then we apply Itô’s formula with eµs+λ |Λt,x|s | P̃α̃∗
s −Pα̃∗

s |2, we have: ∀t ⩽ s ⩽ T ,

eµs+λ |Λt,x|s | P̃α̃∗
s −Pα̃∗

s |2 +µ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 dr

+λ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 d|Λt,x|r +

∫ T

s
eµr+λ |Λt,x|r∥Q̃α̃∗

r −Qα̃∗
r ∥2dr

= 2
∫ T

s
eµr+λ |Λt,x|r(P̃α̃∗

r −Pα̃∗
r )[Fα̃∗(r,X t,x

r , Q̃α̃∗
r )− fα̃∗(r,X t,x

r , u⃗r,Qα̃∗
r )]dr

+2
∫ T

s
eµr+λ |Λt,x|r(P̃α̃∗

r −Pα̃∗
r )[Ψα∗(r,X t,x

r )−ψα∗(r,X t,x
r , u⃗r)]d|Λt,x|r

−2
∫ T

s
eµr+λ |Λt,x|r(P̃α∗

r −Pα∗
r )(Q̃α∗

r −Qα∗
r )dWr.
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Since | x∨ y− y |≤| x− y | for x,y ∈ R, we obtain: ∀t ⩽ s ⩽ T ,

eµs+λ |Λt,x|s | P̃α̃∗
s −Pα̃∗

s |2 +µ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 dr

+λ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 d|Λt,x|r +

∫ T

s
eµr+λ |Λt,x|r∥Q̃α̃∗

r −Qα̃∗
r ∥2dr

≤ 2
∫ T

s
eµr+λ |Λt,x|r |P̃α̃∗

r −Pα̃∗
r | | fα̃∗(r,X t,x

r , v⃗r, Q̃α̃∗
r )− fα̃∗(r,X t,x

r , u⃗r,Qα̃∗
r )|dr

+2
∫ T

s
eµr+λ |Λt,x|r |P̃α̃∗

r −Pα̃∗
r |ψα∗(r,X t,x

r , v⃗r)−ψα∗(r,X t,x
r , u⃗r)d|Λt,x|r

−2
∫ T

s
eµr+λ |Λt,x|r(P̃α∗

r −Pα∗
r )(Q̃α∗

r −Qα∗
r )dWr.

Recall the Lipschitz continuity of fα and ψα with respect to (⃗y,z) and y⃗ respectively. Then
as 2 | ab |⩽ 1

q | a |2 +q | b |2, q > 0 , we get: ∀t ⩽ s ⩽ T , ∀q > 4m,

eµs+λ |Λt,x|s | P̃α̃∗
s −Pα̃∗

s |2 +µ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 dr

+λ

∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 d|Λt,x|r +

∫ T

s
eµr+λ |Λt,x|r∥Q̃α̃∗

r −Qα̃∗
r ∥2dr

≤ (qC2
f +2C2

f )
∫ T

s
eµr+λ |Λt,x|r |P̃α̃∗

r −Pα̃∗
r |2dr+

1
q

∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

+
1
2

∫ T

s
eµr+λ |Λt,x|r∥Q̃α̃∗

r −Qα̃∗
r ∥2dr+qC2

ψ

∫ T

s
eµr+λ |Λt,x|r |P̃α̃∗

r −Pα̃∗
r |2d|Λt,x|r

+
1
q

∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r −2

∫ T

s
eµr+λ |Λt,x|r(P̃α∗

r −Pα∗
r )(Q̃α∗

r −Qα∗
r )dWr,

where C f := max
i=1,...,m

C fi and Cψ := max
i=1,...,m

Cψi and for each i = 1, . . . ,m the positive constants

C fi and Cψi stand for the Lipschitz constants of fi and ψi respectively. Then by taking the
expectation we have: ∀t ⩽ s ⩽ T ,

E
[
eµs+λ |Λt,x|s | P̃α̃∗

s −Pα̃∗
s |2

]
+(µ −qC2

f −2C2
f )E
[∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 dr

]
+(λ −qC2

ψ)E
[∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 d|Λt,x|r

]
+

1
2
E
[∫ T

s
eµr+λ |Λt,x|r∥Q̃α̃∗

r −Qα̃∗
r ∥2dr

]
≤ 1

q
E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

]
+

1
q
E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r

]
.
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Then the following estimate holds: ∀t ⩽ s ⩽ T ,

(µ −qC2
f −2C2

f )E
[∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 dr

]
+(λ −qC2

ψ)E
[∫ T

s
eµr+λ |Λt,x|r | P̃α∗

r −Pα∗
r |2 d|Λt,x|r

]
≤ 1

q

(
E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

]
+E

[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r

])
.

We can derive an identical estimate for | P̃α∗
r −P′α∗

r | using the same reasoning. Hence by
(3.15), we deduce that: ∀t ⩽ s ⩽ T , ∀i = 1, . . . ,m,

(µ −qC2
f −2C2

f )E
[∫ T

s
eµr+λ |Λt,x|r | Y u,i

r −Y v,i
r |2 dr

]
+(λ −qC2

ψ)E
[∫ T

s
eµr+λ |Λt,x|r | Y u,i

r −Y v,i
r |2 d|Λt,x|r

]
≤ 4

q

(
E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

]
+

E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r

])
.

Then by taking the sum over {1, . . . ,m}, we get: ∀t ⩽ s ⩽ T ,

(µ −qC2
f −2C2

f )E
[∫ T

s
eµr+λ |Λt,x|r

m

∑
i=1

| Y u,i
r −Y v,i

r |2 dr
]

+(λ −qC2
ψ)E

[∫ T

s
eµr+λ |Λt,x|r

m

∑
i=1

| Y u,i
r −Y v,i

r |2 d|Λt,x|r
]

≤ m
4
q

(
E
[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

]
+E

[∫ T

s
eµr+λ |Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r

])
.

Consequently, by choosing µ = µ0 = 1+qC2
f +2C2

f and λ = λ0 = 1+qC2
ψ , we have: ∀t ⩽ T ,

E
[∫ T

t
eµ0r+λ0|Λt,x|r

m

∑
i=1

| Φ(Y u,i
r )−Φ(Y v,i

r ) |2 dr
]

+E
[∫ T

t
eµ0r+λ0|Λt,x|r

m

∑
i=1

| Φ(Y u,i
r )−Φ(Y v,i

r ) |2 d|Λt,x|r
]

≤ m
4
q

(
E
[∫ T

t
eµ0r+λ0|Λt,x|r ∥ u⃗r − v⃗r ∥2 dr

]
+E

[∫ T

t
eµ0r+λ0|Λt,x|r ∥ u⃗r − v⃗r ∥2 d|Λt,x|r

])
.

Finally, we deduce that Φ is a strict contraction on M 2
µ0,λ0

(|Λt,x|). Hence, it has a unique
fixed point which gives the uniqueness of the solution for the system of generalized reflected
BSDEs (3.3).

19



4 System of variational inequalities with inter-connected obsta-
cles and nonlinear boundary conditions in time-dependent do-
mains

4.1 Definitions and notations

In this section, we turn our attention to a system of fully non linear PDEs with intercon-
nected obstacles. Let Do, D̃ and ∂D be the sets defined by (2.30). Then, consider the PDEs
system below: ∀i = 1, ...,m,

min{vi(t,x)−max
j ̸=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v j(t,x)) j=1,...,m,σ
⊤(t,x)Dxv j(t,x))}= 0, (t,x) ∈ Do;

∂vi

∂γ
(t,x)+ψi(t,x,(v j(t,x)) j=1,...,m) = 0, (t,x) ∈ ∂D;

vi(T,x) = hi(x), x ∈ DT .

(4.1)

We are concerned with the question of existence and uniqueness of a solution in viscosity
sense of the system (4.1). We first evoke some notations and definitions that will be used
frequently in the sequel.

Definition 4.1 For a locally bounded function u : D̃ → R, we define its lower semicontinu-
ous envelope u∗ and its upper semicontinuous envelope u∗ as follows:

u∗(t,x) = lim
(t ′,x′)−→(t,x)

(t′,x′)∈D̃

u(t ′,x′) and u∗(t,x) = lim
(t ′,x′)−→(t,x)

(t′,x′)∈D̃

u(t ′,x′).

The viscosity solution will be studied in terms of parabolic superjet and subjet which in the
context of time-dependent domains have been defined in [20]:

Definition 4.2 Let E ⊂ Rd+1 be arbitrary and u : E 7−→ R, then the parabolic superjet
P2,+

E u(s,z) contains all triplets (p,q,M) ∈ R×Rd ×Sd such that if (s,z) ∈ E, then

u(t,x)≤ u(s,z)+ p(t − s)+ ⟨q,x− z⟩+ 1
2
⟨x− z,M(x− z)⟩+o(| t − s |+ | x− z |2)),

as (t,x) ∈ E −→ (s,z).

The parabolic subjet is defined as P2,−
E u(s,z) = −P2,+

E u(s,z). The closures P
2,+
E (s,z)

and P
2,
E u(s,z) are defined in analogy with (2.6) and (2.9) in [7].

Definition 4.3 (i) A function u := (u1, ...,um) : D̃ −→ Rm such that for any i = 1, . . . ,m, ui

is usc, is a viscosity subsolution of (4.1) if for any i = 1, . . . ,m, (t,x) ∈ D̃ and (p,q,M) ∈
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P
2,+
D̃ ui(t,x), we have:

min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x,(u j(t,x)) j=1,...,m,σ
⊤(t,x)q)} ≤ 0, (t,x) ∈ Do,

min{min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));

−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]− fi(t,x,(u j(t,x)) j=1,...,m,σ

⊤(t,x)q)};

−⟨γ(t,x),q⟩−ψi(t,x,(u j(t,x)) j=1,...,m)} ≤ 0, (t,x) ∈ ∂D,

ui(T,x)≤ hi(x), x ∈ DT .

(4.2)

(ii) A function (u1, ...,um) : D̃ −→ Rm such that for any i = 1, . . . ,m, ui is lsc, is a viscosity
supersolution of (4.1) if for any i = 1, . . . ,m, (t,x) ∈ D̃ and (p,q,M) ∈ P

2,−
D̃ ui(t,x), we

have:

min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x,(u j(t,x)) j=1,...,m,σ
⊤(t,x)q)} ≥ 0, (t,x) ∈ Do,

max{min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));

−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]− fi(t,x,(u j(t,x)) j=1,...,m,σ

⊤(t,x)q)};

−⟨γ(t,x),q⟩−ψi(t,x,(u j(t,x)) j=1,...,m)} ≥ 0, (t,x) ∈ ∂D,

ui(T,x)≥ hi(x), x ∈ DT .

(4.3)

(ii) A locally bounded function u : (u1, ...,um)D −→ Rm is called a viscosity solution of the
PDEs system (4.1), if (u1∗, ...,um∗) (resp. (u1∗, ...,um∗)) is a viscosity subsolution (resp.
supersolution) of the system of PDEs (4.1).

The solution of the PDEs system (4.1) will be obtained mainly thanks to the connection
between the PDEs system (4.1) and the system of reflected generalized BSDEs (3.3). First,
we recall the solution of the generalized reflected BSDEs system (3.3). We aim to provide
a unique representation of its solution (Y i,t,x)i=1,...,m in terms of continuous deterministic
function (ui)i=1,...,m. This will be done in two steps. In the first, we prove the existence of a
unique continuous deterministic function which solves the system of PDEs (2.31) in a par-
ticular case. Then we extend the result to the general case using a Picard iteration argument.

4.1.1 Results of existence and uniqueness in a particular setting

In this part, we are going to look at a reflected GBSDEs system with interconnected ob-
stacles and its associated PDEs system when the generators take the following form fi :
[0,T ]×Rd×1×k −→ Rd×m×k and ψi : [0,T ]×Rd −→ R, ∀i = 1, . . . ,m. Then, under the
same assumptions of section 3, we introduce the following system of reflected GBSDEs
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with interconnected obstacles: ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Ỹ i,t,x ∈ S 2, K̃i,t,x ∈ A 2, Z̃i,t,x ∈ H 2,d ;

Ỹ i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,Ỹ i,t,x

r , Z̃i,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r )d|Λt,x|r

+K̃i,t,x
T − K̃i,t,x

s −
∫ T

s Z̃i,t,x
r dWr,

Ỹ i,t,x
s ⩾ max

j ̸=i
(Ỹ j,t,x

s −gi j(s,X
t,x
s )),

∫ T
0 {Ỹ i,t,x

s −max
j ̸=i

(Ỹ j,t,x
s −gi j(s,X

t,x
s ))}dK̃i,t,x

s = 0.

(4.4)

Thanks to Theorem 3.1 the above system has a unique solution (Ỹ t,x, K̃t,x, Z̃t,x).

Now, we consider the PDEs system of the following type: ∀i = 1, ...,m

min{vi(t,x)−max
j ̸=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,vi(t,x),σ⊤(t,x)Dxvi(t,x))}= 0, (t,x) ∈ Do;

∂vi

∂γ
(t,x)+ψi(t,x) = 0, (t,x) ∈ ∂D;

vi(T,x) = hi(x), x ∈ DT .

(4.5)

Theorem 4.1 There exists a unique family of continuous deterministic functions (ũi)i=1,...,m
that solves the PDEs system (4.5). Moreover, (ũi)i=1,...,m is bounded on the compact set D̃
and we have: ∀i = 1, ...,m,

Ỹ i,t,x
s = ũi(s,X t,x

s ), ∀t ⩽ s ⩽ T. (4.6)

The proof of the above theorem is divided into two parts. In the first, we treat the problem
of uniqueness that will be stated in the subsequent proposition and its corollary. Then,
we make use of some penalized scheme of generalized BSDEs and PDEs to obtain the
existence.

Uniqueness In this paragraph, we establish the uniqueness of the solution for system
(4.1). A standard tool in the theory of PDEs is to show the comparison principle. We rely
essentially on Lemma 6.1 in [20] which is a version of Ishii’s Lemma in time-dependent
domains.

Proposition 4.1 Let (ui)i=1,...,m and (vi)i=1,...,m be an usc subsolution and a lsc supersolu-
tion of system (4.5). Then: ∀i = 1, . . . ,m,

ui ≤ vi, on D̃. (4.7)

PROOF. Step 1: We first assume that there exists a constant ν <− max
i=1,...,m

Ci
f , (Ci

f being the

Lipschitz constant of fi for i = 1, . . . ,m) such that ∀i = 1, . . . ,m, ∀t,x,y,y,z, if y ≥ y then

fi(t,x,y,z)− fi(t,x,y,z)≤ ν(y− y). (4.8)
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Let (ui)i=1,...,m and (vi)i=1,...,m be respectively an usc subsolution and a lsc supersolution of
system (4.5). Let i = 1, . . . ,m be fixed and recall Lemma 2.2, then there exists a positive
function ϕ ∈ C 1,2(Rd+1) defined on an open neighborhood of D̃ with ϕ ⩾ 0 and such that
⟨γ(t,x),Dxϕ(t,x)⟩ ≥ 1, ∀x ∈ ∂Dt , ∀t ∈ [0,T ]. Then put:

ui
ε(t,x) = ui(t,x)− εϕ(t,x)− ε

t
−Cε and vi

ε(t,x) = vi(t,x)+ εϕ(t,x)+Cε ,

where Cε is a positive constant that will be chosen later on.
The second step consists of showing that (ui

ε)i=1,...,m and (vi
ε)i=1,...,m are respectively sub-

solution and supersolution of two PDEs systems that will be given explicitly. We start with
the family (ui

ε)i=1,...,m. First, note that if x ∈ DT , then ui
ε(T,x)≤ ui(T,x)≤ hi(x).

Now, let (t,x) ∈ ∂D and (pu
ε ,q

u
ε ,M

u
ε ) ∈ P

2,+
D̃ ui

ε(t,x). Note that (pu := pu
ε + ∂tϕ(t,x)−

ε

t2 ,qu := qu
ε + εDxϕ(t,x),Mu := Mu

ε + εDxxϕ(t,x)) ∈ P
2,+
D̃ ui(t,x) and we have:

min{ui
ε(t,x)−max

j ̸=i
(u j

ε(t,x)−gi j(t,x));

− pu
ε −b(t,x)⊤qu

ε −
1
2

Tr[σσ
⊤(t,x)Mu

ε ]− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)} (4.9)

=min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));

− pu −b(t,x)⊤qu − 1
2

Tr[σσ
⊤(t,x)Mu]− fi(t,x,ui(t,x),σ⊤(t,x)qu)− ε

t2

+ εb(t,x)⊤Dxϕ(t,x)+
ε

2
Tr[σσ

⊤(t,x)Dxxϕ(t,x)]

+ fi(t,x,ui(t,x),σ⊤(t,x)qu)− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)}. (4.10)

Then using the continuity of b,σ ,Dxϕ and Dxx and the compactness of D̃, we deduce that
there exists η1 > 0 such that:

εb(t,x)⊤Dxϕ(t,x)+
ε

2
Tr[σσ

⊤(t,x)Dxxϕ(t,x)]⩽ εη1. (4.11)

Using the the Lipschitz continuity of fi and assumption (4.8), we get:

fi(t,x,ui(t,x),σ⊤(t,x)qu)− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)

≤ ν(
ε

t
+ εϕ(x))+νCε + εCi

f |σ⊤Dxϕ(t,x)|.

Since ϕ is positive and |σ⊤Dxϕ| is bounded on the compact set D̃, there exists η2 > 0 such
that,

fi(t,x,ui(t,x),σ⊤(t,x)qu)− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)≤− max

i=1,...,m
Ci

fCε + εη2. (4.12)

Then, by combining (4.11) and (4.12) we can find η3 > 0 such that:

εb(t,x)⊤Dxϕ(t,x)+
ε

2
Tr[σσ

⊤(t,x)Dxxϕ(t,x)]− ε

t2

+ fi(t,x,ui(t,x),σ⊤(t,x)q)− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qε)⩽− max
i=1,...,m

Ci
fCε + εη3. (4.13)
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Set Cε = εη3
max

i=1,...,m
Ci

f
, the constant Cε is positive and tends to zero when ε → 0. By (4.9) we

deduce that:

min{ui
ε(t,x)−max

j ̸=i
(u j

ε(t,x)−gi j(t,x));

− pu
ε −b(t,x)⊤qu

ε −
1
2

Tr[σσ
⊤(t,x)Mu

ε ]− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)} (4.14)

⩽ min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));

− pu −b(t,x)⊤qu − 1
2

Tr[σσ
⊤(t,x)Mu]− fi(t,x,ui(t,x),σ⊤(t,x)qu)}. (4.15)

For the inequalities on the boundary ∂D, we recall that ⟨γ(t,x),Dxϕ(t,x)⟩⩾ 1 which implies
that:

−⟨γ(t,x),qu
ε⟩−ψi(t,x) =−⟨γ(t,x),qu⟩−ψi(t,x)− ε⟨γ(t,x),Dxϕ(t,x)⟩

⩽−⟨γ(t,x),q⟩−ψi(t,x)− ε. (4.16)

Then, if (ui)i=1,...,m is a subsolution of (4.5), it follows from (4.14) and (4.16) that (ui
ε)i=1,...,m

satisfies the following system of PDEs:

min{ui
ε(t,x)−max

j ̸=i
(u j

ε(t,x)−gi j(t,x));−pu
ε −b(t,x)⊤qu

ε − 1
2 Tr[σσ⊤(t,x)Mu

ε ]

− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)} ≤ 0, (t,x) ∈ Do,

min{min{ui
ε(t,x)−max

j ̸=i
(u j

ε(t,x)−gi j(t,x));

−pu
ε −b(t,x)⊤qu

ε − 1
2 Tr[σσ⊤(t,x)Mu

ε ]− fi(t,x,ui
ε(t,x),σ

⊤(t,x)qu
ε)};

−⟨γ(t,x),qu
ε⟩−ψi(t,x)+ ε} ≤ 0, (t,x) ∈ ∂D,

ui
ε(T,x)≤ hi(x), x ∈ DT .

(4.17)
Similarly, since (vi)i=1,...,m is a supersolution of (4.5), we obtain using the same tech-
niques a system of inequalities for (vi

ε)i=1,...,m. Indeed, for any i = 1, . . . ,m, (t,x) ∈ D̃
and (pv

ε ,q
v
ε ,M

v
ε) ∈ P

2,−
D̃ vi

ε(t,x), we have:

min{vi
ε(t,x)−max

j ̸=i
(v j

ε(t,x)−gi j(t,x));−pv
ε −b(t,x)⊤qv

ε − 1
2 Tr[σσ⊤(t,x)Mv

ε ]

− fi(t,x,vi
ε(t,x),σ

⊤(t,x)qv
ε)} ≥ 0, (t,x) ∈ Do,

max{min{vi
ε(t,x)−max

j ̸=i
(v j

ε(t,x)−gi j(t,x));

−pv
ε −b(t,x)⊤qv

ε − 1
2 Tr[σσ⊤(t,x)Mv

ε ]− fi(t,x,vi
ε(t,x),σ

⊤(t,x)qv
ε)};

−⟨γ(t,x),qv
ε⟩−ψi(t,x)} ≥ 0, (t,x) ∈ ∂D,

vi
ε(T,x)≥ hi(x), x ∈ DT .

(4.18)

Consequently, we next show that ui
ε ⩽ vi

ε on D̃ which helps to avoid the conditions on the
boundary ∂D. Then, we can take the limit with respect to ε to get the comparison principle

24



for ui and vi.
Now, note that u− v is usc then it is bounded from above on D̃, then we assume to the
contrary that max

D̃
max

i=1,...,m
(ui

ε − vi
ε)> 0. There exists (t,x)∈ D̃ such that

max
i=1,...,m

(uε
i (t,x)− vi

ε(t,x))> 0. (4.19)

As in [12], thanks to the non-free loop property there exists k∈ J̃ := { j ∈{1, . . . ,m}, u j
ε(t,x)−

v j
ε(t,x) = max

k=1,...,m
(uk

ε(t,x)− vk
ε(t,x))} such that

uk
ε(t,x)> max

j ̸=k
(u j

ε(t,x)−gk j(t,x)). (4.20)

Now, in order to avoid the conditions involving the obstacles, we fix j ∈ J̃ satisfying (4.20),
then taking into account the value of ui

ε(T,x) and vi
ε(T,x) it turns out that the maximum of

max
i=1,...,m

(ui
ε − vi

ε) over D̃ is achieved in Do or ∂D.

First, we consider the case where the maximum is achieved on ∂D. Then, taking into
account the definition of ui

ε and the terminal values ui
ε(T,x) and vi

ε(T,x) there exists (t,x) ∈
∂D for t ∈ (0,T ). Let α > 0 and wα ∈ C 1,2(Rd+1) be the function defined in Lemma 2.1
and set:

Φ
α
j (t,x,y) = u j

ε(t,x)− v j
ε(t,y)−Ψ

α
j (t,x,y),

Ψ
α
j (t,x,y) = wα(t,x,y)−ψ j(t,x)⟨γ(t,x),x− y⟩+ | x− x |4 + | t − t |2 .

Recall that thanks to Lemma 2.1, there exist ξ ,C > 0 such that:

ξ α|x− y|2 ⩽ wα(t,x,y)⩽C
( 1

α
+α|x− y|2

)
. (4.21)

Let (tα ,xα ,yα) be the maximum point of Φ
j
α(t,x,y) for t ∈ [0,T ] and (x,y) ∈ ∂Dt × ∂Dt .

Then, we can see that,

max
∂D

(u j
ε − v j

ε)−
C
α

= u j
ε(t,x)− v j

ε(t,x)−
C
α
.

The inequality (4.21) implies that wα(t,x,x)⩽ C
α

. Then,

max
∂D

(u j
ε − v j

ε)−
C
α

≤ Φ
j
α(t,x,y)≤ Φ

j
α(tα ,xα ,yα). (4.22)

Thus,

Φ
j
α(tα ,xα ,yα)≤ u j

ε(tα ,xα)− v j
ε(tα ,yα)−ξ α|xα − yα |2 +ψ j(t,x)⟨γ(t,x),xα − yα⟩

− | xα − x |4 − | tα − t |2 .

This implies that 
α|xα − yα |2 −→

α→∞
0,

|xα − yα |2 −→
α→∞

0,

(tα ,xα ,yα) −→
α→∞

(t,x,x).

(4.23)
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Moreover, from (4.22), we deduce that,u j
ε(tα ,xα) −→

α→∞
u j

ε(t,x),

v j
ε(tα ,yα) −→

α→∞
v j

ε(t,x).
(4.24)

Now, we go back to systems of inequalities (4.17) and (4.18). It turns out that the conditions
on the boundary in these system can be reduced to the condition in the interior. In fact, note
that if (tα ,xα) ∈ ∂D, we have:

⟨γ(tα ,xα),DxΨ
α
j (tα ,xα ,yα)⟩−ψ j(tα ,xα) =−⟨γ(tα ,xα),Dxwα(tα ,xα − yα)⟩

+ψ j(t,x)⟨γ(t,x),γ(xα ,yα)⟩−4|xα − x|2⟨γ(xα ,yα),xα − x,⟩−ψ j(tα ,xα). (4.25)

Again, from Lemma 2.1, we have:

|Dxwα(tα ,xα ,yα)|⩽Cα(|xα − yα |+ |xα − yα |2). (4.26)

This implies that,

−⟨γ(tα ,xα),DxΨ
α
j (tα ,xα ,yα)⟩−ψ j(tα ,xα)

≥−Cα|γ(tα ,xα)|(|xα − yα |+ |xα − yα |2)+ψ j(t,x)⟨γ(t,x),γ(xα ,yα)⟩
−4|xα − x|2⟨γ(xα ,yα),xα − x,⟩−ψ j(tα ,xα). (4.27)

Therefore, by (4.23) and since γ and ψ j are continuous, we deduce that the right hand side
of (??) tends to zero as α → ∞. Then, for α large enough we have: ∀ε > 0,

−⟨γ(tα ,xα),DxΨ
α
j (tα ,xα ,yα)⟩−ψ j(tα ,xα)≥ ε. (4.28)

If (tα ,yα) ∈ ∂D, we observe that:

−⟨γ(tα ,yα),−DyΨ
α
j (tα ,xα ,yα)⟩−ψ j(tα ,yα) =−⟨γ(tα ,yα),−Dywα(tα ,xα ,yα)⟩
+ψ j(t,x)⟨γ(t,x),γ(xα ,yα)⟩−ψ j(tα ,xα)

≤ |Dxwα(tα ,xα ,yα)|+ψ j(t,x)⟨γ(t,x),γ(xα ,yα)⟩−ψ j(tα ,yα)

≤Cα|xα − yα |+ψ j(t,x)⟨γ(t,x),γ(xα ,yα)⟩−ψ j(tα ,yα). (4.29)

The last line is obtained thanks to (4.26) and taking into account (4.23) it converges to zero.
This implies that, ∀ε > 0

−⟨γ(tα ,yα),−DyΨ
α
j (tα ,xα ,yα)⟩−ψ j(tα ,yα)≤ ε. (4.30)

On the other hand, by recalling (4.20) with the use of (4.24), we deduce that for α large
enough we have:

u j
ε(tα ,xα)> max

k ̸= j
(uk

ε(tα ,xα)−g jk(tα ,xα)). (4.31)

If the maximum of max
i=1,...,m

(ui
ε − vi

ε) over D̃ is achieved in Do, we observe that (tα ,xα) and

(tα ,yα) are in Do, since (t,x) ∈ Do. In this case, only the inequalities in the interior hold.
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Now, we are in a position to apply Lemma 6.1 in [20], which ensures the existence of
(pu

ε ,q
u
ε ,M

u
ε ) ∈ P

2,+
D̃ ui

ε(tα ,xα) and (pv
ε ,q

v
ε ,M

v
ε) ∈ P

2,−
D̃ vi

ε(tα ,yα) that satisfy:

pu
ε − pv

ε = ∂tΨ
α
j (tα ,xα ,yα),

qu
ε = DxΨα

j (tα ,xα ,yα),

qv
ε = (−DyΨα

j (tα ,xα ,yα)),(
Mu

ε 0
0 Mv

ε

)
⩽ DxxΨα

j (tα ,xα ,yα)+
1
α

DxxΨα
j (tα ,xα ,yα)

2.

(4.32)

Therefore, by taking into account (4.28), (4.30) and (4.31), we deduce from (4.17) and
(4.18) that for α large enough, we have:

−∂tΨ
α
j (tα ,xα ,yα)−b(tα ,xα)

⊤DxΨ
α
j (tα ,xα ,yα)−

1
2

Tr[σσ
⊤(tα ,xα)Mε ]

− fi(tα ,xα ,ui
ε(tα ,xα),σ

⊤(tα ,xα)DxΨ
α
j (tα ,xα ,yα))≤ 0,

−∂tΨ
α
j (tα ,xα ,yα)−b(tα ,yα)

⊤(−DyΨ
α
j (tα ,xα ,yα))−

1
2

Tr[σσ
⊤(tα ,yα)Mv

ε ]

− fi(tα ,yα ,vi
ε(tα ,yα),σ

⊤(tα ,yα)(−DyΨ
α
j (tα ,xα ,yα)))≥ 0. (4.33)

Hence,

−( f j(tα ,xα ,u
j
ε(tα ,xα),σ

⊤(tα ,xα)qu
ε)− f j(tα ,yα ,v

j
ε(tα ,yα),σ

⊤(tα ,yα)qv
ε))

≤ (pu
ε − pv

ε)+(b(tα ,xα)
⊤qu

ε −b(tα ,yα)
⊤qv

ε)

+
1
2

Tr[σσ
⊤(tα ,xα)Mu

ε −σσ
⊤(tα ,yα)Mv

ε ].

Using the assumptions (4.8) and the Lipschitz continuity of f j with respect to z, we obtain:

−ν(u j
ε(tα ,xα)− v j

ε(tα ,yα)≤ (pu
ε − pv

ε)+(b(tα ,xα)
⊤qu

ε −b(tα ,yα)
⊤qv

ε)

+
1
2

Tr[σσ
⊤(tα ,xα)Mu

ε −σσ
⊤(tα ,yα)Mv

ε ]+C|σ⊤(tα ,xα)qu
ε −σ

⊤(tα ,yα)qv
ε |

+( f j(tα ,xα ,v
j
ε(tα ,yα),σ

⊤(tα ,xα)qu
ε)− f j(tα ,yα ,v

j
ε(tα ,yα),σ

⊤(tα ,xα)qu
ε)).

Besides, the convergences (4.23) imply that the term on the right hand side converges to
zero as α → ∞. Then, passing to the limit it follows from (4.24) that,

−ν(u j
ε(t,x)− v j

ε(t,x))≤ 0.

This contradicts assumption (4.19), since ν is assumed to be strictly negative. We conclude
that ui

ε ≤ vi
ε for any i = 1, . . . ,m. It suffices to take the limit with respect to ε to get ui ≤ vi,

i = 1, . . . ,m. This ends the proof of the first case since i is arbitrary in {1, ...,m}.
Step 2: For ν arbitrary in R, let (ũi)i∈{1,...,m} and (vi)i∈{1,...,m} be respectively a subsolution
and a supersolution of sytem (4.5). Then the families defined by (ũi(t,x)= eνt ũi(t,x))i=1,...,m
and (ṽi(t,x) = eνtvi(t,x))i=1,...,m are respectively subsolution and supersolution of the fol-
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lowing system: ∀i ∈ {1, ...,m}

min{ũi(t,x)−max
j ̸=i

(ũ j(t,x)− eνtgi j(t,x));−∂t ũi(t,x)−L ũi(t,x)+ν ũi(t,x)

−eνt fi(t,x,e−νt ũi(t,x),e−νtσ⊤(x)Dxũi(t,x))}= 0, (t,x) ∈ Do;

∂ ũi

∂γ
(t,x)+ eνtψi(t,x) = 0, (t,x) ∈ ∂D;

ũi(T,x) = eνT hi(x), x ∈ DT .

(4.34)

By choosing ν negative, the functions Fi defined by: ∀i ∈ {1, ...,m}

Fi(t,x,y,z) =−νyi + fi(t,x,e−νty,e−νtz),

satisfy assumption (4.8) and the result follows thanks to the first step.

Corollary 4.1 If the solution of the system of PDEs (4.1) exists, it is unique and continuous,
then it is bounded on D̃.

Existence In this paragraph we establish the existence of a viscosity solution of the PDEs
system (4.5). This is obtained mainly thanks to the connection between the latter system
and the system of reflected generalized BSDEs (4.4).

Proposition 4.2 There exists a unique viscosity solution of the PDEs system (2.31) that we
denote (ũi)i=1,...,m. The function (ũi)i=1,...,m is continuous and bounded on D̃. Moreover, we
have: ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Ỹ i
s := ũi(s,X t,x

s ). (4.35)

PROOF. Let (Ỹ , K̃, Z̃) be the unique solution of the reflected GBSDEs system (4.4). Next,
define the following sequence of reflected GBSDEs, for i = 1, ...,m and n = 0 set Y i,0 := Y
given by

Y ∈ S 2, Z ∈ H 2,d ;

Y s = min
i=1,..,m

hi(X
t,x
T )+

∫ T
s min

i=1,..,m
fi(r,X

t,x
r ,Y r,Zr)dr

+
∫ T

s min
i=1,..,m

ψi(r,X
t,x
r )d|Λt,x|r −

∫ T
s ZrdWr, ∀t ⩽ s ⩽ T.

(4.36)

Then, for n ⩾ 1, ∀t ⩽ s ⩽ T , i = 1, ...,m,

Ỹ i,n ∈ S 2, K̃i,n ∈ A 2, Z̃i,n ∈ H 2,d ;

Ỹ i,n
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,Ỹ i,n

r , Z̃i,n
r )dr+

∫ T
s ψi(r,X

t,x
r )d|Λt,x|r

+K̃i,n
T − K̃i,n

s −
∫ T

s Z̃i,n
r dWr,

Y i,n
s ⩾ max

j ̸=i
(Ỹ j,n−1

s −gi j(s,X
t,x
s )),

∫ T
0 {Ỹ i,n

s −max
j ̸=i

(Ỹ j,n−1
s −gi j(s,X

t,x
s ))}dK̃i,n

s = 0.

(4.37)
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Finally, consider:

Y ∈ S 2, Z ∈ H 2,d ;

Y s = max
i=1,..,m

hi(X
t,x
T )+

∫ T
s max

i=1,..,m
fi(r,X

t,x
r ,Y r,Zr)dr

+
∫ T

s max
i=1,..,m

ψi(r,X
t,x
r )d|Λt,x|r −

∫ T
s ZrdWr, ∀t ⩽ s ⩽ T.

(4.38)

It has been shown in [1], that Ỹ i,n satisfies the following inequality: ∀i = 1, ...,m, ∀n ⩾ 1,

Y = Ỹ i,0 ≤ Ỹ i,n ≤ Y . (4.39)

Moreover, for any i = 1, . . . ,m, the sequence (Ỹ i,n)n⩾1 converges increasingly to Ỹ i the
solution of (3.3). Then by taking the limit with respect to n, we get: ∀i = 1, . . . ,m,

Y = Ỹ i,0 ≤ Ỹ i ≤ Y . (4.40)

Besides, Y and Y are solutions of standard GBSDEs then by formula (2.29) there exit u and
u two deterministic continuous functions defined by: ∀t ⩽ s ⩽ T ,

Y = u(s,X t,x
s ) and Y = u(s,X t,x

s ). (4.41)

Now, we introduce the following sequence of standard GBSDEs, for any k ⩾ 0, ∀t ⩽ s ⩽ T ,
i = 1, ...,m,

Ỹ i,k ∈ S 2, Z̃i,k ∈ H 2,d ;

Ỹ i,k
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,Ỹ i,k

r , Z̃i,k
r )dr+

∫ T
s ψi(r,X

t,x
r )d|Λt,x|r

+
∫ T

s k
(
Ỹ i,k

r −max
j ̸=i

(Ỹ j,k
r −gi j(s,X

t,x
r ))

)−dr−
∫ T

s Z̃i,k
r dWr.

(4.42)

It has been shown in [16] that (Ỹ i,k)k⩾1 is an increasing sequence that converges to Ỹ i for
each i = 1, ...,m. Therefore, it follows from (4.40) that

Y ≤ Ỹ i,0 ≤ Ỹ i,k ≤ Y . (4.43)

Again, from (2.29) there exists a sequence of deterministic functions (ũi,k)k⩾1 that are con-
tinuous and bounded on D̃ such that ∀t ⩽ s ⩽ T , ∀i = 1, ...,m we have:

Ỹ i,k = ũi,k(s,X t,x
s ). (4.44)

Moreover, for any k ⩾ 1, (ũi,k)i=1,...,m satisfies the following system of PDEs: ∀i = 1, ...,m,

∂t ũi,k(t,x)+L ũi,k(t,x)+ fi(t,x, ũi,k(t,x),σ⊤(t,x)Dxũi,k(t,x))

+k
(
ũi,k(t,x)−max

j ̸=i
(ũ j,k(t,x)−gi j(t,x))

)−
= 0, (t,x) ∈ Do;

∂ ũi,k

∂γ
(t,x)+ψi(t,x) = 0, (t,x) ∈ ∂D;

ũi,k(T,x) = hi(x), x ∈ DT .

(4.45)

29



Recall (4.40) and (4.41), then for any i = 1, . . . ,m the sequence (ũi,k)k⩾1 is increasing and
satisfies u≤ ũi,k ≤ u. Hence, there exists a family of deterministic functions (ũi)i=1,...,m such
that ∀i = 1, . . . ,m, we have: {

ũi = lim
k→∞

ũi,k,

u ≤ ũi ≤ u.
(4.46)

Consequently, the family (ũi)i=1,...,m is lsc and bounded on D̃. Note that this result has been
proved in more general case (for more details see [16] page 9-10), we shall precise that in
this part and for this case we do not assume any monotonicity condition neither on f nor on
ψ since the generators do not depend on the other components of the solution.

Next, we rely on the above results in order to show that the family (ui)i=1,...,m is a viscos-
ity solution of the PDEs system (4.5). To this end, we show that it satisfies the subsolution
property and the supersolution property in the sense of Definition 4.3.
Supersolution property: First, recall that (ũi,k)k⩾1 converges increasingly to ũi, i = 1, ...,m.
Then, (ũi)i=1,...,m is lsc on D̃ which means that ũi

∗ = ũi , i = 1, ...,m. Now, fix i = 1, ...,m
then let (t,x) ∈ D̃ and (p,q,M) ∈ P

2,−
D̃ ũi(t,x), we need to show that:

min{ũi(t,x)−max
j ̸=i

(ũ j(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x, ũi(t,x),σ⊤(t,x)q)} ≥ 0, (t,x) ∈ Do,

max{min{ũi(t,x)−max
j ̸=i

(ũ j(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x, ũi(t,x),σ⊤(t,x)q)};−⟨γ(t,x),q⟩−ψi(t,x)} ≥ 0,

(t,x) ∈ ∂D,

ũi(T,x)≥ hi(x), x ∈ DT .

(4.47)
This is obtained using the fact that (ũi,k)k⩾1 is solution of the PDEs system (4.45). In-
deed, thanks to Lemma 6.1 in [7] there exist a subsequence lk → ∞, (tl,xl)l⩾1 ∈ D̃ and
(pl,ql,Ml) ∈ P

2,−
D̃ ũi,l(tl,xl) such that the following convergence holds:

(tl,xl, ũi,l(tl,xl), pl,ql,Ml)−→
l→∞

(t,x, ũi(t,x), p,q,M). (4.48)

1st case: If (t,x) ∈ Do, then (tl,xl)l⩾1 can be chosen in Do, then we obtain from (4.45):

−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)

− kl
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)− ≥ 0. (4.49)

On the one hand, the last inequality implies that:

−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)≥ 0.

Then by taking the limit as l → ∞, we get:

−p−b(t,x)⊤q− 1
2

Tr[σσ
⊤(t,x)M]− fi(t,x, ũi(t,x),σ⊤(t,x)q)≥ 0. (4.50)
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On the other hand, recall that u(tl,xl) ≤ ũi,l(tl,xl) ≤ u(tl,xl). Since u and u are continuous
on the compact D̃, then (ũi,l(tl,xl))l⩾1 is uniformly bounded on D̃ and we can find a sub-
sequence of (kl)l⩾1 for which we have kept the same notation such that (ũi,l(tl,xl))l⩾1 is
convergent. Moreover, it follows from (4.49) and (4.50) that we have necessarily:(

ũi,l(tl,xl)−max
j ̸=i

(ũ j,l(tl,xl)−gi j(tl,xl))
)− −→ 0

l→∞

. (4.51)

Therefore, there exists l0 ⩾ 1 such that ∀l ⩾ l0, we have:

ũi,l(tl,xl)+
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)−
⩾ max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl)).

Using the fact that (ũi,l)l⩾1 is increasing we deduce that:

ũi,l(tl,xl)+
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)−
⩾ max

j ̸=i
(ũ j,l0(tl,xl)−gi j(tl,xl)).

Hence, by taking the limit as l → ∞ and taking into account the continuity of (ũ j,l0) j=1,...,m
j ̸=i

,

we get:

ũi(t,x)⩾ max
j ̸=i

(ũ j,l0(t,x)−gi j(t,x)).

Finally, by taking the limit as l0 → ∞, we obtain:

ũi(t,x)⩾ max
j ̸=i

(ũ j(t,x)−gi j(t,x)). (4.52)

It follows from (4.50) and (4.52) that (ũi)i=1,...,m is a supersolution of (4.5) on Do.
2sd case: If (t,x) ∈ ∂D, then we can assume that the subsequence (tl,xl)l⩾1 lies in ∂D.
Otherwise, it will be similar to the 1st case. That being said, we get back to (4.45) and we
suppose that

max{−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)

−kl
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)−;−⟨γ(t,x),ql⟩−ψi(tl,xl)} ≥ 0. (4.53)

We assume that

−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)

− kl
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)−
< 0.

Otherwise the supersolution property is obtained by repeating the same calculus as above.
Then, if the second term in (4.53) is positive, it suffices to take the limit since the data are
continuous. Then, we obtain:

−⟨γ(t,x),q⟩−ψi(t,x)≥ 0. (4.54)

To complete this step we recall that if x ∈ DT , we have ũi(T,x) = lim
k→∞

ũi,k(T,x). Therefore,

the function (ũi)i=1,...,m is a viscosity supersolution of the PDEs system (4.5).
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Subsolution property: Let (ũi,∗)i=1,...,m be the upper semicontinuous envelope of (ũi)i=1,...,m.

Then, fix i = 1, ...,m and let (t,x) ∈ D̃ and (p,q,M) ∈ P
2,+
D̃ ũi,∗(t,x), we need to show that:

min{ui,∗(t,x)−max
j ̸=i

(u j,∗(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x,ui,∗(t,x),σ⊤(t,x)q)} ≤ 0, (t,x) ∈ Do,

min{min{ui,∗(t,x)−max
j ̸=i

(ũ j,∗(t,x)−gi j(t,x));−p−b(t,x)⊤q− 1
2 Tr[σσ⊤(t,x)M]

− fi(t,x,ui,∗(t,x),σ⊤(t,x)q)};−⟨γ(t,x),q⟩−ψi(t,x)} ≤ 0,

(t,x) ∈ ∂D,

ui,∗(T,x)≤ hi(x), x ∈ DT .

(4.55)
By Lemma 6.1 in [7] there exist a subsequence lk → ∞, (tl,xl)l⩾1 ∈ D̃ and (pl,ql,Ml) ∈
P

2,+
D̃ ũi,l(tl,xl) satisfying:

(tl,xl, ũi,l(tl,xl), pl,ql,Ml)−→
l→∞

(t,x, ũi,∗(t,x), p,q,M). (4.56)

1st case: If (t,x) ∈ Do, we assume (tl,xl)l⩾1 ∈ Do. Then using the fact that (ũi,l)l⩾1 is a
subsolution of (4.45), we obtain:

−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)

− kl
(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)− ≤ 0. (4.57)

As a first step, we assume that there exists ε > 0 such that

ũi,∗(t,x)> max
j ̸=i

(ũ j,∗(t,x)−gi j(t,x))+ ε,

otherwise the subsolution property is satisfied. Moreover, there exists l0 > 0 such that
∀l ⩾ l0 we have:

ũi,l(t,x)> max
j ̸=i

(ũ j,l(t,x)−gi j(t,x))+ ε,

which holds on a neighborhood Vl of (t,x) thanks to the continuity of (ũ j,k) j=1,...,m and
(gi j)i, j=1,...,m. This implies that,(

ũi,l(t,x)−max
j ̸=i

(ũ j,l(t,x)−gi j(t,x))
)−

= 0, ∀(t,x) ∈Vl.

Note that (tl,xl) can be chosen in Vl so that we get:(
ũi,l(tl,xl)−max

j ̸=i
(ũ j,l(tl,xl)−gi j(tl,xl))

)−
= 0.

Hence, from (4.57) we get:

−pl −b(tl,xl)
⊤ql −

1
2

Tr[σσ
⊤(tl,xl)Ml]− fi(tl,xl, ũi,l(tl,xl),σ

⊤(tl,xl)ql)≤ 0.
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Then the result is obtained by passing to the limit as l → ∞.
2sd case: If (t,x)∈ ∂D, then we can assume that the subsequence (tl,xl)l⩾1 lies in ∂D. Then
we suppose that

min{ũi,∗(t,x)−max
j ̸=i

(ũ j,∗(t,x)−gi j(t,x));

− p−b(t,x)⊤q− 1
2

Tr[σσ
⊤(t,x)M]− fi(t,x, ũi,∗(t,x),σ⊤(t,x)q)}> 0.

In this case, we have necessarily

−⟨γ(t,x),q⟩−ψi(t,x)≤ 0.

Then it suffices to take the limit to obtain the second inequality in (4.55).
3rd case: If x ∈ DT , we need to prove that ũi,∗(T,x) ≤ hi(x). This will be obtained by
showing:

min{ũi,∗(T,x)−hi(x); ũi,∗(T,x)−max
j ̸=i

(ũ j,∗(T,x)−gi j(T,x))}= 0.

Let i ∈ {1, ...,m} and xT ∈ DT . Then, we have:

ũi,∗(T,xT ) = lim
(t ′,x′)−→(T,xT )

(t′,x′)∈D̃

u(t ′,x′)≥ lim
(t ′,x′)−→(T,xT )

(t′,x′)∈D̃

ui,k(t ′,x′) = ui,k(T,xT )≥ hi(xT ).

Moreover ũi(T,xT )≥ max
j ̸=i

(ũ j(T,x)−gi j(T,xT )). Then by taking the upper semicontinuous

envelope we get ũi,∗(T,xT ) = max
j ̸=i

(ũ j,∗(T,xT )−gi j(T,xT )). Hence, ∀xT ∈ DT ,

min{ũi,∗(T,xT )−hi(xT ); ũi,∗(T,xT )−max
j ̸=i

(ũ j,∗(T,xT )−gi j(T,xT ))}⩾ 0.

We assume to the contrary that for xT ∈ DT , there exists ε > 0 such that:

min{ũi,∗(T,xT )−hi(xT ); ũi,∗(T,xT )−max
j ̸=i

(ũ j,∗(T,xT )−gi j(T,xT ))}= ε.

Let (tl,xl)l⩾1 be a sequence in D̃ satisfying (tl,xl)−→
l→∞

(T,xT ) such that ũi(tl,xl)−→
l→∞

ũi,∗(T,xT ).

Now, recall (4.46), by taking the upper semicontinuous envelope and since u and u are
continuous on D̃, we deduce that ui,∗ is also bounded on D̃. Therefore, using the upper
semicontinuity of ũi,∗ we can find (Qn)n⩾1 in C 1,2(D̃) such that Qn −→

n→∞
ũi,∗. Therefore, by

considering Vn(T,xT ) a neighborhood of (T,xT ), we have:

min{Qn(t,x)−hi(x);Qn(t,x)−max
j ̸=i

(ũ j,∗(t,x)−gi j(t,x))} ≥ ε, ∀(t,x) ∈ Vn(T,xT ). (4.58)

We can assume that (4.58) holds on:

Vn(tl,xl) = [tl,T ]×{x ∈ Dtl/|x− xl|< δ
l,n},

where δ l,n ∈ (0,1) and such that Vn(tl,xl) ⊂ Vn(T,xT ). Once again as ui,∗ is bounded on
D̃, there exists c > 0 such that |ui,∗| ≤ c on Vn(T,xT ). Then we can assume that Qn ≥−2c.
Next, define

Q̃n
l (t,x) = Qn(t,x)+

4c|x− xl|2

(δ l,n)2 +
√

T − t.
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Note that Q̃n
l ≥ Qn and (ui,∗− Q̃n

l )(t,x)≤−c for (t,x) ∈ [tl,T ]×∂B(xl,δ
l,n). On the other

hand, we have:

−{∂tQ̃n
l (t,x)+L Q̃n

l (t,x)}=−{∂tQn(t,x)+∂t
√

T − t +Dxb(t,x)

×{DxQn(t,x)+
8c(x− xl)

(δ l,n)2 }+ 1
2

σσ
⊤(t,x){DxxQn(t,x)+

8c
(δ l,n)2 }}.

Since 4c|x−xl |2
(δ l,n)2 and Qn belong to C 1,2(D̃), then the term on the right hand side is bounded,

then ∂t(
√

T − t)−→
t→T

−∞, it suffices to choose l large enough in order to get:

−{∂tQ̃n
l (t,x)+L Q̃n

l (t,x)} ≥ 0, ∀(t,x) ∈ Vn(tl,xl).

Next, recall the reflected SDE (2.26) and set:

τ
l
n = inf{s ⩾ tl; (s,X tl ,xl

s ) ∈ Vn(tl,xl)
c}∧T,

τl = inf{s ⩾ tl; ui(s,X tl ,xl
s ) = max

j ̸=i
(u j(s,X tl ,xl

s )−gi j(s,X tl ,xl
s ))}∧T.

Then we can apply Ito’s formula to Q̃(.,X tl ,xl ) stopped at time τ l
n∧τl and taking into account

the fact that d|Λtl ,xl |= 0 on [tl,τ l
n ∧τl]. The remaining of the proof is similar to the proof of

Theorem 3.2 in [1], we omit any further details. To sum up, we have showed that the family
of functions (ui)i=1,...,m is a viscosity solution of the PDEs system (4.5). Then, thanks to the
comparison principle stated in Proposition 4.7, we know that (ui)i=1,...,m is continuous and
bounded on D̃.

4.1.2 General case

Theorem 4.2 Assume that assumptions (H0), (H1) and (H1) are satisfied. Then the system
of PDEs (4.1) has a unique viscosity solution (ui)i=1,...,m. Moreover, the function (ui)i=1,...,m
is continuous and bounded on D̃ and it is given by ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Y i
s := ui(s,X t,x

s ). (4.59)

PROOF. Let i = 1, ...,m be fixed and define the following sequence, (Y i,0,Ki,0,Zi,0) =
(0,0,0) and for ℓ⩾ 1 we set: ∀t ⩽ s ⩽ T ,

Y i,ℓ
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,(ui,ℓ−1(r,X t,x

r ))i=1,...,m,Z
i,ℓ
r )dr

+
∫ T

s ψi(r,X
t,x
r ,(ui,ℓ−1(r,X t,x

r ))i=1,...,m)d|Λt,x|r +Ki,ℓ
T −Ki,ℓ

s −
∫ T

s Zi,ℓ
r dWr,

Y i,ℓ
s ⩾ max

j ̸=i
(Y j,ℓ

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i,ℓ

s −max
j ̸=i

(Y j,ℓ
s −gi j(s,X

t,x
s ))}dKi,ℓ

s = 0.

(4.60)

Note that this system has a unique solution thanks Theorem 3.1. Moreover, by Proposition
4.2 and provided (ui,ℓ−1(r,X t,x

r ))i=1,...,m, there exists a deterministic continuous function
(ui,ℓ)i=1,...,m which is bounded on D̃ and defined by: ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Y i,ℓ
s := ui,ℓ(s,X t,x

s ). (4.61)
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Next we show the uniform convergence of (ui,ℓ)ℓ⩾1, ∀i = 1, . . . ,m. This will be done by
means of the switching representation of the solution Y i,ℓ given by the switching represen-
tation (3.9). Then, consider the following switching equation: ∀t ⩽ s ⩽ T

Pα,ℓ càdlàg, E( sup
t≤s≤T

| Pα,ℓ
s |2)< ∞ and Qα,ℓ ∈ H 2,k;

Pα,ℓ
s = hα(X

t,x
T )+

∫ T
s fα(r,X

t,x
r ,(ui,ℓ−1(r,X t,x

r ))i=1,...,m,Q
α,ℓ
r )dr

+
∫ T

s ψα(r,X
t,x
r ,(ui,ℓ−1(r,X t,x

r ))i=1,...,m)d|Λt,x|r −
∫ T

t Qα,ℓ
r dWr − (Gα

T −Gα
s ),

(4.62)

and we have: ∀t ⩽ s ⩽ T , ∀i = 1, . . . ,m,

Y i,ℓ
s = esssup

α∈D i
s

(Pα,ℓ
s −Gα

s ). (4.63)

Now, for fixed i = 1, . . . ,m, and ℓ,κ ⩾ 1, we set:

Fℓ,κ
i (s,X t,x

s ,z) = fi(s,X t,x
s ,(ui,ℓ−1(s,X t,x

s ))i=1,...,m,z)∨ fi(s,X t,x
s ,(ui,κ−1(s,X t,x

s ))i=1,...,m,z),

Ψ
ℓ,κ
i (s,X t,x

s ) = ψi(s,X t,x
s ,(ui,ℓ−1(s,X t,x

s ))i=1,...,m ∨ψi(s,X t,x
s ,(ui,κ−1(s,X t,x

s ))i=1,...,m).

Then, we consider the associated system of generalized BSDEs with oblique reflection:
∀i = 1, ...,m,

Y i,ℓ,κ
s = hi(X

t,x
T )+

∫ T
s Fℓ,κ

i (r,X t,x
r ,Zi,ℓ,κ

r )dr+
∫ T

s Ψ
ℓ,κ
i (r,X t,x

r )d|Λt,x|r

+Ki,ℓ,κ
T −Ki,ℓ,κ

s −
∫ T

s Zi,ℓ,κ
r dWr,

Y i,ℓ,κ
s ⩾ max

j ̸=i
(Y j,ℓ,κ

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i,ℓ,κ

s −max
j ̸=i

(Y j,ℓ,κ
s −gi j(s,X

t,x
s ))}dKi,ℓ,κ

s = 0.

(4.64)

Again, by Theorem 3.1 the solution of the above system exists and is unique. Moreover, the
following representation holds:

Y i,ℓ,κ
s = esssup

α∈D i
s

(Pα,ℓ,κ
s −Gα

s ) = Pα∗,ℓ,κ
s −Gα∗

s . (4.65)

The pair (Pα,ℓ,κ ,Qα,ℓ,κ) denotes the unique solution of the switching equation (4.62) when
the data are replaced with

(
hα(X

t,x
T ),Fℓ,κ

α (s,X t,x
s ,z),Ψℓ,κ

α (s,X t,x
s )
)
. Besides, since the gener-

ators Fℓ,κ
i ,Ψℓ,κ

i do not depend on y⃗, we can use the comparison result for the solutions of
reflected GBSDEs system given by Proposition 2.1 in [1] and we have:

Y i,ℓ ≤ Y i,ℓ,κ = Pα∗,ℓ,κ
s −Gα∗

s ;

Y i,κ ≤ Y i,ℓ,κ = Pα∗,ℓ,κ
s −Gα∗

s , (4.66)

where α∗ is the optimal strategy provided by Y i,ℓ,κ .
Therefore, by repeating the same calculus as in the proof of Theorem 3.1 (step 4). It follows
that for q > 0 and by setting µ0 = 1+qC2

f +2C2
f and λ0 = 1+qC2

ψ , we have: ∀t ⩽ s ⩽ T ,

E
[
| ui,ℓ(s,X t,x

s )−ui,κ(s,X t,x
s ) |2]≤ 4

q

×
(
E
[∫ T

t
eµ0r+λ0|Λt,x|r ∥ (ui,ℓ−1(r,X t,x

r ))i=1,...,m − (ui,κ−1(r,X t,x
r ))i=1,...,m ∥2 dr

]
+E
[∫ T

t
eµ0r+λ0|Λt,x|r ∥ (ui,ℓ−1(r,X t,x

r ))i=1,...,m − (ui,κ−1(r,X t,x
r ))i=1,...,m ∥2 d|Λt,x|r

])
.
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This implies that for s = t, we get:

| ui,ℓ(t,x)−ui,κ(t,x) |2≤ 4
q
E
[∫ T

t
eµ0T+λ0|Λt,x|T

× ∥ (ui,ℓ−1(r,X t,x
r ))i=1,...,m)− (ui,κ−1(r,X t,x

r ))i=1,...,m) ∥2 (dr+d|Λt,x|r)
]
.

Recall that X t,x is the solution of the reflected SDE (2.26), this implies that (s,X t,x) belongs
to the bounded domain D which is a subset of D̃ for any t ⩽ s ⩽ T . Then, thanks to the
boundedness of (ui,ℓ−1)i=1,...,m, we obtain:

| ui,ℓ(t,x)−ui,κ(t,x) |2≤ 4
q
E
[∫ T

t
eµ0T+λ0|Λt,x|T

×
( m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ−1(t,x)−ui,κ−1(t,x) |2
)
(dr+d|Λt,x|r)

]
.

It follows that:

| ui,ℓ(t,x)−ui,κ(t,x) |2≤ 4
q

eµ0TE
[
eλ0|Λt,x|T (T + |Λt,x|T )

]
×

m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ−1(t,x)−ui,κ−1(t,x) |2 .

Next, we take the supremum over D̃ and the sum over i, then we have:
m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ(t,x)−ui,κ(t,x) |2≤ m
4
q

eµ0TE
[
eλ0|Λt,x|T (T + |Λt,x|T )

]
×

m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ−1(t,x)−ui,κ−1(t,x) |2 .

Finally, we choose q> 4meµ0TE
[
eλ0|Λt,x|T (T + |Λt,x|T )

]
which yields the following estimate:

ℓ,κ ⩾ 1,
m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ(t,x)−ui,κ(t,x) |2≤ ϖ

m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ−1(t,x)−ui,κ−1(t,x) |2,

where ϖ < 1. Thus, the following convergence holds:

lim
ℓ,κ→∞

m

∑
i=1

sup
(t,x)∈D̃

| ui,ℓ(t,x)−ui,κ(t,x) |2= 0.

Therefore, there exists (ui)i=1,...,m a family of functions such that (ui,ℓ)ℓ⩾1 converges uni-
formly on D̃ to ui for any i = 1, . . . ,m. Moreover, (ui)i=1,...,m is continuous and bounded
on D̃. Then, we have necessarily Y i

s := ui(s,X t,x
s ). To conclude, it remains to consider the

system of PDEs below:∀i = 1, ...,m

min{vi(t,x)−max
j ̸=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(ui(t,x))i=1,...,m,σ
⊤(t,x)Dxv j(t,x))}= 0, (t,x) ∈ Do;

∂vi

∂γ
(t,x)+ψi(t,x,(ui(t,x))i=1,...,m) = 0, (t,x) ∈ ∂D;

vi(T,x) = hi(x), x ∈ DT .

(4.67)
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Then, consider the associated system of reflected GBSDEs:∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Y i
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,(ui(r,X t,x

r ))i=1,...,m,Zi
r)dr

+
∫ T

s ψi(r,X
t,x
r ,(ui(r,X t,x

r ))i=1,...,m)d|Λt,x|r +Ki
T −Ki

s −
∫ T

s Zi
rdWr,

Y i
s ⩾ max

j ̸=i
(Y j

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i

s −max
j ̸=i

(Y j
s −gi j(s,X

t,x
s ))}dKi

s = 0.

(4.68)

It follows from Theorem 4.1 that (ui)i=1,...,m is solution of the PDEs system (4.67).

It remains to show that (ui)i=1,...,m is the unique solution of the PDEs system (4.67). For
this, we assume that there exists (ũi)i=1,...,m a continuous function on D̃ which is solution
of the system of PDEs (4.67). Then, let i = 1, . . . ,m and Ỹ i ∈ S 2 such that Ỹ i

s = ũi(s,X t,x
s ),

∀t ⩽ s ⩽ T . Then recall the contraction Φ defined in section 3 and set:

(Y i
)i=1,...,m = Φ((Ỹ i)i=1,...,m).

This means that (Y ,K,Z) is the unique solution of the following system of reflected GBS-
DEs with interconnected obstacles: ∀t ⩽ s ⩽ T , ∀i = 1, ...,m,

Y i ∈ S 2, Ki ∈ A 2, Zi ∈ H 2,d ;

Y i
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,(ũ j(r,X t,x

r )) j=1,...,m,Z
i
r)dr

+
∫ T

s ψi(r,X
t,x
r ,(ũ j(r,X t,x

r )) j=1,...,m)d|Λt,x|r +Ki
T −Ki

s −
∫ T

s Zi
rdWr,

Y i
s ⩾ max

j ̸=i
(Y j

s −gi j(s,X
t,x
s )),

∫ T
0 {Y i

s −max
j ̸=i

(Y j
s −gi j(s,X

t,x
s ))}dKi

s = 0.

(4.69)

Now, we rely on Theorem 4.1 which provides the existence of (ui)i=1,...,m a continuous
function on D̃ such that Y i

s = ui(s,X t,x
s ), ∀t ⩽ s ⩽ T . Moreover, (ui)i=1,...,m is the unique

viscosity solution of the following system of PDEs: ∀i = 1, ...,m

min{ui(t,x)−max
j ̸=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)

− fi(t,x,(ũ j(t,x)) j=1,...,m,σ
⊤(t,x)Dxu j(t,x))}= 0, (t,x) ∈ Do;

∂ui

∂γ
(t,x)+ψi(t,x,(ũ j(t,x)) j=1,...,m) = 0, (t,x) ∈ ∂D;

ui(T,x) = hi(x), x ∈ DT .

(4.70)

But (ũi)i=1,...,m is also solution of system (4.70). Therefore, for any i = 1, . . . ,m we have
ui = ũi hence Y i

= Ỹ i ,i.e., (Y i
)i=1,...,m = Φ

(
(Y i

)i=1,...,m
)
. On the other hand (Y i)i=1,...,m is

the unique fixed point of Φ. This implies that we have necessarily (Ỹ i)i=1,...,m = (Y i)i=1,...,m.
Thus, for any i = 1, . . . ,m we have ui = ũi, which proves our claim.
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