
HAL Id: hal-03913568
https://hal.science/hal-03913568v2

Preprint submitted on 30 Apr 2023 (v2), last revised 16 Jan 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Second order cone programming for frictional contact
mechanics using interior point algorithm

Vincent Acary, Paul Armand, Hoang Minh Nguyen, Maksym Shpakovych

To cite this version:
Vincent Acary, Paul Armand, Hoang Minh Nguyen, Maksym Shpakovych. Second order cone pro-
gramming for frictional contact mechanics using interior point algorithm. 2023. �hal-03913568v2�

https://hal.science/hal-03913568v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Second order cone programming for frictional contact mechanics
using interior point algorithm

Vincent Acary* Paul Armand† Hoang Minh Nguyen‡ Maksym Shpakovych§

April 30, 2023

Abstract

We report experiments of an implementation of a primal-dual interior point algorithm for solv-
ing mechanical models of one-sided contact problems with Coulomb friction. The objective is to
recover an optimal solution with high precision and as quickly as possible. These developments
are part of the design of Siconos1, an open-source software for modeling and simulating non-
smooth dynamical systems. Currently, Siconos uses mainly first order methods for the numerical
solution of these systems. These methods are very robust, but suffer from a linear rate of con-
vergence and are therefore too much slow to recover accurate solutions in a reasonable time. As
these variational inequalities systems lead to the solution of an optimization problem with second
order cone constraints, a natural idea is to apply second order optimization methods to speed up
the convergence. We will present in detail a primal-dual interior point algorithm for minimizing
a convex quadratic function with second order cone constraints. We will show, with some exam-
ples, that well known implementations of this algorithm such as SDPT3, do not provide solutions
satisfactorily in terms of computation time and accuracy. The major difficulty in implementing
this type of algorithm comes from the fact that at each iteration of the algorithm, a change of
variable, called a scaling, must be performed to guarantee the non-singularity of the linear system
to be solved, as well as to recover a symmetric system. While this scaling strategy is very nice
from a theoretical point of view, it leads to a huge deterioration of the conditioning of the linear
system when approaching the optimal solution and therefore to all the numerical difficulties that
result from it. We will detail the numerical algebra that we have developed in our implementation,
in order to overcome these problems of numerical instability. We will also present the solution of
the models resulting from the problems with rolling friction, for which the cone of constraints is
no longer self-dual like the Lorentz cone.

1 Introduction
Contact problems with dry Coulomb friction are present in many design and validation processes in
mechanical engineering. As soon as several objects are involved, the question of computing contact
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forces arises. Examples include multi-body systems and mechanisms [40, 13], robotic systems and
grasping problems [12, 14, 27, 15], deformable solid mechanics [28, 46, 41], and granular materi-
als [42, 18]. A usual model of one-sided contact is to consider a set of inequality constraints on
the configuration parameters of the mechanical problem (positions, rotations) associated with forces
which must themselves be positive. Coulomb’s friction, which governs how objects slide in relation
to each other, imposes a constraint on the contact forces which must remain within the Lorentz cone.
These laws lead us to write second order cone constraints on the contact forces. By introducing a
non-linear change of variables of the contact relative velocities that defines the so-called modified
velocities, the contact laws can be written as a complementarity condition on second order cones
between the modified velocities and the contact forces.

In solid and structural dynamics, the discrete mechanical model is usually supplemented by equa-
tions of motion that relate the velocities of the system to applied and contact forces. Following space
and time discretization, the resulting system can be put in the form of a nonlinear Second Order Cone
Complementarity Problem SOCCP [4, 6, 5]. Section 2 details the problem formulation when the
discrete equation of motions are assumed to be linear.

To solve these SOCCP problems numerically, a large number of methods have been used in the
computational contact mechanics community. Many of these methods are in fact adaptations of well-
known mathematical programming methods for solving variational inequalities and complementarity
problems. Some of these methods have been jointly developed by optimization specialists. There are
two inherent difficulties to the frictional contact mechanics problems. The first difficulty is related to
the non-monotone character of the complementarity problem. The identification of an optimization
problem for which the complementarity problem would be the optimality conditions is difficult, and
leads to non-convex optimization problems. The second difficulty comes from the fact that the con-
straints are not of full rank and may be of very low rank with respect to the number of constraints
in the case of rigid multi-body systems. In [2], a review of the main literature is made and methods
are compared with performance profiles. When the second-order constraints are of full rank, second-
order methods such as semi-smooth Newton methods, e.g., Alart-Curnier’s method [7], are generally
robust and accurate. If not, as it is usual in multi-body systems made of rigid parts (robots, granular
material), then the first–order methods such as projected successive over-relaxation gradient methods
are robust, but slow and with a limited accuracy in practice. Second order techniques fail to solve
the problem due to robustness issues. As far as we know, there is no second order method with high
accuracy able to solve the frictional contact problems with redundant constraints.

One of the objectives of this work is to propose a second-order method, based on an interior point
method that is accurate, robust and efficient for problems where the constraints are rank deficient, but,
in the first step, on a convex optimization problem. Some applications of interior point methods have
already been attempted for contact problems in the literature [30, 29, 32, 34]. In the precursor work
of [30], the contact problem with Tresca friction (purely quadratic cylindrical constraints) is solved
with Mehrotra’s algorithm. The work in [29] is the most advanced for the case of conic constraints.
The problem considered is the relaxed convex problem as in this work, which is further regularized
by adding a constant diagonal term to the Jacobian matrices of the interior point algorithm. To solve
large problems, linear systems are solved by iterative methods. The degeneracy of the conditioning as
the iterations proceed leads to the use of preconditioners and makes it costly to obtain high accuracy
solutions. In [34], a comparison between an interior point method and first order methods is made.
The interior point method on second-order cone shows a better convergence rate but without reaching
higher accuracies than first order methods.

2



In this article, we consider a relaxed problem where the actual local velocity is complementary
to the reaction force at each contact point. This yields a reformulation of the original problem as a
convex second order cone optimization (SOCO) problem. A dedicated interior point method based on
the primal-dual algorithm of Mehrotra with the Nesterov-Todd scaling strategy is tailored to solve this
problem. In particular, we show on a large bench set of examples that a tight accuracy can be achieved
at optimum without regularizing the Jacobian matrices, provided their conditioning is controlled.

The outline and the contribution of the article are as follows. In Section 2, we recall the basics of
mechanical models and how the convex SOCO problem is obtained. The corresponding primal-dual
pair is formulated in Section 3. General results are given on the non-emptiness and compactness
of the solution set under the Slater hypothesis. To further motivate the following developments,
preliminary experiments with existing numerical solvers are presented in Section 4. The former is
done by reformulating a SOCO problem as a differential nonlinear optimization problem as proposed
in [11] and applying a nonlinear optimization solver. The latter are performed with SDPT3 [45], a
dedicated solver for semi-definite and second order cone optimization. We will see that none of these
solutions are suitable, either in terms of efficiency or accuracy. In Section 5, the properties of the
central path are detailed. In particular, under the assumption of strict complementarity, we establish
a characterization of the limit point of the central path, the analytic center of the optimal set, which
to our knowledge is new in the SOCO context. This property of the algorithm is important from the
mechanical point of view, since the selection of dual variables, that corresponds to the reaction forces,
is completely controlled by the interior point method. The details of the numerical implementation of
the algorithm are given in Section 6. Several alternative equivalent formulations of the linear system
to be solved at each iteration are detailed and the comparison of their conditioning over the iterations
is illustrated. Our experiments show that the choice of formulation is fundamental for the robustness
of the algorithm. In Section 7, the interior point method is extended to the case of rolling friction,
where the cone of constraints is no longer a Lorentz cone and is not self-dual.

2 Mechanical models
Let us first introduce the original mechanical models that we are interested in. Let d be the dimension
of the space of the mechanical system. Two classes of problems are considered. The frictional
contact (FC) problems [2] for which d = 3 and the problems with rolling friction (RF) at contact
[1] for which d = 5. Let n ∈ N be the number of contact points and let m ∈ N be the number
of degrees of freedom. The mechanical system is described by means of three vectors: the global
velocity v ∈ Rm, the velocity u ∈ Rnd and the reaction r ∈ Rnd. After a discretization in time
and space of the dynamical system, the general model to be considered is a conic complementarity
problem of the form

Mv + f = H>r,
Hv + w = u,
K∗ 3 u+ Φ(u) ⊥ r ∈ K,

(1)

where M ∈ Rm×m is a symmetric and positive-definite matrix, f ∈ Rm, H ∈ Rnd×m, w ∈ Rnd and
K =

∏n
i=1Ki, each Ki is a cone whose definition depends on the model.

For a FC problem, we have

Ki =
{
ri = (ri,N, r

>
i,T)
> ∈ R× Rd−1 : µiri,N ≥ ‖ri,T‖

}
.
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This is the Coulomb’s friction second-order cone at the ith contact point. The scalar ri,N (resp. ui,N)
and the vector ri,T (resp. ui,T) are the normal and tangential components of the reaction (resp. velocity)
vector of the ith contact point and µ ∈ Rn is the vector of friction coefficients. The dual cone of K,
defined by K∗ := {u ∈ Rnd : u>r ≥ 0, for all u ∈ K} =

∏n
i=1K∗i , is given by

K∗i =
{
ui = (ui,N, u

>
i,T)
> ∈ R× Rd−1 : ui,N ≥ µi‖ui,T‖

}
.

The function Φ : Rnd → Rnd is defined by n components of the form Φi(u) = (µi‖ui,T‖, 0>)> ∈ Rd.
For a RF problem, the cones are of the form

Ki =
{
ri = (ri,N, r

>
i,T, r

>
i,R)> ∈ R× Rd−1 × Rd−1 : µiri,N ≥ ‖ri,T‖, µR,iri,N ≥ ‖ri,R‖

}
.

The vector ri,R is the rolling friction reaction moment at contact and µR ∈ Rn is the vector of rolling
friction coefficients. The dual cone of Ki is

K∗i =
{
ui = (ui,N, u

>
i,T, u

>
i,R)> ∈ R× Rd−1 × Rd−1 : ui,N ≥ µi‖ui,T‖+ µR,i‖ui,R‖

}
.

The vector ui,R is the relative angular velocity at contact. For this model, the components of the
function Φ are defined by Φi(u) = (µi‖ui,T‖+ µR,i‖ui,R‖, 0>)> ∈ Rd.

By observing that Φ(u) = Φ(u + Φ(u)) and making the change of variable u ← u + Φ(u), the
problem (1) is reformulated as

Mv + f = H>r,
Hv + w + Φ(u) = u,
K∗ 3 u ⊥ r ∈ K.

(2)

In [6], for the case of a FC problem, an iterative solution of (2) is proposed as follows. The second
equation is rewritten as

Hv + w + φ(s) = u and si = µi‖ui,T‖, i ∈ {1, . . . , n},

where φ : Rn → Rnd is defined by n components of the form (si, 0
>)> ∈ Rd. The idea is to solve the

nonlinear system as a parametric system of the form

Mv + f = H>r
Hv + w + φ(s) = u
K∗ 3 u ⊥ r ∈ K,

(3)

where s is periodically updated according to

si = µi‖ui,T‖, i ∈ {1, . . . , n}.

There is no guarantee of global convergence of this procedure, but the advantage of this formulation
is that, for a fixed s, the parametric system corresponds to the first order optimality conditions of the
following convex optimization problem:

min
v,u

1
2
v>Mv + f>v

s.t. Hv + w + φ(s) = u,
u ∈ K∗.

This problem belongs to the class of second order cone optimization (SOCO) problems. Our study
focuses on the numerical solution of this problem. Obviously, the same parametric strategy can be
applied for the solution of an RF problem.
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3 Basic properties
To simplify the models, let us remove the friction coefficients by means of a simple change of vari-
ables. Let us define the diagonal matrix Pµ whose ith diagonal block is diag(1, µi, µi) for the FC
model and diag(1, µi, µi, µR,i, µR,i) for the RF model. The parameter s is assumed to be fixed. Let us
make the change of variables:

u← Pµu, H ← PµH, w ← Pµ(w + φ(s)) and r ← P−1
µ r.

We keep the same name for the variables, but modify the notation of the components. For the RF
model, we define

ui =

ui,0ūi
ũi

 =

 ui,N
µiui,T
µR,iui,R

 and ri =

ri,0r̄i
r̃i

 =

 ri,N
1
µi
ri,T

1
µR,i

ri,R


The same notation is used for the FC model, except that the components ũi and r̃i does not appear.
The system (3) becomes

Mv + f = H>r,
Hv + w = u,
F∗ 3 u ⊥ r ∈ F ,

(4)

whereF is the product of cones. The definition ofF depends on the model. For the FC model (d = 3)
we have

F =
n∏
i=1

Li := {ri = (ri0, r̄i) ∈ Rd : ri0 ≥ ‖r̄i‖}. (5)

This cone is self-dual (i.e., L∗i = Li), therefore

F∗ =
n∏
i=1

L∗i := {ui = (ui0, ūi) ∈ Rd : ui0 ≥ ‖ūi‖}. (6)

For the RF model (d = 5), the cone of constraints is

F =
n∏
i=1

Ri := {ri = (ri0, r̄i, r̃i) ∈ Rd : ri0 ≥ max{‖r̄i‖, ‖r̃i‖}}. (7)

This cone is not self-dual. The dual cone is then

F∗ =
n∏
i=1

R∗i := {ui = (ui0, ūi, ũi) ∈ Rd : ui0 ≥ ‖ūi‖+ ‖ũi‖}. (8)

The system (4) can be viewed as the first order optimality conditions of the following second order
cone optimization problem (SOCO):

min
v,u

1
2
v>Mv + f>v

s.t. Hv + w = u,
u ∈ F∗.

(9)
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Let r ∈ Rnd be the dual variable associated to the linear constraint of (9). The Lagrangian function
associated to problem (9) is defined by

L(v, u, r) =
1

2
v>Mv + f>v + r>(u−Hv − w).

Since L is separable in v and u, convex in v and linear in u, and since F∗∗ = F , the dual function is
readily obtained and defined by

inf
(v,u)∈Rm×F∗

L(v, u, r) =

{
−1

2
r>Wr − q>r − 1

2
f>M−1f if r ∈ F ,

−∞ otherwise,

where
W = HM−1H> and q = w −HM−1f. (10)

The dual problem is then
min
r

1
2
r>Wr + q>r

s.t. r ∈ F ,
(11)

Let us denote by R̂ the optimal set of this problem. It is a convex set, characterized by the first order
optimality conditions:

F∗ 3 Wr + q ⊥ r ∈ F . (12)

Note that these conditions are equivalent to (4), thanks to the definitions (10) and the equalities

v = M−1(H>r − f) and u = Wr + q. (13)

By weak duality, the duality gap (i.e., the difference between the value of the primal and the dual
function) is nonnegative. Indeed, let (v, u, r) be a primal-dual feasible solution, we have

1
2
v>Mv + f>v − (−1

2
r>Wv − q>r − 1

2
f>M−1f) = u>r ≥ 0,

the inequality arising from the fact that r ∈ F and u ∈ F∗. The strong duality and the existence of
an optimal solution for (11), we need a constraints qualification assumption.

Assumption 1 (Slater hypothesis). There exists v ∈ Rm such that Hv + w ∈ int(F∗).

With respect to the reduced problem (11), the Slater hypothesis can be equivalently formulated as
follows: for all nonzero d ∈ F , if Wd = 0 then q>d > 0.

The following result summarizes the link between the solutions of (4) and (11). They are well
known and are derived from basic properties of convex optimization. We provide a proof in Ap-
pendix A to be complete.

Proposition 1. Consider the primal-dual pair of SOCO problems (9)-(11), where M ∈ Rm×m is
symmetric and positive-definite, f ∈ Rm, H ∈ Rnd×m, w ∈ Rnd and F is the product of second order
cones of the form (5) or (7).

(i) Any solution of (4), provides a primal-dual optimal solution of (9)-(11).
(ii) If the problem (9) is feasible, then it has a unique optimal solution (v̂, û).

(iii) Assumption 1 is satisfied if and only if the optimal set of (11) is non-empty and compact.
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4 Numerical experiments with existing softwares
From a numerical point of view, one of the main difficulties in modeling the Lorentz cone, is the
non-differentiability of the norm at zero. A SOCO problem can be cast as a differentiable nonlinear
optimization problem by using some reformulation tricks. Benson and Vanderbei [11] reported exper-
iments on the solutions SOCO problems with LOQO, their nonlinear optimization solver, and asserted
that ”. . . , a general-purpose solver is quite efficient on problems with linear and second-order cone
constraints, especially when a perturbation or reformulation approach is used to handle nonsmooth-
ness issues”. To make sure that we do not miss a simple and straightforward numerical solution using
an existing nonlinear optimization solver, we have tried to solve our problems by using the alternate
formulations suggested in [11, §4]. Let us consider the following four alternative formulations of the
second order cone constraint ‖r̄‖ ≤ r0:

• Smoothing by perturbation (PER): (‖r̄‖2 + ε)1/2 ≤ r0, for some small ε > 0 (typically 10−8).

• Smoothing by squaring (SQU): ‖r̄‖2 ≤ r2
0 and r0 ≥ 0.

• Convexification by exponentiation (EXP): e(‖r̄‖2−r20)/2 ≤ 1 and r0 ≥ 0.

• Convexification by ratios (RAT): ‖r̄‖
2

r0
≤ r0 and r0 ≥ 0.

These reformulations have been applied to the solution of the reduced problem (11). The choice
of solving the dual problem is justified by the fact that a solution of the primal problem (9) does not
provide the optimal reaction vector, because the multiplier associated to a reformulated constraint
‖ū‖ ≤ u0 is not the dual variable r associated to u. Once an optimal solution r of (11) is computed,
the global velocity v and the velocity u are calculated according to (13). We then estimate the quality
of the optimal solution, by calculating the duality gap u>r and the global error value

err(r, u) =
‖r − π(r − u)‖
max{‖r‖, ‖u‖}

, (14)

where π is the orthogonal projection onto Ln. This error measure is based on the fact that r is optimal
for (11) if and only if r = π(r − u) [2].

The model problems were coded in AMPL [23], a modeling language for optimization. The
original data files of each problem are in HDF5 format2. The data files for the AMPL models were
generated by Matlab by using function hdf5read. The solver KNITRO [16] is called from AMPL
with an optimization tolerance optol set to 10−10.

There are seven families of friction problem tests [3]. For these tests we have grouped the two
families Spheres (200 problems) and Spheres1mm (41 problems) into one, so that we consider
only six families. For each family, we choose to solve only one problem with the largest number
of contact points. The results are reported in Appendix B. For each run, we report the number of
iterations, the cpu time, the duality gap and the global error (14). The last line of the tables indicates
the results obtained by means of our primal-dual solver GFC3D described thereafter. The stopping
criterion used in GFC3D is

res(v, u, r) := max

{
‖Hv + w − u‖

max{‖Hv‖, ‖w‖, ‖u‖}
,

‖Mv + f −H>r‖
max{‖Mv‖, ‖f‖, ‖H>r‖}

, |u>r|
}
≤ tol, (15)

2https://github.com/FrictionalContactLibrary/fclib-library/tree/master/Global/siconos
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with tol = 10−10.
The results reported in Tables 7-9, show that no reformulation gives good performances both in

terms of cpu time, duality gap and global error, except the PER reformulation for the solution of
the KaplasTower problem. This problem is specific, because at the optimal solution all the conic
components of the reaction vector r are in the interior of the Lorentz cone, which leads locally as an
unconstrained problem. We also note that for some solutions, the duality gap is not positive, meaning
that the conical constraints are not always satisfied. Our conclusion about these experiments is that it
is no need to go further in this direction.

We also carried out some experiments with the software SDPT3 [45]. This is an implementation
of a primal-dual interior point method, the Mehrotra predictor-corrector algorithm, which we hoped
would be effective and robust in solving our problems. We have performed experiments by solving
the problems under the formulation (9). Since in SDPT3 the objective function is linear, the problem
(9) must be reformulated as

min
v,u,t

t

s.t. Hv + w = u,
‖L>v + L−1f‖ ≤ t,
u ∈ F∗,

(16)

where the matrix L is the Cholesky factor of M . The structure of the problem is quite simple. In ad-
dition to the linear constraint, the cone of constraints is made with the product of n three-dimensional
Lorentz cones and only one cone of dimension m.

We have performed experiments on the 27 problems of the BoxStacks family. The dimensions
of the problems are 31 ≤ n ≤ 557 and m = 450. The original stopping test of SDPT3 has been
modified so that the iterations are stopped when (15) is satisfied. Two tests were carried out. One
with the tolerance tol = 10−8 and the other with tol = 10−10. The results are reported in Table 1.
The mean number of iterations is calculated on successful runs. We found that these results are not

tolerance (tol) 1e-8 1e-10
number of failures 3 18
mean number of iterations 47 59

Table 1: Numerical solution of the 27 BoxStacks problems with SDPT3.

robust enough and also that the number of iterations is too large. We tested the code SDPT3 on
some other problems in the collection, but found the same behavior as for the BoxStacks problems.
The code lacks robustness as soon as the tolerance is small, typically less than 10−8. The number of
iterations to satisfy the stopping test becomes very large or the code has difficulties with the solution
of the linear system and returns the error message “linsysolve: Schur complement matrix not positive
definite” or the evaluation error message “linsysolve: solution contains NaN or inf”.

These first numerical experiments motivated us to make our own implementation of the interior
point algorithm. Especially since in the conclusion of [45] the authors state that “For problems with
second-order (quadratic) cone constraints, experiments indicate that there is room for improvement
in SDPT3”.
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5 Central path related to a frictional contact problem
In this section, we are interested in FC problems. We recall some known results about the convergence
of the central path in SOCO and put them in our context. For the sake of completeness we also provide
the proofs.

For FC problems, the friction contact cone is equal to the product of n Lorentz cones, i.e.,F = Ln,
where L is the Lorentz cone of dimension d. We recall that this cone is self-dual, i.e., F∗ = F .
There is an algebra, the so-called Euclidean Jordan algebra, associated to symmetric cones, which
allows an almost direct extension of the interior-point algorithms for linear optimization to the case
of SOCO [8]. A summary of Euclidean Jordan algebra is given in Appendix C. Throught this, the
orthogonality condition in (12) becomes u ◦ r = 0, see [8, Lemma 15]. This leads to a square system
of equations with the additional conical constraints. Under Assumption 1, (r, u) is a primal-dual
optimal solution of problem (11) if and only if

Wr + q = u,
r ◦ u = 0,
(r, u) ∈ L2n.

(17)

It is important to keep in mind that the matrix W is not any positive semidefinite matrix, but has a
structure given by (10). This structure will be useful for the solution of the linear system done at each
iteration. In interior-point methods, a perturbation is introduced in the complementarity equation, so
that the system to solve becomes

Wr + q = u,
u ◦ r = 2µe,
(u, r) ∈ int(L2n),

(18)

where e is the unit vector related to the Jordan product and µ > 0 is a parameter progressively driven
to zero along the iterations, so that at the end a solution of (17) is found. The parameter µ is called the
barrier parameter, because (18) can be interpreted as the optimality condition of the barrier problem

min
r

ϕµ(r) := 1
2
r>Wr + q>r − µ

∑n
k=1 log det rk (19)

The first order optimality condition of (19) is Wr + q − 2µr−1 = 0. By introducing the variable
u = 2µr−1, we retrieve (18). This system (18) defines a curve, called the central path. The following
result states that under the Slater’s hypothesis, the central path is well defined and remains bounded
for bounded values of µ. The proof is given in Appendix D

Proposition 2. Under Assumption 1, for all µ > 0, the perturbed KKT system (18) has a unique
solution (r(µ), u(µ)) ∈ int(L2n). For all µ̄ > 0, the set {(r(µ), u(µ)) : 0 ≤ µ ≤ µ̄} is bounded.

From Proposition 1-((ii)), the optimal solution of (9) is unique, therefore limµ→0 u(µ) = û. For
the curve r(·), it can be shown that limµ→0 r(µ) = r̂, where r̂ ∈ ri(R̂). Such a solution is called a
maximally complementary optimal solution of (11). It can be characterized as follows. Regarding to
the problem (11), the index set {1, . . . , n} of the Lorentz cones is partitioned into six sets [36]:

B = {i : ∃r ∈ R̂, ri ∈ int(L)}, N = {i : ûi ∈ int(L)},
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R = {i : ûi ∈ bd(L)\{0} and ∃r ∈ R̂, ri ∈ bd(L)\{0}},

T0 = {i ∈ T : ∀r ∈ R̂, ûi = ri = 0}, T1 = {i ∈ T : ûi = 0 and ∃r ∈ R̂, ri ∈ bd(L)\{0}, },

T2 = {i ∈ T : ûi ∈ bd(L)\{0} and ∀r ∈ R̂, ri = 0}.

An optimal solution r ∈ R̂ is maximally complementary if and only if for all i ∈ B, ri ∈ int(L) and
for all i ∈ R ∪ T1, ri ∈ bd(L)\{0}.

The next result shows the convergence of the central path to a maximally complementary solution.
A proof is given in Appendix D for self-completeness.

Proposition 3. Under Assumptions 1, the central path (r(·), u(·)) converges to (r̂, û), where r̂ is a
maximally complementary optimal solution of (11).

In linear optimization, it is known that the central path converges to the analytic center of the
optimal set [37]. In semidefinite optimization, it is also known that this result holds under strict
complementarity [20, 26]. But in SOCO, as far as we know, we did not find in the literature a
characterization of the analytic center, even under the strict complementarity assumption. In order to
complete the theory, we provide such a characterization.

Assumption 2 (Strict complementarity). There exists r ∈ R̂ such that û+ r ∈ int(Ln).

This assumption is equivalent to Ti = ∅, for i = 1, 2, 3. In that case, (B,N,R) is a partition of
{1, . . . , n}. Under this assumption, we can define the analytic center of the optimal set R̂. If R̂ is a
singleton, then the analytic center of R̂ is this point. Otherwise, it is the unique optimal solution of
the problem

min
r∈ri(R̂)

ψ(r) := −
∑
i∈B

log det ri −
∑
i∈R

log ri,0. (20)

The next proposition shows that the analytic center is well defined.

Proposition 4. Under Assumptions 1–2, if R̂ is not reduced to a singleton, then the problem (20) has
a unique optimal solution r̂ ∈ ri(R̂), characterized by the following property: for all r ∈ ri(R̂),∑

i∈B

r>i r̂
−1
i +

1

2

∑
i∈R

ri,0
r̂i,0
≤ |B|+ 1

2
|R|. (21)

Proof. Let r ∈ ri(R̂). For all i ∈ B, det ri > 0, and for all i ∈ R, ri,0 = ‖r̄i‖ > 0. Since ri(R̂) 6= ∅,
one has domψ ∩ ri(R̂) 6= ∅. To show that problem (20) has at least one solution, it suffices to show
that the function ψ + δri(R̂) is coercive. This last property is a direct consequence of the compactness

of the set R̂.
The uniqueness of the minimum comes from the strict convexity of ψ on ri(R̂). Indeed, for a

conic component i ∈ B, we have ∇2
r(− log det r)r=ri = 2Qr−1

i
, which is positive definite for all

ri ∈ int(L), see Appendix C. For all conic component i ∈ R, there exists hi ∈ Rd−1, with ‖hi‖ = 1,
such that for all r ∈ ri(R̂), we have ri = ri,0(1, h>i )>. Indeed, suppose that for i ∈ R, there exist r
and r′ in ri(R̂), such that ri and r′i are not collinear. By the triangle inequality, it is easy to see that
1
2
(ri + r′i) ∈ int(L), and thus i ∈ B, which would contradict i ∈ R. Finally, for all r, r′ ∈ ri(R̂), if

10



r 6= r′ then there exists i ∈ B such that ri 6= r′i or there exists i ∈ R such that ri,0 6= r′i,0. In both
cases, we have ψ(r) 6= ψ(r′), which implies that ψ is strictly convex on ri(R̂).

Since ψ is convex on ri(R̂), r̂ is optimal if and only if −∇ψ(r̂) is in the normal cone to R̂ at r̂,
i.e., for all r ∈ ri(R̂), ∇ψ(r̂)>(r − r̂) ≥ 0. For r ∈ ri(R̂), we have

∇ψ(r̂)>(r − r̂) = −2
∑
i∈B

(r̂−1
i )>(ri − r̂i)−

∑
i∈R

ri,0 − r̂i,0
r̂i,0

= −2
∑
i∈B

r>i r̂
−1
i + 2|B| −

∑
i∈R

ri,0
r̂i,0

+ |R|,

from which we deduce that (21) is satisfied.

Let us state and prove the main result of this section.

Theorem 1. Under Assumptions 1–2, the central path r(·) converges to the analytic center of R̂.

Proof. Suppose that R̂ is not reduced to a singleton, otherwise the result is a direct consequence of
Proposition 3. Let r ∈ ri(R̂). As in the proof of Proposition 3, for all µ > 0, (46) is satisfied. By
using r(µ) ◦ u(µ) = 2µe and the definition of the partition (B,N,R), we have∑

i∈B

r>i r
−1
i (µ) +

∑
i∈N

û>i u
−1
i (µ) +

∑
i∈R

(r>i r
−1
i (µ) + û>i u

−1
i (µ)) ≤ n. (22)

For any index i, by using the Cauchy-Schwarz inequality and the fact that ri,0 ≥ ‖r̄i‖, we have

r>i r
−1
i (µ) =

r>i Rri(µ)

det ri(µ)

=
ri,0 ri,0(µ)− r̄>i r̄i(µ)

r2
i,0(µ)− ‖r̄i(µ)‖2

≥ ri,0 ri,0(µ)− ‖r̄i‖‖r̄i(µ)‖
(ri,0(µ)− ‖r̄i(µ)‖)(ri,0(µ) + ‖r̄i(µ)‖)

≥ ri,0
ri,0(µ) + ‖r̄i(µ)‖

. (23)

In the same manner, for all i ∈ {1, . . . , n} we have

û>i u
−1
i (µ) ≥ ûi,0

ui,0(µ) + ‖ūi(µ)‖
. (24)

From (22), (23) and (24), we deduce that∑
i∈B

r>i r
−1
i (µ) +

∑
i∈N

û>i u
−1
i (µ) +

∑
i∈R

(
ri,0

ri,0(µ) + ‖r̄i(µ)‖
+

ûi,0
ui,0(µ) + ‖ūi(µ)‖

) ≤ n.

When µ tends to zero, the first sum tends to
∑

i∈B r
>
i r̂
−1
i and the second one to |N|. By using the fact

that r̂i,0 = ‖¯̂ri‖ and ûi,0 = ‖¯̂ui‖ for i ∈ R, each term of the third sum tends to ri,0
2r̂i,0

+ 1
2
. By taking the

limit µ ↓ 0 and using n = |B|+ |N|+ |R|, we obtain∑
i∈B

r>i r̂
−1
i +

1

2

∑
i∈R

ri,0
r̂i,0
≤ |B|+ 1

2
|R|,

which shows by Proposition 4 that r̂ is the optimal solution of (20), the analytic center of R̂.
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6 Numerical solution of the friction contact problems
We have implemented the primal-dual interior point algorithm developed by Tütüncü, Toh and Todd
[45] and adapted it to our context. This is an extension of the predictor-corrector algorithm of Mehro-
tra [33] to the solution of a SOCO problem. The main part of the algorithm is the solution of two linear
systems that result from the linearization of the equation (18) at the current iterate (u, r) ∈ int(L2n).
They only differ on the right-hand side and are of the form:(

W −I
U R

)(
dr

du

)
=

(
−Wr − q + u

−u ◦ r − [dua ◦ dra − 2σµe]

)
(25)

where U = Arw(u) and R = Arw(r). The first direction, denoted (dua, d
r
a) and called the affine

scaling direction, is the solution of (25) without the square bracketed term in the right-hand side. It
then satisfies the linear equation

u ◦ dra + r ◦ dua = −u ◦ r.

The affine scaling direction is a Newton step on the original optimality system (17). The barrier
parameter is set to µ = u>r

n
. The centralization parameter σ ∈ (0, 1] is fixed by comparing the current

value of µ with its expected reduction obtained along the affine step. The second direction is a linear
combination of the affine scaling direction and of a corrector step, to keep the iterates near the central
path. It then satisfies the following linear equation

u ◦ dr + r ◦ du = −u ◦ r − dua ◦ dra + 2σ u
>r
n
e.

The next iterate is set to (u+, r+) = (u, r) + α(du, dr), where α is the largest value in (0, 1] such that

(u+, r+) ∈ (1− τ)(u, r) + L2n,

for some value τ ∈ (0, 1] (typically τ = 0.995). Contrary to common practice, different primal and
dual steplengths are not taken, because of the first equation in (25), which is linear and includes both
primal and dual variables. Indeed, suppose that the current iterate is such that Wr + q − u = 0 and
that different steplengths α 6= α′ are taken with du 6= 0. We then have

W (r + αdr) + q − (u+ α′du) = (α− α′)du.

If du 6= 0, then at the next iteration the residual of the linear equation is no longer zero.
The algorithm will be well defined if the matrix in (25) is nonsingular at each iteration. Its determi-

nant is equal to det(W +R−1U) detR. Although the vectors r and u are kept inside the interior of the
second order cones, and thusR andU are positive definite, the matrixW+R−1U can be singular. This
is because the matrix R−1U is not necessarily symmetric, since in general r and u do not commute.
The following example is given by [39, p.143]: If U = Arw([1, 0.7, 0.7]>), R = Arw([1, 0.8, 0.5]>)
and W = diag([0.3, 1, 0]>), then det(W +R−1U) = 0.

In addition to this singularity issue, there is the problem of symmetry. In IP algorithms, the
matrices U and R are diagonal and so the matrix of (25) can be symmetrized, for example by left-
multiplying the second row by−U−1. See, e.g., [24] for several symmetrization techniques in interior
point methods. The major advantages of a symmetric system are a lower factorization cost and an
effective control of the inertia of the factorized matrix. Moreover, very efficient codes such as MA57
[22] or MUMPS [9] can be used for this task.
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To overcome these problems of singularity and symmetry, a change of variables, called a scaling
scheme, is applied in order to retrieve a symmetric nonsingular system. The idea is to make a change
of variables leaving invariant the Lorentz cone and such that in the new space the vectors u and r
commute. However, this change of variable depends on the current iterate and must be done at each
iteration. Let p ∈ intK and let Qp � 0 be the corresponding quadratic representation. From [8,
Theorem 9], we have Qp(Ln) = Ln and Qp(int(Ln)) = int(Ln). Let us consider the change of
variables

ř = Qp−1r and û = Qpu.

The problem (11) becomes
min
ř

1
2
ř>QpWQpř + (Qpq)

>ř

s.t. ř ∈ Ln.
(26)

The corresponding perturbed KKT system is

Wr + q = u and û ◦ ř = 2µe,

with (û, ř) ∈ intL2n The linearization of these equations leads the following linear system:(
W −I

ÛQp−1 ŘQp

)(
dr

du

)
=

(
−Wr − q + u

−û ◦ ř − [d̂ua ◦ ďra − 2σµe]

)
, (27)

where Û = Arw(û) and Ř = Arw(ř). The choice of the vector p ∈ intK is made so that û and ř
commute, which implies that the matrix of the linear system (27) is nonsingular. Indeed, this matrix
is nonsingular if and only if det(W + (ŘQp)

−1ÛQp−1) 6= 0. Since Û and Ř are positive definite, û
and ř commute, and Qp−1 = Q−1

p , we have

(ŘQp)
−1ÛQp−1 = Qp−1Ř−1/2Û1/2Û1/2Ř−1/2Qp−1 ,

which is symmetric and positive definite.
Several choices for the vector p are possible, see [8]. As mentioned in [45], the most efficient

scaling technique for the solution of a SOCO problem, is the one using the Nesterov and Todd (NT)
direction [38]:

p =
(
Qu1/2(Qu1/2r)

−1/2
)−1/2

=
(
Qr−1/2(Qr1/2u)1/2

)−1/2
. (28)

The main property of the NT direction is that û = ř, which implies that

Û−1Ř = I.

The symmetrization of the system (27) is done by left-multiplying the last row by −QpÛ
−1, leading

to a symmetric matrix of the form (
W −I
−I −Qp2

)
.

To take advantage of the sparsity of the matrices M and H , the system (25) is considered in the
following equivalent augmented form: M −H> 0

−H 0 I
0 U R

dvdr
du

 =

 −Mv − f +H>r
Hv + w − u

−u ◦ r − [dua ◦ dra − 2σµe]

 . (29)
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The system (29) can be interpreted as the linearization of the perturbed KKT conditions of the problem
(9). Applying the scaling scheme, the system becomes M −H> 0

−H 0 I
0 I Qp2

dvdr
du

 =

 −Mv − f +H>r
Hv + w − u

−r − [Qp(û
−1 ◦ (d̂ua ◦ ďra))− 2σµu−1]

 . (30)

A reduction of (30) can be done by eliminating the variable du, while keeping the sparse structure.
This leads to the reduced symmetric system(

M −H>
−H −Qp−2

)(
dv

dr

)
=

(
−Mv − f +H>r

Hv + w + [Qp−1(û−1 ◦ (d̂ua ◦ ďra))− 2σµr−1]

)
. (31)

The big flaw of the scaling strategy is the ill-conditioning of the matrix Qp2 when the solution pair
(u, r) approaches an optimal solution. Indeed, suppose that (u∗, r∗) is a primal-dual optimal solution
of (11), which satisfies the strict complementarity condition. Let (u, r) be an interior point iterate
near the optimal solution and let p be defined by (28). For i ∈ {1, . . . , n}, three situations can occur
[17]:

• u∗i ∈ int(L) and r∗i = 0, then all the eigenvalues of Qp2i
are of order µ := u>r;

• u∗i = 0 and r∗i ∈ int(L), then all the eigenvalues of Qp2i
are of order 1/µ;

• u∗i ∈ bd(L), r∗i ∈ bd(L) and (u∗i , r
∗
i ) 6= (0, 0), then the largest eigenvalue of Qp2i

is of order
1/µ and the smallest is of order µ.

To overcome the difficulties due to ill-conditioning, we propose to solve the linear systems (30)
and (31) under the following equivalent form: M −Ĥ> 0

−Ĥ 0 I
0 I I

dvďr
d̂u

 =

 −Mv − f +H>r

Ĥv + ŵ − û
−ř − [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1]

 (32)

and (
M −Ĥ>
−Ĥ −I

)(
dv

ďr

)
=

(
−Mv − f +H>r

Ĥv + ŵ + [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1]

)
, (33)

where Ĥ = QpH , ŵ = Qpw, d̂u = Qpd
u and ďr = Qp−1dr. In our numerical experiments, we also

consider the reduced system

(ĤM−1Ĥ> + I)ďr = −ĤM−1(f +H>r)− ŵ − [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1], (34)

for which the matrix is positive definite.
Figure 1 shows the behavior of the condition number of the matrices of the six linear systems

(29)-(34) along the iterations of the IP algorithm for two examples. The first example (left figure)
has a single contact point: n = 1, m = 3, M = I , w = 0, f = [3, 3, 3, 1,−1,−3, 1,−1,−3]>,
H = [D, 0,−D] where D = diag(1, 0.1, 0.1). Since H is of full rank, the primal-dual solution is
unique, the optimal reaction and relative velocity vectors are non-zero and on the boundary of the
Lorentz cone. The second example is from the Box Stacks family. There are n = 69 contact points
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and m = 450 degrees of freedom, H ∈ R207×450 and rank(H) = 157. The optimal solution satisfies
the strict complementarity condition and (|B|, |N|, |R|) = (18, 5, 46). The matrix of (29) at the end
point of the minimization procedure, is nearly rank deficient, there are 15 singular values less than√
ε, where ε is the epsilon machine. With these two examples, it can be seen the matrices in (32) and

(33) remain the least ill-conditioned.
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Figure 1: Condition number (κ) of the matrix of the linear systems along the iterations

An advantage of the systems (32) and (33) is that for the whole computations, the quadratic
representation matrices are never explicitly built in memory. Only the product of these matrices times
a vector must be performed. Indeed, for a pair of vectors (x, y) ∈ L2, the product of a vector y by the
quadratic representation of x can be done via the formula Qxy = 2(x>y)x− (detx)Rdy. Therefore,
the product of a vector by a matrix Qp, where p is the NT-vector (28), can be done by performing only
three products of a quadratic representation matrix by a vector. In the same way, the computation
of the inverse or the square root of a vector in the Jordan algebra, is done by using the spectral
decomposition of this vector. Moreover, even if the number of cones can be large, the computational
cost of a spectral decomposition per cone is very low, because the dimension of a Lorentz cone is
only three.
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Algorithm 1 One iteration of Mehrotra primal-dual algorithm for solving a FC problem
Parameters: η1 ∈ (0, 1), η2 ≥ 1, η3 ≥ 1, τ1 ∈ (0, 1), τ2 ∈ (0, 1− τ1), tol > 0

1: if the stopping criterion (15) is satisfied then return (v, u, r) as primal-dual solution of (9);
2: Set µ← u>r/n;
3: Compute (dva, d

r
a, d

u
a) solution of (29) (resp. (30)-(34)) without the square bracketed term;

4: Find the greatest αa ∈ (0, 1] such that (u, r) + αa(d
u
a, d

r
a) ∈ L2n;

5: Set µa ← (u+ αad
u
a)
>(r + αad

r
a)/n;

6: if µ > η1 then set e← max{1, η2α
2
a} else set e← η3;

7: Set σ ← min{1, (µa/µ)e};
8: Compute (dv, dr, du) solution of (29) (resp. (30)-(34)) including the square bracketed term;
9: Set τ ← τ1 + αaτ2;

10: Find the greatest α ∈ (0, 1] such that (u, r) + α(du, dr) ∈ (1− τ)(u, r) + L2n;
11: Set (v, u, r)← (v, u, r) + α(dv, du, dr) and goto 1.

Algorithm 1 details one iteration of the implemented algorithm based on that of SDPT3 [45].
The values of the parameters are fixed to η1 = 10−10, η2 = 3, η3 = 1, τ1 = 0.9, τ2 = 0.09 and
tol = 10−10. The starting point is set as follows: for all i ∈ {1, . . . , n}, ui = ri = (0.1, 0.01, 0.01)>

and v = M−1(H>r+ f). The experiments were done on 1091 problems of the FCLIB collection [3].
There are seven families of problems, whose dimensions are described in Table 2, where n is the
number of three-dimensional cones and m is six times the number of bodies.

Family # problems n m
BoxStacks 28 [31, 557] 450
Capsules 200 [15, 314] 600
Chute 182 [3, 3224] [1002, 12672]
KaplasTower 240 [48, 899] 792
PrimitveSoup 200 [37, 3123] 6000
Spheres 200 [344, 4290] 12000
Spheres1mm 41 [715, 4213] 12000

Table 2: Sizes of problems of the FCLIB collection

The linear system (29) is solved by means of a LU factorization, the symmetric ones with a LDL>

factorization with MA57 [22]. Even for the solution of the positive definite system (34) MA57 is used.
Two types of failures are returned during a run:

• Failure 1: the stopping criterion (15) is not satisfied after a maximum of 100 iterations.

• Failure 2: A NaN (Not a Number) is detected during the computation of the new iterate.

Table 3 indicates the number of successes and failures when solving the 1091 problems of the
FCLIB collection, with a tolerance fixed to tol = 10−10. Each row corresponds to a run of Algo-
rithm 1 with the numerical solution of the indicated linear system. Figure2 shows the corresponding
performance profiles [21]. For τ ≥ 0, ρs(τ) is the fraction of problems for which the performance
of a given version of the algorithm is within a factor 2τ of the best one. With the system (29) the
failures are due to a nearly singular system. In these cases, either the algorithm stalls to a spurious
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solution (13 out of 22 cases) or the convergence becomes very slow (9 out of 22 cases). However,
it should be noted that for almost 98% of the problems, the “no-scaling” strategy returns an optimal
solution. The systems (30) and (31) return a great number of failures of type 2. This is mainly due
to the ill-conditioning of the matrix Qp2 when approaching an optimal solution. The reduction of the
system worsens the results. Surprisingly, the worse results are with the system (32). A deterioration
of the residual of the second linear equation in (32) over the iterations is observed, when the matrix
Qp becomes increasingly ill-conditioned. This leads to a loss of the primal feasibility of the iterates.
This is mainly due to the scaling of the linear equation −Hdv + du = u −Hv − w. To address this
issue, the refinement procedure described in the documentation of MA57 can be used for the solution
of (32). We performed a run with a refinement tolerance fixed to the tolerance tol and a maximum of
10 refinement iterations. This leads to only six type 2 failures and no more failure of type 1, but it
takes more running time than with (33) as shown by Figure 2. The best performance in terms of ro-
bustness is obtained with the system (33). The positive definite system (34) gives a good performance
in terms of efficiency, but its robustness is not sufficient, even if refinement is applied.

linear system # success # failure 1 # failure 2
(29) 1069 22 0
(30) 947 0 144
(31) 852 5 234
(32) 308 1 782

(32) + refin 1085 0 6
(33) 1091 0 0
(34) 1083 1 7

Table 3: Number of successes and failures when solving the FCLIB problems with tol = 10−10
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Figure 2: Performance profiles for eight different linear system choices
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At last, it must be mentioned that all the computations related to the scaling are performed with
the floating-point data type long double in C. This data type is also used in the computation of the
steplengths. This always results in a better accuracy, although the computing time is slightly higher.
Table 4 shows the results of the solution of the FCLIB problems with Algorithm 1, the linear system
under the form (33), with a stopping tolerance tol = 10−11. The comparison is between the use of the
data type long double versus double. We can see that the number of failures of type 2 is more
than twice with the type double. For these runs, even in case of a failure, the residual (left-hand term
in (15)) is small, meaning that an optimal solution has been found. The column max res indicates the
maximum value of residual (15) of all the 1091 residuals and shows that the type long double
allows to obtain a better precision. Even with the data type double, all problems are successfully
solved for tol = 10−10. The last column of this table shows the total computational time to solve all
the FCLIB problems with this tolerance. It can be seen that the increase in computational time is less
than 10% with long double.

# success # failure 1 # failure 2 max res cpu (sec)
double 1047 5 39 9e-9 616

long double 1069 5 17 6e-11 675

Table 4: Performance comparison double versus long double when solving the FCLIB prob-
lems with system (33) and tol = 10−11

7 Rolling friction contact problem
We now consider the solution of (4) in the framework of the RF model (d = 5) defined by the rolling
friction cones (7) and (8). The main difficulty is that an elementary coneRi is no more self-dual and
therefore not symmetric. There is no Jordan product such thatRi is a cone of squares with respect to
this product. A potential approach is to transform the cone of constraints related to problem (9) into
the product of Lorentz cones by means of the following usual trick of introducing artificial variables.
For real numbers, a ≥ b + c if and only if there exist two real numbers t ≥ b and t′ ≥ c such that
a = t + t′. By setting ui,0 = t̄i + t̃i for all i ∈ {1, . . . , n}, the primal-dual pair of problems (9)-(11)
can be rewritten as

min
v,z

1
2
v>Mv + f>v

s.t. Hv + w = Jz,
z ∈ L2n,

(35)

and
min
r

1
2
r>Wr + q>r

s.t. J>r ∈ L2n,
(36)

where z = (z>1 , . . . , z
>
n )> and zi = (t̄i, ū

>
i , t̃i, ũ

>
i )> ∈ Rd+1, J ∈ Rnd×n(d+1) is a block diagonal

matrix with n blocks of the form

 =

1 1
I

I

 ∈ Rd×(d+1).

For all i ∈ {1, . . . , n}, we have zi = (t̄i + t̃i, ū
>
i , ũ

>
i )> and >ri = (ri0, r̄

>
i , ri0, r̃

>
i )>.
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The perturbed KKT system associated of problem (36) is then

Wr + q = Jz,
z ◦ J>r = 2µe,
(z, J>r) ∈ int(L4n).

(37)

This optimality system is associated to the barrier problem

min
r

ϕµ(r) := 1
2
r>Wr + q>r − µ

∑n
i=1 log(det(ri,0, r̄i) det(ri,0, r̃i)). (38)

As for Proposition 2 and by coercivity of the barrier function, under Assumption 1, for all µ > 0
the system (37) has a unique solution such that (z(µ), J>r(µ)) ∈ int(L4n). Although the optimal
solution of (35) is not unique, because J is non-injective, it can be shown, like for Proposition 3,
that the central path converges to a relative interior point of the primal-dual optimal set. Under the
hypothesis of strict complementarity, it can also be shown that the central path r(·) converges to the
analytic center of the dual optimal set. For the sake of completeness, we state the result, but without
proof in order to lighten the paper.

Assumption 3. There exists a solution (z, r) of (37) with µ = 0, such that z + J>r ∈ int(L2n).

The strict complementarity hypothesis can be equivalently reformulated relatively to the original
problems (9) and (11), thanks to the orthogonality condition (12). Let (z, r) be a solution of (37) with
µ = 0. Then (v, u = Jz) is the unique optimal solution of (9). Assumption 3 is satisfied if and only
if for all i ∈ {1, . . . , n}, one of the following three assertions is satisfied:

• ri0 > max{‖r̄i‖, ‖r̃i‖} and ui = 0,

• ui0 > ‖ūi‖+ ‖ũi‖ and ri = 0,

• ri0 = max{‖r̄i‖, ‖r̃i‖} > 0 and ui0 = ‖ūi‖+ ‖ũi‖ > 0.

As in Section 5, under the strict complementarity assumption, the index set {1, . . . , n} can be parti-
tioned into two partitions (B̄, N̄, R̄) and (B̃, Ñ, R̃), whose definition is a direct extension of the previous
one to the current framework. Let Ẑ and R̂ be the primal and dual optimal sets of problems (35) and
(36). The first partition is defined as follows, the second in a similar way.

B̄ = {i : ∃r ∈ R̂, (ri,0, r̄i) ∈ int(L)}, N̄ = {i : ∃z ∈ Ẑ, (t̄i, ūi) ∈ int(L)},

R̄ = {i : ∃(z, r) ∈ Ẑ × R̂, ((t̄i, ūi), (ri,0, r̄i)) ∈ bd(L2)\{0}}.

We can then define the analytic center of the optimal set R̂ as follows. If R̂ is reduced to a singleton,
then it is this point, otherwise it is the minimum of the problem

min
r∈ri(R̂)

−
∑
i∈B̄

log det(ri,0, r̄i)−
∑
i∈B̃

log det(ri,0, r̃i)−
∑

i∈R̄,i∈R̃

log ri,0. (39)

The analytic center can be characterized like in Proposition 4, by which it can be shown that Theo-
rem 1 still holds for the rolling friction framework.

Algorithm 1 is modified in order to solve a RF problem. This is described by Algorithm 2.
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Algorithm 2 One iteration of Mehrotra primal-dual algorithm for solving a RF problem
Parameters: η1 ∈ (0, 1), η2 ≥ 1, η3 ≥ 1, τ1 ∈ (0, 1), τ2 ∈ (0, 1− τ1), tol > 0

1: if (15) with u = Jz is satisfied then return (v, z, r) as primal-dual solution of (35);
2: Set µ← r>Jz/n;
3: Compute (dva, d

r
a, d

z
a) solution of (40) (resp. (41)-(42)) without the square bracketed term;

4: Find the greatest αa ∈ (0, 1] such that (z, J>r) + αa(d
z
a, J

>dra) ∈ L4n;
5: Set µa ← (r + αad

r
a)
>J(z + αad

z
a)/n;

6: if µ > η1 then set e← max{1, η2α
2
a} else set e← η3;

7: Set σ ← min{1, (µa/µ)e};
8: Compute (dv, dr, dz) solution of (40) (resp. (41)-(42)) including the square bracketed term;
9: Set τ ← τ1 + αaτ2;

10: Find the greatest α ∈ (0, 1] such that (z, J>r) + α(dz, J>dr) ∈ (1− τ)(u, r) + L4n;
11: Set (v, z, r)← (v, z, r) + α(dv, dz, dr) and goto 1.

The linear system solved at each iteration is obtained by linearizing the system (37). It is refor-
mulated under the form of the following augmented system M −H> 0

−H 0 J
0 ZJ> R

dvdr
dz

 =

 −Mv − f +H>r
Hv + w − Jz

−z ◦ J>r − [dza ◦ (J>dra)− 2σµe]

 , (40)

where Z = Arw(z), R = Arw(J>r) and µ = r>Jz
n

. As in Algorithm 1, the affine scaling direction
(dva, d

r
a, d

z
a) is the solution of (40) without the square bracketed term in the right-hand side, while the

full step (dv, dr, dz) is the solution of the complete system.
The scaling strategy is similar to that described in Section 6. The NT direction p is defined by the

formula (28) where u and r are respectively replaced by z and J>r. The change of variables is done
by setting

ẑ := Qpz and y̌ := Qp−1J>r.

Recall that ẑ = y̌, which allows to symmetrize the linear system under the form M −H> 0
−H 0 J

0 J> Qp2

dvdr
dz

 =

 −Mv − f +H>r
Hv + w − Jz

−J>r − [Qp(ẑ
−1 ◦ (d̂za ◦ ďya))− 2σµz−1]

 . (41)

Because of the ill-conditioning of the matrix Qp2 , an equivalent form of (41) has been considered: M −H> 0
−H 0 JQp−1

0 Qp−1J> I

dvdr
d̂z

=

 −Mv − f +H>r
Hv + w − Jz

−y̌ − [ẑ−1 ◦ (d̂za ◦ ďya − 2σµe)]

 , (42)

where d̂z = Qpd
z. Figure 3 shows the condition number of the three matrices (40)-(42) along the

iterations of the numerical resolution of a RF problem. It can be seen that the system (42) is better
conditioned than (41).

We also tried several reductions to a 2× 2 form as in (31) or (33), leading to matrices of the form(
M −H>
−H −JQp−2J>

)
or

(
M Ĥ>

−Ĥ −I

)
, (43)
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Figure 3: Condition number (κ) of the matrix of the linear systems along the iterations of the Algo-
rithm 2 when solving the problem PrimitiveSoup-ndof-6000-nc-37-0 with n = 37 contact points.

where Ĥ = P−1H and PP> = JQp−2J>. We also tried several ways to compute the matrix P , by
performing a Cholesky factorization or by directly exploiting the structure of a quadratic representa-
tion matrix. Despite such a reduction and in contrast to the results obtained with the RF problems, the
numerical performance has not been improved. Moreover, the computation of the matrix P increases
the overall computational cost, without any real improvement. We also observe the same for the 1×1
system like (34).

The numerical tests were carried out on 526 RF problems of the FCLIB family [3], whose charac-
teristics are in Table 5. The numerical results and performances of Algorithm 2 with the three linear
systems described previously, are reported in Table 6 and Figure 4. These results show that, with a
tolerance tol = 10−10, the choice of system (42) gives the best performance. But the performance gap
between the systems with the NT scaling is smaller than those observed for the FC problems. It can
also be observed that, as for the RF problems, without scaling the failures are of type 1, while with
NT scaling the failures only occur when a NaN is detected. Moreover, in the latter case the maximum
value of the residual (15) (right column of Table 6), shows that the stopping point of the algorithm is
nearly optimal.

Family # problems n m
Chute 155 [4, 1372] [768, 6528]
PrimitiveSoup 171 [37, 2269] 6000
SpherePile 200 [2, 542] [24, 1500]

Table 5: Sizes of rolling friction problems of the FCLIB collection
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linear system # success # failure 1 # failure 2 max res
(40) 391 135 0 3e-3
(41) 451 0 75 4e-9
(42) 508 0 18 5e-9

Table 6: Number of successes and failures when solving the RF problems with tol = 10−10
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Figure 4: Performance profiles for the three linear systems for the RF model

8 Conclusion
At the beginning of this work, solving the relaxed convex form of friction contact models seemed
very simple. But after our preliminary experiences with existing softwares and our first implemen-
tation of the primal-dual algorithm of Mehrotra, we were a bit confused by the lack of efficiency
and robustness. The Nesterov-Todd scaling strategy is a wonderful theoretical tool, but numerically
very painful. As the iterates approach the boundary of the second order cones, the conditioning of
the linear system explodes, the iterates get stuck on the boundary and divisions by zero occur, which
produces NaN and thus an emergency stop. We have therefore reviewed a large number of equivalent
formulations of the linear system and found that the one that gives the best results, or shall we say
least bad, is the one in which the quadratic representation matrix that allows scaling is not a direct
component of the matrix of the linear system. In addition, particular attention must be paid to the way
in which the matrix-vector products are done in order to build the system to be factorized. Unfortu-
nately, for rolling friction problems, we have not been able to find a formulation that is as efficient and
robust as for friction cones. The accuracy we have achieved is somewhat a bit lower. Nevertheless,
the accuracies and calculation times we have achieved for both models seem to us quite suitable and
can be used for real applications. The next step in this research work is to extend the primal-dual
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algorithm to solve the original model (1), which is non-smooth and is not the optimality system of an
optimization problem.
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A Proof of Proposition 1
Before giving a proof of Proposition 1, we propose some equivalent formulations of Assumption 1.
They are proved thanks to the following known lemma [44, Lemma 2], called Tucker’s theorem of
the alternative in the case where K is the nonnegative orthant, see [31, p. 29]. The proof can be made
by applying a separation theorem of convex sets, see, e.g., [43, Theorem 11.3].

Lemma 1. Let K ⊂ Rn be a closed pointed convex cone, A ∈ Rm×n and B ∈ Rp×n. One and only
one of the following statements is true.

(i) There exists a non-zero x ∈ K such that Ax = 0 and Bx ≤ 0.

(ii) There exists (y, z) ∈ Rm × Rp
+ such that A>y +B>z ∈ int(K∗).

The following lemma provides equivalent formulations of Assumption 1.

Lemma 2. Let F be the product of second order cones of the form (5) or (7). Let M ∈ Rm×m be
symmetric and positive-definite, f ∈ Rm,H ∈ Rnd×m, w ∈ Rnd andW = HM−1H> . The following
four assertions are equivalent.

(i) There exists v ∈ Rm such that Hv + w ∈ int(F∗).
(ii) There exists (v, t) ∈ Rm × R+ such that Hv + tw ∈ int(F∗).

(iii) There does not exist a nonzero d ∈ F , such that H>d = 0 and w>d ≤ 0.
(iv) There does not exist a nonzero d ∈ F , such that Wd = 0 and q>d ≤ 0.

Proof. The implication (i)⇒ (ii) is obvious. The equivalence (ii)⇔ (iii) is a direct consequence of
the fact that F∗ is a closed pointed convex cone and of Lemma 1. The equivalence (iii)⇔ (iv) follows
from the definitions of W and q in (10), and of the positive definiteness of M . It remains to prove that
(ii)⇒ (i).

Let (v, t) ∈ Rm × R+ such that Hv + tw ∈ int(F∗). If t > 0, set v′ = 1
t
v. Since Hv + tw =

t(Hv′ + w) and int(F∗) is a cone, Hv′ + w ∈ int(F∗). Suppose now that t = 0. There exists ε > 0
such that Hv + Bε ⊂ F∗, where Bε is the open ball centered at 0 with radius ε. Since F∗ is a cone,
for all t > 0, tHv + Btε ⊂ F∗. Let us choose t > 1

ε
‖w‖. We then have tHv + w ∈ int(F∗), which

proves (i).
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We can prove now that the Slater’s assumption is equivalent to the non-emptiness and compactness
of the optimal set of the reduced problem (11).

Proof of Proposition 1. The assertions (i) and (ii) are direct consequences of the weak duality and of
the strong convexity of the objective function of (9). The outcome (iii) can be proved by means of
some useful tools from asymptotic analysis in convex optimization [10]. Let us define the function
g(r) = 1

2
r>Wr + q>r + δF(r), where δF is the indicator function of the set F . The asymptotic

function of g is defined by

g∞(s) = sup
t>0

g(ts)− g(0)

t
=

{
q>s if s ∈ F and Ws = 0,
∞ otherwise,

for s ∈ Rnd, see [10, Proposition 2.5.2]. The optimal set R̂ coincides with the set of minima of g.
It is non-empty and compact if and only if g is coercive, that is g∞(s) > 0 for all nonzero s ∈ Rnd

[10, Proposition 3.1.3]. It follows that R̂ is nonempty and compact if and only if there is no nonzero
s ∈ F , such that Ws = 0 and q>s ≤ 0. By Lemma 2, this is equivalent to the Slater hypothesis.

B Numerical results by differentiable optimization solver
For each problem, the number of contact points (n), that is the number of 3-dimensional Lorentz
cones, is indicated in bold. The number of degrees of freedom (m) is indicated in brackets.

iter time u>r err(r, u)
PER 316 4.7 1.5e-04 9.0e-04
SQU 449 20.7 -5.8e-06 5.8e-05
EXP 253 7.4 -8.3e-06 9.0e-05
RAT 88 1.1 8.9e-08 6.7e-06

GFC3D 31 0.14 5.3e-11 1.2e-07

iter time u>r err(r, u)
PER 940 1.9 1.1e-04 7.5e−04
SQU 392 4.4 -1.0e-05 4.6e-05
EXP 523 2.9 -1.5e-05 6.3e-05
RAT 179 0.27 5.0e-08 2.1e-05

GFC3D 19 0.05 9.5e-11 2.5e-07

Table 7: Box Stacks-i1000-557-13 (450) – Capsules-i097201-313-31328 (600)

iter time u>r err(r, u)
PER 15 0.02 5.2e-11 2.6e-07
SQU 20 0.18 1.4e-12 1.7e-10
EXP 22 0.49 8.1e-13 1.0e-10
RAT 16 0.34 1.6e-10 2.0e-08

GFC3D 12 0.11 1.6e-11 2.2e-09

iter time u>r err(r, u)
PER 278 15.7 8.5e-06 4.8e-04
SQU 427 326.5 -2.2e-08 3.6e-05
EXP 475 337.3 -5.9e-07 4.6e-05
RAT 36 1.8 6.4e-07 5.0e-05

GFC3D 40 4.8 8.3e-11 3.1e-07

Table 8: KaplasTower-i000249-898-29491 (792) – Spheres-i1000-4290-14670 (12000)

C Euclidean Jordan algebra
Let us consider the set K =

∏n
i=1Ki where Ki is an ni-dimensional Lorentz cone defined by

Ki =
{
x = (xi0, x̄

>
i )> ∈ R× Rni−1 : ‖x̄i‖ ≤ xi0

}
.
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iter time u>r err(r, u)
PER 10000 533.3 7.4e-01 3.8e-01
SQU 376 513.5 -5.7e-07 5.7e-04
EXP 405 703.9 -9.4e-08 2.2e-04
RAT 170 6.5 5.0e-07 1.4e-04

GFC3D 44 1.7 5.6e-11 1.6e-06

iter time u>r err(r, u)
PER 10000 488.7 5.4e-01 1.7e-03
SQU 597 504.4 1.9e-04 5.3e-04
EXP 280 187.8 1.1e-04 3.3e-04
RAT 283 10.0 1.2e-05 4.1e-04

GFC3D 47 2.971 6.2e-11 3.8e-08

Table 9: PrimitiveSoup-ndof-6000-nc-3123-2922 (6000) – Chute-ndof-12672-nc-3224-3890 (12672)

Let N =
∑n

i=1. For x ∈ RN , we denote x = (x1, . . . , xn), where xi = (xi0, x̄i). For two vectors x
and y in RN , the Jordan product is defined by

x ◦ y =

x1 ◦ y1
...,

xn ◦ yn

 , where xi ◦ yi =

(
x>i yi

xi0ȳi + yi0x̄i

)
, for i = 1, . . . , n.

Let x ∈ RN and x2 = x ◦ x. A fundamental property of the Jordan algebra for interior-point
algorithms, is that the Lorentz cone is the cone of squares, that is K = {x2 : x ∈ RN}, see [8, pp.
18–19].

For matrices A and B, we define

A⊕B :=

(
A 0
0 B

)
.

For x ∈ RN , the arrow-shaped matrix is defined by

Arw(x) = Arw(x1)⊕ . . .⊕ Arw(xn), where Arw(xi) =

(
xi0 x̄>i
x̄i xi0I

)
for i = 1, . . . , n.

For i ∈ {1, . . . , n}, let ei = (1, 0) ∈ R×Rni−1 and let e = (e1, . . . , en) ∈ RN be the neutral element
of the Jordan product. For vectors x and y in RN , one has

x ◦ y = Arw(x)y = Arw(x)Arw(y)e

For i ∈ {1, . . . , n}, let det(xi) = x2
i0 − ‖x̄i‖2 be the determinant of xi ∈ Rni . If xi is nonsingular,

i.e., det(xi) 6= 0, the inverse of xi is the unique vector of Rni such that xi ◦ x−1
i = ei and is given by

x−1
i = det(xi)

−1Rni
xi, where Rni

is the reflexion matrix defined by

Rni
=

(
1 0>

0 −I

)
∈ Rni×ni .

If for all i ∈ {1, . . . , n} xi is nonsingular, we have

x−1 =

x
−1
i
...
x−1
n

 = Arw(x)−1e.
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For i ∈ {1, . . . , n}, the spectral decomposition of a vector xi ∈ Rni is defined by xi = λici+λ′ic
′
i,

where

λi = xi0 + ‖x̄i‖, λ′i = xi0 − ‖x̄i‖, ci =
1

2

(
1
x̄i
‖xi‖

)
and c′i =

1

2

(
1
− x̄i
‖xi‖

)
.

The scalars λi and λ′i are eigenvalues of Arw(xi), with the corresponding eigenvectors ci and c′i. This
pair of eigenvectors is called the Jordan frame of xi. It is said that two vectors commute if they
share the same Jordan frame. In that case the corresponding arrow matrices commute. From these
definitions, it follows that xi ∈ Ki (resp. xi ∈ int(Ki)) if and only if λ′i ≥ 0 (resp. λ′i > 0). If xi is
nonsingular, then

x−1
i = λ−1

i ci + λ′
−1
i c′i.

If xi ∈ int(Ki), then
x

1/2
i = λ

1/2
i ci + λ′

1/2
i c′i.

More generally, for a continuous function f we can define

f(xi) = f(λi)ci + f(λ′i)c
′
i.

At last, the quadratic representation of a vector xi ∈ Ki is defined as

Qxi = Arw2(xi)− Arw(x2
i ) = 2xix

>
i − det(xi)Rni

.

The scalars λ2
i and λ′2i are eigenvalues of Qxi with the eigenvectors ci and c′i. In particular, two

vectors commute if and only if their quadratic representation matrices commute. For x ∈ K, we
define Qx = Qx1 ⊕ . . .⊕Qxn . For i ∈ {1, . . . , n} and x ∈ int(Ki), we have∇x(log det(xi)) = 2x−1

i

and ∇2
x(log det(xi)) = −2Qx−1

i
.

These operators Arw and Q· are fundamental for the design of interior algorithms. See [8, §4] for
a review of their interesting and useful properties.

D Proofs of Propositions 2 and 3
Proof of Proposition 2. Let µ > 0. Let us show that the barrier function defined in (19) is coercive.
As in the proof of Proposition 1, we show that for all nonzero s ∈ Rnd, (ϕµ)∞(s) > 0. Let us write
ϕµ = p + ψµ, where p is the quadratic part. We have (ϕµ)∞ = p∞ + (ψµ)∞ [10, Proposition 2.6.1.].
We have

p∞(s) = sup
t>0

p(ts)− p(0)

t
=

{
q>s if Ws = 0,
∞ otherwise.

To compute the asymptotic derivative of the function ψµ, let us look at one element of the sum. Let
s ∈ Rd and let us define ρ(s) := − log det s. We have

ρ∞(s) = sup
t>0

1
t
(ρ(e+ ts)− ρ(e))

= sup
t>0

−1
t

log(1 + 2te>s+ t2 det s)

= δL(s).
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We then have (ψµ)∞ = δLn . It follows that (ϕµ)∞ = g∞, where g is defined in the proof of Propo-
sition 1. Therefore, the same conclusion holds, that is: under Assumption 1, (ϕµ)∞(s) > 0 for all
nonzero s ∈ Ln. This implies that the set of minima of ϕµ is nonempty and compact. Since ϕµ is
strictly convex, this set is reduced to a singleton.

To show that the central path is bounded, let us proceed to a reasoning by contradiction. Suppose
that there exists a positive sequence {µk}, converging to zero and such that {(rk, uk)} is unbounded,
where we denote rk := r(µk) and uk := u(µk). Let tk := ‖(rk, uk)‖. By taking a subsequence,
suppose that { 1

tk
(rk, uk)} → (r∗, u∗) 6= 0. By definition of the central path, for all k ∈ N we have

Wrk + q = uk and rk ◦ uk = 2µke. (44)

Dividing the first equation by tk and the second one by t2k, then taking the limit k → ∞, we obtain
Wr∗ = u∗ and r∗ ◦ u∗ = 0. Multiplying the first equation by r∗ on the left, we obtain r∗>Wr∗ =
r∗>u∗ = 0. Since W = HM−1H> and M is positive definite, it follows that H>r∗ = 0. Multiplying
the first equation of (44) by rk we have r>kWrk + q>rk = r>k uk = 2nµk. Since W is positive semi-
definite, we then get q>rk ≤ 2nµk. Dividing by tk and passing through the limit, we obtain q>r∗ ≤ 0.
Since for all k ∈ N, rk ∈ int(Ln), we also have r∗ ∈ Ln. Finally, we have shown that there exists
a non-zero vector r∗ ∈ Ln, such that H>r∗ = 0 and w>r∗ = q>r∗ ≤ 0. In view of Lemma 2, this
is equivalent to the fact that the Slater hypothesis does not hold, which is in contradiction with the
assumption.

The proof of Proposition 3 is done in two steps. The convergence is proved first. It follows
the one of [25, Theorem A.3]. It is based on the use of the curve selection lemma from algebraic
geometry, see [35, Lemma 3.1]. In the second part of the proof, it is shown that the limit is maximally
complementary. It is inspired by [19].

Proof of Proposition 3. Let (r̂, û) be a limit point of the central path. Since û is unique, it remains to
show that r(µ)→ r̂ as µ ↓ 0. Let us define the subsets of Rnd+1:

V = {(r, µ) : (W (r̂ + r) + q) ◦ (r̂ + r) = 2µe},
U = {(r, µ) : µ > 0, det(r̂i + ri) > 0 and r̂i0 + ri0 > 0, i = 1, . . . , n}.

The set V is a real algebraic set and U is an open set defined by a finite number of polynomial
inequalities. Moreover, 0 ∈ Rnd+1 is in the closure of U ∩ V . By the curve selection lemma, there
exists ε > 0 and a real analytic curve p : [0, ε) → Rnd+1, with p(0) = 0 and for all t ∈ (0, ε),
p(t) ∈ U ∩ V . By setting p(t) = (ρ(t), ν(t)), we have (W (r̂ + ρ(t)) + q) ◦ (r̂ + ρ(t)) = 2ν(t)e, for
all t ∈ (0, ε). Since the central path is uniquely defined by (18), for all t ∈ (0, ε) we have

r(ν(t)) = r̂ + ρ(t). (45)

Since ν(0) = 0, ν(t) > 0 for all t ∈ (0, ε) and ν is analytic on [0, ε), there exists ε′ > 0 such that
for all t ∈ (0, ε′), ν ′(t) > 0. It follows that ν is invertible on (0, ε′). Moreover, for all t ∈ (0, ν(ε′)),
ν−1(t) > 0 and limt↓0 ν

−1(t) = 0. We then have, for µ > 0 small enough,

r(µ) = r(ν(ν−1(µ))) = r̂ + ρ((ν−1(µ))).

It follows that limµ↓0 r(µ) = r̂.
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Let us show now that r̂ is maximally complementary. That is, for all i ∈ B, r̂i ∈ int(L) and for
all i ∈ R ∪ T1, r̂i ∈ bd(L)\{0}. Let r ∈ R̂ be a maximally complementary optimal solution. For all
µ > 0, by using (17) and (18) and the positive semi-definiteness of W , we have

(r(µ)− r)>(u(µ)− û) = (r(µ)− r)>W (r(µ)− r) ≥ 0.

It follows that
n∑
i=1

û>i ri(µ) +
n∑
i=1

r>i ui(µ) ≤ 2nµ. (46)

By dividing by 2µ and by using the partition of the index set, we obtain

n∑
i∈N∪R∪T2

û>i u
−1
i (µ) +

n∑
i∈B∪R∪T1

r>i r
−1
i (µ) ≤ n. (47)

Since each term in these sums is nonnegative, we have that for all i ∈ B ∪ R ∪ T1 and for all µ > 0,
r>i r

−1
i (µ) ≤ n. By using the inequality (23) in the proof of Theorem 1, we deduce that for for all

i ∈ B ∪ R ∪ T1 and all µ > 0, we have

0 <
1

n
ri,0 ≤ ri,0(µ) + ‖r̄i(µ)‖ < 2ri,0(µ).

Taking the limit µ ↓ 0, we have r̂i,0 > 0. It remains to show that for all i ∈ B, det(r̂i) 6= 0. For all i
and µ > 0, we have r>i r

−1
i (µ) =

r>i Rri(µ)

det ri(µ)
. It follows that for all i ∈ B and all µ > 0,

0 ≤ r>i Rri(µ) ≤ n det(ri(µ)).

Passing through the limit µ ↓ 0, we obtain 0 ≤ riRr̂i ≤ n det(r̂i). If det(r̂i) = 0, we then have

ri,0r̂i,0 = r̄>i
¯̂ri ≤ ‖r̄i‖‖¯̂ri‖ < ri,0‖¯̂ri‖,

from which we deduce that r̂i /∈ L, which is in contradiction with the fact that r̂ ∈ K and allows to
conclude that r̂ is maximally complementary.
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