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Second order cone programming for frictional contact mechanics

using interior point algorithm

Vincent Acary∗ Paul Armand† Hoang Minh Nguyen‡ Maksym Shpakovych§

January 16, 2024

Abstract

We report experiments of an implementation of a primal-dual interior point algorithm for solving me-
chanical models of one-sided contact problems with Coulomb friction. The objective is to recover an optimal
solution with high accuracy and as quickly as possible. These developments are part of the design of Siconos1,
an open-source software for modeling and simulating non-smooth dynamical systems. Currently, Siconos uses
mainly first order methods for the numerical solution of these systems. These methods are very robust, but
suffer from a linear rate of convergence and are therefore too slow to find accurate solutions in a reasonable
time. Our main objective is to apply second-order methods to speed up convergence. In this paper, we focus
on solving a relaxed formulation of the initial mechanical model, corresponding to the optimality conditions
of a convex quadratic minimization problem with second-order cone constraints. We will present in detail a
primal-dual interior point algorithm for solving this type of problem. The main difficulty in implementing
this algorithm arises from the fact that at each iteration of the algorithm, a change of variable, called a
scaling, has to be performed in order to guarantee the non-singularity of the linear system to be solved, as
well as to recover a symmetric system. Although this scaling strategy is very nice from a theoretical point
of view, it leads to an enormous deterioration of the conditioning of the linear system when approaching the
optimal solution and therefore to all the numerical difficulties that result from it. We will describe in detail
the numerical algebra that we have developed in our implementation, in order to overcome these problems of
numerical instability. We will also present the solution of the models resulting from the problems of rolling
friction, for which the cone of constraints is no longer self-dual like the Lorentz cone.

keywords Second order cone optimization, Interior-point algorithm, Contact mechanics, Coulomb friction

1 Introduction

Contact problems with dry Coulomb friction are present in many design and validation processes in mechanical
engineering. As soon as several objects are involved, the question of computing contact forces arises. Examples
include multibody systems and mechanisms (Brogliato, 1999; Pfeiffer and Glocker, 1996), robotic systems
and grasping problems (Bicchi and Kumar, 2000; Buss et al., 1997, 1996; Han et al., 2000), deformable solid
mechanics (Johnson and Johnson, 1987; Popov et al., 2010; Wriggers, 2006), and granular materials (Cambou
et al., 2013; Radjai and Dubois, 2011). A common model of one-sided contact is to consider a set of inequality
constraints on the configuration parameters of the mechanical problem (positions, rotations) associated with
forces which must themselves be positive. Coulomb’s friction, which governs how objects slide relative to each
other, imposes a constraint on the contact forces that must remain within the Lorentz cone. These laws lead
us to write second order cone constraints on the contact forces. By introducing a non-linear change of variables
of the contact relative velocities which defines the so-called modified velocities, the contact laws can be written
as a complementarity condition on second order cones between the modified velocities and the contact forces.
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‡INRIA Rhône-Alpes; e-mail: hoang-minh.nguyen@inria.fr
§INRIA Bordeaux; e-mail: maksym.shpakovych@unilim.fr
1https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos

1



In solid and structural dynamics, the discrete mechanical model is usually supplemented by equations of
motion that relate the velocities of the system to the applied and contact forces. After discretization in space
and time, the resulting system can be expressed as nonlinear Second Order Cone Complementarity Problem
SOCCP (Acary et al., 2011; Acary and Brogliato, 2008; Acary and Cadoux, 2013). Section 2 details the problem
formulation when the discrete equation of motions are assumed to be linear.

To solve these SOCCP problems numerically, a large number of methods have been used in the computational
contact mechanics community. Many of these methods are in fact adaptations of well-known mathematical pro-
gramming methods for solving variational inequalities and complementarity problems. Some of these methods
have been jointly developed by optimization specialists. There are two inherent difficulties in frictional contact
mechanics problems. The first difficulty is related to the non-monotone nature of the complementarity problem.
Identifying an optimization problem for which the complementarity problem would be the optimality conditions
is difficult, and leads to non-convex optimization problems. The second difficulty arises from the fact that the
constraints are not of full rank and, in the case of rigid multi-body systems, may be of very low rank with respect
to the number of constraints. In (Acary et al., 2018), a review of the main literature is made and methods are
compared with performance profiles. When the second-order constraints are of full rank, second-order methods
such as semi-smooth Newton methods, e.g., Alart-Curnier’s method (Alart and Curnier, 1991), are generally
robust and accurate. If not, as it is usual in multi-body systems made of rigid parts (robots, granular material),
then the first–order methods such as projected successive over-relaxation gradient methods are robust, but slow
and with a limited accuracy in practice. Second order techniques cannot solve the problem due to robustness
issues. As far as we know, there is no high accuracy second order method capable of solving the friction contact
problems with redundant constraints.

One of the objectives of this work is to propose a second-order method, based on an interior point method
that is accurate, robust and efficient for problems where the constraints are rank deficient, but, in the first
step, on a convex optimization problem. Some applications of interior point methods for contact problems have
already been attempted in the literature (Kleinert et al., 2014; Kučera et al., 2013; Mangoni et al., 2018; Melanz
et al., 2017). In the precursor work of (Kučera et al., 2013), the contact problem with Tresca friction (purely
quadratic cylindrical constraints) is solved with Mehrotra’s algorithm. The work in (Kleinert et al., 2014) is the
most advanced for the case of conic constraints. The problem considered is the relaxed convex problem as in this
work, which is further regularized by adding a constant diagonal term to the Jacobian matrices of the interior
point algorithm. To solve large problems, linear systems are solved by iterative methods. The degeneracy of
the conditioning as the iterations progress leads to the use of preconditioners and makes it costly to obtain high
accuracy solutions. In (Melanz et al., 2017), a comparison is made between an interior point method and first
order methods. The interior point method on second-order cone shows a better convergence rate but without
reaching higher accuracies than first order methods.

In this article, we consider a relaxed problem where the actual local velocity is complementary to the reaction
force at each contact point. This yields a reformulation of the original problem as a convex second order cone
optimization (SOCO) problem. A dedicated interior point method based on the primal-dual algorithm of
Mehrotra with the Nesterov-Todd scaling strategy is tailored to solve this problem. In particular, we show on a
large bench set of examples that a tight accuracy can be achieved at optimum without regularizing the Jacobian
matrices, provided that their conditioning is controlled.

Since our main objective is to have a robust and efficient computer code capable of solving our problem
with a high degree of accuracy, we have first performed experiments with existing solvers. At first, we have
tried to solve the convex relaxation problem by using a differentiable nonlinear optimization as proposed by
Benson and Vanderbei (Benson and Vanderbei, 2003). They suggest four ways of reformulating the second-order
cone constraint to get round the non-differentiability of the norm at zero. Our experiments were performed by
means of the modeling langage AMPL (Gay, 2015) and the optimization solver KNITRO (Byrd et al., 2006).
Our conclusion is that, except in a few rare cases, none of these reformulations is able to solve efficiently and
accurately the convex model of our problem. The second experiments were with the interior point solver SDPT3
(Tütüncü et al., 2003). This is an implementation of the Mehrotra predictor-corrector algorithm, which we hoped
would be effective and robust in solving our problem. From our point of view, the great advantage of SDPT3
is that it is open source and we can therefore hope to modify it to solve the initial problem. Unfortunately,
the results of the experiments with SDPT3 were not conclusive. In particular, the accuracy we wanted to
achieve was not sufficient and too many failures were observed. But the experiments were interesting for us,
because we identified that the main difficulty in implementing this algorithm is in solving the linear system
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at each iteration. This led us to carry out our own implementation of this algorithm, devoting our efforts in
solving the linear system and in the scaling method. We also made experiments with the interior-point solver
MOSEK (Andersen and Andersen, 2000) whose algorithm is based on a homogeneous and self-dual model
(Andersen et al., 2003). The numerical results of MOSEK are better than those of SDPT3. However, in
order to obtain accurate solutions, the number of iterations can become large or failures occur as soon as the
stopping tolerance is reduced (below 10−7). Unfortunately, MOSEK is not open source, so it has not been
possible to understand the origin of these failures, nor will it be possible to modify this code to solve our initial
problem. These first numerical experiments motivated us to make our own implementation of the interior point
algorithm. Especially since in the conclusion of (Tütüncü et al., 2003) the authors state that “For problems
with second-order (quadratic) cone constraints, experiments indicate that there is room for improvement in
SDPT3”.

The outline and the contribution of the article are as follows. In Section 2, we recall the basics of mechanical
models and how the convex SOCO problem is obtained. The corresponding primal-dual pair is formulated
in Section 3. General results are given on the non-emptiness and compactness of the solution set under the
Slater hypothesis. In Section 4, the properties of the central path are detailed. In particular, under the
assumption of strict complementarity, we establish a characterization of the limit point of the central path,
the analytic center of the optimal set, which to our knowledge is new in the SOCO context. This property
of the algorithm is important from the mechanical point of view, since the selection of dual variables, that
corresponds to the reaction forces, is completely controlled by the interior point method. The details of the
numerical implementation of the algorithm are given in Section 5. Several alternative equivalent formulations
of the linear system to be solved at each iteration are detailed and the comparison of their conditioning over the
iterations is illustrated. Our experiments show that the choice of formulation is fundamental for the robustness
of the algorithm. In Section 6, the interior point method is extended to the case of rolling friction, where the
cone of constraints is no longer a Lorentz cone and is not self-dual.

Notation

Let x and y be two vectors of Rn. The Euclidean scalar product of x and y is denoted x⊤y. The associated ℓ2
norm is ∥x∥ =

√
x⊤x. The perp notation x ⊥ y means that x⊤y = 0. Let E be a subset of Rn. The interior,

the relative interior and the boundary of E are respectively denoted by int(E), ri(E) and bd(E). The dual of
E is denoted and defined by E∗ = {y ∈ Rn : ∀x ∈ E, x⊤y ≥ 0}. The indicator function of E is δE(x) = 0
if x ∈ E and δE(x) = +∞ if x /∈ E. The domain of an extended-valued function f : Rn → R ∪ {+∞} is
domf = {x ∈ Rn : f(x) ∈ R}. The definitions and notations related to the Jordan algebra are described in
Appendix A.

2 Mechanical models

Let us first introduce the original mechanical models that we are interested in. Let d be the dimension of the
space of the mechanical system. Two classes of problems are considered. The frictional contact (FC) problems
(Acary et al., 2018) for which d = 3 and the problems with rolling friction (RF) at contact (Acary and Bourrier,
2021) for which d = 5. Let n ∈ N be the number of contact points and let m ∈ N be the number of degrees
of freedom. The mechanical system is described by means of three vectors: the global velocity v ∈ Rm, the
velocity u ∈ Rnd and the reaction r ∈ Rnd. After discretizing the dynamical system in time and space, the
general model to be considered is a conic complementarity problem of the form

Mv + f = H⊤r,
Hv + w = u,
K∗ ∋ u+Φ(u) ⊥ r ∈ K,

(1)

where the data of the problem are M ∈ Rm×m a symmetric and positive-definite matrix, f ∈ Rm, H ∈ Rnd×m,
w ∈ Rnd, K is a cone and K∗ := {u ∈ Rnd : u⊤r ≥ 0, for all r ∈ K} is its dual cone. The cone is of the form
K =

∏n
i=1Ki, each Ki being a cone whose definition depends on the model.

For a FC problem, we have

Ki =
{
ri = (ri,N, r

⊤
i,T)

⊤ ∈ R× Rd−1 : µiri,N ≥ ∥ri,T∥
}
.
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This is the second order cone of Coulomb friction at the ith contact point. The scalar ri,N (resp. ui,N) and the
vector ri,T (resp. ui,T) are the normal and tangential components of the reaction (resp. velocity) vector of the
ith contact point and µ ∈ Rn is the vector of friction coefficients. The dual cone of K, is given by K∗ =

∏n
i=1K∗

i ,
where

K∗
i =

{
ui = (ui,N, u

⊤
i,T)

⊤ ∈ R× Rd−1 : ui,N ≥ µi∥ui,T∥
}
.

The function Φ : Rnd → Rnd is defined by n components Φi(u) = (µi∥ui,T∥, 0⊤)⊤ ∈ Rd.
For a RF problem, the cones are of the form

Ki =
{
ri = (ri,N, r

⊤
i,T, r

⊤
i,R)

⊤ ∈ R× Rd−1 × Rd−1 : µiri,N ≥ ∥ri,T∥, µR,iri,N ≥ ∥ri,R∥
}
.

The vector ri,R is the rolling friction reaction moment at contact and µR ∈ Rn is the vector of rolling friction
coefficients. The dual cone of Ki is

K∗
i =

{
ui = (ui,N, u

⊤
i,T, u

⊤
i,R)

⊤ ∈ R× Rd−1 × Rd−1 : ui,N ≥ µi∥ui,T∥+ µR,i∥ui,R∥
}
.

The vector ui,R is the relative angular velocity at contact. For this model, the components of the function Φ
are defined by Φi(u) = (µi∥ui,T∥+ µR,i∥ui,R∥, 0⊤)⊤ ∈ Rd.

By observing that Φ(u) = Φ(u + Φ(u)) and by making the change of variable u ← u + Φ(u), the problem
(1) is reformulated as

Mv + f = H⊤r,
Hv + w +Φ(u) = u,
K∗ ∋ u ⊥ r ∈ K.

(2)

In (Acary et al., 2011), for the case of a FC problem, an iterative solution of (2) is proposed as follows. The
second equation is rewritten as

Hv + w + ϕ(s) = u and si = µi∥ui,T∥, i ∈ {1, . . . , n},

where ϕ : Rn → Rnd is defined by n components of the form (si, 0
⊤)⊤ ∈ Rd. The idea is to solve the nonlinear

system as a parametric system of the form

Mv + f = H⊤r,
Hv + w + ϕ(s) = u,
K∗ ∋ u ⊥ r ∈ K,

(3)

where s is periodically updated according to

si = µi∥ui,T∥, i ∈ {1, . . . , n}.

There is no guarantee of global convergence of this procedure, but the advantage of this formulation is that,
for a fixed s, the parametric system corresponds to the first order optimality conditions of the following convex
optimization problem:

min
v,u

1
2v

⊤Mv + f⊤v

s.t. Hv + w + ϕ(s) = u,
u ∈ K∗.

This problem belongs to the class of second order cone optimization (SOCO) problems. Our study focuses on
the numerical solution of this problem. Obviously, the same parametric strategy can be applied to the solution
of an RF problem.

3 Basic properties

To simplify the models, let us remove the friction coefficients by means of a simple change of variables. Let us de-
fine the diagonal matrix Pµ whose ith diagonal block is diag(1, µi, µi) for the FC model and diag(1, µi, µi, µR,i, µR,i)
for the RF model. The parameter s is assumed to be fixed. Let us make the change of variables:

u← Pµu, H ← PµH, w ← Pµ(w + ϕ(s)) and r ← P−1
µ r.
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We keep the same names for the variables, but change the notation of the components. For the RF model we
define

ui =

ui,0ūi
ũi

 =

 ui,N
µiui,T
µR,iui,R

 and ri =

ri,0r̄i
r̃i

 =

 ri,N
1
µi
ri,T

1
µR,i

ri,R

 .

The same notation is used for the FC model, except that the components ũi and r̃i do not appear. The system
(3) becomes

Mv + f = H⊤r,
Hv + w = u,
F∗ ∋ u ⊥ r ∈ F ,

(4)

where F is the product of cones. The definition of F depends on the model. For the FC model (d = 3) we have

F =

n∏
i=1

Li := {ri = (ri0, r̄i) ∈ Rd : ri0 ≥ ∥r̄i∥}. (5)

This cone is self-dual (i.e., L∗
i = Li), therefore

F∗ =
n∏

i=1

L∗
i := {ui = (ui0, ūi) ∈ Rd : ui0 ≥ ∥ūi∥}. (6)

For the RF model (d = 5), the cone of constraints is

F =

n∏
i=1

Ri := {ri = (ri0, r̄i, r̃i) ∈ Rd : ri0 ≥ max{∥r̄i∥, ∥r̃i∥}}. (7)

This cone is not self-dual. The dual cone is then

F∗ =

n∏
i=1

R∗
i := {ui = (ui0, ūi, ũi) ∈ Rd : ui0 ≥ ∥ūi∥+ ∥ũi∥}. (8)

The system (4) can be viewed as the first order optimality conditions of the following second order cone
optimization problem:

min
v,u

1
2v

⊤Mv + f⊤v

s.t. Hv + w = u,
u ∈ F∗.

(9)

Let r ∈ Rnd be the dual variable associated to the linear constraint of (9). The Lagrangian function associated
to problem (9) is defined by

L(v, u, r) =
1

2
v⊤Mv + f⊤v + r⊤(u−Hv − w).

Since L is separable in v and u, convex in v and linear in u, and since F∗∗ = F , the dual function is readily
obtained and defined by

inf
(v,u)∈Rm×F∗

L(v, u, r) =

{
− 1

2r
⊤Wr − q⊤r − 1

2f
⊤M−1f if r ∈ F ,

−∞ otherwise,

where
W = HM−1H⊤ and q = w −HM−1f. (10)

The dual problem is then
min
r

1
2r

⊤Wr + q⊤r

s.t. r ∈ F .
(11)
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Let us denote by R̂ the optimal set of this problem. It is a convex set, characterized by the first order optimality
conditions:

F∗ ∋Wr + q ⊥ r ∈ F . (12)

Note that these conditions are equivalent to (4), thanks to the definitions (10) and the equalities

v =M−1(H⊤r − f) and u =Wr + q. (13)

By weak duality, the duality gap (i.e., the difference between the value of the primal and the dual function)
is nonnegative. Indeed, let (v, u, r) be a primal-dual feasible solution, we have

1
2v

⊤Mv + f⊤v − (− 1
2r

⊤Wr − q⊤r − 1
2f

⊤M−1f) = u⊤r ≥ 0,

the inequality arising from the fact that r ∈ F and u ∈ F∗. The strong duality and the existence of an optimal
solution for (11), we need a constraints qualification assumption, known as the Slater hypothesis.

Assumption 3.1. There exists v ∈ Rm such that Hv + w ∈ int(F∗).

With respect to the reduced problem (11), the Slater hypothesis can be equivalently formulated as follows:
for all nonzero d ∈ F , if Wd = 0 then q⊤d > 0.

The following result summarizes the connection between the solutions of (4) and (11). They are well known
and are derived from basic properties of convex optimization. We provide a proof in Appendix B to be complete.

Proposition 3.2. Consider the primal-dual pair of SOCO problems (9)-(11), where M ∈ Rm×m is symmetric
and positive-definite, f ∈ Rm, H ∈ Rnd×m, w ∈ Rnd and F is the product of second order cones of the form
(5) or (7).

(i) Any solution of (4), provides a primal-dual optimal solution of (9)-(11).
(ii) If the problem (9) is feasible, then it has a unique optimal solution (v̂, û).
(iii) Assumption 3.1 is satisfied if and only if the optimal set of (11) is non-empty and compact.

4 Central path related to a frictional contact problem

In this section, we are interested in FC problems. We recall some known results about the convergence of the
central path in SOCO and put them in our context. For the sake of completeness we also provide the proofs.

For FC problems, the friction contact cone is equal to the product of n Lorentz cones, i.e., F = Ln, where
L is the Lorentz cone of dimension d. We recall that this cone is self-dual, i.e., F∗ = F . There is an algebra,
the so-called Euclidean Jordan algebra, associated to symmetric cones, which allows an almost direct extension
of the interior-point algorithms for linear optimization to the case of SOCO (Alizadeh and Goldfarb, 2003).
A summary of Euclidean Jordan algebra is given in Appendix A. Thus, the orthogonality condition in (12)
becomes u ◦ r = 0, see (Alizadeh and Goldfarb, 2003, Lemma 15). This leads to a square system of equations
with the additional conical constraints. Under Assumption 3.1, (r, u) is a primal-dual optimal solution of the
problem (11) if and only if

Wr + q = u,
r ◦ u = 0,
(r, u) ∈ L2n.

(14)

It is important to keep in mind that the matrix W is not an arbitrary positive semidefinite matrix, but has a
structure given by (10). This structure will be useful for solving the linear system done at each iteration. In
interior-point methods, a perturbation is introduced in the complementarity equation, so that the system to be
solved becomes

Wr + q = u,
u ◦ r = 2µe,
(u, r) ∈ int(L2n),

(15)

where e is the unit vector associated with the Jordan product and µ > 0 is a parameter that is driven progres-
sively to zero along the iterations, so that in the end a solution of (14) is found. The parameter µ is called
barrier parameter, because (15) can be interpreted as the optimality condition of the barrier problem

min
r

φµ(r) :=
1
2r

⊤Wr + q⊤r − µ
∑n

k=1 log det rk. (16)
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The first order optimality condition of (16) is Wr + q − 2µr−1 = 0. By introducing the variable u = 2µr−1,
we get (15). This system (15) defines a curve, called the central path. The following result states that under
Slater’s hypothesis, the central path is well defined and remains bounded for bounded values of µ. The proof is
given in Appendix C

Proposition 4.1. Under Assumption 3.1, for all µ > 0, the perturbed KKT system (15) has a unique solution
(r(µ), u(µ)) ∈ int(L2n). For all µ̄ > 0, the set {(r(µ), u(µ)) : 0 ≤ µ ≤ µ̄} is bounded.

From Proposition 3.2-(ii), the optimal solution of (9) is unique, therefore limµ→0 u(µ) = û. For the curve r(·),
it can be shown that limµ→0 r(µ) = r̂, where r̂ ∈ ri(R̂). Such a solution is called a maximally complementary
optimal solution of (11). It can be characterized as follows. Regarding to the problem (11), the index set
{1, . . . , n} of the Lorentz cones is partitioned into six sets (Mohammad-Nezhad and Terlaky, 2021):

B = {i : ∃r ∈ R̂, ri ∈ int(L)}, N = {i : ûi ∈ int(L)},

R = {i : ûi ∈ bd(L)\{0} and ∃r ∈ R̂, ri ∈ bd(L)\{0}},

T0 = {i ∈ T : ∀r ∈ R̂, ûi = ri = 0},

T1 = {i ∈ T : ûi = 0 and ∃r ∈ R̂, ri ∈ bd(L)\{0}},

T2 = {i ∈ T : ûi ∈ bd(L)\{0} and ∀r ∈ R̂, ri = 0}.

An optimal solution r ∈ R̂ is maximally complementary if and only if for all i ∈ B, ri ∈ int(L) and for all
i ∈ R ∪ T1, ri ∈ bd(L)\{0}.

The next result shows the convergence of the central path to a maximally complementary solution. A proof
is given in Appendix C for self-completeness.

Proposition 4.2. Under Assumption 3.1, the central path (r(·), u(·)) converges to (r̂, û), where r̂ is a maximally
complementary optimal solution of (11).

In linear optimization, it is known that the central path converges to the analytic center of the optimal set
(Monteiro and Zou, 1998). In semidefinite optimization, it is also known that this result holds under strict
complementarity (De Klerk et al., 1998; Halická et al., 2005). But in SOCO, as far as we know, we have
not found in the literature any characterization of the analytic center, even under the strict complementarity
assumption. In order to complete the theory, we provide such a characterization.

Assumption 4.3. There exists r ∈ R̂ such that û+ r ∈ int(Ln).

This assumption is equivalent to Ti = ∅, for i = 1, 2, 3. In that case, (B,N,R) is a partition of {1, . . . , n}.
Under this assumption, we can define the analytic center of the optimal set R̂. If R̂ is a singleton, then the
analytic center of R̂ is this point. Otherwise, it is the unique optimal solution of the problem

min
r∈ri(R̂)

ψ(r) := −
∑
i∈B

log det ri −
∑
i∈R

log ri,0. (17)

The next proposition shows that the analytic center is well defined.

Proposition 4.4. Under Assumptions 3.1 and 4.3, if R̂ is not reduced to a singleton, then the problem (17)

has a unique optimal solution r̂ ∈ ri(R̂), characterized by the following property: for all r ∈ ri(R̂),∑
i∈B

r⊤i r̂
−1
i +

1

2

∑
i∈R

ri,0
r̂i,0
≤ |B|+ 1

2
|R|. (18)

Proof. Let r ∈ ri(R̂). For all i ∈ B, det ri > 0, and for all i ∈ R, ri,0 = ∥r̄i∥ > 0. Since ri(R̂) ̸= ∅, one has

domψ ∩ ri(R̂) ̸= ∅. To show that problem (17) has at least one solution, it suffices to show that the function

ψ + δri(R̂) is coercive. This last property is a direct consequence of the compactness of the set R̂.

The uniqueness of the minimum comes from the strict convexity of ψ on ri(R̂). Indeed, for a conic component
i ∈ B, we have ∇2

r(− log det r)r=ri = 2Qr−1
i

, which is positive definite for all ri ∈ int(L), see Appendix A. For
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all conic components i ∈ R, there exists hi ∈ Rd−1, with ∥hi∥ = 1, such that for all r ∈ ri(R̂), we have

ri = ri,0(1, h
⊤
i )

⊤. Indeed, suppose that for i ∈ R, there exist r and r′ in ri(R̂), such that ri and r′i are not
collinear. By the triangle inequality, it is easy to see that 1

2 (ri + r′i) ∈ int(L), and thus i ∈ B, which would

contradict i ∈ R. Finally, for all r, r′ ∈ ri(R̂), if r ̸= r′ then there exists i ∈ B such that ri ̸= r′i or there exists

i ∈ R such that ri,0 ̸= r′i,0. In both cases, we have ψ(r) ̸= ψ(r′), which implies that ψ is strictly convex on ri(R̂).

Since ψ is convex on ri(R̂), r̂ is optimal if and only if −∇ψ(r̂) is in the normal cone to R̂ at r̂, i.e., for all

r ∈ ri(R̂), ∇ψ(r̂)⊤(r − r̂) ≥ 0. For r ∈ ri(R̂), we have

∇ψ(r̂)⊤(r − r̂) = −2
∑
i∈B

(r̂−1
i )⊤(ri − r̂i)−

∑
i∈R

ri,0 − r̂i,0
r̂i,0

= −2
∑
i∈B

r⊤i r̂
−1
i + 2|B| −

∑
i∈R

ri,0
r̂i,0

+ |R|,

from which we deduce that (18) is satisfied.

Let us state and prove the main result of this section.

Theorem 4.5. Under Assumptions 3.1 and 4.3, the central path r(·) converges to the analytic center of R̂.

Proof. Suppose that R̂ is not reduced to a singleton, otherwise the result is a direct consequence of Propo-
sition 4.2. Let r ∈ ri(R̂). As in the proof of Proposition 4.2, for all µ > 0, (44) is satisfied. By using
r(µ) ◦ u(µ) = 2µe and the definition of the partition (B,N,R), we have∑

i∈B

r⊤i r
−1
i (µ) +

∑
i∈N

û⊤i u
−1
i (µ) +

∑
i∈R

(r⊤i r
−1
i (µ) + û⊤i u

−1
i (µ)) ≤ n. (19)

For any index i, by using the Cauchy-Schwarz inequality and the fact that ri,0 ≥ ∥r̄i∥, we have

r⊤i r
−1
i (µ) =

r⊤i Rri(µ)

det ri(µ)

=
ri,0 ri,0(µ)− r̄⊤i r̄i(µ)
r2i,0(µ)− ∥r̄i(µ)∥2

≥ ri,0 ri,0(µ)− ∥r̄i∥∥r̄i(µ)∥
(ri,0(µ)− ∥r̄i(µ)∥)(ri,0(µ) + ∥r̄i(µ)∥)

≥ ri,0
ri,0(µ) + ∥r̄i(µ)∥

. (20)

In the same manner, for all i ∈ {1, . . . , n} we have

û⊤i u
−1
i (µ) ≥ ûi,0

ui,0(µ) + ∥ūi(µ)∥
. (21)

From (19), (20) and (21), we deduce that∑
i∈B

r⊤i r
−1
i (µ) +

∑
i∈N

û⊤i u
−1
i (µ) +

∑
i∈R

(
ri,0

ri,0(µ) + ∥r̄i(µ)∥
+

ûi,0
ui,0(µ) + ∥ūi(µ)∥

) ≤ n.

When µ tends to zero, the first sum tends to
∑

i∈B r
⊤
i r̂

−1
i and the second one to |N|. By using the fact that

r̂i,0 = ∥¯̂ri∥ and ûi,0 = ∥¯̂ui∥ for i ∈ R, each term of the third sum tends to
ri,0
2r̂i,0

+ 1
2 . By taking the limit as

µ→ 0 and using n = |B|+ |N|+ |R|, we obtain∑
i∈B

r⊤i r̂
−1
i +

1

2

∑
i∈R

ri,0
r̂i,0
≤ |B|+ 1

2
|R|,

which shows by Proposition 4.4 that r̂ is the optimal solution of (17), the analytic center of R̂.
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We would also like to emphasise an important point concerning the characterization of the analytic center
from the point of view of computational mechanics. If the matrix H is not of full row rank, the reaction forces
r are not unique. The interior point algorithm allows the optimal reaction forces to be uniquely defined. In
addition, the analytic center is of mechanical interest and interpretation. By choosing a solution that is furthest
from the boundaries of the solution set and therefore from the boundaries of the cones, the chosen solution
maximizes the sum of the normal stresses r0 and the distance to the edges of the cones. For simple cases, this
provides a better distribution of reactions for active constraints rather than particular solutions where reaction
forces are concentrated on a few constraints.

5 Numerical solution of the friction contact problems

We have implemented the primal-dual interior point algorithm developed by Tütüncü, Toh and Todd (Tütüncü
et al., 2003) and adapted it to our context. The algorithm is an extension of the predictor-corrector algorithm of
Mehrotra (Mehrotra, 1992) to the solution of a SOCO problem. The differences with the algorithm implemented
in SDPT3 are as follows:

• The convex quadratic objective function is taken into account directly, without reformulating the problem
with a linear objective function and a new conic constraint. One consequence is that the primal and dual
steps must be equal, which is not necessarily the case with a linear objective function. This is explained
below.

• The linear system to solve at each iteration, resulting from the linearization of the perturbed KKT system
(15), is transformed via the Nesterov-Todd scaling strategy as in SDPT3, but in a different manner.
The scaling matrix (i.e., the quadratic representation of the vector p defined by formula (25) below),
which introduces bad conditioning when the iterations are close to an optimal solution, is never explicitly
computed and stored in memory. Only matrix-vector products are performed. This method allows us to
achieve a high degree of accuracy in the computation of the directions and thus in the solution of the
quadratic convex problem. We examine in detail equivalent formulations of the linear system to justify
our choice and detail all the computations performed.

• We also exploit the data structure of the problems, by using the matrices H andM instead of the reduced
matrix W (see formula (10)), in order to preserve the sparsity of the linear system. This transforms the
initial 2× 2 block linear system into a 3× 3 block system. We also show, by numerical experiments, that
it is better to reduce again this system back to a 2×2 block system, while preserving the sparse structure,
but avoiding some of the calculations with the scaling matrix.

• Finally, the experiments show that using the C data type long double for all the calculations related
to the Nesterov-Todd scaling scheme, improves the robustness of the implementation, while maintaining
reasonable computation times.

The main part of the algorithm is the solution of two linear systems that result from the linearization of the
equation (15) at the current iterate (u, r) ∈ int(L2n). They only differ on the right-hand side and are of the
form: (

W −I
U R

)(
dr

du

)
=

(
−Wr − q + u

−u ◦ r − [dua ◦ dra − 2σµe]

)
(22)

where U = Arw(u) and R = Arw(r) are the arrow-shaped matrix associated to u and r. See Appendix A for
all definitions related to the Euclidean Jordan algebra that are used in this paper. The first direction, denoted
(dua , d

r
a) and called the affine scaling direction, is the solution of (22) without the square bracketed term in the

right-hand side. It then satisfies the linear equation

u ◦ dra + r ◦ dua = −u ◦ r.

The affine scaling direction is a Newton step on the original optimality system (14). The barrier parameter is

set to µ = u⊤r
n . The centralization parameter σ ∈ (0, 1] is fixed by comparing the current value of µ with its

expected reduction obtained along the affine step. The second direction is a linear combination of the affine
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scaling direction and of a corrector step, to keep the iterates near the central path. It then satisfies the following
linear equation

u ◦ dr + r ◦ du = −u ◦ r − dua ◦ dra + 2σ u⊤r
n e.

The next iterate is set to (u+, r+) = (u, r) + α(du, dr), where α is the largest value in (0, 1] such that

(u+, r+) ∈ (1− τ)(u, r) + L2n,

for some value τ ∈ (0, 1] (typically τ = 0.995). Contrary to common practice, different primal and dual
steplengths are not taken, because of the first equation in (22), which is linear and includes both primal and
dual variables. Indeed, suppose that the current iterate is such thatWr+q−u = 0 and that different steplengths
α ̸= α′ are taken with du ̸= 0. We then have

W (r + αdr) + q − (u+ α′du) = (α− α′)du.

If du ̸= 0, then at the next iteration the residual of the linear equation is no longer zero.
The algorithm will be well defined if the matrix in (22) is nonsingular at each iteration. Its determinant is

equal to det(W + R−1U) detR. Although the vectors r and u are kept inside the interior of the second order
cones, and thus R and U are positive definite, the matrixW +R−1U can be singular. This is because the matrix
R−1U is not necessarily symmetric, since in general r and u do not commute. The following example is given
by (Peng et al., 2002, p.143): If U = Arw([1, 0.7, 0.7]⊤), R = Arw([1, 0.8, 0.5]⊤) andW = diag([0.3, 1, 0]⊤), then
det(W +R−1U) = 0.

In addition to this singularity problem, there is the symmetry problem. In the context of interior-point
algorithms for linear or nonlinear optimization, where the cone of constraints is the nonnegative orthant, the
matrices U and R are diagonal and so the matrix of (22) can be symmetrized, for example by left-multiplying
the second row by −U−1. See, e.g., (Ghannad et al., 2022) for several symmetrization techniques in interior
point methods. The main advantages of a symmetric system are lower factorization costs and an effective
control of the inertia of the factorized matrix. In addition, very efficient codes such as MA57 (Duff, 2004) or
MUMPS (Amestoy et al., 2001) can be used for this task.

To overcome these problems of singularity and symmetry, a change of variables, called a scaling scheme, is
used to obtain a symmetric nonsingular system. The idea is to make a change of variables that leaves the Lorentz
cone invariant and such that in the new space the vectors u and r commute. However, this change of variable
depends on the current iterate and must be done at each iteration. Let p ∈ intK and let Qp be the associated
quadratic representation (see Appendix A). Since p is in the interior of the cone K, the matrix Qp is positive
definite. From (Alizadeh and Goldfarb, 2003, Theorem 9), we have Qp(Ln) = Ln and Qp(intLn) = intLn. Let
us consider the change of variables

ř = Qp−1r and û = Qpu.

The problem (11) becomes
min
ř

1
2 ř

⊤QpWQpř + (Qpq)
⊤ř

s.t. ř ∈ Ln.
(23)

The corresponding perturbed KKT system is

Wr + q = u and û ◦ ř = 2µe,

with (û, ř) ∈ intL2n. The linearization of these equations leads the following linear system:(
W −I

ÛQp−1 ŘQp

)(
dr

du

)
=

(
−Wr − q + u

−û ◦ ř − [d̂ua ◦ ďra − 2σµe]

)
, (24)

where Û = Arw(û) and Ř = Arw(ř). The choice of the vector p ∈ intK is made so that û and ř commute,
which implies that the matrix of the linear system (24) is nonsingular. Indeed, this matrix is nonsingular if and
only if det(W +(ŘQp)

−1ÛQp−1) ̸= 0. Since Û and Ř are positive definite, û and ř commute, and Qp−1 = Q−1
p ,

we have
(ŘQp)

−1ÛQp−1 = Qp−1Ř−1/2Û1/2Û1/2Ř−1/2Qp−1 ,

which is symmetric and positive definite.
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Several choices for the vector p are possible, see (Alizadeh and Goldfarb, 2003). As mentioned in (Tütüncü
et al., 2003), the most efficient scaling technique for the solution of a SOCO problem, is the one using the
Nesterov-Todd (NT) direction (Nesterov and Todd, 1997):

p =
(
Qu1/2(Qu1/2r)−1/2

)−1/2

=
(
Qr−1/2(Qr1/2u)

1/2
)−1/2

. (25)

The main property of the NT direction is that û = ř, which implies that

Û−1Ř = I.

The symmetrization of the system (24) is done by left-multiplying the last row by −QpÛ
−1, leading to a

symmetric matrix of the form (
W −I
−I −Qp2

)
.

To take advantage of the sparsity of the matrices M and H, the system (22) is considered in the following
equivalent augmented form: M −H⊤ 0

−H 0 I
0 U R

dvdr
du

 =

 −Mv − f +H⊤r
Hv + w − u

−u ◦ r − [dua ◦ dra − 2σµe]

 . (26)

The system (26) can be interpreted as the linearization of the perturbed KKT conditions of the problem (9).
Applying the scaling scheme, the system becomes M −H⊤ 0

−H 0 I
0 I Qp2

dvdr
du

 =

 −Mv − f +H⊤r
Hv + w − u

−r − [Qp(û
−1 ◦ (d̂ua ◦ ďra))− 2σµu−1]

 . (27)

A reduction of (27) can be done by eliminating the variable du, while keeping the sparse structure. This leads
to the reduced symmetric system(

M −H⊤

−H −Qp−2

)(
dv

dr

)
=

(
−Mv − f +H⊤r

Hv + w + [Qp−1(û−1 ◦ (d̂ua ◦ ďra))− 2σµr−1]

)
. (28)

The big flaw of the scaling strategy is the ill-conditioning of the matrix Qp2 when the solution pair (u, r)
approaches an optimal solution. Indeed, suppose that (u∗, r∗) is a primal-dual optimal solution of (11), which
satisfies the strict complementarity condition. Let (u, r) be an interior point iterate near the optimal solution
and let p be defined by (25). For i ∈ {1, . . . , n}, three situations can occur (Cai and Toh, 2006):

• u∗i ∈ int(L) and r∗i = 0, then all the eigenvalues of Qp2
i
are of order µ := u⊤r;

• u∗i = 0 and r∗i ∈ int(L), then all the eigenvalues of Qp2
i
are of order 1/µ;

• u∗i ∈ bd(L), r∗i ∈ bd(L) and (u∗i , r
∗
i ) ̸= (0, 0), then the largest eigenvalue of Qp2

i
is of order 1/µ and the

smallest is of order µ.

To overcome the difficulties due to ill-conditioning, we propose to solve the linear systems (27) and (28)
under the following equivalent form: M −Ĥ⊤ 0

−Ĥ 0 I
0 I I

dvďr
d̂u

 =

 −Mv − f +H⊤r

Ĥv + ŵ − û
−ř − [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1]

 (29)

and (
M −Ĥ⊤

−Ĥ −I

)(
dv

ďr

)
=

(
−Mv − f +H⊤r

Ĥv + ŵ + [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1]

)
, (30)

where Ĥ = QpH, ŵ = Qpw, d̂
u = Qpd

u and ďr = Qp−1dr.
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Figure 1: Condition number (κ) of the matrix of the linear systems along the iterations when solving two
different problems. The left figure is related to a problem with only one contact point, (nd,m) = (3, 3), while
the right figure is with sixty-nine contact points, (nd,m) = (207, 450).

In our numerical experiments, we also consider the reduced system

(ĤM−1Ĥ⊤ + I)ďr = −ĤM−1(f +H⊤r)− ŵ − [û−1 ◦ (d̂ua ◦ ďra)− 2σµû−1], (31)

for which the matrix is positive definite.
Figure 1 shows the behavior of the condition number of the matrices of the six linear systems (26)-(31)

along the iterations of the interior-point algorithm for two examples. The first example (left figure) has a
single contact point: n = 1, m = 3, M = I, w = 0, f = [3, 3, 3, 1,−1,−3, 1,−1,−3]⊤, H = [D, 0,−D] where
D = diag(1, 0.1, 0.1). Since H is of full rank, the primal-dual solution is unique, the optimal reaction and
relative velocity vectors are non-zero and on the boundary of the Lorentz cone.

The second example is a “Box Stacks” problem from FCLIB, a collection of discrete three-dimensional
frictional contact problems (Acary et al., 2014)2. There are n = 69 contact points and m = 450 degrees of
freedom, H ∈ R207×450 and rank(H) = 157. The optimal solution satisfies the strict complementarity condition
and (|B|, |N|, |R|) = (18, 5, 46). The matrix of (26) at the endpoint of the minimization procedure, is nearly rank
deficient, there are 15 singular values less than

√
ϵ, where ϵ is the machine epsilon. These two examples show

that the matrices in (29) and (30) remain the least ill-conditioned.
An advantage of the systems (29) and (30) is that the quadratic representation matrices are never explicitly

built in memory for the entire computation. Only the product of these matrices times a vector needs to be
performed. Indeed, for a pair of vectors (x, y) ∈ L2, the product of a vector y by the quadratic representation
of x can be done via the formula Qxy = 2(x⊤y)x− (detx)Rdy. Therefore, the product of a vector by a matrix
Qp, where p is the NT-vector (25), can be done by performing only three products of a quadratic representation
matrix by a vector. Similarly, the computation of the inverse or the square root of a vector in the Jordan
algebra, is done by using the spectral decomposition of that vector. Moreover, even if the number of cones can
be large, the computational cost of a spectral decomposition per cone is very small, since the dimension of a
Lorentz cone is only three.

2https://frictionalcontactlibrary.github.io
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Family # Problems n m
BoxStacks 28 [31, 557] 450
Capsules 200 [15, 314] 600
Chute 182 [3, 3224] [1002, 12672]
KaplasTower 240 [48, 899] 792
PrimitveSoup 200 [37, 3123] 6000
Spheres 200 [344, 4290] 12000
Spheres1mm 41 [715, 4213] 12000

Table 1: Sizes of problems of the FCLIB collection

Algorithm 1 One iteration of Mehrotra primal-dual algorithm for solving a FC problem

Parameters: η1 ∈ (0, 1), η2 ≥ 1, η3 ≥ 1, τ1 ∈ (0, 1), τ2 ∈ (0, 1− τ1), tol > 0

1: if the stopping criterion (32) is satisfied then return (v, u, r) as primal-dual solution of (9);
2: Set µ← u⊤r/n;
3: Compute (dva, d

r
a, d

u
a) solution of (26) (resp. (27)-(31)) without the square bracketed term;

4: Find the greatest αa ∈ (0, 1] such that (u, r) + αa(d
u
a , d

r
a) ∈ L2n;

5: Set µa ← (u+ αad
u
a)

⊤(r + αad
r
a)/n;

6: if µ > η1 then set e← max{1, η2α2
a} else set e← η3;

7: Set σ ← min{1, (µa/µ)
e};

8: Compute (dv, dr, du) solution of (26) (resp. (27)-(31));
9: Set τ ← τ1 + αaτ2;

10: Find the greatest α ∈ (0, 1] such that (u, r) + α(du, dr) ∈ (1− τ)(u, r) + L2n;
11: Set (v, u, r)← (v, u, r) + α(dv, du, dr) and goto 1.

Algorithm 1 details one iteration of the implemented algorithm based on that of SDPT3 (Tütüncü et al.,
2003). The stopping criterion used in GFC3D is

res := max

{
∥Hv + w − u∥

max{∥Hv∥, ∥w∥, ∥u∥}
,

∥Mv + f −H⊤r∥
max{∥Mv∥, ∥f∥, ∥H⊤r∥}

, |u⊤r|
}
≤ tol, (32)

The values of the parameters are fixed to η1 = 10−10, η2 = 3, η3 = 1, τ1 = 0.9, τ2 = 0.09 and tol = 10−10. The
starting point is set as follows: for all i ∈ {1, . . . , n}, ui = ri = (0.1, 0.01, 0.01)⊤ and v = M−1(H⊤r + f). The
experiments were done on 1091 problems of the FCLIB collection (Acary et al., 2014). There are seven families
of problems, whose dimensions are described in Table 1, where n is the number of three-dimensional cones and
m is six times the number of bodies.

The experiments were done on a MacBook Pro 2.3GHz equipped with a procesor Intel Core2 i9 8 cœurs and
32Gb of memory, running OSX 10.15.7.

The linear system (26) is solved by means of a LU factorization, the symmetric ones with a LDL⊤ factor-
ization with MA57 (Duff, 2004). Even for the solution of the positive definite system (31) MA57 is used. Two
types of failures are returned during a run:

• Failure 1: the stopping criterion (32) is not satisfied after a maximum of 100 iterations.

• Failure 2: A NaN (Not a Number) is detected during the computation of the new iterate.

Table 2 indicates the number of successes and failures when solving the 1091 problems of the FCLIB collec-
tion, with a tolerance fixed to tol = 10−10. Each row corresponds to a run of Algorithm 1 with the numerical
solution of the indicated linear system. Figure 2 shows the corresponding performance profiles (Dolan and
Moré, 2002). With the system (26) the failures are due to a nearly singular system. In these cases, either the
algorithm stalls to a spurious solution (13 out of 22 cases) or the convergence becomes very slow (9 out of 22
cases). It should be noted, however, that the “no-scaling” strategy yields an optimal solution for almost 98% of
the problems. The systems (27) and (28) return a large number of failures of type 2. This is mainly due to the
ill-conditioning of the matrix Qp2 when approaching an optimal solution. The reduction of the system worsens
the results. Surprisingly, the worst results are obtained with the system (29). A deterioration of the residual
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of the second linear equation in (29) over the iterations is observed, when the matrix Qp becomes increasingly
ill-conditioned. This leads to a loss of the primal feasibility of the iterates. This is mainly due to the scaling of
the linear equation −Hdv + du = u−Hv − w. To overcome this problem, the refinement procedure described
in the MA57 documentation can be used to solve (29). We performed a run with a refinement tolerance fixed
to the tolerance tol and a maximum of 10 refinement iterations. This results in only six type 2 failures and no
more failure of type 1, but it takes longer to run than with (30) as shown in Figure 2. The best performance
in terms of robustness is obtained with the system (30). No failures were detected. The average number of
iterations to solve one of the 1091 problems is equal to 18, while the minimum and maximum numbers are equal
to 8 and 34. The positive definite system (31) gives a good performance in terms of efficiency, but its robustness
is not sufficient, even when refinement is applied.

Linear system # Success # Failure 1 # Failure 2
(26) 1069 22 0
(27) 947 0 144
(28) 852 5 234
(29) 308 1 782

(29) + refin 1085 0 6
(30) 1091 0 0
(31) 1083 1 7

Table 2: Number of successes and failures when solving the FCLIB problems with tol = 10−10.
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Figure 2: Performance profiles for seven different linear system choices. For τ ≥ 0, ρs(τ) is the fraction of
problems for which the performance of a given version of the algorithm is within a factor 2τ of the best one.

At last, it should be mentioned that all the computations related to scaling are done in C using the floating
point datatype long double. This data type is also used in the computation of the steplengths. This always
results in a better accuracy, although the computing time is slightly longer. Table 3 shows the results of
solving the FCLIB problems with Algorithm 1, the linear system under the form (30), with a stopping tolerance
tol = 10−11. The comparison is between the use of the datatype long double versus double. We can see that
the number of failures of type 2 is more than doubled with the type double. For these runs, even in case of
a failure, the residual (left term in (32)) is small, which means that an optimal solution has been found. The
column max res indicates the maximum value of the residual norm (32) of all the 1091 residuals and shows that
the type long double allows to obtain a better precision. Even with the data type double, all problems are
successfully solved for tol = 10−10. The last column of this table shows the total computational time needed to
solve all the FCLIB problems with this tolerance. It can be seen that the increase in computational time is less
than 10% with long double.

14



Data type # Success # Failure 1 # Failure 2 max res cpu (sec)
double 1047 5 39 9e-9 616

long double 1069 5 17 6e-11 675

Table 3: Performance comparison double versus long double when solving the FCLIB problems with system
(30) and tol = 10−11.

6 Rolling friction contact problem

We now consider the solution of (4) in the framework of the RF model (d = 5) defined by the rolling friction
cones (7) and (8). The main difficulty is that an elementary cone Ri is no more self-dual and therefore not
symmetric. There is no Jordan product such that Ri is a cone of squares with respect to this product. A
potential approach is to transform the cone of constraints related to problem (9) into the product of Lorentz
cones by means of the following usual trick of introducing artificial variables. For real numbers, a ≥ b + c if
and only if there exist two real numbers t ≥ b and t′ ≥ c such that a = t + t′. By setting ui,0 = t̄i + t̃i for all
i ∈ {1, . . . , n}, the primal-dual pair of problems (9)-(11) can be rewritten as

min
v,z

1
2v

⊤Mv + f⊤v

s.t. Hv + w = Jz,
z ∈ L2n,

(33)

and
min
r

1
2r

⊤Wr + q⊤r

s.t. J⊤r ∈ L2n,
(34)

where z = (z⊤1 , . . . , z
⊤
n )⊤ and zi = (t̄i, ū

⊤
i , t̃i, ũ

⊤
i )

⊤ ∈ Rd+1, J ∈ Rnd×n(d+1) is a block diagonal matrix with n
blocks of the form

ȷ =

1 1
I

I

 ∈ Rd×(d+1).

For all i ∈ {1, . . . , n}, we have ȷzi = (t̄i + t̃i, ū
⊤
i , ũ

⊤
i )

⊤ and ȷ⊤ri = (ri0, r̄
⊤
i , ri0, r̃

⊤
i )

⊤.
The perturbed KKT system associated with the problem (34) is then

Wr + q = Jz,
z ◦ J⊤r = 2µe,
(z, J⊤r) ∈ int(L4n).

(35)

This optimality system is associated with the barrier problem

min
r

φµ(r) :=
1
2r

⊤Wr + q⊤r − µ
∑n

i=1 log(det(ri,0, r̄i) det(ri,0, r̃i)). (36)

As for Proposition 4.1 and by coercivity of the barrier function, under Assumption 3.1, for all µ > 0 the system
(35) has a unique solution such that (z(µ), J⊤r(µ)) ∈ int(L4n). Although the optimal solution of (33) is not
unique, because J is non-injective, it can be shown, like for Proposition 4.2, that the central path converges to
a relative interior point of the primal-dual optimal set. Under the hypothesis of strict complementarity, it can
also be shown that the central path r(·) converges to the analytic center of the dual optimal set. For the sake
of completeness, we state the result, but without proof in order to lighten the paper.

Assumption 6.1. There exists a solution (z, r) ∈ Rn(d+1) × Rnd of (35) with µ = 0, such that z + J⊤r ∈
int(L2n).

The strict complementarity hypothesis can be equivalently reformulated relatively to the original problems
(9) and (11), thanks to the orthogonality condition (12). Let (z, r) be a solution of (35) with µ = 0. Then
(v, u = Jz) is the unique optimal solution of (9). Assumption 6.1 is satisfied if and only if for all i ∈ {1, . . . , n},
one of the following three assertions is satisfied:
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• ri0 > max{∥r̄i∥, ∥r̃i∥} and ui = 0,

• ui0 > ∥ūi∥+ ∥ũi∥ and ri = 0,

• ri0 = max{∥r̄i∥, ∥r̃i∥} > 0 and ui0 = ∥ūi∥+ ∥ũi∥ > 0.

As in Section 4, under the strict complementarity assumption, the index set {1, . . . , n} can be partitioned into
two partitions (B̄, N̄, R̄) and (B̃, Ñ, R̃), whose definition is a direct extension of the previous one to the current

framework. Let Ẑ and R̂ be the primal and dual optimal sets of problems (33) and (34). The first partition is
defined as follows, the second in a similar way:

B̄ = {i : ∃r ∈ R̂, (ri,0, r̄i) ∈ int(L)}, N̄ = {i : ∃z ∈ Ẑ, (t̄i, ūi) ∈ int(L)},

R̄ = {i : ∃(z, r) ∈ Ẑ × R̂, ((t̄i, ūi), (ri,0, r̄i)) ∈ bd(L2)\{0}}.

We can then define the analytic center of the optimal set R̂ as follows. If R̂ is reduced to a singleton, then it is
this point, otherwise it is the minimum of the problem

min
r∈ri(R̂)

−
∑
i∈B̄

log det(ri,0, r̄i)−
∑
i∈B̃

log det(ri,0, r̃i)−
∑

i∈R̄,i∈R̃

log ri,0. (37)

The analytic center can be characterized like in Proposition 4.4, by which it can be shown that Theorem 4.5
still holds for the rolling friction framework.

Algorithm 1 is modified in order to solve a RF problem. This is described by Algorithm 2.

Algorithm 2 One iteration of Mehrotra primal-dual algorithm for solving a RF problem

Parameters: η1 ∈ (0, 1), η2 ≥ 1, η3 ≥ 1, τ1 ∈ (0, 1), τ2 ∈ (0, 1− τ1), tol > 0

1: if the stopping criterion (32) with u = Jz is satisfied then return (v, z, r) as primal-dual solution of (33);
2: Set µ← r⊤Jz/n;
3: Compute (dva, d

r
a, d

z
a) solution of (38) (resp. (39)-(40)) without the square bracketed term;

4: Find the greatest αa ∈ (0, 1] such that (z, J⊤r) + αa(d
z
a, J

⊤dra) ∈ L4n;
5: Set µa ← (r + αad

r
a)

⊤J(z + αad
z
a)/n;

6: if µ > η1 then set e← max{1, η2α2
a} else set e← η3;

7: Set σ ← min{1, (µa/µ)
e};

8: Compute (dv, dr, dz) solution of (38) (resp. (39)-(40));
9: Set τ ← τ1 + αaτ2;

10: Find the greatest α ∈ (0, 1] such that (z, J⊤r) + α(dz, J⊤dr) ∈ (1− τ)(u, r) + L4n;
11: Set (v, z, r)← (v, z, r) + α(dv, dz, dr) and goto 1.

The linear system solved at each iteration is obtained by linearizing the system (35). It is reformulated
under the form of the following augmented system M −H⊤ 0

−H 0 J
0 ZJ⊤ R

dvdr
dz

 =

 −Mv − f +H⊤r
Hv + w − Jz

−z ◦ J⊤r − [dza ◦ (J⊤dra)− 2σµe]

 , (38)

where Z = Arw(z), R = Arw(J⊤r) and µ = r⊤Jz
n . As in Algorithm 1, the affine scaling direction (dva, d

r
a, d

z
a) is

the solution of (38) without the square bracketed term in the right-hand side, while the full step (dv, dr, dz) is
the solution of the complete system.

The scaling strategy is similar to that described in Section 5. The NT direction p is defined by the formula
(25) where u and r are respectively replaced by z and J⊤r. The change of variables is done by setting

ẑ := Qpz and y̌ := Qp−1J⊤r.

Recall that ẑ = y̌, which allows to symmetrize the linear system under the form M −H⊤ 0
−H 0 J
0 J⊤ Qp2

dvdr
dz

 =

 −Mv − f +H⊤r
Hv + w − Jz

−J⊤r − [Qp(ẑ
−1 ◦ (d̂za ◦ ďya))− 2σµz−1]

 . (39)
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Family # problems n m
Chute 155 [4, 1372] [768, 6528]
PrimitiveSoup 171 [37, 2269] 6000
SpherePile 200 [2, 542] [24, 1500]

Table 4: Sizes of rolling friction problems of the FCLIB collection

Because of the ill-conditioning of the matrix Qp2 , an equivalent form of (39) has been considered: M −H⊤ 0
−H 0 JQp−1

0 Qp−1J⊤ I

dvdr
d̂z

=

 −Mv − f +H⊤r
Hv + w − Jz

−y̌ − [ẑ−1 ◦ (d̂za ◦ ďya − 2σµe)]

 , (40)

where d̂z = Qpd
z. Figure 3 shows the condition number of the three matrices (38)-(40) along the iterations of

the numerical resolution of a RF problem. It can be seen that the system (40) is better conditioned than (39).

1 4 7 10

3

6

9

12

k

log10(κ)

(38)

(39)

(40)

Figure 3: Condition number (κ) of the matrix of the linear systems along the iterations of the Algorithm 2
when solving the problem PrimitiveSoup-ndof-6000-nc-37-0 with n = 37 contact points.

We also tried several reductions to a 2× 2 form as in (28) or (30), leading to matrices of the form(
M −H⊤

−H −JQp−2J⊤

)
or

(
M Ĥ⊤

−Ĥ −I

)
, (41)

where Ĥ = P−1H and PP⊤ = JQp−2J⊤. We also tried several ways to compute the matrix P , by performing a
Cholesky factorization or by directly exploiting the structure of a quadratic representation matrix. Despite such
a reduction and in contrast to the results obtained with the RF problems, the numerical performance has not
been improved. Moreover, the computation of the matrix P increases the overall computational cost, without
any real improvement. We also observe the same for the 1× 1 system like (31).

The numerical tests were carried out on 526 RF problems of the FCLIB family (Acary et al., 2014), whose
characteristics are in Table 4. The numerical results and performances of Algorithm 2 with the three linear
systems described previously, are reported in Table 5 and Figure 4. These results show that, with a tolerance
tol = 10−10, the choice of system (40) gives the best performance. But the performance gap between the systems
with the NT scaling is smaller than those observed for the FC problems. It can also be observed that, as for the
RF problems, without scaling the failures are of type 1, while with NT scaling the failures only occur when a
NaN is detected. Moreover, in the latter case the maximum value of the residual (32) (right column of Table 5),
shows that the stopping point of the algorithm is nearly optimal.

7 Conclusion

At the beginning of this work, the solution of the relaxed convex form of the friction contact models seemed very
simple. However, after our initial experience with existing software and our first implementation of Mehrotra’s
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linear system # success # failure 1 # failure 2 max res
(38) 391 135 0 3e-3
(39) 451 0 75 4e-9
(40) 508 0 18 5e-9

Table 5: Number of successes and failures when solving the RF problems with tol = 10−10
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Figure 4: Performance profiles for the three linear systems for the RF model

primal-dual algorithm, we were not satisfied with its efficiency and robustness. The Nesterov-Todd scaling
strategy is a wonderful theoretical tool, but numerically very painful. As the iterates approach the boundary of
the second order cones, the conditioning of the linear system explodes, the iterations get stuck on the boundary
and divisions by zero occur, producing NaN and thus an emergency stop. We have therefore examined a large
number of equivalent formulations of the linear system and found that the one which gives the best results,
or shall we say the least bad, is the one in which the quadratic representation matrix which allows scaling
is not a direct component of the matrix of the linear system. In addition, special attention must be paid to
the way in which the matrix-vector products are performed in order to construct the system to be factorized.
Unfortunately, we have not been able to find a formulation for rolling friction problems that is as efficient and
robust as for friction cones. The accuracy we have achieved is slightly lower. Nevertheless, the accuracies and
computation times we have achieved for both models seem to us to be quite adequate and can be used for real
applications.. The next step in this research work is to extend the primal-dual algorithm to solve the original
model (1). A natural idea is to solve a sequence of systems parametrized by µ > 0:

Mv + f = H⊤r,
Hv + w + ϕ(s) = u,
si = ∥ūi∥, i ∈ {1, . . . n},
u ◦ r = 2µe.

The main issues are that this system is not the optimality system of an optimization problem and that there is
a non-smooth equation.

One theoretical question remains from this study. It concerns the characterisation of the limit point of
the central path, like the formula (17) which defines the analytic center, but without the assumption of strict
complementarity.
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A Euclidean Jordan algebra

Let us consider the set K =
∏n

i=1Ki where Ki is an ni-dimensional Lorentz cone defined by

Ki =
{
x = (xi0, x̄

⊤
i )

⊤ ∈ R× Rni−1 : ∥x̄i∥ ≤ xi0
}
.

Let N =
∑n

i=1 ni. For x ∈ RN , we denote x = (x1, . . . , xn), where xi = (xi0, x̄i). For two vectors x and y in
RN , the Jordan product is defined by

x ◦ y =

x1 ◦ y1
...,

xn ◦ yn

 , where xi ◦ yi =
(

x⊤i yi
xi0ȳi + yi0x̄i

)
, for i = 1, . . . , n.

Let x ∈ RN and x2 = x ◦ x. A fundamental property of the Jordan algebra for interior-point algorithms, is
that the Lorentz cone is the cone of squares, that is K = {x2 : x ∈ RN}, see (Alizadeh and Goldfarb, 2003, pp.
18–19).

For matrices A and B, we define

A⊕B :=

(
A 0
0 B

)
.

For x ∈ RN , the arrow-shaped matrix is defined by

Arw(x) = Arw(x1)⊕ . . .⊕Arw(xn), where Arw(xi) =

(
xi0 x̄⊤i
x̄i xi0I

)
for i = 1, . . . , n.

For i ∈ {1, . . . , n}, let ei = (1, 0) ∈ R × Rni−1 and let e = (e1, . . . , en) ∈ RN be the neutral element of the
Jordan product. For vectors x and y in RN , one has

x ◦ y = Arw(x)y = Arw(x)Arw(y)e

For i ∈ {1, . . . , n}, let det(xi) = x2i0−∥x̄i∥2 be the determinant of xi ∈ Rni . If xi is nonsingular, i.e., det(xi) ̸= 0,
the inverse of xi is the unique vector of Rni such that xi ◦ x−1

i = ei and is given by x−1
i = det(xi)

−1Rni
xi,

where Rni
is the reflexion matrix defined by

Rni =

(
1 0⊤

0 −I

)
∈ Rni×ni .

If for all i ∈ {1, . . . , n} xi is nonsingular, we have

x−1 =

x
−1
i
...

x−1
n

 = Arw(x)−1e.

For i ∈ {1, . . . , n}, the spectral decomposition of a vector xi ∈ Rni is defined by xi = λici + λ′ic
′
i, where

λi = xi0 + ∥x̄i∥, λ′i = xi0 − ∥x̄i∥, ci =
1

2

(
1
x̄i

∥xi∥

)
and c′i =

1

2

(
1

− x̄i

∥xi∥

)
.

The scalars λi and λ
′
i are eigenvalues of Arw(xi), with the corresponding eigenvectors ci and c

′
i. This pair of

eigenvectors is called the Jordan frame of xi. It is said that two vectors commute if they share the same Jordan
frame. In that case the corresponding arrow matrices commute. From these definitions, it follows that xi ∈ Ki

(resp. xi ∈ int(Ki)) if and only if λ′i ≥ 0 (resp. λ′i > 0). If xi is nonsingular, then

x−1
i = λ−1

i ci + λ′
−1
i c′i.
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If xi ∈ int(Ki), then

x
1/2
i = λ

1/2
i ci + λ′

1/2
i c′i.

More generally, for a continuous function f we can define

f(xi) = f(λi)ci + f(λ′i)c
′
i.

At last, the quadratic representation of a vector xi ∈ Ki is defined as

Qxi
= Arw2(xi)−Arw(x2i ) = 2xix

⊤
i − det(xi)Rni

.

The scalars λ2i and λ
′2
i are eigenvalues of Qxi with the eigenvectors ci and c

′
i. In particular, two vectors commute

if and only if their quadratic representation matrices commute. For x ∈ K, we define Qx = Qx1 ⊕ . . . ⊕ Qxn .
For i ∈ {1, . . . , n} and x ∈ int(Ki), we have ∇x(log det(xi)) = 2x−1

i and ∇2
x(log det(xi)) = −2Qx−1

i
.

These operators Arw and Q· are useful for the design of interior algorithms. See (Alizadeh and Goldfarb,
2003, §4) for a review of their interesting properties.

B Proof of Proposition 3.2

Before giving a proof of Proposition 3.2, we propose some equivalent formulations of Assumption 3.1. They
are proved thanks to the following well-known lemma (Skarpness and Sposito, 1982, Lemma 2), called Tucker’s
theorem of the alternative in the case where K is the nonnegative orthant, see (Mangasarian, 1969, p. 29).
The proof can be made by applying a separation theorem of convex sets, see, e.g., (Rockafellar, 1970, Theorem
11.3).

Lemma B.1. Let K ⊂ Rn be a closed pointed convex cone, A ∈ Rm×n and B ∈ Rp×n. One and only one of
the following statements is true.

(i) There exists a non-zero x ∈ K such that Ax = 0 and Bx ≤ 0.

(ii) There exists (y, z) ∈ Rm × Rp
+ such that A⊤y +B⊤z ∈ int(K∗).

The following lemma provides equivalent formulations of Assumption 3.1.

Lemma B.2. Let F be the product of second order cones of the form (5) or (7). Let M ∈ Rm×m be symmetric
and positive-definite, f ∈ Rm, H ∈ Rnd×m, w ∈ Rnd and W = HM−1H⊤ . The following four assertions are
equivalent.

(i) There exists v ∈ Rm such that Hv + w ∈ int(F∗).
(ii) There exists (v, t) ∈ Rm × R+ such that Hv + tw ∈ int(F∗).
(iii) There does not exist a nonzero d ∈ F , such that H⊤d = 0 and w⊤d ≤ 0.
(iv) There does not exist a nonzero d ∈ F , such that Wd = 0 and q⊤d ≤ 0.

Proof. The implication (i)⇒ (ii) is obvious. The equivalence (ii)⇔ (iii) is a direct consequence of the fact that
F∗ is a closed pointed convex cone and of Lemma B.1. The equivalence (iii) ⇔ (iv) follows from the definitions
of W and q in (10), and of the positive definiteness of M . It remains to prove that (ii) ⇒ (i).

Let (v, t) ∈ Rm × R+ such that Hv + tw ∈ int(F∗). If t > 0, set v′ = 1
t v. Since Hv + tw = t(Hv′ + w) and

int(F∗) is a cone, Hv′ + w ∈ int(F∗). Suppose now that t = 0. There exists ϵ > 0 such that Hv + Bϵ ⊂ F∗,
where Bϵ is the open ball centered at 0 with radius ϵ. Since F∗ is a cone, for all t > 0, tHv+Btϵ ⊂ F∗. Let us
choose t > 1

ϵ ∥w∥. We then have tHv + w ∈ int(F∗), which proves (i).

We can prove now that the Slater’s assumption is equivalent to the non-emptiness and compactness of the
optimal set of the reduced problem (11).

Proof of Proposition 3.2. The assertions (i) and (ii) are direct consequences of the weak duality and of the
strong convexity of the objective function of (9). The outcome (iii) can be proved by means of some useful tools
from asymptotic analysis in convex optimization (Auslender and Teboulle, 2003). Let us define the function
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g(r) = 1
2r

⊤Wr + q⊤r + δF (r), where δF is the indicator function of the set F . The asymptotic function of g is
defined by

g∞(s) = sup
t>0

g(ts)− g(0)
t

=

{
q⊤s if s ∈ F and Ws = 0,

∞ otherwise,

for s ∈ Rnd, see (Auslender and Teboulle, 2003, Proposition 2.5.2). The optimal set R̂ coincides with the set of
minima of g. It is non-empty and compact if and only if g is coercive, that is g∞(s) > 0 for all nonzero s ∈ Rnd

(Auslender and Teboulle, 2003, Proposition 3.1.3). It follows that R̂ is nonempty and compact if and only if
there is no nonzero s ∈ F , such that Ws = 0 and q⊤s ≤ 0. By Lemma B.2, this is equivalent to the Slater
hypothesis.

C Proofs of Propositions 4.1 and 4.2

Proof of Proposition 4.1. Let µ > 0. Let us show that the barrier function defined in (16) is coercive. As in the
proof of Proposition 3.2, we show that for all nonzero s ∈ Rnd, (φµ)∞(s) > 0. Let us write φµ = p+ψµ, where
p is the quadratic part. We have (φµ)∞ = p∞ + (ψµ)∞ (Auslender and Teboulle, 2003, Proposition 2.6.1.). We
have

p∞(s) = sup
t>0

p(ts)− p(0)
t

=

{
q⊤s if Ws = 0,

∞ otherwise.

To compute the asymptotic derivative of the function ψµ, let us look at one element of the sum. Let s ∈ Rd

and let us define ρ(s) := − log det s. We have

ρ∞(s) = sup
t>0

1
t (ρ(e+ ts)− ρ(e))

= sup
t>0

−1
t log(1 + 2te⊤s+ t2 det s)

= δL(s).

We then have (ψµ)∞ = δLn . It follows that (φµ)∞ = g∞, where g is defined in the proof of Proposition 3.2.
Therefore, the same conclusion holds, that is: under Assumption 3.1, (φµ)∞(s) > 0 for all nonzero s ∈ Ln. This
implies that the set of minima of φµ is nonempty and compact. Since φµ is strictly convex, this set is reduced
to a singleton.

To show that the central path is bounded, let us proceed to a reasoning by contradiction. Suppose that there
exists a positive sequence {µk}, converging to zero and such that {(rk, uk)} is unbounded, where we denote
rk := r(µk) and uk := u(µk). Let tk := ∥(rk, uk)∥. By taking a subsequence, suppose that { 1

tk
(rk, uk)} →

(r∗, u∗) ̸= 0. By definition of the central path, for all k ∈ N we have

Wrk + q = uk and rk ◦ uk = 2µke. (42)

Dividing the first equation by tk and the second one by t2k, then taking the limit k →∞, we obtain Wr∗ = u∗

and r∗ ◦ u∗ = 0. Multiplying the first equation by r∗ on the left, we obtain r∗⊤Wr∗ = r∗⊤u∗ = 0. Since
W = HM−1H⊤ and M is positive definite, it follows that H⊤r∗ = 0. Multiplying the first equation of (42)
by rk we have r⊤k Wrk + q⊤rk = r⊤k uk = 2nµk. Since W is positive semi-definite, we then get q⊤rk ≤ 2nµk.
Dividing by tk and passing through the limit, we obtain q⊤r∗ ≤ 0. Since for all k ∈ N, rk ∈ int(Ln), we also
have r∗ ∈ Ln. Finally, we have shown that there exists a non-zero vector r∗ ∈ Ln, such that H⊤r∗ = 0 and
w⊤r∗ = q⊤r∗ ≤ 0. In view of Lemma B.2, this is equivalent to the fact that the Slater hypothesis does not
hold, which is in contradiction with the assumption.

The proof of Proposition 4.2 is done in two steps. The convergence is proved first. It follows the one
of (Halická et al., 2002, Theorem A.3). It is based on the use of the curve selection lemma from algebraic
geometry, see (Milnor, 1968, Lemma 3.1). In the second part of the proof, it is shown that the limit is
maximally complementary. It is inspired by (Klerk et al., 1997).
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Proof of Proposition 4.2. Let (r̂, û) be a limit point of the central path. Since û is unique, it remains to show
that r(µ)→ r̂ as µ→ 0. Let us define the subsets of Rnd+1:

V = {(r, µ) : (W (r̂ + r) + q) ◦ (r̂ + r) = 2µe},
U = {(r, µ) : µ > 0,det(r̂i + ri) > 0 and r̂i0 + ri0 > 0, i = 1, . . . , n}.

The set V is a real algebraic set and U is an open set defined by a finite number of polynomial inequalities.
Moreover, 0 ∈ Rnd+1 is in the closure of U ∩ V. By the curve selection lemma, there exists ε > 0 and a real
analytic curve p : [0, ε)→ Rnd+1, with p(0) = 0 and for all t ∈ (0, ε), p(t) ∈ U ∩V. By setting p(t) = (ρ(t), ν(t)),
we have (W (r̂ + ρ(t)) + q) ◦ (r̂ + ρ(t)) = 2ν(t)e, for all t ∈ (0, ε). Since the central path is uniquely defined by
(15), for all t ∈ (0, ε) we have

r(ν(t)) = r̂ + ρ(t). (43)

Since ν(0) = 0, ν(t) > 0 for all t ∈ (0, ε) and ν is analytic on [0, ε), there exists ε′ > 0 such that for all
t ∈ (0, ε′), ν′(t) > 0. It follows that ν is invertible on (0, ε′). Moreover, for all t ∈ (0, ν(ε′)), ν−1(t) > 0 and
limt→0 ν

−1(t) = 0. We then have, for µ > 0 small enough,

r(µ) = r(ν(ν−1(µ))) = r̂ + ρ((ν−1(µ))).

It follows that limµ→0 r(µ) = r̂.
Let us show now that r̂ is maximally complementary. That is, for all i ∈ B, r̂i ∈ int(L) and for all i ∈ R∪T1,

r̂i ∈ bd(L)\{0}. Let r ∈ R̂ be a maximally complementary optimal solution. For all µ > 0, by using (14) and
(15) and the positive semi-definiteness of W , we have

(r(µ)− r)⊤(u(µ)− û) = (r(µ)− r)⊤W (r(µ)− r) ≥ 0.

It follows that
n∑

i=1

û⊤i ri(µ) +

n∑
i=1

r⊤i ui(µ) ≤ 2nµ. (44)

By dividing by 2µ and by using the partition of the index set, we obtain

n∑
i∈N∪R∪T2

û⊤i u
−1
i (µ) +

n∑
i∈B∪R∪T1

r⊤i r
−1
i (µ) ≤ n. (45)

Since each term in these sums is nonnegative, we have that for all i ∈ B∪R∪T1 and for all µ > 0, r⊤i r
−1
i (µ) ≤ n.

By using the inequality (20) in the proof of Theorem 4.5, we deduce that for for all i ∈ B∪R∪T1 and all µ > 0,
we have

0 <
1

n
ri,0 ≤ ri,0(µ) + ∥r̄i(µ)∥ < 2ri,0(µ).

Taking the limit as µ → 0, we have r̂i,0 > 0. It remains to show that for all i ∈ B, det(r̂i) ̸= 0. For all i and

µ > 0, we have r⊤i r
−1
i (µ) =

r⊤i Rri(µ)
det ri(µ)

. It follows that for all i ∈ B and all µ > 0,

0 ≤ r⊤i Rri(µ) ≤ ndet(ri(µ)).

Passing through the limit µ→ 0, we obtain 0 ≤ riRr̂i ≤ n det(r̂i). If det(r̂i) = 0, we then have

ri,0r̂i,0 = r̄⊤i
¯̂ri ≤ ∥r̄i∥∥¯̂ri∥ < ri,0∥¯̂ri∥,

from which we deduce that r̂i /∈ L, which is in contradiction with the fact that r̂ ∈ K and allows to conclude
that r̂ is maximally complementary.
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