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Introduction

Products of random matrices can often be interpreted, in a statistical mechanics perspective, as models of disordered systems. The leading Lyapunov exponent may then be identified with some physical quantity such as the free energy density or persistence length. We can also take the opposite viewpoint and ask whether a disordered system can be written in terms of, or at least approximated by, a suitable product of random matrices. It turns out that there are several examples in which this can be done. Examples include essentially all statistical mechanics systems in which there is a natural one dimensional structure, but it goes also beyond this: the literature is too wide to be properly cited here and we refer to the reviews [START_REF] Cohen | Random matrices and their applications[END_REF][START_REF] Crisanti | Products of random matrices in statistical physics[END_REF]. Of particular interest for us are the examples arising from the transfer matrix approach in the statistical mechanics of disordered systems. For one dimensional (let us say, Ising or Potts) models with finite range interaction one can write the partition function in terms of a product of matrices [START_REF] Baxter | Exactly solved models in statistical mechanics[END_REF]: if the interactions are only one body and nearest neighbor two body the transfer matrix of an Ising model is a two by two matrix, and the size is larger for Potts and/or longer range models. But for two or more dimensional systems the size of the transfer matrix tends to infinity in the thermodynamic limit and the transfer matrix should be thought more as a transfer operator: this is true also in one dimension if the spin variable can take an infinite number of values [START_REF] Ruelle | Thermodynamic formalism. The mathematical structures of equilibrium statistical mechanics[END_REF]Ch. 5]. Nevertheless, also in these cases finite dimensional matrix models can be helpful (for numerical approximations for example, but also for rigorous bounds, see for example [START_REF] Giacomin | Random polymer models[END_REF]Ch. 9] and references therein). It is however remarkable that also the solution of the two dimensional Ising model with nearest neighbor interactions and no external field can ultimately be expressed in terms of products of two by two matrices: this is the essence of several formulations of the celebrated solution of Lars Onsager [START_REF] Baxter | Exactly solved models in statistical mechanics[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF]. What is even more remarkable from our viewpoint is that this structure still holds when special types of disorder are introduced, giving a product of random matrices [START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF][START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Shankar | Nearest-neighbor frustrated random-bond model in d=2: Some exact results[END_REF].

The two by two matrices that arise in the problems we have just mentioned have a particular form: it is

ˆ1 ε εZ Z ˙, (1.1) 
where ε is a real number -say |ε| ď 1{2 to keep far from the zero determinant case ε " ˘1 -and Z is a positive random variable with E log `pZq ă 8. Let us call (informally for the moment) p L Z pεq the Lyapunov exponent of a product of IID matrices of the form (1.1), which appear notably in the following two contexts. ' In the one dimensional Ising model with random external field h " h j -that is, th j u j"1,2,... is a sequence of independent identically distributed (IID) random variables -and nearest neighbor interaction J, the transfer matrix can be cast in the form (1.1), with Z " expp´2hq and ε " expp´2Jq. The free energy density is therefore precisely p L Z pεq and the ε OE 0 limit is the limit of strong ferromagnetic interaction. ' In a much less straightforward way (detailed in Appendix A), also the free energy of the two dimensional Ising model with a special type of disordered nearest neighbor interactions (columnar disorder ), and no external field, is (essentially) just ş 1{2 0 p L Z pεq dε, of course with a proper choice of Z " Z β that contains the inverse temperature β of the system. The phase diagram of this model (that is, the presence and nature of phase transitions) is determined by the regularity of this expression as a function of β; the most notable prediction for this model, which goes now under the name of McCoy-Wu model, is that the second order transition of the two dimensional non-disordered Ising model (for which the second derivative of the free energy diverges at criticality like ´log |β ´βc |) becomes of infinite order when the columnar disorder is introduced: that is, the free energy at the critical point is C 8 but not analytic. The precise nature of the singularity is characterized in [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF] by means of a divergent power series for the free energy at β c , where the value of β c depends on the disorder: a summary of the expected effect of disorder on the transition for the two dimensional Ising model is in [22, § 5.3]. The McCoy-Wu model has a prominent role in physics because it can be mapped to the one dimensional quantum spin chain with transversal magnetic field [START_REF] Fisher | Critical behavior of random transverse-field Ising spin chains[END_REF] and because it has played a central role in the development of the real space strong/infinite disorder renormalization group (see e.g. [START_REF] Fisher | Critical behavior of random transverse-field Ising spin chains[END_REF] and [22, § 5.3]). therein), and the key issue for us is that all this vast literature focuses on the ε Ñ 0 behavior of p L Z pεq, see notably [START_REF] Crisanti | Products of random matrices in statistical physics[END_REF][START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF][START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Nieuwenhuizen | Exactly soluble random field Ising models in one dimension[END_REF]. From a mathematical viewpoint this limit is of interest because, thanks to [START_REF] Ruelle | Analycity properties of the characteristic exponents of random matrix products[END_REF] (see also [START_REF] Dubois | Real cone contractions and analyticity properties of the characteristic exponents[END_REF]), we know that ε Þ Ñ p L Z pεq is real analytic if |ε| P p0, 1q under additional mild hypotheses on Z (for example: PpZ " cq " 0 for every c). But the regularity at ε " 0 is not obvious, as well as if there is a singularity at all. And this is precisely the question addressed in [START_REF] Crisanti | Products of random matrices in statistical physics[END_REF][START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF][START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Nieuwenhuizen | Exactly soluble random field Ising models in one dimension[END_REF]. In particular p L Z pεq is expected to have a fractional or logarithmic scaling when ε Ñ 0 under the frustration hypothesis that PpZ ą 1q and PpZ ă 1q are both positive: this is the case for example of the ε 2α singularity found in [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF], and proven mathematically in [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2ˆ2 matrices[END_REF], and that we will explain in detail in Section 1.4.

Here we do not address the study of the Lyapunov exponent of products of matrices of the form (1.1). Rather we focus on a continuous time model that arises as a diffusive limit of the matrix product (we call it continuum limit). Roughly, the limit is achieved by considering matrices close to the identity: ε is replaced by ε∆, with ∆ OE 0 and we consider Z " Z ∆ that is very concentrated around one: both ErZ ∆ s´1 and varpZ ∆ q are of order ∆. The dynamics will therefore happen on a timescale 1{∆ and it will be governed by a two dimensional stochastic differential system. We then study the leading Lyapunov exponent Lpεq of this limit system: we will actually show that p L Z pεq " ∆Lpεq for ∆ OE 0 (we use " for asymptotic equivalence: the ratio of left-hand and right-hand sides converges to one). This limit has been already considered in several works and even in greater generality (matrices close to the identity: see e.g. [START_REF] Frisch | Electron levels in a one-dimensional random lattice[END_REF][START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Zanon | Weak disorder expansion of Lyapunov exponents in a degenerate case[END_REF][START_REF] Comtet | The Lyapunov Exponent of Products of Random 2 ˆ2 Matrices Close to the Identity[END_REF]), but mathematically rigorous results are lacking (with the exception of [START_REF] Sadel | Random Lie group actions on compact manifolds: a perturbative analysis[END_REF], whose assumptions however exclude the case we treat): the type of results one finds are expansions of the type p L Z ∆ pεq " c 1 pεq∆ `c2 pεq∆ 2 `. . . , (1.2) where of course c 1 pεq " Lpεq and expressions or at least procedures to compute the c j pεq are given. To be precise, a full expansion like (1.2) is not expected to hold in general and, even in the cases in which it holds, e.g. [START_REF] Sadel | Random Lie group actions on compact manifolds: a perturbative analysis[END_REF], and assuming smooth dependence in ∆ of the coefficients of the matrix, there is to our knowledge no proof that ∆ Þ Ñ p L Z ∆ pεq P C 8 . We point out, however, a very special example in [START_REF] Zanon | Weak disorder expansion of Lyapunov exponents in a degenerate case[END_REF] that has been worked out explicitly and for which the Lyapunov exponent is analytic except at zero where it is nonetheless C 8 (note also that [START_REF] Ruelle | Analycity properties of the characteristic exponents of random matrix products[END_REF] cannot be applied because for ∆ " 0 the matrix is the identity matrix).

We will focus only on Lpεq: in other words, the continuum limit we consider captures only the leading order term in (1.2). The first remarkable fact is that Lpεq has an explicit expression in terms of a ratio of modified Bessel functions: we provide a proof of this fact, which has long been known in the physics literature. To our knowledge, it is found for the first time in [31, (4.31)], and it then reappears in other works and contexts, see for example [START_REF] Comtet | The Lyapunov Exponent of Products of Random 2 ˆ2 Matrices Close to the Identity[END_REF] to which we refer also for a comprehensive review of the literature. It is rather surprising that, while a detailed analysis of the ε Ñ 0 limit of Lpεq is rather straightforward (the case of α P r0, 2q is worked out in [23, first formula on p. 248]), a full analysis appears to be lacking, as well as an emphasis on the rather striking fact that the ε Ñ 0 behavior of Lpεq captures all known and conjectured features of the ε Ñ 0 behavior of p L Z ∆ pεq, i.e. for matrix products (without assuming the disorder to be small). In particular, the ε 2α singularity found in [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF] is fully present in the continuum limit expression: mathematical results on this issue for p L Z ∆ pεq have been recently obtained [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2ˆ2 matrices[END_REF][START_REF] Havret | Regular expansion for the characteristic exponent of a product of 2 ˆ2 random matrices[END_REF], but the control of the singular term is an open problem for |α| ě 1.

Turning to the McCoy-Wu model, we come back to the fact that this model appears prominently in the physical literature, in part of course because of its exactly solvable character. And the conventional wisdom in the mathematical community appears to be that the McCoy-Wu claims are exact. And this is correct as far as the free energy formula (in terms of the Lyapunov exponents) is concerned. The subsequent analysis is less sound: β c is identified via the equation E log Z " 0 -the random variable Z depends on the inverse temperature β -and this assertion has some grounds at least at a heuristic level, but then one has to show that the free energy ş 1{2 0 p L Z ∆ pεq dε is not analytic at β " β c . And this is (ultimately) done by replacing p L Z ∆ pεq with ∆Lpεq and this step is very weak on mathematical grounds because the McCoy-Wu claim (which provides the motivation for the whole exercise) is for ∆ ą 0 (possibly very small, but non zero): making this step rigorous -possibly by controlling the remainder of the series in (1.2) -appears to be very challenging, and we do not address this in the present work. Once this approximation is done, McCoy and Wu are left with studying the regularity in β of ş 1{2 0 Lpεq dε. In spite of being a relatively explicit expression, this is still challenging. McCoy and Wu do this by developing the ratio of Bessel functions in the expression for Lpεq for β close to β c -the dependence in β is in the index of the Bessel functions -and by identifying the leading-order (in magnitude) terms in an expansion of the Bessel functions as the most singular part. We provide a proof that ş 1{2 0 Lpεq dε is C 8 but not analytic at β " β c and that the asymptotic series at β c is qualitatively the one found by McCoy and Wu (up to a multiplicative factor that they lost when singling out the most singular term; a similar correction was noted by Luck [START_REF] Luck | Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field[END_REF] in a related model): technically, this is the most demanding part of our contribution. We stress however that what we prove does not yield results on the transition for the McCoy-Wu model. The challenging gap pointed out just above remains unclosed. But we believe that our contribution helps understanding the true content of the remarkable McCoy-Wu analysis. As a side remark: the computation of McCoy and Wu is done for a very special form of the disorder distribution while they affirm that they expect the result to be true in great generality. We work under very general assumptions on the disorder, thus substantiating this claim.

We begin by presenting the diffusion system and its analysis. This is a stochastic dynamical system that is interesting in its own right and we provide a detailed analysis that goes beyond the strict purpose of what has been explained up to now. In particular we prove a Central Limit Theorem on the fluctuations of the Lyapunov exponent for the diffusive limit system, with an explicit formula for the variance and an analysis of the singular behavior. We then provide a proof that the Markov chain associated to the matrix product described above does scale to the diffusion system and that to leading order (in ∆) the Lyapunov exponent of the Markov chain is asymptotically proportional to the Lyapunov exponent of the diffusion system, that is p L Z pεq " ∆Lpεq. The rest of our work focuses on the regularity/singularity properties of Lpεq and of the expressions related to it that are of physical relevance.

1.1. The diffusion model and its leading Lyapunov exponent. We consider the solution to the stochastic (Itô) differential equations

# dX 1 ptq " εX 2 ptq dt , dX 2 ptq " ´εX 1 ptq `p1´αqσ 2 2 X 2 ptq ¯dt `σX 2 ptq dB t , (1.3) 
where B ¨is a standard Brownian motion, ε ‰ 0, α P R and σ ą 0. We consider deterministic initial condition pX 1 p0q, X 2 p0qq P R 2 ztp0, 0qu. The case pX 1 p0q, X 2 p0qq " p0, 0q, as well as ε " 0, are excluded because they are atypical and trivial. The system (1.3) is linear with a multiplicative noise so, given the initial condition, there exists a unique strong solution. Our focus is on the Lyapunov exponent Lpεq " L σ,α pεq that we introduce via our first statement in which we use the Euclidean norm } ¨} in R 2 just for definiteness.

Before stating it we need to recall one of the definitions of the modified Bessel function of 2 nd kind of index α P C and argument x ą 0 [32, §10.25]

K α pxq :" ż 8 0 exp p´x coshptqq coshpαtq dt " 1 2 ż 8 0 1 y 1`α exp ˆ´x 2 ˆy `1 y ˙˙dy . (1.4)
We note from now that K α pxq " K ´αpxq.

Theorem 1.1. For every ε ‰ 0 and every pX 1 p0q, X 2 p0qq P Rztp0, 0qu the limit

lim tÑ8 1 t E log }pX 1 ptq, X 2 ptqq} ": L σ,α pεq , (1.5) 
exists and does not depend on pX 1 p0q, X 2 p0qq. Moreover (1) the limit is unchanged if we replace }pX 1 ptq, X 2 ptqq} with |X j |, j " 1, 2 as well as if we remove the expectation (in this case the convergence is almost sure);

(2) if ε ą 0 [resp. ε ă 0], then signpX 1 ptqq " signpX 2 ptqq [resp. signpX 1 ptqq ‰ signpX 2 ptqq)
] for all t ě τ :" inftt ě 0 : signpX 1 ptqq " signpX 2 ptqqu [resp. τ :" inftt ě 0 : signpX 1 ptqq ‰ signpX 2 ptqqu] and Erτ s ă 8. Moreover L σ,α pεq " L σ,α p´εq. (3) For ε ą 0 and every α P R we have

L σ,α pεq " σ 2 4 ˆxK α´1 pxq K α pxq ˙, with x :" 4ε σ 2 . (1.6)
We draw the attention of the reader on the identification of x with 4ε{σ 2 . This shortcut notation is kept in all statements and proofs. Some of the results in Theorem 1.1 can be understood on the basis of a symmetry enjoyed by our system: If pX 1 p¨q, X 2 p¨qq solves (1.3), then p´X 1 p¨q, X 2 p¨qq solves (1.3) with ε replaced by ´ε. We can therefore restrict our analysis to the case ε ą 0 and we will show that only the (interior of the) quadrants in which both coordinates have the same sign -first and third quadrant -are recurrent for the dynamics: all the rest is transient. By linearity we can then restrict to the first quadrant.

As already mentioned in the introduction, most of the content of Theorem 1.1 is known in the physical literature and (1.6) appears in number of contexts. Besides the pioneering work [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF] that we have already mentioned, (1.6) appears for example also in [START_REF] Luck | Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field[END_REF]Sec. 3], which deals with disordered quantum Ising chains with transverse magnetic field: this is not surprising, because this quantum model is mapped exactly (by a Suzuki-Trotter path integral) into a suitable limit of the McCoy-Wu model (this is also exploited [START_REF] Fisher | Critical behavior of random transverse-field Ising spin chains[END_REF]). It also appears in the analysis of one dimensional random Schrödinger equation and in the analysis of a diffusion of a particle in a random force field, see e.g. [START_REF] Bouchaud | Classical diffusion of a particle in a one-dimensional random force field[END_REF][START_REF] Comtet | Lyapunov exponents, one-dimensional Anderson localization and products of random matrices[END_REF], and [START_REF] Frisch | Electron levels in a one-dimensional random lattice[END_REF] which is possibly the first work addressing precisely what we refer to as the continuum limit. Mathematical works have also been done in this context and (1.6) appears in a study of the quenched large deviations of diffusions in a random environment [43, Prop.

2.1]

: By Kotani's formula (unpublished, 1988) the Laplace transform of hitting times for the diffusion can be expressed in terms of a Riccati equation -the K α p¨q Bessel function appears as solution of this equation -that is equivalent to (2.3) below.

Finally, the first item of Theorem 1.1 is a classical result at the random matrix level, and the second item is an elementary observation. In the continuum set-up, the first two items follow by applying standard tools of stochastic analysis (the proofs turn out to be rather concise and we give full details). The third item is a computation: it is not novel, but it is very short and we provide it for completeness.

We also have a rather explicit representation for the fluctuations:

Proposition 1.2. The family of random variables " 1 ? t `log }pX 1 ptq, X 2 ptqq} ´tL σ,α pεq ˘*tPr0,8q (1.7) 
converges in law for t Ñ 8 to a centered Gaussian variable with variance v σ,α pεq P p0, 8q,

v σ,α pεq " 2 σ 2 K α pxq ż 8 0 1 y 1´α e x 2 ´y`1 y ¯ˆż y 0 εz ´Lσ,α pεq z 1`α e ´x 2 pz`1 z q dz ˙2 dy . (1.8)
In physics the behavior of fluctuations for matrix products has beed repeatedly addressed, see [START_REF] Ramola | Fluctuations of random matrix products and 1D Dirac equation with random mass[END_REF][START_REF] Schomerus | Statistics of finite-time Lyapunov exponents in a random timedependent potential[END_REF] and references therein; the same is true for the mathematical literature [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Proposition 1.2 is about the fluctuations for the continuum limit: even taking into account the results in [START_REF] Ramola | Fluctuations of random matrix products and 1D Dirac equation with random mass[END_REF][START_REF] Schomerus | Statistics of finite-time Lyapunov exponents in a random timedependent potential[END_REF], we think that understanding how random matrix products fluctuations and continuum limit fluctuations are related is an open issue.

1.2. Small ε asymptotic expansions. Thanks to Theorem 1.1 item (3), studying the small ε behavior of L σ,α pεq is just a book-keeping exercise that exploits the asymptotic behavior of K α p¨q. For α P r0, 2q this result can be found in [23, first formula, p. 248], see also [28, (3.45)] for α " 0: we provide the general result and we will explain the relevance of this exercise in Section 1.4. Throughout this work Γ denotes the Gamma function, see [32, §5.2] for definitions and properties. Proposition 1.3. Recall that x " 4ε{σ 2 . For α P p0, 8qzZ we have for ε OE 0

4 σ 2 L σ,α pεq " c 1 pαqx 2 `. . . `ctαu pαqx 2tαu `2 Γp1 ´αq Γpαq ´x 2 ¯2α `O ´xminp2rαs,4αq ¯, (1.9)
where c j p¨q is a rational function (for explicit expressions, see (4.4)-(4.7)).

For α P t1, 2, . . .u we have

4 σ 2 L σ,α pεq " c 1 pαqx 2 `. . .`c α´1 pαqx 2pα´1q `p´1q α 2 2´2α ppα ´1q!q 2 x 2α log x`O `x2α ˘, (1.10)
where c j p¨q is the same rational function as in the non integer case. For α " 0 we have

L σ,α pεq " σ 2 4 logp1{xq `O ´plog 1{xq ´2¯, (1.11) 
and the result for α ă 0 is directly recovered from (1.9)-(1.10) by using the identity 4 σ 2 L σ,α pεq αă0 " 2|α| `4 σ 2 L σ,|α| pεq .

(1.12)

The identity (1.12) is a simple consequence of the Bessel identity

xK 1`α pxq " 2αK α pxq `xK ´1`α pxq , (1.13) 
that follows from (1.4) by integration by parts, together with the identity K α pxq " K ´αpxq.

We have chosen to give these expansions up to the leading singular term: one can of course be much more precise. Keeping only the leading term, Proposition 1.3 implies

L σ,α pεq εOE0 " ˆσ2 4 ˙$ ' ' ' ' & ' ' ' ' % c 1 pαqx 2 if α ą 1 , 2Γp1´αq Γpαq `x 2 ˘2α if α P p0, 1q , 1{ logp1{xq if α " 0 , 2|α|
if α P p´8, 0q ;

(1. [START_REF] Dunster | Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter[END_REF] recall again that x " 4ε{σ2 . It is certainly worth observing for the benefit of those readers who are less at home with special function calculations that (1.14) can be derived by elementary asymptotic methods from (1.4). This is of course also the case for the full Proposition 1.3, but the exercise becomes particularly involved and resorting to the special functions literature is certainly wise, or even necessary.

Remark 1.4. (1.14) directly entails lim εOE0 L σ,α pεq " σ 2 2 |α|1 αă0 , and α Þ Ñ σ 2 2 |α|1 αă0 is singular at the origin, while α Þ Ñ L σ,α pεq is real analytic for ε ‰ 0 (and it is meromorphic in the whole C: see beginning of Section 5.2). It is possibly worth observing that we have not defined L σ,α pεq for ε " 0 because of the pathological nature of this case, but the limit in (1.5) exists also for ε " 0 and L σ,α p0q " σ 2 2 |α|1 αă0 (in agreement with lim εOE0 L σ,α pεq), but only if Xp0q ‰ 0; otherwise the Lyapunov exponent is ´8. Moreover the (Laplace) asymptotic behavior of the two components for ε " 0 in general does not coincide with the Lyapunov exponent.

Of course one could wonder about the behavior as ε OE 0 of the variance v σ,α pεq in Proposition 1.2. Proposition 1.5. Still with the notation x " 4ε{σ 2 , we have that for every α there exists Cpαq ą 0 (see (3.35) for an explicit expression) such that

v σ,α pεq εOE0 " Cpαq σ 2 2 ˆ$ ' ' ' & ' ' ' % 1 if α ď 0 , x 2α if α P p0, 2q , x 4 logp1{xq if α " 2 , x 4 if α ą 2 .
(1.15)

1.3. From matrix product to the diffusion model. We are now going provide rigorous results about how (1.3) emerges as limit of matrix products. Consider, for ∆ ą 0 and given an IID sequence tN n u n"1,2,... of standard Gaussian variables, the discrete time stochastic process tpX ∆ 1 pnq, X ∆ 2 pnqqu n"0,1,... defined recursively from the deterministic initial condition pX

∆ 1 p0q, X ∆ 2 p0qq " pX 1 p0q, X 2 p0qq by # X ∆ 1 pn `1q " X ∆ 1 pnq `εX ∆ 2 pnq∆ , X ∆ 2 pn `1q " e σ ? ∆ N n`1 ´α σ 2 2 ∆ `X∆ 2 pnq `εX ∆ 1 pnq∆ ˘. (1.16) Defining Z ∆ pn `1q " e σ ? ∆ N n`1 ´α σ 2
we can write (1.16) as

X ∆ pn `1q " X ∆ pnq `A∆ pn `1qX ∆ pnq, (1.18) 
where

X ∆ " ˆX∆ 1 X ∆ 2 ˙, A ∆ pnq " ˆ0 ε∆ ε∆Z ∆ pnq Z ∆ pnq ´1˙. (1.19)
In different terms: X ∆ pnq results form the product of n independent matrices of the form I `A∆ and for ∆ " 1 we have that the matrix I `A1 coincides with (1.1) when Z " Z 1 , that is when Z is log-normal. The restriction to log-normal is just for ease of exposition: we are going to prove a result (Theorem 6.1) for much more general distributions. Note that the determinant of I `A∆ is Z ∆ p1 ´ε2 ∆ 2 q and we want to exclude the degenerate case: since we are going to give a result for ∆ OE 0, we can assume that this requirement is automatically satisfied. The rate of growth of X ∆ pnq is defined by the Lyapunov exponent

p L Z ∆ pεq " lim nÑ8 1 n log }X ∆ pnq} , (1.20) 
which exists a.s. and is deterministic, see e.g. [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Th. 4.1 in Ch. 1].

Theorem 1.6. For ∆ OE 0, the random process

`X∆ 1 ptt{∆uq , X ∆ 2 ptt{∆uq ˘(tPr0,8q , (1.21) 
converges in law to the diffusion pX 1 p¨q, X 2 p¨qq on the Skorokhod space Dpr0, 8q, p0, 8q 2 q. Moreover,

lim ∆OE0 p L Z ∆ pεq ∆ " L σ,α pεq . (1.22)
1.4. Continuum limits and the Derrida-Hilhorst singularity. In [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF], B. Derrida and H. J. Hilhorst study the ε OE 0 limit of the Lyapunov exponent p L Z pεq of product of IID matrices of the form (1.1), under the hypothesis that ErZs ą 1 and Erlog Zs ă 0. Since β Þ Ñ ErZ β s is convex, by the hypotheses on Z there exists a unique α ‰ 0 such that EZ α " 1, and one readily realizes that α P p0, 1q. It is claimed in [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF] that

p L Z pεq εOE0 " Cε 2α , (1.23) 
with a semi-explicit expression for C " C Z ą 0, that depends on the law of Z. Such a result directly implies a corresponding result for the case Erlog Zs ą 0 and ErZ ´1s ą 1: note that in this case ErZ α s " 1, α ‰ 0, is again uniquely solved and α P p´1, 0q. So, by writing

ˆ1 ε εZ Z ˙" Z ˆZ´1 εZ ´1 ε 1 ˙, (1.24) 
we see that

p L Z pεq " E log Z `p L 1{Z pεq (1.23) " E log Z `C1{Z ε ´2α `o `ε´2α ˘, (1.25) 
and we recall that α P p´1, 0q now. Moreover one can find in [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF]Sec. 3] an argument telling us that for α ą 1, α R N, one expects

p L Z pεq " c 1 ε 2 `. . . `. . . `ctαu ε 2tαu `Cε 2α `o `ε2α ˘, (1.26) 
for real constants c j and C that are in principle computable. For the case α " 0, i.e. for the case E log Z " 0 in which the only solution to EZ α " 1 is α " 0, one finds the prediction

p L Z pεq εOE0 " C logp1{εq , (1.27) 
with C ą 0, in more than one reference. We mention here [33, (4.34)] in which (1.27) is found for one dimensional Ising model with random field for a very specific choice of the disorder (the interaction J of [START_REF] Nieuwenhuizen | Exactly soluble random field Ising models in one dimension[END_REF] corresponds to logp1{εq). In the localization context (1.27) has been found for example in [8, (3.17)].

From our perspective, the significance of all this is that:

(1) the continuum limit results of Proposition 1.3 fully match with the expected behaviors (to all orders!), (1.23), (1.26) and (1.27), for the random matrix product. We consider this to be rather striking, and it highlights the richness of the continuum limit;

(2) we are going to review the mathematical results available about (1.23), (1.26) and

(1.27), but we want to point out that even at the level of physical predictions some results are more sound than others. Notably, it appears to be rather challenging to capture the ε 2α singularity for |α| ą 1 and the level of sharpness of the |α| P p0, 1q prediction (1.23), even leaving aside mathematical rigor, does not appear to be easy to achieve. In this sense, the continuum limit goes beyond what has been established so far for the discrete case.

From a mathematical standpoint a proof of (1.23), and (1.25), (i.e., (1.26) with |α| P p0, 1q) has been achieved only recently and under the assumption that Z has a C 1 density and that the support of Z is bounded and bounded away from zero [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2ˆ2 matrices[END_REF]. It is well known, see e.g. [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], that the problem of computing the Lyapunov exponents boils down to identifying the invariant probability of a Markov chain associated to the matrix product. The arguments in [START_REF] Derrida | Singular behaviour of certain infinite products of random 2ˆ2 matrices[END_REF] aim at constructing a probability that for ε small is expected to be close to the invariant probability. In [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2ˆ2 matrices[END_REF] this construction is put on rigorous grounds and, above all, it is shown that this probability, although not invariant, is sufficiently close to the invariant one to make it possible to control the Lyapunov exponent with the desired precision. A result about (1.26), i.e. for |α| ě 1, has been achieved recently [START_REF] Havret | Regular expansion for the characteristic exponent of a product of 2 ˆ2 random matrices[END_REF], but the the expansion is fully controlled only up to (and excluding) the singular term Cε 2α : for the moment results about this term remain very weak.

On the two-dimensional Ising model with columnar disorder (McCoy-Wu model).

It is possibly somewhat unexpected, but also computing the free energy of the two dimensional Ising model with columnar disorder (McCoy-Wu model [START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF][START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF]) boils down to analyzing the Lyapunov exponent p L Z . The McCoy-Wu prediction is remarkable and folklore says that their model is the only non trivial exactly solvable disordered statistical mechanics model: we dedicate Appendix A to introducing in detail the model, keeping close to the McCoy-Wu notations. But the key point from the result viewpoint is that L. Onsager celebrated solution of the non disordered case establishes that the free energy, as function of the temperature, has a (logarithmic) divergence in the second derivative at the critical temperature. B. M. McCoy and T. T. Wu predict that if a small amount of columnar disorder (i.e. one dimensional: vertical bounds couplings are random and they are repeated -i.e. no new randomness is introduced -on each line) is introduced the transition persists but disorder is relevant (in the sense of the Harris criterion, that is the disorder changes the critical behavior, see e.g. [22, § 5.3]) and the transition becomes C 8 . A precise form of the singularity is also given.

As explained in Appendix A, McCoy and Wu extend Onsager's approach to the columnar disorder case and the free energy can be written, up to additive analytic terms, in terms of an integral in the ε variable of the Lyapunov exponent p L Z pεq, with Z that has an explicit expression in terms of the parameters of the Ising model. The analysis by McCoy and Wu of this expression is performed in two steps:

(1) They claim that in the limit of very narrow disorder the relevant -i.e. singularcontribution to the free energy can be written as

f : α Þ Ñ ż p0,ηq x K α´1 pxq K α pxq dx , (1.28) 
with η ą 0 arbitrary (the singular part comes from the small x behavior of the integrand). The integrand is just 4L 1,α px{4q, and so it is clear from the estimates in Proposition 1.3 that the integral is well defined for all real α. (2) They argue, by approximating the integrand by another expression for which the exact integration can be performed, that (1.28) is C 8 but not analytic at α " 0.

The approximation in the first step, see Appendix A, turns out to be precisely the diffusive limit we deal with: this was possibly expected by comparing (1.28) and (1.6). What we do with the next result is providing a rigorous analysis of the second step, that is the analysis of (1.28).

Theorem 1.7. f is real analytic in p´1, 1qzt0u. Moreover it is C 8 but not analytic in 0. The radius of convergence of its Taylor series at the origin ř 8 n"0 c n α n is zero: in fact c 1 " 4η, c 2n`1 " 0 for every n P N and the even coefficients satisfy

c 2n nÑ8 " 4e ´γ p´1q n`1 p2n ´1q! π 2n , (1.29) 
with γ the Euler-Mascheroni constant.

We are going to prove more. Namely that (1.28) defines an analytic function for every α P C with 0 ă | α| ă 1. We believe that the restriction to 0 ă | α| ă 1 can be removed to get simply to | α| ą 0. However this involves a certain number of complications connected to the fact that, with our approach, an ad hoc analysis has to be developed for α P Z. Since the focus is on α " 0, we have made the choice not to develop this issue.

A (very) substantial gap remains between where our results lead and the proof of the McCoy-Wu claim that the transition is C 8 , even without the precise claim on the nature of the singularity. What we perform, and what McCoy and Wu do, is capturing the behavior the free energy near criticality when the disorder is vanishing -this is reminiscent of intermediate disorder limits [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 `1[END_REF][START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF] in which, like for us, one enters the framework of integrable models -while the true issue is the behavior for (possibly) weak, but non vanishing, disorder.

On the Lyapunov exponent: the proof of Theorem 1.1

We use the short-cut notation δ :" σ 2 p1 ´αq{2 P R. We recall that we can assume ε ą 0 and let us start by showing that the process does not hit p0, 0q. Recall that pX 1 p0q, X 2 p0qq ‰ p0, 0q and set τ p0,0q :" inftt ą 0 : pX 1 ptq, X 2 ptqq " p0, 0qu. For this let us consider Rptq :" a X 2 1 ptq `X2 2 ptq. By Itô's formula:

dRptq " X 1 R dX 1 `X2 R dX 2 `1 2 X 2 1 R 3 dxX 2 , X 2 y " ˆ2ε X 1 X 2 R `δ X 2 2 R `σ2 2 X 2 1 X 2 2 R 3 ˙dt `σ X 2 2 R dB t " R ˆ2ε Y 1 `Y 2 `δ Y 2 1 `Y 2 `σ2 2 
Y 2 p1 `Y 2 q 2 ˙dt `R ˆσ Y 2 1 `Y 2 ˙dB t ": R D dt `R Q dB t , (2.1) 
where Y :" X 2 {X 1 P r´8, 8s and D " Dptq and Q " Qptq are uniformly bounded continuous stochastic processes (}D} 8 ď 2ε `|δ| `σ2 {2 and Q P r0, σs), defined up to τ p0,0q . Since, again by Itô's formula, we have

d log Rptq " ˆDptq ´1 2 Q 2 ptq ˙dt `Qptq dB t , (2.2) 
we see that Rptq{Rp0q is bounded away from zero on every compact time interval. This readily yields a contradiction if Ppτ p0,0q ă 8q ą 0. Hence Ppτ p0,0q ă 8q " 0 and we have proven that the process does not hit the origin. Now we are going to show that if the initial condition is in the (interior of the) second or fourth quadrant (in the counterclockwise sense), it hits the boundary of these quadrants in an a.s. finite time (in fact, this random time has finite expectation) and enters either the first or third quadrant. And we show also that once the process is in the first (or third) quadrant, it stays there forever.

Without loss of generality let us assume that X 1 p0q ă 0 and X 2 p0q ą 0 (second quadrant). For the analysis it is helpful to consider Y ptqpă 0q up to t ď τ ´8 :" inftt ě 0 : Y ptq " ´8u, which coincides a.s. with inftt ě 0 : X 1 ptq " 0u, and up to t ď τ 0 :" inftt ě 0 : Y ptq " 0u. By Itô formula

dY " `ε `1 ´Y 2 ˘`δ Y ˘dt `σY dB t , (2.3) 
and with the specific initial initial conditions we are using is somewhat helpful to work with the positive process r Y " ´Y :

d r Y " ´ε ´r Y 2 ´1¯`δ r Y ¯dt `σ r Y dB t , (2.4) 
which is in p0, 8q as long as the two dimensional process does not leave the interior of the quadrant. We use the stopping times r τ 0 and r τ 8 with the obvious meaning. We are going to apply the Feller test for explosion to show that r τ :" minpr τ 0 , r τ 8 q is in L 1 so

P pr τ ă 8qq " 1 , (2.5) 
which means that, almost surely, the process hits the axes. And if r τ 8 ă r τ 0 , that is if pX 1 pr τ q, X 2 pr τ qq " p0, x 2 q, x 2 ą 0, we readily see from (1.3) that X 1 pr τ `tq ą 0, at least for t ą 0 small. If instead r τ 0 ă r τ 8 , then pX 1 pr τ q, X 2 pr τ qq " px 1 , 0q, x 1 ă 0, and again from (1.3) one sees that X 2 pr τ `tq ă 0 for t ą 0 small: since the equation solved by X 2 is stochastic, the argument is slightly more delicate than for the previous case and we give some details. By the Strong Markov property it suffices to consider pX 1 p0q, X 2 p0qq " px 1 , 0q, x 1 ă 0, and X 2 ptq " ş t 0 pεX 1 psq`cX 2 psqq ds`M ptq, with the constant c and the centered Martingale M easily read out of (1.3). Note that M is a time changed Brownian motion. By continuity of pX 1 p¨q, X 2 p¨qq we readily see that X 2 ptq ´M ptq ď ´|x 1 |t{2 for t small. It is therefore clearly impossible that inftt ą 0 : X 2 ptq ‰ 0u is positive, because this would imply X 2 ptq ă ´|x 2 |{2 for small t. Therefore t Þ Ñ ş t 0 X 2 psq 2 ds is increasing at least for t small, which implies that the time change is non degenerate at least for small times. Hence M ptq becomes negative for arbitrarily small values of t. Therefore X 2 ptq ă ´t|x 1 |{2 -in particular, it is negative -for arbitrarily small values of t. An application of the Feller test, this time applied to Y and not to r Y , actually shows that if Y is in p0, 8q, then it will stay so for all times, that is the interior the first and third quadrants are stable sets for the dynamics.

Let us detail the application of the Feller test. Let Z is a one dimensional diffusion with Zp0q P p0, 8q and dZptq " bpZptqq dt `qpZptqq dB t , (2.6) bp¨q and qp¨qpą 0q differentiable functions. We set τ :" inftt ą 0 : Zptq " 0 or Zptq " 8u and spzq :"

ż z 1 exp ˆ´2 ż y 1 bprq q 2 prq
dr ˙dy and vpzq :"

ż z 1 s 1 pyq ˆż y 1 2 s 1 prqq 2 prq
dr ˙dy .

(2.7) By monotonicity the limits of vpzq for z OE 0 and z Õ 8 exist in r0, 8s and they will be simply denoted by vp0q and vp8q. If both vp0q ă 8 and vp8q ă 8 then Erτ s ă 8 [25, Prop. 5.32, Ch. 5]. On the other hand, if vp0q " vp8q " 8 then Ppτ " 8q " 1 [25, Th. 5.29, Ch. 5] .

Let us start with the r Y case (cf. (2.4)): we have

s 1 pzq " C z 1´α exp ˆ´2ε σ 2 ˆz `1 z ˙˙, (2.8) 
so for z ě 1

s 1 pzq -z ´1`α exp ˆ´2ε σ 2 z ˙, (2.9) 
with the notation f pzq -gpzq if f pzq{gpzq P ra, 1{as on the prescribed interval for some a P p0, 1q, and

v 1 pzq - 1 z 2 , (2.10) 
so vp8q ă 8. In a very similar way, for z P p0, 1s

s 1 pzq -z ´1`α exp ˆ´2ε σ 2 1 z ˙, (2.11) 
and the estimate of vp0q is identical to the one for vp8q via a (double) change of variable z Þ Ñ 1{z. Hence vp0q ă 8 and the diffusion r Y hits 0 or 8 at a random time which has finite expectation.

For the case of Y we turn to (2.3) and the difference is that the factor pz `1{zq in the exponent in (2.8) changes sign. Once again, we can replace pz `1{zq by z for z ě 1, and by 1{z for z ď 1. This implies that the integral with respect to r in the expression for vpzq in (2.7) stays bounded and bounded away from zero both for y Õ 8 and for y OE 0. The integral with respect to y therefore diverges both for z Õ 8 and z OE 0 (once again, the two computations are identical, up to change of variables). Therefore, almost surely, Y hits neither 0 nor 8.

We are now going to show that the diffusion Y has a unique invariant probability, that we will make explicit, on p0, 8q. This corresponds to the two (extremal) invariant probabilities for the normalized process pX 1 , X 2 q{ a X 2 1 `X2 2 , supported on the intersection of the unit circle with the first (or third) quadrant. For this it is practical to observe that the generator of the evolution (2.3) acts on C 2 functions f : p0, 8q Ñ R as

L ε f pyq " `εp1 ´y2 q `δ y ˘f 1 pyq `σ2 2 y 2 f 2 pyq " σ 2 2p ε pyq `y2 p ε pyqf 1 pyq ˘1 , (2.12) 
where p ε p¨q is the probability density

p ε pyq " C ε y 1`α exp ˆ´2ε σ 2 ˆy `1 y ˙˙with C ´1 ε " 2K α `4ε{σ 2 ˘, (2.13) 
and K α p¨q is defined in (1.4). This already makes evident the reversible nature of the diffusion Y and, in particular, (2.13) is an invariant probability. The transformation Sptq :" log Y ptq makes things even more straightforward: S is a diffusion on R with constant diffusion coefficient and a strongly confining potential:

dS " ´U 1 pSq dt `σ dB t with U psq :" ε ˆexpp´sq `exppsq ´ˆδ ´σ2 2ε ˙s˙.

(

An invariant probability of this diffusion is r p ε psq9 expp´2U psq{σ 2 q and the generator has the familiar symmetric form r L ε g " pσ 2 {2qpr p ε g 1 q 1 {r p ε , for g P C [START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF].

Therefore for every choice of Y p0q P p0, 8q, almost surely and in L 1 we have that lim

tÑ8 1 t log X 1 ptq " ε lim tÑ8 1 t ż t 0 Y psqds " ε ż 8 0 y p ε pyq dy " εK α´1 `4ε{σ 2 Kα p4ε{σ 2 q , (2.15)
where in the first step we have used the first identity in

X 1 ptq " X 1 p0q exp ˆε ż t 0 Y psq ds ˙, X 2 ptq " X 2 p0q exp ˆε ż t 0 1 Y psq ds ´α σ 2 2 t `σB t ˙, (2.16) 
which is directly derived from (1.3) and holds for all t ą 0 if both X 1 p0q and X 2 p0q are positive (or both are negative: in general, the formula holds up to the hitting time of the boundary of the quadrant in which pX 1 p0q, X 2 p0qq lies). The second step in (2.15) is the application of the Pointwise Ergodic Theorem and the last one is an explicit computation.

In the same way, by using the second identity in (2.16) we get to (with x " 4ε{σ 2 ) lim

tÑ8 1 t log X 2 ptq " ε lim tÑ8 1 t ˆż t 0 1 Y psq ds ˙´α σ 2 2 " ε ż 8 0 1 y p ε pyq dy ´α σ 2 2 " σ 2 4 ˆxK 1`α pxq K α pxq ´2α ˙(1.13) " σ 2 4 xK 1´α pxq K α pxq " εK α´1 `4ε{σ 2 Kα p4ε{σ 2 q , (2.17) 
which coincides with what we found in (2.15). This shows that both components have the same exponential growth rate, hence also the norm of pX 1 ptq, X 2 ptqq, and (1.6) is proven.

If instead of starting from the first quadrant, we were starting from the second quadrant, the result is unchanged because the second quadrant is abandoned after a random time that is in L 1 . This completes the proof of Theorem 1.1.

Fluctuations of the Lyapunov exponent: proofs

Proof of Proposition 1.2. Recall that the ratio Y ptq " X 2 ptq{X 1 ptq converges. Hence it is sufficient to prove the convergence of (1.7) with X 1 ptq instead of }pX 1 ptq, X 2 ptqq} in the logarithm, i.e., to prove convergence in law of

" 1 ? t ˆż t 0 f pY psqqds ˙*tPp0,8q , (3.1) 
where the function f pyq " εy ´Lσ,α pεq is centered for the invariant density p ε p¨q. We start by solving the Poisson equation, L ε g " f . [34, Th. 1] applies for S " log Y , see (2.14), and shows that the Poisson equation has gpyq " ş 8 0 E y rf pY psqqsds as unique solution. We need here an explicit form, and we solve the linear equation

σ 2 2 y 2 h 1 ``εp1 ´y2 q `δ y ˘h " f (3.2)
for h " g 1 by the method of variation of constants. The homogeneous equation -when the right-hand side of (3.2) is equal to 0 -admits h 0 pyq " `y2 p ε pyq ˘´1 as a solution. Looking now for solutions of the form hpyq " kpyqh 0 pyq for (3.2) itself, we find that

kpyq " 2 σ 2 ż y 0 `εz ´Lσ,α pεq ˘pε pzqdz `C , (3.3) 
and we choose C " 0 (this is the only choice that yields the required integrability properties in what follows). Finally,

g 1 pyq " `y2 p ε pyq ˘´1 2 σ 2 ż y 0 `εz ´Lσ,α pεq ˘pε pzq dz , (3.4) 
and the value of gp1q does not matter for our purpose. Now, we can follow a standard proof of Central Limit Theorem for reversible diffusions, e.g. [START_REF] Cattiaux | Central limit theorems for additive functionals of ergodic Markov diffusions processes[END_REF]Sec. 2]. Note in fact that g is smooth and that for y Ñ 8 (recall the notation used in (2.9))

g 1 pyq -y α´1 e ε 2 y ˆż 8 y z ´αe ´ε 2 z dz ˙-1 y , (3.5) 
where in the first step we use that ş y 0 pεz ´Lσ,α pεqqp ε pzq dz " ş 8 y pL σ,α pεq ´εzqp ε pzq dz and that L σ,α pεq is just a constant. For y OE 0 instead (3.6)

Therefore sup y |g 1 pyq| ă 8 and by Itô's formula we obtain that

M t :" σ ż t 0 Y s g 1 pY s q dB s " gpY t q ´gpY 0 q ´ż t 0 L ε gpY s q ds " gpY t q ´gpY 0 q ´ż t 0 f pY s q ds , (3.7) 
is a martingale with bracket

xM y t " σ 2 ż t 0 Y 2 s g 1 pY s q 2 ds . (3.8)
By the ergodic theorem, as t Ñ 8, almost surely

1 t xM y t ÝÑ σ 2 ż 8 0 y 2 g 1 pyq 2 p ε pyq dy " 4 σ 2 ż 8 0 1 y 2 p ε ˆż y 0 pεz ´Lσ,α pεqq p ε pzq dz ˙2 dy " v σ,α pεq . (3.9)
This deterministic limit is finite in view of the (exponential) decay of ş y 0 `εz´L σ,α pεq ˘pε pzq dz as y Ñ 0 and y Ñ 8. Then, the central limit theorem for martingales applies, and t ´1{2 M t converges in law to a centered Gaussian with variance given by v σ,α pεq. Now, the first two terms in the last line of (3.7) are bounded in probability, so ´t´1{2 ş t 0 f pY s qds converges to the same limit as t ´1{2 M t , and (3.1) is proved. Therefore the proof of Proposition 1.2 is complete.

Proof of Proposition 1.5. In view of (1.8) and of the fact that we know the asymptotic behavior of K α pxq " x ´|α| Γp|α|q{2 1´|α| for α ‰ 0 and K 0 pxq " logp1{xq, what we have to estimate is

ż 8 0 1 y 1´α e x 2 ´y`1 y ¯ˆż y 0 εz ´Lσ,α z 1`α e ´x 2 pz`1 z q dz ˙2 dy " ż 8 1 1 y 1´α e x 2 ´y`1 y ¯ˆż 8 y εz ´Lσ,α z 1`α e ´x 2 pz`1 z q dz ˙2 dyż 1 0 1 y 1´α e x 2 ´y`1 y ¯ˆż y 0 εz ´Lσ,α z 1`α e ´x 2 pz`1 z q dz ˙2 dy ": T 1 pxq `T2 pxq . (3.10) Remark 3.1.
In view of Proposition 1.3 we know that L σ,α " Opε minp2α,2q q for α ą 0, except for α " 1 for which there is a logarithmic correction. Therefore L σ,α " opεq if α ą 1{2 and, since z ě 1, in dealing with T 1 pxq we can safely neglect the term containing L σ,α for α ą 1{2. On the other hand, in dealing with T 2 pxq we can safely neglect the term not containing L σ,α for α ă 1{2. In fact L σ,α is much greater than ε, hence of εz (z ď 1 for T 2 ), for α ă 1{2.

To make the expressions more compact and readable we choose σ 2 " 2 ;

(3.11) the general case is easily recovered by a scaling argument.

We start with the analysis of T 1 . By a change of variable we have:

T 1 pxq " ´x 2 ¯α ż 8 x{2
y α´1 e y`px{2q 2 {y ˆż 8 y `z´α ´Lσ,α z ´α´1 ˘e´z´px{2q 2 {z dz ˙2 dy . (3.12)

We claim that for α ă 0 we simply have x{2 . . . :" I 1 `I2 `I3 . The limit x OE 0 is easily taken in I 2 and the dependence on x disappears. Moreover we directly check that lim δOE0 lim xOE0 I 2 P p0, 8q is the integral in the right-hand side of (3.13). We are left with showing that lim δOE0 sup xPp0,2δq I j " 0 for j " 1 and 3. For I 1 recall that in (3.12) we can replace ş 8 y . . . dz with ş y 0 . . . dz, so that for δ sufficiently small (so x is small too and we can use the asymptotic approximation of L σ,α " |α|) we have For α " 0 we have so we can focus on r I. By using ş L 0 p1{xq expp´1{xq dx " log L for L Ñ 8, and the fact that δ{x 2 ď y{x 2 ď 1{p2xq we see that

T 1 pxq xOE0 " ´x 2 
T 1 pxq " ż 8 x{2 y ´1e y`px{2q
ż y 0 z ´1e ´px{2q 2 {z dz " logpy{x 2 q , (3.19)
uniformly in the range of y we are using, and as x OE 0. Therefore

r I " ˆ1 2 logp1{xq ˙2 ż δ x{2 y ´1 p2 logp1{xq ´logp1{yqq 2 dy " 7 12 logp1{xq . (3.20)
This concludes the α " 0 case: T 1 pxq " 7 12 logp1{xq. The case α ą 0 is quicker to treat for α ą 1{2 because of Remark 3.1. In reality also for α P p0, 1{2s the term containing L σ,α does not contribute: we will check this fact after estimating what is giving the main contribution: 

This is proven like before by restricting the integral to y P pδ, 1{δq and estimating the rest before letting δ OE 0. The function q 1 p¨q can be expressed with a Meijer G-function, but this does not make it much more explicit. Let us quickly verify that the term we neglected for α P p0, 1{2s is of lower order: by focusing on y P px{2, δq (otherwise the fact is obvious) we see that an upper bound on this contribution is Opx 5α q ş δ x{2 y ´α´1 dy " Opx 4α q.

The α " 2 case generates a logarithmic correction: in fact from (3.21) we see that if we restrict the integral over y ě δ, the contribution is bounded by x 2 times a constant that depends only on δ. The integral with y P px{2, δq instead is controlled above and below, up to a factor that can be chosen arbitrarily close to one uniformly in x OE 0 by choosing δ small (like in ( 

where C and C 1 are constants independent of x.

We collect what we have obtained:

T 1 pxq " $ ' ' ' ' ' ' & ' ' ' ' ' ' % 2 |α| Γp|α|qx α if α P p´8, 0q , 7 12 logp1{xq if α " 0 , q 1 pαqx α if α P p0, 2q , 1 4 x 2 logp1{xq if α " 2 , Opx 2 q if α ą 2 .
(3.25)

We now turn to T 2 pxq and the basic expression is after a change of variables (still, σ " ?

T 2 pxq "

´x 2 ¯4´α ż 8 x{2 u ´1´α e u`px{2q 2 {u ˆż 8 u ˆv´2`α ´ˆ2L σ,α x 2 ˙v´1`α ˙e´v´px{2q 2 {v dv ˙2 du . (3.26) 
Let us start with α ă 0 and recall that by Remark 3.1 it suffices to consider

´x 2 ¯4´α ˆ2L σ,α x 2 ˙2 ż 8 x{2 u ´1´α e u`px{2q 2 {u ˆż 8 u v ´1`α e ´v´px{2q 2 {v dv ˙2 du . (3.27) 
The pre-factor behaves asymptotically as α 2 px{2q ´α and the integral can be bounded by two times For α " 0 the expression to evaluate is

L 2 σ,0 ż 8 x{2 u ´1e u`px{2q 2 {u ˆż 8 u v ´1e ´v´px{2q 2 {v dv ˙2 du . (3.29) 
But this term is minimally different from (3.16) (see observation right after(3.16)) and exactly in the same way we arrive at T 2 pxq " T 1 pxq " 7 12 logp1{xq. For α P p0, 2q we split the integral with respect to u and the contribution when u ě 1 is bounded so the contribution to T 2 pxq is Opx 4´α q. For u ă 1 we make an upper on the contribution to T 2 pxq:

3 ´x 2 ¯4´α ż 1 x{2 u ´1´α ˆż u 0 ˆv´2`α `2L σ,α x 2 v ´1`α ˙e´v dv ˙2 du ď Cx 4´α ˜ż 1 x{2 u ´3`α du `ˆ2L σ,α x 2 ˙2 ż 1 0 u ´1`α du ¸ď C 1 `x2 `L2 σ,α x ´α˘, (3.30) 
and since L σ,α " maxpx 2α , x 2 q, except for a logarithmic correction for α " 1, we conclue that T 2 pxq " Opmaxpx 3α , x 2 qq for α P p0, 2q.

For α " 2 we again split the integral with respect to u ě δ and u ă δ. The integral for y ě δ is bounded by a constant that depends only on δ. Arguing as in (3.18) we see that what it suffices to control

ż δ x{2 u ´3 ˆż u 0 ˆ1 ´ˆ2L σ,2 x 2 ˙v˙e ´v dv ˙2 du " logp1{xq , (3.31) 
where we have used that L σ,2 " Opx 2 q. Therefore T 2 pxq " px{2q 2 logp1{xq for α " 2.

Finally, for α ą 2 we have

T 2 pxq " ´x 2 ¯4´α ż 8 0 u ´1´α e u ˆż 8 u ˆv´2`α ´v´1`α α ´1 ˙e´v dv ˙2 du " 2 α´4 Γpα ´2q pα ´1q 2 x 4´α . (3.
32) The proof of this claim follows the same line as the proof of (3.13), that is, splitting of the y integral in three parts and taking the limit δ OE 0. with

I α pxq :" ´x 2 ¯α 8 ÿ k"0 `x2 {4 ˘k k! Γpα `k `1q ": ´x 2 ¯α r I α pxq , (4.2) 
where r I α pxq is a non standard notation, but it singles out the analytic part of the I α p¨q: in fact r I α p¨q is an entire function. By elementary manipulations we obtain

xK α´1 pxq K α pxq " 2 
px{2q 2α ´r I α´1 pxq{ r I ´αpxq ¯´px{2q 2 ´r I ´α`1 pxq{ r I ´αpxq 1 ´px{2q 2α ´r I α pxq{ r I ´αpxq ¯. (4.3) 
Therefore, aiming at expanding this expression for x OE 0 up to the first singular term, we obtain

xK α´1 pxq K α pxq " ´2 ´x 2 ¯2 ˜r I ´α`1 pxq r I ´αpxq ¸`´x 2 ¯2α 2Γp1 ´αq Γpαq `Opx 4α q `O `x2α`2 " p α,tαu `x2 ˘`´x 2 
¯2α 2Γp1 ´αq Γpαq `O ´x2tαu`2 ¯`Opx 4α q , (4.4) 
where p α,j pyq is the Taylor expansion up to degree j of p α pyq :" ´py{2q r I ´α`1 p ? yq{ r I ´αp ? yq. It is not difficult to realize that the coefficients of this Taylor expansion are just rational function of α. Let us detail this point that is going to be important also for the passage to α integer: if we introduce for k P N Y t0u the Pochhammer's symbol

pνq k :" Γpν `kq Γpνq k"1,2,... " pν `k ´1qpν `k ´2q ¨¨¨pν `1qν , (4.5) 
we see that p α pyq can be written in terms of Pochhammer's symbols:

p α pyq " ´y 2 ˜8 ÿ k"0 y k k! p´α `1q k`1 2 2k ¸N ˜8 ÿ k"0 y k k! p´α `1q k 2 2k ¸. (4.6) 
From now the explicit determination of p α pyq is elementary, but cumbersome (to the point of requiring symbolic computations). We give the first four terms

p α pyq " 4 ÿ j"1 c j pαqy j `. . . " 1 2pα ´1q y ´1 8pα ´2qpα ´1q 2 y 2 1
16pα ´3qpα ´2qpα ´1q 3 y 3 ´5α ´11 128pα ´4qpα ´3qpα ´2qpα ´1q 4 y 4 `. . .

(4.7)
This completes the proof for the non integer case.

The case α " 0, 1, 2, . . .. We need to treat separately the case α " 0 because it involves K ´1pxq, which however it is just K 1 pxq, but it requires an ad hoc (much simpler) analysis. So we start off with the case α " 1, 2, . . .. From now α will be replaced by n and when we write α we mean a quantity that is not integer. By [32, 10.31.1] we have that for n " 0, 1, 2, . . .

´x 2 ¯n K n pxq " 1 2 n´1 ÿ k"0 p´1q k pn ´k ´1q! k! ´x 2 ¯2k `p´1q n n! ´x 2 ¯2n logpxq `O `x2n ˘, (4.8) 
and the sum as to be interpreted as empty if n " 0. For n " 1, 2, . . . we write the degree 2n ´2 polynomial in the right-hand side as a n ´1 degree polynomial with argument x 2 :

q n `x2 ˘:" 1 2 n´1 ÿ k"0 p´1q k pn ´k ´1q! k! 2 2k `x2 ˘k . (4.9) 
With this notation we have for n " 1, 2, . . .

xK n´1 pxq K n pxq " 2px{2q 2 q n´1 px 2 q qnpx 2 q `2p´1q n pn´1q! px{2q 2n qnpx 2 q log x `O `x2n 1 `O px 2n | log x|q " x 2 2 t n px 2 q `22´2n p´1q n ppn ´1q!q 2 x 2n log x `O `x2n ˘, (4.10) 
where t 1 pyq :" 0 and, for n " 2, 3, . . ., t n pyq is the polynomial of degree n ´2 given by the Taylor expansion of the rational function q n´1 pyq{q n pyq.

We are therefore left with showing that the coefficients of the polynomial yt n pyq{2 of degree n´1 coincide with the corresponding coefficients of the Taylor polynomial of p α pyq, when α " n (we can consider n " 2, 3, . . . becaue if n " 1 the polynomial is identically zero and our claim is trivially verified). In different terms, we have to show that if we set α " n " 2, 3, . . . in (4.7) up to the degree n ´1 (it is readily seen that the n-th Taylor coefficients diverges as α Ñ n), then we obtain yt n pyq{2. To prove this it is useful to remark that, in order to obtain the Taylor expansion of p α pyq up to order tαu it is sufficient to expand the rational function

r p α pyq " ´y 2 ¨tαu´1 ÿ k"0 y k k! p´α `1q k`1 2 2k 'N ¨tαu´1 ÿ k"0 y k k! p´α `1q k 2 2k '. (4.11)
In this expression we can set α " n obtaining thus the rational function

r p n pyq :" ´y 2 ˜n´2 ÿ k"0 y k k! p´n `1q k`1 2 2k ¸N ˜n´2 ÿ k"0 y k k! p´n `1q k 2 2k ¸. (4.12) 
and Taylor coefficients up to degree n ´1 of this function are precisely the limit for α Ñ n of the Taylor coefficients up to degree n ´1 of p α pyq, cf. (4.11)-(4.7). We are left with showing that the coefficients up to degree n ´1 of r p n pyq coincide with the corresponding coefficients of yt n pyq{2. This is equivalent to showing that

´˜n´2 ÿ k"0 y k k! p´n `1q k`1 2 2k ¸N ˜n´2 ÿ k"0 y k k! p´n `1q k 2 2k ¸" q n´1 pyq q n pyq `O `yn´1 ˘(4.13)
and this is implied by the stronger (non asymptotic) condition

´˜n´2 ÿ k"0 y k k! p´n `1q k`1 2 2k ¸N ˜n´2 ÿ k"0 y k k! p´n `1q k 2 2k ¸" ˜n´2 ÿ k"0 p´1q k pn ´k ´2q! k! 2 2k y k ¸N ˜n´2 ÿ k"0 p´1q k pn ´k ´1q! k! 2 2k y k ¸, (4.14) 
For n " 2, 3, . . . this identity is verified directly by using that for n " 1, 2, . . . and k P 0, 1, . . .

p´nq k " p´1q k n! pn ´kq! , (4.15) 
and this completes the proof in the case of α " 1, 2, . . .. We are left with the case α " 0:

xK ´1pxq K 0 pxq " xK 1 pxq K 0 pxq (4.8) " 1 logp1{xq , (4.16) 
but this is easily improved by going back to [32, 10.31.1] and using

K 0 pxq " ´logpx{2q ´γ `O `x2 ˘, (4.17) 
where γ is the Euler-Mascheroni constant. This, with (4.8) for n " 1, implies that xK ´1pxq{K 0 pxq is equal to 1{plogp1{xq `plog 2 ´γqq `Opx 2 q. This completes the proof of Proposition 1.3.

5.

Lyapunov exponent and singularities: the proof of Theorem 1.7

The proof of Theorem 1.7 is somewhat involved, since the ratio of Bessel functions in the integrand becomes quite singular at one end of the domain of integration. For every fixed x ą 0 the numerator and denominator are entire functions of α, so the ratio is analytic apart from the zeros of the denominator; these are all on the imaginary axis and they are bounded away from the real axis as long as x is bounded away from zero ([18, Appendix A], Table 1). But integrating over x down to zero adds contributions that are less and less regular as the gap between the origin and the poles of the integrand shrinks when x becomes small. 1. The zeros of Kαpxq are all for α " iν with ν P R. Since Kiν pxq " K´iν pxq, we put in the table the set tν P r0, 3s : Kiν pxq " 0u " tν1, . . . , νnu, with νj " νjpxq and n " npxq, for four values of x. The numerical values are rounded to the closest decimal.

x n ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν 7 1 1 2.
One way to obtain a proof is to exploit once again the connection formula (4.1)-(4.2) which gives an expansion of both numerator and denominator: but controlling the ratio is of course not straightforward. And in fact McCoy and Wu approach the problem this way, but keeping only the leading terms of the series in the connection formula. The validity of this procedure is not obvious, since a priori the resulting correction could be less regular than the leading terms, but it is nonetheless helpful to begin by examining this simplified problem that has the nice feature of leading to a solution in terms of special functions, since we shall see that it correctly illustrates the main features of the proof. With this aim in mind we examine a simplified McCoy-Wu formula -this corresponds to studying a function r f which is defined, like f, as the integral over x P p0, ηq of a suitable function r f x pαq (see (5.4)) -and

(1) we perform the integration explicitly and discuss the regularity of α Þ Ñ r fpαq;

(2) we then argue how understanding the location of (some of) the poles of r f x in the complex plane, and the corresponding residues, gives another way to understand the regularity. All of this is done in Section 5.1. Then in Section 5.2 we give the proof of Theorem 1.7, based on a treatment of the poles of f x .

Heuristic arguments and idea of the proof.

The simplified McCoy and Wu problem: exact solution. Much like McCoy and Wu did in [31, p. 642], we can consider the leading contribution to the integrand in (1.28) for x OE 0 and α P C tending also to zero. This step is an uncontrolled approximation that is obtained by keeping the first terms in (4.1)-(4.2) and by using Γpαq " 1{α

K α´1 pxq » 1 2 ´x 2 ¯α´1 , (5.1) 
and

K α pxq » 1 2α ˆ´x 2 ¯´α ´´x 2 ¯α˙, (5.2) 
so xK α´1 pxq K α pxq » 2α `2 x ˘2α ´1 " 2α expp2αLpxqq ´1 ": r f x pαq , (5.3) 
with Lpxq :" logp2{xq. We then have r fpαq :"

ż η 0 2α expp2αLpxqq ´1 dx . (5.4) 
for η P p0, 2q, cf. [31, (4.44)]. From now onward the analysis is rigorous.

r fpαq can then be made explicit up to an additive contribution that is analytic near the real axis: in fact if we set q fpαq :"

ż 2 0 ˆ2α expp2αLpxqq ´1 ´1 Lpxq ˙dx , (5.5) 
we have

r fpαq " q fpαq ´ż 2 η ˆ2α expp2αLpxqq ´1 ´1 Lpxq ˙dx `ż η 0 1 Lpxq dx . (5.6) 
But ş η 0 p1{Lpxqq dx " Γp0, logp2{ηqq is just a constant and the second addend in the righthand side is (real) analytic in α. In fact the integrand in is meromorphic with poles on the imaginary axis, precisely for α equal to any integer multiple of ˘π{Lpxq. Therefore the second addend in the right-hand side is analytic for α in Cztiy : |y| ě π{Lpηqu. We can therefore focus on q fpαq and we start by observing that for α P R q fp´αq " q fpαq `4α , (

as a result of a straightforward manipulation using 1{p1 ´e´2αL q " 1{pe 2αL ´1q `1.

Remark 5.1. We note that the same argument can be applied directly to r f 1 pαq obtaining r fp´αq " r fpαq `2ηα .

(5.8)

But in fact we have also fp´αq " fpαq `2ηα , (5.9) which follows by applying (1.13) and K β pxq " K ´β pxq. In other words all these functions q f, r f and f -are even, up to a linear term.

Thanks to (5.7) we can focus on the case α ą 0 and compute (change the variable and move the contour of integration in the complex plane)

q fpαq " 2 ż 8 0 ˆ1 e v ´1 ´1 v ˙e´v{p2αq dv " ´2 ż 8 0 ˆ1 v ´1 1 ´e´v ˙e´v{p2αq dv ´4α " ´4α ´2 logp2αq ´2ψp1{p2αqq αOE0 " ´2α ´8 ÿ j"1 B 2j j p2αq 2j , (5.10) 
where ψpzq " Γ 1 pzq{Γpzq and the notion of " is extended here and it has to be interpreted in the sense of asymptotic series (i.e., that the difference of left-hand side and of the series in the right-hand side truncated to j " n is opα 2n q) : in the third step we have applied [32, 5.9.13] and the asymptotic relation [32, 5.11 so the series has radius of convergence zero. Note that (5.7) readily implies that q fpαq " ´2α ´ř8 j"1 pB 2j {jqp2αq 2j holds also for α Õ 0 and not only for α OE 0. Let us reorder what we have done (and more) into a statement: Proposition 5.2. q fp¨q is defined and analytic in the complex plane without the imaginary axis and it can be extended by continuity on the whole real axis by setting q fp0q " 0. Then q f restricted to R is C 8 in the origin. On the other hand, q f cannot be continued as an analytic function at any point on the imaginary axis.

Proof. Let us first show that q f is C 8 at the origin. For this it is more practical (and equivalent, since r f´q f is real analytic) to go back to r f and observe that with y " 2α P Rzt0u and the change of variable v " logp2{xq we obtain

f pyq :" r fpy{2q " 2 ż 8 c qpyvq expp´vq v dv , (5.12) 
with c " logp2{ηq P p0, 8q and qpuq " u exppuq´1 . It is straightforward to verify that qpuq P p0, 1s for u ě 0 and that qpuq P r1, u `1s for u ď 0 and dominated convergence implies that f is C 0 (on the whole R, but of course our attention is at the origin, outside we already know that f is real analytic). To show differentiability it suffices to observe that formally

f pnq pyq " ż 8 c q pnq pyvqv n´1 expp´vq dv , (5.13) 
where f pnq pyq " p d{ dyq n f pyq. But it is straightforward to verify that q p1q puq is monotonically decreasing from 1 to zero and q pnq puq, n " 2 or larger, vanishes at ˘8. Hence sup uPR |q pnq puq| ă 8 and this implies that (5.13) is not just formal: f P C 8 and its derivatives are given by (5.13).

On the other hand, q f is not analytic in zero since the radius of convergence of the series is zero: we record that if the Taylor series for q fpαq is ř n c n α n then c 2n nÑ8 " 4p´1q n`1 p2n ´1q! pπq 2n , (5.14) while c 2n`1 " 0 for n " 1, 2, . . .: this follows directly from (5.10) and (5.11).

To conclude, we argue that q f cannot be extended as an analytic function through the imaginary axis. Call f `: tz P C : pzq ą 0u ÝÑ C the function that coincides with q f in its domain of definition (the right half-plane): keep in mind that q f is defined also in the half plave with negative real part and it is analytic there. Suppose now that there exist a P R and ą 0 such that we can define q fpαq for α P tit : |t ´a| ă u, in such a way that q f is analytic in a neighborhood of ia. We can and do assume that a ą 0 as well as a ´ε ą 0 by symmetry and because we already know that q f is not analytic at the origin. This extends analytically f `too. But (5.10) yields f `pαq " ´4α ´log 4 ´2 log α ´2ψp1{p2αqq in the right-half plane and this expression, containing the function ψ (that is meromorphic on the whole C and has poles on the negative real axis [32, §5.2]) and a logarithm which is defined and analytic on the whole complex plane except for a cut (that can be for example chosen to be tz P C : z " z ď 0u). But f `must coincide with q f in the whole region where f `is extended: this region includes the negative semi-axis where f `has poles and q f is analytic. This is not possible, hence q f cannot be extended analytically at any point on the imaginary axis.

A different viewpoint on the McCoy and Wu simplified problem. We restart from (5.4), but we take a different approach: we avoid exact integration. As already noted, the integrand in that expression for r fpαq, for fixed x ą 0, is a meromorphic function of α. The poles are on the imaginary axis and 0 is not a pole because the singularity is removable: the poles are nπi{Lpxq for n P Zzt0u, where recall that we write Lpxq :" logp2{xq for brevity. The integrand in the expression for f 1 pαq is therefore analytic in a ball of radius π{Lpxq around zero and the most singular part in the residue expression for the integrand comes from the two closest poles, which are ˘πi{Lpxq. If we compute the residues of these two poles for the integrand we find ˘2πi{pLpxqq 2 and therefore the contribution to the integrand of these two poles is

P α pxq :" 2πi Lpxq 2 ´2α ´2πi Lpxq ¯´2πi Lpxq 2 ´2α `2πi Lpxq ¯" ´2 Lpxq 1 ´αLpxq π ¯2 `1 " ´2 8 ÿ n"0 p´1q n α 2n Lpxq 2n´1 π ´2n , (5.15) 
where the last equality holds only for |αLpxq{π| ă 1, but it is in any case useful to identify all the derivatives of P α pxq at α " 0. It seems reasonable to believe that the singularity at the origin of r f is induced by the poles of the integrand and that the two poles that are closest to the origin give the leading part of the singularity. If this is the case α Þ Ñ ş η 0 p α pxq dx should capture the leading behavior of the singularity of r f. This is confirmed or at least highly suggested by observing that

ż η 0 Lpxq 2n´1 dx " 2 ż 8 logp2{ηq
y 2n´1 e ´y dy " 2Γp2n, logp2{ηqq nÑ8 " 2Γp2nq " 2p2n ´1q! , (5.16) so if we proceed at a completely formal level, by integrating term by term the series in the second line of (5.15) and using (5.16), we directly recover (5.14)! Approaching the true problem. Going back to the true problem, that is f, for which the integrand is the left-had side of (5.3), we have to identify the zeros of K α pxq: this problem has been studied and, as possibly expected, the heuristics coming from studying the poles of the right-hand side of (5.3) is qualitatively correct, so the poles we have to study, or the zeros of K α pxq, are on the imaginary axis. Moreover they accumulate on the origin when x OE 0. In fact, to leading order (for n fixed and x OE 0) they are still in ˘nπi{ logp2{xq. But, more precisely, they are in ˘nπi{plogp2{xq´γ `op1qq as x OE 0 (γ the Euler constant, see below).

Remark 5.3. The subleading correction ´γ to logp2{xq for the location of the zeros can be inserted in the heuristic argument that we presented just by being keeping one more term in the expansion of the Γ function in the first steps (5.1)- (5.3). The change amounts simply to work with Lpxq " logp2e ´γ {xq, but this small offset in Lpxq leads to the multiplicative e ´γ constant in the final asymptotic results, see Theorem 1.7.

Apart for the quantitative issue of Remark 5.3, the proof of Theorem 1.7 requires taking care of two main issues:

(1) Even admitting that the two closest poles give the main contribution, have to set-up a rigorous procedure corresponding to the formal argument that we developed using (5.15) and (5.16). This procedure requires controlling not only location of the two poles, but also the residues that this time are given by ratio of series coming from (5.18). ( 2) One needs to control the effect of the poles that are farther from the origin: note that these terms will in any case give contributions that generate divergent series, but this time the distance of the poles from the origin is at least (about) twice the distance of the two n " 1 poles. Hence they will contain an exponential factor that is at least twice smaller.

5.2. The proof. The proof of Theorem 1.7, that starts here, follows a main line separated by a number of lemmas and corollaries. As a preliminary, we set out precise versions of some of the statements made above about the regularity of

f x : α Þ Ñ x K 1´α pxq K α pxq , (5.17) 
for x ą 0. K α pxq is entire as a function of α for all x ‰ 0 [32, section 10.25(ii)], so f x is a ratio of two entire functions, and thus it is analytic except at the zeros of α Þ Ñ K α pxq. For x ą 0, these zeros are all pure imaginary and located in the region |α| ą x [18, Appendix A]. Note that this characterization is already sufficient to show that ş η X f x pαqdx is analytic on Cz ˘irX, 8q for any 0 ă X ă η ă 8, so it suffices to prove the statements in Theorem 1.7 with η replaced by some sufficiently small X in the integral defining f. Furthermore, f x is infinitely differentiable on the real axis for any x ą 0; in the next few lemmata we will bound its derivatives in such a way as to show that this is also true of the integral f.

To begin with, note that combining (4.1) and (4.2) gives

K α pxq " π 2 sin πα 8 ÿ k"0 `x2 {4 ˘k k! " px{2q ´α Γp´α `k `1q ´px{2q α Γpα `k `1q  , (5.18) 
for α P CzZ and x ą 0. Proof. Letting g x pαq :" x α {Γp1 `αq,

x α Γp1 `αq ´x´α Γp1 ´αq " g x pαq ´gx p´αq " α ż 1 ´1 g 1 x pyαq dy , (5.20) 
and so

ˇˇˇx α Γp1 `αq ´x´α Γp1 ´αq ˇˇˇě |α| ˇˇˇż 1 ´1 g 1 x pyαq dy ˇˇˇ. (5.21) 
Note that g 1 x pαq " rlog x ´ψp1 `αqs

x α Γp1 `αq , (5.22) 
where ψpzq :" Γ 1 pzq{Γpzq is the Psi function [32, §5.2]. ψp1 `αq{Γp1 `αq is analytic for |α| ă 1, so choosing X small enough we can obtain |ψp1 `αq{Γp1 `αq| ď p1 ´c1 q for any fixed c 1 P p0, 1q, whence

ˇˇˇ g 1 x pαq ´ x α log x Γp1 `αq ˇˇˇď ˇˇˇg 1 x pαq ´xα log x Γp1 `αq ˇˇˇ" ˇˇˇψ p1 `αq x α Γp1 `αq ˇˇˇď p1 ´c1 qx α log 1{x, (5.23 
) and noting that 1{Γp1 `αq is entire and takes positive real values for α P r´1{2, 2{2s, by choosing A small enough we obtain

´ x α log x Γp1 `αq " x α log 1{x " cos p α log xq 1 Γp1 `αq ´sin p α log xq 1 Γp1 `αq  ě c 2 x α log 1{x ě 0 , (5.24)
for some c 2 ą 0. Combining the above observations, we see that

ˇˇˇż 1 ´1 g 1 x pyαq dy ˇˇˇě c 1 c 2 log 1{x ż 1 ´1 x y α dy " c 1 c 2 x ´ α ´x α α . (5.25) 
The last expression is an even function of α, so without loss of generality we can consider α " ρ P r0, 1{2s. Noting that ρ Þ Ñ 1 ´x2ρ " 1 ´exp p´2ρ log xq is concave for all x ą 0 and checking the boundary cases, it is easy to see that 1 ´x2ρ ě ρ for all x P p0, 1{2q, ρ P r0, 1{2s. Using this together with (5.21) and (5.25), we obtain

ˇˇˇx α Γp1 `αq ´x´α Γp1 ´αq ˇˇˇě c 1 c 2 |α|x ´| α| . (5.26) 
This completes the proof of Lemma 5.4

Lemma 5.5. There exist some X P p0, 1q, A ą 0, and C 2 ą 0 such that

|f α pxq| ď C 2 , (5.27) 
for all x P p0, Xs, |α| ď 1{2, and | α| ď A{ logp2{xq.

Proof. Rearranging (5.18), we have

´2 sin πα π K 1´α pxq " px{2q α´1 Γpαq `8 ÿ k"1 px{2q α`2k´1 k!Γpα `kq ´8 ÿ k"1 k k ´α px{2q ´α`2k´1 k!Γpk ´αq " px{2q α´1 Γpαq `8 ÿ k"1 px{2q 2k´1 k! " px{2q α Γpk `αq ´k k ´α px{2q ´α Γpk ´αq  , (5.28) 
Noting that the final sum vanishes term by term when α " 0 and that

B Bα " px{2q α Γpk `αq  " px{2q α Γpk `αq rlogpx{2q ´ψpk `αqs , (5.29) 
and

B Bα " px{2q ´α Γpk ´αq k k ´α  " B Bα " kpx{2q ´α Γp1 `k ´αq  " ´kp x 2 q ´α Γp1 `k ´αq " log ´x 2 ¯`ψp1 `k ´αq ı , (5.30 
) and that |ψpk `αq| _ |ψp1 `k ´αq| ď const. logpk `1q for k ě 1 and |α| ď 1{2, we then have also

ˇˇˇp x{2q α Γpk `αq ´k k ´α px{2q ´α Γpk ´αq ˇˇˇď const. |α| "ˇˇˇˇp x{2q ´α Γpk `αq ˇˇˇ_ ˇˇˇk px{2q α Γpk ´αq ˇˇˇ " log ´x 2 ¯`logpk `1q ı . (5.31) 
Noting that Γp1 `k ˘αq " Γp1 ˘αqp1 ˘αq k (see (4.5)),

|p1 ˘αq k | " |1 ˘α| ¨¨¨|k ˘α| ě ˆ1 2 ˙¨¨¨ˆ2 k ´1 2 ˙" 2 ´k p2k ´1q!!, (5.32) 
and that |Γp1 ˘αq| is bounded for |α| ď 1{2, we have

ˇˇˇˇ8 ÿ k"1 px{2q 2k´1 k! " px{2q α Γpk `αq ´k k ´α px{2q ´α Γpk ´αq  ˇˇˇď const.|α| 8 ÿ k"1 px{2q 2k´1 k! rlogpk `1q `logp2{xqs "ˇˇˇˇp x{2q ´α Γpk `αq ˇˇˇ_ ˇˇˇk px{2q α Γpk ´αq ˇˇˇ ď const.|α|px{2q 1´| α| « 8 ÿ k"0 2 k`1 logpk `2q k!p2k `1q!! px{2q 2k `logp2{xq 8 ÿ k"0 2 k`1 px{2q 2k k!p2k `1q!! ff ď const.|α| r1 `logp2{xqs px{2q 1´| α| , (5.33) 
where the last bound follows from the observation that each of the sums in the preceeding expression is α-independent and defines an entire function of x, and is therefore bounded on any compact interval. Combining this with (5.28) and noting that

ˇˇˇp x{2q α´1 Γpαq ˇˇˇď const.|α|px{2q α´1 , (5.34) 
we have ˇˇˇ2 sin πα π K 1´α pxq ˇˇˇď const.|α|px{2q α´1 .

(5.35)

As for the denominator, using (5.18)

ˇˇˇ2 sin πα π K α pxq ˇˇˇě ˇˇˇp x{2q α Γp1 `αq ´px{2q ´α Γp1 ´αq ˇˇ8 ÿ k"1 px{2q 2k k! ˇˇˇp x{2q α Γpk `1 `αq ´px{2q ´α Γpk `1 ´αq ˇˇˇ. (5.36) 
The sum can be estimated in the same way as the one in (5.28): we have

ˇˇˇp x{2q α Γpk `1 `αq ´px{2q ´α Γpk `1 ´αq ˇˇˇď const. 2 k rlogpk `1q `logp2{xqs p2k ´1q!! |α| ´x 2 ¯´| α| , (5.37) 
and so

8 ÿ k"1 px{2q 2k k! ˇˇˇp x{2q α Γpk `1 `αq ´px{2q ´α Γpk `1 ´αq ˇˇˇď const.|α|x 2´| α| logp1{xq , (5.38) 
and we see that this is dominated by the first term, which was bounded from below in Lemma 5.4 above. We then have ˇˇˇ2 sin πα π K α pxq ˇˇˇě const. ˆ|α| px{2q ´| α| , (

and combining this with (5.35) we obtain the desired bound and the proof of Lemma 5.5 is complete.

Letting C R pwq denote the oriented circle of radius R about w, the Cauchy formula implies that

ˇˇf pnq pwq ˇˇ" n! 2π ˇˇˇˇˇˇ¿ C R pwq f pzq pz ´wq n`1 dz ˇˇˇˇˇˇď n! R n max |z´w|"R |f pzq| , (5.40) 
for any f which is analytic on an open set containing C R pwq and its interior. From Lemma 5.5 we thus have Corollary 5.6. For the same A, X, C 2 as in Lemma 5.5,

ˇˇˇB n Ba n " x K 1´a pxq K a pxq ˇˇˇˇď C 2 n! ˆlogp2{xq A ˙n (5.41)
for all n P N, a P r´1{4, 1{4s.

Since the bounds in Corollary 5.6 are uniformly (in a) integrable (in x), if we take η ď X this allows us to take derivatives inside the integral defining f which is therefore infinitely differentiable on the real interval p´1{4, 1{4q. This result is going to be crucial for us at 0: the fact that f is C 8 outside of zero is also a byproduct of the fact that we are going to establish (via the next lemma) that f is real analytic in p´1, 1qzt0u. Lemma 5.7. For any A P p0, 1{2q and I P p0, 8q, there exist X P p0, 2q and C P p0, 8q such that

|f α pxq| ď C , (5.42) 
whenever x P p0, Xs, α P pA, 1 ´Aq, and | α| ď I.

Proof. Using [32, 5.6.7] and noting that Γpxq ą 1{2 for all x ą 0,

ˇˇˇ1 Γpzq ˇˇˇď pcosh π zq 1{2 Γp zq ď 2 pcosh π zq 1{2 , (5.43) 
whenever z ą 0. Also using [32, 5.6.6] and noting that the Gamma function is concave for positive real arguments,

ˇˇˇ1 Γp2 ´αq ˇˇˇě 1 Γp2 ´ αq ě 1 Γp1q _ 1 Γp2q " 1. (5.44) 
Applying these two bounds to (5.18), we obtain

ˇˇˇπ sin πα π K α pxq ˇˇˇ" ˇˇˇp x{2q ´α Γp1 ´αq `´x 2 
¯2´α 8 ÿ k"0 px{2q 2k pk `1q!Γpk `2 ´αq ´´x 2 ¯α 8 ÿ k"0 px{2q 2k k!Γpk `1 `αq ˇˇě |α| px{2q ´ α |Γp2 ´αq| ´2 " ´x 2 ¯2´ α `´x 2 
¯ α  pcosh πIq 1{2 8 ÿ k"0 px{2q 2k k! ě A ˆX 2 ˙´A ´4 ˆX 2 ˙A exp ˆx2 4 ˙pcosh πIq 1{2 , (5.45) 
for all relevant α and x; choosing X sufficiently small, the last bound can be made positive.

Similarly, noting also that Γpxq is negative (resp. positive) and decreasing for x P p´1{2, 0q (resp. p0, 1{2q),

ˇˇˇπ sin πα π K 1´α pxq ˇˇˇ" ˇˇˇp x{2q α´1 Γpαq ´px{2q 1´α Γp´αq `´x 2 ¯α`1 8 ÿ k"0 px{2q 2k pk `1q!Γpk `1 `αq ´´x 2 ¯3´α 8 ÿ k"0 px{2q 2k pk `1q!Γpk `1 ´αq ˇˇď 2 pcosh πIq 1{2 " px{2q A´1 ΓpAq ´px{2q A Γp´Aq `"´x 2 ¯A`1 `´x 2 ¯A`2  exp ˆx2 4 ˙* , (5.46) 
and combining this with (5.45) we obtain a suitable bound on |f α pxq|. This completes the proof of Lemma 5.7.

By Lemma 5.7 we have that for any α P C with α P p0, 1q, we can choose A, I to obtain such a bound on a neighborhood of α; using the Cauchy formula this impies that f 1

x is uniformly bounded on some smaller neighborhood of α, which allows us to exchange differentiation and integration to see that f is holomorphic on that neighborhood. We can then conclude that f is analytic on tα P C| α P p0, 1qu, and by the symmetry noted in (5.9) it is also analytic on tα P C| α P p´1, 0qu.

All that remains is to show that the derivatives of f at the origin grow as stated; since this will imply that the associated Taylor series is divergent, this will also prove that f is not analytic there. We begin by providing a more precise characterization of the poles of f x for small x. Lemma 5.8. There exist X, C ą 0 and a sequence of functions ν n : p0, 8q Þ Ñ p0, 8q, satisfying ˇˇˇν n pxq ´nπ logp2{xq ´γ ˇˇˇď Cn 3 plog xq 4 (5.47)

and ν 1 pxq ă ν 2 pxq ă . . . , such that for all x P p0, Xs, K α pxq " 0 iff α " ˘iν n pxq.

Proof. For x ą 0 and ν P R, (5.18) can be rewritten using some properties of the Gamma function ([32, 5.2.5] and [32, 5.4.3]) as

K iν pxq " ´ˆπ ν sinh pπνq ˙1{2 8 ÿ k"0 `x2 {4 ˘k k! sin pθ k pνqq a p1 2 `ν2 q . . . pk 2 `ν2 q , (5.48) 
where θ k pνq :" ν logpx{2q ´arg Γp1 `k `iνq , (5.49) (cf. [14, (2.7-8)], where this expression is used to study the x-zeroes and their dependence on ν).

Then the solutions of K iν pxq " 0 are the nonzero solutions of sin θ 0 pνq " S x pνq :"

´8 ÿ k"1 `x2 {4 ˘k k! sin pθ k pνqq a p1 2 `ν2 q . . . pk 2 `ν2 q . ( 5.50) 
Using the definition of the ψ function and the expansion [32, 5.7.6],

θ 1 0 pνq " logpx{2q ´ ψp1 `iνq " logpx{2q `γ ´8 ÿ m"1
ν 2 mpm 2 `ν2 q ď logpx{2q `γ, (5.51) so for 0 ă x ă 2e ´γ " 1.1229 . . . θ 0 is strictly decreasing. From its definition in (5.50), it is apparent that S x can be bounded

|S x pνq| ď 8 ÿ k"1 `x2 {4 ˘k pk!q 2 ď 8 ÿ k"1 x 2k p2kq! ď cosh x ´1, (5.52) 
uniformly in ν, and so we see that for each 0 ă x ă cosh ´1p2q " 1.317 . . . all solutions ν of (5.50) satisfy ´θ0 pνq P rnπ ´sin ´1 pcosh x ´1q , nπ `sin ´1 pcosh x ´1qs.

(5.53) for some integer n, and there is at least one solution for each n. More precisely, for such solutions the derivative of the left hand side of (5.50) satisfies p´1q n`1 B Bν sin pθ 0 pνqq " p´1q n`1 θ 1 0 pνq cos pθ 0 pνqq ě |θ 1 0 pνq| a 1 ´pcosh x ´1q 2 , (5.54) and in light of (5.51), for X small enough this can be bounded from below by any positive number uniformly in ν. As for the right-hand side of (5.50), first note that from [32, 5.5 

px 2 {4q 2k k! |θ 1 0 pνq| `2 pk ´1q! ď "ˇˇθ 1 0 pνq ˇˇ`2 ‰ 8 ÿ k"1 x 2k p2k ´2q! ď "ˇˇθ 1 0 pνq ˇˇ`2 ‰ x 2 cosh x,
(5.58) which, for x small enough, is smaller than the right-hand side of (5.54) for all ν. This suffices to show that there is only one solution of (5.50) in each of the intervals in (5.53). The solution for n " 0 must be the trivial solution ν " 0 which does not correspond to a solution of K iν pxq " 0. This uniqueness also implies that the solutions for negative and positive n are related by the symmetry K iν pxq " K ´iν pxq, so we see that it is possible to relate the zeros to a family of functions as desired.

To see that the functions ν n satisfy the bound (5.47), we first note that (5.53) and (5.51) together imply that

ν n pxq ď nπ `cosh x ´1 inf νě0 |θ 1 0 pνq| ď nπ `cosh x ´1 logp2{xq ´γ ď const. n log 1{x , (5.59) 
for all x P p0, Xq; and also that using the same expansion as in ( (from [32, 5.7.1]) and expanding K 1´α pxq as in (5.28), we have

K 1´iν 1 pxq pxq " 1 x `O ˆ1 x| log x| 2 ˙, (5.67) 
taking advantage of a cancellation between the subleading terms in px{2q which is also uniformly bounded in a suitable fashion. Hence (5.71) is proven and therefore also the proof of Lemma 5.9 is complete.

Noting that

´2iR 1 pxq ν 1 pxq α 2 `ν2 1 pxq " R 1 pxq α ´iν 1 pxq ´R1 pxq α `iν 1 pxq , (5.78) 
the expression examined above is an analytic function of α in the interior of the circles under consideration apart from removable singularities, and so using Lemma 5.9 and (5.40) we have Corollary 5.10. For any a P p1, 2q, There exist some C a , X a ą 0 and a sequence of functions I n : p0, X a s Ñ C such that We then have for all x P p0, s, and so

x K 1´α pxq K α pxq " 8 ÿ n"0 I n pxqα n ´2iR 1 pxq ν 1 pxq α 2 `ν2 1 pxq , ( 5 
1 n! B n Bα n " x K 1´α pxq K α pxq ˇˇˇˇα "0 " I n pxq ´#p´1q n{2 2i R 1 pxq pν 1 pxqq n`
ˇˇˇR 1 pxq pν 1 pxqq n`1 `i L n´1 pxq π n ˇˇˇ" ˇˇˇˇR 1 pxq ˆLpxq π `ˆ1 ν 1 pxq ´Lpxq π ˙˙n`1 ´i L n´1 pxq π n ˇˇˇď ˇˇˇˇR 1 pxq ˆLpxq π ˙n`1 ´i L n´1 pxq π n ˇˇˇˇ`| R 1 pxq| 1 π n`1 n`1 ÿ m"1 ˆn `1 m ˙Lpxq n`1´3m C m ν ď C R π n`1 L n´3 pxq `ˆπ `CR L 2 pxq ˙1 π n`1 n`1 ÿ m"1 ˆn `1 m ˙Lpxq n´3m´1 C m ν . (5.83)
We have ż

0 L n pxqdx " 2e ´γ ż 8 logp2{ q´γ
L n e ´LdL " 2e ´γ Γpn `1, ¯ q , (5.84)

for n ě 0, where ¯ :" logp2{ q ´γ for brevity (note ¯ ą 0 since we have assumed ă 2e ´γ ), and where Γpn, q :" ş 8 t n´1 e ´tdt is the upper incomplete Gamma function [START_REF] Olver | NIST Digital Library of Mathematical Functions[END_REF]Chapter 8]. For n ă 0, since we have assumed ď 2e ´γ´1 we have Lpxq ě 1 for x P p0, q, and thus 0 ď ż 0 L n pxqdx ď .

(5.85)

Note that by combining [32, 8.8.2] and [32, 8.10.1] we obtain Γpn `1, ¯ q Γpn, ¯ q " n `¯ n e ´¯ Γpn, ¯ q ě n `¯ ě n , (

which can be applied iteratively to obtain Γpn `1, ¯ q Γpn `1 ´m, ¯ q ě n! pn ´mq! . Γpn, ¯ q π n´1 , (5.90)

for any a P p1, 2q, and so the dominant behavior of the even Taylor coefficients f p2nq p0q{p2nq! for n large is that of

p´1q n`1 2 π 2n ż 0 ˆlogp2{xq ´γ π ˙n´1 dx " 4e ´γ p´1q n`1 Γp2n, ¯ q π 2n " 4e ´γ p´1q n`1 p2n ´1q! π 2n , (5.91) 
noting Γpn, ¯ q " Γpnq " pn ´1q! [32, 8.2.3, 8.11.4], while the symmetry noted in (5.9) imposes that f 1 p0q " 4η and f p2n`1q p0q " 0 for n " 1, 2, . . .. The proof of Theorem 1.7 is therefore complete.

6. Scaling limit of matrix product: proof of Theorem 1.6

As announced, we generalize the set-up of (1.16)- (1.19) in the sense that we prove Theorem 6.1. Consider a family of positive random variables tZ ∆ u ∆Pp0,∆ 0 q such that PpZ ∆ " yq " 0 for every y and such that for some σ ą 0 and α P R we have Theorem 6.1 directly implies Theorem 1.6: the cases of two more classes of distributions are treated just before the proof. Note that with (6.1) we are in reality just assuming the existence of the two limits and that the second limit is not zero. The second assumption, i.e. (6.2), barely fails to be a consequence of (6.1). The third assumption, i.e. (6.3), is used to control the amount of the mass of Z ∆ that is close to zero: it is not difficult to realize that, given (6.1), replacing (6.3) with the stronger condition lim

lim ∆OE0 E " Z ∆ ´1‰ ∆ " 1 2 σ 2 p1 ´αq and lim ∆OE0 E " `Z∆ ´1˘2 ı ∆ " σ 2 . ( 6 
∆OE0 Er1{Z ∆ s ´1 ∆ " 1 2 pα ´1qσ 2 , (6.4) 
leads to very little loss of generality. Moreover, we have assumed that the law of Z ∆ ha no mass just to be sure that we do not fall into a pathological case for the theory of product of random matrices, but all we need is a condition that guarantees the existence of the limit in (1.20) and that the Markov chain associated to matrix product is ergodic: this is true in greater generality [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF].

Before giving the proof let us show two classes of examples to which Theorem 6.1 applies:

(1) The distribution chosen in [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF] falls into the class

Nλ ´N 1 y N´1 1 p0,λ 1 q pyq , (6.5) 
with λ 1 " λ 1 pα, Nq " 1 `1{N `p1 ´αq{N 2 `op1{N 2 q . (6.6)

NpÑ 8q is the parameter that tunes the strength of the disorder and Theorem 6.1 can be applied by setting ∆ " N ´2: let us verify the hypotheses. We compute for every ν

E rpZ N q ν s " λ 1 pα, Nq ν 1 `ν N " 1 `νpν ´αq 2 N 2 `o ˆ1 N 2 ˙, (6.7) 
and we directly obtain

lim NÑ8 N 2 E rZ N ´1s " 1 ´α 2 and lim NÑ8 N 2 E " pZ N ´1q 2 ı " 1 , (6.8) 
and

E " Z ˘2 N ‰ " 1 `p2 ¯αq N 2 `o ˆ1 N 2 ˙" exp ˆp2 ¯αq N 2 ˙`o ˆ1 N 2 ˙, (6.9) 
Moreover or every c P p0, 1q the event t|Z N ´1| ą cu " tZ N ´1 ă ´cu if N is sufficiently large, because Z N ď λ 1 pα, Nq, which tends to one for N Ñ 8. On the other hand PpZ N ´1 ă ´cq " pp1 ´cq{λ 1 q N , which is bounded by p1 ´cq N since λ 1 ą 1. (2) Choose a centered and compactly supported probability density pp¨q and set σ 2 :" ş t 2 pptq dt. Then the random variable Z ∆ with density given by

y Þ Ñ 1 ? ∆ p ˆy ´m∆ ? ∆ ˙with m ∆ :" 1 `1 2 σ 2 p1 ´αq∆ , (6.10) 
with ∆ smaller than a suitable ∆ 0 ą 0, satisfies the hypotheses of Theorem 6.1.

Proof of Theorem 6.1. We start with the proof of ( ' compute the local drift at x P R 2 : uniformly for x " px 1 , x 2 q t in compact sets

b ∆ pxq " ∆ ´1EA ∆ x " ˜0 ε εE " Z ∆ ‰ ErZ ∆ ´1s ∆ ¸x ∆OE0 ÝÑ b pxq :" b x, with b :" ˆ0 ε ε p1 ´αq σ 2 2 ˙, (6.11) 
where we have applied the first assumption in (6.1); ' compute the diffusion matrix at x: again uniformly we have

a ∆ pxq " ∆ ´1E " A ∆ x x t pA ∆ q t ‰ ∆OE0 ÝÑ apxq :" ˆ0 0 0 σ 2 x 2 2 ˙, (6.12) 
where we have applied both assumptions in (6.1); ' observe that, by (6.2), ∆ ´1Pp|A ∆ | cq Ñ 0 for every c ą 0.

Then, since the stochastic differential system with drift bp¨q and diffusion matrix ap¨q has unique (strong) solution, the Markov chain X ∆ converges in law to the diffusion process with drift bp¨q and diffusion matrix ap¨q, which is precisely the solution X to the stochastic differential system (1.3). This completes the proof of (1.21).

In order to prove (1.22) we start by observing that p L Z ∆ pεq " p L Z ∆ p´εq, in agreement with the analogous result for L σ,α p¨q (Theorem 1.1(2)), because DpI `A∆ qD, with D the diagonal matrix with `1 and ´1 on the diagonal, is equal to I `A∆ with ε replaced by ´ε. Hence we can restrict to ε ą 0. Moreover if we set Y ∆ pnq :" X ∆ 2 pnq{X ∆ 1 pnq, we have that Y ∆ pt¨{∆uq ÝÑ Y p¨q in law as ∆ OE 0 just because of (1.21) and because the map px 1 , x 2 q Þ Ñ x 2 {x 1 , from p0, 8q 2 to p0, 8q, is continuous. Denote by T ∆ t and T t the corresponding Markov operator semigroups

T ∆ t f pyq " E ∆ y " f `Y ∆ ptt{∆uq ˘‰ , T t f pyq " E y rf pY ptqqs , (6.13) 
acting on bounded continuous f : p0, 8q Ñ R. Note that we have also introduced the notation E ∆ and E for the expectation with respect to the two Markov processes we consider. We claim that:

(1) For bounded continuous f : p0, 8q Ñ R and t P r0, 8q, we have that

T ∆ t f pyq ∆OE0 ÝÑ T t f pyq uniformly for y in compact subsets of p0, 8q . (6.14) 
(2) For all positive ∆ there exists a unique law µ ∆ on p0, 8q which is invariant for the Markov chain Y ∆ , which is ergodic. Observing that for ∆ P p0, 1{εs

d 2 dz 2 ´upz 1{2 q 2 ¯" ´ε∆p1 ´ε2 ∆ 2 q 3z `4ε∆z 1{2 `1 2z 3{2 pε∆z 1{2 `1q 4 0 , (6.17) 
we obtain by the Markov property and by Jensen's inequality that for a given initial condition y ą 0

E y " Y ∆ pn `1q 2 ‰ " E " `Z∆ pn `1q ˘2q ı E y " upY ∆ pnqq 2 ‰ ď q 2 ∆,`u ´Ey " Y ∆ pnq 2 ‰ 1{2 ¯2 , (6.18) 
where

q ∆,`: " c E " pZ ∆ q 2 q ı (6.1) " 1 `´1 ´α 2 ¯σ2 ∆ `o `∆2 ˘. (6.19) 
Therefore if we set x n :" E y " Y ∆ pnq 2 ‰ 1{2 we have x n`1 ď q ∆,`u px n q which directly entails that x n ă 8 for every n and, since up¨q is bounded and concave increasing with up0q ą 0, the application q ∆,`u p¨q has only one positive fixed point that attracts every positive number. The fixed point x ὰ,ε p∆q is easily computed:

x ὰ,ε p∆q " 1 2 ¨q∆,`´1 ε∆ `dˆq ∆,`´1 ε∆ ˙2 `4q ∆,`' ∆OE0 " 1 2 
¨`1 ´α 2 ε σ 2 `g f f e ˜`1 ´α 2 ε σ 2 ¸2 `4‹ ' . (6.20)
Therefore lim sup n x n ď x ὰ,ε p∆q and x ὰ,ε p∆q is bounded for ∆ OE 0. Since tY ∆ n u n"0,1,... converges in law to the random variable Y ∆ 8 that is distributed according to µ ∆ , by standard measure theory argument we infer that ErpY ∆ 8 q 2 s " ş 8 0 y 2 µ ∆ p dyq ď px ὰ,ε p∆qq 2 which proves the first claim in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF].

For the other claim in (3) it is useful to note that r Y ∆ pnq " Y ∆ pnq ´1 evolves according to the similar dynamics driven by 1{Z ∆ ,

r Y ∆ pn `1q " `Z∆ pn `1q ˘´1 r Y ∆ pnq `ε∆ 1 `ε∆ r Y ∆ pnq . (6.21) 
We can now proceed in a simpler way than above and exploit directly the concavity of up¨q to get to

r x n`1 :" E y " r Y ∆ pn `1q ı ď q ∆,´u ´Ey " r Y ∆ pnq ı¯, (6.22) 
and lim sup n r x n ď x ά,ε p∆q, with x ά,ε p∆q defined replacing q ∆,`w ith q ∆,´i n the definition (6.20) of x ὰ,ε p∆q. It is therefore clear that (6.3) tells us that x ά,ε p∆q remains bounded for ∆ OE 0 and the second claim in (3) is proven. Remark 6.2. Of course if we make the stronger, but in practice almost equivalent, condition on the second moment of 1{Z ∆ in (6.3), the argument for the first claim in (3) applies and directly yields sup ∆Pp0,∆ 0 s ş 8 0 y ´2µ ∆ p dyq ă 8.

With (1)-( 3) at hands, we complete the proof of (1.22 where we have used that, for u ě 0, u{p1 `uq is bounded above both by 1 and by u. This completes the proof of (1.22) and, therefore, also the proof of Theorem 6.1.

Appendix A. The McCoy-Wu model

In [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF], McCoy and Wu examined a two-dimensional Ising model with bond disorder of a particular type (subsequently known as the McCoy-Wu model): the couplings between sites in neighboring columns have a constant strength E 1 , while the couplings between neighboring sites in the same column take a random value E 2 pnq which is fixed within each row but varies independently -keeping the same distribution -between different rows (Figure 1). They showed that in the thermodynamic limit the free energy per site of this model is given (up to the subtraction of an analytic function of β) by where z 1 " tanh pβE 1 q , z 2 pnq " tanh pβE 2 pnqq and λ " λpnq " z 2 2 pnq . (A.4)

In [START_REF] Shankar | Nearest-neighbor frustrated random-bond model in d=2: Some exact results[END_REF] a different version of the model has been considered: vertical bounds are random in the horizontal direction and randomness is repeated in each line. This model, that allows frustration, is richer, but the features that are novel with respect to the McCoy-Wu model cannot be appreciated in the weak disorder limit: our analysis applies to [START_REF] Shankar | Nearest-neighbor frustrated random-bond model in d=2: Some exact results[END_REF] as well, but we will not develop this issue here.

To avoid trivialities we assume that E 1 ‰ 0 as well as that E 2 is a non degenerate random variable: it is immediately clear that the sign of E 2 does not matter and just a little thought reveals that the sign of E 1 is irrelevant too. Therefore we assume that E 1 P p0, 8q and that E 2 is a random variable taking values in p0, 8q. It is helpful (mostly to simplify the presentation) to assume that E 2 takes values in rE 2 , E 2 s, with 0 ă E 2 ă E 2 ă 8.

E 2 (1) E 2 (1) E 2 (1) E 2 (1) E 2 (2) E 2 (2) E 2 (2) E 2 (2) E 2 (3) E 2 (3) E 2 (3) E 2 (3) E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 Figure 1.
The McCoy-Wu disordered version of the two dimensional Ising model: the disordered interactions are in the vertical direction and they are distributed in an IID fashion within one column. This disorder is just copied to all the other columns and the horizontal interactions are non random. The disorder enters the free energy formula via independent copies of the random variable λ " tanh 2 pβE2q.

Moreover one directly sees that ap¨q is odd and bp¨q is even, which yields that L MW β p¨q is even: in fact D ˘Mβ pθqD ˘" M β p´θq, with D ˘the diagonal matrix with p`1, ´1q on the diagonal. Therefore: is real analytic on p0, 8q. This can be proven by applying the main result in [START_REF] Ruelle | Analycity properties of the characteristic exponents of random matrix products[END_REF] (see also [START_REF] Dubois | Real cone contractions and analyticity properties of the characteristic exponents[END_REF]). We sketch the argument here by considering separately the case θ bounded away from 0 and π and the case of θ near π: with δ ą 0 small ' For θ P rδ, π ´δs the matrix M β pθq (with positive entries) maps the closure of the cone Q -here Q is first quadrant without the axes, that is the set of vectors with positive entries -to Q Y t0u. More precisely, by the hypothesis we have made on the suport of Z, for every δ P p0, π{2q and every P p0, 1q the closure of Q is mapped into a cone whose closure is a subset of Q Y t0u and this subset is the same for every choice of θ P rδ, π ´δs and every β P r , 1{ s. This uniform cone property implies the real analyticity of β Þ Ñ L MW β pθq with a convergence radius that is bounded away from zero uniformly in θ P rδ, π ´δs and β P r , 1{ s. ' For θ P rπ ´δ, πs we argue by observing first that apπq " 0, bpπq " 1 ´z2 1 p1 ´z1 q 2 " 1 `tanh βE 1 1 ´tanh βE 1 " e 2βE 1 , (A.7) so M β pπq " ˆ1 0 0 e ´4βE 1 tanh 2 βE 2 ˙.

(A.8)

Since e ´4βE 1 tanh 2 βE 2 ă 1 the action of M β pπq contracts uniformly any cone of the form tpx, yq : y ě |x|u, in the sense there exists ą 0 such that M β pπq and we observe -recall (A.16) -that ε " c β θ, with c β " 2 sinhp2βE 1 q.

Remark A.1. It is important to remark at this stage that the inverse temperature β and our fundamental parameter α -we recall that α is the unique non zero real solution to EZ α " 1 (Z " e 4βE 1 tanh 2 pβE 2 q depends on β!) when such a solution exists and otherwise α " 0 -should be seen as an analytic change of variable: this is treated in detail in Lemma A.2. In particular αpβ c q " 0 and therefore αpβq " pβ ´βc qα 1 pβ c q`Oppβ ´βc q 2 q, but the constant α 1 pβ c q depends of the law of Z (with β " β c ) and this expansion should be done more carefully when the disorder is weak because, as we will see, α 1 pβ c q becomes large in this limit: this is treated in (A.21)-(A.29).

What McCoy and Wu do at this point is

' making a specific choice of Z " Z ∆ " Z ∆ β that satisfies the hypotheses of Theorem 6.1 (say, with σ " 1 for simplicity); this actually implements two choices: (1) the first is evident and it is the fact that disorder can be made weak by making ∆ small; (2) the second is that β ´βc is chosen small and, precisely, of the order of ∆.

As we will explain, if we set y " pβ ´βc q{∆ and we keep y P R fixed, then αpβq " ´Cβc y, and the constant C βc ą 0 will be given explicit in the specific case that we are going to develop, see (A.29). ' they choose also υ9∆: let us fix in an arbitrary fashion υ " ∆.

In physical terms these choices correspond to focusing on the critical window in the limit of weak disorder. Cutting the integral at θ " ∆ is harmless (as we have discussed before), but of course only as far as ∆ is kept fixed.

McCoy and Wu are in the end just dealing (recall (A. and we remind the reader that L 1,C βc α pc βc xq has the explict expression (1.6). Therefore, up to two inessential constants we arrived at (1.28). We did not fully justify the equivalences in (A.20), but this is not really the main problem: the main unresolved mathematical issue is that what we are after is proving that, for a fixed (possibly extremely small) value of ∆, the leftmost term in (A.20) is a C 8 function of y at 0 and that the same expression is not analytic at zero. McCoy and Wu instead argue (and we prove in Theorem 1.7) that α Þ Ñ ş 1 0 L 1,C βc α pc βc xq dx has these properties: but this second statement does not imply the first.

We now complement our discussion with the analysis of the specific distribution chosen for the disorder law in [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF]. We also discuss more in detail the change of variable αpβq.

g 1

 1 pyq -y α´1 e ε 2y ˆż y 0 z ´1´α e ´ε 2z dz ˙" y α´1 e ε 2y ˜ż 8 1{y z ´1`α e ´εz 2 dz ¸-1 .

|I 3 | ď 2 ż 8 1{δ y α´1 e y ˆż 8 y`z´α `2|α|z ´α´1 ˘e´z dz ˙2 dy ď ż 8 1{δ e 3y{2 ˆż 8 ye

 38888 ´z dz ˙2 dy δOE0 ÝÑ 0 , (3.15) and (3.13) is proven.

|I 2 | ď 2 ż 8 δ y ´1e y ˆż 8 y" ż δ x{2 y ´1 ˆż y 0 ` 1

 8801 p1 `z´1 qe ´z dz ˙2 dy , (3.17)and the right-hand side is just a finite expression that depends on δ. On the other hand I 1 diverges as x OE 0. In fact observe that e ´2δ r I ď I 1 ď e 2δ r I , with r I :´Lσ,0 z ´1˘e ´px{2q 2 {z dz ˙2 dy ,(3.18) 

´x 2 ¯α ż 8 x{2 y α´1 e y`px{2q 2 {y ˆż 8 yzT 1 pxq " ´x 2 ¯α ż 8 0y α´1 e y ˆż 8 yz

 8888 ´αe ´z´px{2q 2 {z dz ˙2 dy ,(3.21) and the final result is that for α P p0, 2q ´αe ´z dz ˙2 dy ": q 1 pαqx α .

ż 8 x{2 u ´1´α e u ˆż 8 uv 1 |α| 3

 8813 ´1`α e ´v dv ˙2 du " px{2q α . (3.28) So T 2 pxq " Op1q for α ă 0.

Lemma 5 . 4 . 2 and | α| log 1{x ď A, ˇˇˇx α Γp1 `αq ´x´α Γp1 ´αq ˇˇˇě C 1

 5421 There exist A, C 1 , X ą 0 such that for all x P r0, Xs, α P C such that |α| ď 1 |α| x ´| α| .(5.19) 

  .79) whenever x P p0, X a s and |α| ď apπ{| log x|q, and |I n pxq| ď C ˆ| logp2{xq ´γ| aπ ˙n´1 , (5.80) for all n.

0 I n pxqdx ˇˇˇď ż 0 |I n pxq|dx ď 2C a e ´γ a n´1

 00 `eCν ´1˘Γ pn, ¯ q `pC ν `1q n , for 1 ď m ď n{3. Using this to bound the second term on the right-hand side of of Inequality (5.83) and bounding the other two terms similarly, we see that the integral in x from 0 to of the right-hand side of Inequality (5.83) admits a bound of order π ´n´1 Γpn, ¯ q{n 2 for large n. We also have ˇˇˇż

( 3 ) 8 0y 2 µ∆ 0 s ż 8 0y

 3828 Choosing ∆ 0 P p0, 1{εq we have sup ∆Pp0,∆ 0 s ż ∆ p dyq ă 8 , sup ∆Pp0,´1µ ∆ p dyq ă 8 . (6.15) Claim (1) is a byproduct of the proof of (1.21) [42, Theorem 11.2.3]. Claim (2) comes from the general theory of products of random matrices. Let us prove (3), and start by writing Y ∆ pn `1q " Z ∆ pn `1q upY ∆ pnqq , upyq " y `ε∆ 1 `ε∆y . (6.16)

|1 `z1 exppiθq| 2 and bpθq " 1 ´z2 1 |1 `z1 exppiθq| 2 ,

 12 β pθq is the Lyapunov exponent of the random matrix M β pθq :"

5 )

 5 McCoy and Wu claim that for every υ P p0, πq -our focus is on υ small -the function

2 ż 1 0L 1 ,

 211 18)) with the Lyapunov exponent p L ∆,βc`y∆ pc βc x∆q of the matrix (we perform the change of variable θ " x∆) ˆ1 c βc x∆ c βc x∆Z ∆ βc`y∆ Z ∆ βc`y∆ ˙. (A.19) But Theorem 6.1 (see also Theorem 1.6) tells us that p L ∆,βc`y∆ pc βc xq is asymptotically equivalent for ∆ small to ∆L 1,C βc α pc βc xq so that βc`y∆ pc βc xq dx " ∆ C βc α pc βc xq dx (A.20)

  Uniqueness of this invariant measure as well as ergodic properties can be established in a variety of ways: [29, Th. 5.1] gives a Pointwise Ergodic Theorem that one can directly apply to (2.14), and of course it implies uniqueness. Alternatively one can put (2.3) or (2.14) in natural scale via a time change and a scale function, see [36, Ch. V], and apply the Ergodic Theorem [36, Ch. V, Th. 53.1]. Ergodic properties of S are also given in

2 

pR, Rq, see e.g

[17, p.111

].

  `z´α ´|α|z ´α´1 ˘e´z dz ˙2 dy ":2 |α| Γp|α|qx α . (3.13)For this choose δ P p0, 1q and split the integral in y in (3.12) as ş 8 x{2 . . . "

	¯α ż 8	y α´1 e y	ˆż 8
	0		y
			ş δ x{2 . . .	`ş1{δ δ . . .	ş1{δ

  We anticipate (for future use) that the result we are going to obtain would be the same if 1 ´Lσ,0 z ´1 is replaced by L σ,0 z ´1 Again,

				2 {y	ˆż y	`1 ´Lσ,0 z	´1˘e ´z´px{2q 2 {z dz ˙2 dy .	(3.16)
					0
						ş y 0 . . . can be replaced by	ş 8 y . . . and it suffices
	the splitting	ş 8 x{2 . . . "	ş δ x{2 . . .	`ş8 δ . . . ": I 1 `I2 . In fact (recall that L σ,0 " op1q as x OE 0,
	in particular L σ,0 becomes smaller than one)
		sup		
		xPp0,2δq		

Table

  

	96
	1/10 3 1.14 2.04 2.85
	1/100 5 0.64 1.23 1.78 2.30 2.81
	1/1000 7 0.44 0.87 1.27 1.66 2.04 2.42 2.78

  pB 2j {p2jqqz 2j : the rational numbers B 2n are the Bernoulli numbers[32, §24.2]. By[32, 24.9.8] 

		.2] ψpzq	zÑ`8 " log z ´1{p2zq	ř8
	j"1 B 2n	nÑ8 " 2p´1q n`1 p2nq! p2πq 2n ,	(5.11)

  ´s is the Riemann zeta function[START_REF] Olver | NIST Digital Library of Mathematical Functions[END_REF] Section 25.2]. Then recalling the definition of θ 0 , this imples |rlogpx{2q ´γs ν n pxq ´θ0 pν n pxqq| " |γν n pxq `arg Γp1 `iν n pxqq| ď const. .53) as |θ 0 pν n pxqq ´nπ| ď const. x 2 this gives the desired bound and the proof of Lemma 5.8 is complete.We denote the residue of f x at ˘iν n pxq by ˘Rn pxq. Letting " 1, 2, . . . terms in the sum are bounded in the same way as the similar sum appearing in the proof of Lemma 5.5. Similarly, noting that 1{Γp´iν 1 pxqq " ´iν 1 pxqr1 ´iγν 1 pxq `Opν 2

	Noting that from Lemma 5.8 and [32, 5.7.4] we have
		´x 2	¯˘iν 1 pxq	" ´1 ˘iπ	γ logp2{xq	´γ	`O ˆ1 | log x| 4	˙,
		1 Γp1 ˘iν 1 q	" 1 ˘iγν 1 pxq	`O ˆ1 | log x| 2	˙,	(5.64)
	ψp1 ˘iν 1 pxqq " ´γ ˘ζp2qν 1 pxq	`O ˆ1 | log x| 2	˙,
	paying attention to cancellations, (5.62) gives
						r K iν 1 pxq pxq " i	L 2 pxq π	`O p1q ,	(5.65)
	where the k 1 pxqs ,	(5.66)
								5.51) we have
	|γ `ψp1 `iνq| ď	8 ÿ m"1	ν 2 mpm 2 `ν2 q	ď ν 2 ζp3q and so |γν `arg Γp1 `iνq| ď const.|ν| 3 ,
								(5.60)
	for all ν P R, where ζpsq :"	ř 8 m"1 m n 3 plog 1{xq 3 ,
								(5.61)
	and restating (5r K α pxq :" π 2 sin πα	8 ÿ k"0	"	px{2q α Γpk `1 `αq	rlogpx{2q ´ψpk `1 `αqs	px{2q
								´α	*
								Γpk `1 ´αq	rlogpx{2q ´ψpk `1 ´αqs	, (5.62)
	we have B Bα K α pxq " r K α pxq ´π cotpπαqK α pxq, and so
							R n pxq " x	K 1´iνnpxq pxq r K iνnpxq pxq	.	(5.63)

  1`iν 1 pxq and 1{Γp1 `iν 1 pxqq, and so X a s and |α| " apπ{| logp2{xq ´γ|q.Proof. From Lemma 5.8 we see that we can choose X a ă 2e ´γ such that ν 2 pxq ą apπ{| logp2{xq ´γ|q ą ν 1 pxq , (5.70) for all x P p0, X a s; then the quantity to be bounded is a continuous function of both α and x for all relevant values except x " 0, so we need only check that

	Noting that lim Γpr α{Lpxqq{Lpxq " 1{r α we also have
		xK 1´r α{Lpxq pxq	xOE0 " x	Lpxq 2r α	px{2q Lpxq r α Lpxq Γ ´r α ¯" e r ´1 α ;	(5.74)
	then						
			lim xOE0	xLpxq	K 1´r α{Lpxq pxq K r α{Lpxq pxq	"	2r α e 2r α ´1 ,	(5.75)
	which, recalling |r α| " aπ P pπ, 2πq, is indeed uniformly bounded.
	Recalling (5.68), we have				
						lim xOE0	L 2 pxqR 1 pxq " ´iπ ,	(5.76)
	and thus						
	lim xOE0	2iLpxqR 1 pxq	ν 1 pxq Lpxq ¯2 ´ν2 ´r α 1 pxq	" 2	π 2 α 2 ´π2 , r	(5.77)
		R 1 pxq "	´i	π rlogp2{xq ´γs 2	`O ˆ1 | log x| 4 ˙.	(5.68)
	Lemma 5.9. For any a P p1, 2q, There exist X a , C a ą 0 such that
	ˇˇˇx K 1´α pxq K α pxq	`2iR 1 pxq	ν 1 pxq α 2 `ν2 1 pxq	ˇˇˇă	C a | log 2{x ´γ|	,	(5.69)
	whenever x P p0, lim sup xOE0	ˇˇˇˇˇˇx Lpxq	K 1´r α{Lpxq pxq K r α{Lpxq pxq	`2iLpxqR 1 pxq	ν 1 pxq Lpxq ¯2 `ν2 ´r α 1 pxq	ˇˇˇˇˇˇ,	(5.71)
	is bounded uniformly for |r α| " aπ, where for brevity Lpxq :" log 2{x ´γ; in fact we will
	show that both terms in the sum are suitably bounded. In fact
	lim xOE0 ´x 2	¯r α{ log x	" e r α and lim xOE0	Γ ˆ1	`r α log x	˙" 1 ,	(5.72)
	and with (5.18) and (5.52) this implies that
				lim xOE0	K α{Lpxq pxq r Lpxq	"	e r α ´e´r α 2r α	.	(5.73)

  .[START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 `1[END_REF] 

	Assume moreover that for every c ą 0	
		lim ∆OE0	1 ∆	P `ˇZ ∆ ´1ˇˇą c ˘" 0 ,	(6.2)
	and	lim sup ∆OE0	ˇˇˇE r1{Z ∆ s ∆	´1	ˇˇˇă 8 .	(6.3)

Then if we consider the model (1.18)-(1.19) with the IID sequence tZ ∆ pnqu n"1,2,... generalized to an arbitrary IID sequence with common law satisfying (6.1)-(6.3), then (1.21) and (1.22) hold true.

  By[START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], the family tµ ∆ u ∆Pp0,∆ 0 s of probability measures is tight on p0, 8q. By (1) and [15, Th. 9.10 in Ch. 4], every weak limit of tµ ∆ u ∆Pp0,∆ 0 s is invariant for Y , whose unique invariant measure has the density p ε p¨q, implies that µ ∆ p dyq converges weakly to p ε pyq dy as ∆ OE 0. Then, The last term vanishes as ∆ OE 0 by weak convergence and uniform integrability from claim[START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. But also the first term in the right-hand side vanishes for the same reasons because

	p L Z ∆ pεq ∆	´Lσ,α pεq "	ż 8 0	ˆlogp1 `ε∆yq ∆	0 8 ´εy ˙µ∆ p dyq`ż	εy `µ∆ p dyq´p ε pyq dy ˘(6.25)
	ˇˇˇl og p1 `ε∆yq ∆	´εy ˇˇˇ"	ż y 0	∆ε 2 z 1 `∆εz	dz ď	d	ż y 0	ε dz	ż y 0	∆ε 2 z dz "	ε 3{2 ? 2	∆ 1{2 y 3{2 , (6.26)
													). By (1.18)-(1.19) and iterating
	we obtain										
				log X ∆ 1 pnq " log X ∆ 1 pn ´1q `log `1 `ε∆Y ∆ pn ´1q	"
									log X ∆ 1 p0q	`n ÿ	log `1 `ε∆Y ∆ pi ´1q ˘.	(6.23)
													i"1
	Following [3, Th. 4.3 in Ch. III], we express the Lyapunov exponent
	p L Z ∆ pεq " lim nÑ8	1 n	log }X ∆ pnq} " lim nÑ8	1 n	log X ∆ 1 pnq
		(6.23) " lim nÑ8	1 n					

n ÿ i"1 log `1 `ε∆Y ∆ pi ´1q

˘" ż 8 0 log p1 `ε∆yq µ ∆ p dyq . (6.24)

∆ , (1.17)
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We have got to:

(3.33)

Therefore only T 2 contributes to the final result for α ą 2. Otherwise only T 1 contributes, except at α " 0 and 2 where they both contribute and exactly with the same amount:

(3.34)

The final result, i.e. (1.15), is recovered by dividing by K α pxq and using K α pxq "

x ´|α| Γp|α|q{2 1´|α| for α ‰ 0 and K 0 pxq " logp1{xq. The constant Cpαq in (1.15) is

with q 1 pαq given in (3.22). The proof of Proposition 1.5 is therefore complete. In view of (1.12) we just consider α ě 0. We treat first the non integer case.

The case α P p0, 8qzN. By the connection formula with the other modified Bessel function I α pxq, we have [32, 10.27.4] and [32, 10.25.2]

sends tpx, yq : y ě |x|u into tpx, yq : y ě p1 ` q|x|u, uniformly in β ą 0 and E 2 . Elementary arguments show that this result is only slightly perturbed if we consider θ P rπ ´δ, πs with δ sufficiently small. This uniform cone property implies the real analyticity of β Þ Ñ L MW β pθq with a convergence radius that is bounded away from zero uniformly in θ P rπ ´δ, πs and β ą 0.

Therefore the true issue is the regularity (or lack of it) of

for a υ ą 0 that can be chosen as small as one wishes. At this point McCoy and Wu claim that the only non analytic point of the map in (A.9) can be at β c defined by

To see that this is the only possible candidate, McCoy and Wu point out that ap0q " 0, bp0q "

and so L M W β p0q " max p0, 4βE 1 `2E rlog tanh βE 2 sq (A.13) for β real. This admits an analytic extension in a neighborhood of any positive β except for β c . This is of course far from being close to a proof, since one has to control the integral over θ P p0, υq and not the value in zero. But McCoy and Wu perform also a more subtle analysis that can be understood precisely via the diffusion limit of matrix products that is at the center of our analysis. To explain this let us make a further manipulation to match more sharply our framework.

In fact, as it stands, M β pθq, cf. (A.2), is not of the form (1.1). But by noting that 1 a 2 pθq `b2 pθq " p1 `z1 q 4 p1 ´z2 1 q 2 `Opθ 2 q " ˆ1 `z1 1 ´z1 ˙2 `Opθ 2 q " e 4βE 1 `Opθ 2 q , (A.14) and a a 2 pθq `b2 pθq " ´2 ˆ1 `z1

if we let r ε :" 2z 1 p1 ´z1 q 2 θ , (A. [START_REF] Fisher | Critical behavior of random transverse-field Ising spin chains[END_REF] we see that to leading order as θ OE 0 ˆ1 ´r ε ´r ελ e 4βE 1 λ ˙(A.17) is M β pθq. The matrix in (A.17) is of the form (1.1) up to a conjugation and a change of variables: in fact ˆ1 ε εZ Z [START_REF] Mccoy | Theory of a two-dimensional Ising model with random impurities[END_REF][START_REF] Mccoy | The Two-Dimensional Ising Model[END_REF]. McCoy and Wu consider the disordered variable λ " tanh 2 pβE 2 q that depends on a parameter that they call N and it is large: in fact ∆ " N ´2 .

Analysis of the distribution chosen by McCoy and Wu

(A.21) The density of λ is supported on p0, λ 0 q and equal to Nλ ´N 0 y N´1 for y P p0, λ 0 q. Necessarily λ 0 " λ 0 pβq " tanh 2 pβE 2 q, with E 2 the maximum value that the random variable E 2 can reach. The density of Z " Z N (recall that Z is defined in (A.18)) is therefore

Note that for every ν P p´N, 8q

and we want to solve for α " αpβq ‰ 0 the equation

On one hand we compute logpλ 1 pβqq "

and a straightforward computation yields E " log tanh 2 pβE 2 q ‰ " log tanh 2 pβE 2 q ´1 N , (A.26) so for β close β c we have

On the other hand from (A.24) we see that if α is fixed (so we look at β as a function of α) we have

By comparing (A.27) and (A.28) we see that if pβ ´βc qN 2 " Op1q then

On the relation between β and α. Here are the details of the important map that relates β and α:

Lemma A.2. Assume that the support of the random variable E 2 is bounded away from zero, so Z " expp4βE 2 q tanh 2 pβE 2 q is supported on a compact subinterval of p0, 8q. Assume also that E 2 is not constant. Then the equation

has a unique real solution α for every β ą 0. This defines a map β Þ Ñ αpβq from p0, 8q to R. This map is decreasing, hence it is a bijection, and it is real analytic.

Proof. Let f : R ˆp0, 8q Ñ R be the function defined by f pα, βq :" ErZ α s´1 α , for α P Rzt0u for α ‰ 0, and f p0, βq :" Erlog Zs. It is straightforward to see, using the support properties of E 2 , that f is real analytic on its entire domain. Then we observe that, for fixed α, Z α is an increasing function of β and, by the support properties, this implies that B β f pα, βq ą 0 for every β ą 0 and α P R. On the other hand if we set g β pαq " E rZ α s ´1 we have that B α f pα, βq " pαg 1 β pαq ´gβ pαqq{α 2 . But g β p¨q is (strictly) convex and g β p0q " 0: so αg 1 β pαq´g β pαq ą 0 for α ‰ 0 and therefore B α f pα, βq ą 0 for α ‰ 0. For α " 0 it suffices to perform a Taylor expansion of g β pαq at α " 0 to see that B α f pα, βq| α"0 " g 2 β p0q{2 ą 0. The proof is completed by applying the Implicit Function Theorem for real analytic functions [START_REF] Krantz | A primer of real analytic functions[END_REF].