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Introduction and setting

In computer science, one of the most well-known sorting algorithms is Quicksort [START_REF] Hoare | Algorithm 64: Quicksort[END_REF]5]. The input of this algorithm is a set of distinct reals. Choosing a pivot element of it, the set is partitioned into the left set of strictly smaller elements, the right set of strictly larger elements than the pivot and the pivot between the sets. Then the algorithm proceeds independently with each subset until it terminates. Standard Quicksort [START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Roesler | A limit theorem for "Quicksort[END_REF] draws by random an element with a uniform distribution, the 2k + 1-median version of Quicksort [START_REF] Volker Bruhn | Methode zur asymptotischen Behandlung einer Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus[END_REF] fixes some natural number k and takes as pivot the median out of 2k + 1 randomly chosen elements of the set.

The random 2k + 1-median Quicksort [START_REF] Okasha | Random Quicksort on Nonnegative Integers[END_REF] uses a random but bounded k. Instead of the median one might take the r-th smallest of the k-sample, called the (k, r)-Quicksort. We include also the random version picking (k, r) by random with the same distribution for each recall of the algorithm.

Important for practical reasons is the performance time of an algorithm. The time depends on many variables [START_REF] Sedgewick | The analysis of Quicksort programs[END_REF], the programming, the architecture of the computer and so on. The sole number of comparisons gives an indication for the performance time. For many Quicksort versions the comparison numbers have been extensively studied in numerous papers, the expectation, variance and more advanced the distribution; see for instance [START_REF] Roesler | A limit theorem for "Quicksort[END_REF][START_REF] Okasha | Asymptotic distributions for Random Median Quicksort[END_REF][START_REF] Wild | Neininger Average case and distributional analysis of dualpivot Quicksort[END_REF] and the references therein. Using the 2k + 1-median Quicksort the expected number of comparisons decreases with k up to the asymptotic information theoretic bound. Choosing k = k n optimal or nearly optimal versions for the expected number of comparisons are known [START_REF] Martínez | Optimal sampling strategies in Quicksort and Quickselect[END_REF].

The partial sorting algorithm, first proposed and analyzed in [START_REF] Martínez | Partial quicksort[END_REF], asks for sorting only the l (or l 1 to l 2 ) smallest elements out of n distinct numbers. Basically find with Quickselect, sometimes also called Find e.g. [START_REF] Knof | The Analysis of Find and Versions of it[END_REF], first the l smallest elements and then sort them by some Quicksort version. A variant is to split always the left most remaining set, if necessary. This algorithm provides the first l smallest successively, first the smallest, than the second smallest and so on until the l-th smallest. Notice if we want the l + 1 smallest elements sorted, we will make first the necessary splittings for the l smallest and then might add some comparisons in order to find the l + 1 smallest. This observation leads to the algorithm Quicksort on the fly. It provides first the smallest, then second smallest, and so on until the whole set is sorted. Depending on the Quicksort version we use standard, 2k + 1-median, (k, r) and so on Quicksort on the fly. The (k, r)-version includes all others. For standard Quicksort on the fly see [START_REF] Martínez | Partial Quicksort and Quickpartitionsort[END_REF][START_REF] Ragab | The Quicksort process[END_REF].

The Quicksort on the fly algorithm provides values coming in at times X(n, l) connected to l. With the right normalization we obtain in the limit a process, we call it the Quicksort on the fly process [START_REF] Ragab | The Quicksort process[END_REF][START_REF] Roesler | Almost sure convergence to the Quicksort process[END_REF].

The aim of this paper is twofold. The first goal is to present and analyze the (k, r)-Quicksort on the fly process. The second one is to present the method of obtaining these results, which seems to be of interest in its own. We give more details at the end of the introduction.

We come now to the details and results. The input is a set S of distinct numbers. If S has strictly less than n 0 elements then sort S by some reasonably procedure, like standard Quicksort. If S has at least n 0 elements choose the pivot by the (k, r)-Quicksort version and find S < (S > ) the set of strictly smaller (larger) elements of S by comparing with the pivot. (Some sets might be empty.) The Let X(S, l), l = 1, 2, . . . , |S| denote the number of comparisons made up to the event when the l smallest elements of S are determined by (k, r)-Quicksort on the fly. For |S| ≥ n 0 the random variable (X(S, l))

|S| l=1 satisfies the recursions (X(S, l)) |S| l=1 = W (S) + X(S < , l ∧ |S < |) + 1 1 Z(S)<l X(S > , l -Z(S)) |S| l=1 (1)
The random variable W (S) counts the comparisons for finding the pivot and for the splitting. 1 1 A is the indicator function of A and ∧ (∨) denotes the infimum (supremum). Z(S) = |S < |+1 denotes the rank of the pivot within S. Notice W (S) -|S| + 1 is non negative and bounded above by a constant, e.g. n 0 !.

Every time recalling the algorithm we take new, independent random variables. This implies W (S), Z(S) are independent. Given the splitting the X-rvs on the right of (1) are independent and independent of W (S), Z(S). The distribution of (W (S), Z(S)) depends only on the size of S. It is easy by induction on |S| to show the distribution of (X(S, l)) |S| l=1 depends only on the size |S| = n of the input set S. Considering equation (1) only as an equation for distributions we obtain from [START_REF]Patrick Billingsley Convergence of Probability Measures[END_REF] 

for n ≥ n 0 (X(n, l)) n l=1 d =(W n + X 1 (Z n -1, l ∧ (Z n -1)) + 1 1 Zn<l X 2 (n -Z n , l -Z n )) n l=1 (2) d = denotes equality in distribution and we used (W n , Z n ) d =(W (|S|), Z(|S|)), X(S, l) d =X(|S|, l). The random variables (Z n , W n ), X j (i, •), j ∈ IN ≤2 , i ∈ IN <n are independent. X j (i,
•) has the same distribution as the process X(i, •). The distribution of X(n, •) for 0 ≤ n < n 0 is fixed and given in advance. (For notational reasons put X(0, 0) = 0. The expected number a(n, l) := E(X(n, l)) satisfies the recurrence

a(n, l) d =E(W n ) + n i=2 P (Z n = i)(a(i -1, l ∧ (i -1)) + 1 1 l>i a(n -i, l -i)) (3) 
for n ≥ n 0 . Our first main result Corollary 3 (of Theorem 2) for the (k, r)-Quicksort on the fly gives the asymptotic

a(n, l) = αl ln l + (n + 1)b l n + o(n) (4) 
α := 1 0 (-x ln x -(1 -x) ln(1 -x)) g(x)dx -1 (5) 
with g the density of the limiting distribution of Zn n . b is the unique fixed point of the operator B on continuous functions on the unit interval

B(f )(t) = 1 t f t x g(x)dx + t 0 f t -x 1 -x g(x)dx + c β (t) (6) c β (t) = α t 0 (t -x) ln(t -x) + x ln x -t ln t + x β α g(x)dx + 1 ( 7 
)
The β is some unknown constant, depending on the starting values a(n, •), 1 ≤ n < n 0 . The fixed point b depends on the unknown β. For standard Quicksort on the fly Martínez [START_REF] Martínez | Partial quicksort[END_REF][9] provided an exact formula for a(n, l).

The first main result Theorem 2 provides a general method to analyze recursions like this. It is a (simple) case of the contraction method, originally invented by Roesler for recursions in distribution, see later. The argument is a reduction to a fixed point theorem, Section 2. This was possible by knowing already the asymptotic of a(n, n). Then we can put a(n, n) to the cost function c and face a strict contraction in the limit, the operator B.

The term a(n, n) is the expected number of comparisons sorting the whole set of n numbers by (k, r)-Quicksort. In Corollary 1 we will show the asymptotic of a(n, n)

a(n, n) = α(n + 1) ln(n + 1) + β(n + 1) + o(n) (8) 
with β the unknown constant. This result is also new. For stansdard and 2k + 1-median Quicksort the (correct) asymptotic of a(n, n) was known [START_REF] Volker Bruhn | Methode zur asymptotischen Behandlung einer Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus[END_REF][START_REF] Roesler | On the analysis of stochastic divide and conquer algorithms[END_REF].

We turn now to the limit behavior of (X(n, l)) l as a process. Normalize X(n, •) by

Y n ( l n ) := X(n, l) -a(n, l) n + 1 (9) 
for l = 1, . . . , n ∈ IN . Then for n ∈ N, the process Y n satisfies the recursion

(Y n ( l n )) l d = 1 1 Zn>1 Z n n + 1 Y 1 Zn-1 ( l Z n -1 ∧ 1) +1 1 Zn<l (1 - Z n n + 1 )Y 2 n-Zn + C n (l, Z n ) l (10) 
C n (l, Z n ) := 1 n + 1 W n -a(n, l) + 1 1 Zn>1 a(Z n -1, l ∧ (Z n -1)) + 1 1 Zn<l (a(n -Z n , l -Z n )) (11) 
The rvs Y 1 , Y 2 and Z n are independent. The rvs Y 1 i , Y 2 i have the same distribution as Y i . Next we extend the process Y n to the process Y n (t) := Y n ( nt n ) on [0, 1] with values in D -. D -is the vector space of left continuous functions f : [0, 1] → R with existing right limits and some convention for f (0), see [START_REF]Patrick Billingsley Convergence of Probability Measures[END_REF]. We take f (0) = f (0+) the right limit of f at 0.

The contraction method, coined by Roesler [START_REF] Roesler | Rüschendorf The contraction method for recursive algorithms[END_REF], is a method to treat recursions in distribution. The first step is to characterize the limit as a solution of a stochastic fixed point equation (SFPE) and give a representation by random variables on a tree, (see Section 3 on the weighted branching process (WBP)). The second step consists of choosing suitable random variables on the same tree and use probabilistic convergence results for the convergence to the limit. The advantage of the contraction method is the possibility of using different concepts of convergence for each step. This is the case here.

We explain it here roughly for our setting. Suppose the random variable Y n (here processes on D -) converges in some sense to a process Y . Then we might guess from the recursion that Y satisfies a SFPE, for more information see Section 3,

Y d = U Y 1 ( t U ∧ 1) + 1 1 U ≤t (1 -U )Y 2 ( t -U 1 -U ) + c(t, U ) t (12) c(t, x) := α1 1 x≤t ((t -x) ln(t -x) + x ln x -t ln t) +β1 1 x≤t + 1 1 x>t xb( t x ) + 1 1 x≤t (1 -x)b( t -x 1 -x ) -b(t) + 1 (13) 
The distribution of U, the limiting distribution of Zn n , is a mixture of Beta-distributions, see [START_REF] Roesler | The weighted branching process[END_REF]. b ∈ D -is the unique bounded solution of the fixed point equation for B (6) and

c(t, U ) is the limit of C n (l n , i n ) as n → ∞ with ln n → t, in n → x. The rvs Y 1 , Y 2 and U are independent. The rvs Y 1 , Y 2 have the same distribution as Y with values in D -.
Some contraction argument on a Banach space will show the existence of Y . (Similar to the expectation we use some knowledge on Y n (1) in order to create a strict contraction, Section 3.) We do not know of a contraction argument on a Banach space for the Y n process. Instead we had to take specific versions of the Y n , Y such that Y n converges to Y . The convergence, our second main result [START_REF] Knof | The Analysis of Find and Versions of it[END_REF], is path wise in Skorodhod-J 1 metric almost surely. The Skorodhod metric is not complete and not a norm. But since we have a limiting process Y available, it suffices to show Y n is close to Y in the metric.

Is there a natural version of our (k, r)-Quicksort on the fly algorithm such that some Y n converges nicely to some Y ? Actually there is and these are the Y n and Y used in our more abstract construction. We started describing Quicksort by taking some pivot, thinking of a random one drawn. Suppose the input of n different numbers comes in as an array of n different numbers, where we have a uniform distribution on all permutations of the array [START_REF] Knuth | The Art of Computer Programming[END_REF]. Then it suffices to take always the k first elements in the array for finding the pivot. For more details see the discussions in [START_REF] Roesler | A limit theorem for "Quicksort[END_REF] for standard Quicksort and [START_REF] Ragab | The Quicksort process[END_REF][START_REF] Roesler | Almost sure convergence to the Quicksort process[END_REF] for the process.

Finally the reader might ask why the contraction method in connection with the WBP works. The construction via the WBP becomes easier to understand considering the tree degenerated to one branch. Let Y i , i ∈ IN, be independent identically distributed random functions with a Lipschitz constant strictly smaller 1 on a complete metric space. Then

Y n • Y n-1 • . . . Y 1 (x) will converges for every x in distribution to the (unique) stochastic fixed point solution X d =Y • X.
Drawing that sequence we obtain a nice picture of the support of the X-distribution. On the other hand in the reverse order Y 1 • Y 2 • . . . Y n (x) will converge for every x almost surely to the same random variable X satisfying X = Y 1 • X. Since this X is independent of Y 1 it solves also the stochastic fixed point equation.

The expectation of Quicksort on the fly

In this section we will find the asymptotic of the expectation a(n, l) = E(X(n, l)) for the (k, r)-Quicksort on the fly.

We start with the asymptotic of a(n, n), sorting the whole input. The sequence satisfies the recursions (3)

a(n, n) = E(a(Z n -1, Z n -1)) + E(a(n -Z n , n -Z n )) + E(W n ) ( 14 
)
for n ≥ n 0 . Z n , W n are independent random variables. The W n is bounded 0 ≤ W n -n + 1 ≤ n 0 ! and the values a(i, i), 1 ≤ i < n 0 given in advance. The distribution of Z n is determined by the choice of the pivot. If (k, r) is a constant then n 0 = k and

P (Z n = i) = k r r(i -1) r-1 (n -i) k-r 1 (n) k (15) with (m) l = m(m -1)(m -2) . . . (m -l + 1). The distributional limit of Zn n = U has a Beta(r, k -r + 1) distribution with density k r rx r-1 (1 -x) k-r .
For the random version let ν be the distribution of (k, r) with bounded support and take

P (Z n = i) = k,r ν(k, r) k r r(i -1) r-1 (n -i) k-r 1 (n) k (16) 
The limit of Zn n = U has the distribution k,r ν(k, r)Beta(r, k -r + 1), a mixture of Betadistributions. The n 0 is the largest value of the random variable k.

Lemma 1. The expectation a(n, n) for the (k, r)-Quicksort on the fly is asymptotically

a(n, n) = α(n + 1) ln(n + 1) + β(n + 1) + o(n) ( 17 
)
The α is given in (5) and β is some constant depending on the starting values a(i, i) for i < n 0 .

Proof: Define the measure µ n by

µ n (i) := i n + 1 (P (Z n = i) + P (Z n = n + 1 -i))
µ n is a probability measure since

i µ n (i) = i i n + 1 P (Z n = i) + j n + 1 -j n + 1 P (Z n = j) = 1
The sequence b n+1 := an n+1 satisfies for n ≥ n 0 the recursion

b n+1 = E(b Zn Z n n + 1 ) + E(b n+1-Zn n + 1 -Z n n + 1 ) + E(W n ) n + 1 = i b i µ n (i) + E(W n ) n + 1 = E(b Zn ) + E(W n ) n + 1 ( 18 
)
where Zn has distribution µ n . Recurrences like this were treated in [START_REF] Roesler | On the analysis of stochastic divide and conquer algorithms[END_REF] and we follow the proposed path. The sequence d n+1 := b n+1 -α ln(n + 1) with α from (5), satisfies for n ≥ n 0 the recursion

d n+1 = E(d Zn ) + E(W n ) n + 1 + αE(ln Zn n + 1 )
Simple calculation shows

E(ln Zn n + 1 ) = E( Z n n + 1 ln Z n n + 1 ) + E( n + 1 -Z n n + 1 ln n + 1 -Z n n + 1 ) → n E(U ln U + (1 -U ) ln(1 -U )) = E ln Ũ = -1 α
and Zn n converges in distribution to some Ũ with distribution

k,r ν(k, r)( Beta(r + 1, k -r + 1) r k + 1 + Beta(k -r + 2, r) k + 1 -r k + 1 )
We obtain

d n+1 = E(d Zn ) + r n r n := E(W n ) n + 1 -1 + α(E(ln Zn n + 1 ) -E(ln Ũ ))
The Lemma 1 will follow from Theorem 1 in [START_REF] Roesler | On the analysis of stochastic divide and conquer algorithms[END_REF]. It is easy to verify for our case the assumptions I to V there, which are stated there in a more general setting. It remains to show the crucial condition

n sup i≥n |r i | n < ∞. ( 19 
)
It suffices to show [START_REF] Roesler | Branching Processes and Their Applications 219[END_REF] for all (k, r)-Quicksort versions for fixed (k, r) ∈ IN ×IN . By additivity and symmetry it suffices to show [START_REF] Roesler | Branching Processes and Their Applications 219[END_REF] for r n replaced by

s n := |E( Z n n + 1 ln Z n n + 1 ) -E(U ln U )| (20) 
We will show s n is of the order ln n n . Then the proof of the lemma is complete. Estimate s n by

s n ≤ i |P (Z n = i) -E(1 1i-1 n <U ≤ i n )|| i n + 1 ln i n + 1 | + i k r r i n i-1 n x r-1 (1 -x) k-r | i n + 1 ln i n + 1 -x ln x|dx =: I + II
Notice the function f (x) = x ln x is continuous and bounded for x ∈ [0, 1]. For I argue with some suitable function fct

I ≤ f ∞ i |P (Z n = i) -E(1 1i-1 n <U ≤ i n )| ≤ f ∞ | k r r i | i n i-1 n ((i -1) r-1 (n -i) k-r n (n) k -x r-1 (1 -x) k-r )dx| ≤ f ∞ k r r i i n i-1 n (( i n ) r-1 + r-2 j=1 ( i n ) r-1-j f ct(j, r -1) n j ) (( n -i n ) k-r + k-r j=1 ( n -i n ) k-r-j f ct(j, r -1) n j ) n k (n) k -x r-1 (1 -x) k-r dx ≤ f ∞ k r r i i n i-1 n ( i n ) r-1 ( n -i n ) k-r n k (n) k -x r-1 (1 -x) k-r dx +O( 1 n ) ≤ O( 1 n ) 
For II the standard estimate of the modulus of continuity

sup |x-y|≤ |f (x) -f (y)| ≤ sup x |f (x)| = sup x |1 + ln x| = ∞
will not work. By the unimodality of the function f it suffices for the term II to consider

sup 1≤i≤n |f ( i -1 n ) -f ( i n )| = |f (0) -f ( 1 n )| = ln n n
We obtain

II ≤ k r r i i n i-1 n x r-1 (1 -x) k-r ln n n dx = ln n n q.e.d.
We present now a general result on double indexed sequences in a slightly more abstract setting. This might be of general interest. At the end of this section we explain the connection to the asymptotic of the expectation in the Quicksort setting.

Let b(n, l), n, l ∈ IN, 1 ≤ l ≤ n be a double indexed sequence satisfying a recursion like

b(n, l) = n i=l+1 µ n (i)b(i -1, l) + l-1 i=1 µ(i)b(n -i, l -i) + c(n, l) (21) 
for n ≥ n 0 ∈ IN. µ n (i), µ(i), c(n, l) are real valued. Let C be the set of continuous function on the unit interval. We shall assume

• Ass1 There exists a c ∈ C such that sup l |c(n, l) -c( l n )| → n→∞ 0. • Ass2 There exist a g ∈ C such that n i=1 |µ n (i) -ν n (i)| → n→∞ 0 where ν n (i) := i n i-1 n g(x)dx. • Ass3 There exist a g ∈ C such that n i=1 |µ n (i) -ν n (i)| → n→∞ 0 where ν n (i) := i n i-1 n g(x)dx. • Ass4 1 0 |g(x)| ∨ |g(x)|dx < 1. Define the operator B : C → C by B(f )(t) := 1 t f ( t x )g(x)dx + t 0 f ( t -x 1 -x )g(x)dx + c(t) (22) 
The linear operator A, defined by A(f ) = B(f ) -c, is a strict contraction on the Banach space C endowed with the supremum norm • ∞ . The operator norm A op of A is bounded by

A op ≤ 1 0 |g(x)| ∨ |g(x)|dx < 1.
Notice if g and g are non negative then we have equality. The operator B has a unique fixed point b given by b = ∞ n=1 A n c + c, where A n is the n-th iteration of A. 

(i)- ν n (i)| + n i=1 |µ n (i) -ν n (i)| is o(1). We obtain for n ≥ n 0 d n ≤ sup l ( n i=l+1 |µ n (i)|d i-1 + l-1 i=1 |µ(i)|d n-i ) + sup l ( n i=l+1 |µ n (i) -ν n (i)||b( i -1 l )| + l-1 i=1 |µ n (i) -ν n (i)||b( n -i n -l )|) + sup l n i=l+1 i n i-1 n |b( l i -1 ) -b( l nx )|g(x)dx + sup l l-1 i=1 i n i-1 n |b( l -i n -i ) -b( l -nx n -nx )|g(x)dx +(sup l |ν n (l)| + sup l |ν n (l))| b ∞ + sup l |c(n, l) -c( l n )| ≤ sup l ( n i=l+1 |ν n (i)|d i-1 + l-1 i=1 |ν n (i)|d n-i ) + sup l ( n i=l+1 |µ n (i) -ν n (i)|d i-1 + l-1 i=1 |µ n (i) -ν n (i)|d n-i ) + b ∞ o(1) + o(1) ≤ d * n-1 ( n i=1 |ν n (i)| ∨ |ν n (i)| + o(1)) + o(1) ≤ d * n-1 ( 1 0 |g(x)| ∨ |g(x)|dx + o(1)) + o(1)
We 

+(d + o(1))( n i=1 1 1 i<nδ ν n (i) + n i=1 1 1 n-i>nδ ν n (i)) + o(1) ≤ d * n-1,δ ( 1 0 |g(x)| ∨ |g(x)|dx + o(1)) + o(1) + rest(δ)
The term rest(δ) is independent of n and converges to 0 as δ converges to 0. We obtain lim sup

n d * n,δ = lim sup n d n ≤ lim sup n d * n,δ 1 0 |g(x)| ∨ |g(x)|dx + rest(δ)
For δ sufficiently small we obtain lim sup n d n = 0. q.e.d. We return now to the (k, r)-Quicksort on the fly setting. The expectation a(n, l) = E(X(n, l)), l ≤ n ∈ IN, satisfies the recursion

a(n, l) d =E(a(Z n -1, l ∧ (Z n -1)) + 1 1 l>Zn a(n -Z n , l -Z n )) + E(W n ) (23)
for n ≥ n 0 . (For notational reasons put a(0, •) = 0 if necessary.) We will rewrite the equation in terms of b(n, l) := a(n, l) -αl ln l n + 1 α given in (5). Important in the following is to replace a(n, n) by its asymptotic. We obtain with some calculation

b(n, l) = E(1 1 Zn>l Z n n + 1 b(Z n -1, l)) +E(1 1 Zn<l n + 1 -Z n n + 1 b(n -Z n , l -Z n )) + c β (n, l) c β (n, l) := αE(1 1 Zn<l ( l -Z n n + 1 ln l -Z n n + 1 + Z n n + 1 ln Z n n + 1 - l n + 1 ln l n + 1 )) +βE(1 1 2≤Zn≤l Z n n + 1 ) + 1 + o(1)
Since Zn n+1 converges in distribution to some U (with a density g) we obtain Proof: The statement follows from Theorem 2 and some easy calculations.

lim n→∞ c β (n, nt ) = αE(1 1 U ≤t (U ln U + (t -U ) ln(t -U ) -t ln t)) +βE(1 1 U ≤t U ) + 1 = c β (t) c β from (7).
3 The Weighted Branching Process.

In this section we present the weighted branching process [START_REF] Roesler | The weighted branching process[END_REF][START_REF] Roesler | Branching Processes and Their Applications 219[END_REF]. It is the underlying structure to construct the stochastic process Y satisfying a stochastic fixed point equation [START_REF] Roesler | A fixed point theorem for distributions[END_REF]. Iterating the stochastic fixed point equation we obtain a random variable R n + Q n with distribution K n (µ), µ the starting distribution, such that Q n will converge to 0 and R n will converge to a version of Y . Let V be the Ulam-Harris tree IN * = ∪ ∞ n=0 IN n of all finite sequences of natural numbers including the empty sequence denoted by the empty set ∅. (By convention IN 0 = {∅}.) V is a rooted tree with root ∅ and the edges (v, vi), v ∈ V, i ∈ IN, in graph theoretical sense. For v ∈ V we use the standard notation

v = ∅ or v = (v 1 , v 2 , v 3 , . . . , v n ) = v 1 v 2 .
. . v n dropping the root. |v| denotes the length of the vector v, |∅| = 0. We use

v |i = v 1 v 2 . . . v i for IN i ≤ |v|. For ∅ = v, w ∈ V let vw = v 1 v 2 . . . v n w 1 w 2 . . . w |w| . We extend this notation to V by the convention ∅v := v = v∅ for v ∈ V. The paths in V are (v, vw), v, w ∈ V, w = ∅. We use V n for v ∈ V of length n ∈ IN 0 and V ≤n , V <n appropriate.
On every knot v ∈ V we put a weight C v with values in H and on every path (v, vw), v, w ∈ V, w = ∅ a weight L v,vw : H → H. The path weights, adding conventional the identities L v,v , v ∈ V, are compatible in the sense

L v,vwx = L vw,vwx • L v,vw
for all v, w, x ∈ V. More detailed, every path weight L v,vw is obtained following the path from v to vw and linking the corresponding edge maps L v,vi :

H → H L v,vw = L vw ||w|-1 ,vw • L vw ||w|-2 ,vw ||w|-1 • . . . • L v,vw 1
We call this the forward view. Later we will also consider the backward view, following the path backwards from vw to v and linking the edge weights to obtain the recursion

L v,vwx = L v,vw • L vw,vwx .
A weighted branching process (WBP) is the tree V with independent and identically distributed random variables ((L v,vi ) i∈IN , C v ) v∈V . Notice C v is independent of the σ-field A n generated by all L w,wi , C w , for w ∈ V <|v| , i ∈ IN.

Ex: Stick breaking. Let H be the set of half open intervals (a, b], 0 ≤ a ≤ b ≤ 1 including the empty set. Let U be a random variable with values in (0, 1) and let

L 1 ((a, b]) := (a, a + U (b -a)] L 2 ((a, b]) := (a + U (b -a), b]
and L i ≡ ∅ for i ≥ 3, C ≡ ∅. Take independent copies and the forward path weights L v,vw . Consider the intervals L v,vw ((0, 1]) =: I v,vw , w ∈ V. For fixed v and m the intervals I v,vw , w ∈ V m are disjoint and the union is the unit interval (0, 1]. Following a path (v, vw) up to infinity I v,vw will converge to a point in [0, 1], the boundary of V almost surely.

In the sequel we need a specific discrete version of the stick breaking example. Ex: Discrete stick breaking. (See Section 4). Let U n , n ∈ IN, be random variables with values in { 1 n+1 , 2 n+1 , . . . , n n+1 } and let J i , i = 1, 2 be random maps IN 0 → IN 0 such that J i (n) < n for all i, n ∈ IN, J i (0) = 0. Define H as H × IN extended by a grave (here = ∅), once in the grave forever in the grave. Let

L 1 ((a, b], n)) := ((a, a + U n (b -a)], J 1 (n)) L 2 ((a, b], n)) := ((a + U n (b -a), b], J 2 (n))
and L i ≡ ∅ for i ≥ 3, C ≡ ∅. By convention put ((a, b], 0) as the grave for all (a, b] ∈ H. Take independent copies ((

U v n ) n , (J v,vi ) i ) of ((U n ) n , (J i ) i ) and define L v,vi : H → H appropriate. Consider the intervals L v,vw ((0, 1], n) =: I v,vw n
, w ∈ V for the forward view. For fixed v and n, m the intervals I v,vw n , w ∈ V m are disjoint (they may be empty) and the union is the unit interval (0, 1]. Following a path (v, vw) up to infinity I v,vw n for fixed n will converge to the grave, the empty set.

A stochastic fixed point equation (SFPE) is an equality of probability measures, usually written in terms of random variables,

X d =f ((X i ) i∈IN )
where f, X 1 , X 2 , . . . are independent and all X i have the same distribution as X. We will use the sum version

X d = i∈IN T i (X i ) + C (24) 
Here ((T i ) i∈IN , C), X j , j ∈ IN are independent random variables. The distribution of ((T i ) i∈IN , C) is known. All X j have the same distribution as X. X takes values in a vector space H and T i : H → H is a linear operator. This specification belongs to our definition of a SFPE and we will not repeat it every time.

Every SFPE give raise to a WBP. Create the WBP by taking independent copies ((L v,vi ) i∈IN , C v ), v ∈ V, of ((T i ) i∈IN , C) and define the backward path weights by induction.

Define the random variable

R v n := w∈V<n L v,vw • C vw for n ∈ IN, v ∈ V. The R v n random variables satisfy the recursion R v n = i∈IN L v,vi (R vi n-1 ) + C v v ∈ n ≥ 2.
Under suitable conditions R v n converges almost surely to a limit R v satisfying the SFPE (24) with equality. We specify this. Let • p be the L p -norm for p ≥ 1. For a Banach space (B, • ) let F p (B) denote the Banach space with norm

• p of all random variables Y with values in B and finite norm Y p < ∞. Under a contraction condition the existence of a stochastic fixed point follows by the following Lemma. Lemma 4. We use the setting as above. Let H be a Banach space (B, • ) and p > 1. Assume C ∈ F p (B) and there exists a contraction constant a < 1 such that

i∈IN T i (Y i ) p ≤ a Y p for independent random variables ((T i ) i ), Y j , j ∈ IN . The Y j have the same distribution as Y ∈ F p (B). Then R v
n is a Cauchy sequence in F p (B) and converges to a limit called R v . The limit satisfies almost everywhere

R v = i∈IN L v,vi (R vi ) + C v and satisfies the SFPE R v d = i∈IN L v,vi (R vi ) + C v
for every v ∈ V. All R v , v ∈ V, have the same distribution, the unique fixed point of the SFPE (24).

Proof: Define S v n := R v n+1 -R v n = w∈Vn L v,vw • C vw , n ∈ IN 0 . Notice the distribution of S v
n does not depend on v. S v n satisfies the recursion

S v n = i∈IN L v,vi (S vi n-1 )
for n ∈ IN. The contraction condition of the lemma provides

S n p ≤ a S n-1 p R n is a Cauchy sequence in (F p (B), • p ) since for m < n R n -R m p ≤ j≥m S j p ≤ j≥m a j C p → m→∞ 0
The rest is easy. q.e.d. We need the following example in the sequel. Ex: (k, r)-Quicksort. Sorting the whole set by (k, r)-Quicksort leads to the SFPE

X d = U X 1 + (1 -U )X 2 + c(U ) (25) c(x) = α(x ln x + (1 -x) ln(1 -x)) + 1 (26) 
on the real numbers. U has the distribution k,r ν(k, r)Beta(r, k -r + 1). In more detail, let H = IR be the Banach space and use functions L 1 := U, L 2 = (1 -U ), L j = 0 for j > 2 with multiplication and C = c(U ). Create the WBP ((L v,vi ) i , C v ), v ∈ V, i ∈ IN, by independent random variables with distribution as ((L i ) i , C). Using the Lemma with p = 2 we have to show E((c(U )) 2 ) < ∞, and the contraction constant is E((U ) 2 ) + E((1 -U ) 2 ) < 1. We used here E(c(U )) = 0. The Lemma 4 provides us with a solution Q v , v ∈ V, such that

Q v = U v Q v1 + (1 -U v )Q v2 + c(U v ) (27) 
with equality almost everywhere and also as solution for the SFPE for every v ∈ V.

We return now to our original SFPE Theorem 5. There is a unique stochastic fixed point Y of the SFPE (12) on D -.

Proof: The Y process has values in D -. Notice Y (1) satisfies the SFPE (27) and has the same distribution as Q. We will construct the WBP such that Y v (1) = Q v from the above example. We shall use the SFPE

(Y (t)) t d =(1 1 t≤U U Y 1 ( t U ) + 1 1 t>U (1 -U )Y 2 ( t -U 1 -U ) + c(t, U ) + 1 1 t>U Q 1 ) t
For the WBP we take the vector space H = D -, 0 as the grave , L j = 0 for j > 2 and

L 1 (f )(t) := 1 1 (0,U ] (t)U f ( t U ) (28) L 2 (f )(t) := 1 1 (U,1] (t)(1 -U )f ( t -U 1 -U ) (29) C(t) = c(t, U ) + 1 1 t>U Q 1 (30) c(t, •)
given in [START_REF] Ragab | The Quicksort process[END_REF]. The only randomness comes in by the U . So take for the WBP U v , v ∈ V, independent copies of U, which has the limiting distribution of Zn n . Define (

(L v,vi ) i , C v ) using the U v , v ∈ V, appropriate. Notice Y v (1) = Q v .
Our Banach space will be D -equipped with the supremum norm and p > 1. Then C ∈ D -a.e. and C ∞ p < ∞. For the contraction condition use

E((sup t |1 1 t≤U U Y 1 ( t U ) + 1 1 t>U (1 -U )Y 2 ( t -U 1 -U )|) p ) ≤ E((sup t |1 1 t≤U U Y 1 ∞ + 1 1 t>U (1 -U ) Y 2 ∞ |) p ) ≤ E(((U Y 1 ∞ ) ∧ ((1 -U ) Y 2 ∞ )) p ) ≤ E(((U Y 1 ∞ ) p ∧ ((1 -U ) Y 2 ∞ ) p )) ≤ E((U Y 1 ∞ ) p + E(((1 -U ) Y 2 ∞ ) p ) ≤ E( Y p ∞ )E((U ) p + (1 -U ) p ) < E( Y p ∞ )
The condition of Lemma ( 4) is satisfied and the lemma applies. q.e.d. The solution Y is called the (k, r)-Quicksort on the fly process. Y has countable many jump points, possible jumps only at the boundary points of any interval I v from the stick breaking example. Since U has a density we obtain P (Y (t-) = Y (t+)) = 0 for all t using the left or right limit. As a consequence it would not matter to consider Y as a process in D -or in D with cadlag paths [START_REF]Patrick Billingsley Convergence of Probability Measures[END_REF]. In the stochastic sense it is the same process.

Process convergence of discrete Quicksort

In this section we provide random variables Y n via the weighted branching process satisfying the recursions [START_REF] Martínez | Optimal sampling strategies in Quicksort and Quickselect[END_REF] not only in distribution but almost surely. The stochastic process Y n will converge to a version of Y from Section 3 in Skorodhod metric.

Let us start with the general idea by the contraction method. Consider a general discrete recursion

X n d = i∈IN T i,n (X i,J i,n ) + C n (31) n ≥ n 0 . (For completeness: ((T i,n , J i,n ) i∈IN , C n ), X j,m , j, m ∈ IN, 1 ≤ m < n are indepen- dent random variables.
The distribution of X 0 , X 1 , . . . , X n 0 -1 is given. All X j,m random variables have the same distribution on a vector space H m as X m . The joint distribution of ((T i,n , J i,n ) i∈IN , C n ) is known. C n is a random variable with values in a vector space H n , J i,n is a random variable with values in {0, 1, 2, . . . , n -1}. The random variable T i,n takes values in linear maps H n → H n . We assume everything is well defined.) Assume H n is nicely embedded into H, the T i,n converge nicely to some T i , the C n converge nicely to some C and technical conditions. Then we might hope the distribution of X n converges nicely to some X, which satisfies the SFPE

X d = i T i X i + C
In a first step solve the SFPE and in a second step find versions of X n via the WBP, such that X n converges nicely. For the WBP let H, H n , n ∈ IN, be vector spaces and H be the product space H := ∞ n=0 H n extended by a grave, once in the grave forever in the grave. (In this specific setting we take 0 as grave for simplicity and H

0 = {0}.) Define C := (C n ) n∈IN 0 with C n := X n for 1 ≤ n < n 0 and C 0 = 0. Let J i , i ∈ IN, be random maps IN 0 → IN 0 such that J i (n) = J i,n for n ≥ n 0 and J i (n) = 0 for n < n 0 . Define the random maps Li : H → H, i ∈ IN, by (( Li )(f ), C) n≥n 0 is the same as of ((T i,n (f n,J n,i ) i , C n ) n≥n 0 . Finally let (( Lv,vi ) i , Cv ), v ∈ V, be independent copies of (( Li ) i , C).
Basically we embed the recursions into a WBP via iteration. We formalize now the lengthy details in our setting of (k, r)-Quicksort on the fly processes [START_REF] Okasha | Asymptotic distributions for Random Median Quicksort[END_REF]. Take as H the vector space D -of all left continuous functions f : [0, 1] → IR with existing right limit. (For simplicity we take f (0) as the right limit.) Equip D -with the Skorodhod topology [START_REF]Patrick Billingsley Convergence of Probability Measures[END_REF] induced by the Skorodhod J 1 -metric

d(f, g) = inf λ ( f -g • λ ∞ ∨ λ -id ∞ ) (32) 
where λ : [0, 1] → [0, 1] is any increasing one-to-one function. Notice λ is also continuous and strictly increasing. The space (D -, d) is a separable, non complete metric space, but a polish space [START_REF]Patrick Billingsley Convergence of Probability Measures[END_REF]. The σ-field σ(D -) is the Borel-σ-field via the Skorodhod metric. The σ-field is isomorphic to the product σ-field IR M ∩ D where M is a dense subset of [0, 1] containing the 0.

Our vector space H n consists of real valued functions f with domain { 1 n , 2 n , . . . , n n }. We embed H n into H via constant (or linear) extension of functions, f (0) = f ( 1 n ). We then use the supremum norm or Skorodhod metric for the embedded function.

Let F(D -) be the space of all measurable functions X with values in D -. For 1 ≤ p < ∞ let F p (D) be the subspace such that

X ∞,p := X ∞ p < ∞ (33) 
Proof: The proof follows easily by U n → n U almost surely.

q.e.d. We use Y = v∈V L v C v from Section 3 and n sufficient large. The term III is independent of n and converges with m to 0, as was shown in Section 3. q.e.d.

d(R n,n • λ m,n , Y ) p ≤ R n,n • λ m,n -Y ) ∞ ∨ λ m,n -id ∞ p ≤ R n,n • λ m,n -Y ) ∞ p + λ m,

II ≤ c *

Theorem 2 .n 1 0

 21 Under assumptions 1 to 4 holds sup l |b(n, l) -b( l n )| → n→∞ 0 Proof: Let d n := sup l |b(n, l) -b( l n )|, d * n := sup i≤n d i and d * n,δ := sup nδ≤i≤n d i for some small δ > 0. Notice d n ≤ d * n ↑ Notice under our assumptions n i=1 |ν n (i)|∨|ν(i)| is |g(x)|∨|g(x)|dx+o(1) and n i=1 |µ n

Corollary 3 .

 3 For (k, r)-Quicksort on the fly the assumptions 1 to 4 are satisfied. It holds sup l |b(n, l) -b( l n )| → n→∞ 0 and a(n, l) = αl ln l + (n + 1)b( l n ) + o(n)

Proposition 9 .

 9 sup t,x |c(t, x)| and the essential supremum sup t,n |C(t, n)| is bounded by some constant called c * . Proof: Easy. q.e.d. Proof of the Theorem 6: Let p > 1 and m(p) be the contraction constant sup n U n ∨ (1 -U n ) p < 1. For m ∈ IN define the random map λ m,n : [0, 1] → [0, 1] by λ m,n (a n ) = a and λ m,n (b n ) = b for all I v n = (a n , b n ] and I v = (a, b], v ∈ V <m from the stick breaking example. Then the linear extended λ m,n : [0, 1] → [0, 1] is one-to-one and increasing for n sufficiently large.
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  w C w (t) ∞ p + λ m,n -id ∞ p = I + II + III + IVFor fixed m λ m,n converges uniformly to the identity, IV → n 0, since we have to consider only finitely many v ∈ {1, 2} m-1 .

* i≥m w∈V i 1 1 (

 1 w∈V ≥m A w (λ m,n (t), n) ∞ p ≤ c * i≥m w∈V i A w (λ m,n (t), n) ∞ p ≤ c I w n (λ m,n (t))|I w n | ∞ p Lw Cw (λ m,n (t), n) -L w C w (t)) ∞ p ≤ i<m sup w∈{1,2} i sup{|I w n |, |I w |} sup t∈I w |C w (λ m,n (t), n) -C w (t)| p → n 0Choosing first m sufficiently large and then take n → ∞ we obtain I + II + III + IV arbitrary small.

  obtain d n ≤ d * n-1 for all n sufficiently large. This implies lim sup n d n ≤ lim sup n d *

	is finite. Instead of d * • we use now d * •,δ for small δ.
	d n ≤ d * n-1,δ (
	n =: d

n i=1 |ν n (i)| ∨ |ν(i)| + o(1))

 

is finite. • ∞,p is a pseudo metric on F p (D -). Taking equivalence classes for the equivalence relation X ∼ Y ⇔ P (X = Y ) = 0 we obtain for 1 ≤ p < ∞ (F p (D -), • p,∞ ) is a Banach space with the usual addition and multiplication

In the following we will not differ between functions and equivalence classes.

Let U be a random variable with the limiting distribution of Zn n .

where the x are defined by

For the cost function C n we take

By the almost sure convergence U n → n U we obtain almost surely

Finally for the WBP let U v , v ∈ V, be independent random variables with a distribution as U . Obtain (( Lv,vi ) i , Cv ), v ∈ V, as independent random variables by using U v , U v n as we obtained (( Li ) i , C) using U, U n . In the following we use the notation of a WBP.

Define

=Y n for m ≥ n. Our final and main result will be Theorem 6. In the above setting R v n,n converges almost surely path wise in Skorodhod J 1metric to a random variable Y v which satisfies

for all v ∈ V.

An immediate consequence is

Corollary 7. The discrete random (k, r)-Quicksort on the fly process Y n [START_REF] Martínez | Optimal sampling strategies in Quicksort and Quickselect[END_REF] converges in distribution to the (k, r)-Quicksort on the fly process [START_REF] Okasha | Asymptotic distributions for Random Median Quicksort[END_REF]. There exists versions of Y n such that Y n converges almost surely path wise in Skorodhod J 1 -metric to a random variable Y which satisfies the equality (34) for v = ∅ and also the SFPE [START_REF] Okasha | Asymptotic distributions for Random Median Quicksort[END_REF].

We need some preparations.