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Limit law for Zagreb and Wiener indices of
random exponential recursive trees

Ali Q. M. Al-Saedi∗ Ramin Imany Nabiyyi† Mehri Javanian‡

August 26, 2023

Abstract

The Wiener index is the sum of distances of all pairs of nodes in a graph; and the Zagreb
index is defined as the sum of squares of the out-degrees of nodes in a rooted tree. In this
note, we calculate the first two moments of the Wiener and Zagreb indices of random expo-
nential recursive trees (random ERTs) from two systems of recurrence relations. Then, by an
application of the contraction method, we characterize the limit law for a scaled Zagreb in-
dex of ERTs. Via martingale convergence theorem, we also show the almost sure convergence
and quadratic mean convergence of an appropriate scaled Wiener index that is indicative the
distance of two randomly chosen nodes.

AMS 2000 Subject Classification : 05C05, 05C09, 60F25.
Key words: random exponential recursive trees, Wiener index, Zagreb index, limit law, L2-
norm, Wasserstein metric, contraction method, martingale convergence theorem.

1 Introduction and setting

A random recursive tree of size n is starting with a root, i.e. node 1, and node 2 connected to
the root node. Afterwards, at step i (i = 3, . . . , n) node i is connected uniformly at random to
one of the prior nodes 1, . . . , i − 1 (see Figure 1). Random recursive trees have been used as a
model for various phenomena such as the stochastic growth of networks [3]; genealogy of ancient
and medieval texts [13]; and the spread of epidemics [12]. For only a few of variations of recursive
trees, see [6], [7], [8], [9], [10] and [18]; for fundamental properties of recursive trees, see [17].

Since only one node is added at each step in the growth of a recursive tree, then these slow-
growing models cannot be suitable for fast-growing phenomena such as the growing the Twitter
and the spreading of infectious diseases. In [11], it has been proposed a fast-growing recursive tree
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Figure 1: The steps of evolution of a recursive tree of size 5.

Figure 2: The first two steps of evolution of the exponential recursive tree of index p. The
probability of getting each tree from the previous one appears above the arrow leading to it.

model, i.e. the exponential recursive tree (ERT), where every node independently attracts a new
node with probability p, or fails to do at each step in the growth of the tree. The parameter p is
called the index of the ERT. The age of an ERT is the number of steps it takes to grow the tree.

A random ERT of index p grown as follows: Initially (at age 0), there is only one node. For
n ≥ 1, at the nth step (at age n), every node independently attracts a new node with probability
p ∈ (0, 1), or not to attract with probability q := 1− p. Figure 2 shows all ERTs of ages 0, 1 and
2. The size (the number of nodes) and the total path length (the sum of the distances between all
nodes and the root) have been studied for ERTs by [1].

The out-degree of a node is the number of its children in a rooted tree. Javanian and Vahidi-
Asl [5] and Javanian [8] have given the mean, variance and the normal limiting distribution of the
out-degree of a node in recursive trees and scaled attachment recursive trees, respectively.

By Zagreb index, we mean the sum of out-degrees of all nodes in a rooted tree. The mean,
variance and limiting distribution of Zagreb index for recursive trees have been investigated in [19].

The Wiener index, a distance-based topological index, is defined as the sum of the distances
between all nodes in a graph. For recursive trees, Neininger [15] has obtained the expectations,
the variances and a bivariate limit law for the Wiener index and the total path length. It also has
been obtained a strong limit theorem for the Wiener index of recursive trees in [4].

Our interest here is to study the Zagreb and Wiener indices of ERTs. We give the first two
moments of the Zagreb and Wiener indices of random ERTs. By the contraction method, we also
characterize the limiting distribution of a scaled Zagreb and Wiener indices for random ERTs.
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We use the recursive structure of the random ERTs under consideration in order to setup some
recurrences for the Zagreb and Wiener indices. We first need to state the argument made in the
proof of Lemma 1 in [1] as follows: At the first step (at age n = 1) of the growth of a random
ERT of index p, the root node either succeeds to attract a node (event R) or not. We denote the
indicator function of the event R by I. If the event R does not occur, then after n− 1 steps, the
root of the tree fathers an exponential recursive tree T ′n−1. Alternatively, if R occurs, then after
n−1 steps, the root of the tree and its only child that appeared in step 1, produce two independent
exponential recursive trees T ′′n−1 and T ′′′n−1, respectively. Now, we hook T ′′n−1 to T ′′′n−1 to construct
a random ERT of index p at age n. Let (S ′n−1, X

′
n−1), (S ′′n−1, X

′′
n−1) and (S ′′′n−1, X

′′′
n−1) be the pairs

of the sizes and the total path lengths in T ′n−1, T
′′
n−1 and T ′′′n−1, respectively. Then for a random

ERT of index p at age n with the size Sn and the total path length Xn (see [1] and [11]),

Sn
d
= (1− I)S ′n−1 + I

(
S ′′n−1 + S ′′′n−1

)
, (1)

Xn
d
= (1− I)X ′n−1 + I

(
X ′′n−1 +X ′′′n−1 + S ′′′n−1

)
, (2)

where the symbol
d
= denotes the equality in distribution; the pairs (S ′n−1, X

′
n−1), (S ′′n−1, X

′′
n−1) and

(S ′′′n−1, X
′′′
n−1) are independent copies of (Sn−1, Xn−1) and independent of I. Moreover, the almost

sure convergence of the scaled size and total path length are shown in [11] and [1], as n→∞,

Sn
(p+ 1)n

a.s.−→ S∗,

(
E[S∗] = 1, E[S2

∗ ] =
2

p+ 1

)
, (3)

for a limiting variable S∗ characterized by inductively-constructed moments.
To setup the recurrences for the Zagreb and Wiener indices, let (Z ′n−1,W

′
n−1), (Z ′′n−1,W

′′
n−1)

and (Z ′′′n−1,W
′′′
n−1) be the pairs of the Zagreb indices and the Wiener indices in T ′n−1, T

′′
n−1 and

T ′′′n−1, respectively. Let B′′n−1 be the out-degree of the root of T ′′n−1, then B′′n−1
d
= Binomial(n−1, p).

Thus for a random ERT of index p at age n with the Zagreb index Zn and the Wiener index Wn,
by direct enumeration we obtain the recurrences

Zn
d
= (1− I)Z ′n−1 + I

(
Z ′′n−1 + Z ′′′n−1 + 2B′′n−1 + 1

)
, (4)

where Z ′n
d
= Z ′′n

d
= Z ′′′n

d
= Zn; I, Z ′n, (Z ′′n, B

′′
n) and Z ′′′n are independent; and

Wn
d
= (1− I)W ′

n−1 + I
(
W ′′
n−1 +W ′′′

n−1 +X ′′n−1S
′′′
n−1 +X ′′′n−1S

′′
n−1 + S ′′n−1S

′′′
n−1
)
, (5)

where the triples (S ′′n, X
′′
n,W

′′
n ) and (S ′′′n , X

′′′
n ,W

′′′
n ) are independent copies of (Sn, Xn,Wn) and are

independent of W ′
n and I.

In Section 2, we calculate the first two moments of Zn and Wn. In Section 3 and Section
4, using the contraction method and martingale convergence theorem, respectively, we show the
convergence in distribution, in L2 and almost sure convergence for the scaled Zagreb index and
Wiener index, that is, as n→∞,

Zn
(p+ 1)n

d−→ Ẑ,
Wn

n(p+ 1)2n
L2 & a.s.−−−−−→ p

p+ 1
S2
∗ ,

where the random variable Ẑ is the unique distributional fixed-point of a distributional recurrence.
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2 The first two moments

In this section, we calculate the first two moments of Zn and Wn by the equations (4) and (5).
The authors of [11] and [1] (Theorem 2.1 and Section 5, respectively) have found

E[Sn] = (p+ 1)n, ,E[S2
n] = 2(p+ 1)2n−1 − (1− p)(p+ 1)n−1, E[Xn] = np(p+ 1)n−1.

Theorem 1. Let Zn be the Zagreb index in a random ERT of age n and index p. We have

E[Zn] = 3(p+ 1)n − 2np− 3, for n ≥ 1,

E[Z2
n] = 18(p+ 1)2n−1 − 12pn(p+ 1)n + (4p2 − 9p− 31)(p+ 1)n−1

+ 4n2p3 − 4p(p2 − 2p− 2)n− 4p+ 13, for n ≥ 1.

Proof. Taking the expectation of the equation (4), one gets

E[Zn] = (p+ 1)E[Zn−1] + 2p2(n− 1) + p,

with initial condition E[Z0] = 0. Iterating this recurrence we find

E[Zn] =
n∑
i=1

(p+ 1)n−i(2p2(i− 1) + p).

This sum yields the explicit solution as stated in the theorem.
Raise both sides of the distributional equation (4) to the second power and take expectations:

E[Z2
n] = E

[
(1− I)

(
Z ′n−1

)2
+ I
((
Z ′′n−1

)2
+
(
Z ′′′n−1

)2
+
(
2B′′n−1 + 1

)2
+ 2
(
Z ′′n−1

)(
Z ′′′n−1

)
+ 2
(
Z ′′n−1

)(
2B′′n−1 + 1

)
+ 2
(
Z ′′′n−1

)(
2B′′n−1 + 1

))]
.

Since Z ′n
d
= Z ′′n

d
= Z ′′′n

d
= Zn; B′′n

d
= Binomial(n, p); I, Z ′n, (Z ′′n, B

′′
n) and Z ′′′n are independent, then

E[Z2
n] = (p+ 1)E

[
Z2
n−1
]

+ 2p
(
E[Zn−1]

)2
+
(
4p2(n− 1) + 4p

)
E[Zn−1]

+ 4pE[Zn−1Bn−1] + 4p3n2 + (8p2 − 12p3)n+ 8p3 − 8p2 + p,

where Bn
d
= B′′n. In this recurrence, we need the expectation of E[Zn−1Bn−1]. This can be obtained

from a recurrence for E[Zn−1Bn−1] itself.
Let B′n−1 be the out-degree of the root of T ′n−1. Then for a random ERT of age n with the root

of out-degree Bn, we have

Bn
d
= (1− I)B′n−1 + I(B′′n−1 + 1). (6)

Multiply (4) and (6), and take expectations to get

E[ZnBn] = E[Zn−1Bn−1] +
(
p2(n− 1) + 2p

)
E[Zn−1] + 2p3n2 + (5p2 − 6p3)n+ 4p3 − 5p2 + p.
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with the initial value E[Z0B0] = 0. This gives the solution

E[ZnBn] = 3pn(p+ 1)n + 3(1− p)(p+ 1)n − (p3 + p2)n2 + (p3 + p2 − 5p)n+ 3p− 3.

Consequently

E[Z2
n] = p

n∑
i=1

(p+ 1)n−i
(

2
(
E[Zi−1]

)2
+
(
4p(i− 1) + 4

)
E[Zi−1]

+ 4E[Zi−1Bi−1] + 4p2i2 + (8p− 12p2)i+ 8p2 − 8p+ 1
)

= 18(p+ 1)2n−1 − 12pn(p+ 1)n + (4p2 − 9p− 31)(p+ 1)n−1

+ 4n2p3 − 4p(p2 − 2p− 2)n− 4p+ 13,

where the calculation has been done by MAPLE software.

Theorem 2. Let Wn be the wiener index in a random ERT of age n and index p. We have

E[Wn] = 2pn(p+ 1)2n−2 − (p+ 1)2n−1 + (p+ 1)n−1, for n ≥ 1,

E[W 2
n ] =

24(p+ 6)p2

(p+ 2)(p2 + 3p+ 3)
n2(p+ 1)4n−5 +O

(
n(p+ 1)4n−5

)
, as n→∞.

Proof. Take expectations both sides of the equation (5). By the identical distribution of W ′
n, W ′′

n ,
W ′′′
n and Wn; and the independence of I, (S ′′n, X

′′
n) and (S ′′′n , X

′′′
n ), we get

E[Wn] = (p+ 1)E[Wn−1] + 2pE[Xn−1]E[Sn−1] + p
(
E[Sn−1]

)2
= (p+ 1)E[Wn−1] + 2p2(n− 1)(p+ 1)2n−3 + p(p+ 1)2n−2,

with E[W0] = 0. By iterating, we have

E[Wn] =
n∑
i=1

(p+ 1)n−i
(

2p2(i− 1)(p+ 1)2i−3 + p(p+ 1)2i−2
)
,

that is obtained as claimed in the theorem.
For obtaining E[W 2

n ], raise both sides of (5) to the second power and take expectations. The
second moment recurrence takes the form,

E[W 2
n ] = (p+ 1)E[W 2

n−1] + 2pE[S2
n−1]E[X2

n−1] + p
(
E[S2

n−1]
)2

+ 2p
(
E[Wn−1]

)2
+ 4pE[Wn−1Xn−1]E[Sn−1] + 4pE[Wn−1Sn−1]E[Xn−1] + 4pE[Wn−1Sn−1]E[Sn−1]

+ 2p
(
E[Xn−1Sn−1]

)2
+ 4pE[Xn−1Sn−1]E[S2

n−1]. (7)

In the recurrence (7), we need the expectations E[X2
n], E[WnXn], E[WnSn] and E[XnSn].
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From (1), (2) and (5), we have the following recurrences, for n ≥ 1,

E[X2
n] = (p+ 1)E[X2

n−1] + pE[S2
n−1] + 2p

(
E[Xn−1]

)2
+ 2pE[Xn−1Sn−1] + 2pE[Xn−1]E[Sn−1]

E[XnSn] = (p+ 1)E[Xn−1Sn−1] + 2pE[Xn−1]E[Sn−1] + pE[S2
n−1] + p

(
E[Sn−1]

)2
E[WnSn] = (p+ 1)E[Wn−1Sn−1] + 2pE[Sn−1]E[Xn−1Sn−1] + 2pE[Xn−1]E[S2

n−1]

+ 2pE[Wn−1]E[Sn−1] + 2pE[Sn−1]E[S2
n−1]

E[WnXn] = (p+ 1)E[Wn−1Xn−1] + 2pE[X2
n−1]E[Sn−1] + 2pE[Xn−1]E[Xn−1Sn−1]

+ 3pE[Sn−1]E[Xn−1Sn−1] + 2pE[Xn−1]E[Wn−1] + pE[Wn−1Sn−1]

+ pE[Wn−1]E[Sn−1] + pE[Xn−1]E[S2
n−1] + pE[Sn−1]E[S2

n−1],

with initial conditions E[X2
0 ] = 0, E[W0X0] = 0, E[W0S0] = 0 and E[X0S0] = 0.

The above recurrence equations are of the form yn = (p+ 1)yn−1 + hn, with solution

yn =
n∑
i=1

(p+ 1)n−ihi. (8)

Therefore, after some calculations, their solutions are obtained as follows

E[X2
n] = 2p2n2(p+ 1)2n−3 + 2p(1− p)n(p+ 1)2n−3 + 2(1− p)(p+ 1)2n−3

− (1− p)p2n2(p+ 1)n−3 − 3p(1− p)n(p+ 1)n−3 − 2(1− p)(p+ 1)n−3,

E[XnSn] = 2pn(p+ 1)2n−2 + (1− p)(p+ 1)2n−2 − p(1− p)n(p+ 1)n−2 − (1− p)(p+ 1)n−2,

E[WnSn] =
12p

p+ 2
n(p+ 1)3n−3 − 4(3p2 + 5p+ 1)

(p+ 2)2
(p+ 1)3n−3 − 4p(1− p)n(p+ 1)2n−3

+ (2 + 4p− 2p2)(p+ 1)2n−3 − 2(1− p)(p2 + 2p+ 2)

(p+ 2)2
(p+ 1)n−2,

E[WnXn] =
12p2

p+ 2
n2(p+ 1)3n−4 − 2p(11p2 + 15p− 8)

(p+ 2)2
n(p+ 1)3n−4

− 2(1− p)(2p+ 3)(2p− 1)

(p+ 2)2
(p+ 1)3n−4 − 4(1− p)p2n2(p+ 1)2n−4

+ 2p(2p− 1)(3− p)n(p+ 1)2n−4 − (1− p)(p2 − 6p− 1)(p+ 1)2n−4

− 2p(1− p)(p2 + 2p+ 2)

(p+ 2)2
n(p+ 1)n−3 +

(1− p2)(p3 − 3p2 − 10p− 10)

(p+ 2)2
(p+ 1)n−4.

Again, according to (8), the solution to the recurrence (7) is

E[W 2
n ] =

24(p+ 6)p2

(p+ 2)(p2 + 3p+ 3)
n2(p+ 1)4n−5 − 8p(7p5 + 81p4 + 272p3 + 369p2 + 171p− 18)

(p+ 2)2(p2 + 3p+ 3)2

× n(p+ 1)4n−5 +
8(4p8 + 58p7 + 286p6 + 687p5 + 883p4 + 614p3 + 276p2 + 180p+ 99)

(p+ 2)2(p2 + 3p+ 3)3
(p+ 1)4n−5

+O
(
n2(p+ 1)3n

)
, as n→∞.

Hence we obtain the assertion.
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3 Quadratic mean convergence for the Zagreb index

In this section we apply the contraction method in [16] or the multivariate contraction method in
[14] to state the limiting distribution of Ẑn := Zn

(1+p)n
.

We first need to set up some notation as follows: For a random variable X, we write X ∼ λ
if the distribution of X is λ, i.e. the law L(X) of X is λ. The symbol ‖X‖2 := (E[|X|2])1/2
denotes the usual L2-norm of X. The Wasserstein-metric `2 is defined on the space of probability
distributions with finite second moments by

`2(X, Y ) := `2(L(X), L(Y )) := `2(λ, ν) := inf{‖X − Y ‖2 : X ∼ λ, Y ∼ ν}.

ByM2 the space of all probability distributions λ with mean 3 (as in Theorem 1) and finite second
moment is denoted. The metric space (M2, `2) is complete and convergence in `2 is equivalent to
convergence in distribution plus convergence of the second moments.

By equation (4) we have

Zn
(1 + p)n

d
=

I
1 + p

(
Z ′′n−1

(1 + p)n−1
+

Z ′′′n−1
(1 + p)n−1

)
+

1− I
1 + p

·
Z ′n−1

(1 + p)n−1
+ I ·

2B′′n−1 + 1

(1 + p)n
. (9)

Theorem 3. Let Zn be the Zagreb index of a random ERT of age n and index p. The normalized
Zagreb index Ẑn := Zn

(1+p)n
satisfies the distributional recursion

Ẑn
d
=

I
1 + p

·
(
Ẑ
′′

n−1 + Ẑ
′′′

n−1
)

+
1− I
1 + p

· Ẑ ′n−1 + I · 2Bn−1 + 1

(1 + p)n
, (10)

where Bn
d
= Binomial(n, p), Ẑ

′
n, (Ẑ

′′
n , Bn), Ẑ

′′′
n and I are independent, Ẑ

′
n

d
= Ẑ

′′
n

d
= Ẑ

′′′
n

d
= Ẑn, and

I is a Bernoulli random variable with success probability p, then Ẑn
d−→ Ẑ, as n→∞, where the

random variable Ẑ is the unique distributional fixed-point of

Ẑ
d
=

I
1 + p

(
Ẑ
′′

+ Ẑ
′′′)

+
1− I
1 + p

Ẑ
′
, (11)

with Ẑ
′
, Ẑ

′′
and Ẑ

′′′
are independent copies of Ẑ and independent of I.

Proof. The equation (10) is an immediate consequence of the equation (9), where Ẑ
′
n := Z

′
n

(1+p)n
,

Ẑ
′
n := Z

′′
n

(1+p)n
and Ẑ

′
n := Z

′′′
n

(1+p)n
. Using Chebyshev’s inequality and E[Bn−1] = (n− 1)p, we have the

convergence in probability 2Bn+1
(1+p)n

p−→ 0. That is,

Ẑn
d
=

I
1 + p

·
(
Ẑ
′′

n−1 + Ẑ
′′′

n−1
)

+
1− I
1 + p

· Ẑ ′n−1 + op(1), (12)
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where op(1) denotes a quantity tending to zero in probability. For purposes of convergence we can,
and hence will, ignore the op(1) term.

Consider the well-defined transformation T :M2 → M2,

T (λ) := L
( I

1 + p

(
Ẑ
′′

λ + Ẑ
′′′

λ

)
+

1− I
1 + p

Ẑ
′

λ

)
, (13)

where Ẑ
′

λ
d
= Ẑ

′
, Ẑ

′′

λ
d
= Ẑ

′′
and Ẑ

′′′

λ
d
= Ẑ

′′′
have λ as distribution and are independent of I.

At a first step, we have to prove that the transformation T has a unique fixed point with respect
to the `2-metric. Let λ, ν ∈M2 be given. By (13), we have

T (λ) = L
( I

1 + p

(
Ẑ
′′

λ + Ẑ
′′′

λ

)
+

1− I
1 + p

Ẑ
′

λ

)
,

T (ν) = L
( I

1 + p

(
Ẑ
′′

ν + Ẑ
′′′

ν

)
+

1− I
1 + p

Ẑ
′

ν

)
,

and

`22(T (λ), T (ν)) ≤ 2
E[I2]

(1 + p)2
E
[∣∣Ẑλ − Ẑν∣∣]2 +

E [(1− I)2]
(1 + p)2

E
[∣∣Ẑλ − Ẑν∣∣]2

=
1

1 + p
E
[∣∣Ẑλ − Ẑν∣∣]2.

Therefore, we have

`22(T (λ), T (ν)) ≤ 1

1 + p
`22(λ, ν).

Since 1
1+p

< 1, we deduce that T is a contraction with respect to the `2-metric. Thus, Banach’s
fixed point theorem provides existence and uniqueness of solutions of the fixed point equation
T (λ) = λ. By (12), if Ẑn converges in distribution to some random variable Ẑ, then Ẑ satisfies (11).
Consequently, the distribution of Ẑ will be λ0, the unique fixed point of T , i.e. L(Ẑ) = T (λ0) = λ0.

Therefore, we have to prove limn→∞ `2(Ẑn, Ẑ) = 0 to conclude Ẑn
d−→ Ẑ.

Since Ẑ
′
n

d
= Ẑ

′′
n

d
= Ẑ

′′′
n

d
= Ẑn and Ẑ

′ d
= Ẑ

′′ d
= Ẑ

′′′ d
= Ẑ, we deduce

lim
n→∞

`22(Ẑn, Ẑ) ≤ p

(1 + p)2
lim
n→∞

(∥∥∥Ẑ ′′n−1 − Ẑ ′′∥∥∥2
2

+
∥∥∥Ẑ ′′′n−1 − Ẑ ′′′∥∥∥2

2

)
+

1− p
(1 + p)2

lim
n→∞

∥∥∥Ẑ ′n−1 − Ẑ ′∥∥∥2
2

≤ 1

1 + p
lim
n→∞

∥∥Ẑn − Ẑ∥∥2.
Therefore, we have

lim
n→∞

`22(Ẑn, Ẑ) ≤ 1

1 + p
lim
n→∞

`22(Ẑn, Ẑ).

This is true only if limn→∞ `2(Ẑn, Ẑ) = 0.
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4 Almost sure convergence for the Wiener index

In Tn, a random ERT of age n and index p, assume we numbered the nodes of the tree arbitrarily
with the numbers 1, 2, . . . , Sn. Let Di,j be the distance between nodes i and j (the number of
edges on the path joins the nodes i and j), for i, j ∈ {1, 2, . . . , Sn}. The Wiener index of Tn is

Wn =
Sn∑
i=1

Sn∑
j=1

i<j

Di,j.

Theorem 4. Let Wn be the Wiener index in a random ERT of age n and index p. As n → ∞,
we have almost sure convergence and in L2

Wn

n(p+ 1)2n
L2 & a.s.−−−−−→ p

p+ 1
S2
∗ .

Proof. Let Ik be a sequence of independent Bernoulli(p) random variables, defined on the same
probability space as the trees. Consider

{
Ik
}∞
k=1

to be independent of the structure of the tree at
any age, too. If each of two nodes i and j or both succeed in attracting a new node, then the
contribution of the nodes i and j of Tn−1 into Wn, is Di,jIi<j + (Di,j + 1)Ij + (Di,j + 2)IiIjIi<j, for
i, j ∈ {1, 2, . . . , Sn−1}, and we write

Wn = Wn−1 +

Sn−1∑
i=1

Sn−1∑
j=1

Ij(Di,j + 1) +

Sn−1∑
i=1

Sn−1∑
j=1

i<j

IiIj(Di,j + 2)

= Wn−1 +

Sn−1∑
i=1

Ii +

Sn−1∑
i=1

Sn−1∑
j=1

i 6=j

Ij(Di,j + 1) +

Sn−1∑
i=1

Sn−1∑
j=1

i<j

IiIj(Di,j + 2).

Let Fn be the sigma field generated by the first n steps of the evolution of Tn. Then

E[Wn|Fn−1] = Wn−1 + 2pWn−1 + pS2
n−1 + p2Wn−1 + p2S2

n−1 − p2Sn−1
= (p+ 1)2Wn−1 + p(p+ 1)S2

n−1 − p2Sn−1. (14)

Let Mn := αnWn + βnS
2
n + γnSn, for specified factors αn, βn and γn that transformed Mn a

martingale. So, by (8), (14) and a martingalization procedure, we have

E[Mn|Fn−1] = αn(p+ 1)2Wn−1 + αnp(p+ 1)S2
n−1 − αnp2Sn−1

+ βnE
[
S2
n

∣∣Fn−1]+ γnE
[
Sn
∣∣Fn−1]

= αn(p+ 1)2Wn−1 + αnp(p+ 1)S2
n−1 − αnp2Sn−1

+ βn(p+ 1)2S2
n−1 + βnp(1− p)Sn−1 + γn(p+ 1)Sn−1

= αn(p+ 1)2Wn−1 +
(
αnp(p+ 1) + βn(p+ 1)2

)
S2
n−1

+
(
γn(p+ 1) + βnp(1− p)− αnp2

)
Sn−1

= Mn−1 = αn−1Wn−1 + βn−1S
2
n−1 + γn−1Sn−1.

9



This is possible, if we choose

αn−1 = αn(p+ 1)2,

βn−1 = αnp(p+ 1) + βn(p+ 1)2

γn−1 = γn(p+ 1) + βnp(1− p)− αnp2.

From these solvable recurrences, we obtain

αn =
α0

(p+ 1)2n
, βn =

β0
(p+ 1)2n

− α0pn

(p+ 1)2n+1

γn =
γ0

(p+ 1)n
− α0p(1− p)n+ α0p+ β0p

2 − β0 + α0

(p+ 1)2n+2
+
β0p

2 + α0p+ α0 − β0
(p+ 1)n+2

.

For simplicity, we take α0 = 1 = γ0 and β0 = 0. Thus, by (10), (11), (12) and (13),

Mn =
1

(p+ 1)2n
Wn −

pn

(p+ 1)2n+1
S2
n +

(
p+ 2

(p+ 1)n+1
− p(1− p)n+ p+ 1

(p+ 1)2n+2

)
Sn,

is a martingale with bounded moments

E[Mn] =
1

(p+ 1)2n
E[Wn]− pn

(p+ 1)2n+1
E[S2

n] +

(
p+ 2

(p+ 1)n+1
− p(1− p)n+ p+ 1

(p+ 1)2n+2

)
E[Sn]

=
2pn(p+ 1)2n−2 − (p+ 1)2n−1 + (p+ 1)n−1

(p+ 1)2n
− 2pn(p+ 1)2n−1 − p(1− p)n(p+ 1)n−1

(p+ 1)2n+1

− p(1− p)n+ p+ 1

(p+ 1)n+2
+
p+ 2

p+ 1
= 1 <∞,

E[M2
n] =

1

(p+ 1)4n
E[W 2

n ] +
p2n2

(p+ 1)4n+2
E[S4

n] +

(
p+ 2

(p+ 1)n+1
− p(1− p)n+ p+ 1

(p+ 1)2n+2

)2

E[S2
n]

+ 2

(
p+ 2

(p+ 1)3n+1
− p(1− p)n+ p+ 1

(p+ 1)4n+2

)(
E[WnSn]− pn

p+ 1
E[S3

n]

)
− 2pn

(p+ 1)4n+1
E[WnS

2
n]

=
1

(p+ 1)4n
E[W 2

n ] +
p2n2

(p+ 1)4n+2
E[S4

n]− 2pn

(p+ 1)4n+1
E[WnS

2
n] +O(1)

=
1

(p+ 1)4n

(
24(p+ 6)p2

(p+ 2)(p2 + 3p+ 3)
n2(p+ 1)4n−5

− 8p(7p5 + 81p4 + 272p3 + 369p2 + 171p− 18)

(p+ 2)2(p2 + 3p+ 3)2
n(p+ 1)4n−5

)
+

p2n2

(p+ 1)4n+2

(
24(p+ 6)(p+ 1)4n−3

(p+ 2)(p2 + 3p+ 3)

)
− 2pn

(p+ 1)4n+1

(
24p(p+ 6)n(p+ 1)4n−4

(p+ 2)(p2 + 3p+ 3)

− 4(7p5 + 81p4 + 272p3 + 369p2 + 171p− 18)

(p+ 2)2(p2 + 3p+ 3)2
(p+ 1)4n−4

)
+O(1)

= 0 +O(1) <∞, as n→∞,

10



where

E[S3
n] =

12(p+ 1)3n−2

p+ 2
− 6(1− p)(p+ 1)2n−2 +

(p2 − 3p+ 2)(p+ 1)n−1

p+ 2
,

E[S4
n] =

24(p+ 6)(p+ 1)4n−3

(p+ 2)(p2 + 3p+ 3)
− 72(1− p)(p+ 1)3n−3

p+ 2

− 2(1− p)(7p2 − p− 14)(p+ 1)2n−3

p+ 2
− (1− p)(p4 − 6p3 + 2p2 + 3p+ 6)(p+ 1)n−2

(p+ 2)(p2 + 3p+ 3)
,

E[WnS
2
n] =

24p(p+ 6)n(p+ 1)4n−4

(p+ 2)(p2 + 3p+ 3)
− 4(7p5 + 81p4 + 272p3 + 369p2 + 171p− 18)

(p+ 2)2(p2 + 3p+ 3)2
(p+ 1)4n−4

− 60p(1− p)
p+ 2

n(p+ 1)3n−4 − 4(15p3 + p2 − 35p+ 1)(p+ 1)3n−4

(p+ 1)2
+O

(
n(p+ 1)2n

)
, as n→∞.

So, by the martingale convergence theorem (Theorem 6.6.9 in [2]), Mn converges to some M∗
almost surely and in L2. Consequently,

Mn

n
=

Wn

n(p+ 1)2n
− p

p+ 1
·
(

Sn
(p+ 1)n

)2

+

(
p+ 2

(p+ 1)n+1
− p(1− p)n+ p+ 1

(p+ 1)2n+2

)
· Sn
n(p+ 1)n

L2 & a.s.−−−−−→ 0.

Hence, by (3), the result follows.

Corollary 5. Let D∗n be the distance between two randomly chosen nodes in a random ERT of age
n and index p. Then we have

E[D∗n]

n
−→ 2p

p+ 1
.

Proof. In Tn, a random ERT of age n and index p, we have

E[D∗n|Tn] =

2
Sn∑
i=1

Sn∑
j=1

i<j

Di,j

Sn(Sn − 1)
=

2Wn

Sn(Sn − 1)
.

Therefore, by (3) and Theorem 4, we have

E[D∗n|Tn]

n
=

2Wn/ (n(p+ 1)2n)

Sn(Sn − 1)/ ((p+ 1)2n)

a.s.−→ 2p

p+ 1
.

Since Wn ≤ 1
2
Sn(Sn − 1)n, then E[D∗n|Tn]/n ≤ 1. Consequently, by dominated convergence

theorem,

lim
n→∞

E[D∗n]

n
= lim

n→∞
E
[
E[D∗n|Tn]

n

]
= E

[
lim
n→∞

E[D∗n|Tn]

n

]
.

This yields the result.
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