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On fixed divisors of the values of the minimal

polynomials over Z of algebraic numbers

M. Ayad, A. Bayad and O. Kihel

Abstract. Let K be a number field of degree n, A be its ring of integers, and An ( resp. Kn) be the set of elements of A (

resp. K) which are primitive over Q. For any γ ∈ Kn, let Fγ(x) be the unique irreducible polynomial in Z[x], such that its

leading coefficient is positive and Fγ(γ) = 0. Let i(γ) = gcdx∈Z Fγ(x), i(K) = lcmθ∈An i(θ) and ı̂(K) = lcmγ∈Kn i(γ). For
any γ ∈ Kn, there exists a unique pair (θ, d), where θ ∈ An and d is a positive integer such that γ = θ/d and θ 6≡ 0 (mod p)

for any prime divisor p of d. In this paper, we study the possible values of νp(d) when p|i(γ). We introduce and study a new

invariant of K defined using νp(d), when γ describes Kn. In the last theorem of this paper, we establish a generalisation of a
theorem of MacCluer.
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1. Introduction

Let K be a number field of degree n ≥ 2 and A be its ring of integers. Denote by An ( resp. Kn)
be the set of elements of A ( resp. K) which are primitive over Q, that is those elements which
generate K over Q. For any primitive polynomial g(x) ∈ Z[x], we define the integer i(g) by

i(g) = gcdx∈Z g(x).

Let γ be an algebraic number. When we refer to the minimal polynomial of γ over Z, we mean
the unique polynomial Fγ(x) = anx

n + · · · + a1x + a0 ∈ Z[x], irreducible such that an > 0 and
Fγ(γ) = 0. The leading coefficient an will be denoted by c(γ). We set i(γ) = i(Fγ). In [GuMc70],
Gunji and McQuillan defined the integer i(K) by

i(K) = lcmθ∈An i(θ).

MacCluer [Mac71] proved that a given prime p divides i(K) if and only if the number of prime
ideals of A lying over p is at least equal to p. In [GuMc70] or [AyKi11], it is proved that there
exists θ ∈ An such that

i(K) = i(θ).

The smallest positive integer d such that dγ is an algebraic integer is called the denominator of γ
and will be denoted by d(γ).

Arno et al proved in [ARW96] that the density of the set of the algebraic numbers γ such that
c(γ) = d(γ) is equal to 1/ζ(3) = 0.8319 · · · . In [ABK15], for a fixed number field K, the set

Tp(k) = {t ≥ 1, there exists γ ∈ Kn, νp(d(γ)) = k and νp(c(γ)) = t}
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is connected to the splitting of the prime p in K.
In this paper, among other results, we study the possible values of νp(d) when p | i(γ). After

recalling some lemmas in section 2, it is proved in Theorem 3.1 that if θ 6≡ 0 ( mod pA) and p|i(θ/pk),
for some positive integer k, then the p-adic valuation of the leading coefficient of the minimal
polynomial of θ/pk belongs to the set {k, k+ 1, . . . , (n− p)k}. Furthermore any element of this set
may occur. Section 4 shows that given θ ∈ An such that θ 6≡ 0 (mod pA), it is possible to find
explicitly the values of k ∈ N, if any, such that p|i(θ/pk). Fix θ ∈ An such that θ 6≡ 0 (mod pA)
and define the set Vp(θ) = {k ∈ N ; p|i(θ/pk)}. On the one hand it is shown that |Vp(θ)| for
θ ∈ An is bounded by some constant depending on n and p. On the other hand the values of k are
bounded by a constant depending on p and νp(NK/Q(θ)), where νp(a) denotes the p-adic valuation
of a. Section 5 deals with this last bound. It is shown that, even if we fix the field K, the values
of k may be greater than any given positive constant. In this section, we give examples of Galois
number fields K of degree 4 (resp. 3) for which the set of the values of k, when θ runs in An is {0}
(resp. N). Throughout this paper we denote by N the set of nonnegative integers. The paper ends
with remarks and open questions.

2. Indices and denominators of algebraic numbers

Let K be a number field of degree n, A its ring of integers, γ ∈ Kn and let g(x) = anx
n + · · · +

a1x+ a0 ∈ Z[x] be the unique primitive polynomial of degree n such that an > 0 and g(γ) = 0. We
denote this polynomial Fr(x). This polynomial will be called the minimal polynomial of γ over Z.
The leading coefficient an will be denoted c(γ).

Let
I(γ) = {m ∈ Z,mγ ∈ A},

then I(γ) is a nonzero ideal of Z, hence a principal ideal generated by some positive integer denoted
by d(γ). The integer d(γ) is called the denominator of γ. Since c(γ) ∈ I(γ), then d(γ) | c(γ). Write
γ = θ

d(γ) , where θ ∈ An, then θ is unique and we call it the numerator of γ. Let f(x) be the minimal

polynomial of θ over Q, then g(x) = f(d(γ)x)/cont(f(d(γ)x), where the abbreviation cont(h(x))
denotes the content of the polynomial h(x). From [ARW96] we have the following result:

Lemma 2.1. For any prime p, we have

νp(d(γ)) = max

(
0,

n−1
max
j=0

⌈
νp(an)− νp(aj)

n− j

⌉)
. (2.1)

From Lemma 2.1 we see that any prime factor p of c(γ) divides d(γ).
Summarizing the relations between c(γ) and d(γ), we have:

Remark 2.1. Let K be a number field of degree n and γ ∈ Kn, then d(γ) and c(γ) have the same
prime factors and for any prime p, we have νp(d(γ)) ≤ νp(c(γ)) ≤ nνp(d(γ)).

For any θ ∈ An, let Fθ(x) its minimal polynomial over Q. Following [GuMc70], we define the
integers

i(θ) = gcdx∈Z Fθ(x) and i(K) = lcmθ∈An i(θ). (2.2)

For the integers i(θ) and i(K) we have the following results:
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i) C. R. MacCluer proved in [Mac71] that for a given prime number p, p divides i(K) if and only
if the number of prime ideals of A lying over p is at least equal to p.

ii) In [GuMc70] and [AyKi11], it is proved that there exists θ ∈ An such that i(K) = i(θ), and
that i(K) = lcmθ∈A i(θ).

We extend the definition of i(θ) and i(K) to algebraic numbers as follows. Given any γ ∈ Kn, we
define

i(γ) := gcdx∈Z Fγ(x) and ı̂(K) = lcmγ∈Kn i(γ).

We quote from [AyKi11] the following result.

Lemma 2.2. Let g(x) ∈ Z[x]. Write g(x) in the form

g(x) = bn(x)n + · · ·+ b1(x)1 + b0,

where b0, . . . , bn ∈ Z,

(x)0 = 1 and (x)j := x(x− 1) · · · (x− (j − 1)), for j ≥ 1.

Then, we have the identity
i(g) = gcdnj=0

(
j!bj
)
.

Corollary 2.1. The integers i(γ), i(K) and ı̂(K) divide n!.

Remark 2.2. Clearly, from the definitions of i(K) and ı̂(K), we see that i(K) divides ı̂(K).

3. Study of the denominators of some algebraic numbers

We prove the following lemma, which is useful for the rest of this paper:

Lemma 3.1. Let p be a prime number, γ be an algebraic number and d(γ) be its denominator.
Write d(γ) in the form d(γ) = pk · q, where gcd(p, q) = 1 and let µ = qγ. Then we have

d(µ) = pk, νp(c(µ)) = νp(c(γ)) and νp(i(γ)) = νp(i(µ)).

Proof: Let γ = θ/pkq where θ is an algebraic integer such that θ 6≡ 0 (mod p) and θ 6≡ 0 (mod l)
for any prime factor l of q. Then µ = qγ = θ/pk, hence d(µ) = pk. Let n be the degree
of γ over Q and let g(x) = anxn + · · · + a1x + a0 be its minimal polynomial over Z. Since
an = c(γ) and d(γ)|c(γ), then q|an. This implies that the polynomial h(x) = qn−1g(x/q) =
(an/q)x

n+an−1x
n−1 +· · ·+a1q

n−2x+a0q
n−1 has integral coefficients and vanishes for µ. Therefore,

the minimal polynomial of µ over Z is given by f(x) = h(x)/cont(h). Write cont(h) in the form
cont(h) = gcd(q, cont(h)) · λ, where λ is a positive integer. We show that λ = 1. Suppose that
there exists a prime number l|λ, then l|cont(h) and l - q. Since l|a0q

n−1, a1q
n−2,. . . , an−1, an|q,

then l|a0, . . . , an which is a contradiction, hence λ = 1. Therefore cont(h)|q. Since

c(µ) = (an/q)/cont(h) = an/qcont(h) = c(γ)/qcont(h),
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then Vp(c(µ)) = Vp(c(γ)). We now prove the last statement. Suppose that pu|i(γ) for
some positive integer u and x0 ∈ Z. Since gcd(p, q) = 1, there exists y0 ∈ Z such that
the congruence qy0 ≡ x0 (modpu) holds. In particular g(y0) ≡ 0 (modpu), so that we have,
f(x0) = h(x0)/cont(h) = qn−1g(y0)/cont(h) ≡ 0 (mod pu). Since x0 was arbitrary, then pu|i(µ).
Conversely, suppose that pu|i(µ) and let x0 and y0 as above. Then f(x0) = 0 (modpu), hence
qn−1g(y0)/cont(h) ≡ 0 (mod pu), thus g(y0) ≡ 0 (mod pu). Therefore pu|i(γ).
We state the main result of this section.

Theorem 3.1. Let K be a number field of degree n over Q and p be a prime number, Let γ ∈ Kn

such that p|i(γ), c = c(γ), d = d(γ) and k = vp(d) > 1. Then p < n and k ≤ νp(c) ≤ (n− p)k.

Proof: Set d = pkq with gcd(p, q) = 1. Let µ = qγ, then d(µ) = pk and by Lemma 3.1, we have
vp(c(µ)) = vp(c(γ)) and vpi(µ) = vpi(γ) ≥ 1. Therefore, p|i(µ). The minimal polynomial of µ over
Z has the form:

g(x) = pt(x)n + bn−1(x)n−1 + · · ·+ b1(x)1 + b0, with k ≤ t ≤ nk.

By corollary 2.1, p|n!, hence p ≤ n. If p = n, since p|j!bj for all j = 0, . . . , n− 1, then we conclude
that p|b0, b1, . . . , bn−1. Therefore g(x) is reducible in Z[x], which is a contradiction, hence p < n. In
this case, since p|b0, b1, . . . , bp−1, then we may write g(x) in the form

g(x) = x(x− 1) · · · (x− (p− 1))
(
ptxn−p + ãn−p−1x

n−p−1 + · · ·+ ã1x+ ã0

)
+p
(
cp−1x

p−1 + · · ·+ c1x+ c0

)
where all the coefficients ãi, cj are integral. Since g(x) is irreducible in Z[x], there exists
j ∈ {0, . . . , n− p− 1} such that p 6 |ãj . Denote by jo the greatest of these integers. Let θ ∈ An be
the unique element such that γ = θ

pk
. Then we have

θ(θ − pk) · · · (θ − (p− 1)pk)
(
ptθn−p + pkãn−p−1θ

n−p−1

+ · · ·+ pk(n−p−jo)ãj0θ
j0 + · · ·+ pk(n−p−1)ã1θ + pk(n−p)ã0

)
+p · pk(n−(p−1))

(
cp−1θ

p−1 + cp−2p
kθp−2 + · · ·+ c0p

k(p−1)
)

= 0.

Write this equation in the form:

ptθn + un−1θ
n−1 + · · ·+ upθ

p + · · ·+ u1θ + u0 = 0.

Since θ is integral, it follows in particular that pt|uj for j = p, . . . , n− 1. We can set

θ(θ − pk) · · · (θ − (p− 1)pk) = θp + σ1θ
p−1 + · · ·+ σp−1θ.

Then 

σ1 = −(pk + · · ·+ pk(p− 1)) = pk p(p−1)
2

σ2 = p2k
∑
i6=j

i,j∈{1,...,p−1}

ij

. . .

σp−1 = (−1)p−1pk(p−1)(p− 1)!.
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We have

(xp + σ1x
p−1 + · · ·+ σp−1x)

(
ptxn−p + · · ·+ pk(n−p−j0)ãj0x

j0 + · · ·+ ã0p
k(n−p)

)
+

ppk(n−(p−1))
(
cp−1x

p−1 + · · ·+ c1x
)

= ptxn + un−1x
n−1 + · · ·+ upx

p + · · ·+ u1x+ u0,

hence
un−1 = pkãn−p−1 + ptσ1

un−2 = p2kãn−p−2 + pkãn−p−1σ1 + ptσ2

. . .

uj0+p = ãj0p
k(n−p−j0) + ãj0+1p

k(n−p−(j0+1)σ1 + · · ·+ ãj0+mp
k(n−p−(j0+m)σm

+ · · ·+ ptσn−(j0+p)

The first equation implies that pt|pkãn−p−1. Then the second implies that pt|p2kãn−p−2. Iterating
the process, the last equation gives pt|ãj0pk(n−p−j0). Since p 6 |ãj0 , then

t ≤ k(n− p− j0) ≤ k(n− p).

Theorem 3.2. Let p be a prime number, n and k be positive integers, p < n. Then for any integer
t, such that k ≤ t ≤ (n− p)k, there exist infinitely many algebraic numbers γ ∈ C of degree n such
that p|i(γ), νp(c(γ)) = t and νp(d(γ)) = k.

Proof: Dividing t by k, we have two possibilities:

t = (n− i)k + α with 0 < α < k and p < i ≤ n− 1 (3.3)

t = (n− i)k with p ≤ i ≤ n− 1 (3.4)

• First case: t = (n− i)k + α with 0 < α < k and p < i ≤ n− 1. Then, we have

t > (n− i)α+ α = α(n− i+ 1), hence α <
t

n− (i+ 1)
.

On the other hand, choose integers a0, . . . , an such that
gcd(a0, . . . , an) = 1,
νp(aj) = t, for j > i
νp(ai) = α, ( note that α 6= 0)
νp(ai−1) = 0
νp(aj) = 1, for j < i− 1.

(3.5)

Consider the polynomials

f(x) =
n∑
j=0

aj(x)j =
n∑
j=0

ãjx
j

and

g(x) = ãnx
n + qen−1 ãn−1x

n−1 + · · ·+ qe1 ã1x+ qã0 :=
n∑
j=0

bjx
j ,
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where q is a prime number such that q ≡ 1 (mod p), q 6 |ã0 and the exponents ej are arbitrary
fixed positive integers. Clearly g(x) is irreducible in Z[x] by Eisenstein’s Theorem. Let γ be a
root of g(x). Since p ≤ i− 1, then by Lemma 2.2, we conclude that p|i(f) and since g(x) ≡ f(x)
(mod p) for any x ∈ Z, then p|i(γ). We look at the p-adic valuations of the ãj . Recall that
ãn = c(γ) and ã0 = a0, hence νp(ãn) = t and νp(ã0) = 1. We claim that

νp(ãj) ≥ t, for j > i
νp(ãi) = α,
νp(ãi−1) = 0.

(3.6)

For any j ≥ 1 we have ãj = aj +
n∑

l=j+1

alcl, where cl ∈ Z for any l.

If j > i then νp(aj) = νp(aj+1) = · · · = νp(al) = t, hence νp(ãj) ≥ t.
For j = i we have νp(aj) = α < t and νp(al) = t for l = i+ 1, . . . , n, hence νp(ãi) = α.
For j = i− 1 we have νp(ai−1) = 0 and νp(al) ≥ α for l = i, . . . , n,, hence νp(ãi−1) = 0. Thus we
obtain the desired claim.

To compute the p-adic valuation of the denominator of γ, we use Lemma 2.1. For j > i, we have

νp(bn)− νp(bj)
n− j

=
νp(ãn)− νp(ãj)

n− j
=
t− tj
n− j

≤ 0, because tj ≥ t.

For j = i, we have
νp(bn)− νp(bi)

n− i
=
νp(ãn)− νp(ãi)

n− i
=
t− α
n− i

= k.

For j < i we have

νp(bn)− νp(bj)
n− j

=
νp(ãn)− νp(ãj)

n− j
=
t− tj
n− j

≤ t

n− (i− 1)
≤ (n− i)k + α

n− (i− 1)
<

(n− i)k + k

n− (i− 1)
= k,

hence νp(d(γ)) = k.

• Second case: t = (n − i)k with p ≤ i ≤ n − 1. Choose integers a0, . . . , an such that
gcd(a0, . . . , an) = 1 and


νp(aj) ≥ t, for j > i,
νp(ai) = 0,
νp(aj) = 1, for j < i,
νp(an) = t.

(3.7)

Consider the polynomials

f(x) =

n∑
j=0

aj(x)j =

n∑
j=0

ãjx
j

and

g(x) = ãnx
n + qen−1 ãn−1x

n−1 + · · ·+ qe1 ã1x+ qã0 :=

n∑
j=0

bjx
j ,
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where q and the ej have the same meaning as in the preceding case. Clearly g(x) is irreducible
in Z[x] by Eisenstein’s Theorem. Let γ be a root of g(x). Since p ≤ i, then by Lemma 2.2,
we conclude that p|i(f) and since g(x) ≡ f(x) (mod p) for any x ∈ Z, then p|i(γ). We look
at the p-adic valuations of the ãj . We have ãn = an hence νp(ãn) = t. For j > i, we have

ãj = aj +

n∑
l=j+1

alcl where cl ∈ Z and we have νp(aj) ≥ t and νp(al) ≥ t for l ≥ j + 1, hence

νp(ãi) ≥ t.
For j = i, we have νp(ai) = 0 and νp(al) = t, l ≥ j + 1, hence νp(ãi) = 0.
For j < i, we have νp(ãj) ≥ 0.
For j < i, we have νp(ãj) ≥ 0.
We compute the p-adic valuation of the denominator of γ by using Lemma 2.1.
For j > i, we have

νp(bn)− νp(bj)
n− j

=
νp(ãn)− νp(ãj)

n− j
=
t− tj
n− j

≤ 0, because tj ≥ t.

For j = i, we have
νp(bn)− νp(bi)

n− i
=
νp(ãn)− νp(ãi)

n− i
=

t

n− i
= k.

For j < i we have

νp(bn)− νp(bj)
n− j

=
νp(ãn)− νp(ãj)

n− j
<
t− tj
n− i

≤ t

n− i
= k,

hence νp(d(γ)) = k.

Since we can choose q and the ej in an infinite number of ways, then the number of γ’s is infinite.
�

4. Upper bounds for the enumeration of the denominators of some
algebraic numbers

Proposition 4.1. Let θ ∈ An, and f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 its minimal polynomial

over Q. Suppose that θ 6≡ 0 (modpA). Construct the Newton polygon of f(x) by plotting in the
(x, y) plan the points Ai whose coordinates are (i, νp(ai)) for all i ∈ {0, . . . , n} such that ai 6= 0.
Suppose that there exists k ≥ 1 such that p|i(θ/pk). Then there exists two integers m,M such that
1 ≤ m < M ≤ n− 1 and the line joining the points Am and AM has the following equation

y + kx− u = 0, where kM ≤ u < νp(a0) and u = νp(cont(f(pkx))).

Moreover all the points Ai such that i < m or i > M belong to the domain of all points (x, y) such
that y + kx− u > 0. If m < i < M , then we have νp(ai) + ki− u ≥ 0.

Proof: The minimal polynomial over Z of θ/pk is given by

f(pkx)/pu = pnk−uxn + p(n−1)k−uan−1x
n−1 + · · ·+ pk−ua1x+ p−ua0 := g(x),
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where u = νp(cont(f(pkx))). Let

I = {i : 1 ≤ i ≤ n− 1, ai 6= 0 and ik + νp(ai)− u = 0}.

Since θ/pk is not integral then nk−u > 0. Since g(0) ≡ 0 ( mod p), then νp(a0)−u > 0. Adding these
two facts to the property that g(x) is primitive implies that I 6= ∅. Furthermore g(1) ≡ 0 (modp),
hence |I| ≥ 2.
Let m = inf (I) and M = max (I). Clearly the equation of the line joining the points Am and AM
is given by: y+ kx−u = 0. Moreover a point (i, νp(ai)) of the Newton polygon belongs to this line
if and only if i ∈ I. The definition of m and M implies the properties of the points Ai and of u. �

Remark 4.1. Proposition 4.1 shows that −k is the slope of some line joining two points Am and
AM . Moreover all the others points belong to the same side of the line ( or on the line). Therefore,
if we fix a prime p and an algebraic integer θ such that θ 6= 0 (mod pA), it is possible to find
explicitly all the values of k such that p|i(θ/pk). This proposition shows also that the set of such
nonnegative integers k is finite (may be empty).

Example 4.1. Let t ≥ 2 be an integer, f(x) = x3 + x2 + 2tx+ 2t+1 and θt be a root of f(x). It is
seen that f(x) is irreducible over Q: if not, it has a root a/b in Q with a, b ∈ Z and gcd(a, b) = 1.
Substitution then yields

a3 + a2b+ 2tab2 + 2t+1b3 = 0 ,

implying b | a3. Thus, b = ±1, and we then obtain a | 2t+1. Letting a = 2i, we obtain
23i + 2t+i = 22i + 2t+1, implying that t+ i ≤ t+ 1 so i = 1 which is impossible.

For any nonnegative integer, let γt,k = θt/2
k. We show that V2(θt) = {0, t}. Clearly, 2 | i(θt),

hence 0 ∈ V2(θt). The Newton diagram for p = 2 has the following shape:

A1

A0

A2 A3



M. Ayad, A. Bayad and O. Kihel, On fixed divisors 65M. Ayad, A. Bayad and O. Kihel, On fixed divisors 65

The possible edges of the convex hull which may give rise to values of k ∈ V2(θt), k ≥ 1, are [A0A1]
and [A1A2]. Their slopes are equal to −t− 1 and t respectively. Thus, k = t+ 1 or k = t.

If k = t + 1, the minimal polynomial of γt,k over Z is given by g(x) = 2t+2x3 + 2x2 + x + 1.
This shows that 2 6 |i(g(x)), hence t+ 1 6∈ V2(θt).

If k = t, the minimal polynomial of γt,k over Z is given by h(x) = 2x3 + x2 + x+ 2. This shows
that 2 | i(h(x)), hence t ∈ V2(θt). Thus, V2(θt) = {0, t}.

We state now our main result on the upper bounds for the enumeration of the denominators of
algebraic numbers γ such that p|i(γ).

Theorem 4.1. Let θ be a root of f(x) ∈ Z[x], monic irreducible, p a prime number such that
θ 6≡ 0( modpA) and let a0 = f(0). We set

Vp(θ) =
{
k ≥ 0; p|i(θ/pk)

}
.

Suppose that Vp(θ) 6= ∅ then we have

|Vp(θ)| ≤
n− 1

p− 1
, (4.8)∑

k∈Vp(θ)

k <
νp(a0)

p
. (4.9)

For the proof of this theorem, we need the following lemma.

Lemma 4.1. Let p be a prime number and g(x) = aMx
M + · · · + amx

m, M > m > 0 such that
p6 |aM . If p|i(g), then M −m ≥ p− 1.

Proof: Suppose that p | i(g), then clearly p|i(xg1), where g1(x) = aMx
M−m + · · ·+ am. Write xg1

in the form
xg1(x) = aM (x)M−m+1 +

∑
j<M−m+1

bj(x)j ,

then by Lemma 2.2 p|(M −m+ 1)!aM , hence p|(M −m+ 1)!. Therefore p ≤M −m+ 1. �
Proof of Theorem 4.1. Suppose that the complete list of elements of Vp(θ) is given by k1 < k2 <
· · · < kz. We have k1 = 0 if and only if p|i(θ). Set f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0. For each
j = 1, . . . , z, let gj(x) be the minimal polynomial of θ/pkj over Z.
Set gj(x) = ptjxn + b

(j)
n−1x

n−1 + · · ·+ b
(j)
1 x+ b

(j)
0 , we have

g1(x) =

{
f(x) if k1 = 0

f(pk1x)p−u1 if k1 ≥ 1
(4.10)

and gj+1(x) = gj(p
kj+1−kjx)p−uj+1 for j = 1, . . . , z − 1 and u1, . . . , uz are positive integers.

For any j = 1, . . . , z, let Ij = {i ∈ {1, . . . , n − 1}, νp(b(j)i ) = 0}. Since tj > 0, νp(b
(j)
0 ) > 0 and

gj(x) is irreducible in Z[x], then it follows that Ij 6= ∅. Let mj = inf (Ij) and Mj = sup (Ij). Since
gj(1) ≡ 0 (modp) then |Ij | ≥ 2 and mj < Mj . Clearly mj ≥ 1 and Mj ≤ n− 1. We claim that:

• Mj −mj ≥ p− 1 for j = 1, . . . , z.
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• u1 ≥ k1M1 and uj ≥ (kj − kj−1)Mj for j = 2, . . . , z.

• n ≥M1 > m1 ≥M2 > m2 ≥ · · · ≥Mz > mz ≥ 1.

The first claim follows from Lemma 4.1. If k1 = 0, then from (4.10) we have u1 = 0 = k1M1. From
the definition of M1 and the definition of the interval I1, it follows that

νp(b
(1)
M1

) = 0.

Therefore, if k1 ≥ 1, equation (10) and the above equality imply that

0 = νp(b
(1)
M1

) = νp(aM1) + k1M1 − u1,

hence u1 ≥ k1M1. Similarly for j = 2, . . . , z, we have

0 = νp(b
(j)
M ) = νp(b

(j−1)
Mj

) + (kj − kj−1)Mj − uj ,

hence uj ≥ (kj−kj−1)Mj , which proves the second part of the claim. For the last part of the claim
it is sufficient to prove that mj ≥Mj+1 for j = 1, . . . , z− 1. For, suppose that mj < Mj+1 for some

j ∈ {1, . . . , z − 1}. We have 0 = νp(b
(j)
mj ), hence

νp(b
(j+1)
mj ) = νp(b

(j)
mj .p

(kj+1−kj)mj .p−uj+1) = (kj+1 − kj)mj − uj+1.

We deduce that (kj+1 − kj)mj ≥ uj+1 and then (kj+1 − kj)Mj+1 > uj+1. It follows that

νp(b
(j+1)
Mj+1

) = νp(b
(j)
Mj+1

) + (kj+1 − kj)Mj+1 − uj+1 > 0,

which contradicts the definition of Mj+1 and completes the proof of the claim.
We now come back to the proof of Theorem 4.1.
Completion of proof of Theorem 4.1: We use the first and the third points of the claim. We have

n ≥M1 > M2 > · · · > Mz−1 > Mz ≥ p > 1.

Using the claim, we obtain

n− p ≥M1 −Mz = (M1 −M2) + · · ·+ (Mz−1 −Mz) ≥ (p− 1)(z − 1)

hence

z ≤ n− p
p− 1

+ 1 =
n− 1

p− 1
.

Therefore (4.8) is proved.

We prove the inequality (4.9) of Theorem 4.1. We have b
(1)
0 = a0p

−u1 , b
(j+1)
0 = b

(j)
0 p−uj+1 for

j = 1, . . . , z − 1 and since gz(0) ≡ 0(modp), then νp(b
(z)
0 ) > 0. Hence u1 + u2 + · · · + uz < νp(a0).

On the other hand, using the first and the second parts of the claim, we obtain

u1 + u2 + · · ·+ uz ≥ k1M1 + (k2 − k1)M2 + · · ·+ (kz − kz−1)Mz

≥ k1zp+ (k2 − k1)(z − 1)p+ · · ·+ (kz − kz−1)p

= p (k1z + k2z − k1z − k2 + k1 + k3z − k2z − 2k3 + 2k2 + · · ·+ kz − kz−1)

= p((k1 + k2 + · · ·+ kz).
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Therefore, we have

νp(a0) >
z∑
j=1

uj ≥ p
z∑
j=1

kj ,

hence
z∑
j=1

kj < νp(a0)/p.

Remark 4.2. Theorem 4.1, shows that if νp(a0) ≤ p, then Vp(θ) = {0} or Vp(θ) = ∅.

The following result shows that the bound (4.8) in Theorem 4.1 is the best possible. More precisely,
we have

Proposition 4.2. Let p and q be distinct prime numbers such that q ≡ 1 (mod p), θ be a root of

f(x) = xn +
N∑
i=1

aix
n−i(p−1) + qpλ,

where N =
⌊
(n− 1)/(p− 1)

⌋
, ai = (−1)iqp(p−1)i(i−1)/2, for i = 1, . . . , N and

λ >
2n(N − 1)− (p− 1)

(
(N − 1)2 +N − 1

)
2

.

Then

|Vp(θ)| =
⌊n− 1

p− 1

⌋
.

Proof: Clearly, by Eisenstein’s criterion, f(x) is irreducible over Q. The coefficient of xn−(p−1) is
coprime to p, hence θ 6≡ 0 (modpA). By Theorem 4.1, we have

|Vp(θ)| ≤
⌊n− 1

p− 1

⌋
.

We show that the integers 0, 1, . . . ,
⌊
n−1
p−1

⌋
− 1 belong to Vp(θ) and this will complete the

proof of Proposition 4.2. Since f(x) ≡ xn − qxn−(p−1) (mod pZ[x]) and q ≡ 1 (mod p), then
f(x) ≡ xn−(p−1)(xp − 1) (mod pZ[x]). Thus, p | i(f) and 0 ∈ Vp(θ). Set a0 = 1 and fix

k ∈
{

1, . . . ,
⌊
n−1
p−1

⌋
− 1
}

. We have

f(pkx) = pnkxn +
N∑
i=1

aip
nk−i(p−1)kxn−i(p−1) + qpλ.

We claim, omitting the proofs that

νp(akp
nk−k(p−1)k) = νp(ak+1p

nk−k(p−1)(k+1)) =
2nk − (p− 1)(k2 + k)

2

and

νp(aip
nk−i(p−1)k) >

2nk − (p− 1)(k2 + k)

2
if i 6= k, k + 1.
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Moreover, since the function x 7→ ψ(x) = 2nx − (p − 1)(x2 + x) is increasing in [0, N − 1] and

since λ > 2n(N−1)−(p−1)(N−1)2+N−1
2 , then λ > 2nk−(p−1)(k2+k)

2 . It follows that cont(f(pkx)) =
2nk−(p−1)(k2+k)

2 and the minimal polynomial over Z of γk = θ
pk

is given by

gk(x) = f(pkx)p−(2nk−(p−1)k2+k)/2.

From the above it is seen that

gk(x) ≡ (−1)kxn−k(p−1) + (−1)k+1xn−(k+1)(p−1)(modp) ≡ (−1)kxn−(k+1)(p−1)(xp−1 − 1)(modp),

hence p|i(γk), thus k ∈ Vp(θ). �

Corollary 4.1. Let p be a prime number, and θ be a root of

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x],

irreducible over Q. Suppose that there exists i ∈ {0, . . . ,min(p, n)− 1} such that νp(ai) = 0. Then

θ 6≡ 0(modpA) and Vp(θ) = ∅ or Vp(θ) = {0}.

Moreover if p > n, then Vp(θ) = ∅.

Proof: Let α be an algebraic integer and g(x) = xn+ bn−1x
n−1 + · · ·+ b0 be its minimal polynomial

over Q. It is easy to prove that α ≡ 0(modp) if and only if νp(bi) ≥ n− i for i = 0, . . . , n− 1. Our
assumption then implies that θ 6≡ 0(modpA). Suppose that Vp(θ) 6= ∅ and let k ∈ Vp(θ). Assume
that k ≥ 1 and let γ = θ/pk and u = cont(f(pkx)). Then the minimal polynomial of γ over Z is
given by

g(x) = f(pkx)p−u = pnk−uxn + p(n−1)k−uan−1x
n−1 + · · ·+ p−ua0.

As in Theorem 4.1, let

I = {j ∈ {1, . . . , n− 1}; νp(aj) + kj − u = 0},m = inf (I),M = sup (I).

Suppose first that m ≤ i. We have ik− u = νp(ai) + ik− u ≥ 0. Since M −m ≥ p− 1, then M > i
which implies νp(aM )+Mk−u ≥Mk−u > ik−u ≥ 0, a contradiction. We deduce that m > i and
then νp(am)) + km− u ≥ km− u > ki− u = νp(ai) + ki− u ≥ 0, a contradiction again. Therefore
Vp(θ) = {0}. �

5. A new invariant of number fields and a generalisation of
MacCluer’s Theorem

Let p be a fixed prime integer. We have shown that for any algebraic integer θ such that
θ 6≡ 0 (modpA), p|i(θ/pk) for some k ≥ 1, then k < νp(NQ(θ)/Q(θ))/p. Does there exist some

constant c > 0 such that if θ ∈ Q, θ 6≡ 0 (modpA) and p|i(θ/pk) then k < c?
Even if we fix the degree n of θ and suppose that the constant c depends on n, the answer is
negative as it is shown by the following result.
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Proposition 5.1. Let n,N be positive integers and p be a prime number such that p < n. Then
there exists an integer k > N and an algebraic integer θ of degree n such that

θ 6≡ 0 (modpA) and p|i(θ/pk).

Proof: Let F be a number field of degree n− 1 such that p|i(F ). In particular, we can take F such
that p completely splits in F , so that p | i(F ) by MacCluer’s Theorem. Such a field F exists by
Tchebotarev’s theorem [Neu99]. Let α be a primitive element of F/Q. Suppose that α is integral
and p|i(α). Let Fα(x) be the minimal polynomial of α over Q. Let q be a prime number such that

q 6= p and q 6 |NF/Q(α).

Let t be an integer such that t > nN and let g(x) = ptxn + qFα(x). Then Eisenstein’s criterion
shows that g(x) is irreducible over Q. Obviously g(x) is primitive, hence it is irreducible in Z[x].
Let γ be a root of g(x), then clearly p|i(γ) and d(γ) = pk for some positive integer k such that
k ≤ t ≤ nk, hence k ≥ t/n > N . The algebraic integer θ = pkγ satisfies all the conditions of the
proposition and the proof is complete. �

Let K be a number field of degree n over Q and A be its ring of integers. We define the integer
νp(K) as follows.

Definition 5.1. Let

Vp(K) =
{
k ≥ 0, there exists θ ∈ An, θ 6≡ 0 (modpA), and p|i(θ/pk)

}
,

and we define

vp(K) =


−∞ if Vp(K) = ∅,
∞ if Vp(K) is infinite,

max(Vp(K)) if Vp(K) is finite.

Remark 5.1. By Theorem 3.1, we have vp(K) = −∞ if and only if p 6 |i(K). So there is no need
to give examples illustrating this fact. Theorem 3.1 again shows that if the degree of the number
field K is a prime p then vp(K) = 0 if p|i(K) and vp(K) = −∞ if p 6 |i(K).

In the following we compute explicitly v2(K) for some number fields of degree 3 or 4 over Q.

Proposition 5.2. (Galois field of degree 4) Let K/Q be a Galois number field of degree 4 in
which the prime 2 splits into a product of two prime ideals having their residual degree equal to 2.
Then we have v2(K) = 0.

Proof: By MacCluer’s theorem, 2|i(K), hence 0 ∈ Vp(K). Let p and p′ be the conjugate prime
ideals of A lying over 2 and having their residual degree equal to 2. Suppose that 2|i(θ/2k) for some
k ≥ 1 and θ ∈ An such that θ 6≡ 0 (mod 2A). Since NK/Q(θ) ≡ 0 (mod 2), then we may suppose
that pe||θ and p′ 6 |θ for some e ≥ 1. We suppose that the conjugates θ1 = θ, θ2, θ3, θ4 of θ satisfy
the following conditions:

pe||θ1, p
e||θ3, p

′ 6 |θ1θ3, p
′e||θ2, p

′e||θ4, p 6 |θ2θ4.
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Let f(x) = x4 + a3x
3 + a2x

2 + a1x + a0 ∈ Z[x] be the minimal polynomial of θ over Q. Let
g(x) ∈ Z[x] be the minimal polynomial of γ = θ/2k over Z, then

g(x) = f(2kx).2−u = 24k−ux4 + 23k−ua3x
3 + 22k−ua2x

2 + 2k−ua1x+ 2−ua0,

where u is the content of f(2kx). Using the elementary symmetric functions of the θj and our
assumption on their p-adic and p′-adic valuations, we get

ν2(a0) = 2e, ν2(a1) ≥ e and ν2(a2) = 0.

If k ≥ e, then ν2(24k−u) ≥ 4e − u, ν2(23k−ua3) ≥ 3e − u, ν2(22k−ua2) = 2k − u ≥ 2e − u,
ν2(2k−ua1) ≥ 2e − u, ν2(2−ua0) = 2e − u. Since these five 2-adic valuations must be nonnega-
tive, then u ≤ 2e. Furthermore one (at least) of these valuations must be 0, hence u = 2e. In
this case, g(0) 6≡ 0 (mod 2) which is a contradiction to 2|i(γ). If k < e, then ν2(24k−u) = 4k − u,
ν2(23k−ua3) ≥ 3k−u, ν2(22k−ua2) = 2k−u, ν2(2k−ua1) > 2k−u, ν2(2−ua0) > 2k−u. Using similar
arguments as in the preceding case, we obtain u = 2k. We conclude that all the coefficients of g(x)
have their 2-adic valuations positive except the coefficient of x2 which has a 2-adic valuation equal
to 0. In this case also we reach a contradiction since g(1) 6≡ 0(( mod )2). It follows that V2(K) = {0}
and v2(K) = 0. �

For the proof of the next proposition, we will need the following lemma.

Lemma 5.1. (Engstrom) Let K be a number field, A be its ring of integers and p be a prime
integer. Let p1, . . . , ps be distinct prime ideals of A lying over p and let Φ1(x), . . . ,Φs(x) be monic
irreducible polynomials over Fp not necessarily distincts of degree d1, . . . , ds respectively, where di
divides the residual degree of pi. Let h1, . . . , hs be positive integers. Then there exists a primitive
element θ ∈ A such that phii ||Φi(θ) for i = 1, . . . , s

Proof: see [Eng30]. �

Proposition 5.3. (Cubic Galois) Let K/Q be a Galois number field of degree 3 in which the
prime 2 splits completely. Then V2(K) = N.

Proof: Let k and e be positive integers such that e > k. Let p1, p2 and p3 be the prime ideals of A
lying over 2. By Lemma 5.1 there exists θ ∈ An such that

pe1||θ, pk2||θ and p3 6 |θ.

Assume that the conjugates of θ, θ1 = θ, θ2, θ3 are labelled in order to satisfy the following
conditions:

pe2||θ2, p
k
3||θ2, p1 6 |θ2,

pe3||θ3, p
k
1|||θ3, p2 6 |θ3.

Let f(x) = x3 + a2x
2 + a1x+ a0 ∈ Z[x] be the minimal polynomial of θ over Q. Expressing a0, a1

and a2 in terms of θ1, θ2, θ3, we get

ν2(a0) = e+ k, ν2(a1) = k and ν2(a2) = 0.
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We have
f(2kx) = 23kx3 + 22ka2x

2 + 2ka1x+ a0.

Set
b3 = 23k, b2 = 22ka2, b1 = 2ka1, b0 = a0.

Using the 2-adic valuation of a0, a1, a2 we obtain

ν2(b1) = ν2(b2) = 2k, ν2(b0) = e+ k > 2k, ν2(b3) = 3k > 2k.

Therefore cont(f(22kx)) = 22k and the minimal polynomial of θ/2k is given by

g(x) = f(2kx)·2−2k.

Clearly we have g(0) ≡ g(1) ≡ 0 (mod2) hence 2|i(θ/pk). Since the prime 2 splits completely in K,
then 0 ∈ V2(K). Therefore V2(K) = N and v2(K) =∞. �

Remark 5.2. Our result in the sequel can be viewed as a generalization of MacCluer’s theorem
which establishes a relation between the number of prime ideals of A lying over p and the property
of p to be a divisor of i(K).

Fix a prime number p and define, for any primitive element θ ∈ A of K, the integer jp(θ) as follows.

Definition 5.2. Let Fθ(x) be the minimal polynomial of θ over Q. Let jp(θ) be the largest integer
y, if it exists, 1 ≤ y ≤ p such that Fθ(1) ≡ Fθ(2) ≡ · · · ≡ Fθ(y) ≡ 0 (mod p). If not set jp(θ) = 0.
We define also jp(K) = maxθ∈An jp(θ).

Theorem 5.1. Let r be the number of prime ideals of A lying over p. Then

jp(K) = inf(r, p).

Moreover
p|i(K) ⇐⇒ jp(K) = p.

Proof: Suppose first that r ≤ p and let p1, . . . , pr be the distinct prime ideals of A lying over p. By
Lemma 5.1 there exists θ ∈ An such that θ ≡ i(modp) for i = 1, . . . , r. It follows that the minimal
polynomial Fθ(x) of θ satisfies the condition

Fθ(x) ≡ (x− 1)(x− 2) · · · (x− r)g(x)(mod p)

hence jp(θ) ≥ r which implies that jp(K) ≥ r. On the other hand, let θ ∈ An such that

jp(K) = jp(θ) := t ,

then

Fθ(x) ≡ (x− 1)(x− 2) · · · (x− t)g(x)(mod p)

hence, by Hensel’s Lemma, we deduce that Fθ(x) has at least t irreducible factors over Zp, the ring
of p-adic integers. Again by Theorem 5.1 of chap. 2 of [Jan96], we have t ≤ r. We conclude that
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jp(K) = r = inf(p, r).
Suppose now that r > p. By Lemma 5.1, let θ ∈ An such that θ ≡ i(modp) for i = 1, . . . , p. Then

Fθ(x) ≡ (x− 1)(x− 2) · · · (x− p)g(x)(mod p).

therefore we have jp(θ) ≥ p which implies jp(K) ≥ p. From the definition we have jp(K) ≤ p,
hence jp(K) = p = inf(r, p).
We now prove the last statement of the proposition. We have

p|i(K) ⇐⇒ r ≥ p (by MacCluer’s theorem) ⇐⇒ inf(r, p) = p ⇐⇒ jp(K) = p. �

6. Concluding remarks

Questions Let K be a number field of degree n. If [K : Q] = 2, then by Corollary 2.1, i(K) and
ı̂(K) are equal to 1 or 2. Theorem 3.1 shows that 2 6 |i(γ) if γ 6∈ An, hence i(K) = ı̂(K) ∈ {1, 2}.

If [K : Q] = 3, then i(K) and ı̂(K) ∈ {1, 2, 3, 6}. Moreover, Theorem 3.1 shows that 3 | ı̂(K) if
and only if 3 | i(K).

Suppose that there exists γ = θ/2k with k ≥ 1, k ≤ t ≤ 3k and θ 6≡ 0 (mod p) such that 2 | i(γ).
Let g(x) = 2tx3 + b2x

2 + b1x+ b0 be the minimal polynomial of γ over Z. Since g(0) ≡ 0 (mod 2),
then b0 ≡ 0 (mod 2). Since g(1) ≡ 0 (mod 2), then b1 + b2 ≡ 0 (mod 2), thus b1 ≡ b2 (mod 2).
Moreover, since g(x) is primitive, then b1 ≡ b2 ≡ 1 (mod 2). By Theorem 3.1, t ≤ k. Since k ≤ t,
then k = t. The minimal polynomial of θ is then given by

f(x) = x3 + b2x
2 + b12tx+ b022t.

This shows that 2 | i(f) and then 2 | i(θ), thus 2 | i(K). We conclude that i(K) = ı̂(K).
Let K be a number field of degree n and let γ ∈ Kn \ An. Set γ = θ/d, where d is an integer

at least equal to 2 such that θ 6≡ 0 (mod p) for any prime divisor p of d. It is proved in Lemma 3.1
that if d = pkq with gcd(p, q) = 1 and k ≥ 1, then p | i(γ) if and only if p | i(θ/pk). We ask that
following: Is it true that if p | i(θ/pk) with k ≥ 1 and θ 6≡ 0 (mod p), then p | i(K)? Do we have
ı̂(K) = i(K)?

Recall that νp(K) is the greatest element of the set Vp(K), when this set is finite. Do we
have {0, 1, . . . , νp(K)} = Vp(K)? The example given in section 4 shows that Vp(θt) = {0, t} 6=
{0, 1, . . . , t}. We may ask a similar question when Vp(K) is infinite. Do we have Vp(K) = N?
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