Godement-Jacquet L-function, some conjectures and some consequences

Amrinder Kaur, Ayyadurai Sankaranarayanan

To cite this version:

Amrinder Kaur, Ayyadurai Sankaranarayanan. Godement-Jacquet L-function, some conjectures and some consequences. Hardy-Ramanujan Journal, 2023, Volume 45 - 2022, pp. 42 - 56. 10.46298/hrj.2023.10747 . hal-03913477

HAL Id: hal-03913477

https://hal.science/hal-03913477

Submitted on 27 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Godement-Jacquet L-function, some conjectures and some consequences

Amrinder Kaur and Ayyadurai Sankaranarayanan

Abstract

In this paper, we investigate the mean square estimate for the logarithmic derivative of the Godement-Jacquet L-function $L_{f}(s)$ assuming the Riemann hypothesis for $L_{f}(s)$ and Rudnick-Sarnak conjecture.

Keywords. Godement-Jacquet L-function, Rudnick-Sarnak conjecture, Hecke-Maass form, Riemann Hypothesis.
2010 Mathematics Subject Classification. 11F30, 11N75

1. Introduction

Let $n \geq 2$, and let $v=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right) \in \mathbb{C}^{n-1}$. A Maass form [Gol06] for $S L(n, \mathbb{Z})$ of type v is a smooth function $f \in \mathcal{L}^{2}\left(S L(n, \mathbb{Z}) \backslash \mathcal{H}^{n}\right)$ which satisfies

1. $f(\gamma z)=f(z)$, for all $\gamma \in S L(n, \mathbb{Z}), z \in \mathcal{H}^{n}$,
2. $D f(z)=\lambda_{D} f(z)$, for all $D \in \mathfrak{D}^{n}$ where $\mathfrak{D}^{\mathfrak{n}}$ is the center of the universal enveloping algebra of $\mathfrak{g l}(n, \mathbb{R})$ and $\mathfrak{g l}(n, \mathbb{R})$ is the Lie algebra of $G L(n, \mathbb{R})$,
3. $\int_{(S L(n, \mathbb{Z}) \cap U) \backslash U} f(u z) d u=0$,
for all upper triangular groups U of the form

$$
U=\left\{\left(\begin{array}{cccc}
I_{r_{1}} & & & \\
& I_{r_{2}} & & * \\
& & \ddots & \\
& & & I_{r_{b}}
\end{array}\right)\right\},
$$

with $r_{1}+r_{2}+\cdots+r_{b}=n$. Here, I_{r} denotes the $r \times r$ identity matrix, and $*$ denotes arbitrary real entries.

A Hecke-Maass form is a Maass form which is an eigenvector for the Hecke operators algebra. Let $f(z)$ be a Hecke-Maass form of type $v=\left(v_{1}, v_{2}, \ldots, v_{n-1}\right) \in \mathbb{C}^{n-1}$ for $S L(n, \mathbb{Z})$. Then it has the Fourier expansion

$$
\begin{aligned}
f(z)= & \sum_{\gamma \in U_{n-1}(\mathbb{Z}) \backslash S L(n-1, \mathbb{Z})} \sum_{m_{1}=1}^{\infty} \cdots \sum_{m_{n-2}=1}^{\infty} \sum_{m_{n-1} \neq 0} \frac{A\left(m_{1}, \ldots, m_{n-1}\right)}{\prod_{j=1}^{n-1}\left|m_{j}\right|^{\frac{j(n-j)}{2}}} \\
& \times W_{J}\left(M \cdot\left(\begin{array}{ll}
\gamma & \\
& 1
\end{array}\right) z, v, \psi_{1, \ldots, 1, \frac{m_{n-1}}{\left|m_{n-1}\right|}}\right)
\end{aligned}
$$

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal
where

$$
\begin{aligned}
& M=\left(\begin{array}{lllll}
m_{1} \ldots m_{n-2} \cdot\left|m_{n-1}\right| & & & & \\
& \ddots & & & \\
& & m_{1} m_{2} & & \\
& & & m_{1} & \\
& & & & 1
\end{array}\right), \\
& A\left(m_{1}, \ldots, m_{n-1}\right) \in \mathbb{C}, \quad A(1, \ldots, 1)=1, \\
& \psi_{1, \ldots, 1, \epsilon}\left(\left(\begin{array}{ccccc}
1 & u_{n-1} & & & \\
& 1 & u_{n-2} & & * \\
& & \ddots & \ddots & \\
& & & 1 & u_{1} \\
& & & & 1
\end{array}\right)\right)=e^{2 \pi i\left(u_{1}+\cdots+u_{n-2}+\epsilon u_{n-1}\right)},
\end{aligned}
$$

$U_{n-1}(\mathbb{Z})$ denotes the group of $(n-1) \times(n-1)$ upper triangular matrices with $1 s$ on the diagonal and an integer entry above the diagonal and W_{J} is the Jacquet Whittaker function.

If $f(z)$ is a Maass form of type $\left(v_{1}, \ldots, v_{n-1}\right) \in \mathbb{C}^{n-1}$, then

$$
\begin{aligned}
& \tilde{f}(z):=f\left(w \cdot\left(z^{-1}\right)^{T} \cdot w\right) \\
& w=\left(\begin{array}{lll}
& & \\
& . & (-1)^{\left[\frac{n}{2}\right]} \\
& . &
\end{array}\right)
\end{aligned}
$$

is a Maass form of type $\left(v_{n-1}, \ldots, v_{1}\right)$ for $S L(n, \mathbb{Z})$ called the dual Maass form. If $A\left(m_{1}, \ldots, m_{n-1}\right)$ is the $\left(m_{1}, \ldots, m_{n-1}\right)$-Fourier coefficient of f, then $A\left(m_{n-1}, \ldots, m_{1}\right)$ is the corresponding Fourier coefficient of \tilde{f}.

We note that the Fourier coefficients $A\left(m_{1}, \ldots, m_{n-1}\right)$ satisfy the multiplicative relations

$$
A\left(m_{1} m_{1}^{\prime}, \ldots, m_{n-1} m_{n-1}^{\prime}\right)=A\left(m_{1}, \ldots, m_{n-1}\right) \cdot A\left(m_{1}^{\prime}, \ldots, m_{n-1}^{\prime}\right)
$$

if

$$
\left(m_{1} \ldots m_{n-1}, m_{1}^{\prime} \ldots m_{n-1}^{\prime}\right)=1
$$

$$
A(m, 1, \ldots, 1) A\left(m_{1}, \ldots, m_{n-1}\right)=\sum_{\substack{n \\ n=1 \\ l=1 \\ c_{l}=m \\ c_{1}\left|m_{1}, c_{2}\right| m_{2}, \ldots, c_{n-1} \mid m_{n-1}}} A\left(\frac{m_{1} c_{n}}{c_{1}}, \frac{m_{2} c_{1}}{c_{2}}, \ldots, \frac{m_{n-1} c_{n-2}}{c_{n-1}}\right)
$$

and

$$
A\left(m_{n-1}, \ldots, m_{1}\right)=\overline{A\left(m_{1}, \ldots, m_{n-1}\right)}
$$

Definition 1.1. [Gol06] The Godement-Jacquet L-function $L_{f}(s)$ attached to f is defined for $\Re(s)>$ 1 by

$$
L_{f}(s)=\sum_{m=1}^{\infty} \frac{A(m, 1, \ldots, 1)}{m^{s}}=\prod_{p} \prod_{i=1}^{n}\left(1-\alpha_{p, i} p^{-s}\right)^{-1}
$$

where $\left\{\alpha_{p, i}\right\}, 1 \leq i \leq n$ are the complex roots of the monic polynomial

$$
\begin{gathered}
X^{n}+\sum_{j=1}^{n-1}(-1)^{j} A(\overbrace{1, \ldots, 1}^{j-1 \text { terms }}, p, 1, \ldots, 1) X^{n-j}+(-1)^{n} \in \mathbb{C}[X], \quad \text { and } \\
A(\overbrace{1, \ldots, 1}^{j-1}, p, 1, \ldots, 1)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} \alpha_{p, i_{1}} \ldots \alpha_{p, i_{j}}, \quad \text { for } 1 \leq j \leq n-1 .
\end{gathered}
$$

$L_{f}(s)$ satisfies the functional equation:

$$
\begin{aligned}
\Lambda_{f}(s) & :=\prod_{i=1}^{n} \pi^{\frac{-s+\lambda_{i}\left(v_{f}\right)}{2}} \Gamma\left(\frac{s-\lambda_{i}\left(v_{f}\right)}{2}\right) L_{f}(s) \\
& =\Lambda_{\tilde{f}}(1-s)
\end{aligned}
$$

where \tilde{f} is the Dual Maass form.
In the case of Godement-Jacquet L-function, Yujiao Jiang and Guangshi Lü [JiLu17] have studied cancellation on the exponential sum $\sum_{m \leq N} \mu(m) A(m, 1) e^{2 \pi i m \theta}$ related to $S L(3, \mathbb{Z})$ where $\theta \in \mathbb{R}$.
Throughout the paper, we assume that f is self dual i.e., $\tilde{f}=f$.
ϵ, ϵ_{1} and η always denote any small positive constants.
If $N_{f}(T)$ denotes the number of zeros of $L_{f}(s)$ in the rectangle mentioned below, then from the functional equation and the argument principle of complex function theory we have,

$$
N_{f}(T) \sim c(n) T \log T
$$

where $c(n)$ is a non zero constant depending only on the degree n of $L_{f}(s)$.

(i) The generalized Ramanujan conjecture:

It asserts that

$$
|A(m, 1, \ldots, 1)| \leq d_{n}(m)
$$

where $d_{n}(m)$ is the number of representations of m as the product of n natural numbers. The current best estimates are due to Kim and Sarnak [Kim03] for $2 \leq n \leq 4$ and Luo, Rudnick and Sarnak for $n \geq 5$

$$
\begin{array}{r}
|A(m)| \leq m^{\frac{7}{64}} d(m), \\
|A(m, 1)| \leq m^{\frac{5}{14}} d_{3}(m), \\
|A(m, 1,1)| \leq m^{\frac{9}{22}} d_{4}(m), \\
|A(m, 1, \ldots, 1)| \leq m^{\frac{1}{2}-\frac{1}{n^{2}+1}} d_{n}(m) .
\end{array}
$$

We note that the generalized Ramanujan conjecture is equivalent to

$$
\left|\alpha_{p, i}\right|=1 \quad \forall \text { primes } p \text { and } i=1,2, \ldots, n .
$$

Other estimates are equivalent to

$$
\begin{gathered}
\left|\alpha_{p, i}\right| \leq p^{\theta_{n}} \quad \forall \text { primes } p \text { and } i=1,2, \ldots, n \text { where } \\
\theta_{2}:=\frac{7}{64}, \quad \theta_{3}:=\frac{5}{14}, \quad \theta_{4}:=\frac{9}{22}, \quad \theta_{n}:=\frac{1}{2}-\frac{1}{n^{2}+1}(n \geq 5) .
\end{gathered}
$$

(ii) Ramanujan's generalized weak conjecture:

We formulate this conjecture as:
For $n \geq 2$, the inequality

$$
\left|\alpha_{p, i}\right| \leq p^{\frac{1}{4}-\epsilon_{1}}
$$

holds for some small $\epsilon_{1}>0$, for every prime p and for $i=1,2, \ldots, n$. Of course, this weak conjecture holds good for $n=2$. For $n \geq 3$, this conjecture is still open.

Taking the logarithmic derivative of $L_{f}(s)$, we have

$$
-\frac{L_{f}^{\prime}}{L_{f}}(s):=\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m)}{m^{s}}=\sum_{m=1}^{\infty} \frac{\Lambda(m) a_{f}(m)}{m^{s}}
$$

where $a_{f}(m)$ is multiplicative and

$$
a_{f}\left(p^{r}\right)=\sum_{i=1}^{n} \alpha_{p, i}^{r}
$$

for any integer $r \geq 1$.
In particular,

$$
a_{f}(p)=\sum_{i=1}^{n} \alpha_{p, i}=A(p, 1, \ldots, 1) .
$$

(iii) Rudnick-Sarnak conjecture:

For any fixed integer $r \geq 2$,

$$
\sum_{p} \frac{\left|a_{f}\left(p^{r}\right)\right|^{2}(\log p)^{2}}{p^{r}}<\infty
$$

We know that this conjecture is true for $n \leq 4$. (See [Ki06, RuSa96].)
(iv) Riemann hypothesis for $L_{f}(s)$:

It asserts that $L_{f}(s) \neq 0$ in $\Re(s)>\frac{1}{2}$.

The aim of this paper is to establish:

Theorem 1.1. Ramanujan's weak conjecture implies Rudnick-Sarnak conjecture.

Remark 1.2. Theorem 1.1 is indicated in [Ki06].
Theorem 1.3. Assume $n \geq 5$ be any arbitrary but fixed integer. Let ϵ be any small positive constant and $T \geq T_{0}$ where T_{0} is sufficiently large. Assume the Rudnick-Sarnak conjecture and Riemann hypothesis for $L_{f}(s)$. Then the estimate:

$$
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t<_{f, n, \epsilon, \eta} T(\log T)^{2 \eta}
$$

holds for $\frac{1}{2}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$ with η being some constant satisfying $0<\eta<\frac{1}{2}$.

Remark 1.4. Since Rudnick-Sarnak conjecture is true for $2 \leq n \leq 4$, Theorem 1.3 holds just with the assumption of Riemann hypothesis for $L_{f}(s)$ whenever $2 \leq n \leq 4$.

Remark 1.5. It is not difficult to see from our arguments that only assuming Riemann Hypothesis for $L_{f}(s)$, Theorem 1.3 can be upheld for any σ_{0} satisfying $1-\frac{1}{n^{2}+1}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$ by using the bound $\theta_{n}=\frac{1}{2}-\frac{1}{n^{2}+1}$ of Luo, Rudnick and Sarnak.
It is also not difficult to see from our arguments that the generalized Ramanujan conjecture and the Riemann hypothesis for $L_{f}(s)$ together imply the bound

$$
\begin{equation*}
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t<_{f, n, \epsilon} T \tag{1.1}
\end{equation*}
$$

to hold for any σ_{0} satisfying $\frac{1}{2}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$.
Though we expect the bound stated in Equation 1.1 to hold unconditionally for σ_{0} in the said range, this seems to be very hard.

2. Some Lemmas

Lemma 2.1. If $f(s)$ is regular and

$$
\left|\frac{f(s)}{f\left(s_{0}\right)}\right|<e^{M} \quad(M>1)
$$

in $\left|s-s_{0}\right| \leq r_{1}$, then for any constant b with $0<b<\frac{1}{2}$,

$$
\left|\frac{f^{\prime}}{f}(s)-\sum_{\rho} \frac{1}{s-\rho}\right| \ll b \frac{M}{r_{1}}
$$

in $\left|s-s_{0}\right| \leq\left(\frac{1}{2}-b\right) r_{1}$, where ρ runs over all zeros of $f(s)$ such that $\left|\rho-s_{0}\right| \leq \frac{r_{1}}{2}$.

Proof. See Lemma α in Section 3.9 of [TiHe86] or see [RaSa91].

Lemma 2.2. Let $N_{f}^{*}(T)$ denote the number of zeros of $L_{f}(s)$ in the region $0 \leq \sigma \leq 1,0 \leq t \leq T$. Then,

$$
N_{f}^{*}(T+1)-N_{f}^{*}(T)<_{n} \log T
$$

Proof. Let $n\left(r_{1}\right)$ denote the number of zeros of $L_{f}(s)$ in the circle with centre $2+i T$ and radius r_{1}. By Jensen's theorem,

$$
\int_{0}^{3} \frac{n\left(r_{1}\right)}{r_{1}} d r_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|L_{f}\left(2+i T+3 e^{i \theta}\right)\right| d \theta-\log \left|L_{f}(2+i T)\right| .
$$

From the functional equation, we observe that

$$
\left|L_{f}(s)\right|<_{f} t^{A} \quad \text { for }-1 \leq \sigma \leq 5 \text { where } A \text { is some fixed positive constant, }
$$

and hence we have,

$$
\log \left|L\left(2+i T+3 e^{i \theta}\right)\right| \ll A \log T
$$

Note that

$$
\begin{aligned}
\left|1-\frac{\alpha_{p, i}}{p^{2+i t}}\right| & \geq 1-\frac{\left|\alpha_{p, i}\right|}{p^{2}} \\
& \geq 1-\frac{p^{\frac{1}{2}}}{p^{2}} \\
& =1-\frac{1}{p^{\frac{3}{2}}} .
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
\left|L_{f}(2+i t)\right| & =\prod_{p} \prod_{i=1}^{n}\left|\left(1-\frac{\alpha_{p, i}}{p^{2+i t}}\right)\right|^{-1} \\
& \leq \prod_{p} \prod_{i=1}^{n}\left(1-\frac{1}{p^{\frac{3}{2}}}\right)^{-1} \\
& \leq\left(\zeta\left(\frac{3}{2}\right)\right)^{n} \\
& \ll_{n} 1 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{0}^{3} \frac{n\left(r_{1}\right)}{r_{1}} d r_{1} \ll A \log T+A \ll \log T \\
& \int_{0}^{3} \frac{n\left(r_{1}\right)}{r_{1}} d r_{1} \geq \int_{\sqrt{5}}^{3} \frac{n\left(r_{1}\right)}{r_{1}} d r_{1} \geq n(\sqrt{5}) \int_{\sqrt{5}}^{3} \frac{d r_{1}}{r_{1}} \geq \text { c.n }(\sqrt{5})
\end{aligned}
$$

Hence,

$$
N_{f}^{*}(T+1)-N_{f}^{*}(T) \ll n_{n} \log T
$$

Lemma 2.3. Let $a_{m}(m=1,2, \ldots, N)$ be any set of complex numbers. Then

$$
\int_{T}^{2 T}\left|\sum_{m=1}^{N} a_{m} m^{-i t}\right|^{2} d t=\sum_{m=1}^{N}\left|a_{m}\right|^{2}(T+O(m))
$$

Lemma 2.4. Let b_{m} be any set of complex numbers such that $\sum m\left(\left|b_{m}\right|\right)^{2}$ is convergent. Then

$$
\int_{T}^{2 T}\left|\sum_{m=1}^{\infty} b_{m} m^{-i t}\right|^{2} d t=\sum_{m=1}^{\infty}\left|b_{m}\right|^{2}(T+O(m))
$$

Proof. See [MoVa74] or [Ram79] for Montgomery and Vaughan theorem.

Hereafter, $Y \geq 10$ is an arbitrary parameter depending on T which will be chosen suitably later. Also, σ_{0} satisfies the inequality $\frac{1}{2}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$ for any small positive constant ϵ.

Lemma 2.5. For $\frac{1}{2}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$, we have

$$
\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{m\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}} \ll 1
$$

Proof. We have,

$$
\begin{aligned}
\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{m\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}} & \ll \sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{m\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{m}{Y} \frac{Y^{2}}{m^{2}}}}{m^{2 \sigma_{0}}} \\
& \ll Y^{2} \sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{m}{Y}}}{m^{1+2 \sigma_{0}}}
\end{aligned}
$$

Since $\frac{m}{Y} \geq \frac{1}{2}(\log Y)^{2}$ for $m \geq \frac{Y}{2}(\log Y)^{2}$, we have $e^{\frac{m}{Y}} \gg Y^{B}$ for any large positive constant B. Therefore,

$$
\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{m\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}} \ll \frac{Y^{2}}{Y^{B}} \sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2}}{m^{1+2 \sigma_{0}}}
$$

$\ll 1$.

Lemma 2.6. Assuming Rudnick-Sarnak conjecture and taking Y sufficiently large, we have

$$
\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2}}{m^{2 \sigma_{0}}} e^{-\frac{2 m}{Y}} \ll(\log Y)^{2}
$$

Proof. Note that

$$
\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2}}{m^{2 \sigma_{0}}} e^{-\frac{2 m}{Y}} \leq \sum_{p \leq \frac{Y}{2}(\log Y)^{2}} \frac{(\log p)^{2}\left|a_{f}(p)\right|^{2}}{p^{2 \sigma_{0}}}+\sum_{r=2}^{\left[\frac{\log \frac{Y}{2}}{\log 2}\right]+1} \sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{\left(p^{r}\right)^{2 \sigma_{0}}}
$$

and

$$
\left|a_{f}(p)\right|=\left|\sum_{i=1}^{n} \alpha_{p, i}\right|=|A(p, 1, \ldots, 1)|
$$

We have,

$$
\begin{aligned}
\sum_{m \leq Y} \frac{c_{m}}{m^{l}} & =\int_{1}^{Y} \frac{d\left(\sum_{m \leq u} c_{m}\right)}{u^{l}} \\
& =\left.\frac{\sum_{m \leq u} c_{m}}{u^{l}}\right|_{1} ^{Y}-\int_{1}^{Y}(-l) \frac{\sum_{m \leq u} c_{m}}{u^{l+1}} d u
\end{aligned}
$$

From Remark 12.1.8 of [Gol06], we have

$$
\sum_{m_{1}^{n-1} m_{2}^{n-2} \ldots m_{n-1} \leq Y}\left|A\left(m_{1}, m_{2}, \ldots, m_{n-1}\right)\right|^{2}<_{f} Y
$$

Therefore,

$$
\sum_{m \leq Y}|A(m, 1, \ldots, 1)|^{2} \leq \sum_{m_{1}^{n-1} m_{2}^{n-2} \ldots m_{n-1} \leq Y}\left|A\left(m_{1}, m_{2}, \ldots, m_{n-1}\right)\right|^{2} \ll_{f} Y
$$

Taking $l=2 \sigma_{0}$ and $c_{m}=|A(m, 1, \ldots, 1)|^{2}$,

$$
\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{|A(m, 1, \ldots, 1)|^{2}}{m^{2 \sigma_{0}}} \ll 1
$$

Hence,

$$
\sum_{p \leq \frac{Y}{2}(\log Y)^{2}} \frac{(\log p)^{2}\left|a_{f}(p)\right|^{2}}{p^{2 \sigma_{0}}} \ll(\log Y)^{2} \sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{|A(m, 1, \ldots, 1)|^{2}}{m^{2 \sigma_{0}}} \ll(\log Y)^{2} .
$$

By Rudnick-Sarnak conjecture and the bound $\left|\alpha_{p, i}\right| \leq p^{\theta_{n}}$ with $\theta_{n}=\frac{1}{2}-\frac{1}{n^{2}+1}$,

$$
\sum_{r \geq 2} \sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{p^{r}}
$$

converges (as in proof of Theorem 1.1) and in particular,

$$
\sum_{r=2}^{\left[\frac{\log \frac{Y}{2}}{\log 2}\right]} \sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{p^{r}} \ll 1
$$

Therefore,

$$
\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2}}{m^{2 \sigma_{0}}} \ll(\log Y)^{2}
$$

3. Proof of Theorem 1.1

Assuming $\left|\alpha_{p, i}\right| \leq p^{\theta_{n}}$ with $\theta_{n} \leq \frac{1}{4}-\epsilon_{1}$, we need to prove that for every integer $n \geq 5$ and for every integer $r \geq 2$,

$$
\sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{p^{r}}<\infty
$$

It is enough to show that

$$
\sum_{r=2}^{\infty} \sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{p^{r}}<\infty
$$

Using

$$
a_{f}\left(p^{r}\right):=\sum_{i=1}^{n} \alpha_{p, i}^{r} \quad \text { and } \quad\left|\alpha_{p, i}\right| \leq p^{\theta_{n}}
$$

we get,

$$
\begin{aligned}
\sum_{r=2}^{\infty} \sum_{p} \frac{(\log p)^{2}\left|a_{f}\left(p^{r}\right)\right|^{2}}{p^{r}} & \leq \sum_{r=2}^{\infty} \sum_{p} \frac{(\log p)^{2}\left(\sum_{i=1}^{n} p^{r \theta_{n}}\right)^{2}}{p^{r}} \\
& =\sum_{r=2}^{\infty} \sum_{p} \frac{(\log p)^{2} n^{2} p^{2 r \theta_{n}}}{p^{r}} \\
& \leq n^{2} \sum_{p}(\log p)^{2} \sum_{r=2}^{\infty} \frac{p^{2 r\left(\frac{1}{4}-\epsilon_{1}\right)}}{p^{r}} \\
& =n^{2} \sum_{p}(\log p)^{2} \sum_{r=2}^{\infty} \frac{1}{p^{\frac{r}{2}+2 r \epsilon_{1}}} \\
& =n^{2} \sum_{p}(\log p)^{2} \frac{p^{-\left(1+4 \epsilon_{1}\right)}}{1-p^{-\left(\frac{1}{2}+2 \epsilon_{1}\right)}} \\
& =n^{2} \sum_{p}(\log p)^{2} \frac{1}{p^{\frac{1}{2}+2 \epsilon_{1}}\left(p^{\frac{1}{2}+2 \epsilon_{1}}-1\right)} \\
& \ll n, \epsilon_{1} 1 .
\end{aligned}
$$

This proves Theorem 1.1.

4. Proof of Theorem 1.3

First, we wish to approximate $\frac{L_{f}^{\prime}}{L_{f}}(s)$ uniformly for $\frac{1}{2}<\sigma_{0} \leq \sigma \leq \sigma_{1}<1$ when $T \leq t \leq 2 T$. We assume throughout below the Riemann hypothesis for $L_{f}(s)$.

From the work of Godement-Jacquet [GoJa06], it is known that the function $L_{f}(s)$ is of finite order in any bounded vertical strip. Hence, we can very well assume that

$$
L_{f}(s) \ll T^{A}=e^{A \log T}
$$

for $-1 \leq \sigma \leq 2, T \leq t \leq 2 T$ and A some fixed positive constant.

Taking $s_{0}=2+i t$ with $t \in \mathbb{R}$, we have

$$
L_{f}(2+i t)=\prod_{p} \prod_{i=1}^{n}\left(1-\frac{\alpha_{p, i}}{p^{2+i t}}\right)^{-1}
$$

Observe that

$$
\begin{aligned}
\left|1-\frac{\alpha_{p, i}}{p^{2+i t}}\right| & \leq 1+\frac{\left|\alpha_{p, i}\right|}{p^{2}} \\
& \leq 1+\frac{p^{\theta_{n}}}{p^{2}} \\
& =1+\frac{1}{p^{2-\theta_{n}}} \\
& \leq 1+\frac{1}{p^{\frac{3}{2}}}
\end{aligned}
$$

because $\theta_{n} \leq \frac{1}{2}$ for $n \geq 2$.
Therefore,

$$
\begin{aligned}
\left|L_{f}(2+i t)\right| & \geq \prod_{p} \prod_{i=1}^{n}\left(1+\frac{1}{p^{\frac{3}{2}}}\right)^{-1} \\
& =\prod_{p}\left(1+\frac{1}{p^{\frac{3}{2}}}\right)^{-n} \\
& =\prod_{p}\left(\frac{1-\frac{1}{p^{\frac{3}{2}}}}{1-\frac{1}{p^{3}}}\right)^{n} \\
& =\left(\frac{\zeta(3)}{\zeta\left(\frac{3}{2}\right)}\right)^{n}
\end{aligned}
$$

which is a constant depending only on n. Therefore, $L_{f}(2+i t) \neq 0 \forall t \in \mathbb{R}$.
Hence from Lemma 2.1, with $r=12, s_{0}=2+i T, f(s)=L_{f}(s), M=A \log T$, we obtain

$$
-\frac{L_{f}^{\prime}}{L_{f}}(s)=\sum_{\left|s-s_{0}\right| \leq 6} \frac{1}{s-\rho}+O(\log T)
$$

For $\left|s-s_{0}\right| \leq 3$ and so in particular for $-1 \leq \sigma \leq 2, t=T$, replacing T by t in the particular case, we obtain

$$
-\frac{L_{f}^{\prime}}{L_{f}}(s)=\sum_{\left|\rho-s_{0}\right| \leq 6} \frac{1}{s-\rho}+O(\log t) .
$$

Any term occurring in $\sum_{|t-\gamma| \leq 1} \frac{1}{s-\rho}$ but not in $\sum_{\left|s-s_{0}\right| \leq 6} \frac{1}{s-\rho}$ is bounded and the number of such terms does not exceed

$$
N_{f}^{*}(t+6)-N_{f}^{*}(t-6) \ll \log t,
$$

where $N_{f}^{*}(t)$ is the number of zeros of $L_{f}(s)$ in the region $0 \leq \sigma \leq 1$ and $0 \leq t \leq T$. Thus, we get

$$
-\frac{L_{f}^{\prime}}{L_{f}}(s)=\sum_{|t-\gamma| \leq 1} \frac{1}{s-\rho}+O(\log t) .
$$

Assume $\frac{1}{2}<\sigma<1$ and $T \leq t \leq 2 T$, then

$$
\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m)}{m^{s}} e^{-\frac{m}{Y}}=-\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L_{f}^{\prime}}{L_{f}}(s+w) \Gamma(w) Y^{w} d w
$$

Note also that from the above reasoning

$$
\frac{L_{f}^{\prime}}{L_{f}}(s) \ll \log t \quad \text { on any line } \sigma \neq \frac{1}{2}
$$

Also,

$$
\frac{L_{f}^{\prime}}{L_{f}}(s) \ll \frac{\log t}{\min (|t-\gamma|)}+\log t \quad \text { uniformly for }-1 \leq \sigma \leq 2
$$

From Lemma 2.2, we observe that each interval $(j, j+1)$ contains values of t whose distance from the ordinate of any zero exceeds $\frac{A}{\log j}$, there is a t_{j} in any such interval for which

$$
\frac{L_{f}^{\prime}}{L_{f}}(s) \ll(\log t)^{2} \quad \text { where }-1 \leq \sigma \leq 2 \text { and } t=t_{j}
$$

Applying Cauchy's residue theorem to the rectangle, we get

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left(\int_{2-i t_{j}}^{2+i t_{j}}+\int_{2+i t_{j}}^{\frac{1}{4}-\sigma+i t_{j}}+\int_{\frac{1}{4}-\sigma+i t_{j}}^{\frac{1}{4}-\sigma-i t_{j}}+\int_{\frac{1}{4}-\sigma-i t_{j}}^{2-i t_{j}}\right) \frac{L_{f}^{\prime}}{L_{f}}(s+w) \Gamma(w) Y^{w} d w \\
& =\frac{L_{f}^{\prime}}{L_{f}}(s)+\sum_{-t_{j}<\gamma<t_{j}} \Gamma(\rho-s) Y^{\rho-s}
\end{aligned}
$$

In the sum appearing on the right hand side above, zeros ρ are counted with its multiplicity if there are any multiple zeros. The integrals along the horizontal lines tend to zero as $j \rightarrow \infty$ since gamma function decays exponentially and Y is going to be at most a power of T only, so that

$$
\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m)}{m^{s}} e^{-\frac{m}{Y}}=\frac{1}{2 \pi i} \int_{\frac{1}{4}-\sigma-i \infty}^{\frac{1}{4}-\sigma+i \infty} \frac{L_{f}^{\prime}}{L_{f}}(s+w) \Gamma(w) Y^{w} d w-\frac{L_{f}^{\prime}}{L_{f}}(s)-\sum_{\rho} \Gamma(\rho-s) Y^{\rho-s}
$$

Note that $\Gamma(w) \ll e^{-A|v|}$ so that the integral on $\Re(w)=\frac{1}{4}-\sigma$ is

$$
\begin{aligned}
& \ll \int_{-\infty}^{\infty} e^{-A|v|} \log (|t+v|+2) Y^{\frac{1}{4}-\sigma} d v \\
& \ll \int_{0}^{2 t} e^{-A|v|} \log (10|t|+2) Y^{\frac{1}{4}-\sigma} d v+\left(\int_{-\infty}^{0}+\int_{2 t}^{\infty}\right) e^{-A|v|} \log (|v|+10) Y^{\frac{1}{4}-\sigma} d v \\
& \ll Y^{\frac{1}{4}-\sigma} \log T+Y^{\frac{1}{4}-\sigma} \\
& \ll Y^{\frac{1}{4}-\sigma} \log T .
\end{aligned}
$$

Note that for $\frac{1}{2}<\sigma_{0} \leq \sigma \leq \sigma_{1}<1$,

$$
|\Gamma(\rho-s)|<A_{1} e^{-A_{2}|\gamma-t|}
$$

uniformly for σ in the said range. Therefore,

$$
\sum_{\rho}|\Gamma(\rho-s)|<A_{1} \sum_{\rho} e^{-A_{2}|\gamma-t|}=A_{1} \sum_{m=1}^{\infty} \sum_{m-1 \leq \gamma \leq m} e^{-A_{2}|t-\gamma|}
$$

The number of terms in the inner sum is

$$
\ll \log (|t|+m) \ll \log |t|+\log (m+1)
$$

and hence

$$
\begin{gathered}
\sum_{\rho}|\Gamma(\rho-s)| \ll \sum_{m=1}^{\infty} e^{-A_{2} m}(\log |t|+\log (m+1)) \ll \log T \\
\left|\sum_{\rho} \Gamma(\rho-s) Y^{\rho-s}\right| \ll Y^{\frac{1}{2}-\sigma} \log T
\end{gathered}
$$

Thus for $\frac{1}{2}<\sigma_{0} \leq \sigma \leq \sigma_{1}<1$, we have

$$
-\frac{L_{f}^{\prime}}{L_{f}}(s)=\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m)}{m^{s}} e^{-\frac{m}{Y}}+O_{f}\left(Y^{\frac{1}{2}-\sigma} \log T\right)
$$

Thus for $\frac{1}{2}+\epsilon \leq \sigma_{0} \leq 1-\epsilon$ and $T \leq t \leq 2 T$, we obtain

$$
\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} \ll\left|\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2}+\left(Y^{\frac{1}{2}-\sigma_{0}} \log T\right)^{2}
$$

Thus,

$$
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t<_{f} \int_{T}^{2 T}\left|\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2} d t+Y^{1-2 \sigma_{0}} T(\log T)^{2}
$$

We note that

$$
\left|\sum_{m=1}^{\infty} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2} \ll\left|\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2}+\left|\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2},
$$

and hence

$$
\begin{aligned}
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t & \ll \int_{f} \int_{T}^{2 T}\left|\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2}+\int_{T}^{2 T}\left|\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\Lambda_{f}(m) e^{-\frac{m}{Y}}}{m^{\sigma_{0}+i t}}\right|^{2} \\
& +Y^{1-2 \sigma_{0}} T(\log T)^{2} .
\end{aligned}
$$

By Montgomery-Vaughan theorem (Lemmas 2.3 and 2.4) and Lemma 2.5, we get

$$
\begin{aligned}
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t & \ll \sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}}(T+O(m)) \\
& +\sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}}(T+O(m))+Y^{1-2 \sigma_{0}} T(\log T)^{2} \\
& <_{f} T \sum_{m \leq \frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}}+\sum_{m \leq \frac{Y}{2}(\log Y)^{2}} m \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}} \\
& +T \sum_{m>\frac{Y}{2}(\log Y)^{2}} \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}}+\sum_{m>\frac{Y}{2}(\log Y)^{2}} m \frac{\left|\Lambda_{f}(m)\right|^{2} e^{-\frac{2 m}{Y}}}{m^{2 \sigma_{0}}} \\
& +Y^{1-2 \sigma_{0}} T(\log T)^{2} .
\end{aligned}
$$

By Lemmas 2.5 and 2.6, we obtain

$$
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\frac{1}{2}+\epsilon+i t\right)\right|^{2} d t<_{f, n, \epsilon} T(\log Y)^{2}+Y(\log Y)^{4}+Y^{1-2 \sigma_{0}} T(\log T)^{2}
$$

We choose $Y=\exp \left\{(\log T)^{\eta}\right\}$ with any η satisfying $0<\eta<\frac{1}{2}$ so that we obtain

$$
\int_{T}^{2 T}\left|\frac{L_{f}^{\prime}}{L_{f}}\left(\sigma_{0}+i t\right)\right|^{2} d t<_{f, n, \epsilon, \eta} T(\log T)^{2 \eta}
$$

This proves Theorem 1.3.
Acknowledgements. First author is thankful to UGC for its supporting NET Junior Research Fellowship with UGC Ref. No. : 1004/(CSIR-UGC NET Dec. 2017). The authors are thankful to the anonymous referee for some fruitful comments.

References

[GoJa06] R. Godement, \& H. Jacquet, Zeta functions of simple algebras (Vol. 260). Springer (2006). https://doi.org/10.1007/ BFb0070263
[Gol06] D. Goldfeld, Automorphic forms and L-functions for the group $G L(n, R)$ (Vol. 99). Cambridge University Press (2006). https://doi.org/10.1017/CB09780511542923
[JiLu17] Y. Jiang, \& G. Lü, Exponential sums formed with the von Mangoldt function and Fourier coefficients of $G L(m)$ automorphic forms. Monatshefte für Mathematik, 184(4), 539-561 (2017). https://doi.org/10.1007/s00605-017-1068-4
[Kim03] H. Kim, Functoriality for the exterior square of $G L_{4}$ and the symmetric fourth of $G L_{2}$. Journal of the American Mathematical Society, 16(1), 139-183 (2003). https://doi.org/10.1090/S0894-0347-02-00410-1
[Ki06] H. H. Kim, A note on Fourier coefficients of cusp forms on $G L_{n}$. Forum Math. 18, 115-119 (2006). https://doi.org/10. 1515/FORUM. 2006.007
[Ram79] K. Ramachandra, Some remarks on a theorem of Montgomery and Vaughan. Journal of Number Theory, 11(3), 465-471 (1979). https://doi.org/10.1016/0022-314X(79)90011-8
[RaSa91] K. Ramachandra, \& A. Sankaranarayanan, Notes on the Riemann zeta-function. The Journal of the Indian Mathematical Society, 57(1-4), 67-77 (1991). http://informaticsjournals.in/index.php/jims/article/view/21900
[RuSa96] Z. Rudnick, \& P. Sarnak, Zeros of principal L-functions and random matrix theory. Duke Mathematical Journal, 81(2), 269-322 (1996). https://doi.org/10.1215/S0012-7094-96-08115-6
[TiHe86] E. C. Titchmarsh, \& D. R. Heath-Brown, The theory of the Riemann zeta-function. Oxford university press (1986). https://doi.org/10.1112/blms/20.1.77
[MoVa74] H. L. Montgomery, \& R. C. Vaughan, Hilbert's inequality. J. London Math. Soc., 2(8), 73-82 (1974). https://doi.org/ 10.1112/jlms/s2-8.1.73

Amrinder Kaur

School of Mathematics and Statistics
University of Hyderabad
Hyderabad - 500046, Telangana, India.
e-mail: amrinder1kaur@gmail.com

Ayyadurai Sankaranarayanan

School of Mathematics and Statistics
University of Hyderabad
Hyderabad - 500046, Telangana, India.
e-mail: sank@uohyd.ac.in

