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Abstract. In this paper, we investigate the mean square estimate for the logarithmic derivative of the Godement–Jacquet

L-function Lf (s) assuming the Riemann hypothesis for Lf (s) and Rudnick–Sarnak conjecture.
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1. Introduction

Let n ≥ 2, and let v = (v1, v2, . . . , vn−1) ∈ Cn−1. A Maass form [Gol06] for SL(n,Z) of type v is a
smooth function f ∈ L2(SL(n,Z)\Hn) which satisfies

1. f(γz) = f(z), for all γ ∈ SL(n,Z), z ∈ Hn,

2. Df(z) = λDf(z), for all D ∈ Dn where Dn is the center of the universal enveloping algebra of
gl(n,R) and gl(n,R) is the Lie algebra of GL(n,R),

3.
∫

(SL(n,Z)∩U)\U
f(uz) du = 0,

for all upper triangular groups U of the form

U =




Ir1

Ir2 ∗
. . .

Irb



,

with r1 + r2 + · · ·+ rb = n. Here, Ir denotes the r × r identity matrix, and ∗ denotes arbitrary
real entries.

A Hecke–Maass form is a Maass form which is an eigenvector for the Hecke operators algebra.
Let f(z) be a Hecke–Maass form of type v = (v1, v2, . . . , vn−1) ∈ Cn−1 for SL(n,Z). Then it has the
Fourier expansion

f(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

A(m1, . . . ,mn−1)∏n−1
j=1

∣∣mj

∣∣ j(n−j)2

×WJ

M ·(γ
1

)
z, v, ψ1,...,1,

mn−1

|mn−1|

 ,
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where

M =


m1 . . .mn−2 ·|mn−1|

. . .

m1m2

m1

1

 ,

A(m1, . . . ,mn−1) ∈ C, A(1, . . . , 1) = 1,

ψ1,...,1,ε




1 un−1

1 un−2 ∗
. . .

. . .

1 u1
1




= e2πi(u1+···+un−2+εun−1),

Un−1(Z) denotes the group of (n−1)× (n−1) upper triangular matrices with 1s on the diagonal and
an integer entry above the diagonal and WJ is the Jacquet Whittaker function.

If f(z) is a Maass form of type (v1, . . . , vn−1) ∈ Cn−1, then

f̃(z) := f(w · (z−1)T · w),

w =


(−1)[

n
2 ]

1
...

1


is a Maass form of type (vn−1, . . . , v1) for SL(n,Z) called the dual Maass form. If A(m1, . . . ,mn−1)
is the (m1, . . . ,mn−1)–Fourier coefficient of f , then A(mn−1, . . . ,m1) is the corresponding Fourier
coefficient of f̃ .

We note that the Fourier coefficients A(m1, . . . ,mn−1) satisfy the multiplicative relations

A(m1m
′
1, . . . ,mn−1m

′
n−1) = A(m1, . . . ,mn−1) ·A(m′1, . . . ,m

′
n−1),

if
(m1 . . .mn−1,m

′
1 . . .m

′
n−1) = 1,

A(m, 1, . . . , 1)A(m1, . . . ,mn−1) =
∑
n∏
l=1

cl=m

c1|m1,c2|m2,...,cn−1|mn−1

A

(
m1cn
c1

,
m2c1
c2

, . . . ,
mn−1cn−2
cn−1

)
,

and
A(mn−1, . . . ,m1) = A(m1, . . . ,mn−1).
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Definition 1.1. [Gol06] The Godement–Jacquet L-function Lf (s) attached to f is defined for <(s) >
1 by

Lf (s) =
∞∑
m=1

A(m, 1, . . . , 1)

ms
=
∏
p

n∏
i=1

(1− αp,ip−s)−1,

where {αp,i}, 1 ≤ i ≤ n are the complex roots of the monic polynomial

Xn +
n−1∑
j=1

(−1)jA(

j−1 terms︷ ︸︸ ︷
1, . . . , 1 , p, 1, . . . , 1)Xn−j + (−1)n ∈ C[X], and

A(

j−1︷ ︸︸ ︷
1, . . . , 1, p, 1, . . . , 1) =

∑
1≤i1<···<ij≤n

αp,i1 . . . αp,ij , for 1 ≤ j ≤ n− 1.

Lf (s) satisfies the functional equation:

Λf (s) :=

n∏
i=1

π
−s+λi(vf )

2 Γ

(
s− λi(vf )

2

)
Lf (s)

= Λf̃ (1− s),

where f̃ is the Dual Maass form.

In the case of Godement–Jacquet L-function, Yujiao Jiang and Guangshi Lü [JiLu17] have studied
cancellation on the exponential sum

∑
m≤N

µ(m)A(m, 1)e2πimθ related to SL(3,Z) where θ ∈ R .

Throughout the paper, we assume that f is self dual i.e., f̃ = f .
ε, ε1 and η always denote any small positive constants.

If Nf (T ) denotes the number of zeros of Lf (s) in the rectangle mentioned below, then from the
functional equation and the argument principle of complex function theory we have,

Nf (T ) ∼ c(n)T log T,

where c(n) is a non zero constant depending only on the degree n of Lf (s).

·

·

·

·

−1 + iT

−1 + 2iT

2 + iT

2 + 2iT

(i) The generalized Ramanujan conjecture:
It asserts that ∣∣A(m, 1, . . . , 1)

∣∣ ≤ dn(m)
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where dn(m) is the number of representations of m as the product of n natural numbers. The current
best estimates are due to Kim and Sarnak [Kim03] for 2 ≤ n ≤ 4 and Luo, Rudnick and Sarnak for
n ≥ 5 ∣∣A(m)

∣∣ ≤ m 7
64d(m),∣∣A(m, 1)

∣∣ ≤ m 5
14d3(m),∣∣A(m, 1, 1)

∣∣ ≤ m 9
22d4(m),∣∣A(m, 1, . . . , 1)

∣∣ ≤ m 1
2
− 1
n2+1dn(m).

We note that the generalized Ramanujan conjecture is equivalent to∣∣αp,i∣∣ = 1 ∀ primes p and i = 1, 2, . . . , n.

Other estimates are equivalent to∣∣αp,i∣∣ ≤ pθn ∀ primes p and i = 1, 2, . . . , n where

θ2 :=
7

64
, θ3 :=

5

14
, θ4 :=

9

22
, θn :=

1

2
− 1

n2 + 1
(n ≥ 5).

(ii) Ramanujan’s generalized weak conjecture:
We formulate this conjecture as:
For n ≥ 2, the inequality ∣∣αp,i∣∣ ≤ p 1

4
−ε1

holds for some small ε1 > 0, for every prime p and for i = 1, 2, . . . , n. Of course, this weak conjecture
holds good for n = 2. For n ≥ 3, this conjecture is still open.

Taking the logarithmic derivative of Lf (s), we have

−
L′f
Lf

(s) :=
∞∑
m=1

Λf (m)

ms
=
∞∑
m=1

Λ(m)af (m)

ms

where af (m) is multiplicative and

af (pr) =

n∑
i=1

αrp,i

for any integer r ≥ 1.
In particular,

af (p) =
n∑
i=1

αp,i = A(p, 1, . . . , 1).

(iii) Rudnick–Sarnak conjecture:
For any fixed integer r ≥ 2, ∑

p

∣∣af (pr)
∣∣2 (log p)2

pr
<∞.
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We know that this conjecture is true for n ≤ 4. (See [Ki06, RuSa96].)

(iv) Riemann hypothesis for Lf (s):
It asserts that Lf (s) 6= 0 in <(s) > 1

2 .

The aim of this paper is to establish:

Theorem 1.1. Ramanujan’s weak conjecture implies Rudnick–Sarnak conjecture.

Remark 1.2. Theorem 1.1 is indicated in [Ki06].

Theorem 1.3. Assume n ≥ 5 be any arbitrary but fixed integer. Let ε be any small positive constant
and T ≥ T0 where T0 is sufficiently large. Assume the Rudnick–Sarnak conjecture and Riemann
hypothesis for Lf (s). Then the estimate:∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f,n,ε,η T (log T )2η

holds for 1
2 + ε ≤ σ0 ≤ 1− ε with η being some constant satisfying 0 < η < 1

2 .

Remark 1.4. Since Rudnick–Sarnak conjecture is true for 2 ≤ n ≤ 4, Theorem 1.3 holds just with
the assumption of Riemann hypothesis for Lf (s) whenever 2 ≤ n ≤ 4.

Remark 1.5. It is not difficult to see from our arguments that only assuming Riemann Hypothesis
for Lf (s), Theorem 1.3 can be upheld for any σ0 satisfying 1 − 1

n2+1
+ ε ≤ σ0 ≤ 1 − ε by using the

bound θn = 1
2 −

1
n2+1

of Luo, Rudnick and Sarnak.
It is also not difficult to see from our arguments that the generalized Ramanujan conjecture and the
Riemann hypothesis for Lf (s) together imply the bound∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f,n,ε T (1.1)

to hold for any σ0 satisfying 1
2 + ε ≤ σ0 ≤ 1− ε.

Though we expect the bound stated in Equation 1.1 to hold unconditionally for σ0 in the said range,
this seems to be very hard.

2. Some Lemmas

Lemma 2.1. If f(s) is regular and ∣∣∣∣ f(s)

f(s0)

∣∣∣∣ < eM (M > 1)

in |s− s0| ≤ r1, then for any constant b with 0 < b < 1
2 ,∣∣∣∣∣∣f

′

f
(s)−

∑
ρ

1

s− ρ

∣∣∣∣∣∣�b
M

r1
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in |s− s0| ≤
(
1
2 − b

)
r1, where ρ runs over all zeros of f(s) such that |ρ− s0| ≤ r1

2 .

Proof. See Lemma α in Section 3.9 of [TiHe86] or see [RaSa91].

Lemma 2.2. Let N∗f (T ) denote the number of zeros of Lf (s) in the region 0 ≤ σ ≤ 1, 0 ≤ t ≤ T .
Then,

N∗f (T + 1)−N∗f (T )�n log T.

Proof. Let n(r1) denote the number of zeros of Lf (s) in the circle with centre 2 + iT and radius r1.
By Jensen’s theorem,∫ 3

0

n(r1)

r1
dr1 =

1

2π

∫ 2π

0
log

∣∣∣∣Lf (2 + iT + 3eiθ
)∣∣∣∣ dθ − log

∣∣Lf (2 + iT )
∣∣ .

From the functional equation, we observe that∣∣Lf (s)
∣∣�f t

A for − 1 ≤ σ ≤ 5 where A is some fixed positive constant,

and hence we have,

log

∣∣∣∣L(2 + iT + 3eiθ
)∣∣∣∣� A log T.

Note that ∣∣∣∣1− αp,i
p2+it

∣∣∣∣ ≥ 1−
∣∣αp,i∣∣
p2

≥ 1− p
1
2

p2

= 1− 1

p
3
2

.

Thus we have,

∣∣Lf (2 + it)
∣∣ =

∏
p

n∏
i=1

∣∣∣∣∣
(

1− αp,i
p2+it

)∣∣∣∣∣
−1

≤
∏
p

n∏
i=1

(
1− 1

p
3
2

)−1

≤

(
ζ

(
3

2

))n
�n 1.
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Therefore, ∫ 3

0

n(r1)

r1
dr1 � A log T +A� log T,∫ 3

0

n(r1)

r1
dr1 ≥

∫ 3

√
5

n(r1)

r1
dr1 ≥ n(

√
5)

∫ 3

√
5

dr1
r1
≥ c.n(

√
5).

Hence,
N∗f (T + 1)−N∗f (T )�n log T.

Lemma 2.3. Let am(m=1,2,. . . ,N) be any set of complex numbers. Then

∫ 2T

T

∣∣∣∣∣∣
N∑
m=1

amm
−it

∣∣∣∣∣∣
2

dt =
N∑
m=1

|am|2
(
T +O(m)

)
.

Lemma 2.4. Let bm be any set of complex numbers such that
∑
m
(
|bm|

)2
is convergent. Then

∫ 2T

T

∣∣∣∣∣∣
∞∑
m=1

bmm
−it

∣∣∣∣∣∣
2

dt =

∞∑
m=1

|bm|2
(
T +O(m)

)
.

Proof. See [MoVa74] or [Ram79] for Montgomery and Vaughan theorem.

Hereafter, Y ≥ 10 is an arbitrary parameter depending on T which will be chosen suitably later. Also,
σ0 satisfies the inequality 1

2 + ε ≤ σ0 ≤ 1− ε for any small positive constant ε.

Lemma 2.5. For 1
2 + ε ≤ σ0 ≤ 1− ε, we have

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
� 1.

Proof. We have,

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
�

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e−mY Y 2

m2

m2σ0

� Y 2
∑

m>Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e−mY

m1+2σ0
.
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Since m
Y ≥

1
2(log Y )2 for m ≥ Y

2 (log Y )2, we have e
m
Y � Y B for any large positive constant B.

Therefore,

∑
m>Y

2
(log Y )2

m
∣∣Λf (m)

∣∣2 e− 2m
Y

m2σ0
� Y 2

Y B

∑
m>Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m1+2σ0

� 1.

Lemma 2.6. Assuming Rudnick–Sarnak conjecture and taking Y sufficiently large, we have

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y � (log Y )2.

Proof. Note that

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
e−

2m
Y ≤

∑
p≤Y

2
(log Y )2

(log p)2
∣∣af (p)

∣∣2
p2σ0

+

[
log Y2
log 2

]
+1∑

r=2

∑
p

(log p)2
∣∣af (pr)

∣∣2
(pr)2σ0

,

and ∣∣af (p)
∣∣ =

∣∣∣∣∣∣
n∑
i=1

αp,i

∣∣∣∣∣∣ =
∣∣A(p, 1, . . . , 1)

∣∣ .

We have,

∑
m≤Y

cm
ml

=

∫ Y

1

d
(∑

m≤u cm

)
ul

=

∑
m≤u cm

ul

∣∣∣∣Y
1

−
∫ Y

1
(−l)

∑
m≤u cm

ul+1
du.

From Remark 12.1.8 of [Gol06], we have∑
mn−1

1 mn−2
2 ...mn−1≤Y

∣∣A(m1,m2, . . . ,mn−1)
∣∣2 �f Y.

Therefore, ∑
m≤Y

∣∣A(m, 1, . . . , 1)
∣∣2 ≤ ∑

mn−1
1 mn−2

2 ...mn−1≤Y

∣∣A(m1,m2, . . . ,mn−1)
∣∣2 �f Y.
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Taking l = 2σ0 and cm =
∣∣A(m, 1, . . . , 1)

∣∣2,
∑

m≤Y
2
(log Y )2

∣∣A(m, 1, . . . , 1)
∣∣2

m2σ0
� 1.

Hence,

∑
p≤Y

2
(log Y )2

(log p)2
∣∣af (p)

∣∣2
p2σ0

� (log Y )2
∑

m≤Y
2
(log Y )2

∣∣A(m, 1, . . . , 1)
∣∣2

m2σ0
� (log Y )2.

By Rudnick–Sarnak conjecture and the bound
∣∣αp,i∣∣ ≤ pθn with θn = 1

2 −
1

n2+1
,

∑
r≥2

∑
p

(log p)2
∣∣af (pr)

∣∣2
pr

converges (as in proof of Theorem 1.1) and in particular,

[
log Y2
log 2

]
+1∑

r=2

∑
p

(log p)2
∣∣af (pr)

∣∣2
pr

� 1.

Therefore, ∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2

m2σ0
� (log Y )2.

3. Proof of Theorem 1.1

Assuming
∣∣αp,i∣∣ ≤ pθn with θn ≤ 1

4 − ε1, we need to prove that for every integer n ≥ 5 and for every
integer r ≥ 2, ∑

p

(log p)2
∣∣af (pr)

∣∣2
pr

<∞.

It is enough to show that
∞∑
r=2

∑
p

(log p)2
∣∣af (pr)

∣∣2
pr

<∞.

Using

af (pr) :=
n∑
i=1

αrp,i and
∣∣αp,i∣∣ ≤ pθn
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we get,

∞∑
r=2

∑
p

(log p)2
∣∣af (pr)

∣∣2
pr

≤
∞∑
r=2

∑
p

(log p)2

(
n∑
i=1

prθn

)2

pr

=
∞∑
r=2

∑
p

(log p)2n2p2rθn

pr

≤ n2
∑
p

(log p)2
∞∑
r=2

p2r(
1
4
−ε1)

pr

= n2
∑
p

(log p)2
∞∑
r=2

1

p
r
2
+2rε1

= n2
∑
p

(log p)2
p−(1+4ε1)

1− p−(
1
2
+2ε1)

= n2
∑
p

(log p)2
1

p
1
2
+2ε1

(
p

1
2
+2ε1 − 1

)
�n,ε1 1.

This proves Theorem 1.1.

4. Proof of Theorem 1.3

First, we wish to approximate
L′f
Lf

(s) uniformly for 1
2 < σ0 ≤ σ ≤ σ1 < 1 when T ≤ t ≤ 2T . We

assume throughout below the Riemann hypothesis for Lf (s).

From the work of Godement–Jacquet [GoJa06], it is known that the function Lf (s) is of finite order
in any bounded vertical strip. Hence, we can very well assume that

Lf (s)� TA = eA log T

for −1 ≤ σ ≤ 2, T ≤ t ≤ 2T and A some fixed positive constant.

Taking s0 = 2 + it with t ∈ R, we have

Lf (2 + it) =
∏
p

n∏
i=1

(
1− αp,i

p2+it

)−1
.
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Observe that ∣∣∣∣1− αp,i
p2+it

∣∣∣∣ ≤ 1 +

∣∣αp,i∣∣
p2

≤ 1 +
pθn

p2

= 1 +
1

p2−θn

≤ 1 +
1

p
3
2

because θn ≤ 1
2 for n ≥ 2.

Therefore,

∣∣Lf (2 + it)
∣∣ ≥∏

p

n∏
i=1

(
1 +

1

p
3
2

)−1

=
∏
p

(
1 +

1

p
3
2

)−n

=
∏
p

1− 1

p
3
2

1− 1
p3


n

=

 ζ(3)

ζ
(
3
2

)

n

which is a constant depending only on n. Therefore, Lf (2 + it) 6= 0 ∀ t ∈ R.

Hence from Lemma 2.1, with r = 12, s0 = 2 + iT , f(s) = Lf (s), M = A log T , we obtain

−
L′f
Lf

(s) =
∑

|s−s0|≤6

1

s− ρ
+O(log T ).

For |s− s0| ≤ 3 and so in particular for −1 ≤ σ ≤ 2, t = T , replacing T by t in the particular case,
we obtain

−
L′f
Lf

(s) =
∑

|ρ−s0|≤6

1

s− ρ
+O(log t).

Any term occurring in
∑

|t−γ|≤1

1
s−ρ but not in

∑
|s−s0|≤6

1
s−ρ is bounded and the number of such terms

does not exceed
N∗f (t+ 6)−N∗f (t− 6)� log t,

where N∗f (t) is the number of zeros of Lf (s) in the region 0 ≤ σ ≤ 1 and 0 ≤ t ≤ T . Thus, we get

−
L′f
Lf

(s) =
∑
|t−γ|≤1

1

s− ρ
+O(log t).
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Assume 1
2 < σ < 1 and T ≤ t ≤ 2T , then

∞∑
m=1

Λf (m)

ms
e−

m
Y = − 1

2πi

∫ 2+i∞

2−i∞

L′f
Lf

(s+ w)Γ(w)Y wdw.

Note also that from the above reasoning

L′f
Lf

(s)� log t on any line σ 6= 1

2
.

Also,
L′f
Lf

(s)� log t

min(|t− γ|)
+ log t uniformly for − 1 ≤ σ ≤ 2.

From Lemma 2.2, we observe that each interval (j, j+ 1) contains values of t whose distance from the
ordinate of any zero exceeds A

log j , there is a tj in any such interval for which

L′f
Lf

(s)� (log t)2 where − 1 ≤ σ ≤ 2 and t = tj .

Applying Cauchy’s residue theorem to the rectangle, we get

·

·

·

·

1
4 − σ − itj

1
4 − σ + itj

2− itj

2 + itj

1

2πi

(∫ 2+itj

2−itj
+

∫ 1
4
−σ+itj

2+itj

+

∫ 1
4
−σ−itj

1
4
−σ+itj

+

∫ 2−itj

1
4
−σ−itj

)
L′f
Lf

(s+ w)Γ(w)Y wdw

=
L′f
Lf

(s) +
∑

−tj<γ<tj

Γ(ρ− s)Y ρ−s.

In the sum appearing on the right hand side above, zeros ρ are counted with its multiplicity if there
are any multiple zeros. The integrals along the horizontal lines tend to zero as j →∞ since gamma
function decays exponentially and Y is going to be at most a power of T only, so that

∞∑
m=1

Λf (m)

ms
e−

m
Y =

1

2πi

∫ 1
4
−σ+i∞

1
4
−σ−i∞

L′f
Lf

(s+ w)Γ(w)Y wdw −
L′f
Lf

(s)−
∑
ρ

Γ(ρ− s)Y ρ−s.
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Note that Γ(w)� e−A|v| so that the integral on <(w) = 1
4 − σ is

�
∫ ∞
−∞

e−A|v| log(|t+ v|+ 2)Y
1
4
−σdv

�
∫ 2t

0
e−A|v| log(10|t|+ 2)Y

1
4
−σdv +

(∫ 0

−∞
+

∫ ∞
2t

)
e−A|v| log(|v|+ 10)Y

1
4
−σdv

� Y
1
4
−σ log T + Y

1
4
−σ

� Y
1
4
−σ log T.

Note that for 1
2 < σ0 ≤ σ ≤ σ1 < 1, ∣∣Γ(ρ− s)

∣∣ < A1e
−A2|γ−t|

uniformly for σ in the said range. Therefore,∑
ρ

∣∣Γ(ρ− s)
∣∣ < A1

∑
ρ

e−A2|γ−t| = A1

∞∑
m=1

∑
m−1≤γ≤m

e−A2|t−γ|.

The number of terms in the inner sum is

� log(|t|+m)� log |t|+ log(m+ 1)

and hence ∑
ρ

∣∣Γ(ρ− s)
∣∣� ∞∑

m=1

e−A2m(log |t|+ log(m+ 1))� log T,

∣∣∣∣∣∣
∑
ρ

Γ(ρ− s)Y ρ−s

∣∣∣∣∣∣� Y
1
2
−σ log T.

Thus for 1
2 < σ0 ≤ σ ≤ σ1 < 1, we have

−
L′f
Lf

(s) =

∞∑
m=1

Λf (m)

ms
e−

m
Y +Of (Y

1
2
−σ log T ).

Thus for 1
2 + ε ≤ σ0 ≤ 1− ε and T ≤ t ≤ 2T , we obtain

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

�

∣∣∣∣∣∣
∞∑
m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣
2

+
(
Y

1
2
−σ0 log T

)2
.

Thus,

∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f

∫ 2T

T

∣∣∣∣∣∣
∞∑
m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣
2

dt+ Y 1−2σ0T (log T )2.
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We note that∣∣∣∣∣∣
∞∑
m=1

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣
2

�

∣∣∣∣∣∣∣
∑

m≤Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∑

m>Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

,

and hence

∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f

∫ 2T

T

∣∣∣∣∣∣∣
∑

m≤Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+

∫ 2T

T

∣∣∣∣∣∣∣
∑

m>Y
2
(log Y )2

Λf (m)e−
m
Y

mσ0+it

∣∣∣∣∣∣∣
2

+ Y 1−2σ0T (log T )2.

By Montgomery–Vaughan theorem (Lemmas 2.3 and 2.4) and Lemma 2.5, we get

∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f

∑
m≤Y

2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

(
T +O(m)

)

+
∑

m>Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

(
T +O(m)

)
+ Y 1−2σ0T (log T )2

�f T
∑

m≤Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0
+

∑
m≤Y

2
(log Y )2

m

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

+ T
∑

m>Y
2
(log Y )2

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0
+

∑
m>Y

2
(log Y )2

m

∣∣Λf (m)
∣∣2 e− 2m

Y

m2σ0

+ Y 1−2σ0T (log T )2.

By Lemmas 2.5 and 2.6, we obtain∫ 2T

T

∣∣∣∣∣L′fLf
(

1

2
+ ε+ it

)∣∣∣∣∣
2

dt�f,n,ε T (log Y )2 + Y (log Y )4 + Y 1−2σ0T (log T )2.

We choose Y = exp{(log T )η} with any η satisfying 0 < η < 1
2 so that we obtain

∫ 2T

T

∣∣∣∣∣L′fLf (σ0 + it)

∣∣∣∣∣
2

dt�f,n,ε,η T (log T )2η.

This proves Theorem 1.3.
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