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In this paper, we investigate the mean square estimate for the logarithmic derivative of the Godement-Jacquet L-function L f (s) assuming the Riemann hypothesis for L f (s) and Rudnick-Sarnak conjecture.

Introduction

Let n ≥ 2, and let v = (v 1 , v 2 , . . . , v n-1 ) ∈ C n-1 . A Maass form [START_REF] Goldfeld | Automorphic forms and L-functions for the group GL(n, R)[END_REF] for SL(n, Z) of type v is a smooth function f ∈ L 2 (SL(n, Z)\H n ) which satisfies 1. f (γz) = f (z), for all γ ∈ SL(n, Z), z ∈ H n , 2. Df (z) = λ D f (z), for all D ∈ D n where D n is the center of the universal enveloping algebra of gl(n, R) and gl(n, R) is the Lie algebra of GL(n, R),

3.

(SL(n,Z)∩U )\U f (uz) du = 0, for all upper triangular groups U of the form

U =                    I r 1 I r 2 * . . . I r b                    , with r 1 + r 2 + • • • + r b = n.
Here, I r denotes the r × r identity matrix, and * denotes arbitrary real entries.

A Hecke-Maass form is a Maass form which is an eigenvector for the Hecke operators algebra. Let f (z) be a Hecke-Maass form of type v = (v 1 , v 2 , . . . , v n-1 ) ∈ C n-1 for SL(n, Z). Then it has the Fourier expansion

f (z) = γ∈U n-1 (Z)\SL(n-1,Z) ∞ m 1 =1 • • • ∞ m n-2 =1 m n-1 =0 A(m 1 , . . . , m n-1 ) n-1 j=1 m j j(n-j) 2 × W J   M • γ 1 z, v, ψ 1,...,1, m n-1 | m n-1|   ,
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M =         m 1 . . . m n-2 •|m n-1 | . . . m 1 m 2 m 1 1         , A(m 1 , . . . , m n-1 ) ∈ C, A(1, . . . , 1) = 1, ψ 1,...,1,                  1 u n-1 1 u n-2 * . . . . . . 1 u 1 1                  = e 2πi(u 1 +•••+u n-2 + u n-1 ) ,
U n-1 (Z) denotes the group of (n -1) × (n -1) upper triangular matrices with 1s on the diagonal and an integer entry above the diagonal and W J is the Jacquet Whittaker function.

If f (z) is a Maass form of type (v 1 , . . . , v n-1 ) ∈ C n-1 , then f (z) := f (w • (z -1 ) T • w), w =       (-1) [ n 2 ] 1 . . . 1      
is a Maass form of type (v n-1 , . . . , v 1 ) for SL(n, Z) called the dual Maass form. If A(m 1 , . . . , m n-1 ) is the (m 1 , . . . , m n-1 )-Fourier coefficient of f , then A(m n-1 , . . . , m 1 ) is the corresponding Fourier coefficient of f . We note that the Fourier coefficients A(m 1 , . . . , m n-1 ) satisfy the multiplicative relations

A(m 1 m 1 , . . . , m n-1 m n-1 ) = A(m 1 , . . . , m n-1 ) • A(m 1 , . . . , m n-1 ), if (m 1 . . . m n-1 , m 1 . . . m n-1 ) = 1, A(m, 1, . . . , 1)A(m 1 , . . . , m n-1 ) = n l=1 c l =m c 1 |m 1 ,c 2 |m 2 ,...,c n-1 |m n-1 1. Introduction 44 1. Introduction Definition 1.1. [Gol06] The Godement-Jacquet L-function L f (s) attached to f is defined for (s) > 1 by L f (s) = ∞ m=1 A(m, 1, . . . , 1) m s = p n i=1 (1 -α p,i p -s ) -1 ,
where {α p,i }, 1 ≤ i ≤ n are the complex roots of the monic polynomial

X n + n-1 j=1 (-1) j A( j-1 terms 1, . . . , 1 , p, 1, . . . , 1)X n-j + (-1) n ∈ C[X],
and

A( j-1 1, . . . , 1, p, 1, . . . , 1) = 1≤i 1 <•••<i j ≤n α p,i 1 . . . α p,i j , for 1 ≤ j ≤ n -1.
L f (s) satisfies the functional equation:

Λ f (s) := n i=1 π -s+λ i (v f ) 2 Γ s -λ i (v f ) 2 L f (s) = Λ f (1 -s),
where f is the Dual Maass form.

In the case of Godement-Jacquet L-function, Yujiao Jiang and Guangshi Lü [START_REF] Jiang | Exponential sums formed with the von Mangoldt function and Fourier coefficients of GL(m) automorphic forms[END_REF] have studied cancellation on the exponential sum m≤N µ(m)A(m, 1)e 2πimθ related to SL(3, Z) where θ ∈ R .

Throughout the paper, we assume that f is self dual i.e., f = f . , 1 and η always denote any small positive constants.

If N f (T ) denotes the number of zeros of L f (s) in the rectangle mentioned below, then from the functional equation and the argument principle of complex function theory we have,

N f (T ) ∼ c(n)T log T,
where c(n) is a non zero constant depending only on the degree n of L f (s). 

• • • • -1 + iT -1 + 2iT 2 + iT 2 + 2iT ( 
A(m) ≤ m 7 64 d(m), A(m, 1) ≤ m 5 14 d 3 (m), A(m, 1, 1) ≤ m 9 22 d 4 (m), A(m, 1, . . . , 1) ≤ m 1 2 -1 n 2 +1 d n (m).
We note that the generalized Ramanujan conjecture is equivalent to

α p,i = 1 ∀ primes p and i = 1, 2, . . . , n.
Other estimates are equivalent to α p,i ≤ p θn ∀ primes p and i = 1, 2, . . . , n where

θ 2 := 7 64 , θ 3 := 5 14 , θ 4 := 9 22 , θ n := 1 2 - 1 n 2 + 1 (n ≥ 5).
(ii) Ramanujan's generalized weak conjecture:

We formulate this conjecture as: For n ≥ 2, the inequality α p,i ≤ p 1 4 -1 holds for some small 1 > 0, for every prime p and for i = 1, 2, . . . , n. Of course, this weak conjecture holds good for n = 2. For n ≥ 3, this conjecture is still open.

Taking the logarithmic derivative of L f (s), we have

- L f L f (s) := ∞ m=1 Λ f (m) m s = ∞ m=1 Λ(m)a f (m) m s
where a f (m) is multiplicative and

a f (p r ) = n i=1 α r p,i
for any integer r ≥ 1.

In particular,

a f (p) = n i=1 α p,i = A(p, 1, . . . , 1).
(iii) Rudnick-Sarnak conjecture: For any fixed integer r ≥ 2,

p a f (p r ) 2 (log p) 2 p r < ∞.
We know that this conjecture is true for n ≤ 4. (See [START_REF] Kim | A note on Fourier coefficients of cusp forms on GLn[END_REF][START_REF] Rudnick | Zeros of principal L-functions and random matrix theory[END_REF].)

(iv) Riemann hypothesis for L f (s): It asserts that L f (s) = 0 in (s) > 1 2 .
The aim of this paper is to establish:

Theorem 1.1. Ramanujan's weak conjecture implies Rudnick-Sarnak conjecture.

Remark 1.2. Theorem 1.1 is indicated in [START_REF] Kim | A note on Fourier coefficients of cusp forms on GLn[END_REF].

Theorem 1.3. Assume n ≥ 5 be any arbitrary but fixed integer. Let be any small positive constant and T ≥ T 0 where T 0 is sufficiently large. Assume the Rudnick-Sarnak conjecture and Riemann hypothesis for L f (s). Then the estimate:

2T T L f L f (σ 0 + it) 2 dt f,n, ,η T (log T ) 2η
holds for 1 2 + ≤ σ 0 ≤ 1 -with η being some constant satisfying 0 < η < 1 2 .

Remark 1.4. Since Rudnick-Sarnak conjecture is true for 2 ≤ n ≤ 4, Theorem 1.3 holds just with the assumption of Riemann hypothesis for L f (s) whenever 2 ≤ n ≤ 4.

Remark 1.5. It is not difficult to see from our arguments that only assuming Riemann Hypothesis for L f (s), Theorem 1.3 can be upheld for any σ 0 satisfying 1 -1 n 2 +1 + ≤ σ 0 ≤ 1 -by using the bound θ n = 1 2 -1 n 2 +1 of Luo, Rudnick and Sarnak. It is also not difficult to see from our arguments that the generalized Ramanujan conjecture and the Riemann hypothesis for L f (s) together imply the bound

2T T L f L f (σ 0 + it) 2 dt f,n, T (1.1)
to hold for any σ 0 satisfying 1 2 + ≤ σ 0 ≤ 1 -. Though we expect the bound stated in Equation 1.1 to hold unconditionally for σ 0 in the said range, this seems to be very hard.

Some Lemmas

Lemma 2.1. If f (s) is regular and

f (s) f (s 0 ) < e M (M > 1) in |s -s 0 | ≤ r 1 , then for any constant b with 0 < b < 1 2 , f f (s) - ρ 1 s -ρ b M r 1 in |s -s 0 | ≤ 1 2 -b r 1
, where ρ runs over all zeros of f (s) such that |ρ -s 0 | ≤ r 1 2 .

Proof. See Lemma α in Section 3.9 of [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF] or see [START_REF] Ramachandra | Notes on the Riemann zeta-function[END_REF].

Lemma 2.2. Let N * f (T ) denote the number of zeros of L f (s) in the region 0 ≤ σ ≤ 1, 0 ≤ t ≤ T . Then, N * f (T + 1) -N * f (T ) n log T.
Proof. Let n(r 1 ) denote the number of zeros of L f (s) in the circle with centre 2 + iT and radius r 1 . By Jensen's theorem,

3 0 n(r 1 ) r 1 dr 1 = 1 2π 2π 0 log L f 2 + iT + 3e iθ dθ -log L f (2 + iT ) .
From the functional equation, we observe that

L f (s) f t A for -1 ≤ σ ≤ 5
where A is some fixed positive constant, and hence we have,

log L 2 + iT + 3e iθ A log T.
Note that

1 - α p,i p 2+it ≥ 1 - α p,i p 2 ≥ 1 - p 1 2 p 2 = 1 - 1 p 3 2 .
Thus we have,

L f (2 + it) = p n i=1 1 - α p,i p 2+it -1 ≤ p n i=1 1 - 1 p 3 2 -1 ≤ ζ 3 2 n n 1.
Therefore,

3 0 n(r 1 ) r 1 dr 1 A log T + A log T, 3 0 n(r 1 ) r 1 dr 1 ≥ 3 √ 5 n(r 1 ) r 1 dr 1 ≥ n( √ 5) 3 √ 5 dr 1 r 1 ≥ c.n( √ 5).
Hence,

N * f (T + 1) -N * f (T ) n log T.
Lemma 2.3. Let a m (m=1,2,. . . ,N) be any set of complex numbers. Then

2T T N m=1 a m m -it 2 dt = N m=1 |a m | 2 T + O(m) .
Lemma 2.4. Let b m be any set of complex numbers such that

m |b m | 2 is convergent. Then 2T T ∞ m=1 b m m -it 2 dt = ∞ m=1 |b m | 2 T + O(m) .
Proof. See [START_REF] Montgomery | Hilbert's inequality[END_REF] or [START_REF] Ramachandra | Some remarks on a theorem of Montgomery and Vaughan[END_REF] for Montgomery and Vaughan theorem.

Hereafter, Y ≥ 10 is an arbitrary parameter depending on T which will be chosen suitably later. Also, σ 0 satisfies the inequality 1 2 + ≤ σ 0 ≤ 1 -for any small positive constant .

Lemma 2.5.

For 1 2 + ≤ σ 0 ≤ 1 -, we have m> Y 2 (log Y ) 2 m Λ f (m) 2 e -2m Y m 2σ 0 1.
Proof. We have,

m> Y 2 (log Y ) 2 m Λ f (m) 2 e -2m Y m 2σ 0 m> Y 2 (log Y ) 2 m Λ f (m) 2 e -m Y Y 2 m 2 m 2σ 0 Y 2 m> Y 2 (log Y ) 2 Λ f (m) 2 e -m Y m 1+2σ 0 . Since m Y ≥ 1 2 (log Y ) 2 for m ≥ Y 2 (log Y ) 2 , we have e m Y
Y B for any large positive constant B. Therefore,

m> Y 2 (log Y ) 2 m Λ f (m) 2 e -2m Y m 2σ 0 Y 2 Y B m> Y 2 (log Y ) 2 Λ f (m) 2 m 1+2σ 0 1.
Lemma 2.6. Assuming Rudnick-Sarnak conjecture and taking Y sufficiently large, we have

m≤ Y 2 (log Y ) 2 Λ f (m) 2 m 2σ 0 e -2m Y (log Y ) 2 . Proof. Note that m≤ Y 2 (log Y ) 2 Λ f (m) 2 m 2σ 0 e -2m Y ≤ p≤ Y 2 (log Y ) 2 (log p) 2 a f (p) 2 p 2σ 0 + log Y 2 log 2 +1 r=2 p (log p) 2 a f (p r ) 2 (p r ) 2σ 0 , and 
a f (p) = n i=1
α p,i = A(p, 1, . . . , 1) .

We have,

m≤Y c m m l = Y 1 d m≤u c m u l = m≤u c m u l Y 1 - Y 1 (-l) m≤u c m u l+1 du.
From Remark 12.1.8 of [START_REF] Goldfeld | Automorphic forms and L-functions for the group GL(n, R)[END_REF], we have

m n-1 1 m n-2 2 ...m n-1 ≤Y A(m 1 , m 2 , . . . , m n-1 ) 2 f Y. Therefore, m≤Y A(m, 1, . . . , 1) 2 ≤ m n-1 1 m n-2 2 ...m n-1 ≤Y A(m 1 , m 2 , . . . , m n-1 ) 2 f Y. Taking l = 2σ 0 and c m = A(m, 1, . . . , 1) 2 , m≤ Y 2 (log Y ) 2 A(m, 1, . . . , 1) 2 m 2σ 0 1.
Hence,

p≤ Y 2 (log Y ) 2 (log p) 2 a f (p) 2 p 2σ 0 (log Y ) 2 m≤ Y 2 (log Y ) 2 A(m, 1, . . . , 1) 2 m 2σ 0 (log Y ) 2 .
By Rudnick-Sarnak conjecture and the bound α p,i ≤ p θn with

θ n = 1 2 -1 n 2 +1 , r≥2 p (log p) 2 a f (p r ) 2 p r
converges (as in proof of Theorem 1.1) and in particular,

log Y 2 log 2 +1 r=2 p (log p) 2 a f (p r ) 2 p r 1.
Therefore,

m≤ Y 2 (log Y ) 2 Λ f (m) 2 m 2σ 0 (log Y ) 2 .

Proof of Theorem 1.1

Assuming α p,i ≤ p θn with θ n ≤ 1 4 -1 , we need to prove that for every integer n ≥ 5 and for every integer r ≥ 2,

p (log p) 2 a f (p r ) 2 p r < ∞. It is enough to show that ∞ r=2 p (log p) 2 a f (p r ) 2 p r < ∞.
Using

a f (p r ) := n i=1 α r p,i and α p,i ≤ p θn we get, ∞ r=2 p (log p) 2 a f (p r ) 2 p r ≤ ∞ r=2 p (log p) 2 n i=1 p rθn 2 p r = ∞ r=2 p (log p) 2 n 2 p 2rθn p r ≤ n 2 p (log p) 2 ∞ r=2 p 2r( 1 4 -1) p r = n 2 p (log p) 2 ∞ r=2 1 p r 2 +2r 1 = n 2 p (log p) 2 p -(1+4 1 ) 1 -p -( 1 2 +2 1 ) = n 2 p (log p) 2 1 p 1 2 +2 1 p 1 2 +2 1 -1 n, 1 1.
This proves Theorem 1.1.

Proof of Theorem 1.3

First, we wish to approximate

L f L f (s) uniformly for 1 2 < σ 0 ≤ σ ≤ σ 1 < 1 when T ≤ t ≤ 2T .
We assume throughout below the Riemann hypothesis for L f (s).

From the work of Godement-Jacquet [START_REF] Godement | Zeta functions of simple algebras[END_REF], it is known that the function L f (s) is of finite order in any bounded vertical strip. Hence, we can very well assume that

L f (s) T A = e A log T
for -1 ≤ σ ≤ 2, T ≤ t ≤ 2T and A some fixed positive constant.

Taking s 0 = 2 + it with t ∈ R, we have

L f (2 + it) = p n i=1 1 - α p,i p 2+it -1 . Observe that 1 - α p,i p 2+it ≤ 1 + α p,i p 2 ≤ 1 + p θn p 2 = 1 + 1 p 2-θn ≤ 1 + 1 p 3 2 because θ n ≤ 1 2 for n ≥ 2.
Therefore,

L f (2 + it) ≥ p n i=1 1 + 1 p 3 2 -1 = p 1 + 1 p 3 2 -n = p    1 -1 p 3 2 1 -1 p 3    n =    ζ(3) ζ 3 2    n which is a constant depending only on n. Therefore, L f (2 + it) = 0 ∀ t ∈ R.
Hence from Lemma 2.1, with r = 12,

s 0 = 2 + iT , f (s) = L f (s), M = A log T , we obtain - L f L f (s) = |s-s 0 |≤6 1 s -ρ + O(log T ).
For |s -s 0 | ≤ 3 and so in particular for -1 ≤ σ ≤ 2, t = T , replacing T by t in the particular case, we obtain 

- L f L f (s) = |ρ-s 0 |≤6 1 s -ρ + O(log t).

Any term occurring in

* f (t + 6) -N * f (t -6) log t,
where N * f (t) is the number of zeros of L f (s) in the region 0 ≤ σ ≤ 1 and 0 ≤ t ≤ T . Thus, we get

- L f L f (s) = |t-γ|≤1 1 s -ρ + O(log t).
Assume 1 2 < σ < 1 and T ≤ t ≤ 2T , then

∞ m=1 Λ f (m) m s e -m Y = - 1 2πi 2+i∞ 2-i∞ L f L f (s + w)Γ(w)Y w dw.
Note also that from the above reasoning

L f L f (s) log t on any line σ = 1 2 . Also, L f L f (s) log t min(|t -γ|) + log t uniformly for -1 ≤ σ ≤ 2.
From Lemma 2.2, we observe that each interval (j, j + 1) contains values of t whose distance from the ordinate of any zero exceeds A log j , there is a t j in any such interval for which

L f L f (s) (log t) 2
where -1 ≤ σ ≤ 2 and t = t j .

Applying Cauchy's residue theorem to the rectangle, we get

• • • • 1 4 -σ -it j 1 4 -σ + it j 2 -it j 2 + it j 1 2πi 2+it j 2-it j + 1 4 -σ+it j 2+it j + 1 4 -σ-it j 1 4 -σ+it j + 2-it j 1 4 -σ-it j L f L f (s + w)Γ(w)Y w dw = L f L f (s) + -t j <γ<t j Γ(ρ -s)Y ρ-s .
In the sum appearing on the right hand side above, zeros ρ are counted with its multiplicity if there are any multiple zeros. The integrals along the horizontal lines tend to zero as j → ∞ since gamma function decays exponentially and Y is going to be at most a power of T only, so that

∞ m=1 Λ f (m) m s e -m Y = 1 2πi 1 4 -σ+i∞ 1 4 -σ-i∞ L f L f (s + w)Γ(w)Y w dw - L f L f (s) - ρ Γ(ρ -s)Y ρ-s .
Note that Γ(w) e -A|v| so that the integral on

(w) = 1 4 -σ is ∞ -∞ e -A|v| log(|t + v| + 2)Y 1 4 -σ dv 2t 0 e -A|v| log(10|t| + 2)Y 1 4 -σ dv + 0 -∞ + ∞ 2t e -A|v| log(|v| + 10)Y 1 4 -σ dv Y 1 4 -σ log T + Y 1 4 -σ Y 1 4 -σ log T. Note that for 1 2 < σ 0 ≤ σ ≤ σ 1 < 1, Γ(ρ -s) < A 1 e -A 2 |γ-t|
uniformly for σ in the said range. Therefore,

ρ Γ(ρ -s) < A 1 ρ e -A 2 |γ-t| = A 1 ∞ m=1 m-1≤γ≤m e -A 2 |t-γ| .
The number of terms in the inner sum is

log(|t| + m) log |t| + log(m + 1) and hence ρ Γ(ρ -s) ∞ m=1 e -A 2 m (log |t| + log(m + 1)) log T, ρ Γ(ρ -s)Y ρ-s Y 1 2 -σ log T. Thus for 1 2 < σ 0 ≤ σ ≤ σ 1 < 1, we have - L f L f (s) = ∞ m=1 Λ f (m) m s e -m Y + O f (Y 1 2 -σ log T ).
Thus for 1 2 + ≤ σ 0 ≤ 1 -and T ≤ t ≤ 2T , we obtain

L f L f (σ 0 + it) 2 ∞ m=1 Λ f (m)e -m Y m σ 0 +it 2 + Y 1 2 -σ 0 log T 2 .
Thus,

2T T L f L f (σ 0 + it) 2 dt f 2T T ∞ m=1 Λ f (m)e -m Y m σ 0 +it 2 dt + Y 1-2σ 0 T (log T ) 2 .
We note that By Montgomery-Vaughan theorem (Lemmas 2.3 and 2.4) and Lemma 2.5, we get

2T T L f L f (σ 0 + it) 2 dt f m≤ Y 2 (log Y ) 2 Λ f (m) 2 e -2m Y m 2σ 0 T + O(m) + m> Y 2 (log Y ) 2 Λ f (m) 2 e -2m Y m 2σ 0 T + O(m) + Y 1-2σ 0 T (log T ) 2 f T m≤ Y 2 (log Y ) 2 Λ f (m) 2 e -2m Y m 2σ 0 + m≤ Y 2 (log Y ) 2 m Λ f (m) 2 e -2m Y m 2σ 0 + T m> Y 2 (log Y ) 2 Λ f (m) 2 e -2m Y m 2σ 0 + m> Y 2 (log Y ) 2 m Λ f (m) 2 e -2m Y m 2σ 0 + Y 1-2σ 0 T (log T ) 2 .
By Lemmas 2.5 and 2.6, we obtain

2T T L f L f 1 2 + + it 2 dt f,n, T (log Y ) 2 + Y (log Y ) 4 + Y 1-2σ 0 T (log T ) 2 .
We choose Y = exp{(log T ) η } with any η satisfying 0 < η < 1 2 so that we obtain

2T T L f L f (σ 0 + it) 2 dt f,n, ,η T (log T ) 2η .
This proves Theorem 1.3.

  is bounded and the number of such terms does not exceed N

+

  Y 1-2σ 0 T (log T ) 2 .

  (m) is the number of representations of m as the product of n natural numbers. The current best estimates are due to Kim and Sarnak[START_REF] Kim | Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2[END_REF] for 2 ≤ n ≤ 4 and Luo, Rudnick and Sarnak for n ≥ 5
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