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Abstract

The most well-known and used statistical estimation procedure is probably the Maxi-
mum Likelihood method. Unfortunately, apart from rather elementary situations, the
analysis of its performance requires complex probablistic tools, namely Empirical Pro-
cess Theory. Examples can be found, for instance, in the books by Ibragimov and
Has’minskii (1981), van der Vaart (1998), van de Geer (2000) or Massart (2007). Our
purpose here is to describe a discretized version of the method, which is not so well-
known, but with the advantage that one can derive its non-asymptotic performance
from elementary tools. We shall explain the method, give its performances and provide
several illustrative examples.

1 Introduction

To begin with, let us recall what type of problems statisticians want to study.
They work within a classical probabilistic framework where one has at hand a
random variable X from some abstract measurable space (Ω,Ξ,P) to an obser-
vational space (E,B) with distribution PX on E. While probabilists want to
analyze the behaviour of X from the knowledge of PX , statisticians work in the
opposite direction. They observe a realization X(ω) of X and try to infer from
it some properties of the unknown distribution PX .
Obviously, the number of problems which are connected to the search of in-

formation about the probabilistic distribution of X is unlimited but we shall
concentrate here on a specific one, called estimation and more precisely on the
estimation of the true unknown distribution PX of X. This means finding a
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random variable “P(X), with values in the set of all probabilities on E and such
that “P is close (in a suitable sense) to PX with probability close to 1. Unfor-
tunately, without some prior information on PX , it is (provably) impossible to
achieve this aim. In view of solving the estimation problem, we have to make as-
sumptions on the structure of PX and, to keep this presentation simple, we shall
focus here on the following classical framework: E = En, X = (X1, . . . , Xn)
with Xi ∈ E for 1 6 i 6 n and the Xi are i.i.d. with unknown distribution PX
on E so that PX = P⊗nX . This is the i.i.d. framework. In the sequel we shall
denote by P ? (= PX) the true common distribution of the Xi. We simply write
P and E for probabilities and expectations of quantities depending on X under
the assumption that the Xi are i.i.d. with distribution P ? on E.

2 Models and the Maximum Likelihood Estima-
tor

2.1 Statistical models

Traditionnally, estimation of P ? has been (and still is) based on models. A sta-
tistical model for P ? is a given subset M of the set P of all probabilities on E.
The simplest ones, namely parametric models, are those indexed by a subset Θ of
some Euclidean space Rk in such a way that the application θ 7→ Pθ is one-to-one.
Such a model will be denoted by MΘ = {Pθ, θ ∈ Θ}. Some examples are the set
of Poisson distributions on N with unknown parameter θ > 0, the normal distri-
butions N (m,σ2) on R with θ = (m,σ2) ∈ Θ ⊂ R× (0,+∞), a translation model
for which Θ = R and (dPθ/dµ)(x) = pθ(x) = p(x − θ) for some given density p
with respect to the Lebesgue measure µ and the set of uniform distributions on
[0, θ] with Θ = (0,+∞). More complex models were used later. An example is
that of density estimation with M = {P = p ·µ, p ∈M} whereM is some set of
densities with respect to the Lebesgue measure µ on Rk. One could for instance
choose forM the Lipschitz densities on [0, 1]k or the non-increasing densities on
[0, 1]. Since P ? is unknown, we shall have to work with different probabilities in
P and use the notation PQ[X ∈ A] to indicate that the Xi have the common
distribution Q, writing Pp as shorthand for Pp·µ and similarly EQ and Ep.
In this paper we always assume that the model M is dominated by some

reference measure µ, which means that any P ∈M can be written as P = p · µ
with density p with respect to µ, and M = {P = p · µ, p ∈ M} for some set
M of densities with respect to µ which we shall call a density model. The true
distribution P ? of the Xi belongs to M so that P ? = Pθ? = pθ? · µ with θ? ∈ Θ
in the parametric case and P ? = p? · µ with p? ∈M in the general case.
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2.2 The Maximum Likelihood Estimator

When the model is parametric a very popular estimator, going back to the work
of Sir Ronald Fisher in the 1920’s is the Maximum Likelihood Estimator (MLE
for short). To introduce the method, let us assume that E is a finite or countable
set, µ the counting measure on E, in which case Pθ = pθ ·µ with Pθ[{x}] = pθ(x).
Then

dP⊗nθ
dµ⊗n

(x1, . . . , xn) =
n∏
i=1

pθ(xi) = P⊗nθ [{x1, . . . , xn}] = Ppθ [Xi = xi for 1 6 i 6 n].

As a consequence, the so-called likelihood of θ: ∏n
i=1 pθ(Xi(ω)) can be seen as

the probability, when θ is the true parameter, of the event that actually occured,
namely {X1(ω), . . . , Xn(ω)}. In the Poisson model that we mentioned above, if
Xi(ω) = ki ∈ N for 1 6 i 6 n, the likelihood writes

n∏
i=1

pθ(ki) =
n∏
i=1

e−θ
θki

ki!
= exp

[
−nθ +

(
n∑
i=1

ki

)
log θ

](
n∏
i=1

(ki!)
)−1

.

This quantity depends on θ and a natural idea is to believe that the true value
θ? of the parameter is close to the value θ̂n of θ that maximizes the probability
of the event {k1, . . . , kn} = {X1(ω), . . . , Xn(ω)} that actually occured, i.e. the
parameter θ̂n that maximizes the likelihood function: θ 7→ ∏n

i=1 pθ(Xi(ω)). In the
Poisson case, one immediately derives that

θ̂n = θ̂n(X) = 1
n

n∑
i=1

Xi if
n∑
i=1

Xi > 0,

otherwise the likelihood reduces to e−nθ and admits no maximum on Θ. Note
that such an event occurs with a probability

P
[
n∑
i=1

Xi = 0
]

= P [Xi = 0 for all i] =
n∏
i=1

P [Xi = 0] = exp[−nθ?],

which converges to 0 when n goes to infinity, although it is definitely not negligible
if nθ? is small.

2.3 About the classical MLE

Since the work of Fisher the MLE has become an extremely popular estimator
which has been widely used in all types of situations (not only parametric models
and the i.i.d. framework) and has been the subject of thousands of papers. In
particular, it has been proven that, under suitable assumptions, it has a nice
behaviour and some optimality properties.
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Example 1. E = R = Θ and the Xi are normal N (θ?, 1) in which case the
MLE is θ̂n = n−1∑n

i=1Xi so that
√
n
Ä
θ? − θ̂n

ä
has distribution N (0, 1) and the

variance 1 can be shown to be optimal in a suitable sense.

Example 2. When E = (0,+∞) and the Xi are uniform on [0, θ] the MLE is
the largest observation θ̂n = sup16i6nXi < θ a.s. and one can easily show that

Epθ
ïÄ
θ̂n − θ

ä2ò = 2θ2

(n+ 1)(n+ 2) .

Unfortunately, the MLE sometimes does not exist as we already noticed for the
case of the Poisson distribution and it is indeed impossible to derive a general the-
ory for the MLE without strong enough assumptions, in particular boundedness
of the densities in the case of a translation model.

Example 3. E = R = Θ and the Xi have a density pθ(x) = p(x−θ) with respect
to the Lebesgue measure µ. One can easily see that the MLE does not exist on
the model MR = {pθ · µ, θ ∈ R} if the density p is unbounded.

Studying the MLE in a general situation not only involves strong assumptions
but also sophisticated results about the suprema of empirical processes as can
be seen from the books by van der Vaart (1998), van de Geer (2000) or Mas-
sart (2007). Even in the simple situation in which Θ is a compact subset of
Rk and the mapping θ → Pθ has some smoothness properties, analyzing the
asymptotic properties of the MLE when n goes to infinity is a difficult task as
seen in papers by Le Cam (1970), Hajek (1972) and the books by Ibragimov and
Has’minskii (1981) or van der Vaart (1998).
The main purpose of this paper is the presentation of a discrete version of

the MLE which is not more powerful than the classical one (although it can
be, in some exceptional situations) but has the advantage of being much easier to
analyze. The following presentation is short and does not require the very complex
tools developed, for instance, in Massart (2007) to analyze the behaviour of the
classical MLE. We shall illustrate the general theorems by elementary examples
in order to explain their use. We therefore hope that this unusual presentation of
the MLE will be accessible to mathematicians who know nothing about empirical
process theory.

3 The MLE on a finite model

On the one hand there are many examples of simple statistical models for which
the MLE behaves well, at least asymptotically. On the other hand one can
also find many examples of a poor behaviour of the MLE in Le Cam (1990),
Birgé (2006) or Baraud, Birgé and Sart (2017), among others.
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There exists nevertheless a very simple situation for which the study of the
asymptotic behaviour of the MLE can be done via elementary tools and we shall
now describe it.

3.1 Convergence of the MLE

Let us start by a simple, but fundamental lemma.

Lemma 1. Given two probabilities P = p · µ and Q = q · µ dominated by µ, n
i.i.d. observations X1, . . . , Xn with distribution P and y ∈ R, the following bound
holds:

PP
[
n∑
i=1

log
Ç
q(Xi)
p(Xi)

å
> y

]
6 exp

ï
−y2

ò Å∫ »
p(x)q(x) dµ(x)

ãn
. (1)

Proof. Applying the exponential inequality P[Y > 0] = E[1lR+(Y )] 6 E[exp[Y/2]],
we derive that

PP
[
n∑
i=1

log
Ç
q(Xi)
p(Xi)

å
− y > 0

]
6 EP

[
exp

[
1
2

(
−y +

n∑
i=1

log
Ç
q(Xi)
p(Xi)

å)]]
= exp

ï
−y2

òÑ
EP


Ã
q(X1)
p(X1)

én

(2)

and the conclusion follows since EP
[»
q(X1)/p(X1)

]
=
∫ »

p(x)q(x) dµ(x).

This bound introduces the so-called Hellinger affinity between P and Q.

Definition 1. Given two probabilities P and Q on the same probability space and
any measure µ such that P � µ and Q � µ, the Hellinger affinity between P
and Q is given by

ρ(P,Q) =
∫ √

dP

dµ

dQ

dµ
dµ,

a quantity which is independent of µ.

It follows that (1) can be written as

PP
[
n∑
i=1

log
Ç
q(Xi)
p(Xi)

å
> y

]
6 e−y/2ρn(P,Q) = exp

ï
−y2 + n log

Ä
ρ(P,Q)

äò
. (3)

One can check (simply using Cauchy-Schwarz inequality) that 0 6 ρ(P,Q) 6 1,
ρ(P,Q) = 1 if and only if P = Q and ρ(P,Q) = 0 if and only if there exists a set
A such that P (A) = 1 = Q(Ac).
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Now assume that M is finite and M = {p1, . . . , pN}. Taking into account
the possibility of ties (the MLE necessarily exists in this case but need not be
unique), we derive from Lemma 1 that

P [p̂n 6= p?] 6
∑

p∈M, p 6=p?
P
[
n∏
i=1

p(Xi) >
n∏
i=1

p?(Xi)
]

=
∑

p∈M, p 6=p?
P
[
n∑
i=1

log
Ç
p(Xi)
p?(Xi)

å
> 0

]

6
∑

p∈M, p 6=p?

Å∫ »
p(x)p?(x) dµ(x)

ãn
=

∑
P∈M , P 6=P ?

ρn(P, P ?). (4)

Since P 6= P ?, hence ρ(P, P ?) < 1, and M is finite, P [p̂n 6= p?] −→
n→+∞

0 so that
asymptotically the MLE will always recover the true density.

3.2 The Hellinger distance

Another important feature of the Hellinger affinity ρ, apart from (3), is its relation
to a distance on the set P of all probabilities on E, namely the Hellinger distance
h, the importance of which has been first emphasized by Le Cam. It is defined
in the following way (independently of µ) with p = dP/dµ and q = dQ/dµ:

h2(P,Q) def= 1
2

∫
(√p−√q)2 dµ = 1− ρ(P,Q) or h(P,Q) =

»
1− ρ(P,Q)

and, since log
Ä
ρ(P,Q)

ä
6 ρ(P,Q)− 1 = −h2(P,Q), (3) implies that

PP
[
n∑
i=1

log
Ç
q(Xi)
p(Xi)

å
> y

]
6 exp

ï
−y2 − nh

2(P,Q)
ò

for all y ∈ R. (5)

Note that h is a genuine distance since it can be viewed as an L2-type distance
on the set of square roots of the non-negative elements of L1(µ). In the sequel
and for simplicity, we shall often write h(p, q) for h(P,Q), considering alsoM as
a metric space with distance h.
SinceM is finite, δ = infp6=p? h2(p, p?) > 0. If we setNj = {p ∈M such that jδ 6

h2(p?, p) < (j + 1)δ} and it follows from (4) and (5) that

P [p̂n 6= p?] 6
∑

p∈M, p 6=p?
exp
î
−nh2(p, p?)

ó
6

+∞∑
j=1

Nje
−njδ

6 e−nδ

N1 +
∑
j>1

Nj+1e
−jnδ

 , (6)

which provides a nonasymptotic bound for the probability of error of the MLE
depending on the metric structure of M with respect to the Hellinger distance
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and, more specifically, on the number of points ofM that belong to balls centered
at p?. For n large enough, the series converges quickly and is essentially equivalent
to its first term N1e

−nδ.
The purpose of the next section will be to generalize the previous results to

more realistic (infinite) models M .

4 The MLE on a discrete approximation of the
model

4.1 Discretizing a model

In order to avoid the difficulties connected with the study on the MLE on a
general model, we shall adopt the strategy consisting in replacing, in the metric
space (P, h), the set M = {p ·µ, p ∈M} by a finite approximation. Let us now
make this precise.

Definition 2. Let (S,∆) be a metric space and δ > 0. A subset Sδ of S is a
δ-net for S ⊂ S if, for all s ∈ S, one can find t ∈ Sδ such that ∆(s, t) 6 δ. A
subset S ′δ of S is δ-separated if ∆(s, t) > δ for all s, t, s 6= t in S ′δ. It is a maximal
δ-separated subset of S if it is δ-separated and if S ′δ ∪ {t} is not δ-separated for
all t ∈ S \ S ′δ.

Note that any maximal δ-separated subset of S is a δ-net for S and if S is
compact, one can always find a finite δ-net Sδ for S, taking for Sδ the set of
centers of a finite covering of S by balls with radius δ. Also observe that, to any
finite δ-net Sδ = {s1, . . . , sN} for S, one can associate a partition (S1, . . . , SN)
of S and a mapping π from S to Sδ in such a way that sups∈Sj ∆(s, sj) 6 δ and
π−1(sj) = Sj for each j ∈ {1, . . . , N}.
In the sequel, we shall assume that one can find a finite η-net Mη = {p ·µ, p ∈
Mη} for M , not necessarily a subset of M , to approximate M . In terms of
the corresponding density models, this means that if Mη = {p1, . . . , pN} we
can find a partition (M′

1, . . . ,M′
N) of M such that, for each j ∈ {1, . . . , N},

supp∈M′
j
h(p, pj) 6 η. Defining the application πη fromM toMη by πη(p) = pj

if p ∈ M′
j, we get h(p, πη(p)) 6 η for all p ∈ M. We finally define our estimator

p̂n of p? ∈ M as a MLE onMη which means that p̂n is any point inMη which
maximizes the function

p→
n∑
i=1

log
Ä
p(Xi)

ä
fromMη to [−∞,+∞) with log(0) = −∞.

The case that we studied in the previous section corresponds to the case of a
finite setM,Mη =M and πη the identity function.
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To mimic the proof we gave in Section 3 which was based on the inequality (5)
we need to derive an analogous bound for

P
[
n∑
i=1

log
Ç

p(Xi)
πη(p?)(Xi)

å
> 0

]
when p ∈Mη, (7)

the difference being that we still compute the probability with respect to P ?

while now the denominators involves πη(p?). Since, under P ?, one may have
πη(p?)(Xi) = 0 (which is a.s. impossible for p?(Xi)), we set log(a/0) = +∞ if
a > 0 and log(0/0) = 0 in (7). Unfortunately, the fact that h(θ?, π(θ?)) 6 η does
not warrant, even if η is small, that an analogue of (5) holds as shown by the
following counterexample.

Example 4. Let Pθ be the uniform distributions on [0, θ], θ > 0, with density
pθ = θ−11l[0,θ] with respect to the Lebesgue mesure µ. Let the true distribution P ?

have density pθ? = (1− n−1) p1 + n−11l[100,101]. Then ρ(P1, P
?) =

√
1− n−1 and

h2(P1, P
?) is approximately (2n)−1 when n is large so that P1 provides a very good

approximation of P ? for large n. With n i.i.d. observations of distribution P ?,
the probability that at least one of them belongs to [100, 101] is 1− (1− n−1)n >
1− e−1. It immediately follows that

P
[
n∑
i=1

log
Ç
p101(Xi)
p1(Xi)

å
= +∞

]
> 1− e−1

although h2(P1, P101) = 1− 101−1/2 > 9/10.

The problem, in the previous example, is connected to the fact that P ? 6�
πη(p?) · µ but, with some additional effort, one can build a more sophisticated
counterexample for which P ? � πη(p?) · µ. Therefore, even with this additional
assumption of domination and if η is very small, the fact that h(p?, πη(p?)) 6 η
does not warrant that an analogue of (5) holds.

4.2 Deviation bounds for the discretized MLE

As we have just seen, getting for (7) an exponential bound similar to (5) requires
that bothMη and the mapping πη be chosen in a specific way. Such a bound will
actually result from an application of the following Proposition, to be proven in
Section 5.

Proposition 1. Let Ps = s · µ and Pt = t · µ, Ps � Pt, be two probabilities
dominated by µ and such that

∫
t>0 s

2t−1 dµ < +∞. If
∫
t>0

Ç
s2

t

å
dµ− 1 =

∫
t>0

Ås
t
− 1
ã2
t dµ 6 [Ah(Ps, Pt)]2 with A > 0, (8)
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then A >
√

2 and, whatever the probability Pu = u · µ and y ∈ R,

Ps
[
n∑
i=1

log
Ç
u(Xi)
t(Xi)

å
> y

]
6 exp

ñ
−nh2(t, u)

Ç
1− A

√
2 h(Ps, Pt)
h(Pt, Pu)

å
− y

2

ô
. (9)

In particular, if s(x) 6 ∆t(x) for for some ∆ > 1 and µ-almost all x, one can
take A =

√
2
Ä
1 +
√

∆
ä
.

Remark. If P = p · µ and Q = q · µ with P � Q, the quantity

χ2(P,Q) =
∫
q>0

Ç
p

q
− 1
å2
dµ− 1 =

∫
q>0

p2

q
dµ− 1,

which is independent of the dominating measure µ, is called the χ2-divergence
between P and Q.

The proposition says that (8) allows to replace the analogue of (3), namely

Pt
[
n∑
i=1

log
Ç
u(Xi)
t(Xi)

å
> y

]
6 exp

ï
−anh2(t, u)− y

2

ò
with a = 1

by (9), which is similar provided that a = 1− A
√

2h(Ps, Pt)/h(Pt, Pu) > 0.
In order to control the performance of the MLE onMη when p? ∈M we shall

apply the proposition to pairs (t, s) of the form (pj, p?) with p? ∈ M′
j and, since

p? is unknown, assume that (8) holds for all pairs (t, s) of the form (pj, p) with
p ∈ M′

j and j ∈ {1, . . . , N}. Moreover, to get precise deviation bounds between
p? and p̂n, we shall also need, as for (6), a control of the number of points of
Mη that belong to balls of a given radius. This leads to the following set of
assumptions.

Assumption 1. The setMη and the application πη satisfy the following proper-
ties: there exist numbers A, b, D and a with

A >
√

2, b >
Ä
A
√

2
ä
∨ 4, D > 1/2, a = 1− Ab−1√2 and anη2 > 2D (10)

such that
i) For each p ∈M, h(p, πη(p)) 6 η.
ii) For all j ∈ {1, . . . , N} andM′

j = π−1
η (pj),

sup
p∈M′

j

∫
pj>0

Ç
p

pj

å2
dµ− 1 = sup

p∈M′
j

∫
pj>0

Ç
p

pj
− 1
å2
pj dµ 6 (Aη)2. (11)

iii) For all p ∈Mη,

|{q ∈Mη |h(p, q) < xη}| 6 exp
î
x2D

ó
for all x > b. (12)
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Note that it is actually enough to check (12) for b 6 x 6 η−1 and that |Mη| =
N 6 exp [η−2D] since, for x > η−1, {p ∈Mη |h(p, p0) < xη} =Mη, the Hellinger
distance being bounded by one.
In the next theorem and from now on, C will denote an arbitrary universal

constant and C(·) a generic function of the parameters that appear as arguments
of it but not on other quantities. Both C and C(·) may change from line to line.

Theorem 1. Let Assumption 1 hold. Then any MLE p̂n onMη satisfies

P [h (p̂n, p?) > (z + 1)η] < C0 exp
î
−z2 Äanη2/3

äó
for all z >

√
3 b/2 (13)

and E [h2 (p̂n, p?)] 6 C(a, b) η2 with

C0 =
+∞∑
k=0

exp
î
−4[(4/3)k − 1]

ó
< 1.32. (14)

Proof. Assumption 1-(ii) and Proposition 1 imply that, if πη(p?) = pj, for all
p ∈Mη,

P
[
n∑
i=1

log
Ç
p(Xi)
pj(Xi)

å
> 0

]
6 exp

ñ
−nh2(p, pj)

Ç
1− A

√
2 h(p?, pj)
h(p, pj)

åô
and, since h(p?, pj) 6 η,

P
[
n∑
i=1

log
Ç

p(Xi)
πη(p?)(Xi)

å
> 0

]
6 exp

î
−anh2(p, πη(p?))

ó
if h(p, pj) > bη. (15)

For y > (3/4)(bη)2 and k ∈ N, let us set

Pk =
{
p ∈Mη

∣∣∣ yδk 6 h2(πη(p?), p) < yδk+1
}

with δ = 4/3.

Since yδk+1 > yδ > (bη)2, we derive from (12) and (10) that

|Pk| 6 exp
î
yδk+1η−2D

ó
6 exp

î
anδk+1y/2

ó
and it follows from (15) that

P
î
h2 (p̂n, πη(p?)) > y

ó
6 P

[
∃p ∈Mη with h2(p, πη(p?)) > y and

n∑
i=1

log
Ç

p(Xi)
πη(p?)(Xi)

å
> 0

]

6
+∞∑
k=0

∑
p∈Pk

P
[
n∑
i=1

log
Ç

p(Xi)
πη(p?)(Xi)

å
> 0

]
6

+∞∑
k=0

∑
p∈Pk

exp
î
−anh2(p, πη(p?))

ó
6

+∞∑
k=0
|Pk| exp

î
−anδky

ó
6

+∞∑
k=0

exp
î
anδk+1y/2

ó
exp
î
−anδky

ó
=

+∞∑
k=0

exp
[
−anδ

ky

3

]
= exp

ï
−any3

ò(+∞∑
k=0

exp
ï
−any3 (δk − 1)

ò)
. (16)
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Now observe that (10) implies that b > 4 and anη2 > 1, hence, since y >
(3/4)b2η2, any > (3/4)b2anη2 > 12. Setting z = √y/η >

√
3 b/2, we derive from

(16) that

P
î
h2 (p̂n, πη(p?)) > y

ó
< exp

ï
−any3

ò(+∞∑
k=0

exp
[
−4

(Å4
3

ãk
− 1

)])
= C0 exp

î
−(anη2/3)z2ó

and (13) follows from Assumption 1-(i). Finally, the bound for E [h2 (p̂n, p?)]
follows by integration since E [h2 (p̂n, p?)] =

∫ 1
0 P [h2 (p̂n, p?) > x] dx.

Note that (13) is trivial if η >
Ä
1 +
√

3 b/2
ä−1 since then (z + 1)η > 1, hence

P [h (p̂n, p?) > (z + 1)η] = 0, the Hellinger distance being bounded by one. Since
z + 1 > 2

√
3 + 1 > 4.46, we shall assume from now on, to avoid trivialities,

that η 6 2/9. Moreover, anη2/3 > 1/3 and z2 > 3b2/4 imply that z2anη2/3 >
b2/4, so that (13) implies that h (p̂n, p?) is not larger than

Ä
1 +
√

3 b/2
ä
η with a

probability at least 1 − C0 exp[−b2/4] > 1 − C0 exp[−4] > 0.975. It also implies
that the smaller η, the better the estimator.

4.3 How to check Assumption 1?

4.3.1 Using nets Mη which are subsets of M

A first way of building a netMη is to take it as a particular subset ofM chosen
in such a way that Assumption 1 holds as in the following parametric examples.
In each case, the density model isM = {pθ, θ ∈ Θ} with Θ a compact subset of
Rk and there is a simple relationship between the Euclidian distance on Θ and
the Hellinger distance onM. This relationship implies that, given η, on can find
δ such that ‖θ − θ′‖ 6 δ implies that h(pθ, pθ′) 6 η. Therefore a δ-net Θδ ⊂ Θ
leads to an η-net Mη = {pθ, θ ∈ Θδ} for M. Then, starting from a mapping
π from Θ to Θδ, such that ‖θ − π(θ)‖ 6 δ, we define πη by πη(pθ) = π(θ) so
that Assumption 1-(i) holds. For these parametric models, the MLE on Mη is
p̂n = p

θ̂n
and θ̂n ∈ Θ is the MLE for the unknown parameter θ.

Example 5 (Gaussian translation). Let Pθ be the normal distribution N (θ, σ2Ik)
with θ ∈ Rk, σ > 0 and Ik the identity matrix and let pθ be the corresponding
density with respect to the Lebesgue measure. We assume that σ is known and
that Θ is a compact subset of Rk with diameter bounded by Bσ. It follows from
elementary computations that

ρ(Pθ, Pθ′) = exp
ñ
−‖θ − θ

′‖2

8σ2

ô
and h2(pθ, pθ′) = 1− exp

ñ
−‖θ − θ

′‖2

8σ2

ô
,

11



which implies, since the function x 7→ x−1(1 − e−x) is decreasing on R+ and
‖θ − θ′‖ 6 Bσ, that

cB
‖θ − θ′‖2

8σ2 6 h2(pθ, pθ′) 6 ‖θ − θ
′‖2

8σ2 for all θ, θ′ ∈ Θ. (17)

with cB = 8B−2 (1− exp [−B2/8]). Let δ = 2
√

2ση and Θδ be a maximal δ-
separated subset of Θ. It is a finite δ-net for Θ and one can deduce from it, as
indicated above, the corresponding setMη and the mappings π and πη. Since∫ Ç

p2
θ(x)
pθ′(x)

å
dx = exp

ñ‖θ − θ′‖2

σ2

ô
for all θ, θ′ ∈ Θ,

it follows from (17) that
∫
p2
θ(x)p−1

π(θ)(x) dx− 1 6 A2η2 with

A2 = η−2 Äexp
î
(δ/σ)2ó− 1

ä
= η−2 Äexp

î
8η2ó− 1

ä
< 8.42 if η2 6 1/80.

Then Assumption 1-(ii) holds and we may take b = 5 > A
√

2, in which case
η <

Ä
1 +
√

3 b/2
ä−1 and a > 0.179. Finally, for θ0 ∈ Θδ,

|{pθ ∈Mη |h(pθ, pθ0) < xη}| 6
∣∣∣{θ ∈ Θη | ‖θ − θ0‖ < 2

»
2/cB σxη

}∣∣∣
=
∣∣∣{θ ∈ Θη | ‖θ − θ0‖ < c

−1/2
B xδ

}∣∣∣ ,
a quantity which can be bounded using the fact that Θδ is a maximal δ-separated
subset of Θ and allows to derive a value for D.
To illustrate this, let us assume that Θ is a Euclidean ball of radius Bσ/2 in an

affine subset Vj of Rk with dimension j 6 k. One can easily derive from volume
comparisons that if Θδ is a δ-separated subset of Vj, the number of points of Θδ

that belong to any ball in Vj with radius yδ is bounded by (2y + 1)j. It then
follows from the fact that the function x → x−2 log

(
2c−1/2
B x+ 1

)
is decreasing

for x > 1 that, for x > b = 5,

∣∣∣{θ ∈ Θη | ‖θ − θ0‖ < c
−1/2
B xδ

}∣∣∣ 6 (
2c−1/2
B x+ 1

)j
6 exp

j log
(
10c−1/2

B + 1
)

25 x2

 .
Therefore Assumption 1-(iii) holds with D =

[
(j/25) log

(
10c−1/2

B + 1
)]∨(1/2)

and (10) holds with η = 3.35
»
D/n since a > 0.179. For n large enough, η 6

1/
√

80 as required. Finally Theorem 1 implies that E [h2 (p̂n, pθ?)] 6 CD/n,
hence by (17),

E
ï∥∥∥θ̂n − θ?∥∥∥2

ò
6 C(B)σ2D/n.

12



Example 6 (Cauchy translation). Let p be the Cauchy density with respect to
the Lebesgue measure µ on R, i.e. p(x) = [π (1 + x2)]−1, and let pθ(·) = q(· − θ)
for θ ∈ R. Then

pθ(x)
pθ′(x) = 1 + (x− θ′)2

1 + (x− θ)2 6 2
î
1 + (θ′ − θ)2ó for all θ, θ′, x ∈ R. (18)

Assume that we observe n i.i.d. real variables with unknown density pθ? with
respect to µ belonging to the density model M = {pθ, θ ∈ Θ} where Θ is an
interval of R with finite length L. It is known — see for instance Chapter 1 of
Ibragimov and Has’minskii (1981) — that in this case

0 < mL|θ − θ′| 6 h(pθ, pθ′) 6 (1/4)|θ − θ′| for all θ, θ′ ∈ Θ, (19)

with mL depending on L only. If δ = 4η 6 8/9, Θδ = (δZ) ∩ Θ is a δ-net for Θ
and it follows from (19) thatMη = {pθ, θ ∈ Θδ} is an η-net forM from which we
build π and πη as previously explained. By (18), pθ/pπ(θ) is uniformly bounded by
∆ = 2 [1 + 16η2] < 4 since |θ − π(θ)| 6 δ, so that Proposition 1 applies, leading
to A < 3

√
2. It follows that Assumption 1-(ii) holds with b = 8, hence a > 1/4.

Finally, if θ0 ∈ Θη and h(θ, θ0) < xη, then |θ − θ0| < xm−1
L η so that

|{θ ∈ Θη |h(θ, θ0) < xη}| 6 x

2mL

6 exp
î
Dx2ó with D = log(4/mL)

64
∨ 1

2

since x > b = 8. Therefore, for n large enough, Assumption 1 holds with the
choice η = 2

»
2D/n and Theorem 1 implies that E [h2 (p̂n, p?)] 6 C(mL)n−1. By

(19), the same type of bound holds for E
î
(θ̂n − θ?)2

ó
.

Example 7 (Uniform distributions 1). We observe n i.i.d. real variables with
uniform distribution on [0, θ] with θ ∈ Θ =

î
γ2θ, θ

ó
, θ > 0, γ < 1. Then, if θ′ > θ,

h2(pθ, pθ′) = 1−
 
θ

θ′
and

∫ Ç
p2
θ(x)
pθ′(x)

å
dx = θ′

θ
. (20)

To build an η-net forM we set θj = θ (1− η2)2j for j > 0,Mη = {pθj , θj ∈ Θ}
and πη(pθ) = pθj for θ ∈ (θj+1, θj]. If θ ∈ (θj+1, θj], h2(pθ, pθj) 6 η2 and

∫ (
p2
θ(x)

pθj(x)

)
dx− 1 = θj

θ
− 1 = 1î

1− h2(pθ, pθj)
ó2 − 1 6

1
(1− η2)2 − 1.

This implies that Assumption 1-(i) holds and (11) as well with

A = η−2
[Ä

1− η2ä−2 − 1
]
< 2.16 since η2 6 4/81,

leading to the choice b = 4 so that a > 1/5.

13



To bound D in (12), we first observe that h2(pγ2θ, pθ) = 1 − γ which means
that we may restrict to xη 6

√
1− γ in (12). Since, for k > 1, h2(pθj , pθj+k) =

1− (1− η2)k, h(pθj , pθj+k) < xη requires that 1− (1− η2)k < x2η2. Equivalently
k < log (1− x2η2) / log (1− η2) with x2η2 6 1− γ. Since

1 < − log(1− y)
y

< 1 + y

2(1− y) 6 1 + 1− γ
2γ for 0 < y 6 1− γ,

we conclude that k < x2[1 + (2γ)−1(1− γ)]. It follows that, for θl ∈ Θ

|{pθ ∈Mη |h(pθ, pθl) < xη}| 6 2x2[1 + (2γ)−1(1− γ)],

and, since the function y → y−1 exp [yD] is increasing for y > D−1 and D > 1/2,
we can take

D = log (2b2[1 + (2γ)−1(1− γ)])
b2 = log (32[1 + (2γ)−1(1− γ)])

16

and η =
»

10D/n provided that n is large enough. Then (13) becomes

P
[
h (p̂n, p?) > (z + 1)

»
10D/n

]
< C0 exp

î
− (2D/3) z2ó for all z > 2

√
3

and we derive from (20) that

P


Ã
θ̂n ∧ θ?

θ̂n ∨ θ?
6 1− 10(z + 1)2D

n

 < C0 exp
ñ
−2Dz2

3

ô
for all z > 2

√
3.

4.3.2 Using upper approximations

In the three previous examples,Mη could be chosen as a subset ofM but there
are situations for which no finite subset ofM can satisfy Assumption 1-(ii) and
we have to build Mη as a finite set of densities with respect to µ that do not
belong to M. In such a case we proceed as follows: we build a finite partition
{M′

1, . . . ,M′
N} ofM such that, for each j ∈ {1, . . . , N} there exists an element

tj ∈ L1(µ) satisfying

sup
p∈M′

j

p(x) 6 tj(x) for µ-almost all x,
∫
tj dµ 6 1 + α 6 4 (21)

and
h2(p, tj)

def= 1
2

∫ (√
p−

»
tj
)2
dµ 6 η2 6 1/20 for all p ∈M′

j. (22)

To build Mη, we then use the normalized versions tj = (
∫
tjdµ)−1

tj of the tj,
settingMη = {t1, . . . , tN} and πη(p) = tj for all p ∈M′

j and, to derive Assump-
tion 1, we use the following proposition, the proof of which will be defered to
Section 5.

14



Proposition 2. Let s and t be two nonnegative elements of L1(µ) with 0 6
s(x) 6 t(x) for µ-almost all x ∈ E,

∫
s dµ = 1 and

∫
t dµ = 1 + α > 4. Let

t = (1 + α)−1t. Then h2(s, t) 6 (1 + α)−1/2h2 (s, t) and
∫
t>0

Ç
s2

t

å
dµ− 1 6

Ä
1 + α +

√
1 + α

ä
h2(s, t) 6

Ä
1 +
√

1 + α
ä
h2 (s, t) .

Corollary 1. If (21) and (22) are satisfied, Assumption 1-(i) and (ii) hold with
A2 <

Ä
1 +
√

1 + α
ä2
/2 and one can set b = 4 so that a > (1/2)− (α/16) > 5/16.

Proof. In view of (21) and (22), the proposition applies with (s, t, t) = (, tj, tj)
for each j if p ∈ M′

j. It implies that h2(p, tj) 6 h2(p, tj) for p ∈ M′
j, hence

h(p, πη(p)) 6 η and Assumption 1-(ii) with A2 = 1 +
√

1 + α < 2 + (α/2).
Therefore, by (21), A2 6 3 ∧ 2[1 + (α/8)]2 and the choice b = 4 > A

√
2, then

leads to
a = 1− A

√
2

4 > 1− 2[1 + (α/8)]
4 = 1

2 −
α

16 >
5
16 .

Example 8 (Uniform distributions 2). We observe n > 11 i.i.d. real variables
with uniform distribution on [θ, θ + 1] with θ ∈ Θ = R and the corresponding
density model, with respect to the Lebesgue measure µ, is {pθ, θ∈R} with pθ =
1l[θ,θ+1]. Then, for θ < θ′, h2(pθ, pθ′) = (θ′ − θ) ∧ 1. Let us now build a suitable
set Mη with η2 6 1/20. For j ∈ Z, let Ij be the interval [2jη2, 2(j + 1)η2) so
that the Ij provide a partition of Θ. To each interval Ij we associate the function
tj = 1l[2jη2,2(j+1)η2+1) so that (21) holds with α = 2η2 6 1/10. Since α/16 6 1/160,
one can take a = 79/160. Moreover, for θ ∈ Ij, [θ, θ + 1] ⊂ [2jη2, 2(j + 1)η2 + 1),
hence

h2 (pθ, tj) = 1
2

∫ Ä
1l[2jη2,2(j+1)η2+1) − 1l[θ,θ+1]

ä2
dµ = 2η2

2 = η2

and (22) holds. Let tj = (1 +α)−1tj be the corresponding density,MZ = {tj, j ∈
Z} and set πη(pθ) = tj for θ ∈ Ij. Note that tj is supported by the interval
[2jη2, 2(j + 1)η2 + 1). Since p? = pθ? ∈ M, θ? belongs to some Ij which we may
assume, without loss of generality, to be I0. It follows that all Xi belong a.s. to
(θ?, θ? + 1) ⊂ (0, 2η2 + 1). As a consequence, the likelihood of tj is a.s. 0 if either
2(j+ 1)η2 + 1 6 0 or 2jη2 > 2η2 + 1, so that the MLE onMZ necessarily satisfies

p̂n = tj with −
î
1 + (2η2)−1ó < j <

î
1 + (2η2)−1ó

and belongs to the setMη = {tj, −N < j < N} with N − 1 < 1 + (2η2)−1 6 N .
We can therefore consider p̂n as the MLE on Mη and we only have to check
Assumption 1 on the finite set Mη to which Corollary 1 applies. It remains to
check Assumption 1-(iii). For this, let us consider a closed ball Br of Mη with
Hellinger radius r, 1 > r > bη = 4η. Since tj = (1 + 2η2)−1 1l[2jη2,2(j+1)η2+1), for

15



k ∈ N,

h2 (tj, tj+k) = 1
2 (1 + 2η2)

∫ Ä
1l[2jη2,2(j+1)η2+1) − 1l[2(j+k)η2,2(j+k+1)η2+1)

ä2
dµ

= (4kη2) ∧ (4η2 + 2)
2 (1 + 2η2) = 2kη2

1 + 2η2

∧
1.

If r = 1, Br contains at most 2N − 1 < 3 + η−2 6 (23/20)η−2 points. If r < 1, it
contains at most

1 + 2r
2 (1 + 2η2)

2η2 < 1 + 11
10
r2

η2 6
93
80
r2

η2

points since 2η2 6 1/10 and r2 > 16η2. The result still holds if r = 1 in view
of the bound on 2N − 1. Since (93/80)x2 < exp [x2/2] for x > 4, we conclude
that (iii) is satisfied with D = 1/2 and (10) holds with a = 79/160 provided that
η2 = 160/(79n), which is compatible with the condition η2 6 1/20 for n > 41. It
finally follows from Theorem 1 that

P
î
h (p̂n, p?) > 1.43(z + 1)n−1/2ó < C0 exp

î
−z2/3

ó
for all z > 2

√
3.

Example 9 (Approximation with respect to the sup norm - General). Let µ
be a probability on E, M a set of densities with respect to µ and assume that√
M def=

¶√
p, p ∈M

©
is a totally bounded subset of L∞(µ). Let (B1, . . . ,BNη)

be a finite covering of
√
M (with respect to the L∞(µ)-distance) by balls of radius

δ = η/
√

2, 0 < η 6 1/
√

20, with respective centers √pj, 1 6 j 6 Nη. It follows
that, for all p such that √p ∈ Bj,

tj(x) =
(»

pj(x) + δ
)2

> p(x) >
(»

pj(x)− δ
)2

µ-a.s.,

therefore∣∣∣»tj(x)−√p(x)
∣∣∣ 6 2δ µ-a.s., hence h2 (tj, p) 6 2δ2 = η2 6 1/20

and (22) holds. Moreover, by Jensen’s inequality,∫
tj =

∫ (√
pj + δ

)2
dµ = 1 + δ2 + 2δ

∫ √
pj 6 1 +

Ä
η2/2

ä
+ η
√

2 < 1.35

which implies (21) with α = 0.35. We then define tj and Mη = {t1, . . . , tNη}
as indicated before and choose πη in such a way that π−1

η (tj) ⊂ {p |
√
p ∈ Bj}.

Corollary 1 applies leading to Assumption 1-(i) and (ii) with a > (1/2)−(α/16) >
0.478. Finally, whatever p0 ∈ Mη, |{p ∈ Mη |h(p, p0) < xη}| 6 Nη and (12)
holds with D = (logNη)/16. Then Theorem 1 applies if (10) holds which is the
case provided that

0.478nη2 > (logNη)/8 or nη2 > 0.262 logNη.

Such an inequality is satisfied for n large enough and, given n, the optimal value
of η is the smallest possible one which clearly depends on the relationship between
η and Nη.
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Example 10 (Approximation with respect to the sup norm - Smooth densities).
Let E = [0, 1], µ be the Lebesgue measure on [0, 1], w a modulus of continuity
on E andM the set of all densities p with respect to µ satisfying∣∣∣»p(y)−

»
p(x)

∣∣∣ 6 w(y − x) for all x < y, x, y ∈ E.

Let m0 = inf
{
m ∈ N, m > 2

∣∣∣w(m−1) 6 40−1/2
}
, m > m0 and consider a parti-

tion (I1, . . . , Im) of [0, 1] into m intervals with the same length l = m−1 so that
w(l) 6 40−1/2. Set η2 = 2w2(l) 6 1/20. For p ∈ M and 1 6 j 6 m, we de-
note by kj the integer such that (kj − 1)w(l) < supx∈Ij

»
p(x) 6 kjw(l), so that

(kj − 2)w(l) <
»
p(x) 6 kjw(l) for all x ∈ Ij since the variation of √p on Ij is

bounded by w(l). We finally set

k(p) = (k1, . . . , km) and tk(p) =
Ñ m∑

j=1
kj1lIj

é
w(l)

2

. (23)

Then √
tk(p)(x)−

√
2η <

»
p(x) 6

√
tk(p)(x) for all x ∈ [0, 1] (24)

so that
h2 Ätk(p), p

ä
= 1

2

∫ Å√
tk(p) −

√
p
ã2
dµ 6 η2.

and, by Jensen’s inequality,

1 6
∫
tk(p) dµ 6

∫ Ä√
p+
√

2η
ä2
dµ = 1 + 2η2 + 2

√
2η
∫ √

pdµ < 7/4.

Performing this procedure for all p ∈ M leads to a setMη = {tk, k ∈ K} with
K ⊂ Nm and such that each p ∈M can be approximated by some tk(p), k(p) ∈ K
satisfying (24). This results in the function πη given by πη(p) = tk(p) and we may
apply Corollary 1 with α = 3/4 so that Assumptions 1-(i) and (ii) hold and
a > 29/64.
Let us now bound |K|. For this we observe that all the tk with k ∈ K necessarily

share the following properties. Since p is a continuous density, it takes the value
1 in some interval Ij which implies that, on this Ij, 1 6

»
tk(p) 6 1 + w(l). If

(k0 − 1)w(l) < 1 6 k0w(l), then
»
tk(p) equals either k0w(l) or (k0 + 1)w(l) on

Ij. Moreover, since the variation of √p on each Ij is bounded by w(l), we have
kj+1 = kj + γw(l) with γ = −1, 0 or 1 in (23). This means that

|K| 6 2m3m−1 = exp[(m− 1) log 3 + log(2m)] < exp[3m/2],

hence (12) holds with D = 3m/32 since b = 4. Finally, Assumption 1 holds
provided that

(29n/32)w2(m−1) > 3m/16 or equivalently nw2(m−1) > 6m/29, (25)
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which can always be realized for somem > m0 as soon as n > (6/29)m0w
−2(m−1

0 ).
Since we want η to be as small as possible, we choose for m the largest integer
which satisfies the previous inequality.
Let us now turn to a concrete illustration, assuming that w(x) = Lxβ for

0 6 x 6 1 with L > 0 and 0 < β 6 1, which corresponds to Hölderian smoothness
for √p. Then w(m−1) = Lm−β and (25) amounts to m 6 [(29/6)nL2]1/(2β+1).
Assuming that n is large enough to warrant that m0 6 [(29/6)nL2]1/(2β+1) we
should choose m such thatî

(29/6)nL2ó1/(2β+1) − 1 < m 6
î
(29/6)nL2ó1/(2β+1)

.

The right-hand side is at least 2 since m > 2, hence m > (1/2) [(29/6)nL2]1/(2β+1)

and

η =
√

2w(m−1) 6
√

2Lm−β

6 2β+(1/2)L
î
(29/6)nL2ó−β/(2β+1) = C(β)L1/(2β+1)n−β/(2β+1),

which implies that

E
î
h2 (p̂n, p?)

ó
6 C(β)L2/(2β+1)n−2β/(2β+1).

Moreover, since all elements of M∪Mη are uniformly bounded by a constant
depending only on L and β,

(p̂n(x)− p?(x))2 =
(»

p̂n(x)−
»
p?(x)

)2 (»
p̂n(x) +

»
p?(x)

)2

6 C(L, β)
(»

p̂n(x)−
»
p?(x)

)2
,

therefore, if ‖·‖2 denotes the norm in L2(µ),

E
î
‖p̂n − p?‖2

2
ó
6 C(L, β)n−2β/(2β+1) for all p? ∈M.

5 Additional proofs

Proof of Proposition 1 First observe that, since s = 0 µ-a.s. when t = 0,
∫
t>0

Ås
t
− 1
ã2
t dµ =

∫
t>0

Ä√
s−
√
t
ä2 Ä√s+

√
t
ä2

t
dµ (26)

>
∫
t>0

Ä√
s−
√
t
ä2
dµ = 2h2(s, t),

hence A2 > 2. If we set γ(x) = [s(x)/t(x)] − 1 for x ∈ E, then s = t(1 + γ),∫
tγ dµ = 0 and

Es
[»
u(X)/t(X)

]
=
∫ √

tu dµ+
∫ √

tu γ dµ = 1− h2(t, u) +
∫ √

tu γ dµ. (27)
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Since
∫
tγ dµ = 0 we derive from Cauchy-Schwarz inequality and (11) that∫ √

tu γ dµ =
∫ √

tu γ dµ−
∫
tγ dµ =

∫
γ
√
t
Ä√
u−
√
t
ä
dµ

6
ï∫

γ2t dµ
∫ Ä√

u−
√
t
ä2
dµ
ò1/2

6 h(t, u)
 

2
∫
t>0

(st−1 − 1)2 t dµ

and (27) becomes

Es


Ã
u(X)
t(X)

 6 1− h2(t, u) + h(t, u)
î√

2Ah(s, t)
ó

6 exp
ñ
−h2(t, u)

Ç
1−
√

2Ah(s, t)
h(t, u)

åô
and (9) follows from (2). Finally, if s(x) 6 ∆t(x) µ-a.s., by (26),∫

t>0

Ås
t
− 1
ã2
t dµ 6

(
1 +
√

∆
)2 ∫

t>0

Ä√
s−
√
t
ä2
dµ = 2

(
1 +
√

∆
)2
h2(s, t)

which leads to A2 = 2
Ä
1 +
√

∆
ä2.

Proof of Proposition 2 Let us set γ = (t/s)− 1 > 0. Then
∫
γs dµ = α and

t = (1 + γ)s/(1 + α). It follows that

h2 (s, t) = 1
2

∫ Ä√
1 + γ − 1

ä2
s dµ = 1 + α

2 −
∫ √

1 + γ s dµ (28)

and

h2(s, t) = 1− ρ(s, t) =
∫ (

1−
 

1 + γ

1 + α

)
s dµ =

√
1 + α−

∫ √
1 + γ s dµ

√
1 + α

,

therefore, by (28),
√

1 + αh2(s, t) =
√

1 + α−
∫ √

1 + γ s dµ 6 h2 (s, t) . (29)

Moreover, ∫
t>0

s2

t
dµ− 1 =

∫ Ç1 + α

1 + γ
− 1
å
s dµ.

Since γ > 0 and the function x→ (x− 1)/
Ä
1− x−1/2

ä
= x+

√
x is increasing for

x > 0,

[(1 + α)/(1 + γ)]− 1
1− [(1 + α)/(1 + γ)]−1/2 6

1 + α− 1
1− (1 + α)−1/2 = 1 + α +

√
1 + α

19



and it follows from (29) that∫
t>0

s2

t
dµ− 1 6

Ä
1 + α +

√
1 + α

ä ∫ (
1−

 
1 + γ

1 + α

)
s dµ

=
Ä
1 + α +

√
1 + α

ä
h2(s, t) 6

Ä
1 +
√

1 + α
ä
h2(s, t).
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