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About the discretized Maximum Likelihood Estimator

. Our purpose here is to describe a discretized version of the method, which is not so wellknown, but with the advantage that one can derive its non-asymptotic performance from elementary tools. We shall explain the method, give its performances and provide several illustrative examples.

Introduction

To begin with, let us recall what type of problems statisticians want to study. They work within a classical probabilistic framework where one has at hand a random variable X from some abstract measurable space (Ω, Ξ, P) to an observational space (E, ) with distribution P X on E. While probabilists want to analyze the behaviour of X from the knowledge of P X , statisticians work in the opposite direction. They observe a realization X(ω) of X and try to infer from it some properties of the unknown distribution P X .

Obviously, the number of problems which are connected to the search of information about the probabilistic distribution of X is unlimited but we shall concentrate here on a specific one, called estimation and more precisely on the estimation of the true unknown distribution P X of X. This means finding a random variable " P(X), with values in the set of all probabilities on E and such that " P is close (in a suitable sense) to P X with probability close to 1. Unfortunately, without some prior information on P X , it is (provably) impossible to achieve this aim. In view of solving the estimation problem, we have to make assumptions on the structure of P X and, to keep this presentation simple, we shall focus here on the following classical framework: E = E n , X = (X 1 , . . . , X n ) with X i ∈ E for 1 i n and the X i are i.i.d. with unknown distribution P X on E so that P X = P ⊗n X . This is the i.i.d. framework. In the sequel we shall denote by P (= P X ) the true common distribution of the X i . We simply write P and E for probabilities and expectations of quantities depending on X under the assumption that the X i are i.i.d. with distribution P on E.

2 Models and the Maximum Likelihood Estimator

Statistical models

Traditionnally, estimation of P has been (and still is) based on models. A statistical model for P is a given subset M of the set P of all probabilities on E.

The simplest ones, namely parametric models, are those indexed by a subset Θ of some Euclidean space R k in such a way that the application θ → P θ is one-to-one. Such a model will be denoted by M Θ = {P θ , θ ∈ Θ}. Some examples are the set of Poisson distributions on N with unknown parameter θ > 0, the normal distributions N (m, σ 2 ) on R with θ = (m, σ 2 ) ∈ Θ ⊂ R × (0, +∞), a translation model for which Θ = R and (dP θ /dµ)(x) = p θ (x) = p(x -θ) for some given density p with respect to the Lebesgue measure µ and the set of uniform distributions on [0, θ] with Θ = (0, +∞). More complex models were used later. An example is that of density estimation with M = {P = p • µ, p ∈ M} where M is some set of densities with respect to the Lebesgue measure µ on R k . One could for instance choose for M the Lipschitz densities on [0, 1] k or the non-increasing densities on [0, 1]. Since P is unknown, we shall have to work with different probabilities in P and use the notation P Q [X ∈ A] to indicate that the X i have the common distribution Q, writing P p as shorthand for P p•µ and similarly E Q and E p .

In this paper we always assume that the model M is dominated by some reference measure µ, which means that any P ∈ M can be written as P = p • µ with density p with respect to µ, and M = {P = p • µ, p ∈ M} for some set M of densities with respect to µ which we shall call a density model. The true distribution P of the X i belongs to M so that P = P θ = p θ • µ with θ ∈ Θ in the parametric case and P = p • µ with p ∈ M in the general case.

The Maximum Likelihood Estimator

When the model is parametric a very popular estimator, going back to the work of Sir Ronald Fisher in the 1920's is the Maximum Likelihood Estimator (MLE for short). To introduce the method, let us assume that E is a finite or countable set, µ the counting measure on E, in which case

P θ = p θ • µ with P θ [{x}] = p θ (x). Then dP ⊗n θ dµ ⊗n (x 1 , . . . , x n ) = n i=1 p θ (x i ) = P ⊗n θ [{x 1 , . . . , x n }] = P p θ [X i = x i for 1 i n].
As a consequence, the so-called likelihood of θ: n i=1 p θ (X i (ω)) can be seen as the probability, when θ is the true parameter, of the event that actually occured, namely {X 1 (ω), . . . , X n (ω)}. In the Poisson model that we mentioned above, if

X i (ω) = k i ∈ N for 1 i n, the likelihood writes n i=1 p θ (k i ) = n i=1 e -θ θ k i k i ! = exp -nθ + n i=1 k i log θ n i=1 (k i !) -1
.

This quantity depends on θ and a natural idea is to believe that the true value θ of the parameter is close to the value θ n of θ that maximizes the probability of the event {k 1 , . . . , k n } = {X 1 (ω), . . . , X n (ω)} that actually occured, i.e. the parameter θ n that maximizes the likelihood function: θ → n i=1 p θ (X i (ω)). In the Poisson case, one immediately derives that

θ n = θ n (X) = 1 n n i=1 X i if n i=1 X i > 0,
otherwise the likelihood reduces to e -nθ and admits no maximum on Θ. Note that such an event occurs with a probability

P n i=1 X i = 0 = P [X i = 0 for all i] = n i=1 P [X i = 0] = exp[-nθ ],
which converges to 0 when n goes to infinity, although it is definitely not negligible if nθ is small.

About the classical MLE

Since the work of Fisher the MLE has become an extremely popular estimator which has been widely used in all types of situations (not only parametric models and the i.i.d. framework) and has been the subject of thousands of papers. In particular, it has been proven that, under suitable assumptions, it has a nice behaviour and some optimality properties.

Example 1. E = R = Θ and the X i are normal N (θ , 1) in which case the MLE is

θ n = n -1 n i=1 X i so that √ n Ä θ -θ n ä
has distribution N (0, 1) and the variance 1 can be shown to be optimal in a suitable sense.

Example 2. When E = (0, +∞) and the X i are uniform on [0, θ] the MLE is the largest observation θ n = sup 1 i n X i < θ a.s. and one can easily show that

E p θ ï Ä θ n -θ ä 2 ò = 2θ 2 (n + 1)(n + 2) .
Unfortunately, the MLE sometimes does not exist as we already noticed for the case of the Poisson distribution and it is indeed impossible to derive a general theory for the MLE without strong enough assumptions, in particular boundedness of the densities in the case of a translation model.

Example 3. E = R = Θ and the X i have a density p θ (x) = p(x -θ) with respect to the Lebesgue measure µ. One can easily see that the MLE does not exist on the model M R = {p θ • µ, θ ∈ R} if the density p is unbounded.

Studying the MLE in a general situation not only involves strong assumptions but also sophisticated results about the suprema of empirical processes as can be seen from the books by van der Vaart (1998), [START_REF] Van De Geer | Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] or [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF]. Even in the simple situation in which Θ is a compact subset of R k and the mapping θ → P θ has some smoothness properties, analyzing the asymptotic properties of the MLE when n goes to infinity is a difficult task as seen in papers by Le [START_REF] Cam | On the assumptions used to prove asymptotic normality of maximum likelihood estimates[END_REF]), Hajek (1972) and the books by Ibragimov and Has'minskii (1981) or [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF].

The main purpose of this paper is the presentation of a discrete version of the MLE which is not more powerful than the classical one (although it can be, in some exceptional situations) but has the advantage of being much easier to analyze. The following presentation is short and does not require the very complex tools developed, for instance, in [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] to analyze the behaviour of the classical MLE. We shall illustrate the general theorems by elementary examples in order to explain their use. We therefore hope that this unusual presentation of the MLE will be accessible to mathematicians who know nothing about empirical process theory.

There exists nevertheless a very simple situation for which the study of the asymptotic behaviour of the MLE can be done via elementary tools and we shall now describe it.

Convergence of the MLE

Let us start by a simple, but fundamental lemma.

Lemma 1. Given two probabilities P = p • µ and Q = q • µ dominated by µ, n i.i.d. observations X 1 , . . . , X n with distribution P and y ∈ R, the following bound holds:

P P n i=1 log Ç q(X i ) p(X i ) å y exp ï - y 2 ò Å » p(x)q(x) dµ(x) ã n . ( 1 
)
Proof. Applying the exponential inequality

P[Y 0] = E[1l R + (Y )] E[exp[Y /2]],
we derive that

P P n i=1 log Ç q(X i ) p(X i ) å -y 0 E P exp 1 2 -y + n i=1 log Ç q(X i ) p(X i ) å = exp ï - y 2 ò Ñ E P   Ã q(X 1 ) p(X 1 )   é n (2)
and the conclusion follows since E P » q(X 1 )/p(X 1 ) = » p(x)q(x) dµ(x).

This bound introduces the so-called Hellinger affinity between P and Q.

Definition 1. Given two probabilities P and Q on the same probability space and any measure µ such that P µ and Q µ, the Hellinger affinity between P and Q is given by

ρ(P, Q) = dP dµ dQ dµ dµ,
a quantity which is independent of µ.

It follows that (1) can be written as

P P n i=1 log Ç q(X i ) p(X i ) å y e -y/2 ρ n (P, Q) = exp ï - y 2 + n log Ä ρ(P, Q) ä ò . (3)
One can check (simply using Cauchy-Schwarz inequality) that 0 ρ(P, Q) 1, ρ(P, Q) = 1 if and only if P = Q and ρ(P, Q) = 0 if and only if there exists a set A such that

P (A) = 1 = Q(A c ).
Now assume that M is finite and M = {p 1 , . . . , p N }. Taking into account the possibility of ties (the MLE necessarily exists in this case but need not be unique), we derive from Lemma 1 that

P [ p n = p ] p∈M, p =p P n i=1 p(X i ) n i=1 p (X i ) = p∈M, p =p P n i=1 log Ç p(X i ) p (X i ) å 0 p∈M, p =p Å » p(x)p (x) dµ(x) ã n = P ∈M , P =P ρ n (P, P ). ( 4 
)
Since P = P , hence ρ(P, P ) < 1, and M is finite, P [ p n = p ] -→ n→+∞ 0 so that asymptotically the MLE will always recover the true density.

The Hellinger distance

Another important feature of the Hellinger affinity ρ, apart from (3), is its relation to a distance on the set P of all probabilities on E, namely the Hellinger distance h, the importance of which has been first emphasized by Le Cam. It is defined in the following way (independently of µ) with p = dP/dµ and q = dQ/dµ:

h 2 (P, Q) def = 1 2 ( √ p - √ q) 2 dµ = 1 -ρ(P, Q) or h(P, Q) = » 1 -ρ(P, Q)
and, since log

Ä ρ(P, Q) ä ρ(P, Q) -1 = -h 2 (P, Q), (3) implies that P P n i=1 log Ç q(X i ) p(X i ) å y exp ï - y 2 -nh 2 (P, Q) ò for all y ∈ R. (5) 
Note that h is a genuine distance since it can be viewed as an L 2 -type distance on the set of square roots of the non-negative elements of L 1 (µ). In the sequel and for simplicity, we shall often write h(p, q) for h(P, Q), considering also M as a metric space with distance h.

Since M is finite, δ = inf p =p h 2 (p, p ) > 0. If we set N j = {p ∈ M such that jδ h 2 (p , p) < (j + 1
)δ} and it follows from (4) and ( 5) that

P [ p n = p ] p∈M, p =p exp î -nh 2 (p, p ) ó +∞ j=1 N j e -njδ e -nδ   N 1 + j 1 N j+1 e -jnδ   , ( 6 
)
which provides a nonasymptotic bound for the probability of error of the MLE depending on the metric structure of M with respect to the Hellinger distance and, more specifically, on the number of points of M that belong to balls centered at p . For n large enough, the series converges quickly and is essentially equivalent to its first term N 1 e -nδ . The purpose of the next section will be to generalize the previous results to more realistic (infinite) models M .

The MLE on a discrete approximation of the model 4.1 Discretizing a model

In order to avoid the difficulties connected with the study on the MLE on a general model, we shall adopt the strategy consisting in replacing, in the metric space (P, h), the set M = {p • µ, p ∈ M} by a finite approximation. Let us now make this precise.

Definition 2. Let (S, ∆) be a metric space and δ > 0.

A subset S δ of S is a δ-net for S ⊂ S if, for all s ∈ S, one can find t ∈ S δ such that ∆(s, t) δ. A subset S δ of S is δ-separated if ∆(s, t) > δ for all s, t, s = t in S δ . It is a maximal δ-separated subset of S if it is δ-separated and if S δ ∪ {t} is not δ-separated for all t ∈ S \ S δ .
Note that any maximal δ-separated subset of S is a δ-net for S and if S is compact, one can always find a finite δ-net S δ for S, taking for S δ the set of centers of a finite covering of S by balls with radius δ. Also observe that, to any finite δ-net S δ = {s 1 , . . . , s N } for S, one can associate a partition (S 1 , . . . , S N ) of S and a mapping π from S to S δ in such a way that sup s∈S j ∆(s, s j ) δ and π -1 (s j ) = S j for each j ∈ {1, . . . , N }.

In the sequel, we shall assume that one can find a finite η-net 

M η = {p • µ, p ∈ M η } for M ,
p → n i=1 log Ä p(X i ) ä from M η to [-∞, +∞) with log(0) = -∞.
The case that we studied in the previous section corresponds to the case of a finite set M, M η = M and π η the identity function.

To mimic the proof we gave in Section 3 which was based on the inequality (5) we need to derive an analogous bound for

P n i=1 log Ç p(X i ) π η (p )(X i ) å 0 when p ∈ M η , (7) 
the difference being that we still compute the probability with respect to P while now the denominators involves π η (p ). Since, under P , one may have π η (p )(X i ) = 0 (which is a.s. impossible for p (X i )), we set log(a/0) = +∞ if a > 0 and log(0/0) = 0 in (7). Unfortunately, the fact that h(θ , π(θ )) η does not warrant, even if η is small, that an analogue of ( 5) holds as shown by the following counterexample.

Example 4. Let P θ be the uniform distributions on [0, θ], θ > 0, with density p θ = θ -1 1l [0,θ] with respect to the Lebesgue mesure µ. Let the true distribution P have density

p θ = (1 -n -1 ) p 1 + n -1 1l [100,101] . Then ρ(P 1 , P ) = √ 1 -n -1
and h 2 (P 1 , P ) is approximately (2n) -1 when n is large so that P 1 provides a very good approximation of P for large n. With n i.i.d. observations of distribution P , the probability that at least one of them belongs to [100,101] 

is 1 -(1 -n -1 ) n > 1 -e -1 . It immediately follows that P n i=1 log Ç p 101 (X i ) p 1 (X i ) å = +∞ > 1 -e -1
although h 2 (P 1 , P 101 ) = 1 -101 -1/2 > 9/10.

The problem, in the previous example, is connected to the fact that P π η (p ) • µ but, with some additional effort, one can build a more sophisticated counterexample for which P π η (p ) • µ. Therefore, even with this additional assumption of domination and if η is very small, the fact that h(p , π η (p )) η does not warrant that an analogue of (5) holds.

Deviation bounds for the discretized MLE

As we have just seen, getting for (7) an exponential bound similar to (5) requires that both M η and the mapping π η be chosen in a specific way. Such a bound will actually result from an application of the following Proposition, to be proven in Section 5.

Proposition 1. Let P s = s • µ and P t = t • µ, P s P t , be two probabilities dominated by µ and such that t>0 s 2 t -1 dµ < +∞.

If t>0 Ç s 2 t å dµ -1 = t>0 Å s t -1 ã 2 t dµ [Ah(P s , P t )] 2 with A > 0, ( 8 
)
then A > √ 2 and, whatever the probability

P u = u • µ and y ∈ R, P s n i=1 log Ç u(X i ) t(X i ) å y exp ñ -nh 2 (t, u) Ç 1 -A √ 2 h(P s , P t ) h(P t , P u ) å - y 2 ô . (9)
In particular, if s(x) ∆t(x) for for some ∆ > 1 and µ-almost all x, one can take

A = √ 2 Ä 1 + √ ∆ ä .
Remark.

If P = p • µ and Q = q • µ with P Q, the quantity χ 2 (P, Q) = q>0 Ç p q -1 å 2 dµ -1 = q>0 p 2 q dµ -1,
which is independent of the dominating measure µ, is called the χ 2 -divergence between P and Q.

The proposition says that (8) allows to replace the analogue of (3), namely

P t n i=1 log Ç u(X i ) t(X i ) å y exp ï -anh 2 (t, u) - y 2 ò
with a = 1 by ( 9), which is similar provided that a = 1 -A √ 2h(P s , P t )/h(P t , P u ) > 0. In order to control the performance of the MLE on M η when p ∈ M we shall apply the proposition to pairs (t, s) of the form (p j , p ) with p ∈ M j and, since p is unknown, assume that (8) holds for all pairs (t, s) of the form (p j , p) with p ∈ M j and j ∈ {1, . . . , N }. Moreover, to get precise deviation bounds between p and p n , we shall also need, as for (6), a control of the number of points of M η that belong to balls of a given radius. This leads to the following set of assumptions.

Assumption 1. The set M η and the application π η satisfy the following properties: there exist numbers A, b, D and a with 10)

A > √ 2, b Ä A √ 2 ä ∨ 4, D 1/2, a = 1 -Ab -1 √ 2 and anη 2 2D (
such that i) For each p ∈ M, h(p, π η (p)) η.
ii) For all j ∈ {1, . . . , N } and

M j = π -1 η (p j ), sup p∈M j p j >0 Ç p p j å 2 dµ -1 = sup p∈M j p j >0 Ç p p j -1 å 2 p j dµ (Aη) 2 . ( 11 
)
iii) For all p ∈ M η ,

|{q ∈ M η | h(p, q) < xη}| exp î x 2 D ó for all x b. ( 12 
)
Note that it is actually enough to check (12) for b x η -1 and that

|M η | = N exp [η -2 D] since, for x > η -1 , {p ∈ M η | h(p, p 0 ) < xη} = M η ,
the Hellinger distance being bounded by one.

In the next theorem and from now on, C will denote an arbitrary universal constant and C(•) a generic function of the parameters that appear as arguments of it but not on other quantities. Both C and C(•) may change from line to line.

Theorem 1. Let Assumption 1 hold. Then any MLE p n on M η satisfies

P [h ( p n , p ) (z + 1)η] < C 0 exp î -z 2 Ä anη 2 /3 äó for all z √ 3 b/2 (13)
and

E [h 2 ( p n , p )] C(a, b) η 2 with C 0 = +∞ k=0 exp î -4[(4/3) k -1] ó < 1.32. ( 14 
)
Proof. Assumption 1-(ii) and Proposition 1 imply that, if π η (p ) = p j , for all p ∈ M η ,

P n i=1 log Ç p(X i ) p j (X i ) å 0 exp ñ -nh 2 (p, p j ) Ç 1 -A √ 2 h(p , p j ) h(p, p j )
åô and, since h(p , p j ) η,

P n i=1 log Ç p(X i ) π η (p )(X i ) å 0 exp î -anh 2 (p, π η (p )) ó if h(p, p j ) bη. ( 15 
)
For y (3/4)(bη) 2 and k ∈ N, let us set

P k = p ∈ M η yδ k h 2 (π η (p ), p) < yδ k+1 with δ = 4/3.
Since yδ k+1 yδ (bη) 2 , we derive from ( 12) and (10) that

|P k | exp î yδ k+1 η -2 D ó exp î anδ k+1 y/2
ó and it follows from (15) that

P î h 2 ( p n , π η (p )) y ó P ∃p ∈ M η with h 2 (p, π η (p )) y and n i=1 log Ç p(X i ) π η (p )(X i ) å 0 +∞ k=0 p∈P k P n i=1 log Ç p(X i ) π η (p )(X i ) å 0 +∞ k=0 p∈P k exp î -anh 2 (p, π η (p )) ó +∞ k=0 |P k | exp î -anδ k y ó +∞ k=0 exp î anδ k+1 y/2 ó exp î -anδ k y ó = +∞ k=0 exp - anδ k y 3 = exp ï - any 3 ò +∞ k=0 exp ï - any 3 (δ k -1) ò . ( 16 
)
Now observe that (10) implies that b 4 and anη 2 1, hence, since y (3/4)b 2 η 2 , any (3/4)b 2 anη 2 12. Setting z = √ y/η √ 3 b/2, we derive from (16) that

P î h 2 ( p n , π η (p )) y ó < exp ï - any 3 ò +∞ k=0 exp -4 Å 4 3 ã k -1 = C 0 exp î -(anη 2 /3)z 2 ó
and ( 13) follows from Assumption 1-(i). Finally, the bound for

E [h 2 ( p n , p )] follows by integration since E [h 2 ( p n , p )] = 1 0 P [h 2 ( p n , p ) x] dx. Note that (13) is trivial if η > Ä 1 + √ 3 b/2 ä -1 since then (z + 1)η > 1, hence P [h ( p n , p ) (z + 1
)η] = 0, the Hellinger distance being bounded by one. Since z + 1 2 √ 3 + 1 > 4.46, we shall assume from now on, to avoid trivialities, that η 2/9. Moreover, anη 2 /3 1/3 and z 2 3b 2 /4 imply that z 2 anη 2 /3 b 2 /4, so that (13) implies that h ( p n , p ) is not larger than

Ä 1 + √ 3 b/2 ä η with a probability at least 1 -C 0 exp[-b 2 /4] 1 -C 0 exp[-4] > 0.
975. It also implies that the smaller η, the better the estimator.

How to check Assumption 1?

Using nets M η which are subsets of M

A first way of building a net M η is to take it as a particular subset of M chosen in such a way that Assumption 1 holds as in the following parametric examples. In each case, the density model is M = {p θ , θ ∈ Θ} with Θ a compact subset of R k and there is a simple relationship between the Euclidian distance on Θ and the Hellinger distance on M. This relationship implies that, given η, on can find δ such that θ -θ δ implies that h(p θ , p θ ) η. Therefore a δ-net Θ δ ⊂ Θ leads to an η-net M η = {p θ , θ ∈ Θ δ } for M. Then, starting from a mapping π from Θ to Θ δ , such that θ -π(θ) δ, we define π η by π η (p θ ) = π(θ) so that Assumption 1-(i) holds. For these parametric models, the MLE on M η is p n = p θn and θ n ∈ Θ is the MLE for the unknown parameter θ.

Example 5 (Gaussian translation). Let P θ be the normal distribution N (θ, σ 2 I k ) with θ ∈ R k , σ > 0 and I k the identity matrix and let p θ be the corresponding density with respect to the Lebesgue measure. We assume that σ is known and that Θ is a compact subset of R k with diameter bounded by Bσ. It follows from elementary computations that

ρ(P θ , P θ ) = exp ñ - θ -θ 2 8σ 2 ô and h 2 (p θ , p θ ) = 1 -exp ñ - θ -θ 2 8σ 2 ô , which implies, since the function x → x -1 (1 -e -x ) is decreasing on R + and θ -θ Bσ, that c B θ -θ 2 8σ 2 h 2 (p θ , p θ ) θ -θ 2 8σ 2 for all θ, θ ∈ Θ. ( 17 
) with c B = 8B -2 (1 -exp [-B 2 /8]). Let δ = 2 √
2ση and Θ δ be a maximal δseparated subset of Θ. It is a finite δ-net for Θ and one can deduce from it, as indicated above, the corresponding set M η and the mappings π and π η . Since

Ç p 2 θ (x) p θ (x) å dx = exp ñ θ -θ 2 σ 2 ô for all θ, θ ∈ Θ, it follows from (17) that p 2 θ (x)p -1 π(θ) (x) dx -1 A 2 η 2 with A 2 = η -2 Ä exp î (δ/σ) 2 ó -1 ä = η -2 Ä exp î 8η 2 ó -1 ä < 8.42 if η 2 1/80.
Then Assumption 1-(ii) holds and we may take b = 5

> A √ 2, in which case η < Ä 1 + √ 3 b/2 ä -1 and a > 0.179. Finally, for θ 0 ∈ Θ δ , |{p θ ∈ M η | h(p θ , p θ 0 ) < xη}| θ ∈ Θ η | θ -θ 0 < 2 » 2/c B σxη = θ ∈ Θ η | θ -θ 0 < c -1/2 B xδ ,
a quantity which can be bounded using the fact that Θ δ is a maximal δ-separated subset of Θ and allows to derive a value for D.

To illustrate this, let us assume that Θ is a Euclidean ball of radius Bσ/2 in an affine subset V j of R k with dimension j k. One can easily derive from volume comparisons that if Θ δ is a δ-separated subset of V j , the number of points of Θ δ that belong to any ball in V j with radius yδ is bounded by (2y + 1) j . It then follows from the fact that the function x → x -2 log 2c

-1/2 B x + 1 is decreasing for x 1 that, for x b = 5, θ ∈ Θ η | θ -θ 0 < c -1/2 B xδ 2c -1/2 B x + 1 j exp   j log 10c -1/2 B + 1 25 x 2   .
Therefore Assumption 1-(iii) holds with D = (j/25) log 10c 17),

E ï θ n -θ 2 ò C(B) σ 2 D/n.
Example 6 (Cauchy translation). Let p be the Cauchy density with respect to the Lebesgue measure µ on R, i.e. p(x) = [π (1 + x 2 )]

-1 , and let p θ (•) = q(• -θ) for θ ∈ R. Then

p θ (x) p θ (x) = 1 + (x -θ ) 2 1 + (x -θ) 2 2 î 1 + (θ -θ) 2 ó for all θ, θ , x ∈ R. ( 18 
)
Assume that we observe n i.i.d. real variables with unknown density p θ with respect to µ belonging to the density model M = {p θ , θ ∈ Θ} where Θ is an interval of R with finite length L. It is known -see for instance Chapter 1 of Ibragimov and Has'minskii (1981) -that in this case

0 < m L |θ -θ | h(p θ , p θ ) (1/4)|θ -θ | for all θ, θ ∈ Θ, ( 19 
)
with m L depending on L only. If δ = 4η 8/9, Θ δ = (δZ) ∩ Θ is a δ-net for Θ and it follows from ( 19) that M η = {p θ , θ ∈ Θ δ } is an η-net for M from which we build π and π η as previously explained. By ( 18), p θ /p π(θ) is uniformly bounded by Example 7 (Uniform distributions 1). We observe n i.i.d. real variables with uniform distribution on [0, θ]

∆ = 2 [1 + 16η 2 ] < 4 since |θ -π(θ)| δ, so that Proposition 1 applies, leading to A < 3 √ 2. It follows that Assumption 1-(ii) holds with b = 8, hence a 1/4. Finally, if θ 0 ∈ Θ η and h(θ, θ 0 ) < xη, then |θ -θ 0 | < xm -1 L η so that |{θ ∈ Θ η | h(θ, θ 0 ) < xη}| x 2m L exp î Dx 2 ó with D = log(4/m L ) 64 
with θ ∈ Θ = î γ 2 θ, θ ó , θ > 0, γ < 1. Then, if θ > θ, h 2 (p θ , p θ ) = 1 - θ θ and Ç p 2 θ (x) p θ (x) å dx = θ θ . ( 20 
)
To build an η-net for M we set

θ j = θ (1 -η 2 ) 2j for j 0, M η = {p θ j , θ j ∈ Θ} and π η (p θ ) = p θ j for θ ∈ (θ j+1 , θ j ]. If θ ∈ (θ j+1 , θ j ], h 2 (p θ , p θ j ) η 2 and p 2 θ (x) p θ j (x) dx -1 = θ j θ -1 = 1 î 1 -h 2 (p θ , p θ j ) ó 2 -1 1 (1 -η 2 ) 2 -1.
This implies that Assumption 1-(i) holds and (11) as well with

A = η -2 Ä 1 -η 2 ä -2 -1 < 2.16 since η 2 4/81,
leading to the choice b = 4 so that a > 1/5.

To bound D in (12), we first observe that h 2 (p γ 2 θ , p θ ) = 1 -γ which means that we may restrict to xη

√ 1 -γ in (12). Since, for k 1, h 2 (p θ j , p θ j+k ) = 1 -(1 -η 2 ) k , h(p θ j , p θ j+k ) < xη requires that 1 -(1 -η 2 ) k < x 2 η 2 . Equivalently k < log (1 -x 2 η 2 ) / log (1 -η 2 ) with x 2 η 2 1 -γ. Since 1 < -log(1 -y) y < 1 + y 2(1 -y) 1 + 1 -γ 2γ for 0 < y 1 -γ, we conclude that k < x 2 [1 + (2γ) -1 (1 -γ)]. It follows that, for θ l ∈ Θ |{p θ ∈ M η | h(p θ , p θ l ) < xη}| 2x 2 [1 + (2γ) -1 (1 -γ)],
and, since the function y → y -1 exp [yD] is increasing for y > D -1 and D 1/2, we can take

D = log (2b 2 [1 + (2γ) -1 (1 -γ)]) b 2 = log (32[1 + (2γ) -1 (1 -γ)]) 16
and η = » 10D/n provided that n is large enough. Then (13) becomes

P h ( p n , p ) (z + 1) » 10D/n < C 0 exp î -(2D/3) z 2 ó for all z 2 √ 3
and we derive from (20) that

P    Ã θ n ∧ θ θ n ∨ θ 1 -10(z + 1) 2 D n    < C 0 exp ñ - 2Dz 2 3 ô for all z 2 √ 3.

Using upper approximations

In the three previous examples, M η could be chosen as a subset of M but there are situations for which no finite subset of M can satisfy Assumption 1-(ii) and we have to build M η as a finite set of densities with respect to µ that do not belong to M. In such a case we proceed as follows: we build a finite partition {M 1 , . . . , M N } of M such that, for each j ∈ {1, . . . , N } there exists an element

t j ∈ L 1 (µ) satisfying sup p∈M j p(x) t j (x) for µ-almost all x, t j dµ 1 + α 4 (21) and h 2 (p, t j ) def = 1 2 √ p - » t j 2 dµ η 2 1/20 for all p ∈ M j . ( 22 
)
To build M η , we then use the normalized versions t j = ( t j dµ) -1 t j of the t j , setting M η = {t 1 , . . . , t N } and π η (p) = t j for all p ∈ M j and, to derive Assumption 1, we use the following proposition, the proof of which will be defered to Section 5. Proposition 2. Let s and t be two nonnegative elements of L 1 (µ) with 0 s(x) t(x) for µ-almost all x ∈ E, s dµ = 1 and

t dµ = 1 + α 4. Let t = (1 + α) -1 t. Then h 2 (s, t) (1 + α) -1/2 h 2 (s, t) and t>0 Ç s 2 t å dµ -1 Ä 1 + α + √ 1 + α ä h 2 (s, t) Ä 1 + √ 1 + α ä h 2 (s, t) .
Corollary 1. If ( 21) and ( 22) are satisfied, Assumption 1-(i) and (ii) hold with

A 2 < Ä 1 + √ 1 + α ä 2 /2 and one can set b = 4 so that a > (1/2) -(α/16) 5/16.
Proof. In view of ( 21) and ( 22), the proposition applies with (s, t, t) = (, t j , t j ) for each

j if p ∈ M j . It implies that h 2 (p, t j ) h 2 (p, t j ) for p ∈ M j , hence h(p, π η (p)) η and Assumption 1-(ii) with A 2 = 1 + √ 1 + α < 2 + (α/2). Therefore, by (21), A 2 3 ∧ 2[1 + (α/8)] 2 and the choice b = 4 > A √ 2, then leads to a = 1 - A √ 2 4 1 - 2[1 + (α/8)] 4 = 1 2 - α 16 5 16 .
Example 8 (Uniform distributions 2). We observe n 11 i.i.d. real variables with uniform distribution on [θ, θ + 1] with θ ∈ Θ = R and the corresponding density model, with respect to the Lebesgue measure µ, is {p θ, θ∈R } with p θ = 1l [θ,θ+1] . Then, for θ < θ , h 2 (p θ , p θ ) = (θ -θ) ∧ 1. Let us now build a suitable set M η with η 2 1/20. For j ∈ Z, let I j be the interval [2jη 2 , 2(j + 1)η 2 ) so that the I j provide a partition of Θ. To each interval I j we associate the function t j = 1l [2jη 2 ,2(j+1)η 2 +1) so that (21) holds with α = 2η 2 1/10. Since α/16 1/160, one can take a = 79/160. Moreover, for θ ∈ I j , [θ, θ + 1] ⊂ [2jη 2 , 2(j + 1)η 2 + 1), hence

h 2 (p θ , t j ) = 1 2 Ä 1l [2jη 2 ,2(j+1)η 2 +1) -1l [θ,θ+1] ä 2 dµ = 2η 2 2 = η 2
and ( 22) holds. Let t j = (1 + α) -1 t j be the corresponding density, M Z = {t j , j ∈ Z} and set π η (p θ ) = t j for θ ∈ I j . Note that t j is supported by the interval [2jη 2 , 2(j + 1)η 2 + 1). Since p = p θ ∈ M, θ belongs to some I j which we may assume, without loss of generality, to be I 0 . It follows that all X i belong a.s. to (θ , θ + 1) ⊂ (0, 2η 2 + 1). As a consequence, the likelihood of t j is a.s. 0 if either 2(j + 1)η 2 + 1 0 or 2jη 2 2η 2 + 1, so that the MLE on M Z necessarily satisfies

p n = t j with - î 1 + (2η 2 ) -1 ó < j < î 1 + (2η 2 ) -1 ó
and belongs to the set M η = {t j , -N < j < N } with N -1 < 1 + (2η 2 ) -1 N . We can therefore consider p n as the MLE on M η and we only have to check Assumption 1 on the finite set M η to which Corollary 1 applies. It remains to check Assumption 1-(iii). For this, let us consider a closed ball B r of M η with Hellinger radius r, 1 r bη = 4η. Since

t j = (1 + 2η 2 ) -1 1l [2jη 2 ,2(j+1)η 2 +1) , for k ∈ N, h 2 (t j , t j+k ) = 1 2 (1 + 2η 2 ) Ä 1l [2jη 2 ,2(j+1)η 2 +1) -1l [2(j+k)η 2 ,2(j+k+1)η 2 +1) ä 2 dµ = (4kη 2 ) ∧ (4η 2 + 2) 2 (1 + 2η 2 ) = 2kη 2 1 + 2η 2 1. If r = 1, B r contains at most 2N -1 < 3 + η -2 (23/20)η -2 points. If r < 1, it contains at most 1 + 2 r 2 (1 + 2η 2 ) 2η 2 < 1 + 11 10 r 2 η 2
93 80 r 2 η 2 points since 2η 2 1/10 and r 2 16η 2 . The result still holds if r = 1 in view of the bound on 2N -1. Since (93/80)x 2 < exp [x 2 /2] for x 4, we conclude that (iii) is satisfied with D = 1/2 and (10) holds with a = 79/160 provided that η 2 = 160/(79n), which is compatible with the condition η 2 1/20 for n 41. It finally follows from Theorem 1 that

P î h ( p n , p ) 1.43(z + 1)n -1/2 ó < C 0 exp î -z 2 /3 ó for all z 2 √ 3.
Example 9 (Approximation with respect to the sup norm -General). Let µ be a probability on E, M a set of densities with respect to µ and assume that

√ M def = ¶ √ p, p ∈ M © is a totally bounded subset of L ∞ (µ). Let (B 1 , . . . , B Nη ) be a finite covering of √ M (with respect to the L ∞ (µ)-distance) by balls of radius δ = η/ √ 2, 0 < η 1/ √ 20, with respective centers √ p j , 1 j N η . It follows
that, for all p such that √ p ∈ B j ,

t j (x) = » p j (x) + δ 2 p(x) » p j (x) -δ 2 µ-a.s., therefore » t j (x) - √ p(x) 2δ µ-a.s., hence h 2 (t j , p) 2δ 2 = η 2 1/20
and ( 22) holds. Moreover, by Jensen's inequality, Such an inequality is satisfied for n large enough and, given n, the optimal value of η is the smallest possible one which clearly depends on the relationship between η and N η .

t j = √ p j + δ 2 dµ = 1 + δ 2 + 2δ √ p j 1 + Ä η 2 /2 ä + η √ 2 < 1.
Example 10 (Approximation with respect to the sup norm -Smooth densities).

Let E = [0, 1], µ be the Lebesgue measure on [0, 1], w a modulus of continuity on E and M the set of all densities p with respect to µ satisfying » p(y) -» p(x) w(y -x) for all x < y, x, y ∈ E.

Let m 0 = inf m ∈ N, m 2 w(m -1 ) 40 -1/2 , m m 0 and consider a partition (I 1 , . . . , I m ) of [0, 1] into m intervals with the same length l = m -1 so that w(l) 40 -1/2 . Set η 2 = 2w 2 (l) 1/20. For p ∈ M and 1 j m, we denote by k j the integer such that (k j -1)w(l) < sup x∈I j » p(x) k j w(l), so that (k j -2)w(l) < » p(x) k j w(l) for all x ∈ I j since the variation of √ p on I j is bounded by w(l). We finally set

k(p) = (k 1 , . . . , k m ) and t k(p) =   Ñ m j=1 k j 1l I j é w(l)   2 . ( 23 
) Then t k(p) (x) - √ 2η < » p(x) t k(p) (x) for all x ∈ [0, 1] (24) so that h 2 Ä t k(p) , p ä = 1 2 Å t k(p) - √ p ã 2 dµ η 2 .
and, by Jensen's inequality,

1 t k(p) dµ Ä √ p + √ 2η ä 2 dµ = 1 + 2η 2 + 2 √ 2η √ pdµ < 7/4.
Performing this procedure for all p ∈ M leads to a set M η = {t k , k ∈ K} with K ⊂ N m and such that each p ∈ M can be approximated by some t k(p) , k(p) ∈ K satisfying (24). This results in the function π η given by π η (p) = t k(p) and we may apply Corollary 1 with α = 3/4 so that Assumptions 1-(i) and (ii) hold and a > 29/64. Let us now bound |K|. For this we observe that all the t k with k ∈ K necessarily share the following properties. Since p is a continuous density, it takes the value 1 in some interval I j which implies that, on this I j , 1

» t k(p) 1 + w(l). If (k 0 -1)w(l) < 1 k 0 w(l), then » t k(p)
equals either k 0 w(l) or (k 0 + 1)w(l) on I j . Moreover, since the variation of √ p on each I j is bounded by w(l), we have k j+1 = k j + γw(l) with γ = -1, 0 or 1 in (23). This means that

|K| 2m3 m-1 = exp[(m -1) log 3 + log(2m)] < exp[3m/2],
hence (12) holds with D = 3m/32 since b = 4. Finally, Assumption 1 holds provided that (29n/32)w 2 (m -1 ) 3m/16 or equivalently nw 2 (m -1 ) 6m/29, (25) which can always be realized for some m m 0 as soon as n (6/29)m 0 w -2 (m -1 0 ). Since we want η to be as small as possible, we choose for m the largest integer which satisfies the previous inequality.

Let us now turn to a concrete illustration, assuming that w(x) = Lx β for 0 x 1 with L > 0 and 0 < β 1, which corresponds to Hölderian smoothness for √ p. Then w(m -1 ) = Lm -β and (25) amounts to m [(29/6)nL 2 ] 1/(2β+1) .

Assuming that n is large enough to warrant that m 0 [(29/6)nL 2 ] 1/(2β+1) we should choose m such that î (29/6)nL 2 ó 1/(2β+1) -1 < m î (29/6)nL 2 ó 1/(2β+1) . 

Additional proofs

Proof of Proposition 1 First observe that, since s = 0 µ-a.s. when t = 0, t>0 Å s t -1 Since γ 0 and the function x → (x -1)/ Ä 1 -x -1/2 ä = x + √ x is increasing for x 0, 

ã 2 t dµ = t>0 Ä √ s - √ t ä 2 Ä √ s + √ t
[(1 + α)/(1 + γ)] -1 1 -[(1 + α)/(1 + γ)] -1/2 1 + α -1 1 -(1 + α) -1/2 = 1 + α + √ 1 +

  Therefore, for n large enough, Assumption 1 holds with the choice η = 2 » 2D/n and Theorem 1 implies that E [h 2 ( p n , p )] C(m L ) n -1 . By (19), the same type of bound holds for E î ( θ n -θ ) 2 ó.

  The right-hand side is at least2 since m 2, hence m > (1/2) [(29/6)nL 2 ] 6)nL 2 ó -β/(2β+1) = C(β)L 1/(2β+1) n -β/(2β+1) , which implies that E î h 2 ( p n , p ) ó C(β)L 2/(2β+1) n -2β/(2β+1) .Moreover, since all elements of M ∪ M η are uniformly bounded by a constant depending only on L and β, ( p n (x) -p (x)) • 2 denotes the norm in L 2 (µ), β)n -2β/(2β+1) for all p ∈ M.

  35which implies (21) with α = 0.35. We then define t j and M η = {t 1 , . . . , t Nη } as indicated before and choose π η in such a way that π -1

			η (t j ) ⊂ {p |	√ p ∈ B j }.
	Corollary 1 applies leading to Assumption 1-(i) and (ii) with a > (1/2)-(α/16) >
	0.478. Finally, whatever p 0 ∈ M η , |{p ∈ M η | h(p, p 0 ) < xη}|	N η and (12)
	holds with D = (log N η )/16. Then Theorem 1 applies if (10) holds which is the
	case provided that		
	0.478nη 2 (log N η )/8	or	nη 2 0.262 log N η .

  Since tγ dµ = 0 we derive from Cauchy-Schwarz inequality and (11) that

	√	tu γ dµ =			√	tu γ dµ -tγ dµ = γ	√ t	Ä √	u -	√	t ä	dµ
					ï	γ 2 t dµ				Ä √ u -	√	t ä 2 dµ	ò 1/2	h(t, u) 2	(st -1 -1) 2 t dµ
																		t>0
	and (27) becomes											
				E s	  Ã	u(X) t(X)	 			1 -h 2 (t, u) + h(t, u)	î√ 2 Ah(s, t)	ó
																	exp	ñ -h 2 (t, u)	Ç	1 -	√	2 A	h(s, t) h(t, u)
	t>0	Å s t	-1 ã 2	t dµ		1 +	√	∆	2	t>0	Ä √	s -	√	t ä 2 dµ = 2 1 +	√	∆	2	h 2 (s, t)
	which leads to A 2 = 2	Ä 1 +	√	∆ ä 2 .
				h 2 (s, t) =	1 2	Ä√ 1 + γ -1 ä 2 s dµ = 1 +	α 2	-	√	1 + γ s dµ	(28)
	and																
	h 2 (s, t) = 1 -ρ(s, t) =					1 -	1 + γ 1 + α	s dµ =	√ 1 + α -√ 1 + α √ 1 + γ s dµ	,
	therefore, by (28),										
				√	1 + α h 2 (s, t) =	√	1 + α -	√	1 + γ s dµ h 2 (s, t) .	(29)
																		ä 2
	Moreover,							t>0	s 2 t	> dµ -1 =	Ä √ Ç 1 + α s -√ 1 + γ	t ä 2 dµ = 2h 2 (s, t), dµ t -1	(26)
																		t>0
	hence A 2 > 2. If we set γ(x) = [s(x)/t(x)] -1 for x ∈ E, then s = t(1 + γ),
	tγ dµ = 0 and												
	E s																

» u(X)/t(X) = √ tu dµ + √ tu γ dµ = 1 -h 2 (t,

u) + √ tu γ dµ. (27) åô and (9) follows from (2). Finally, if s(x) ∆t(x) µ-a.s., by (26), Proof of Proposition 2 Let us set γ = (t/s) -1 0. Then γs dµ = α and t = (1 + γ)s/(1 + α). It follows that å s dµ.
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	and it follows from (29) that				
	t>0	s 2 t	dµ -1	=	Ä 1 + α + Ä 1 + α +	√ √ 1 + α 1 + α ä ä	1 -h 2 (s, t)	1 + γ 1 + α Ä 1 + √	s dµ 1 + α
									α
						19			

ä h 2 (s, t).

The MLE on a finite modelOn the one hand there are many examples of simple statistical models for which the MLE behaves well, at least asymptotically. On the other hand one can also find many examples of a poor behaviour of the MLE in Le[START_REF] Cam | Maximum likelihood: An introduction[END_REF],[START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] or[START_REF] Baraud | A new method for estimation and model selection: ρ-estimation[END_REF], among others.