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2     Invariances and transformations 

Essential point of the essay: source field equations for gravitation analogous 
to those of electromagnetism 
(Equations proposed in Memoir 3, chapters III, IV and V) 
 
On the model of the couple magnetic field 𝐵 and electric field �⃗�𝑙, we propose to interpret the pulsation 𝛺 and the wave vector 𝐾 as a couple pulsation field 𝛺 and field wave vector 𝐾, couple which will 
intervene in the source field equations proposed for gravitation. 
 
Beforehand, let us recall the well-known Maxwell source field equations in electromagnetism and 
their analogue in gravitation (with 𝐸�⃗� electrostatic field, 𝐸�⃗� electric field and 𝐺𝑟 gravitational field). 
Let us observe that there is no a priori analogue known to Maxwell Ampère for gravitation: 
 
 
 Electromagnetism Gravitation 

Gauss 𝜌𝜀 = 𝑑𝑖𝑣𝐸�⃗� 𝜌𝜀 = 𝑑𝑖𝑣𝐸�⃗� −4𝜋𝐺𝜌 = 𝑑𝑖𝑣𝐺𝑟 
Ampère 𝜇 𝚥 = 𝑟𝑜𝑡𝐵 − 𝜇 𝜀 𝜕𝐸�⃗�𝜕𝑡   
 
Let us rewrite these equations by restricting ourselves to 2 dimensions of Space, this simplification 
having the objective of better understanding the analogies thereafter: 
 
 Electromagnetism Gravitation 

Gauss 𝜌𝜀 = 𝜕𝐸𝑠𝜕𝑥 + 𝜕𝐸𝑠𝜕𝑦  𝜌𝜀 = 𝜕𝐸𝑙𝜕𝑥 + 𝜕𝐸𝑙𝜕𝑦  −4𝜋𝐺𝜌 = 𝜕𝐺𝑟𝜕𝑥 + 𝜕𝐺𝑟𝜕𝑦  
Ampère 𝜇 𝑗 = 𝜕𝐵𝜕𝑥 − 𝜇 𝜀 𝜕𝐸𝑙𝜕𝑡  

 

 
Applying Ampère's theorem (i.e., following an analogy with Maxwell Ampère's source field equation) 
to the pulsation field 𝛺 and to the wave vector field 𝐾, then substituting the density sources of charge 𝜌 and electric current 𝑗  by mass densities 𝜌 and momentum �̇� , we will obtain several source field 
equations applying to gravitation. The table below gives the analogues that will be proposed: 
 
 
 Electromagnetism Gravitation 

Gauss 𝜌𝜀 = 𝜕𝐸𝑠𝜕𝑥 + 𝜕𝐸𝑠𝜕𝑦  𝜌𝜀 = 𝜕𝐸𝑙𝜕𝑥 + 𝜕𝐸𝑙𝜕𝑦  

−4𝜋𝐺𝜌 = 𝜕𝐺𝑟𝜕𝑥 + 𝜕𝐺𝑟𝜕𝑦  −4𝜋𝐺𝜌 = 𝜕2𝑐 𝐾𝜕𝑥 + 𝜕2𝑐 𝐾𝜕𝑦  

Ampère 𝜇 𝑗 = 𝜕𝐵𝜕𝑥 − 𝜇 𝜀 𝜕𝐸𝑙𝜕𝑡  − 1
ℏ

�̇� = 𝜕𝛺𝜕𝑥 − 𝜕𝐾𝜕𝑡  
 
By dividing the 1st term of Ampère by the 1st term of Gauss, one finds a group velocity (or similar), as 
well for the electromagnetism as for the gravitation, with the condition of checking a relation between 
the constants of the source field equations concerned: 
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Group velocity 𝑣 = 𝜇 𝜀 𝑗𝜌 = 𝑐 𝜕𝐵𝜕𝐸𝑙  𝑣 = 14𝜋𝐺ℏ

�̇�𝜌 = 𝜕𝛺𝜕𝐾  

Condition on 
constants 𝑐 = 1𝜇 𝜀  𝑐 = 𝐺ℏ𝑐𝑙  

 
Let us transcribe these equations with the notations usually used in this essay, notations which aim to 
underline the analogies on the one hand between gravitation and electromagnetism, on the other hand 
between Space and Time: 
 
 
 Electromagnetism Gravitation 

Gauss �⃗�𝜀 = 𝜕𝐸�⃗� /𝜕𝑥 − 𝜕𝐸�⃗� /𝜕𝑦  �⃗�𝜀 = 𝜕𝐸�⃗� /𝜕𝑥 − 𝜕𝐸�⃗� /𝜕𝑦  

−4𝜋𝐺�⃗� = 𝜕𝐺𝑟 /𝜕𝑥 − 𝜕𝐺𝑟 /𝜕𝑦  

−4𝜋𝐺�⃗� = 𝜕2𝑐 𝐾 /𝜕𝑥 − 𝜕2𝑐 �⃗� /𝜕𝑦  

Ampère 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕�⃗�𝑙 /𝜕𝑡  − 1
ℏ

(𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  
 

Group velocity 𝑣 = 𝜇 𝜀 𝑗𝜌 = 𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  𝑣 = 14𝜋𝐺ℏ
�̇�𝜌 = 𝜕𝛺 /𝜕𝐾 /  

Condition on 
constants 𝑐 = 1𝜇 𝜀  𝑐 = 𝐺ℏ𝑐𝑙  

 
Observe that the Ampere Gravitation equation corresponds to: 

- on the first term on the right to Newton’s fundamental principle of dynamics (Newton’s 
second law): (𝑑𝑝𝑑𝑡 ) = −𝜕ℏ�⃗� /𝜕𝑥 = −𝜕𝐸𝑝𝜕𝑥  

- on the second term on the right to the relation momentum wavelength (or wave vector) 𝑝 =
ℎ = ℏ𝐾 of Albert Einstein and Louis de Broglie: 

(𝑑𝑝𝑑𝑡 ) = 𝜕ℏ𝐾 /𝜕𝑡  

 
Finally, let us emphasize that the quotient of the 2 gravitation source field equations makes it possible 

to find a group velocity 𝑣 = , according to a condition relating to the Planck length 𝑙 = ℏ ). 
This is, as we will see later, the stumbling block and the fundamental argument in favour of the source 
field equations proposed here for gravitation. 
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Introduction: why are the laws of gravity and electricity so similar? 
 
Anyone interested in the laws of gravitation and electricity may be surprised at the similarity between 
these laws. Often, to a concept used in gravitation (or more generally in mechanics), corresponds a 
similar concept used in electricity. 
 
We can cite pell-mell: 

- the Newtonian gravitational potential and the Coulombian electric potential, 
- energy, power in mechanics and energy, power in electricity, 
- the mass and the electric charge, with however an important difference, since we observe two 

natures of electric charge and a single nature of mass, 
- mechanical forces (gravitational force, centrifugal force, Coriolis force) and electrical forces 

(electrostatic force, Lorentz magnetic force, etc.). There is, however, a notable difference 
between electric force and gravitational force: in an electric field, the acceleration of a body 
depends on its specific electric charge, whereas in a gravitational field, the acceleration of a 
body does not depend on its mass. 

 
These resemblances between gravitation and electricity have often been underlined and exploited by 
physicists. Mechanical theories influenced electrical theories, which in turn influenced mechanical 
theories. 
For example, in the 17th century Christiaan Huygens points out the resemblance between mechanical 
waves and optical theory to develop an early wave theory of light. In the 19th century, Michael 
Faraday relied on mechanical considerations to develop the notions of magnetic field and electric 
field. As a return of things, his ideas inspire the notion of gravitational field, with an action no longer 
at a distance, but which gradually spreads in space. In the 1920s, Louis de Broglie and Erwin 
Schrödinger exploited the analogy with standing mechanical waves to formulate the wave equation of 
the electron. 
These similarities between mechanics and electricity will serve as a red thread for the reflections 
carried out in this essay. They will nevertheless remain enigmatic here. Indeed, only a few leads to the 
deep reasons for these similarities will be mentioned. 
 
This essay is composed of 6 Memoirs. In the 1st Memoir, we will focus on the changes of reference 
frames and the forces of inertia. The starting point will be the following question of A. Einstein. Why 
in classical physics are there two types of forces: "normal" forces and inertial forces (sometimes called 
pseudo forces) that occur in the same equations? We will try to answer this question by assimilating 
any force to a force of inertia. 
The study of the forces of inertia will be an opportunity to approach the model of the Bohr electron. 
Model proposed in 1913 by Niels Bohr and which involves centrifugal inertial force and electrostatic 
force. Through the notions of Gauge invariances and transformations introduced in 1918 by Hermann 
Weyl, Gauge invariances that can be compared to a conservation of the Laws of Nature, Gauge 
transformations that can be compared to changes of frames of reference, we will study the wave 
equations of E. Schrödinger (1925), Wolfgang Pauli (1927) and Paul Dirac (1928). This will address 
the main wave functions of quantum physics in the 1920s. 
 
The 2nd Memoir will offer more conjectures than the 1st. We will come back to the analogies between 
fluid mechanics and electromagnetism, analogies for example underlined by Henri Poincaré in 1893. 
From these analogies, we will propose the notions of pulsation field 𝛺 and wave vector field 𝐾. These 
two fields will apply respectively in a spatial plane and in a spatiotemporal plane. Thereafter, we will 
try to build all the forces of classical physics on the model of the Coriolis inertial force, with a quantity 
preserved during the change of reference frames and a quantity cancelled which is similar to a 
"generalized" rotation vector or to a field. 
The study of fields and forces will be an opportunity to return to 19th century physics, physics which 
was particularly involved in electricity and electromagnetism. Among others, Charles-Augustin 
Coulomb's law for electrostatics (1785), the Siméon-Denis Poisson equation (1813) (from which A. 
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Einstein was largely inspired for his theory of General Relativity), the work of M. Faraday on 
magnetic induction (from 1821), the magnetic force of Pierre-Simon Laplace (from 1820) 
macroscopic precursor of the magnetic force of Hendrik Lorentz, as well as the force of inertia of 
Gustave -Gaspard Coriolis (1835). 
 
In the 3rd Memoir, we will examine the source field equations of James Clerk Maxwell, equations 
involving charge density and electric current density, magnetic and electric fields, and applying to 
electromagnetism. Following an electricity gravitation analogy, we will propose source field equations 
involving mass density and momentum density, pulsation and wave vector fields, and applying to 
gravitation. We will touch on quantum gravity, when to obtain a group velocity of a wave identical to 

the speed of a mass body, we will obtain the condition over an infinitesimal distance: 𝑑𝑥 = ℏ, 

distance identical to the Planck length. We will also suggest the Maxwell-Faraday analog for 
gravitation. 
This Memoir will focus on André-Marie Ampère's research, in particular the observation that a magnet 
and a current loop produce identical effects: a magnetic field (from 1820), then Maxwell's equations 
proposed by J. C. Maxwell in 1865 (and transcribed using partial derivatives in 1884 by Oliver 
Heaviside and Willard Gibbs). We will discuss the idea of L. de Broglie (1924) of an electron that is 
both wave and particle. In passing, we will deal with a bit of Newtonian mechanics (the Principia by I. 
Newton published in 1687), a bit of Hamiltonian mechanics (proposed by William Rowan Hamilton in 
1833), a bit of Einsteinian mechanics (with 𝐸 = 𝑚𝑐  stated by A. Einstein in 1905 in the context of 
Special Relativity), and Compton scattering (1922). We will also mention the gravitational waves 
suggested by A. Einstein in 1916 in the context of General Relativity and confirmed experimentally in 
2015 by researchers from the LIGO (Laser Interferometer Gravitational-Wave Observatory). 
 
The 4th Memoir will deal with elementary particle waves and weak and strong nuclear interactions. It 
will be a synthetic course on the main theories developed in the 20th century, which describe these 
nuclear interactions. We will mention the work of Werner Heisenberg on isospin (1932), Enrico 
Fermi's theory of weak interaction (1933), Hideki Yukawa's model for nuclear interactions (1935). 
Yukawa's model involves a mediating particle of the photon type, but having a mass (the particle is 
baptized mesotron by H. Yukawa). 
Then, we will talk about the work of Murray Gell-Mann (1960s) on quarks and the strong interaction, 
then the electroweak model of Sheldon Glashow-Steven Weinberg-Abdus Salam (1960s). The 
Electroweak Model brings together the electromagnetic, weak and hyper interactions. We will briefly 
discuss the Higgs mechanism or BEH (mechanism postulated independently in 1964 by Robert Brout 
and François Englert, and by Peter Higgs) in order to assign a mass to particle waves. These works 
from the 1950s and 1970s are grouped together in what is now called the Standard Model. 
 
The 5th Memoir will always be interested in elementary particle waves and will again be speculative. 
We will try to build a bridge between the Standard Models and some gravitation source field equations 
proposed in the 3rd memory. We will associate these source field equations with 4 quantum numbers 
qualified as source field (spin S, isospin I, strangeness St and baryonic number Ba) and with 4 
electromagnetic interactions, hyper, weak and strong, which all appear in the Standard Model. 
Towards the end of the Memoir, a track will be exposed explaining the similarities between electricity 
and gravitation. This track will present the gravitational interaction as formed of two constituents: one 
the electromagnetic interaction, the other the hyper interaction. 
This Memoir will begin with a parallel between J. Kepler's law of areas (1609), the notions of angular 
momentum, then of quantum spin proposed by Samuel Goudsmit and George Uhlenbeck (1925). We 
will discuss the proposals for new quantum numbers that are the hypercharge Y or the strangeness St 
(Kazuhiko Nishijima and M. Gell-Mann in the 1950s). We will also come back to the Quark Model 
(M. Gell-Mann and George Zweig from 1961 to 1964). Thereafter, we will approach the angle of 
Nicola Cabibbo (1963), an angle allowing to describe from the quarks up and down the weak neutral 
currents. We will also deal with the S. Glashow-Jean Illiopoulos-Luciano Maiani mechanism, a 
mechanism which imagines the existence of a 4th quark, and which involves weak neutral currents. 
Through the work of Bruno Pontecorvo and Ziro Maki (from the 1960s), we will also be interested in 
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neutrino oscillations: hypothesis of several families of neutrinos, existence of an angle (now called 
similar Pontecorvo angle for leptons to that of Cabibbo for quarks). Finally, we will mention the 
pentaquarks (first detection in 2003 and confirmation in 2015). 
 
The 6th Memoir will undoubtedly be the most speculative of all – some may rightly consider that we 
are out of Science here –. We will wonder about the differences between the Time felt (Time oriented 
like an arrow) and the Time used in physics (Time often described mathematically as a spatial 
dimension). 
To answer this question, we will study the most varied concepts. John Wheeler and Richard 
Feynman's idea of an electron going back in time (concept mentioned in R. Feynman's Nobel Prize 
acceptance speech in 1965). Works of Rudolf Clausius on entropy (1865), Ludwig Boltzmann on 
statistical entropy (around 1870), Claude Shannon on information entropy (1950s). Experiments by 
Chien-Shiung Wu (1957) on parity violation in the beta decay of cobalt-60. General relativity (A. 
Einstein around 1915). First big-bang models resulting from it, models proposed by Willem de Sitter, 
Alexandre Friedmann and Georges Lemaître in the 1920s. Two experimental discoveries confirm 
these models: that in 1920 by Edwin Hubble of an expanding universe, then that in 1965 by Arno 
Penzias and Robert Wilson of low temperature electromagnetic radiation. 
Finally, we will broaden our reflections to fields other than physics, such as the phenomenological 
approach of Edmund Husserl (early 20th century) or the Gaia hypothesis of James Lovelock (1979). 
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Preface to the reader, what can this essay bring him? 
 
This essay favours two major approaches: a historical approach and a speculative approach. On the 
one hand, it wants to summarize the great ideas of physics from the pioneers of the 17th century until 
today. Without claiming to be exhaustive, these ideas are the ones that seemed to us the most 
remarkable or those that interested us the most. On the other hand, it wishes to bring back the fruit of 
our physical reflections for a little more than fifteen years. 
By following these two approaches, historical and speculative, this essay has a triple objective: to 
learn (or to initiate), to debate and to inspire the reader. 
 
Learn 
While writing this essay, we frequently wondered what reader profile we were aiming for. Of course, 
we are open to all readers. However, we have often imagined a young, curious, intelligent mind, who 
would not yet know much about physics, and who, thanks to this essay, could quickly learn about its 
major concepts. 
Obviously, it is by reading varied and often contradictory works that one progresses the most. 
However, to our knowledge, there are few works including mathematical equations, and which bring 
together in a condensed way the main questions of physics of the 17th, 18th, 19th and 20th centuries. 
We tried to write a book that we would have dreamed of reading at 25, when we became deeply 
interested in theoretical physics. A book intended to save precious time for a young reader in 
understanding the main ideas of physics yesterday and today. 
 
Debate 
We also wanted to write an essay that provokes in the reader the desire to debate. I sincerely hope that 
this essay will be "debatable", that is to say that certain speculative ideas proposed here are worth 
debating, in order to enrich the current scientific debate. 
However, we count on the indulgence of the reader, and we apologize beforehand for having 
sometimes left in the speculative parts, a certain number of unfinished calculations, that is to say not 
demonstrative. Indeed, it seemed interesting to us to indicate the paths or tracks followed, even if these 
did not always lead to the desired destination. 
 
Inspire 
Finally, our main objective is to inspire the reader, to generate new ideas at home in agreement or 
even in contradiction with the ideas and the tracks proposed here. Our model is the PhD of L. de 
Broglie which inspired E. Schrödinger, enabled him to develop the equation bearing his name, and 
brought together (even unified) physics and chemistry. 
Our wildest dream is that this essay will inspire a few “new schrödingers” who will manage to unify 
the different interactions of physics, then to explain qualitatively and quantitatively the enigmatic 
properties of waves particles (such as their quantum numbers, their electric charges, or their masses, 
etc.). 
We also hope that this essay inspires some Carlo Rubbia or Simon van der Meer, the discoverers in 
1983 of the 𝑊± and 𝑍  bosons, predicted by the Electroweak Model of the 1960s. Another boson 
predicted by the Electroweak Model is evoked, the hitherto undiscovered B boson. As additional 
characteristics, it will be proposed that the B boson is massless like the photon, and that it carries an 
entire isospin. The most important thing remains, to detect it and confirm these hypotheses. 
 
To end this preface, we thank in advance all readers who will kindly send us their criticisms, their 
comments, as well as any errors or ambiguities that have crept into the text.  
This is a work of synthesis dealing with very varied fields of physics. Like any work of synthesis, it 
has its faults, and in certain areas, faults and serious errors may have slipped into it. So, thank you to 
all the experts, who in their respective fields, will take the time to read through this essay and report 
any errors. These remarks and corrections will, we hope, improve the present text for a future edition. 
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Explain to my youngest daughter Mycènes (14 years old) the essay 
Invariances and Transformations 
My last daughter Mycenae, 14 years old (almost 15 years old), already has some good knowledge of 
physics. For example, she learned the delicate notions of energy, mechanical energy, kinetic energy 
and potential energy. She understood that energy measures the capacity of a system to be able to 
modify a movement (or in a broader sense, to modify a state). 
Recently, as part of a presentation, she became interested in the phenomena of electromagnetic 
induction, that is to say these surprising and "magical" phenomena, where for example when a magnet 
is moved near an electric circuit, there appears an electric current. 
I tried to explain to my daughter the phenomena of electromagnetic induction and thereby the spirit of 
the Invariances and Transformations essay which, in my opinion, allows her to understand these 
“magical” phenomena more intuitively. With my daughter, I do not use the title of Invariances and 
Transformations, but that of Time Light Theory, a title that I find prettier, more poetic, even if the link 
between Time and Light remains confused. 
 
I remember reading in the work of A. Einstein (unfortunately, I no longer know where or what exactly, 
so I'm probably transforming a little) that even a 5-year-old child should be able to understand 
physical equations. 5 years seems a little young to me, but I agree with A. Einstein in the sense that the 
“good” physical theories are undoubtedly also the simplest. Invariances and Transformations is not a 
simple essay. The main reason is, I believe, that he does not solve his first question: that of the 
resemblance between gravitation and electromagnetism. It only suggests clues. However, I have tried 
to explain in the few lines that follow, the main principles of this long essay, in the most intuitive and 
simple way possible. 
 
Like forces 
Mycenae, do the following different thought experiments with me. 
 
First, imagine yourself in a car moving in a straight line on the highway. Suddenly, this car 
accelerates. You then feel thrown backwards, pinned to your chair, as if subject to a force that takes 
you backwards. 
 
Always imagine yourself in a car moving in a straight line on the highway. Suddenly, this car 
decelerates. You feel projected forward, as if subject to a force that takes you forward. 
 
Now imagine yourself on a rotating carousel. You feel projected towards the outside of the carousel, 
as if subjected to a force that would make you "flee" from the carousel. In Physics, we also speak of 
centrifugal drive inertial force. I give you its equation: 𝑚(𝛺 ∧ 𝑂𝑀) ∧ 𝛺, with 𝛺 the carousel rotation 
speed. 
 
Always imagine yourself on a rotating carousel, and that the rotation of the carousel is accelerating. A 
bit like in the car accelerating on the highway, you feel yourself flattened backwards. You have the 
feeling of a force whose direction is backwards and whose direction is perpendicular to the radius of 
the carousel. In Physics, we also speak of driving inertia, due to the variation in the speed of rotation 
of the carousel. I give you its equation: 𝑚𝑂𝑀 ∧ ⃗

. 
 
Always imagine yourself on a rotating carousel, and that the rotation of the carousel is decelerating. A 
bit like in a car on the highway, you feel projected forward, you have the feeling of a force whose 
direction is forward and whose direction is perpendicular to the radius of the carousel. In Physics, we 
always speak of the driving inertial force due to the variation in the speed of rotation of the carousel. 
 
Imagine yourself again on a rotating carousel (at constant speed), and that you are moving towards the 
center of the carousel (note that your speed thus decreases). You feel carried away towards the 
direction of rotation of the carousel (the front of the previous experiences), you have the feeling of a 
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force whose direction is that of the rotation of the carousel and whose direction is perpendicular to 
your relative speed on the carousel. In physics, we talk about the Coriolis inertial force. I give you its 
equation: 𝑚�⃗� ∧ 2𝛺. 
 
Imagine yourself again on a rotating carousel (at constant speed), and that you are moving towards the 
outside of the carousel (note that this increases your speed). You feel carried towards the direction 
opposite to the rotation of the carousel (the back of the previous experiences), you have the feeling of 
a force whose direction is opposite to the rotation of the carousel and whose direction is perpendicular 
to your relative speed on the carousel. In physics, we always talk about Coriolis inertial force. 
 
For all these thought experiments, "purist" physicists do not really speak of forces, but of forces of 
inertia or pseudo-forces, which are added to Newton’s fundamental principle of dynamics (Newton’s 
second law), when passing from a so-called Galilean reference frame (the term inertial reference frame 
is also often used) to a non-Galilean reference frame. The notion of a Galilean frame of reference is 
not easy to grasp. You can see it as a frame of reference where there are no inertial forces to add to 
Newton’s fundamental principle of dynamics. But it must be recognized, by this definition, the fish 
bites its tail a little. 
 
The fundamental idea of the Invariance and Transformation essay is to reduce any force (gravitational, 
electric, magnetic) to a force of inertia added during a change of frames of reference. 
 
Intuitively understand the phenomena of electromagnetic induction, analogies between 
mechanics and magnetism 
Go back to the phenomena of electromagnetic inductions and try to understand them intuitively using 
previous thought experiments on the carousel. 
 
You can see the magnet and the magnetic field it generates, like a carousel for electric charges. When 
an electric charge or an electric circuit are in a magnetic field, it is as if they were on a carousel. Of 
course, you don't see this carousel, and important point: this carousel does not apply to masses like 
that of the previous thought experiments, but to electric charges. For the rest, you will see, they are 
very similar. 
 
When you move a magnet over time, you vary the magnetic field created by that magnet. It's as if you 
were varying the speed of the carousel, it's as if the electric charges (or the electric circuit) were on a 
carousel whose speed of rotation varies, it's as if they were subjected to a force of training due to the 
variation in the speed of rotation of the carousel. 
This induces, what is called in physics, an electromotive field, which integrated along the electric 
circuit, gives an electromotive force and therefore the appearance of an electric current in this circuit. 
In physics, this is called the Neumann case of electromagnetic induction. I give you his equation: 𝑞𝑂𝑀 ∧ ⃗

. You see that this equation looks like 𝑚 ⃗ ∧ 𝑂𝑀. 
 
When you make an electric circuit move in a (constant) magnetic field, it is as if the electric charges 
were moving on a carousel, it is as if they were subjected to a Coriolis force. This induces an 
electromotive field, which integrated along the electric circuit, gives an electromotive force and 
therefore the appearance of an electric current in this circuit. In physics, this is called the Lorentz case 
of electromagnetic induction. I give you its equation: 𝑞�⃗� ∧ 𝐵. You see that this equation looks like 𝑚�⃗� ∧ 2𝛺. 
 
What you must understand is that the analogue of what generates the electric current in a circuit is not 
the speed of rotation of the carousel, but in the case of Neumann: the variations in time of the speed of 
rotation of the carousel, and in the case of Lorentz: the existence of a relative speed (of the electric 
circuit) on the rotating carousel. 
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Intuitively understand the gravitational force and the electric force, analogy between Space and 
Time 
The fundamental advance of 20th century Physics is undoubtedly to have understood that Time (in fact, 
Time in its complex form it) is a dimension identical to the 3 dimensions of Space x, y and z. 
20th century Physics was thus able to introduce the notions of 4-dimensional Space-Time, 
quadrivectors, etc. 
Why is Time in Physics like this? It remains a great mystery. Be that as it may, this makes it possible 
to mathematically define a rotation in a spatiotemporal plane x, it, in total analogy with a rotation in a 
spatial plane x, y. 
 
This makes it possible to propose in this essay that gravitational field (or rather what is called wave 
vector field) and electric field are "generalized" rotations in spatiotemporal planes. This makes it 
possible to propose that gravitational force and electric force are like analogues in Time of the Coriolis 
force (which is based on a rotation in Space), that is to say inertial forces to be added when one places 
oneself in the frame of reference where one cancels the “generalized” speed of rotation of the 
“spatiotemporal” carousel and where one “moves temporally” on this spatiotemporal carousel. 
This "temporal displacement" on the spatiotemporal carousel will no doubt seem surprising to you, 
since it is not a question of a speed (or a flow of Time), but of a mass in the case of the gravitational 
force and of an electric charge in the case of electric force. I give you their equations proposed in this 
essay: �⃗� ∧ 𝐺𝑟 and �⃗� ∧ 𝐸�⃗�. You see that these equations also look like �⃗� ∧ 2�⃗�. 
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Bibliographic confidences, tribute to A. Einstein and L. de Broglie 
 
« To study any question, it is always better to read the original Memoirs, because one is better able to 
assimilate a nascent science » 
James Clerk Maxwell in A treatise on electricity and magnetism 
 
My initial questioning about gravity and electricity comes from my high school years. How to explain 
the strong mathematical similarities between the laws of electricity and those of gravitation? 
Conversely, how can we explain that gravity and electricity, despite their similarities, are ultimately so 
distinct from each other? 
During my years of higher education, I acquired the basics of classical physics: Newtonian mechanics 
and 19th century electromagnetism. However, I have studied relatively little 20th century physics, 
touched upon Special Relativity and the Schrödinger equation. At that time, I knew nothing or very 
little of the major historical issues and controversies in physics. 
 
A few years after finishing my electrical engineering studies, I became particularly interested in 
theoretical physics. This was done via a course from my wife (who is a physics teacher) on the 
experiments of Albert Abraham Michelson. These experiments concluded that the speed of light was 
always measured equal to c, regardless of the speed of the experimenter, thus contrary to the principle 
of Galilean relativity. 
To tell the truth, I vaguely remembered that A. Einstein had proposed a solution to this paradox, but I 
couldn't remember which one in detail. I had once gone through some academic books reproducing the 
theories of A. Einstein, without arousing any great curiosity in me. I then wanted to read the original 
works of A. Einstein. Like many, I was amazed by his elegant ideas, by his style comparable to an 
author of detective novels, by the original questions he asked and the elegant answers he offered. 
In his scientific writings, A. Einstein frequently starts from major principles that he sets as objectives. 
He combines them with the experimental discoveries of his time and deduces often very audacious 
consequences. For example, in his 1905 article on Special Relativity, he questions the measurement of 
the simultaneity of two phenomena, then questions the very notion of Time, and manages to reconcile 
the principle of relativity and the constant speed of light in Michelson's experiments. 
 
In the footsteps of A. Einstein, I began to dream of a vast physical theory that would unify all forces. 
The universe is one, the laws of gravitation and electricity are similar. After all, it seems logical to 
want to unify them in a large theory. 
The field theories of A. Einstein who aimed to unify the gravitational force with the electromagnetic 
forces were interested in the changes of reference frames and the forces of inertia. In particular, A. 
Einstein was not satisfied with the existence in the Newtonian theory of two types of forces: real 
forces and pseudo-forces called inertia that are added when moving to a non-Galilean reference frame. 
To remove this contradiction, he imagined bringing any force closer to a force of inertia. 
The ideas of A. Einstein did not concretely lead to a theory of fields combining gravitation and 
electricity. Moreover, they did not include the nuclear interactions discovered during the 20th century. 
However, they had a large lineage. They have inspired generations of physicists, induced Gauge 
theories, the Standard Model of the 1950s and 1970s, the Big Bang and black holes. 
 
After reading the main popular works of A. Einstein and some of his most famous articles, I looked 
into quantum physics, which I still knew very little about. I went through some particularly pointed 
academic works, often very mathematical. I admit I didn't understand what it was all about. 
I also looked at the origins of the theory. This is often easier to understand, because there is not yet 
this dross which specifies the model, but which obscures the original ideas of the pioneers. With the 
help of undergraduate books, I gradually understood the model of the electron of N. Bohr, wondering 
all the same why these two forces, electrostatic and centrifugal, intervened. 
 
It is mainly thanks to the works of L. de Broglie that I began to glimpse what was quantum physics, or 
rather wave mechanics. Indeed, L. de Broglie insisted in his works more on the wave aspect than on 
quanta. 



12     Invariances and transformations 

One of the first ideas of L. de Broglie was to say: since the light represented as a wave, can also be 
represented as a particle the photon, it can be the same for particles of matter like the electron, to be 
represented then as a wave of matter. The second idea was to explain the quantification of energy by 
circular standing waves. These ideas of L. de Broglie were for me a real trigger in the understanding of 
quantum physics. 
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Summary of the ideas and conjectures developed in this essay 
 
We briefly recall here the ideas developed in this essay, classified in the order in which they occur in 
the various Memoirs. They are grouped into 11 major ideas, the first two of which are directly inspired 
by those of A. Einstein. The last 3 are not strictly speaking scientific hypotheses in the sense of Karl 
Popper (that is to say possibly falsifiable). 
The 11 ideas set out here may sometimes seem obscure to the reader. For greater clarity, he may refer 
to the Memoirs where they are developed (the Memoirs are indicated in parentheses). 
 
Idea 1, take up the idea of a Space-Time continuum and treat Time in physical equations exactly 
the same way as the three dimensions of Space (Memoir 1) 
 
Note: why is Time complex? 
More precisely, it is complex Time it which is exactly of the same nature as a dimension of Space x. 
Indeed, to calculate the norm of a quadrivector (or a quadrivector) instant position, we have: 4𝑋 = 𝑥 + 𝑦 + 𝑧 + (𝑖𝑐𝑡) = 𝑥 + 𝑦 + 𝑧 − (𝑐𝑡)  
 
Some physicists have sought to eliminate this complex time and to reintroduce a real time into the 
equations of physics, postulating that it was only a matter of convention. It hardly came to fruition. 
 
Idea 2, make any force correspond to a force of inertia, that is to say to a force that is added 
when passing from a Galilean reference frame to a non-Galilean reference frame (Memoir 1) 
 
Idea 3, build any force on the model of the Coriolis inertial force 𝑭𝒄𝒐𝒓 = 𝒎𝒗𝒓 ∧ 𝟐�⃗� (Memoir 2) 
During a change of frames of reference (for example passage from a Galilean frame of reference to the 
frame of a rotating carousel 𝛺), we cancel on the one hand a physical quantity (of type rotation vector 𝛺), we keep on the other hand a physical quantity (of type relative speed �⃗� , momentum 𝑚�⃗� , electric 
current…). The force or inertial acceleration that is added when changing reference frames is 
perpendicular (via a vector product) to both the conserved quantity and the cancelled quantity. This is 
referred to here as the Coriolis inertial force model. The objective is to build any force such as the 
electrostatic force, the magnetic force of Lorentz, the gravitational force on the model of the Coriolis 
inertial. 
 
Note 
To be able to apply the vector product, we will most often remain with the simple case of a three-
dimensional space. This will contain either 3 dimensions of Space, or 2 dimensions of Space and 1 
dimension of Time with a temporal dimension treated identically to those of Space. 
 
Idea 4, bring closer the concept of field and the concept of “generalized” rotation vector 
cancelled during a change of reference frames (Memoir 2) 
We bring the notion of field in physics closer to the notion of “generalized” rotation vector that is 
cancelled during a change of frames of reference. The notion of rotation vector is taken in a broad 
sense, because the rotation plane can be spatial or spatiotemporal. 
The pulsation field 𝛺 /  and magnetic field 𝐵 / will be qualified as “generalized” rotation type in a 
spatial plane. The electric fields �⃗�𝑙 / and wave vector field 𝐾 /  will be qualified as “generalized” 
rotation type in a spatiotemporal plane. 
 
Note 1 𝛺 / indicates that the rotation plane is x, y and that the rotation vector is oriented along t. We have the 
index 1/𝑡 because the unit of 𝛺 is the 𝑟𝑎𝑑/𝑠. 
 
Note 2 
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We have the electric field 𝐸𝑙 /  defined from the electromagnetic potential quadrivector 𝐴  (𝜇 =𝑡, 𝑥, 𝑦, 𝑧), and reoriented to construct it as a rotation vector:  𝐸𝑙 / = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

The electrostatic field 𝐸𝑠 /  appears as a special case of the electric field when = 0:  

𝐸𝑠 / = − 𝜕𝐴𝜕𝑥  

Similarly, we have the wave vector field 𝐾 /  defined from the velocity potential 𝑉  and the 
Newtonian potential 𝑉 : 2𝑐 𝐾 / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥  

The Newtonian gravitational field 𝐺𝑟 /  appears as a special case of the wave vector field when =0: 𝐺𝑟 / = − 𝜕𝑉𝜕𝑥  

Even if the rotation vector (in the broad sense) and the field are associated notions, we will distinguish 
one from the other by presenting: 

- the rotation vector as the movement existing before the change of frames of reference, 
- the field as the quantity cancelled after the change of reference frames. 

The field will therefore be the rotation vector cancelled after the change of reference frames. 
 
Idea 5, what distinguishes an inertial acceleration from an inertial force? (Memoir 2) 
An inertial acceleration (centrifugal or Coriolis type) differs from an inertial force in that: 

- when an inertial acceleration must be added during a change of frames of reference, what is 
cancelled is a "generalized" rotation vector in a spatial plane (rotation vector associated with a 
pulsation field 𝛺 / ), 

- when an inertial force must be added during a change of frames of reference, what is cancelled 
is a “generalized” rotation vector in a spatiotemporal plane (rotation vector associated with an 
electric field �⃗�𝑙 / or a wave vector field 𝐾 / ). 

 
Idea 6, from Maxwell's source field equations, find a velocity similar to the group velocity 𝒗𝒈 =𝝏𝜴𝝏𝑲, and involving the fields �⃗�𝒙𝒚𝟏/𝒕 and �⃗�𝒍𝒙𝒕𝟏/𝒚 (Memoir 3) 
In his 1924 thesis, L. de Broglie represents the electron particle as a wave packet with a phase velocity 𝑣 =  and a group velocity 𝑣 = . It assimilates the speed 𝑣 of the electron particle (classically 
occurring in Newtonian mechanics) to the group velocity 𝑣  of the electron wave packet. 
 
In this essay, we propose to bring together the fields 𝛺 to 𝐵 (both “generalized” rotation vectors in a 
spatial plane), and the fields 𝐾 to �⃗�𝑙 (both “generalized” rotation vectors in a spatiotemporal plane). 
Inspired by the ideas of L. de Broglie, we seek to define a group velocity of a moving electric charge 
(analogous to the group velocity of a moving mass of Newtonian mechanics), and involving the fields 𝐵 and �⃗�𝑙. 
 
We note that we find an equation of this type using the equations of Maxwell Ampère and Maxwell 
Gauss. 
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We rewrite Maxwell Ampère (without displacement electric current, and without electric field) in the 
form: 𝜇 𝚥 = 𝜇 𝑞 �⃗� = 𝜕𝐵 /𝜕𝑥  

We rewrite Maxwell Gauss (with a single electric field) in the form: �⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥  

 
By dividing Maxwell Ampère by Maxwell Gauss, we find a formula between a speed (here that of 
electric charges), the field 𝐵 /  and the field 𝐸𝑙 / , similar to a group velocity: 𝜇 𝜀 𝑣 = 𝜕𝐵 /𝜕𝐸𝑙 /  

 
We have: 𝜇 𝜀 = 1𝑐  

We get: 𝑣 = 1𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  

an equation very similar to the group velocity of a wave packet. 
 
Idea 7, source field equations for gravitation, analogous to those of electromagnetism, involving 
the fields 𝛺 /  and 𝐾 /  (Memoir 3) 
We note that from Maxwell's source field equations involving the fields �⃗�𝑙 /  and 𝐵 /  it is possible 
to find an equation similar to the group velocity. We also note that 𝛺 /  and 𝐾 /  intervene 
themselves in the expression of the group velocity. In this case, one wonders if there are not source 
field equations for 𝛺 / and 𝐾 / , similar to Maxwell's source field equations? 
 
Following the reorientation of the electric field �⃗�𝑙 / , we can no longer use the Maxwell Gauss 
equation as it is. Since we have sought to construct an electric force on the model of the Coriolis 
inertial force or the Lorentz magnetic force, we note that for the two Maxwell’s source field equations 
(Gauss and Ampère), it is necessary to use the Ampère's theorem. Similarly, source field equations 
involving 𝛺 / and 𝐾 / , must use Ampère's theorem. Following an analogy between 
electromagnetism and gravitation, between Time and Space, we substitute the density of electric 
charge by the density of mass, the density of electric current by the density of momentum. 
 
Idea 8, relate certain source field equations to a quantum number qualified as a source field, to a 
mediator particle carrying the source field quantum number, to the displacement of a charged 
fermion and to an interaction (Memoir 5) 

We note that the de Broglie source field equation ℏ ( ⃗ ) = ⃗ /
 𝑝 = ℏ𝐾 /  is associated with the 

quantization of the orbital angular momentum 𝜎 and the spin angular momentum 𝑆. 
 
We have for example the following quantification postulated by N. Bohr in his electron model: 
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𝜎 = 𝑛ℏ = 𝑛𝑝𝑘  
We then propose to associate to the de Broglie source field equation: 

- an orbital and spin angular momentum, which will be incorrectly summarized by spin, 
- a photon 𝛾 carrying integer spin, 
- an electrically charged fermion, carrying a half-integer spin which interacts with the photon, 
- reactions between particles: the hyperfine transition or the energy transition, i.e., a spin 

exchange between the photon and the fermion, a disappearance (or appearance) of the photon, 
a displacement of the electrically charged fermion and an electric current, 

- the electromagnetic interaction. 
 
The objective sought throughout Memoir 5 is to associate with three other source field equations, a 
source field quantum number, a mediating particle, a charge displacement and an interaction. 
 
Idea 9, distinguish physical Time (with 2 senses and similar to a spatial dimension) from felt 
Time, by the fact that the second is a characteristic of Life (Memoir 6) 
We propose to characterize Life, by the fact that it would advance continuously in one of the 4 
dimensions of Space-Time, thus creating a distinction between Time (where Life advances 
continuously) and the 3 dimensions of the Space. Oriented Time, qualified as biological, would 
contain the precious principle of causality and allow the constitution of a History. 
 
Idea 10, any a priori physical phenomenon with oriented Time (Biological Time) would in fact 
be a biological phenomenon (Memoir 6) 
The Big Bang, whose theory has an oriented Time, would in fact be a biological phenomenon. It 
would correspond to the beginning of Life, that is to say the moment when Life had the desire to move 
forward continuously in one direction. 
 
Idea 11, the speed of light always measured constant whatever the movement of the observer, 
would in fact be a characteristic of the identical advance in Time of human beings living 
together (Memoir 6) 
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Synthesis of the 6 Memoirs 
 
The essay was divided into 6 Memoirs, initially for practical reasons, because the equation editor I was 
using bugged from too many equations. I therefore had to segment the essay into Memoirs, each 
Memoir evolving little by little and ultimately being able to be linked to a fundamental question. 
 
The 1st Memoir focuses on one of the main objectives of the work of A. Einstein, that of an invariance 
of the Laws of Nature whatever the transformation, even if it means adding new terms in the writing 
of the Law (for example the addition of forces of inertia in the Newton’s fundamental principle of 
dynamics during a transformation of the change of frames of reference type). During the Memoirs, we 
recall that the original objective of A. Einstein of an invariance of the Laws of Nature, which initially 
applied to changes of frames of reference, could be extended, in quantum Physics, to so-called Gauge 
transformations. 
 
The 2nd Memoir starts from a paradox of Newtonian mechanics underlined in particular by A. 
Einstein, the existence a priori disturbing and without explanation of 2 types of forces: "normal" forces 
and inertial forces often qualified as pseudo forces. 
Emphasizing the similarities between gravitation and electromagnetism, between Coriolis force and 
Lorentz magnetic force, we seek in this Memoir to resolve the paradox by proposing that any "normal" 
force can be reduced to an inertial force. This force of inertia would be added to Newton’s 
fundamental principle of dynamics (Newton’s second law), during a transformation of the 
"generalized" change of reference frame type, that is to say during the cancellation of a “generalized 
rotation”, concept aimed at extending the notion of rotation from a spatial plane to a “spatiotemporal 
plane”. 
 
In the 3rd Memoir, we are interested in the source field equations of Maxwell: Maxwell Ampère and 
Maxwell Gauss, in particular the why of a relationship between something specific: the source and 
something extended: the field. Noting that the relationship between Maxwell Ampère and Maxwell 
Gauss gives a sort of group velocity 𝑣 = , we seek the analog for gravitation of Maxwell's source 
field equations, replacing the magnetic field by a "pulsation field" 𝛺 and the electric field by a "wave 
vector field" 𝐾. 
The initial hypotheses of the building are verified, with a keystone which fits perfectly, when the ratio 
between Ampere gravitation (in fact the Newton’s fundamental principle of dynamics) and Gauss 
gravitation makes it possible to find 𝑣 =  at the known condition on the Planck length. 
 
The 4th Memoir is intended as a chronological presentation of 20th century physics, focusing mainly 
on particle physics, electromagnetic, weak and strong interactions (strong interactions and quarks are 
also treated in addition to the beginning of the 5th Memoir). In this Memoir, we show that in the 
second half of the 20th century, the theories on strong and weak interactions mutually and beneficially 
influenced each other, much like the theories on gravitation, electrostatics and magnetism had done in 
the first half of the 19th century. Several focuses are also made on the concept of isospin, which 
surprisingly plays 3 different roles: that of strong nuclear charge, that of weak nuclear charge and that 
of a (mathematical) analogue of spin. 
 
The 5th Memoir is again speculative and is perhaps the most fragile in its assumptions and proposals. 
It begins with a presentation of the theories on the strong interaction set out in the 1950s and 1960s, it 
can then be seen as a continuation of the 4th Memoir which ended with a presentation of the 
electroweak model. 
Thereafter, the 5th Memoir tries above all to sketch a synthesis of the different interactions. For this, he 
suggests a bridge between the source field equations proposed in the 3rd Memoir and certain 
interactions. The search for a synthesis of the interactions goes through the search for analogies 
between the interactions, first analogies between strong and weak nuclear interactions at short range, 
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between gravitational and electromagnetic interactions at infinite range, then analogies between all the 
interactions. 
 
In the 2nd and 3rd Memoirs, we are interested in the analogies between gravitation and 
electromagnetism. It is emphasized that if the pioneers were mainly inspired by the analogies between 
gravitation and electromagnetic (or rather electrostatic), subsequently, when more refined theories 
appeared, the "continuers" rather insisted on the differences between gravitation and 
electromagnetism. This has also led some physicists, such as A. Einstein, to point out that certain 
similarities are only superficial, that when you dig deeper, notable and irreducible differences between 
gravitation and electromagnetics appear. In the 2nd and 3rd Memoirs, on the other hand, we seek to 
return to the “spirit” of the pioneers, to show that if we push the analogies further, these differences 
are reduced. 
For the strong and weak interactions, the story is comparable: the pioneers did not even see the 
existence of 2 types of nuclear interactions at the start, then the theories on the strong and weak 
interactions were often inspired by one and the other, finally, the “continuators” have above all 
insisted on their differences. To unify weak and strong interactions, we return in the 5th Memoir to the 
proposals of the pioneers, and we rely, as they had done, on their similarities. 
 
The 6th Memoir is interested in the paradox of a "Physical Time" t, which when changing to its 
complex form it, is treated in the equations of Physics, in the same way as the 3 dimensions of Space, 
and of a felt Time (or psychological Time), which appears to us to be very different from Space. This 
last Memoir is again very speculative, the proposals and arguments put forward do not claim to be 
strictly scientific in the sense of K. Popper, that is to say falsifiable. For example, it is proposed that 
the concepts of Big Bang, black hole and entropy would be more related to Biology than to Physics... 



Preliminaries   19 

Contents 
 

Essential point of the essay: source field equations for gravitation analogous to those of 
electromagnetism ............................................................................................................................... 2 

Introduction: why are the laws of gravity and electricity so similar? ........................................... 4 

Preface to the reader, what can this essay bring him? ................................................................... 7 

Explain to my youngest daughter Mycènes (14 years old) the essay Invariances and 
Transformations ................................................................................................................................ 8 

Summary of the ideas and conjectures developed in this essay ................................................... 13 

Synthesis of the 6 Memoirs ............................................................................................................. 17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20     Invariances and transformations 

 
 
 
 
 
 
 



Memoir 1: Changes of reference frames and local gauge transformations    21 

Memoir 1 Changes of reference frames and transformations of 
Local Gauge 
 
Summary of the memoir 
In this 1st memoir, we will be interested in changes of reference frames and inertial forces, as well as 
local gauge transformations and interaction momentum energies. 
The starting point will be the following question of A. Einstein. Why in classical physics are there two 
types of forces: "normal" forces and inertial forces (sometimes called pseudo forces)? We will try to 
answer this question by assimilating any force to an inertial force. 
 
The study of inertial forces will also be an opportunity to study Bohr's model of the electron. Model 
proposed in 1913 by Niels Bohr and which involves centrifugal inertial force and electrostatic force. 
Through the notions of Gauge invariances and transformations introduced in 1918 by Henry Weyl, 
Gauge invariances that can be compared to a conservation of the Laws of Nature, Gauge 
transformations that can be compared to changes in reference frames, we will study the wave 
equations of E. Schrödinger (1925), Wolfgang Pauli (1927) and Paul Dirac (1928). Thus, will be 
approached the main wave functions of quantum physics of the 1920s. 
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Chapter I Why make any “normal” force correspond to an inertial force? 
Subject of the chapter 
In Newtonian mechanics, the laws of Nature are functions of the choice of a first reference frame 
considered as Galilean. However, this choice appears as a priori since a Galilean reference frame is 
defined as a reference frame in which Newton's 1st law is verified. That is to say in which the principle 
of inertia is verified: tendency of a body to maintain its speed in the absence of external influence. 
There is therefore a certain circularity in the choice of a Galilean reference frame. 
 
It is this paradox that A. Einstein underlines in his book Relativity (1st edition in 1916) about 
Newtonian mechanics. He indicates that according to the choice of the first Galilean reference frame, 
the laws of Nature are very different. Indeed, in the Newton's fundamental principle of dynamics 
(Newton's 2nd law) 𝑚�⃗� = 𝛴�⃗�, it is necessary to add (or not) inertial forces according to the reference 
frame where one is positioned. 
To escape this contradiction, A. Einstein proposes the astonishing objective of matching any “normal” 
force to an inertial force. We return here to the main stages of his reflection. 
 
I.1 Historical review of the march of ideas, A. Einstein, H. Weyl, Chen Ning Yang 

and Robert Mill, transformation, invariance, and addition of “quantities of 
inertia” 

I.1.1 Einstein, the great dream of a unified theory of fields and gravitation 
In the years 1910-1920, the great dream of A. Einstein is to unify electric and magnetic forces with 
gravitational force in a broad field theory. In his search for unification, A. Einstein advances some 
great ideas, setting major principles. 
 
One of the great ideas of A. Einstein is to bring the notion of Space-Time deformations closer to that 
of Newtonian gravitational potential 𝑉 . In the theory of General Relativity, A. Einstein describes the 
deformations of Space-Time using a tensor (a sort of 4×4 dimensions matrix) corresponding to the 
second derivatives of the gravitational potential 𝑉 . He is then inspired by the Poisson potential source 
equation (applied to gravitation with 𝜌 the mass density): 𝛻 𝑉 = 4𝜋𝐺𝜌 to link the Space-Time 
deformation tensor and the quadrivector energy momentum. He thus proposes an equation applied to 
the gravitational field. 
We will come back to this equation later, when we look at the Big Bang theory in the 6th memoir. 
 
One of the major principles set by A. Einstein is certainly the principle of relativity: the laws of Nature 
must be respected (i.e., they must be invariant) regardless of the choice of reference frame. To obtain 
this principle, A. Einstein seeks to bring any “normal” force closer to an inertial force. 
For example, he postulates the gravitational field as locally equivalent to an acceleration. Thus, he can 
interpret the gravitational field as a "quantity of inertia" that is added when passing from an immobile 
frame to a frame accelerating compared to the first. We will come back to this in a later paragraph. 
Following the principle of Relativity, A. Einstein manages in the theory of General Relativity to 
describe gravitation. However, he does not consider either electromagnetism or nuclear interactions, 
the first models of which were developed in the 1930s. 
 
I.1.2 H. Weyl, local gauge transformation and electromagnetism 
In the 1920s, the mathematician H. Weyl took up the idea of A. Einstein to bring any "normal" force 
closer to an inertial force to make the great laws of Nature invariant. He is interested in 
electromagnetism, in the invariance of Maxwell's equations, and imagines the notion of Gauge 
transformation which leaves Maxwell's equations invariant. 
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Following the ideas of H. Weyl, a local Gauge transformation is a local transformation of the 
geometric properties of Space-Time. It can also be interpreted in the broad sense, as a change of 
reference frames with the cancellation (or addition) of movements. 
 
We have the partial derivative: 𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥) = 𝜕 𝑓(𝑥)𝑑𝑥  

If the unit of measurement (the Gauge) varies from one point to another, the partial derivative is 
corrected by a factor 𝑆 . We then have for the partial derivative after a Gauge transformation: 𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥) = (𝜕 + 𝑆 )𝑓(𝑥)𝑑𝑥 + 𝜃(𝑑𝑥 ) 

H. Weyl attempts to match 𝑆  with the electromagnetic potential quadrivector 𝐴  (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧). In 
1929, he found a satisfactory solution to this problem, by observing the equivalence between the 
classical writing 𝑝 − 𝑒𝐴  and his quantum writing 𝑖(𝜕 + 𝑖𝑒𝐴 ). 𝑝 − 𝑒𝐴 ⇔ 𝑖(𝜕 + 𝑖𝑒𝐴 ) 

 
He then brings the factor 𝑆  closer to the energy momentum quadrivector potential 𝑖𝑒𝐴 . 
 
This energy momentum quadrivector potential 𝑖𝑒𝐴  can be interpreted as a “quantity of inertia” that is 
added during a local Gauge transformation, in order to make the great laws of Nature invariant. 
 
Note, reminders on generalized electromagnetic potential energy 
In electromagnetism, we define a generalized electromagnetic potential energy, also called 
electromagnetic interaction energy: 𝐸𝑝 = 𝑞(𝐴 − (�⃗� ⋅ 𝐴 ) 

(𝑎 = 𝑥, 𝑦, 𝑧) 
 
From this generalized electromagnetic potential energy, using the Euler-Lagrange equation, it is 
possible to find the electromagnetic force. This will be detailed in memoir 2. In relativistic quantum 
electrodynamics, the addition of the energy momentum quadrivector potential 𝑖𝑒𝐴  during a local 
Gauge transformation, makes it possible to obtain a Lagrangian including the generalized 
electromagnetic potential energy. 
 
Thus, in a way, we can interpret the electromagnetic force deriving from a “quantity of inertia” 𝑖𝑒𝐴  
that we add during a local Gauge transformation, in order to leave the great laws of Nature invariant. 
We will come back to this in this memoir and the following ones. 
 
I.1.3 The local gauge theories of C. N. Yang and R. Mill on nuclear interactions 
The ideas of H. Weyl are taken up and adapted in 1954 by C. N. Yang and R. Mill in a local gauge 
theory which describes the strong nuclear interaction between protons and neutrons. 
C. N. Yang and R. Mill use Local Gauge transformations that belong to rotation groups 𝑆𝑈(𝑛).. In 
their model, following a local gauge transformation of 𝑆𝑈(2), interaction energies appear in the 
Lagrangian, which make it possible to find the strong nuclear interaction. We will come back to this in 
the 4th Memoir. 
 
In the 1960s, the ideas of C. N. Yang and R. Mill were incorporated into the Standard Model to 
describe strong and weak nuclear interactions. In a way, once again, forces or interactions (in this case 
nuclear) are related to "quantities of inertia" that are added during local gauge transformations, in 
order to conserve the major laws of nature. 
 
After this reminder on the progress of ideas, let us now return to the initial ideas of A. Einstein. 
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I.2 Why do there exist privileged reference frames (called Galilean) in Newtonian 
mechanics? 

I.2.1 The principle sought by A. Einstein 
“All reference bodies, whatever their state of motion, are equivalent for the description of nature 
(formulation of the general laws of nature).” 
 
“How is it possible that certain reference bodies (or their states of motion) are distinguished from other 
reference bodies (or their states of motion)? What is the reason for this preference?” 
 
“The objection is especially important when the state of movement of the reference body is such that it 
does not need any external action for its maintenance, for example in the case where the reference 
body performs a rotational movement. uniform.” 
 
These are some sentences of A. Einstein taking up certain ideas of Ernst Mach, extracted from his 
book Relativity. 
This is what may please (or displease) in the scientific approach of A. Einstein, an approach not 
initially based on empiricism, but on the great principles that A. Einstein then goes on to relate to 
observations and experiences. 
 
In the second part of Relativity A. Einstein explains why, following a principle of general relativity, he 
seeks to bring any “normal” force closer to an inertial force. 
 
In Newtonian mechanics, when passing from a Galilean or inertial reference frame (in uniform 
rectilinear motion relative to a first Galilean reference frame), to a non-Galilean reference frame, for 
example in rotation 𝛺 relative to the first Galilean reference frame (change of frames similar to the 
cancellation of a movement: the rotation vector 𝛺), it is necessary to add inertial forces in the 
Newton's fundamental principle of dynamics. 
 
These inertial forces may appear artificial compared to "normal" forces such as gravitational, electrical 
or other forces. Especially when we note that the choice of the first Galilean reference frame, the one 
in relation to which we define all the other reference frames, is an a priori choice. 
After all, why not choose as the first reference frame, the one in rotation? In this case, we could 
remove the inertial forces that we add when we pass to this reference frame. 
 
The fundamental question is therefore the following: why this difference in the formulation of physical 
laws because the choice of a first Galilean reference frame is an a priori choice? 
 
Note on the definition of a Galilean reference frame 
A Galilean frame is usually defined as a frame in which the principle of inertia is verified. Some 
physicists also have the habit of defining a Galilean reference frame as a reference frame in which the 
Newton's fundamental principle of dynamics applies, without having to add inertial forces. 
 
 
I.2.2 Matching any “normal” force to an inertial force 
To preserve the invariance of the general laws of Nature, A. Einstein has a most original idea. He 
seeks to show that any "normal" force can be matched to an inertial force. Like an inertial force, a 
"normal" force would be introduced into the Newton's fundamental principle of dynamics, when a 
change of reference frames is carried out (change corresponding most often to the cancellation of a 
movement). That is to say, any force, whether inertial or "normal", would be introduced into the 
Newton’s fundamental principle of dynamics, in order to correct the cancellation of a movement. 
 
Thus, Einstein compensates for the a priori choice of the first Galilean reference frame and the 
addition of inertial forces, which results therefrom for non-Galilean reference frames, by the fact that 
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any force to be introduced into the Newton's fundamental principle of dynamics (whether the 
referential is Galilean or not) is itself brought closer to an inertial force. 
At the same time, A. Einstein cancels the artificial distinction between “normal” forces and inertial 
forces. 
 
I.2.3 The case of the gravitational field, equality between heavy mass and inertial mass 
In his reflection, A. Einstein first studies the gravitational field. He is interested in the equality 
between heavy mass and inertial mass. 
The heavy mass is involved in the expression of the gravitational force: the greater is the heavy mass 
of a body, the more the body will undergo a gravitational force. Inertial mass is associated with 
acceleration in Newton's fundamental principle of dynamics: the greater is the inertial mass of a body, 
the more its acceleration will have a significant resistance against the forces that apply to it. 
A priori, these two masses do not designate the same physical notion. However, they are always 
equalized in physical equations. We can then obtain a gravitational field equal to an acceleration. 
 
In a way, with the a priori choice of a Galilean reference frame:  

- describing an accelerating body subjected to a gravitational field, 
- including in the Newton's fundamental principle of dynamics no acceleration of inertia, 

A. Einstein substitutes an equally a priori choice of a non-Galilean reference frame: 
- describing a stationary body (in zero acceleration) and subjected to a gravitational field, 
- including in the Newton's fundamental principle of dynamics an acceleration of inertia locally 

equivalent to a gravitational field. 
Whatever the choice of reference frame, the same thing must ultimately be considered: an acceleration 
or a gravitational field locally equivalent to an acceleration of inertia. 
 
Subsequently, the objective of A. Einstein is to seek the changes of reference frames corresponding to 
the forces other than gravitational, in particular the forces of the electrical type. The concern is that the 
previous reasoning is not directly transposable from gravitation to electricity. Indeed, in an electric 
field, the acceleration of an electrically charged body is not equal to the electric field but also depends 
on its mass electric charge. There are therefore no changes of trivial reference frames, which make 
locally correspond electric field and acceleration (or even another movement). 
 
I.3 Analogy Time and Space, can we treat Time in the same way as Space? 
The idea of treating the Time dimension identically to the three dimensions of Space is not a priori 
linked to the notion of force of inertia and change of reference frames. It nevertheless seems 
interesting to mention it here, because the notion of change from Galilean reference frame to rotating 
reference frame will be in the next expanded memory by bringing together the notions of Time and 
Space. 
 
In the writings of A. Einstein on Relativity, this identical treatment of Time and Space is a recurring 
idea. We observe it for example in the proposal of a continuum of Space-Time or in the deformations 
of distances in the image of those of durations. 
 
This conception of Time and Space is moreover one of the great upheavals in 20th century physics. 
Despite the difficulty of intuitively accepting a resemblance between Time and Space and finding 
reasons for it beyond a simplifying desire for models of the Universe, A. Einstein and many others 
found that the analogy between the Time and Space held great promise in understanding the Universe. 
 
In a letter from A. Einstein, we note the reading during his young years, of works by H. Poincaré. 
Indeed, we owe to H. Poincaré the latter the first analyses presented of a resemblance between Space 
and Time. It was while studying problems of symmetry and translation that H. Poincaré realized that 
positions and instants could play interchangeable roles in the observation of the movement of a body 
A relative to an experimenter E. 
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Let us take the example of a car A in uniform rectilinear motion. If we modify the position of 
observation of the experimenter E, the car A is seen in another configuration, it is the principle of 
relativity applied to Space. 
If we modify the instants of the experimenter E, for example later instants, the car A is also seen in 
another configuration, it is the principle of relativity applied to Time. 
If we modify the position of E, it is possible to modify the instants of E, earlier or later, so that car A is 
always observed in the same configuration. Thus, the translation of the instants of E comes to 
compensate that of the positions of E, and makes it possible to observe an identical movement. 
 
Note: to distinguish the concept of Space 𝑥, 𝑦, 𝑧 from a mathematical space with three dimensions and 
which can include the dimension Time, for example 𝑡, 𝑥, 𝑦 we will use in these memoirs a capital letter 
for the first (Space 𝑥, 𝑦, 𝑧), and a lower case for the second (space 𝑡, 𝑥, 𝑦). We will do the same for 
Time t, where we will use a capital letter. 
 
I.4 Conclusion of the chapter 
In summary, it is to respond to a principle of general relativity, that is to say to an invariance in the 
formulation of the general laws of Nature, that in order to compensate for the a priori choice of a first 
Galilean reference frame, we seek here to assimilate any “normal” force to an inertial force to be 
added during a change of reference frames from Galilean to non-Galilean. 
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Chapter II Reminders on the inertial forces in Newtonian mechanics 
 
Subject of the chapter 
We first discuss the objectives set by A. Einstein for the theories of Special Relativity and General 
Relativity. 
We then remind the forces of inertia used in so-called “general” Newtonian mechanics: centrifugal 
force, Coriolis force and mass times acceleration. We will focus on their main characteristics in order 
to find methods that will make it possible to match any “normal” force to an inertial force. 
 
II.1 From the objectives of Special Relativity to those of General Relativity 
II.1.1 On the Galilean transformation and on the Lorentz transformation, the case of Special 

Relativity 
The Galilean transformation makes it possible to pass from a Galilean reference frame 𝑅  (or inertial) 
to another Galilean reference frame 𝑅 ′ (also inertial). The transition from 𝑅  to 𝑅 ′ leaves the Space 
interval invariant: 𝛥𝑠 = 𝛥𝑥 + 𝛥𝑦 + 𝛥𝑧 = 𝛥𝑥′ + 𝛥𝑦′ + 𝛥𝑧′  
 
In these 2 Galilean reference frames 𝑅  and 𝑅 ′, the fundamental principle of dynamics is respected 
without there being any inertial force to add when changing reference frames. 
 
 
We give the Galilean transform: 𝑥 = 𝑥 − 𝑣𝑡 𝑡 = 𝑡 
 
The Lorentz transform proposed by H. Lorentz (in 1904) and corrected by Henry Poincaré (in 1905) 
notably leaves invariant the d'Alembert wave equation = , Maxwell's equations or the 

Space-Time interval: 𝛥𝑠 = 𝛥𝑥 + 𝛥𝑦 + 𝛥𝑧 − 𝑐𝛥𝑡 = 𝛥𝑥′ + 𝛥𝑦′ + 𝛥𝑧′ − 𝑐𝛥𝑡′  
 
Following the ideas of A. Einstein exposed in the theory of special relativity, the Lorentz transform 
corresponds to the passage in Space-Time from a Galilean (or inertial) frame 𝑅  to another Galilean 
(or inertial) frame 𝑅 ′. Whether you are in 𝑅  or 𝑅 ′, it allows both: 

- to measure the same speed of light c in vacuum, 
- to leave invariant all the laws of Nature, in particular the fundamental principle of dynamics 

without there being forces of inertia to add to it. 
 
We have the Lorentz transform: 𝑥 = 𝛾(𝑥 − 𝑣𝑡) 𝑡 = 𝛾(𝑡 − 𝑣𝑐 𝑥) 

with 𝛾 = 𝛾(𝑥 − 𝑣𝑡) 

We note that when 𝑣 << 𝑐, 𝛾 ≈, we find the Galilean transform from the Lorentz transform. 
 
II.1.2 On the objectives set by the theories of special relativity and general relativity 
Special relativity stops at the changes of Galilean reference frames from 𝑅  to 𝑅 ′. The Newton's 
fundamental principle of dynamics must remain invariant during a change of reference frames, without 
having to add inertial forces. 
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A. Einstein sets much more ambitious goals for the theory of general relativity. This one studies the 
changes of reference frames from Galilean to non-Galilean from 𝑅  to 𝑅′. In so-called "general" 
Newtonian mechanics, the Newton’s fundamental principle of dynamics must remain invariant during 
a change of reference frames from 𝑅  to 𝑅′, even if it means adding inertial forces. 
 
Note, main difference between Newtonian and Einsteinian mechanics 
In Newtonian mechanics, we therefore find these notions of restricted and general by the addition or 
not of inertial forces in the Newton’s fundamental principle of dynamics. 
 
The main difference between Newtonian mechanics and Einsteinian mechanics is therefore not to be 
found between restricted and general, but in an extension from Space to Space-Time. In so-called 
"restricted" Newtonian mechanics, it is the Space interval 𝛥𝑠 = 𝛥𝑥 + 𝛥𝑦 + 𝛥𝑧  which is 
preserved during the transition from 𝑅  to 𝑅 ′, both Galilean references. 
In so-called "restricted" Einsteinian mechanics, it is the Space-Time interval 𝑠 = 𝛥𝑥 + 𝛥𝑦 +𝛥𝑧 − 𝑐𝛥𝑡  which is preserved when 𝑅  to 𝑅 ′, both also Galilean frames. 
 
II.2 Reminder of some invariants by the Lorentz transform 
We remind here some equations invariant by the Lorentz transform, and therefore following the ideas 
of A. Einstein, invariants by change of Galilean (or inertial) reference frames in the context of Special 
Relativity. 
 
II.2.1 The Space-Time Interval 𝛥𝑠 = 𝛥𝑥 + 𝛥𝑦 + 𝛥𝑧 − 𝑐𝛥𝑡 = 𝛥𝑥′ + 𝛥𝑦′ + 𝛥𝑧′ − 𝑐𝛥𝑡′  
 
Note 1 on the concept of quadrivector 
On the model of the Space-Time interval, in Special Relativity, quadrivectors are built: 

- position(𝑟, 𝑐𝑡) 
- speed 𝛾(�⃗�, c) 
- acceleration (𝛾 (𝛾𝑣), (𝛾𝑐)) 

- energy momentum (𝑝 = 𝛾𝑚�⃗�, = ) 

- force 𝛾 𝑓,⃗ 𝑜𝑟 𝛾(𝑓, ⃗. ⃗) 

- electromagnetic potential (𝐴, ) 
- electric current density (𝚥, 𝜌 𝑐) 
- wave vector 𝑘, = ℏ (𝑝, ) 

whose norm is invariant by the Lorentz transform: 𝑋 = 𝑥 + 𝑥 + 𝑥 − 𝑥 = 𝑥 ′ + 𝑥 ′ + 𝑥 ′ − 𝑥 ′  
 
These quadrivectors are conserved by changing Galilean (or inertial) reference frames in the context of 
Special Relativity. 
 
Note 2 on a quadrivector electromagnetic field? 
The quantities 𝐸�⃗�. 𝐵 = 𝐸�⃗�′. 𝐵′⃗ and 𝐸�⃗�. 𝐸�⃗� − 𝐵. 𝐵 = 𝐸�⃗�′. 𝐸𝑙′⃗ − 𝐵′⃗. 𝐵′⃗ are also invariant by Lorentz 
transform. We could therefore imagine an electromagnetic field quadrivector of the type: 𝐸𝑙𝑐 , 𝐵  

 
Nevertheless, the nature of 𝐵, here scalar, remains unclear and in Special Relativity we rather define 
an electromagnetic field tensor (or Maxwell Faraday tensor).𝐹  
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II.2.2 The d'Alembert wave equation 1𝑐 𝜕 𝑢𝜕𝑡 = 𝜕 𝑢𝜕𝑥  

By Lorentz transform, we also have: 1𝑐 𝜕 𝑢′𝜕𝑡′ = 𝜕 𝑢′𝜕𝑥′  

 
Note 𝑢 can be a scalar as in the case of the d'Alembert wave equation. It can also be more generally an 
electric field, a magnetic field, a scalar, or vector potential. It then checks the wave equation: 1𝑐 𝜕 𝐹𝜕𝑡 = ∆𝐹 

 
II.2.3 The Newton's fundamental principle of dynamics 
We recall the fundamental principle of dynamics, in restricted Newtonian mechanics, with 
conservation of this principle by the Galileo transform, and therefore valid in all Galilean references 
within the framework of Newtonian mechanics: 𝑑𝑚�⃗�𝑑𝑡 = �⃗� 

 
We recall the fundamental principle of dynamics, in restricted Einsteinian mechanics (extension of 
Space to Space-Time and therefore presented in the form of a quadrivector), with conservation of this 
principle by the Lorentz transform, and therefore valid in all Galilean (or inertial) reference frames: 𝛾 𝑑𝛾𝑚 �⃗�𝑑𝑡 , 𝑑𝛾𝑚 𝑐𝑑𝑡 = 𝛾 �⃗�, 1𝑐 𝑑𝐸𝑑𝑡  

with 𝛾 =  and 𝑚  the resting mass of the body studied by the observer. 

 
This last principle summarizes both the fundamental principle of dynamics in Space: ⃗ = �⃗� and 
the expression of energy in Time: 𝐸 = γ𝑚 c. 
 
II.3 General information on inertial forces in so-called "general" Newtonian 

mechanics 
II.3.1 Two strategies 
In Newtonian mechanics, a physicist has two a priori equivalent strategies for applying the Newton’s 
fundamental principle of dynamics. 
 
Let be the 1st strategy (case of Newtonian mechanics called "restricted"), he applies this principle in a 
Galilean reference frame. We put below on the left the terms related to the movement and on the right 
the terms of type force 𝑅 : [𝑚(�⃗�)] = 𝛴 �⃗�  

 
Acceleration �⃗� can for example decompose into a relative acceleration �⃗�  and acceleration of drive (or 
inertia) �⃗� . We have: [𝑚(�⃗�)] = [𝑚(�⃗� + �⃗� )] = 𝛴 �⃗�  
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Let be the 2nd strategy (case of Newtonian mechanics called "general"), he applies this principle in a 
non-Galilean reference frame 𝑅′. It is then necessary to add inertial forces �⃗� . 
 
For instance, if �⃗�  is the remaining acceleration in the reference frame 𝑅′, the inertial force to be added 
will be: �⃗� = −[𝑚�⃗� ]  
 
The fundamental principle of dynamics is applied in 𝑅′:  [𝑚�⃗� ] = �⃗� + 𝛴 �⃗�  
 
with �⃗� = −[𝑚�⃗� ]  and 𝛴 �⃗� = 𝛴 �⃗�  (the sum of the forces is considered to remain the same 
when changing reference frames). 
 
If the body studied is immobile in 𝑅′, �⃗� = 0⃗. We apply the fundamental principle of dynamics, with 
on the left the zero movement and on the right the terms of type force: 0⃗ = �⃗� + 𝛴 �⃗�  
 
Like two communicating vessels, the movement is cancelled on the left, and is replaced by forces of 
inertia on the right. 
 
II.3.2 Three types of inertial force in Newtonian mechanics 
Three types of inertial forces can be distinguished in so-called "general" Newtonian mechanics. 
 
The first two meet in rotational movements. These are the centrifugal force and the Coriolis force. 
They are added to the Newton's fundamental principle of dynamics when moving from a Galilean 
reference frame 𝑅  to a reference frame 𝑅  where we cancel the rotation vector 𝛺. 
 
The third inertial force is of a different nature and is not always interpreted as an inertial force. It is the 
mass once the acceleration of inertia that is added during a change of reference frames where we 
cancel the acceleration (or part of the acceleration) and which according to the principle of 
equivalence of A. Einstein is locally equivalent to a gravitational force. 
 
Remarks 
A1. Note that it is implicitly assumed that mass is a quantity that is conserved during changes of 
reference frames. 
 
R2. For the three forces, we talk about inertial forces, but we can just as easily talk about inertial 
acceleration. The mass 𝑚  appears as a quantity apart, because preserved in the changes of references. 
 
II.4 Local equivalence between a gravitational field and an acceleration 
II.4.1 Elevator Thought Experiment 
In 1907, A. Einstein had in his own words "the happiest idea of all" his "life". Germinates in him, the 
idea of a local equivalence between an accelerated motion and a gravitational field. A. Einstein calls 
this equivalence the principle of equivalence, a principle implicitly present in the work of G. Galileo 
and I. Newton. 
 
In the article published in 1907 On the principle of relativity and the consequences drawn from it, A. 
Einstein developed this principle of equivalence which would lead him a few years later to the theory 
of General Relativity. 
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In the book Relativity, to explain this principle, A. Einstein takes the example of an elevator immersed 
in a vacuum and carrying an experimenter E. A man outside the elevator pulls with constant force 
using a rope attached to the elevator, communicating to it a uniformly accelerated movement. 
 
Experimenter E drops objects of different mass, these take exactly the same time to reach the floor of 
the elevator (experimenter E repeats the experiment of G. Galileo from the top of the Tower of Pisa). 
Experimenter E knows the mechanics of I. Newton, and like him, he can deduce the existence of a 
gravitational field. Indeed, for experimenter E in the elevator, it is impossible to know: 

- if he is in a uniform gravitational field, 
- or if he undergoes a uniformly accelerated movement (movement that can be cancelled by an 

adequate change of reference frames). 
 
II.4.2 Equations of the elevator thought experiment 
Let be 𝑅 , the reference frame where E is immobile and which he considers to be Galilean. In 𝑅 , we 
apply the Newton's fundamental principle of dynamics for a body subjected to a gravitational force 
(for example one of the objects that the experimenter drops): 𝑚[�⃗�] = 𝑚 �⃗�𝑟  

 
Now let's show that �⃗�𝑟 corresponds well to the acceleration of inertia [�⃗� ]  that is added in the 
fundamental principle of dynamics, when switching to the non-Galilean reference frame 𝑅  where we 
cancel the acceleration �⃗�. 
 
We apply in 𝑅  the Newton's fundamental principle of dynamics (on the left terms related to the 
movement 0⃗ = 𝑚[�⃗�] , on the right the terms of type force 𝑚 �⃗�𝑟′ − 𝑚[�⃗� ] ): 0⃗ = 𝑚[�⃗�] = 𝑚 �⃗�𝑟′ − 𝑚[�⃗� ]  0⃗ = �⃗�𝑟′ − [�⃗� ]  
 
with �⃗�𝑟′ the transformed of �⃗�𝑟 when passing from 𝑅  to 𝑅 . 
 
Like two communicating vessels, the movement is cancelled on the left, and is replaced by an inertial 
force �⃗� = −𝑚[�⃗� ]  on right. 
 
We obtain for the terms on the right: �⃗�𝑟′ = [�⃗� ]  
 
It is assumed that the mass of the object and the gravitational field are invariant during the passage 
from 𝑅  to 𝑅 . So, we have: �⃗�𝑟 = �⃗�𝑟′ = [�⃗� ]  
In 𝑅 , the gravitational field is therefore locally equivalent to the acceleration of inertia that is added 
in the Newton's fundamental principle of dynamics, in order to correct the cancellation of a motion. 
 
This principle of local equivalence calls for the following remarks. 
R1 on the causes of accelerated motion and on the equation �⃗�𝑟 = �⃗� 
If a gravitational field always implies an acceleration, the cause of an acceleration is not always a 
gravitational field, it can be for example an acceleration of centrifugal inertia or an electromagnetic 
field. 
Thus, the equation �⃗�𝑟 = �⃗� may appear misleading, because if the gravitational field �⃗�𝑟 can always be 
equated with acceleration �⃗�, �⃗� cannot always be equated with �⃗�𝑟. 
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We realize that this idea, despite its interest, has some weaknesses, including the evacuation of the 
electromagnetic field. 
A. Einstein was obviously aware of this and attempts to reintroduce him into a global field theory 
concerned him all his life. 
 
R2 on the objective of this memoir and the next 
In the Newton's fundamental principle of dynamics, there is a correspondence between: 

- the cancellation to the left of a movement, 
- the addition to the right of an inertial force. 

 
A. Einstein notes that: 

- the cancellation on the left of a movement of uniform acceleration type, 
- involves the addition to the right of an inertial force locally equivalent to the gravitational 

force. 
Hence his idea of matching any "normal" force to a inertial force that is added when cancelling a 
movement. 
 
This is also the objective followed in this memoir and in the next one. It will be proposed to match: 

- the cancellation on the left of a "generalized movement", 
- the addition to the right of any "normal" force or inertia. 

 
II.5 Examination of centrifugal and Coriolis inertial forces 
II.5.1 Mathematical reminders on centrifugal and Coriolis inertial forces 
In 1835, Gustave Coriolis published an article entitled On the equations of relative motion of body 
systems. Using an energetic approach, he develops the notion of compound centrifugal forces. The 
latter will take the name of Coriolis force. 
 
To describe the inertial forces of centrifugal and Coriolis, let us now remind the kinematic approach, 
an approach today the most commonly used. 
 
Let be a body A on a rotating carousel with rotation vector 𝛺 and possessing on this carousel a relative 
speed �⃗� . 
 
In the reference frame 𝑅  (considered as Galilean), we have the speed of the body A: [�⃗�] = �⃗� + 𝛺 ∧ 𝑂𝑀 

 
In the reference frame 𝑅  where we cancel the rotation vector 𝛺 (reference frame 𝑅  itself in rotation 
relative to 𝑅 ), we have the speed of the body A: [�⃗�] = �⃗�  

 
Note 
In the reference frame 𝑅 × , where we cancel at once 𝛺 and �⃗� , the body A has a null speed: [�⃗�] × = 0⃗ 

 
In the reference frame 𝑅 , we have the acceleration of the body A: [�⃗�] = 𝑑�⃗�𝑑𝑡 = 𝑑�⃗�𝑑𝑡 + 𝛺 ∧ 𝑑𝑂𝑀𝑑𝑡 + 𝑑𝛺𝑑𝑡 ∧ 𝑂𝑀 
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We have: 𝑑�⃗�𝑑𝑡 = 𝑑�⃗�𝑑𝑡 + 𝛺 ∧ �⃗�  

And: 𝑑𝑂𝑀𝑑𝑡 = [�⃗�] = �⃗� + 𝛺 ∧ 𝑂𝑀 

 
We obtain the acceleration of the body A in 𝑅 : [�⃗�] = 𝑑�⃗�𝑑𝑡 + 𝛺 ∧ �⃗� + 𝛺 ∧ (�⃑� + 𝛺 ∧ 𝑂𝑀) + 𝑑𝛺𝑑𝑡 ∧ 𝑂𝑀 

[�⃗�] = 𝑑�⃗�𝑑𝑡 + 𝑑𝛺𝑑𝑡 ∧ 𝑂𝑀 + 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) + 2𝛺 ∧ �⃗�  

 
Let us place ourselves in the special case of a uniform circular movement 

⃗ = 0, we have: 

[�⃗�] = 𝑑�⃑�𝑑𝑡 + 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) + 2𝛺 ∧ �⃗�  

[�⃗�] = [�⃗� ] + [�⃗� ] + [�⃗� ]  

 ⃑ = [�⃗� ]  is the relative acceleration of the body A in the reference frame 𝑅 . 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) = [�⃗� ]  is the drive acceleration, which multiplied by a mass corresponds to the 
centrifugal inertial force. 2𝛺 ∧ �⃗� = [�⃗� ]  is the Coriolis acceleration (or complementary acceleration), which multiplied by a 
mass corresponds to the Coriolis inertial force. 
 
We have the following two inertial forces to add in 𝑅  to apply the fundamental principle of 
dynamics: 

- the centrifugal inertial force �⃗� = −𝑚𝛺 ∧ 𝛺 ∧ 𝑂�⃗�  �⃗� = 𝑚𝑟𝛺 𝑛 

- the Coriolis inertial force �⃗� = −𝑚2�⃗� ∧ �⃗� = 𝑚�⃗� ∧ 2𝛺 = 𝑝 ∧ 2𝛺 

 
Remarks 
R1 Note that the Coriolis acceleration is composed of two distinct terms: 

- the derivative of speed 
⃗

 multipliée par la rotation 𝛺, 

- the derivative of ⃗ = ⃗ + 𝛺 ∧ �⃗� . 
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R2 When the rotation vector 𝛺 tends to 0, we find the same derivative of the relative speed: 𝑑�⃗�𝑑𝑡 = 𝑑�⃗�𝑑𝑡 + 𝛺 ∧ �⃗�  𝑑�⃗�𝑑𝑡 = 𝑑�⃗�𝑑𝑡 + 0 

 
II.5.2 Potential energy of centrifugal and Coriolis inertial forces 
We remind the elementary work of a force �⃗�: 𝛿𝑊 = �⃗�. 𝑑𝑙 
 
The total work along a trajectory 𝐶 is equal to: 𝑊 = �⃗�. 𝑑𝑙 
 
When the total work of a force is independent of the trajectory followed by the particle, the force is 
said to be conservative. We define a potential energy 𝐸𝑝 (to within a constant): 𝐸𝑝 = − �⃗�. 𝑑𝑙 
 
The force is then the gradient (the derivative relative to Space), of the potential energy: �⃗� = −𝑔𝑟�⃗�𝑑(𝐸𝑝) 

 
We then have: 𝑟�⃗�𝑡�⃗� = 0⃗ 

because 𝑟𝑜𝑡(𝑔𝑟�⃗�𝑑) = 0⃗ 
 
Note 
Gravitational force and electrostatic force are conservative forces. The Lorentz magnetic force is not a 
conservative force. Nevertheless, it can be found from a generalized electromagnetic potential: 𝐴 −𝐴 . �⃗� (𝑎 = 𝑥, 𝑦, 𝑧) via the Euler-Lagrange equation. 
 
Let's calculate the potential energy of the centrifugal inertial force in the reference frame 𝑅 : �⃗� = 𝑚𝑟𝛺 𝑛 

𝐸𝑝(�⃗� ) = − �⃗� . 𝑑𝑙 
𝐸𝑝(�⃗� ) = − 𝑚𝑟𝛺 𝑛. 𝑑𝑟 = − 𝑚𝑟𝛺 𝑑𝑟 

𝐸𝑝(�⃗� ) = − 12 𝑚𝑟 𝛺 + 𝑐𝑠𝑡 

 
We have the drive speed in 𝑅 : 𝑣 = 𝑟𝛺 
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We have kinetic energy in 𝑅  due to the rotation vector 𝛺: [𝐸𝑐(𝛺)] = 12 𝑚𝑟 𝛺  

So, we have (to within a constant): [𝐸𝑐(𝛺)] = − 𝐸𝑝(�⃗� )  

 
We calculate the work of the Coriolis force in the reference frame 𝑅 : 𝛿𝑊(�⃗� ) = �⃗� . 𝑑𝑙 = 0 

We have indeed a Coriolis force perpendicular to �⃗� , and therefore to 𝑑𝑙. 
 
We have for the potential energy of the Coriolis force: 𝐸𝑝(�⃗� ) = 𝑐𝑠𝑡 

 
We will usually take a null constant. 
 
Remarks 
R1 on the potential term of potential energy 
The term potential here seems particularly appropriate. Indeed, the potential energy appears after a 
change of reference frames where we cancel a movement (rotation vector 𝛺) and therefore kinetic 
energy. This energy is potentially available and transformable into kinetic energy if the reverse 
reference frame change is made. 
 
R2 How to understand intuitively (without calculations) that certain forces and accelerations are 
perpendicular to the velocities from which they derive? 
The Coriolis force and the so-called normal acceleration are both perpendicular to velocities. 
In the case of a rotational movement of linear velocity �⃗� 𝑐𝑜𝑠 𝜔 𝑡𝑠𝑖𝑛 𝜔 𝑡 , we have a derivative ⃗ −𝜔 𝑠𝑖𝑛 𝜔 𝑡𝜔 𝑐𝑜𝑠 𝜔 𝑡  perpendicular to velocity �⃗�. 
 
This is because we are interested in rotational movements, that certain forces and accelerations are 
perpendicular to the speeds from which they derive. 
 
II.6 Conclusion of the chapter 
In so-called "general" Newtonian mechanics, we correct the cancellation of part of the movement of 
the reference body during a change of Galilean to non-Galilean reference frames, by adding in the 
Newton's fundamental principle of dynamics some forces of inertia. 
 
We want to generalize this to "normal" forces. The concern is that forces and movements are not 
totally equivalent. That is to say, the passage from one to the other is not a priori so easy, since masses 
and electric charges intervene. 
Except as A. Einstein points out for the gravitational field locally equivalent to an acceleration and 
therefore to a motion. 
 
In the next memoir, we will focus on matching the cancellation of "generalized movements" (left) to 
the addition of "normal" forces (right). But in the immediate future, let's study the models of the 
electron of Bohr, de Broglie and Schrödinger. 
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Chapter III  Bohr, de Broglie and Schrödinger electron models 
 
Subject of the chapter 
As part of our study of inertial forces, we are now interested in Bohr, de Broglie and Schrödinger 
electron models that involve electrostatic force and centrifugal inertial force. It will also be an 
opportunity to return to the quantum and wave Physics of the 1920s. 
 
III.1 The mysterious spectral lines of hydrogen 
Spectroscopy studies the light spectra of a physical phenomenon. During the19th century, this discipline 
experienced a spectacular development under the impetus of Gustav Kirchhoff and Robert Wilhelm 
Bunsen. It is observed that in its normal state, matter does not emit any radiation, but once excited 
(excitation which consists of an energy input), it can re-emit energy in the form of light radiation. 
 
For example, experimenters fill capillary tubes with hydrogen gas and excite it with a difference in 
electrical potentials applied to both ends of the tube. They study the spectrum of light re-emitted by 
hydrogen. To their surprise, they observe spectral lines. That is, the spectrum of light is discontinuous 
and only a few wavelengths are re-emitted. 
 
The figure below gives part of the light spectrum of hydrogen, with the so-called Balmer series in the 
visible, the so-called Lyman series in the invisible ultraviolet, and the so-called Paschen series in the 
invisible ultraviolet. 

 
Figure 1: part of the light spectrum of hydrogen gas 
 
Nota �̄� is the wavenumber, inverse of the wavelength, with �̄� = . It expresses itself in 𝑚 . 𝐾 =  is the angular wavenumber. It expresses itself in 𝑟𝑎𝑑. 𝑚 . 
In this essay, the term wave vector will be used to designate 𝐾. 
 
Following these observations, physicists are looking for an empirical relationship between the 
characteristics of the different spectral lines. It was Johann Jakob Balmer in 1885 who first established 
the relationship: 1𝜆 = 𝑅 ( 12 − 1𝑚 ) 

with 𝑅  the Rydberg constant of hydrogen, 𝜆 the wavelength of the re-emitted light, and 𝑚 an integer. 
 
Balmer's relationship is then generalized by Johannes Rydberg and Walther Ritz: 1𝜆 = 𝑅 ( 1𝑛 − 1𝑚 ) 
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𝑛 and 𝑚 are integers with 𝑛 < 𝑚. 
 
III.2 Ernest Rutherford's Planetary Model of the Atom (1911) 
In 1909, E. Rutherford, assisted by Hans Geiger and Ernest Marsden, conducted experiments on the 
bombardment of gold leaf by particles. 𝛼 (helium nuclei 𝐻𝑒 ). The 3 experimenters find that most of 
the particles 𝛼 pass through the gold leaf. Nevertheless, a few, in a very small proportion, are deflected 
along very wide angles. 
 
Following these experiments, E. Rutherford proposed in 1911 the Rutherford atom model comparable 
to a small planetary system. In the center, a dense and positively charged nucleus, at the origin of the 
deviation following very wide angles of some particles 𝛼. Around, especially the vacuum that does not 
deflect the particles 𝛼, as well as negatively charged electrons that orbit on circular or elliptical 
trajectories. 
 
Rutherford's planetary model has a precursor: the Saturnian model proposed by Hantarō Nagaoka a 
few years earlier in 1904. These two models, however, clash with the theory of the radiation of the 
electron in accelerated motion (especially in rotation). 
Indeed, according to experimental observations and Maxwell's equations, an electron subjected to 
acceleration emits energy in the form of electromagnetic waves (this is the same principle as a 
transmitting radio antenna). 
 
In 1897, Joseph Larmor establishes the following relationship: 𝑃 = 𝑞 𝑎6𝜋𝜀 𝑐  

with 𝑃 radiated power and 𝑎 the acceleration of the electric charge. 
 
According to this relationship, the electron orbiting the nucleus must lose energy by radiating 
electromagnetic waves, and thus eventually crash into the nucleus. 
 
In contradiction with this relationship, one of the fundamental ideas of quantum physics will be to 
propose that the electron, even in (accelerated) rotational motion, does not radiate energy 
continuously. It is only during the passage from one rotational movement to another (change of 
orbits), that the electron radiates an electromagnetic wave. Outside, the electron is said to be in a 
steady or permanent state. 
 
Note 
In quantum physics, the steady state of the electron and the rotational motion are therefore brought 
together. Let us emphasize here the link with the sentence of A. Einstein previously quoted: "The 
objection is especially important when the state of movement of the reference body is such that it does 
not need for its maintenance any external action, for example in the case where the reference body 
performs a uniform rotational movement." 
 
III.3 Model of the Bohr electron in the hydrogen atom 
In 1913, Niels Bohr published an article entitled On the Constitution of Atoms and Molecules in which 
he brought together three a priori different fields of physics. It first takes up Rutherford's planetary 
model. It then uses the Planck constant ℎ and its link with the kinetic moment proposed by Max 
Planck in 1900. Finally, he finds the Rydberg constant 𝑅   and explains (in part) the mysterious 
spectral lines of hydrogen. 
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III.3.1 Bb Explain the steady state of the electron based on the planetary model and 
Newtonian gravitation 

In his paper, N. Bohr seeks to understand why the electron is in a stable (or permanent to use its term) 
state. Why in Rutherford's model does not fall on the proton? To answer this, he is inspired like E. 
Rutherford by the planetary model, as well as Newtonian gravitation. 
 
Let's take the example of the Moon. It does not fall on the Earth because the attractive gravitational 
force is compensated by the centrifugal effect of the rotational motion of the Moon around the Earth. 
In the case of the electron model proposed by N. Bohr, the centripetal effect of the attractive 
electrostatic force of the proton on the electron is compensated by the centrifugal effect due to the 
rotational motion of the electron around the proton. 
 
The attractive electrostatic force is given by Coulomb's law: 𝐹 = − 𝑒4𝜋𝜀 𝑟  

 
In the case of a circular motion of the electron around the proton, we have: �⃗� = 𝛺 ∧ 𝑟 

 
By deriving, we obtain the acceleration which has a normal component with respect to the speed: 𝜕𝑣𝜕𝑡 = − 𝑣𝑟  

 
The centrifugal effect of the rotational motion is given by: 
 𝑚 𝜕𝑣𝜕𝑡 = −𝑚 𝑣𝑟  

 
The application of the fundamental principle of dynamics in the Galilean reference frame 𝑅  to an 
electron rotating around the proton and subjected to an electrostatic force, is written: 𝑚 𝜕𝑣𝜕𝑡 = 𝐹  

 
We obtain: 𝑚 𝑣𝑟 = 𝑒4𝜋𝜀 𝑟  
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Figure 2: electron "stabilized" by an electrostatic force and by a rotational movement around the 
proton (the index 𝑟 for �⃗�  indicates that the electrostatic force is radial in the model). 
 
III.3.2 Mechanical energy in 𝑹𝟎 
We have the electrical potential energy in 𝑅 : 𝐸𝑝(𝐹 ) = − 𝑒4𝜋𝜀 𝑟 

 
Using 𝑚 = , one obtains for kinetic energy in 𝑅 : 𝐸𝑐 = 12 𝑚𝑣 = 12 𝑒4𝜋𝜀 𝑟 = − 12 𝐸𝑝(𝐹 ) 

 
We have mechanical energy 𝐸 in 𝑅 : 𝐸 = 𝐸𝑐 + 𝐸𝑝(𝐹 ) = −𝐸𝑐 = − 12 𝑚𝑣 = 12 𝐸𝑝(𝐹 ) = − 12 𝑒4𝜋𝜀 𝑟 

 
III.3.3 Centrifugal inertial force in 𝑹𝜴 
In Newtonian theory and Bohr's model, the Moon and the electron are respectively "stabilized" by an 
attractive force and by their rotational motion. Let us show that they can also be considered immobile 
and stabilized by an attractive force and a centrifugal inertial force. 
 
We place ourselves in the non-Galilean reference frame 𝑅  where the movement of the electron is 
cancelled. In 𝑅 , we always have the same attractive force: 𝐹 = − 𝑒4𝜋𝜀 𝑟  

 
We have a centrifugal inertial force: 𝐹 = 𝑚 𝑣𝑟  

 
In 𝑅 , the electron is immobile, we apply the principle of inertia: 0 = 𝐹 + 𝐹  
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We find the same equation: 𝑚 𝑣𝑟 = 𝑒4𝜋𝜀 𝑟  

 

 
Figure 3: electron "stabilized" by an electrostatic force and by a centrifugal inertial force 

 
III.3.4 Mechanical energy in 𝑹𝜴 
We have the electrical potential energy in 𝑅 : 𝐸𝑝(𝐹 ) = − 𝑒4𝜋𝜀 𝑟 

 
We have the potential energy of the centrifugal inertial force in 𝑅  (counted here positively when the 
force is repulsive): 𝐸𝑝(𝐹 ) = 12 𝑚𝑣  

We have the same mechanical energy in 𝑅 : 𝐸 = 𝐸𝑝(𝐹 ) + 𝐸𝑝(𝐹 ) = − 12 𝑚𝑣  

 
Note 1 on the a priori artificial side of introducing an inertial force 
Introducing a centrifugal inertial force may seem artificial. However, this has the advantage of being 
placed in a reference frame 𝑅  more natural for the electron: it is the one where it is motionless and 
does not radiate. 
This will have all its importance in the model of the electron of L. de Broglie where L. de Broglie 
models the electron by a standing wave (immobile wave in Space). 
 
Note 2, why combine electrostatic force and centrifugal inertial force? 
What remains unexplained is why the association in the Bohr electron model of these two forces: 
electrostatic force and centrifugal inertial force? 
We have the same question with the Kepler-Newton planetary model, why the association of these two 
forces: gravitational force and centrifugal inertia force? 
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III.3.5 Quantification of kinetic moment 
We recall the kinetic moment of a particle with a mass 𝑚: �⃗� = 𝑟 ∧ 𝑚�⃗� 

 
In his article, N. Bohr draws on the ideas of M. Planck and A. Einstein on quantifying energy and 
action 𝑆 using ℏ. He hypothesizes that kinetic momentum 𝜎  of the electron revolving around the 
proton is quantified, and that it is an integer multiple of ℏ: 𝜎 = 𝑟 𝑚𝑣 = 𝑛ℏ 

 
The integer 𝑛 corresponds to the possible orbits of the electron, 𝑛 = 1 corresponds to the lowest and 
most stable of orbits, 𝑛 = 2 corresponds to an orbit a little higher and a little less stable, and so on. 
 
III.3.6 Electron velocities, Bohr velocity 

From the equations 𝑚𝑣 =  and 𝑟 𝑚𝑣 = 𝑛ℏ, we deduce the different velocities of the 
electron, according to its orbit and independently of its mass. 
 
We have: 𝑚𝑟 𝑣 × 𝑣 = 𝑒4𝜋𝜀  

𝑛ℏ × 𝑣 = 𝑒4𝜋𝜀  

We obtain: 𝑣 = 𝑒4𝜋𝜀 𝑛ℏ 

 
For 𝑛 = 1, we have the highest velocity of the electron (also called Bohr velocity): 𝑣 = 𝑣  = 𝑒4𝜋𝜀 ℏ 

 
Note 
We often use: 𝑣  = ℏ = 𝛼 𝑐 with 𝛼 = ℏ  the fine structure constant, also called the electromagnetic 
coupling constant. 
 
The fine structure constant 𝛼 ≈  was proposed in 1916 by Arnold Sommerfeld to explain fine 
differences between the spectral lines of hydrogen. It relates the speed of light to the speed of the 
electron in its most stable orbit. We will see in the 4th memoir that the fine structure constant is 
frequently used in relativistic quantum electrodynamics and in the Standard Model. 
 
III.3.7 Rays of the hydrogen atom, Bohr radius 
According to the hypothesis of quantification of the kinetic moment, we have the radius: 𝑟 = 𝑛ℏ𝑚𝑣  
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By replacing 𝑣  by 𝑣 = ℏ, we get: 𝑟 = 4𝜋𝜀 ℏ𝑚𝑒 𝑛  

 
For 𝑛 = 1, we have the smallest radius. It is called the Bohr radius: 𝑟 = 𝑟 = 4𝜋𝜀 ℏ𝑚𝑒  

It is made to correspond to the radius of the hydrogen atom. Numerically, we have: 𝑟 ≈ 0,529𝐴 

 
III.3.8 Energy levels, finding the constant 𝑹𝑯 
From the radius 𝑟 , that is to say of the different possible orbits for the electron, N. Bohr defines 
energy levels: 𝐸 = − 12 𝑒4𝜋𝜀 𝑟  

With: 

𝑟 = 4𝜋𝜀 ℏ𝑚𝑒 𝑛  

𝐸 = − 12 𝑚𝑒(4𝜋𝜀 ℏ) 1𝑛  

 
N. Bohr applies M. Planck's quanta hypothesis to the transition from one energy level to another: 𝐸 − 𝐸 = ℎ𝜈 = ℏ2𝜋𝑐𝜆  

 
He obtains: 1𝜆 = 𝐸 − 𝐸ℏ2𝜋𝑐 = 𝑚𝑒(4𝜋) 𝜀 (ℏ) 𝑐 ( 1𝑛 − 1𝑚 ) 

 
We had the relationship of Balmer Rydberg Ritz: 1𝜆 = 𝑅 ( 1𝑛 − 1𝑚 ) 

 
N. Bohr gets for the constant 𝑅 : 𝑅 = 𝑚𝑒(4𝜋) 𝜀 (ℏ) 𝑐 

 
By calculation, he finds a value very close to the experimental measurement: 𝑅 ≈ 109,678𝑐𝑚  
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Thanks to its explanatory simplicity and its results confirmed by experience, the success of the Bohr 
electron model is rapid and considerable. He will inspire many physicists like Arnold Sommerfeld 
with his constant of fine structure in the search for a relativistic model. However, it is with the ideas of 
L. de Broglie and E. Schrödinger that the Bohr electron model will find his true extension. 
 
III.4 Ideas of L. de Broglie, the electron at the same time wave and particle 
III.4.1 Circular standing waves 
During the 1st World War, L. de Broglie worked on antennas installed at the top of the Eiffel Tower. 
He then became interested in the theory of antennas, as well as the standing waves involved in this 
theory and comprising a multiple and integer number of nodes. 
 
After reading Bohr's paper, L. de Broglie notes strong similarities between the mathematical model of 
standing waves and the Bohr electron model. A few years later, he modified the Rutherford-Bohr 
planetary model and imagined a new model for the electron. This model is no longer a point particle, it 
is both a wave and a particle. We talk about particle wave duality. 
 
In a Galilean reference frame 𝑅 , the electron wave is considered as a progressive wave, propagating 
at the speed 𝑣 , as the electron particle of the Bohr model. 
In the electron reference frame 𝑅 , the electron wave is considered a standing wave, that is to say 
immobile in Space. L. de Broglie approximates the number n of nodes of the electron standing wave to 
the number n of the mechanical energy level 𝐸 . 
 
Instead of the orbits of the electron, L. de Broglie imagines circular standing waves. The following 
figure proposes different possible configurations of the circular standing wave, with a number n of 
nodes and mechanical energy. 𝐸 , both crescents. For the circular standing wave, we have a number of 
nodes equal to the own mode n of the standing wave. 
 

 
Figure 4: example of the circular standing wave with increase in the number of nodes and mechanical 

energy 

 
III.4.2 Linking the data of Newtonian mechanics to those of wave mechanics 
Following his idea of particle wave, L. de Broglie wished to link the data of classical Newtonian 
mechanics to those of a new mechanics called wave mechanics, and which he conceived as a 

n=4    4 nodes 

Increasing 
mechanical 
energy 
 

n=6    6 nodes 

n=10   10 nodes 
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generalization of Newtonian mechanics. Thus, he seeks to relate the speed and momentum of the 
electron particle to a speed and momentum of the electron progressive wave. 
 
L. de Broglie interprets the electron not quite as a wave, but rather as a packet of waves (of very 
similar wavelengths) with a group velocity 𝑣 =  different from its phase velocity 𝑣 = . 
To make the link between the particle and the electron wave, L. de Broglie matches the speed 𝑣 of the 
electron particle (as defined in Classical Newtonian mechanics) to the group velocity 𝑣  of the 
electron wave: 𝑣 = 𝑣 = 𝜕𝜔𝜕𝑘  

 
He also matches the momentum 𝑝 of the electron closer to the momentum of a photon of wavelength 𝜆 
proposed by A. Einstein: 𝑝 = ℎ𝜆 

According to L. de Broglie, this formula also remains valid for a non-relativistic electron of mass 𝑚é  and wavelength 𝜆. That is to say, we have: 𝑝 = 𝑚é 𝑣 = ℎ𝜆 

 
III.4.3 Quantification condition 
By posing 𝑝 = 𝑚é 𝑣 =  for an electron, L. de Broglie intuitively sheds light on the Bohr 
quantification condition: 𝜎 = 𝑟 𝑚é 𝑣 = 𝑛ℏ 

 
So, that the circular electron standing wave is not destroyed on its circular trajectory of radius 𝑟  and 
length 𝑙 = 2𝜋𝑟  (that is, to avoid destructive interference), the length of this trajectory must be equal 
to n times the wavelength (with 𝑛 an integer) in 𝑅 : 𝑙 = 2𝜋𝑟 = 𝑛𝜆  

 
Now, for a progressive electron wave we have in 𝑅 : 𝑝 = 𝑚é 𝑣 = ℎ𝜆 

 
We obtain: 𝑙 = 2𝜋𝑟 = 𝑛𝜆 = 𝑛 ℎ𝑚é 𝑣  

 
We find again the Bohr quantification condition: 𝑟 𝑚é 𝑣 = 𝑛ℏ 

 
Note 
It is reminded that in 𝑅 , the electron wave is standing. In 𝑅 , the electron wave is progressive with 
velocity 𝑣 = 𝑣 = . 
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That we describe the electron in 𝑅  or 𝑅 , it is considered in a stable or permanent state and does not 
radiate energy. 
 
III.5 Schrödinger electron wave equation 
III.5.1 Historical Preamble 
In 1926, E. Schrödinger was inspired by Bohr's model of the electron and the ideas of L. de Broglie. In 
a few months, he published a series of fundamental articles later grouped in a collection Collected 
Papers on Wave Mechanics. In the 1st article, he proposes the famous equation that bears his name. 
 
The equation is then a formidable intellectual revolution. Thanks to it, we understand many properties 
of chemical elements and their electrons (energy level, chemical bonds, etc.). It sheds light on the 
periodic table of chemical elements by Dmitri Mendeleev (1870). It can be considered as the act of 
fusion between physics and chemistry. 
 
Note on the method used by E. Schrödinger 
In his first article from 1926: Quantification and proper values, E. Schrödinger obtained the 
Schrödinger equation at the 3rd page. 
 
To do this, he starts from Hamilton's partial differential equation: 𝐻(𝑞, 𝑝 = 𝜕𝑆𝜕𝑞) = 𝐸 

With 𝑞 the position, 𝑝 the momentum and 𝑆 = ∫ 𝐿𝑑𝑡 the action, integral of the Lagrangian 𝐿. 
 
He introduces the wave function 𝜓 in the form: 𝑆 = 𝑘 𝑙𝑜𝑔( 𝜓) 

with 𝑘 a constant having the dimensions of an action. 
 
He obtains for Hamilton’s partial differential equation: 𝐻(𝑞, 𝑘𝜓 𝜕𝜓𝜕𝑞) = 𝐸 

 
Using an analogy with a Kepler motion, he ends up after some contortions to his equation: 𝛥𝜓 + 2𝑚𝑘 (𝐸 − 𝐸 )𝜓 = 0 

With: 𝐸 = − 𝑒4𝜋𝜀 𝑟 

 
Subsequently, he gives to the constant 𝑘 the value of ℏ. 
 
We are now inspired by the ideas of L. de Broglie to find the Schrödinger equation. 
 
III.5.2 Refractive medium 
We remind the d'Alembert wave equation for a monochromatic wave 𝜓: 
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𝛥𝜓 − 𝑛𝑣 𝜕 𝜓 = 0 

with 𝑣  the phase velocity of the wave when the refractive index 𝑛 = 1 (that is, in a vacuum). 
 
Usually, we take 𝑣 = 𝑐. 
 
We have the phase velocity of the wave in a refractive medium of index 𝑛 ≠ 1: 𝑣 = 𝑣𝑛  

 
Note 
Do not confuse here the refractive index n and n the energy level of the stationary states of the 
electron. 
 
In the reference frame 𝑅  where the electron wave is immobile, we have a standing wave function that 
can be written: 𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧)𝑒  with 𝑓(𝑥, 𝑦, 𝑧) function of Space variables. 
 
We obtain a wave equation in the form: 𝛥𝜓 + 𝛺 𝑛𝑣 𝜓 = 0 

 
III.5.3 Phase velocity 
It is assumed that the electron is similar in 𝑅  as a progressive wave having a phase velocity: 𝑣 = 𝛺𝐾 

 
The momentum of the electron wave is equal to: 𝑝 = ℎ𝜆 = ℏ𝐾 

 
The energy of the electron wave is equal to: 𝐸 = ℏ𝛺 

 
We obtain for the phase velocity of the electron wave in a refringent medium: 𝑣 = 𝑣𝑛 = 𝛺𝐾 = ℏ𝛺ℏ𝐾 = 𝐸𝑝 

 
III.5.4 Schrödinger wave equation 
Following a classical reasoning, we have the relationship between mechanical energy, kinetic energy, 
and potential energy: 𝐸 = 𝐸 + 𝐸  with 𝐸 = 𝑞𝐴  electrical potential energy. 
 
We have for kinetic energy: 𝐸 = 𝑝2𝑚  
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We obtain: 𝐸 = 𝐸 − 𝐸 = 𝑝2𝑚  

 
We deduce the momentum of the electron: 𝑝 = 2𝑚 (𝐸 − 𝐸 ) 

 
We obtain for the phase velocity of the electron wave: 𝑣 = 𝑣𝑛 = 𝐸𝑝 = ℏ𝛺2𝑚 (𝐸 − 𝐸 ) 

 
By putting in the square, we have: 𝑣𝑛 = ℏ 𝛺2𝑚 (𝐸 − 𝐸 ) 

 
We obtain: 𝛺 𝑛𝑣 = 2𝑚ℏ (𝐸 − 𝐸 ) 

 
We had the wave equation: 𝛥𝜓 + 𝛺 𝑛𝑣 𝜓 = 0 

 
By substituting  to ℏ (𝐸 − 𝐸 ), we find the Schrödinger equation: 𝛥𝜓 + 2𝑚ℏ (𝐸 − 𝐸 )𝜓 = 0 

 
The choice of Cartesian coordinates is ill-suited to solve this equation. Spherical coordinates are 
usually used: 𝑟, 𝜃, 𝜙 with 𝜓(𝑟, 𝜃, 𝜙) = 𝜓(𝑟)𝜓(𝜃, 𝜙). 
 
III.5.5 Solving the Schrödinger equation for the radial part 𝝍(𝒓) 
It is proposed to solve the Schrödinger equation for the radial part 𝜓(𝑟) and for the first atomic orbital 
called 1𝑠 (we usually speak of layer K and energy level 𝑛 = 1). 
 
For the electron level 𝑛 = 1, we have the mechanical and potential energies: 𝐸 = − 𝑚 𝑒8𝜀 (2𝜋ℏ)  

𝐸 = − 𝑒4𝜋𝜀 𝑟 
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We have the wave vector 𝐾: 𝐾 = 𝑝ℏ = 𝑚 𝑣ℏ = 𝑚 𝛼 𝑐ℏ = 𝑚 𝑒4𝜋𝜀 ℏ = 1𝑟 ℏ  

which is the inverse of the radius of the Bohr atom. 
 
Nota 
The Schrödinger radial wave equation corresponds to the wave equation of the Bohr electron model. 
We find in 𝐾 =  the Bohr's radius. 
Note that the radial part wave equation does not explain atomic orbitals and therefore chemical bonds. 
In addition, the tangential or angular part (ψ(θ,φ)) of the wave equation must be used to unify physics 
and chemistry. 
 
We obtain: 2𝑚ℏ 𝐸 = 2𝑚ℏ 𝑚 𝑒8𝜀 (2𝜋ℏ) = −𝐾  2𝑚ℏ 𝐸 = − 2𝐾𝑟  

 
So, we have a differential equation in the form: 𝛥𝜓 + 2𝑚ℏ (𝐸 − 𝐸 )𝜓 = 0 

𝛥𝜓 − (𝐾 − 2𝐾𝑟 )𝜓 = 0 

 
The differential equation is solved in spherical coordinates for the radial part 𝜓(𝑟): 𝛻 𝜓(𝑟) = (𝐾 − 2𝐾𝑟 )𝜓(𝑟) 

 
A solution is found in the form of: 𝜓(𝑟) = 𝐴𝑒  

 
Normalization of the wave function involves: 𝜓 4𝜋𝑟 𝑑𝑟 = 1 

the volume element 𝑑𝜏 being equal to 4𝜋𝑟 𝑑𝑟. 
 
There is a wave function for the first atomic orbital 1𝑠: 

𝜓(1𝑠) = 𝐾𝜋 𝑒  

 
We obtain as a solution a wave independent of Time and standing in the reference frame 𝑅 . We find 
the wave vector 𝐾. However, it does not play its role as a "propagator" as it would in the case of a 
progressive wave, because it is not preceded by a complex i. 
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Note, simplified Schrödinger equation 
We can start from a wave equation independent of Time. We have: 𝛥𝜓 + 𝛺𝑣 𝜓 = 0 

 
If a complex phase velocity is set: 𝑣 = 𝑖𝛺𝐾  

 
We obtain the differential equation: 𝛥𝜓 − 𝐾 𝜓 = 0 

 
By solving the equation in Cartesian coordinates, we find a solution in the form: 𝜓(𝑥) = 𝐴𝑒  

 
III.5.6 Group velocity 𝒗𝒈 of the electron progressive wave 
According to the ideas of L. de Broglie, the electron velocity of the Bohr model corresponds to the 
group velocity of the electron progressive wave (also called an electron wave packet). We resume here 
his demonstration which makes it possible to verify this idea. 
 
We place ourselves in the reference frame 𝑅  where the electron progressive wave propagates at the 
speed 𝑣 . Let 𝜈 the frequency and 𝜆 the wavelength of the electron progressive wave. 
 
According to the Rayleigh relation on group speed, we have: 1𝑣 = 𝜕𝐾𝜕𝛺 = 𝜕 1𝜆𝜕𝜈 = 𝜕 1𝜆𝜕𝜈 = 𝜕 𝜈𝑣𝜕𝜈 = 1𝑣 𝜕𝑛𝜈𝜕𝜈  

 
So, we have: 1𝑣 = 𝜕𝐾𝜕𝛺 = 𝜕𝑝𝜕𝐸 = 𝜕 2𝑚 (𝐸 − 𝐸 )𝜕𝐸 = 𝑚2𝑚 (𝐸 − 𝐸 ) 

 
We derive from it the group speed of the electron wave: 𝑣 = 2𝑚 (𝐸 − 𝐸 )𝑚  

And with: 𝑝 = 2𝑚 (𝐸 − 𝐸 ) = 𝑚 𝑣 

 
We find a group velocity 𝑣   of the electron wave equal to the (Newtonian) speed 𝑣 of the electron 
particle: 𝑣 = 𝑚 𝑣𝑚 = 𝑣 
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III.5.7 Index 𝒏 
In the absence of an electrostatic field, we have the phase velocity of the electron progressive wave: 𝑣 = ℏ𝛺−2𝑚 𝐸  

 
In the presence of an electrostatic field, we have the phase velocity of the electron progressive wave: 𝑣𝑛 = ℏ𝛺2𝑚 (𝐸 − 𝐸 ) 

 
By squared: 𝑣𝑛 = ℏ 𝛺2𝑚 (𝐸 − 𝐸 ) 

 
By eliminating 𝑣 , we get the index 𝑛: 𝑛 = 1 − 𝐸𝐸 = 1 − 𝐸ℏ𝛺 

 
Note 
The existence of a refringent environment (𝑛 ≠ 1) is here related to the presence of an electrostatic 
field. 
 
III.5.8 Lagrangian of the Schrödinger equation 
We remind the Lagrangian from the Schrödinger equation: 𝐿 = 𝜓 (𝑖ℏ𝜕 + ℏ (𝜕 − 𝑖 𝑒ℏ 𝐴 )2𝑚 − 𝑒𝐴 )𝜓 

 
Applying the Euler-Lagrange equation − ( ̇) = 0 to this Lagrangian 𝐿, we find again the 
Schrödinger equation: 𝑖ℏ𝜕 𝜓 = (− ℏ2𝑚 (𝜕 − 𝑖 𝑒ℏ 𝐴 ) + 𝑒𝐴 )𝜓 

 

III.5.9 Probabilistic interpretation of the wave function 
In 1926, Max Born proposed to interpret the square of the wave function, or the module squared if the 
wave function is complex, |𝜓| , as the probability density of the presence of the particle. 
 
By integrating on any volume 𝑉, we obtain the probability of finding the object in this volume: 𝑃 = |𝜓(𝑥, 𝑦, 𝑧)| 𝑑𝜏 

 
We also have the condition of normalization on an infinite volume: 𝑃 = |𝜓(𝑥, 𝑦, 𝑧)| 𝑑𝜏 = 1 
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This interpretation is included in what is now called the Copenhagen interpretation, in reference to the 
Institute of Physics directed by N. Bohr and located in that city. 
 
There are other interpretations, more or less close (and more or less compatible) with that of 
Copenhagen. For example, instead of having an electron located in a small volume of Space, the 
electron is distributed throughout Space, with a density 𝜌 proportional to |𝜓| . We have for the total 
electric charge of the electron: 𝑒 = ∫ 𝜌(𝑥, 𝑦, 𝑧) 𝑑𝜏. 
 
We find in a way in these 2 interpretations, the duality wave corpuscle with: 

- for the Copenhagen interpretation, a probabilistic electron, localized and therefore more 
particle, 

- and for the second interpretation (the one that could be called de Broglie), an electron 
distributed throughout Space and therefore more wave. 

 
III.5.10 Conclusion of the chapter 
The electron models of Bohr, de Broglie and Schrödinger favours two reference frames, continually 
passing from one to the other in the reasoning conducted. One 𝑅  considered Galilean, where the 
electron is rotating and is interpreted as a progressive wave verifying 𝑝 = ℏ𝐾. The other 𝑅  
considered non-Galilean, where the electron is immobile and is interpreted as a standing wave. It is in 
this one that we obtain the functions of standing wave solutions of the Schrödinger equation. 
 
In his writings, L. de Broglie presents wave mechanics as a generalization of Newtonian mechanics. 
We will now focus on different wave equations that can be interpreted as extensions of the Newton's 
fundamental principle of dynamics. 
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Chapter IV Local gauge theories, applications to different wave functions 
(from Dirac 1928, Schrödinger 1925 to Pauli 1927) 

 
Subject of the chapter 
We are interested in the conceptual similarities between: 

- Newtonian mechanics dating from the17th century and allowing to describe gravitation and 
planetary systems, 

- local gauge theories developed especially in the 20th century, and allowing to describe the 
electromagnetic force, strong and weak nuclear interactions, and particle systems. 

 
This will make it possible to study the wave functions of Dirac, Schrödinger and Pauli proposed in the 
1920s, from a local gauge theory angle. 
 
IV.1 General information on Local Gauge theories 
The terms invariance of Gauge and transformation of Gauge may seem a priori enigmatic, they are in 
fact inspired by notions already present in Newtonian mechanics. We propose here to clarify these 2 
terms via their similarities with Newtonian mechanics. 
 
IV.1.1 What is invariant? 
Invariance is the respect of the fundamental laws of Nature regardless of the change of reference 
frames or the transformation of local gauge, that is to say the principle of relativity dear to A. Einstein. 
 
In Newtonian mechanics, when cancelling a rotation vector 𝛺 (i.e., during a change of reference 
frames), centrifugal and Coriolis inertial forces are added, in order to respect the Newton's 
fundamental principle of dynamics. 
In a similar way, in local gauge theories, when cancelling part of the phase of the wave function (i.e., 
during a local gauge transformation), quadrivectors of interaction momentum energies are added 
(associated with electromagnetic interaction or strong and weak interactions), in order to respect the 
wave equation. 
It is this respect for the wave equation, regardless of the local Gauge transformation, that is considered 
the desired Gauge invariant. 
 
Thus, in Newtonian mechanics, the fundamental law of Nature, that is to say the invariant to be 
respected during a change of references, this is the Newton's fundamental principle of dynamics 𝑚�⃗� =𝛴�⃗�, even if it means adding inertial forces. 
In wave mechanics (or quantum physics), the fundamental law of Nature or the invariant to be 
respected during a local gauge transformation, this is the wave equation, even if it means adding 
potential momentum. 
 
Note 1 
We will see, however, that we do not manage to generalize this principle as far as we would like. 
Indeed, depending on the case where we stand, the wave equation to be respected is not exactly the 
same. 
 
In a vacuum (no mass and no electric charge), the wave equation to be respected is the one proposed 
by Jean Le Rond d'Alembert in 1746: 𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 0 
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In relativistic quantum physics, the wave equation to be respected is that of Klein Gordan proposed in 
1926: 𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 𝑚 𝑐ℏ 𝜓 

 
In non-relativistic quantum physics, the wave equation to be respected is that of free Schrödinger 
proposed in 1925 (absence of electric potential): 𝛥𝜓 − 𝑖2𝑚ℏ 𝜕𝜓𝜕𝑡 = 0 

 
This last free Schrödinger wave equation reminds the heat equation (or scattering equation: the 
variation of a concentration in Time is proportional to the relative surplus of this concentration in its 
infinitesimal environment) proposed by Joseph Fourier in 1807: 𝛥𝑢 − 1𝛼 𝜕𝑢𝜕𝑡 = 0 

 
Note 2 
It should be noted that the Maxwell Faraday tensor, as well as Maxwell's equations, are also conserved 
during a local gauge transformation. Maxwell's tensor Faraday and Maxwell's equations are therefore 
considered fundamental laws of Nature in local gauge theories. 
 
IV.1.2 What do we transform? 
A local gauge transformation consists in modifying (partially cancelling) on the one hand the phase of 
the wave function, on the other hand the potentials (electromagnetic or other). 
We can compare a transformation of Local Gauge to a change of reference frames of Newtonian 
mechanics where we modify the movement of the reference frame (for example, we cancel a rotation 
vector 𝛺). 
 
IV.1.3 What do we do to preserve invariance (of the laws of Nature) during transformation? 
In Newtonian mechanics, when we make a change of Galilean to non-Galilean reference frames, we 
add inertial forces in the Newton's fundamental principle of dynamics. These forces can derive from 
potential energy, as this is the case with centrifugal inertial force. 
In local gauge theories, during a local gauge transformation, the derivative of the wave function is 
transformed into a covariant derivative. We will see that this amounts to adding a potential momentum 
energy quadrivector, which is associated with an interaction. 
 
These interactions are in a way the counterpart of the inertial forces of Newtonian mechanics. In their 
nature, they differ since it is not the centrifugal force or the Coriolis force, but the electromagnetic 
interaction and weak and strong nuclear interactions. 
 
Nota 
In relativistic quantum electrodynamics or in the Standard Model, the addition of a potential 
momentum energy quadrivector 𝑖𝑒𝐴  (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧) (in partial derivatives or wave equations) is like 
adding an energy of interaction in the Lagrangian. This interaction energy can represent 
electromagnetic, strong and weak interactions. 
 
In the case of electromagnetic interaction, the interaction energy is precisely equal to the generalized 
potential energy, which with the help of the Euler-Lagrange equation makes it possible to find the 
electromagnetic force. 
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On the other hand, for strong and weak interactions, this is not the case. In fact, for these interactions, 
the notion of force does not exist, in the sense that these interactions do not intervene in the Newton's 
fundamental principle of dynamics. 
 
IV.1.4 What is the reference? 
In Newtonian mechanics, the basic reference frame is the Galilean reference frame, where the 
fundamental principle of dynamics applies without having inertial forces to add. 
 
For local gauge theories, vacuum (i.e., a homogeneous, linear and isotropic medium  without mass and 
electric charge) could appear as the reference. The wave equation to be respected would then be that of 
Alembert. 
 
However, this is not suitable for relativistic quantum physics where the wave equation to be respected 
is that of Klein Gordan. Compared to that of Alembert, there appears an additional mass term. 
We do not know of a local gauge transformation that allows us to pass from the d'Alembert wave 
equation to that of Klein Gordan. In the latter case, the reference would rather be a "mass" medium, 
homogeneous, linear and isotropic. 
 
A similar problem arises in non-relativistic quantum physics where the wave equation to be respected 
is that of free Schrödinger. We do not know of a local gauge transformation that allows us to pass 
from the Alembert wave equation to the free Schrödinger equation. 
 
IV.2 Some reminders about wave equations 
IV.2.1 D'Alembert's wave equation (1746) 
We remind the function of a progressive, sinusoidal, plane, and monochromatic wave that propagates 
in direction of 𝑥 and  𝑡: 𝜓 = 𝑐𝑜𝑠( 𝜔𝑡 − 𝑘. �⃗� + 𝜙) 

with 𝜙 the phase at the origin, 𝜔 the pulsation and 𝑘 the wave vector. 
 
We have in complex notation: 𝜓 = 𝑒 ( ⃗ . ⃗ ) 
 
The wave function verifies the Alembert equation (wave propagation equation): 1𝑣 𝜕 𝜓 − 𝜕 ⃗ 𝜓 = 0 

with 𝛥 = 𝛻 = 𝜕 ⃗  the Laplacian operator (second derivative relative to Space), 𝑣  the phase velocity of the wave. 
 
Note on the method of J. le Rond d'Alembert 
To find his wave equation = , J. le Rond d'Alembert seeks to model the string of a violin 

and is inspired by the Newton's fundamental principle of dynamics 𝑚 = 𝛴�⃗�. 

 represents acceleration,  represents the sum of the forces and  represents the term mass (as if 

energy 𝐸  was equal to 1 inspired by 𝐸 = 𝑚𝑐 ). 
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IV.2.2 Dispersion relationship 
We have the phase velocity, also called dispersion relationship between the pulsation 𝜔 and the wave 
vector 𝑘. In a dispersive medium, the index 𝑛 is a function of the pulsation 𝜔. We have: 𝑣 = 𝜔𝑘 = 𝑐𝑛(𝜔) 

 
In a non-dispersive medium, the index 𝑛 is independent of 𝜔, we have: 𝑣 = 𝜔𝑘 = 𝑐𝑛 

 
In a vacuum, 𝑛 = 1, we have: 𝑣 = 𝜔𝑘 = 𝑐 

 
IV.2.3 Momentum and energy operators 
Following the ideas of L. de Broglie of a particle wave duality, we pass from a particle characterized 
by its momentum 𝑝  and its energy 𝐸 = 𝑚 𝑐 , to a wave characterized by its wave vector 𝑘  and its 
pulsation 𝜔  through relationships: 𝑝 = ℏ𝑘  𝐸 = 𝑚 𝑐 = ℏ𝜔  
 
For a progressive wave toward the x direction, a easy wave function ψ is for example: 𝜓 = 𝑐𝑜𝑠 (𝜔 𝑡 − 𝑘 �⃗�) 
 
This wave function can be rewritten from 𝑝  and 𝐸 : 𝜓 = 𝑐𝑜𝑠 (𝐸ℏ 𝑡 − 𝑝ℏ �⃗�) 
 
In complex notation: 𝜓 = 𝑒 ( ℏ ℏ⃗ ⃗) 
 
We have the partial derivative with respect to x of the wave function 𝜓: 𝜕 𝜓 = −𝑖 𝑝ℏ  𝜓 −𝑖ℏ𝜕 𝜓 = 𝑝 𝜓 
 
Following the previous relation, in Quantum Physics (or Wave Mechanics), we usually define a 
momentum operator: �̂� = −𝑖ℏ𝜕  
 
The operator �̂�  "acts" on the wave function and makes it possible to obtain a momentum: �̂� 𝜓 = −𝑖ℏ𝜕 𝜓 = 𝑝 𝜓 
 
We have the partial derivative with respect to t of the wave function 𝜓: 𝜕 𝜓 = 𝑖 𝐸ℏ  𝜓 𝑖ℏ𝜕 𝜓 = 𝐸 𝜓 
 
Following the previous relation, in Quantum Physics, we usually define an energy operator: 𝐸 = iℏ ∂  
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The operator 𝐸  "acts" on the wave function and makes it possible to obtain an energy: 𝐸  𝜓 = 𝑖ℏ𝜕 𝜓 = 𝐸 𝜓 
 
Note on the notation of an operator 
In Quantum Physics, we also frequently use notation ^ to designate an operator. It gives �̂� or 𝐸, for 
momentum and energy operators. In the rest of the chapter, we will also discuss 𝑆 for spin kinetic 
moment operator and �̂�  for the spin magnetic moment operator. 
 
IV.2.4 Dispersion relations in wave mechanics 
For a particle wave, the relationship between energy 𝐸 and momentum 𝑝 can be seen as a relationship 
between 𝜔 and 𝑘, and be interpreted as a relationship of dispersion. 
 
We have the following dispersion relations. 
1/ For a non-relativistic particle wave of mass 𝑚: 𝐸 = 𝑝2𝑚 

 
2/ For a relativistic particle wave of mass 𝑚: 𝐸 = 𝑝 𝑐 + 𝑚 𝑐  

 
3/ For a particle wave (relativistic or not) of zero mass and zero potential energy: 𝐸 = 𝑝𝑐 

 
Note 
For relativistic mechanics, we note that the passage of 𝐸 = 𝑝 𝑐 + 𝑚 𝑐  to 𝐸 = 𝑝𝑐 for a particle of 
zero mass is obvious. 
For non-relativistic mechanics, the index 𝑛 can be used with 𝑛 = 1 −  and 𝐸  the potential energy 

of an electrostatic force. By making tender 𝐸  towards 0, we find 𝑛 = 1 and 𝑣 = = 𝑐 = = . So, 𝐸 = 𝑝𝑐. 
 
IV.2.5 Dispersion relationships, energy mass momentum relationships, and wave equations 
In Quantum Physics (or Wave Mechanics), to pass from momentum energy relationships to wave 
equations, we usually make substitutions: 𝑝 → −𝑖ℏ𝜕 = �̂�  𝐸 → 𝑖ℏ𝜕 = 𝐸  

 
Thus from 𝐸 = 𝑝 𝑐 , we find the d'Alembert’s wave equation: 𝑝 − 1c 𝐸 = 0 𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 0 

 
Similarly, from relativistic energy 𝐸 = 𝑝 𝑐 + 𝑚 𝑐 , we find the Klein Gordan wave equation: 
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𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 𝑚 𝑐ℏ 𝜓 

 
Similarly, from kinetic energy 𝐸 = , we find the free Schrödinger wave equation: 𝛥𝜓 − 𝑖2𝑚ℏ 𝜕𝜓𝜕𝑡 = 0 

 
IV.2.6 Wave vector pulsation quadrivector 
In wave mechanics, the energy momentum quadrivector of the particle is connected to a pulsation 
quadrivector wave vector of the wave. 
 
We have the quadrivector energy momentum: 4𝑝 = (𝐸𝑐 , 𝑝 ) 

We have the pulsation quadrivector wave vector: 4𝑘 = (𝜔 /𝑐 , 𝑘 / ) 

 
We have the relationship between the two quadrivectors: 4𝑘 = 4𝑝ℏ  

 
These two quadrivectors are characteristics specific to the particle wave. 
 
IV.3 Simple study of a local gauge transformation, case of Time 
IV.3.1 Wave function 
Let be a wave function in the reference frame 𝑅  (similar to vacuum): [𝜓] = 𝑐𝑜𝑠( 𝑞ℏ (𝑡 − 𝜃(𝑡)) 

with 𝑞 the electric charge density and 𝜃(𝑡) a phase depending on the moments. 
 
Note 
The terms of Space are not indicated here. 
 ℏ plays the role of the pulsation 𝜔. 
We can see it like this: 𝜔 = ℏ = ℏ = ℏ with the electric potential 𝐴 = 𝑖𝑑. 
 
In complex form, this gives: [𝜓] = 𝑒 ℏ( ( )) 
 
We have in the reference frame 𝑅 : [𝑡] = 𝑡 
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[𝜕 ] = 𝜕𝜕𝑡 

 
We have the derivative of 𝜓 with respect 𝑡 in 𝑅 : [𝜕 ] 𝜓 = (𝑖 𝑞ℏ − 𝑖 𝑞ℏ 𝜕𝜃(𝑡)𝜕𝑡 )𝜓 

 
Note 
The derivative of 𝜓 with respect to 𝑡 will play the role of the wave equation to be respected during the 
transformation of Local Gauge. 
 
IV.3.2 Local Gauge Transformation 
We perform a transformation of Local Gauge, comparable to a change of reference frames from 𝑅  to 𝑅 , where physical quantities are modified, and others are retained. 
 
Electric charge density 𝑞 is the quantity retained from 𝑅  to 𝑅 . 𝐴 = ( ) = 𝜕 𝜃(𝑡) is the quantity cancelled or subtracted from 𝑅  to 𝑅  (𝐴  is of electric potential 
type). 
 
When transforming Local Gauge from 𝑅  to 𝑅 , the following 2 transformations apply. 
 
On the one hand, we perform a translation in Time, which transforms the phase of the wave function: 𝑡 → [𝑡] = 𝑡 − 𝜃(𝑡) 

[𝜓] = 𝑒 ℏ( ( )) → [𝜓] = [𝜓] 𝑒 ℏ ( ) = 𝑒 ℏ  

 
On the other hand, the electrical potential is modified by subtracting 𝐴 = 𝜕 𝜃(𝑡): 𝐴 = 0 → 𝐴 = 𝐴 − 𝜕 𝜃(𝑡) = −𝜕 𝜃(𝑡) 

 
Note 1 
We speak here of transformation of Local Gauge because the function 𝜃(𝑡) is a function of a local 
variable, the instants. 
 
Note 2 
The transformation of electrical potential 𝐴  given above, retains the Maxwell Faraday tensor, as well 
as Maxwell's equations. 
 
 
IV.3.3 The invariant: the partial derivative with respect to 𝒕 
In 𝑅 , we have the partial derivative with respect to 𝑡 of the wave function: [𝜕 ] [𝜓] = (𝑖 𝑞ℏ − 𝑖 𝑞ℏ 𝐴 )[𝜓]  

 
In a linear transformation, the partial derivative 𝜕 𝜓 turns into 𝑎𝜕 𝜓 in the same way as 𝜓 turns into 𝑎𝜓. 
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The objective is that during a transformation of Local Gauge from 𝑅  to 𝑅 , the partial derivative [𝜕 ] [𝜓]  turns into [𝜕 ] [𝜓]  in the same way as [𝜓]  turns into [𝜓] . 
 
If the first partial derivative with respect to Time transforms in the same way, the second partial 
derivative also, and a wave equation of the kind − = 0 also. 
 
Note 
We are interested here only in the partial derivative with respect to Time. We will have an analogous 
reasoning for the second partial derivative with respect to Space . 
 
For this purpose, we define the so-called covariant derivative: [𝜕 ] [𝜓] = ([𝜕 ] − 𝑖 𝑞ℏ 𝐴 )[𝜓]  

 
We check that the covariant derivative thus defined, verifies our objective: [𝜕 ] [𝜓] = ([𝜕 ] − 𝑖 𝑞ℏ 𝐴 )[𝜓]  

= ([𝜕 ] − 𝑖 𝑞ℏ 𝐴 )[𝜓] 𝑒 ℏ ( ) 
= [𝜕 ] ([𝜓] 𝑒 ℏ ( )) − 𝑖 𝑞ℏ 𝐴 𝑒 ℏ ( )[𝜓] − 𝑖 𝑞ℏ 𝑒 ℏ ( )𝜕 𝜃(𝑡)[𝜓]  

= 𝑒 ( )[𝜕 ] ([𝜓] + 𝑖 𝑞ℏ 𝜕 𝜃(𝑡)𝑒 ℏ ( )[𝜓] − 𝑖 𝑞ℏ 𝐴 𝑒 ℏ ( )[𝜓] − 𝑖 𝑞ℏ 𝑒 ℏ ( )𝜕 𝜃(𝑡)[𝜓]  

= 𝑒 ℏ ( )[𝜕 ] ([𝜓] − 𝑖 𝑞ℏ 𝐴 𝑒 ℏ ( )[𝜓]  

= 𝑒 ℏ ( )([𝜕 ] − 𝑖 𝑞ℏ 𝐴 )[𝜓]  

 
So, we have: [∂ ] [ψ] = 𝑒 ℏ ( )([∂ ] )[ψ]  
 
We obtain the desired shape, with the wave function 𝜓 and its partial derivative 𝜕 𝜓 which transforms 
in the same way by multiplying by 𝑒 ℏ ( ): [𝜓] → [𝜓] = 𝑒 ℏ ( )[𝜓]  [𝜕 ] [𝜓] → [𝜕 ] [𝜓] = 𝑒 ℏ ( )([𝜕 ] )[𝜓]  

 
In 𝑅 , we give in abbreviated form the partial derivative: [𝜕 ] = [𝜕 ] − 𝑖 𝑞ℏ 𝐴  

 
In conclusion, during the passage from 𝑅  to 𝑅 , to have a partial derivative that transforms in the 
same way as the wave function, a term must be added −𝑖 ℏ 𝐴  comparable to an electrostatic potential 
energy and from which an electrostatic force can be derived. 
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IV.4 Simple study of a local gauge transformation, case of Space 
IV.4.1 Wave function 
Let be a wave function in the reference frame 𝑅  (similar to vacuum): [𝜓] = 𝑒 ℏ( ( )) 
with 𝑞 the electric charge density and 𝜃(𝑥) a phase depending on the positions. 
 
Note 
The terms of Time are not indicated here. 
 ℏ plays the role of the wave vector 𝐾. 
We can see it like this: 𝐾 = ℏ = ℏ = ℏ with magnetic potential 𝐴 = 𝑖𝑑 
 
IV.4.2 Local Gauge Transformation 
The transformation of Local Gauge is here comparable to a change of reference frames from 𝑅  to 𝑅 . 𝐴 = ( ) = 𝜕 𝜃(𝑥) is the quantity cancelled or subtracted from 𝑅  to 𝑅 . 𝐴  is of the magnetic 
vector potential type. 
 
For the covariant derivative, we obtain a relation in Space similar to that of Time: [𝜕 ] [𝜓] = ([𝜕 ] − 𝑖 𝑞ℏ [𝐴 ] )[𝜓]  

 
Note 
We can generalize to Space-Time the covariant derivative: 𝜕 [𝜓] = ( 𝜕 − 𝑖 𝑞ℏ 𝐴 )[𝜓]  

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 
 
To have exactly the same form of the covariant derivative with respect to 𝑡 and to 𝑥, The usual sign of 
the three components of the magnetic vector potential is reversed. 
 
We have the desired form, that is to say that the partial derivative [𝜕 ] [𝜓]  turns into [𝜕 ] [𝜓]  in the same way as [𝜓]  turns into [𝜓] . [ψ] → [ψ] = e ℏ ( )[ψ]  [𝜕 ] [𝜓] → [𝜕 ] [𝜓] = 𝑒 ℏ ( )[𝜕 ] [𝜓]  

 
In 𝑅 , we give in abbreviated format the partial derivative: [𝜕 ] = [𝜕 ] − 𝑖 𝑞ℏ [𝐴 ]  

 
In conclusion, during the passage from 𝑅  to 𝑅 , to have a partial derivative that transforms in the 
same way as the wave function, a term must be added −𝑖 ℏ 𝐴  comparable to a magnetic potential 
momentum. 
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The addition of an electrostatic potential energy and a magnetic potential momentum in the partial 
derivatives is equivalent to adding a generalized electromagnetic potential energy: 𝐸𝑝 = 𝑞(𝐴 − (�⃗� ⋅ 𝐴 ) 
in the Lagrangian. Using the Euler-Lagrange equation, we can derive the electromagnetic force from 
the generalized electromagnetic potential energy. We will come back to that in the next memoir. 
 
IV.5 From the D'Alembert wave equation (1746) to the Dirac wave equation (1928) in 

an electromagnetic field 
IV.5.1 General 
We are now interested in the Dirac wave equations of a massless particle, then a particle with mass, 
then a particle with mass in an electromagnetic field. 
By putting these equations squared, we find 3 wave equations, first that of Alembert (in a vacuum), 
then that of Klein Gordan free, then that of Dirac in an electromagnetic field. 
 
We would like the passages from a particle without mass, to a particle with mass, then to a particle 
with mass in an electromagnetic field, to be interpreted as transformations of Gauge. 
We will see that if this is indeed the case for the second passage (from free particle to particle in an 
electromagnetic field), it is not a priori the case for the first passage (from particle without mass to 
particle with mass). 
 
IV.5.2 Free Dirac equation of a massless particle in the reference frame 𝑹𝟎 (the vacuum) 
We remind the free Dirac equation of a massless particle in a reference frame 𝑅  (similar to vacuum): (𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 )𝜓 = 0 

 
By elevating this equation squared, we find the d'Alembert wave equation in 𝑅 : ([𝜕 ] − [𝜕 ] )𝜓 = 0 

 
Reminder about the matrices used 
We remind the 3 Pauli matrices 2 × 2 used by W. Pauli to introduce spin into the Schrödinger 
equation (we will come back to this): 𝐼 = 1 00 1  𝜎 = 𝜎 = 0 11 0  𝜎 = 𝜎 = 0 −𝑖𝑖 0  𝜎 = 𝜎 = 1 00 −1  
 
We remind the matrices 4 × 4 𝛽 and 𝛼  defined from the 3 Pauli matrices: 𝛽 = 𝐼 00 −𝐼  𝛼 = 0 𝜎𝜎 0  𝑖 = 1,2,3 
 
We also frequently use matrices 4 × 4 𝛾  et 𝛾 : 𝛾 = 𝛽 = 𝐼 00 −𝐼  𝛾 = 𝛾 𝛼 = 0 𝜎−𝜎 0  
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IV.5.3 Free Dirac equation of a relativistic particle with mass (electron type) 
In 1928, when P. Dirac proposed his equation, his objective was not to obtain an equation that raised 
to square, allowed to find the D'Alembert wave equation, but an equation that raised squared, allowed 
to find the relativistic equation of dispersion of A. Einstein: 𝐸 = 𝑝 𝑐 + 𝑚 𝑐  

 
That is, if we translate as a function of wave, we have the Klein Gordan wave equation: 𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 𝑚 𝑐ℏ 𝜓 

 
In the context of relativistic wave mechanics of the electron, P. Dirac proposes the wave equation of a 
particle with mass (electron type), called the free Dirac equation: (𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 + 𝑖 𝑚𝑐ℏ )𝜓 = 0 

 
Nota: the reference frame 𝑅  is always the basic reference frame, but it is no longer a question of 
vacuum reference frame 𝑅  because there is a mass 𝑚. 
 
It can be written in abbreviated format: (𝛾 𝜕 + 𝑖 𝑚𝑐ℏ )𝜓 = 0 

 
The wave function 𝜓 used by P. Dirac is here a spinor with 4 components (we also speak of bispineur 
with two components each). Like the non-relativistic Pauli wave equation proposed a few months 
earlier, the Dirac equation includes the notion of spin via the 3 Pauli matrices. 
 
By elevating the free Dirac equation squared, we obtain the free Klein Gordan wave equation: ([𝜕 ] − [𝜕 ] + 𝑚 𝑐ℏ )𝜓 = 0 

( 𝜕 + 𝑚 𝑐ℏ )𝜓 = 0 

with 𝜕 = 𝜕 − 𝛻 , 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 
 
 
Note 1, brief explanation of P. Dirac's method 
P. Dirac is looking for a wave equation that is squared, making it possible to find: 𝛻 𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 𝑚 𝑐ℏ 𝜓 

ou 𝐸 = 𝑝 𝑐 + 𝑚 𝑐  

 
In 1928, he assumed the existence of coefficients. 𝐴, 𝐵, 𝐶, 𝐷 that meet this objective and that verify 
the conditions: 𝛻 − 1𝑐 𝜕 = (𝐴𝜕 + 𝐵𝜕 + 𝐶𝜕 + 𝑖𝑐 𝐷𝜕 )(𝐴𝜕 + 𝐵𝜕 + 𝐶𝜕 + 𝑖𝑐 𝐷𝜕 ) 𝐴𝐵 + 𝐵𝐴 = 0 𝐴 = 𝐵 =. . . = 1 
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(𝐴𝜕 + 𝐵𝜕 + 𝐶𝜕 + 𝑖𝑐 𝐷𝜕 )𝜓 = 𝑘𝜓 (𝛻 − 1𝑐 𝜕 )𝜓 = 𝑘 𝜓 
 
He finds for 𝐴, 𝐵, 𝐶, 𝐷 some matrices 4 × 4 equal to: 𝐴 = 𝑖𝛽𝛼  𝐵 = 𝑖𝛽𝛼  𝐶 = 𝑖𝛽𝛼  𝐷 = 𝛽 
 
Note 2 on the passage from d’Alembert to Klein Gordan (i.e., from free Dirac without mass to free 
Dirac with mass) 
To switch from free Dirac without mass to free Dirac with mass, the term 𝑖 ℏ  is added. We would like 
to equate this addition to a transformation of Local Gauge from 𝑅  to 𝑅 : 𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 = 𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 − 𝑖 𝑚ℏ 𝑐 

Unfortunately, it does not work because we do not find in the term 𝑖 ℏ 𝑐 a potential momentum energy. 
We perceive here an unclarified point of relativistic quantum theory, because the basic reference frame 
is not 𝑅  (the vacuum), but a reference frame 𝑅  which already contains a mass. 
 
IV.5.4 Dirac equation of a relativistic particle with mass (electron type) in an electromagnetic 

field 
We remind the covariant derivative during a local gauge transformation from 𝑅  to 𝑅 , with 𝐴  the 
cancelled (or subtracted) electromagnetic potential quadrivector, and ℏ the quantity retained: 𝜕 = 𝜕 − 𝑖 𝑞ℏ 𝐴  

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

For a free electron, we have the Dirac equation in 𝑅 : (𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 + 𝑖 𝑚ℏ 𝑐)𝜓 = 0 

For an electron in an electromagnetic field, we have the Dirac equation in 𝑅 : (𝛽([𝜕 ] + 𝑖 𝑞ℏ 𝐴 ) + 𝛽�⃗� ∘ ( 𝜕 + 𝑖 𝑞ℏ 𝐴 ) + 𝑖 𝑚ℏ 𝑐)𝜓 = 0 

 
Note on the Lagrangian and the Euler-Lagrange equation 
Previously, we highlighted the conceptual links between Newtonian mechanics and local gauge 
theories used in quantum physics. 
 
Let us now observe that from the Lagrangians 𝐿 and the Euler-Lagrange equation, we can find both: 

- the invariant equation to be respected of Newtonian mechanics: �̇� = 𝐹  (with 𝑖 = 𝑥, 𝑦, 𝑧), 
- the invariant equation to be respected by relativistic quantum physics: 𝛥𝜓 − = ℏ 𝜓. 

 
Historically, the Lagrangian 𝐿 was introduced in 1788 by Joseph-Louis Lagrange for a new 
formulation of Newtonian mechanics based on the principle of least action. Since then, Lagrangian has 
been used in many physical theories, especially in Quantum Physics. 
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In Newtonian mechanics, we define a Lagrangian 𝐿 = 𝐸 − 𝐸 = 𝑇 − 𝑉 (difference between kinetic 
energy and potential energy). 
The application of the Euler-Lagrange equation to this Lagrangian makes it possible to find the 
Newton's fundamental principle of dynamics: 𝑑𝑑𝑡 ( 𝜕𝐿𝜕�̇⃗� ) − 𝜕𝐿𝜕�⃗� = 0 

We have the generalized amount of movement: 𝑝 = 𝜕𝐿𝜕�̇⃗�  

We have the generalized force: 𝐹 = 𝜕𝐿𝜕𝑞  

We find: �̇� = 𝐹  

 
In relativistic quantum physics, we define a Lagrangian density: 𝐿(𝑞 , �̇� , 𝑡) → 𝐿(𝜑, 𝜕 𝜑, 𝑥 ) 

With 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
Lagrangian density 𝐿(𝜑, 𝜕 𝜑, 𝑥 ) also verifies the Euler-Lagrange equation: 𝜕 ( 𝜕𝐿𝜕(𝜕 𝜑)) − 𝜕𝐿𝜕𝜑 = 0 

 
We have the Lagrangian density of a free fermion (by abuse of language, we simply speak of 
Lagrangian of a free fermion): 𝐿 = 𝑖ℏ𝑐𝜓𝛾 𝜕 𝜓 − 𝑚𝑐 𝜓𝜓 

 
Applying to this Lagrangian the Euler-Lagrange equation, we find the Dirac wave equation: (𝑖𝛾 𝜕 − 𝑚𝑐ℏ )𝜓 

 
By squared, we find the Equation of Klein Gordan: 𝛥𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 𝑚 𝑐ℏ 𝜓 

 
IV.6 Schrödinger wave equations (1925), non-relativistic electron without spin 
IV.6.1 General 
In non-relativistic quantum physics, the wave equation used as an invariant is the free Schrödinger 
equation: 𝛥𝜓 − 𝑖2𝑚ℏ 𝜕𝜓𝜕𝑡 = 0 
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We will see that by a local gauge transformation, we pass from the free Schrödinger equation to the 
usual Schrödinger equation. 
 
Note 
We are here in the non-relativistic case, because we place ourselves implicitly in a reference frame 
where the electron particle is immobile in Space and where the electron wave is standing. 
 
IV.6.2 Free Schrödinger wave equation 
We start from the dispersion relationship (non-relativistic) connecting the energy to the momentum: 𝐸 = 𝑝2𝑚 

Using the usual substitutions of quantum mechanics, we find in 𝑅  the free Schrödinger equation: 𝑖ℏ[𝜕 ] = 12𝑚 (−𝑖ℏ[𝜕 ] )  

 
Note 𝑅  is here also a reference where there remains a mass 𝑚. It differs a priori from that seen in the 
relativistic case. 
 
IV.6.3 Schrödinger wave equation 
We perform the transformation of Local Gauge (change of reference frames from 𝑅  to 𝑅 ): [𝜓(�⃗�, 𝑡)] = 𝑒 ℏ ( ⃗, )[𝜓(�⃗�, 𝑡)]  𝐴 = 𝐴 − 𝜕 𝜃(�⃗�, 𝑡) = −𝜕 𝜃(�⃗�, 𝑡) 

 
As before, covariant derivatives are defined: [𝜕 ] = [𝜕 ] − 𝑖 𝑞ℏ 𝐴  

[𝜕 ] = [𝜕 ] − 𝑖 𝑞ℏ [𝐴 ]  

 
In 𝑅 , we obtain the wave equation: 𝑖ℏ([𝜕 ] + 𝑖 𝑞ℏ 𝐴 ) = 12𝑚 (−𝑖ℏ([𝜕 ] + 𝑖 𝑞ℏ [𝐴 ] ))  

𝑖ℏ[𝜕 ] − 𝑞 𝐴 = 12𝑚 (−𝑖ℏ[𝜕 ] + 𝑞[𝐴 ] )  

 
We find in 𝑅  the Schrödinger wave equation (with the addition of the term 𝑞[𝐴 ]  which 
corresponds to a potential magnetic momentum): 𝑖ℏ[𝜕 ] = 12𝑚 (−𝑖ℏ[𝜕 ] + 𝑞[𝐴 ] ) + 𝑞 𝐴  
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IV.7 Pauli wave equations (1927), non-relativistic electron with spin 
IV.7.1 Pauli non-relativistic wave equation, an electron with a spin in a magnetic field 
In 1922, Otto Stern and Walther Gerlach noted the influence of the magnetic field on silver atoms. In 
1925, to explain this phenomenon (and others such as the fine doubling of lines in spectroscopy), S. 
Goudsmit and G. Uhlenbeck proposed that particles are endowed with a kinetic moment on itself and a 
magnetic moment on itself. They call this new property the spin. 
 
In 1927, W. Pauli modified Schrödinger's electron model and incorporated the notion of spin. In 
Pauli's non-relativistic wave equation, W. Pauli describes an electron with a spin in an outer magnetic 
field. 
 
From the three Paul matrices 2 × 2 𝜎 , 𝜎 , 𝜎 , W. Pauli defines a spin kinetic moment operator of the 
electron: 𝑆 = ℏ2 �⃗� 

𝜎 = 0 11 0 ,𝜎 = 0 −𝑖𝑖 0 ,𝜎 = 1 00 −1  

 
From this spin kinetic moment operator 𝑆 = ℏ �⃗�, W. Pauli defines a spin magnetic moment operator of 
the electron: 𝜇 = 𝑒𝑚 ℏ2 �⃗� 

 
W. Pauli works on matrices 2 × 2. He defines for the wave function 𝜓 a spinor with 2 components: 𝜓  
and 𝜓  (each component being of the same type as the Schrödinger wave function). 
 
The magnetic moment of spin can be likened to a small magnet. Let be the potential energy of 
interaction between the magnetic moment of spin of the electron and an exterior magnetic field 𝐵 in 
which the electron is immersed: 𝐸 = 𝜇 ⋅ 𝐵 = 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 

 
We obtain the Pauli wave equation here written as operators: ( 12𝑚 (�⃗� + 𝑒𝐴 ) − 𝑒𝐴 + 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 − 𝐸)𝜓 = 0 

 
In this Pauli wave equation is: 

- on the one hand the energy of a particle without spin immersed in an electromagnetic field: 𝐸 = 12𝑚 (�⃗� + 𝑒𝐴 ) − 𝑒𝐴  

, i.e., the Schrödinger equation part, 
 
- on the other hand, the interaction energy between the spin magnetic moment and the exterior 

magnetic field: 𝐵 𝐸 = 𝜇 ⋅ 𝐵 = 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 

, that is, the part added by W. Pauli. 
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Note 1 on the spin 
It should be noted that the notion of spin is not specifically relativistic. Indeed, it is found in both the 
Dirac wave equation and the Pauli wave equation. It appears via the constant ℏ and Pauli matrices 𝜎 , 𝜎 , 𝜎  which are present in the Dirac wave equation and in the Pauli wave equation. 
 
Note 2 on relativistic and not relativistic 
It is difficult to understand why it is necessary to distinguish two cases: one relativistic with the Klein 
Gordan and Dirac wave equations in an electromagnetic field, the other "classical" or non-relativistic 
with the Schrödinger and Pauli wave equations. 
The non-relativistic case is often presented as a borderline case of the relativistic case. The passage is 
still non-trivial between Pauli wave equation and Dirac wave equation. Instead of a borderline case of 
each other, shouldn't we rather see two different cases qualitatively? 
 
Note 3 on the sign of the magnetic vector potential 
In this essay, an opposite sign is used for the magnetic vector potential in order to have the same type 
of construction for the electric field and the magnetic field (we will come back to this in the next 
memoir). So, we have for the Pauli wave equation: ( 12𝑚 (�⃗� − 𝑒𝐴 ) − 𝑒𝐴 + 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 − 𝐸)𝜓 = 0 

 
IV.7.2 Local Gauge Transformation 
Let's go in 𝑅  from the Schrödinger wave equation: 𝑖ℏ[𝜕 ] = 12𝑚 (−𝑖ℏ[𝜕 ] + 𝑞[𝐴 ] ) + 𝑞 𝐴  

 
Let's take for the potential momentum: 𝑞[𝐴 ] = −𝑒𝐴  
and for potential energy: 𝑞 𝐴 = −𝑒𝐴 + 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 

 
We thus find the Pauli wave equation from that of Schrödinger: 𝑖ℏ[𝜕 ] = 12𝑚 (−𝑖ℏ[𝜕 ] − 𝑒𝐴 ) − 𝑒𝐴 + 𝑒𝑚 ℏ2 �⃗� ⋅ 𝐵 

 
IV.8 Conclusion of the Memoir 
In this 1st memoir, we wanted to emphasize that from Newtonian mechanics and local gauge theories 
used in quantum physics, emerged a very general principle whose objective was the invariance of laws 
of Nature during changes of reference frames or during transformations of local gauge. 
 
In the case of Newtonian mechanics, to preserve this invariance, when cancelling a rotation, we add 
the centrifugal and Coriolis inertial forces. In the case of local gauge theories, to preserve this 
invariance, when cancelling a phase of the wave function, a quadrivector potential momentum energy 
associated with an interaction energy is added. In the case of electromagnetic interaction, the 
interaction energy is precisely equal to the generalized potential energy from which the 
electromagnetic force derives. 
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In the next memoir, still with this objective of invariance, we will try to show that when we cancel 
"generalized rotations", we must add both the centrifugal and Coriolis inertial forces, and the 
electromagnetic force. 
We will also think about a more general theory that would encompass changes of reference frames and 
transformations of Local Gauge. 
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Memoir 2 "Generalized" rotation vectors and fields in a 
spatiotemporal plane 
 
Summary of the memoir 
This 2nd memoir will propose more conjunctures than the 1st. We will return to the analogies between 
gravitation and electrostatics (works of the late 18th, early 19th century), then between fluid mechanics 
and magnetism (works of the 19th century), finally between mechanics of continuous media and 
relativistic quantum Electrodynamics (works of the middle of the 20th century). 
From these analogies, we will propose the notions of pulsation field 𝛺 and wave vector field 𝐾. These 
two fields will apply respectively in a spatial plane and in a spatiotemporal plane. Subsequently, we 
will try to build any force of classical physics on the model of the Coriolis inertial force, with during a 
change of reference frames a conserved quantity and a cancelled quantity are gotten. This cancelled 
quantity is similar to a "generalized" rotation vector (before changing reference frames) or a field 
(after changing reference frames). This will match the cancellation of "generalized" rotations with the 
addition of forces in the fundamental principle of dynamics. 
 
This memoir will also be an opportunity to return to the physics of the 19th century, physics that was 
particularly involved in electricity and magnetism. Among others will be evoked the law of Charles-
Augustin Coulomb for electrostatics (1785), the equation of Simeon Denis Poisson (1813) (which A. 
Einstein was largely inspired for his theory of General Relativity), the work of Michael Faraday on 
magnetic induction (from 1821), the magnetic force of Pierre-Simon Laplace (from 1820) precursor of 
the magnetic force of Hendrik Antoon Lorentz (work of the end of the 19th century). ), as well as the 
Gustave Coriolis inertial force (1835). 
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Chapter I Newtonian gravitational and Electrostatic Coulomb analogies 
 
Purpose of the chapter 
We recall the main analogies between gravitation and electrostatics, analogies that have often allowed 
a mutual enrichment of these two disciplines of physics. 
 
I.1 Newtonian gravitational potential and Coulomb electric potential 
I.1.1 Historical reminders on gravitation 
The theory of gravitation developed during the 17th century on the basis of astronomical observations. 
The first notable advances are due to Johannes Kepler who from 1609 to 1618 set out his three laws on 
the movements of the planets. 
 
The 1st law states that the trajectory of the planets around the Sun is elliptical, with the Sun occupying 
one of the 2 foci of the ellipse. 
The 2nd law states that the areas swept by the vector radius of a planet, are swept in equal durations. 
The 3rd law states that the square of the period 𝑇  of revolution of the planet, varies like the cube of the 
semi-major axis𝑎  of the ellipse: 𝑇𝑎 = 𝑐𝑜𝑛𝑠 𝑡𝑎𝑛 𝑡 𝑒 

 
In 1687, nearly 80 years after J. Kepler, Isaac Newton published in Latin probably the most famous 
work of Physics. This is Philosophiae naturalis principia mathematica, often referred to simply as 
Principia: the Principles. In the book, based on the physical and mathematical principles laid down by 
I. Newton, Kepler's 3 laws are found and explained. Truly revolutionary, Principia shows that the 
nature of the universe can be described in a simple way by mathematical equations. 
 
In Principia, I. Newton unifies two notions that a priori have nothing to do with each other: 

- the elliptical motion of the planets (Kepler's 1st law), 
- the fall of bodies under the effect of a gravitational force that decreases with the distance in  

from the source (a mass) according to Newton's universal law of gravitation: �⃗� = −𝐺 𝑚 𝑚𝑟 𝑢  

I. Newton brings together movements and forces via his famous principle of dynamics (also called 
Newton's 2nd law): 
 �̇⃗� = 𝛴�⃗� 

 
Note on the unification of I. Newton 
In a way, I. Newton unified 2 a priori distinct physical phenomena and made them correspond to the 
same physical notion called force. He was able to compare these 2 phenomena. 
The first phenomenon is the outward repulsion to which a body is subjected during a rotational 
movement (or more generally an elliptical movement). To quantify this phenomenon, we can place 
ourselves in the rotating reference frame and use the centrifugal inertial force. 
The second phenomenon is the attraction to which two mass bodies are subject to each other. To 
quantify this phenomenon, I. Newton introduced the gravitational force. 
So, we do not compare cabbages and carrots, but 2 phenomena that are of the same physical nature: 
strength. 
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Some minds (of which A. Einstein was a part) were still saddened that we compare 2 things that are 
not exactly of the same nature: a gravitational force and a centrifugal inertial force, the latter qualified 
by some as a pseudo force because added during a change of reference frames. 
By proposing in this essay, that any force is reduced to a pseudo force added during a change of 
reference frames, we evacuate the distinction between force and pseudo force. Important conclusions 
can also be drawn from this on the notion of mass. 
 
 
I.1.2 Historical reminders on electrostatics 
At the end of the 18th, beginning of the 19th, electricity and in particular electrostatics progressed 
rapidly on the basis of laboratory or field experiments. The pioneers are for example Ewald Georg von 
Kleist with the so-called Leiden bottle in 1745 (ancestor of the capacitor) or Luigi Galvani with the 
electric current (concept of animal electricity). 
 
Although electrical observations are frequently made in the laboratory and are not turned towards the 
stars, a little curiously, theoretical developments of electricity are often carried out in analogy with 
Newtonian gravitation. New concepts are proposed, such as potential, which enriches both 
electrostatic theory and gravitational theory. 
 
In the 1780s, using torsional balances, Charles-Augustin Coulomb carried out experiments on electric 
charges. Like the gravitational force, he measures an electrostatic force that decreases with the 
distance in  from the source (an electric charge). Nevertheless, this force is not always attractive: it is 
repulsive when electric charges are of the same nature and attractive when they are of opposite nature. 
We have: �⃗� = 14𝜋𝜀 𝑞 𝑞𝑟 𝑢  

 
Also in the 1780s, Pierre-Simon de Laplace developed the notion of potential. He shows that in a 
vacuum, a potential satisfies the differential equation: 𝛥𝜑 = 𝛻 𝜑 = 𝜕 𝜑𝜕𝑥 + 𝜕 𝜑𝜕𝑦 + 𝜕 𝜑𝜕𝑧 = 0 

with 𝛥 the Laplacian. 
 
In 1813, Siméon Denis Poisson continued the work of P-S. Laplace and published a article on the 
Newtonian scalar potential. Like his predecessors, he relies on analogies between electrostatics and 
gravitation to develop the notion of a potential that decreases in  from a point of origin. For example, 
we have for the Newtonian gravitational potential: 𝑉 = −𝐺 𝑚𝑟  

and for the Coulomb electric potential: 𝐴 = 14𝜋𝜀 𝑞𝑟  

It is also in this article that Poisson's source potential equation is introduced: 𝑓 = 𝛥𝜑  
with 𝑓 a function representing the source, and 𝜑  a scalar potential. 
 
In the 1830s, Carl Friedrich Gauss took over the work of S-D. Fish. It is also inspired by the work of 
Leonhard Euler on fluid mechanics (1750s, field of fluid flow velocities), M. Faraday on magnetism 
(1830s, magnetic field viewable on oriented iron filings). 
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With others, C. F. Gauss generalized the fertile notion of field to gravitation and electrostatics. He 
proposes that a density of mass or electric charge (corresponding to the source), generate respectively 
a divergent gravitational field and an electric field. He thus gives their modern form to the so-called 
Gaussian source field relations. 
 
I.1.3 Summary of analogies 
We remind in the following table the main analogies between the laws of Newtonian gravitation and 
Coulomb electrostatics. 
 
 Newtonian gravitation Electrostatics 
Source 
 

Mass 𝑚  Electric charge 𝑞  

Constant −4𝜋𝐺 1𝜀  

Potential 𝑉 = −𝐺 𝑚𝑟  𝐴 = 14𝜋𝜀 𝑞𝑟  

Potential 
energy 

𝐸𝑝 = 𝑚 𝑉  𝐸𝑝 = −𝐺 𝑚 𝑚𝑟  
𝐸𝑝 = 𝑞 𝐴  𝐸𝑝 = 14𝜋𝜀 𝑞 𝑞𝑟  

Field 𝐺𝑟 = − 𝜕𝑉𝜕𝑟  �⃗�𝑟 = −𝐺 𝑚𝑟 𝑢  

𝐸𝑠 = − 𝜕𝐴𝜕𝑟  �⃗�𝑠 = 14𝜋𝜀 𝑞𝑟 𝑢  

Force �⃗� = 𝑚 �⃗�𝑟 �⃗� = −𝐺 𝑚 𝑚𝑟 𝑢  
�⃗� = 𝑞 �⃗�𝑠 �⃗� = 14𝜋𝜀 𝑞 𝑞𝑟 𝑢  

Potential 
source 
relationship 
by Poisson 

4𝜋𝐺𝜌 = 𝛥𝑉  − 𝜌é é𝜀 = 𝛥𝐴  

Field source 
relationship 
by Gauss  

Integral: �⃗�𝑟(𝑀). 𝑑 𝑆 = − 4𝜋𝐺𝜌 𝑑𝑉= −4𝜋𝐺𝑀  
Local: 𝑑𝑖𝑣�⃗�𝑟 = −4𝜋𝐺𝜌  

Integral: �⃗�𝑠(𝑀). 𝑑 𝑆 = 𝜌é é𝜀 𝑑𝑉 = 𝑄𝜀  

Local: 𝑑𝑖𝑣�⃗�𝑠 = 𝜌é é𝜀  

 
Note on a potential speed quadrivector 
Like the electric potential 𝐴  which is the temporal component of an electromagnetic potential 
quadrivector: (𝐴 , 𝐴 , 𝐴 , 𝐴 ), it will be proposed in this memoir that the Newtonian potential 𝑉  is 
the temporal component of a potential velocities quadrivector: (𝑉 , 𝑉 , 𝑉 , 𝑉 ). Velocities 𝑉 , 𝑉 , 𝑉  can be interpreted as "speeds in Space", the Newtonian potential 𝑉  could be interpreted as a 
"speed in Time". 
 
 
I.2 The notions of energy and power in gravitation and electrostatics 
My wife is a physics teacher. To explain the difference between power and energy, she uses a 
metaphor that has always seemed instructive and pedagogical to me. This metaphor is all the more 
useful because it also highlights the similarities between gravitation and electrostatics. Indeed, in these 
two disciplines we find the same two notions: power and energy. 
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Let's take the example of a 10-storey building served by a staircase and an elevator. A young woman 
is on the ground floor and has to go up to the 10th floor with her packages. The same energy will be 
spent by the young woman whether she uses the elevator or the stairs. 
On the other hand, the power will be different. With the elevator, the power used will be much greater 
than with the staircase. Indeed, the duration of climb will be much shorter with the elevator than with 
the staircase. 
 
We list the different notions that we find both in gravitation and electrostatics. 
 
Number of packets 
Masse 𝑑𝑚 ou charge 𝑑𝑞 
 
Packet flow 
Mass flow 𝐼 =  or electric current 𝐼 =  
Height 𝑑𝑟 of the building 
 
Field 
Newtonian gravitational field: 𝐺𝑟 
Electrostatic field: 𝐸𝑠 
 
Difference in potentials 
Difference in Newtonian gravitational potentials 𝑑𝑉 = �⃗�𝑟 ⋅ 𝑑𝑟 

Difference in electrical potentials (voltage) 𝑈 = 𝑑𝐴 = �⃗�𝑠 ⋅ 𝑑𝑟 

 
Force 
Gravitational force: �⃗� = 𝑑𝑚 × �⃗�𝑟 

Electrostatic force: �⃗� = 𝑑𝑞 × �⃗�𝑠 

 
Power 
Gravitational power: 𝑃 = 𝐼 × 𝑑𝑉 = 𝑑𝑚𝑑𝑡 × 𝑑𝑉  

𝑃 = 𝑑𝑚𝑑𝑡 × �⃗�𝑟 ⋅ 𝑑𝑟 = �⃗� ⋅ �⃗� 

with �⃗� = ⃗ 
Electric power: 𝑃 = 𝐼 × 𝑈 = 𝐼 × 𝑑𝐴 = 𝑑𝑞𝑑𝑡 × 𝑑𝐴  

𝑃 = 𝑑𝑞𝑑𝑡 × �⃗�𝑠 ⋅ 𝑑𝑟 = �⃗� ⋅ �⃗� 
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Energy 
Gravitational energy: 𝑑𝐸 = 𝑃 × 𝑑𝑡 = 𝑑𝑚 × 𝑑𝑉 = 𝑑𝑚 × �⃗�𝑟 ⋅ 𝑑𝑟 𝑑𝐸 = �⃗� ⋅ 𝑑𝑟 

Electrical energy: 𝑑𝐸 = 𝑃 × 𝑑𝑡 = 𝑑𝑞 × 𝑑𝐴 = 𝑑𝑞 × �⃗�𝑠 ⋅ 𝑑𝑟 𝑑𝐸 = �⃗� ⋅ 𝑑𝑟 

 
I.3 Conclusion of the chapter 
While gravitation and electrostatics have developed in very different experimental terrains, the 
observation of planets for the former, laboratory or field experiments for the latter, the theories 
describing them share many common notions, such as those of energy, power, source, field or 
decreasing potential from source in . Electrical and gravitational theories have often influenced each 
other and allowed mutual enrichment. 
 
The notion of electric current proposed, among others, by L. Galvani, was inspired by the notion of 
fluid. In the next chapter, we see that magnetism has particularly developed in analogy with fluid 
mechanics. 
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Chapter II  Analogies fluid mechanics and magnetism, analogies 𝜴 and �⃗� 
 
Purpose of the chapter 
At the beginning of the 19th century, parallel to electrostatics, another area of research is booming, it is 
magnetism. With the law of Biot and Savart (1820), we find a magnetic potential that decreases in  
such as the Newtonian gravitational potential and the Coulombian electric potential. However, the 
similarities between magnetism and gravitation are much less strong than between electrostatics and 
gravitation. This time, it is mainly through analogies between fluid mechanics and magnetism that this 
discipline will progress. 
 
In this chapter, we will remind the main analogies between fluid mechanics (as well as mechanics in 
the broad sense) and magnetism, between the vortex vector 𝛺 or rotation vector 𝛺 and the magnetic 
field 𝐵. 
We are interested in the rotation vector 𝛺, because its cancellation during a change of reference frames 
is related to the addition of inertial forces. 
 
We will end with a reminder of the generalized electromagnetic potential energy, which from the 
Euler-Lagrange equation, makes it possible to find the electromagnetic force. 
 
II.1 Law of Biot and Savart (1820), analogies gravitation, electrostatics and 

magnetism 
In the 1820s, the Danish Hans Christian Ørsted discovered a link between electricity and magnetism 
through experiments that remained famous. For example, he observes that a wire carrying an electric 
current is able to move the magnetic needle of a compass. That is, an electric current can be the source 
of a magnetic field capable of moving the needle. 
 
A few months later, following a series of experiments, Jean-Baptiste Biot and Félix Savart propose the 
law giving the magnetic field created by a distribution of electric currents. As for the gravitational 
field and the electric field, the 2 experimenters find a magnetic field that decreases in Space in  from 
a source of electrical currents. The law differs from other fields, however, since there is a vector 
product: 𝐵(𝑟) = 𝜇4𝜋 𝐼𝑑𝑙 ∧ 𝑢𝑟  

 
For a volume distribution of currents, we have: 𝐵(𝑟) = 𝜇4𝜋 𝐼𝑑𝜏 ∧ 𝑢𝑟  

To be compared with the electrostatic and gravitational fields: �⃗�𝑠(𝑟) = 14𝜋𝜀 𝜌 𝑑𝜏 × 𝑢𝑟  

�⃗�𝑟(𝑟) = −𝐺 𝜌 𝑑𝜏 × 𝑢𝑟  

 
We have the following analogies, less numerous than between gravitation and electrostatics: 
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 Newtonian gravitation Electrostatics Magnetism 

Source 
 

Mass 𝑚 Charge 𝑞 Current 𝐼 

Constant −4𝜋𝐺 1𝜀  𝜇  

Potential 𝑉 = −𝐺 𝑚𝑟  𝐴 = 14𝜋𝜀 𝑞𝑟 𝐴 , , = 𝜇4𝜋 𝐼𝑑𝑙𝑟  

Field 𝐺𝑟 = −𝑔𝑟𝑎𝑑𝑉  �⃗�𝑟(𝑟)= −𝐺 𝜌 𝑑𝜏 × 𝑢𝑟  

𝐸𝑠 = −𝑔𝑟𝑎𝑑𝐴  �⃗�𝑠(𝑟)= 14𝜋𝜀 𝜌 𝑑𝜏 × 𝑢𝑟  

𝐵(𝑟) = 𝑟�⃗�𝑡𝐴 , ,  𝐵(𝑟)= 𝜇4𝜋 𝐼𝑑𝜏 ∧ 𝑢𝑟  

Poisson, 
source 
potential 
relationship 

4𝜋𝐺𝜌 = 𝛥𝑉  − 𝜌𝜀 = 𝛥𝐴  −𝜇 𝚥 = 𝛥𝐴 

 
Note 
By integrating the law of Biot and Savart on any closed loop 𝛤 (which a priori is not an electrical 
circuit), we find Ampère's theorem which describes the relationship between a magnetic field and an 
electric current: 𝐵(𝑟) ⋅ 𝑑𝑟 = 𝜇 𝐼  

 
II.2 Analogies between fluid mechanics and magnetism 
II.2.1 Historical reminders 
In the 1st half of the 19th century, research on magnetism made great progress, in particular thanks to 
the work of Michael Faraday and André-Marie Ampère who were both interested in two different 
areas of magnetism. 
 
A.-M. Ampère studies the correspondence between the loop of electric current and the magnetic field, 
which is grouped together in magnetostatics. 
 
M. Faraday studies the correspondence between the variation of the flux of the magnetic field through 
a circuit and the appearance of an induced electric current in this circuit, which is grouped together in 
induction phenomena. 
 
In the 1860s, in a vast synthesis, James Clerk Maxwell transcribed the work of M. Faraday and A.-M. 
Ampère into mathematical equations. For this synthesis, J. C. Maxwell is frequently inspired by fluid 
mechanics. For example, it matches the magnetic field to the speed of a fluid. 
 
Let us now turn to two analogies between fluid mechanics and magnetism. 
The first is between the vortex vector 𝛺 and the current 𝜇 𝚥, both considered sources, as well as 
between the velocity vector �⃗� and the magnetic field 𝐵, both considered as fields. We place ourselves 
in the case of magnetostatics, where generally the sources (currents or magnets) are known, and where 
the magnetic field 𝐵 generated by these sources is constant in Time. 
The second is between the vortex vector 𝛺 and the magnetic field 𝐵, both considered as fields. 
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In the rest of this memoir, we will rely mainly on the 2nd analogy (between 𝛺 and 𝐵). The first 
analogy, however, retains all its interest, because it indicates this ambivalence between a physical 
quantity (here 𝛺) which can be both source and field. 
 
II.2.2 Analogy between vortex vector 𝟐�⃗� and current 𝝁𝟎  ⃗ both considered as sources, and 

between �⃗� and �⃗� both considered as fields 
In 1893, Henri Poincaré published a book on fluid mechanics entitled Théorie des Tourbillons 
(Tourbillon or vortex or whirlpool theory). The book is the result of lessons professed in 1891-92. 
Inspired by the work of J. C. Maxwell, H. Poincaré leads analogies between hydrodynamics 
(rotational, permanent, and incompressible flow) and magnetostatics. In a related article, he proposes 
the following analogies. 
 
Let be �⃗�(𝑀) the local velocity at a point M, of an incompressible perfect fluid characterized by a 
vortex vector 𝛺. Let be 𝚥 the electric current density vector. 
 
Since the fluid is incompressible, we have 𝑑𝑖𝑣�⃗� = 0. 
According to 𝑑𝑖𝑣�⃗� = 0, we can derive �⃗�(𝑀) from a vector potential 𝐴 with �⃗� = 𝑟�⃗�𝑡𝐴. 
 
According to Maxwell-Thomson (or Maxwell-flux), we have: 𝑑𝑖𝑣𝐵 = 0. 
We can derive 𝐵(𝑀) from a vector potential 𝐴 with 𝐵 = 𝑟�⃗�𝑡𝐴. 
 
The analogies of H. Poincaré are summarized in the table below. 
 
 Hydrodynamics 

(rotational, permanent, 
incompressible) 

Magnetostatic 

Potential 
 

𝐴 𝐴 

Source 
 

2𝛺 𝜇 𝚥 
Field 
 

�⃗�(𝑀) 𝐵(𝑀) 

Conservation equation 
 

𝑑𝑖𝑣�⃗� = 0 𝑑𝑖𝑣𝐵 = 0 

Potential field relationship 
 

�⃗� = 𝑟�⃗�𝑡𝐴 𝐵 = 𝑟�⃗�𝑡𝐴 

Potential source relationship 
 

2𝛺 = −𝛥𝐴 𝜇 𝚥 = −𝛥𝐴 

Source field relationship 
 

2𝛺 = 𝑟�⃗�𝑡�⃗� 𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 

 
Note 
In the case of a uniform vector 𝛺, we have: �⃗� = 𝛺 ∧ 𝑂𝑀 2�⃗� = 𝑟�⃗�𝑡𝑣 = 𝑟�⃗�𝑡(𝛺 ∧ 𝑂𝑀) 

 
In the case of a uniform electric current 𝜇 𝚥, we have: 𝐵 = 12 𝜇 𝚥 ∧ 𝑂𝑀 
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𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 = 12 𝑟�⃗�𝑡(𝜇 𝚥 ∧ 𝑂𝑀) 

 
II.2.3 Analogy between vortex vector �⃗� and magnetic field �⃗� both considered as fields 
The second analogy is to bring together: 

- on the one hand the local velocity �⃗�(𝑀) with magnetic vector potential 𝐴 (we rewrite �⃗�(𝑀) in 
capital letters �⃗�(𝑀) to highlight the link with potential), 

- on the other hand the vortex vector 𝛺 = 𝑟�⃗�𝑡�⃗� with the magnetic field 𝐵 = 𝑟�⃗�𝑡𝐴. 
 
These analogies are summarized in the table below. 
 
 
 Fluid mechanics Magnetostatic 

Potential 
 

�⃗� 
 

𝐴 

Source 
 

𝑑𝑖𝑣𝛺 = 0 
 

𝑑𝑖𝑣𝐵 = 0 

Field 
 

2𝛺 = 𝑟�⃗�𝑡�⃗� 2𝛺 / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦  

𝐵 = 𝑟�⃗�𝑡𝐴 𝐵 / = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

Conservation equation 
 

 𝜇 𝚥 + 𝛥𝐴 = 0 
 

Potential field relationship 
 

An analogy will be proposed 
later. 𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 − (𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡 ) 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑦 − (𝜇 𝜀 𝜕𝐸𝑙 /𝜕𝑡 ) 

𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥 − (𝜇 𝜀 𝜕𝐸𝑙 /𝜕𝑡 ) 
 
(Maxwell Ampere's relation in a 
space x, y, t with 3 dimensions) 
 

 
Note 1 
Displacement currents of type 𝚥 = 𝜀 ⃗

 are absent in magnetostatics. For this reason, they are 
indicated in parentheses in the table above. 
 
Note 2 
We will come back in a few paragraphs on the notations of the type 𝛺 / , 𝐵 /  or 𝐸𝑙 /  used here. 
 
 
II.2.4 Identification vortex vector �⃗� and rotation vector �⃗� 
In fluid mechanics, a vortex vector is defined 𝛺 = 𝑟�⃗�𝑡�⃗�. 
 
When the material points of the fluid share the same circular motion, the vortex vector 𝛺 identifies 
with the speed of rotation 𝜔 of material points. Let's check this for uniform circular motion in a spatial 
plane x, y. 
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Let be the vectors position and speed of the material points: �⃗� 𝑐𝑜𝑠 𝜔 𝑡𝑠𝑖𝑛 𝜔 𝑡𝑧  

�⃗�(𝑀, 𝑡) −𝜔 𝑠𝑖𝑛 𝜔 𝑡𝜔 𝑐𝑜𝑠 𝜔 𝑡0  

with 𝜔 =  the rotational speed of the material points. 
 
Under another writing, we have: �⃗� 𝑥𝑦𝑧  

�⃗�(𝑀, 𝑡) −𝑥𝜔𝑦𝜔0  

 
We calculate the 3 components of the vortex vector 𝛺 = 𝑟�⃗�𝑡�⃗� 𝛺 = 𝛺 / = 12 (𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦 ) = 12 (𝜔 − −𝜔) = 𝜔 

𝛺 = 𝛺 / = 0 𝛺 = 𝛺 / = 0 

 
We actually obtain an identification between the vortex vector 𝛺 = 𝑟�⃗�𝑡�⃗� and rotational speed 𝜔 =

: 𝛺 = 𝛺 / = 𝜔𝑒  

 
Note that 𝛺 is perpendicular to the plane of rotation x, y. In a three-dimensional space, we usually 
define the vectors vortexes or rotations 𝛺 (as well as kinetic moment) as perpendicular to the plane of 
rotation. 
 

II.3 Analogies between rotation vector �⃗� and magnetic field �⃗� 

In the following paragraphs, we remind the main analogies between a rotation vector 𝛺 and a magnetic 
field 𝐵. 
 
II.3.1 Larmor relationship 
At the end of the 1890s, Joseph Larmor noted that for usually achievable magnetic field values, if the 
electron is placed on a carousel that rotates at the speed of rotation: 𝛺 = 𝑒2𝑚 𝐵 

with e the electric charge (in absolute value) of the electron and 𝑚  its mass, then the movement of the 
electron is as if the electron is not rotating and the magnetic field 𝐵 do not exist. There is 
compensation between the effects of the magnetic field and the effects of the ride. 
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From a reference frame change point of view, the Larmor relation can be interpreted: 𝑅 = 𝑅  

with 𝑅  a Galilean reference frame. 
 
II.3.2 Analogy between potential velocity 𝑽 and magnetic potential �⃗� 
The magnetic field 𝐵 derives from a magnetic potential 𝐴: 𝐵 = 𝑟�⃗�𝑡𝐴 

 
In three dimensions, x, y, t, we have: 𝐵 / = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

 
Similarly, the rotation vector 𝛺 derives from a potential velocity �⃗�: 2𝛺 = 𝑟�⃗�𝑡�⃗� 

 
In three dimensions, x, y, t, we have: 2𝛺 / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦  

 
Note 1 
The notation 𝛺 /  indicates that the rotation is done in the plane x, y. In three dimensions, x, y, t, 𝛺 /  
is Time-oriented and expresses itself in 𝑟𝑎𝑑 × 𝑠 . 
By analogy, we pose for 𝐵 /  the same notation, even if the unit of the magnetic field is the tesla and 
not the 𝑠 . 
 
Note 2 
We will come back later on this notion of potential velocity �⃗�. The idea to remember is that a potential 
velocity corresponds to a velocity cancelled after a change of reference frames. 
 
 
II.3.3 Analogy between the velocity potential of a uniform circular motion and the magnetic 

potential of a uniform magnetic field 
We have the relationship between the linear velocity (here in the form of a potential velocity �⃗� ) and 
the rotation vector 𝛺 /  of a uniform circular movement and the radius 𝑟 (r, s, t orthogonal three-
dimensional coordinate system): �⃗� = 𝛺 / ∧ 𝑟 

 
Similarly, we have the relationship between the magnetic vector potential, the uniform magnetic field 
and the radius 𝑟: 𝐴 = 12 𝐵 / ∧ 𝑟 
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II.3.4 Reminders on the orbital magnetic moment of a magnetic dipole 
In magnetism, we define the orbital magnetic moment 𝜇 a magnetic dipole, which can be interpreted 
as a small magnet. 
 
In the case of a rotating charged particle 𝑞, we have the orbital magnetic moment (perpendicular to the 
plane of rotation of the charged particle): 𝜇 = 12 𝑟 ∧ 𝑞�⃗� 

In integral form, on a closed outline 𝐶, we get if 𝑟 always perpendicular to 𝑞�⃗�: 𝜇 = ( 12 𝑟𝑞�⃗� ⋅ 𝑑𝑙)𝑛 

with 𝑛 unit vector perpendicular to the plane of rotation. 
 
We also define the orbital magnetic moment 𝜇 a magnetic dipole in the form of: 𝜇 = 𝐼𝑑𝑠 = 𝐼𝑆 

with I the electric current 𝑆 and 𝑑𝑠 perpendicular to surfaces 𝑆 and 𝑑𝑠, 𝑛𝑑𝑠 = 𝑑𝑠 unit vector perpendicular to surface 𝑑𝑠. 
 
Note 1 
We want to show the identity of the 2 definitions of the orbital magnetic moment 𝜇. 12 𝑟𝑞�⃗� ⋅ 𝑑𝑙 = 𝐼𝑑𝑠 ? 

If 𝐶 is a closed outline with perimeter 2𝜋𝑟 and 𝑆 a disk with surface 𝜋𝑟 , we obtain the relationships: 12 𝑟𝑞�⃗� ⋅ 𝑑𝑙 = 𝐼 𝑑𝑠? 12 𝑟𝑞𝑣 × 2𝜋𝑟 = 𝐼 × 𝜋𝑟 ? 

We have the electric current: 𝑞𝑣 = 𝐼 

We find: 𝜇 = ( 12 𝑟𝑞�⃗� ⋅ 𝑑𝑙)𝑛 = 𝐼𝑑𝑠 = 𝐼𝑆 

 
Note 2 
The passage from ∮ 𝑟𝑞�⃗�. 𝑑𝑙 to ∬ 𝐼𝑑𝑠 is gotten via Stockes' theorem. 
 
In local form, we have: 12 𝑟�⃗�𝑡(𝑟𝑞�⃗�) = 𝐼𝑛 

 
According to Stockes' theorem we have: 
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12 𝑟𝑞�⃗�. 𝑑𝑙 = 12 𝑟�⃗�𝑡(𝑟𝑞�⃗�). 𝑑𝑠 = 𝐼𝑑𝑠 

 
II.3.5 Analogy between orbital kinetic moment and orbital magnetic moment 
We remind the orbital kinetic moment of a particle of mass 𝑚: �⃗� = 𝑟 ∧ 𝑚�⃗� 

 
We have the relationship between  

- the orbital magnetic moment 𝜇 of a particle with charge 𝑞, mass 𝑚 
- and orbital kinetic moment �⃗� of this particle (a sign − is introduced): 𝜇 = − 𝑞2𝑚 �⃗� 

We often use 𝜇 = 𝛾�⃗� with 𝛾 = −  the gyromagnetic ratio. 
 
We have the relationship between the orbital magnetic moment 𝜇  of an electron with charge −𝑒, 
mass 𝑚  and its orbital kinetic moment �⃗� : 𝜇 = 𝑒2𝑚 �⃗�  

(so-called Bohr-Procopiu relationship with 𝜇  called the Bohr magneton). 
 
According to the Bohr electron model, kinetic moment �⃗�  is quantified: �⃗� = 𝑛ℏ𝑧 

 
We obtain the magnetic moment of the electron in its most stable state (𝑛 = 1): 𝜇 = 𝑒ℏ2𝑚 𝑧 

 
Note 
We have a comparable analogy between the kinetic moment of spin 𝑆 and the magnetic moment of 
spin 𝜇 : 𝜇 = 𝑔 𝑞2𝑚 𝑆 

with spin kinetic moment 𝑆 = ± ℏ𝑧 and 𝑔 the Landé factor. 
 
For the electron, we have the Landé factor 𝑔 ≈ −2. 
 
 
II.3.6 Potential energy of a magnetic dipole as a function of �⃗� and �⃗� 
We have the potential energy of a magnetic dipole 𝜇 in an external magnetic field 𝐵: 𝐸𝑝 = −𝜇 ⋅ 𝐵 

 
Note 
We can also interpret 𝐸𝑝 as an interaction energy between a magnetic dipole and an exterior magnetic 
field 𝐵. 
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In memoirs 4 and 5, when we look at elementary particles, the magnetic dipole will be brought closer 
to the fermions and the exterior magnetic field to the photons. 
 
 
We have the Larmor relation for the electron: 𝐵 = 2𝑚𝑒 𝛺 

 
We have the Bohr-Procopiu magneton for the electron: 𝜇 = 𝑒2𝑚 �⃗�  

 
We then have the potential energy of an electron magnetic dipole in an exterior magnetic field 𝐵: 𝐸𝑝 = − 𝑒2𝑚 �⃗� ⋅ 2𝑚𝑒 𝛺 

𝐸𝑝 = −�⃗� ⋅ 𝛺 

 
With �⃗� = ℏ𝑧, we obtain: 𝐸𝑝 = −ℏ𝛺 

 
Note 1 
We find a relationship close to the energy of a photon proposed by A. Einstein: 𝐸 = ℎ𝜈 = ℎ2𝜋 2𝜋𝜈 = ℏ𝛺 

 
At the beginning of his thesis, L. de Broglie generalized Einstein's relationship applied to photons, to 
mass particles such as the electron. For this, he brings together two famous equations proposed by A. 
Einstein. He equalizes the energies of a standing wave with pulsation 𝛺 = 2𝜋𝜈  and that of corpuscle 
at rest with mass 𝑚 : 𝐸 = ℎ𝜈 = ℏ𝛺 = 𝑚 𝑐  

We will come back to these equations in memoir 3 on the source field equations. 
 
Note 2 
Both the photon and the electron have a spin kinetic moment 𝑆. On the other hand, the electron is the 
only one to possess a charge and a mass, and therefore a magnetic moment of spin 𝜇 = 𝑔 𝑆. If a 
photon is not subject to the effects of a magnetic field 𝐵, an electron considered as a small magnet of 
magnetic moment with a spin 𝜇 , is oriented according to 𝐵 for a minimization of the moment with 
force �⃗� = 𝜇 ∧ 𝐵. 
 
 
II.3.7 Analogy between the Coriolis force and the Lorentz magnetic force 
We have the Coriolis force: �⃗� = 𝑚�⃗� ∧ 2𝛺 

and the Lorentz magnetic force: 
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�⃗� = 𝑞�⃗� ∧ 𝐵 

 
Both are perpendicular: 

- to a momentum 𝑝 = 𝑚�⃗� or to a current 𝚥 = 𝑞�⃗�, 
- to a rotation vector 𝛺 or to a magnetic field 𝐵. 

 
II.3.8 Potential energy and potential momentum 
For gravitation and electrostatics, we define a potential energy that derived (with respect to Space) 
makes it possible to find respectively the gravitational force of Newton and the electrostatic force of 
Coulomb. �⃗� = − 𝜕𝐸𝑝 (𝑟, 𝑣, 𝑡)𝜕𝑟 = − 𝜕𝑚 𝑉𝜕𝑟  

�⃗� = − 𝜕𝐸𝑝 (𝑟, 𝑣, 𝑡)𝜕𝑟 = − 𝜕𝑞 𝐴𝜕𝑟  

 
Note on Energy 𝐸𝑝  
Energy 𝐸𝑝  is here considered as a time-oriented vector component. 
 
 
In magnetism, the Lorentz magnetic force does not work. Its potential energy is constant, and the 
magnetic force cannot be found by deriving it. 
 
It is the same in mechanics with the Coriolis force, analogous to the Lorentz magnetic force, which 
does not work. Its potential energy is constant, and the Coriolis force cannot be found by deriving it. 
 
Nevertheless, in Electromagnetism, we define a generalized potential that makes it possible to find via 
the Euler Lagrange equation the Lorentz electromagnetic force (including the Lorentz magnetic force). 
This will be detailed in the next paragraph. 
 
In addition, from the magnetic vector potential 𝐴  (𝜇 = 𝑥, 𝑦, 𝑧) and from the electrical charge 𝑞 , we 
define a magnetic potential momentum. We can do the same for Newtonian mechanics where we 
define a gravitational potential momentum from the velocity potential 𝑉  (𝜇 = 𝑥, 𝑦, 𝑧) and from the 
mass 𝑚 . 
 
We have the following 
table: 
 
 

Gravitation Electromagnetism 

Potential energy  𝐸𝑝 = 𝑚 𝑉  
 

𝐸𝑝 = 𝑞 𝐴  
(electrostatic) 

Potential momentum 
in the x direction 

𝑝 = 𝑚 𝑉  𝑝 = 𝑞 𝐴  

Potential momentum 
in the y direction 

𝑝 = 𝑚 𝑉  𝑝 = 𝑞 𝐴  

Potential momentum 
in the z direction 

𝑝 = 𝑚 𝑉  𝑝 = 𝑞 𝐴  

 
Note: it can be seen that 𝑞  and 𝑚  are both Time-oriented. We will come back to it extensively. 
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II.4 Reminders on generalized electromagnetic potential energy 
II.4.1 Generalized potential energy of the Lorentz electromagnetic force 
A magnetic dipole 𝜇 has a magnetic potential energy 𝐸𝑝 = −𝜇 ⋅ 𝐵 when it is placed in a magnetic 
field 𝐵. 
 
Nevertheless, as mentioned in the previous paragraph, the Lorentz magnetic force and the Coriolis 
inertial force do not work. The potential energies involved are therefore constant. These two forces 
cannot be derived (with respect to Space) from a potential energy. 
 
However, there is a generalized electromagnetic potential energy in the sense of the Euler-Lagrange 
equations: 𝐸𝑝 = 𝑞(𝐴 − (�⃗� ⋅ 𝐴 ) 

with 𝜇 = 𝑥, 𝑦, 𝑧 

 
Note: for generalized electromagnetic potential energy, we also abusively speak of generalized 
electromagnetic potential. But it is indeed an energy because we include the electric charge 𝑞. 
 
 
From this generalized potential, it is possible to find the Lorentz electromagnetic force. 
 
We will see the demonstration in the next paragraph. 
 
II.4.2 Demonstration 
In the case of a non-conservative force, called generalized because it derives from a generalized 
potential energy 𝐸𝑝, we have the relationship: �⃗� = 𝑑𝑑𝑡 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕�⃗� − 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕𝑟  

 
We try to show that from 𝐸𝑝 = 𝑞(𝐴 − (�⃗� ⋅ 𝐴 ), we find again the Lorentz electromagnetic force: �⃗� = 𝑞(�⃗�𝑙 + �⃗� ∧ 𝐵) 

 
According to the equations of Maxwell Thomson (zero divergence of the magnetic flux) and Maxwell 
Faraday, we have: 𝐵 = 𝛻 ∧ 𝐴 

𝛻 ∧ �⃗�𝑙 = − 𝜕𝐵𝜕𝑡  

Therefore: 𝛻 ∧ �⃗�𝑙 = − 𝜕𝛻 ∧ 𝐴𝜕𝑡 = 𝛻 ∧ (− 𝜕𝐴𝜕𝑡 ) 

𝛻 ∧ (�⃗�𝑙 + 𝜕𝐴𝜕𝑡 ) = 0 

�⃗�𝑙 + 𝜕𝐴𝜕𝑡 = 𝛻𝐴  
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�⃗� = 𝑞(−𝛻𝐴 − 𝜕𝐴𝜕𝑡 + �⃗� ∧ (𝛻 ∧ 𝐴)) 

 
And according to Willard Gibbs' formula: �⃗� ∧ (𝛻 ∧ 𝐴) = 𝛻(𝑣 ⋅ 𝐴) − (�⃗� ⋅ 𝛻) ⋅ 𝐴 

 
So, we have for the Lorentz electromagnetic force: �⃗� = 𝑞(−𝛻𝐴 − 𝜕𝐴𝜕𝑡 𝛻(𝑣 ⋅ 𝐴) − (𝑣 ⋅ 𝛻) ⋅ 𝐴) 

�⃗� = −𝑞(𝜕𝐴𝜕𝑡 + (𝑣 ⋅ 𝛻) ⋅ 𝐴) + 𝑞(−𝛻𝐴 + 𝛻(𝑣 ⋅ 𝐴) 

�⃗� = −𝑞(𝜕𝐴𝜕𝑡 + (�⃗� ⋅ 𝛻) ⋅ 𝐴) + 𝑞𝛻(−𝐴 + (�⃗� ⋅ 𝐴) 

�⃗� = −𝑞(𝜕𝐴𝜕𝑡 + (�⃗� ⋅ 𝛻) ⋅ 𝐴) − 𝜕𝑞(𝐴 − (�⃗� ⋅ 𝐴))𝜕𝑟  

 
By introducing: 𝐸𝑝 = 𝑞(𝐴 − (�⃗� ⋅ 𝐴), we obtain: �⃗� = −𝑞(𝜕𝐴𝜕𝑡 + (�⃗� ⋅ 𝛻)𝐴) − 𝜕𝐸𝑝𝜕𝑟  

We have: 𝜕𝐸𝑝𝜕�⃗� = −𝑞𝐴 

Therefore: 𝑑𝑑𝑡 𝜕𝐸𝑝𝜕�⃗� = −𝑞 𝑑𝐴𝑑𝑡  

With: 𝑑𝐴 = 𝜕𝐴𝜕𝑡 𝑑𝑡 + 𝜕𝐴𝜕𝑥 𝑑𝑥 + 𝜕𝐴𝜕𝑦 𝑑𝑦 + 𝜕𝐴𝜕𝑧 𝑑𝑧 

𝑑𝐴𝑑𝑡 = 𝜕𝐴𝜕𝑡 + 𝜕𝐴𝜕𝑥 �̇� + 𝜕𝐴𝜕𝑦 �̇� + 𝜕𝐴𝜕𝑧 �̇� 

So, we have: 𝑑𝑑𝑡 𝜕𝐸𝑝𝜕�⃗� = −𝑞 𝜕𝐴𝜕𝑡 − 𝑞(𝜕𝐴𝜕𝑥 �̇� + 𝜕𝐴𝜕𝑦 �̇� + 𝜕𝐴𝜕𝑧 �̇�) 

 
We can notice in passing: 
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𝜕𝐴𝜕𝑥 �̇� + 𝜕𝐴𝜕𝑦 �̇� + 𝜕𝐴𝜕𝑧 �̇� =
⎝⎜
⎜⎜⎛

�̇� 𝜕𝐴𝜕𝑥 + �̇� 𝜕𝐴𝜕𝑦 + �̇� 𝜕𝐴𝜕𝑧�̇� 𝜕𝐴𝜕𝑥 + �̇� 𝜕𝐴𝜕𝑦 + �̇� 𝜕𝐴𝜕𝑧�̇� 𝜕𝐴𝜕𝑥 + �̇� 𝜕𝐴𝜕𝑦 + �̇� 𝜕𝐴𝜕𝑧 ⎠⎟
⎟⎟⎞ = �̇� 𝜕𝜕𝑥 + �̇� 𝜕𝜕𝑦 + �̇� 𝜕𝜕𝑧 𝐴𝐴𝐴

=
⎣⎢⎢
⎢⎢⎢
⎡ �̇��̇��̇� ⋅

⎝⎜
⎜⎜⎛

𝜕𝜕𝑥𝜕𝜕𝑦𝜕𝜕𝑧⎠⎟
⎟⎟⎞⎦⎥⎥

⎥⎥⎥
⎤ 𝐴𝐴𝐴  

Therefore: 𝑑𝐴𝑑𝑡 = 𝜕𝐴𝜕𝑡 + (𝜕𝐴𝜕𝑥 �̇� + 𝜕𝐴𝜕𝑦 �̇� + 𝜕𝐴𝜕𝑧 �̇�) = 𝜕𝐴𝜕𝑡 + (�⃗� ⋅ 𝛻) ⋅ 𝐴 

𝑑𝑑𝑡 𝜕𝐸𝑝𝜕�⃗� = −𝑞 𝑑𝐴𝑑𝑡 = −𝑞(𝜕𝐴𝜕𝑡 + (�⃗� ⋅ 𝛻) ⋅ 𝐴) 

 
Therefore: �⃗� = 𝑑𝑑𝑡 𝜕𝑞(𝐴 − (�⃗� ⋅ 𝐴))𝜕�⃗� − 𝜕𝑞(𝐴 − (�⃗� ⋅ 𝐴))𝜕𝑟  
satisfies the relationship seen above. �⃗� = 𝑑𝑑𝑡 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕�⃗� − 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕𝑟  

 
Note 1 
We remind the Lagrangian of the Lorentz electromagnetic force: 𝐿 = 12 𝑚�⃗� − 𝑞(𝐴 − (�⃗� ⋅ 𝐴)) = 𝐸𝑐 − 𝐸𝑝 

 
Note 2 
We remind the general Euler-Lagrange equation for a generalized force that does not derive from a 
potential: �⃗� = 𝑑𝑑𝑡 𝜕𝐸𝑐(𝑟, �⃗�, 𝑡)𝜕�⃗� − 𝜕𝐸𝑐(𝑟, �⃗�, 𝑡)𝜕𝑟  

with 𝐸𝑐 kinetic energy. 
 
We find the Euler-Lagrange equation for the electromagnetic force by equalizing the two terms, one 
with potential energy, the other with kinetic energy: �⃗� = 𝑑𝑑𝑡 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕�⃗� − 𝜕𝐸𝑝(𝑟, �⃗�, 𝑡)𝜕𝑟  

�⃗� = 𝑑𝑑𝑡 𝜕𝐸𝑐(𝑟, �⃗�, 𝑡)𝜕�⃗� − 𝜕𝐸𝑐(𝑟, �⃗�, 𝑡)𝜕𝑟  

 𝑑𝑑𝑡 𝜕𝐸𝑐 − 𝐸𝑝𝜕�⃗� − 𝜕𝐸𝑐 − 𝐸𝑝𝜕𝑟 = 0 
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𝑑𝑑𝑡 𝜕𝐿𝜕�⃗� − 𝜕𝐿𝜕𝑟 = 0 

 
II.5 Conclusion of the chapter 
In this chapter, it was pointed out that Electromagnetism had developed in analogy with fluid 
mechanics. We have also listed the many analogies that exist between the rotation vector 𝛺 (or vortex 
vector 𝛺) and the magnetic field 𝐵. 
 
The analogies were made in the 3 dimensions of Space 𝑥, 𝑦, 𝑧. In the next chapter, we will extend 
these analogies to the4th temporal dimension 𝑡 by treating Time as a dimension of Space. 
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Chapter III   Analogies between the mechanics of continuous media and 
relativistic quantum electrodynamics 

 
Purpose of the chapter 
We study the analogies between: 

- continuous media mechanics (CMM), extension of fluid mechanics to all types of continuous 
media, 

- relativistic quantum electrodynamics. 
 
Relativistic quantum Electrodynamics is a theory developed in the mid-20th century. It aims to 
reconcile the Electromagnetism of the 19th century with the  relativistic quantum physics of the 1920s 
and 1930s. It uses a Lagrangian formalism. 
 
In some respects, relativistic quantum Electrodynamics may appear as a theory using tools analogous 
to those of the mechanics of continuous media, with extension of the 3 dimensions of Space to the 4 
dimensions of Space-time. 
 
III.1 Historical presentation of relativistic quantum Electrodynamics (QED) 
III.1.1 Symbiosis between Electromagnetism, Special Relativity and Quantum Physics 
In the previous chapter, it was pointed out that the Electromagnetism of the 19th had progressed thanks 
to analogies with fluid dynamics. 
 
At the beginning of the 20th century, A. Einstein developed the theory of Special Relativity, then the 
theory of General Relativity. The General Relativity presents itself as a generalization of Newtonian 
mechanics and describes the Newtonian gravitational field. For its mathematical tools, General 
Relativity takes up those of the mechanics of continuous media, an extension of fluid mechanics to 
other media. 
 
Relativistic quantum Electrodynamics knows its main results in the years 1930-1950, in particular 
with the work of Paul Dirac, then with those of Richard Feynman (adapting in his thesis of 1942, the 
principle of least action to quantum mechanics). 
 
We can consider relativistic quantum Electrodynamics as a direct extension of 19th century 
electromagnetism, with the addition of Planck's constant ℏ. 
We can then interpret relativistic quantum Electrodynamics as a symbiosis between Electromagnetism, 
Quantum Physics and Special Relativity. Like Special Relativity, Relativistic quantum 
Electrodynamics includes the Lorentz transform and is based on a 4-dimensional Space-Time. It also 
goes far in the analogies between Time and Space, since Time is often presented with two senses, as a 
dimension of Space. 
For this reason, in relativistic quantum electrodynamics, we have a focus on the principle of least 
action which implies a final cause or at least, which makes it possible to free oneself from the 
principle of causality. 
 
III.1.2 Dirac relativistic wave equation as the fundamental law to be respected, absence of 

constant 𝑮 
Relativistic quantum Electrodynamics stems mainly from the work of Paul Dirac in the 1920s. Thus, it 
is the relativistic wave equation of Dirac that serves as a fundamental law to be respected during the 
transformations of local gauge and not the non-relativistic wave equations of Schrödinger and Pauli. 
 
Like quantum physics of the 1920s and 1930s, relativistic quantum Electrodynamics largely takes up 
the tools of analytical mechanics of Joseph-Louis Lagrange, Carl Gustav Jakob Jacobi and William 
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Rowan Hamilton. (late 18th century, early 19th century), analytical mechanics that historically had been 
presented as a reinterpretation of Newtonian mechanics, and which subsequently found many other 
applications. 
 
Nevertheless, as a paradox, relativistic quantum Electrodynamics does not reconcile the Planck 
constant ℏ and the Newton constant 𝐺. That is, it does not incorporate into its equations neither 
Newtonian gravitation (in particular the gravitational force). �⃗� = −𝐺 𝑢 ), nor Einsteinian 
General Relativity (these two theories using the constant 𝐺). In contrast, Like General Relativity, 
relativistic quantum Electrodynamics takes up the tools of the mechanics of continuous media, in 
particular the 4-dimensional tensor tool. 
 
These are the analogies between the tools of the mechanics of continuous media and the tools of 
relativistic quantum Electrodynamics, which we will study in this chapter. 
 
Note 
For relativistic quantum electrodynamics, the abbreviation QED is frequently used as quantum 
electrodynamics. 
 
 
III.2 Reminders on the continuous media mechanics (CMM) 
The continuous media mechanics studies the deformations of a continuous medium, often a fluid, 
sometimes a solid. For this reason, it is often interpreted as an extension of fluid mechanics. The 
continuous medium is characterized by the movements of material points in the three dimensions of 
Space. 
 
III.2.1 Descriptions of Lagrange and Euler 
We distinguish two descriptions for the movement of a material point, that of Joseph-Louis Lagrange 
and that of Leonhard Euler (2 famous mathematicians of the 18th century again gathered in a physical 
model). These two descriptions are briefly reminded here. 
 
Description of Lagrange 
We follow in its movement a fluid particle 𝑝 that is at the point 𝑀 and at the moment 𝑡. 
 
We define for this particle 𝑝: 

- a particle velocity (we talk about particulate velocity): �⃗� (𝑡) = 𝑑𝑟𝑑𝑡  

- an acceleration of the particle: �⃗� (𝑡) = 𝑑�⃗�𝑑𝑡 = 𝑑 𝑟𝑑 𝑡  

 
This description is similar to that of Newtonian mechanics. It is not very used in CMM because it 
requires knowledge about each particle of the fluid. The following description, description of Euler, is 
more commonly used. 
 
Description of Euler 
We place ourselves in a fixed point of observation 𝑀 and we measure at this point 𝑀, at the moments 𝑡, the local velocity of the particles �⃗�(𝑀, 𝑡), function of independent variables: positions of 𝑀 and 𝑡. 
 
The set of local velocities, or velocity field �⃗�(𝑀, 𝑡), describes the movement of the fluid. 
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For a fluid particle 𝑝 that is at the observation point 𝑀 at the moments 𝑡, we can confuse the local 
velocity and the velocity of the particle: �⃗� (𝑡) = 𝑣(𝑀, 𝑡) 

 
By contrast, the acceleration is different. We give the relationship between the acceleration of a 
particle and the local velocity: �⃗� (𝑡) = 𝑑�⃗�𝑑𝑡 = 𝑑�⃗�(𝑀, 𝑡)𝑑𝑡 + (�⃗�(𝑀, 𝑡). 𝑔𝑟�⃗�𝑑)𝑣(𝑀, 𝑡) 

with ⃗( , ) the local acceleration and (𝑣(𝑀, 𝑡). 𝑔𝑟�⃗�𝑑)𝑣(𝑀, 𝑡) the convective acceleration. 
 
We have: (𝑣(𝑀, 𝑡). 𝑔𝑟�⃗�𝑑)𝑣(𝑀, 𝑡) = 𝑔𝑟𝑎𝑑(𝑣2 ) + 𝑟𝑜𝑡𝑣 ∧ �⃗� = 𝑔𝑟�⃗�𝑑(𝑣2 ) + 2𝛺 ∧ 𝑣 

with 𝑟𝑜𝑡�⃗� = 2𝛺 
 
In convective acceleration, we recognize: 

- 𝑔𝑟�⃗�𝑑( ) which corresponds to the centrifugal inertial acceleration, 
- 2𝛺 ∧ 𝑣 = 𝑟𝑜𝑡𝑣 ∧ �⃗� which corresponds to the Coriolis inertial acceleration. 

 
Note 1 
We can interpret the passage from one to the other of these 2 descriptions, as a change of reference 
frames. The frame of reference according to Euler's description, follows the particle, and therefore 
cancels part of its motion. It requires the addition of inertial accelerations equal to: (𝑣(𝑀, 𝑡). 𝑔𝑟�⃗�𝑑)𝑣(𝑀, 𝑡) = 𝑔𝑟�⃗�𝑑(𝑣2 ) + 2𝛺 ∧ 𝑣 
 
Note 2 
Following an analogy with the magnetic vector potential 𝐴(𝑀, 𝑡), we define in this memoir a potential 
velocity vector �⃗�(𝑀, 𝑡) corresponding to the movement cancelled during a change of reference 
frames. The potential term is adequate, because it is a movement that does not exist in the reference 
frame where it is cancelled, but which is potentially recoverable if the change of reference frame is 
reversed. 
To highlight the resemblance between this potential velocity vector �⃗�(𝑀, 𝑡) and the velocity field �⃗�(𝑀, 𝑡) of the CMM, we will both write them in capital letters �⃗�(𝑀, 𝑡). 
 
 
III.2.2 Rotation rate tensor 
In CMM, we define a tensor 𝐿 3 × 3 gradient of local velocities �⃗�(𝑀, 𝑡). It makes it possible to 
characterize the movements of the continuous medium. 
 
The components of this tensor 𝐿 are 𝐺𝑟�̄�𝑑(�⃗�(𝑀, 𝑡)). We obtain: 𝐿 = 𝜕𝑉𝜕𝑥  

 
In the general case, the tensor 𝐿 is neither symmetrical nor antisymmetric. It is decomposed into: 
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- a symmetric tensor 𝐷 = (𝐺𝑟𝑎𝑑�⃗�(𝑀, 𝑡) + 𝐺𝑟𝑎𝑑 𝑉(𝑀, 𝑡)) called a deformation rate tensor 
(or tensor of deformation speeds), 

- an antisymmetric tensor 𝛺 = (𝐺𝑟𝑎𝑑�⃗�(𝑀, 𝑡) − 𝐺𝑟𝑎𝑑 𝑉(𝑀, 𝑡)) with a zero diagonal, and 
called a rotation rate tensor (or tensor of rotational speeds). 

 
Note 
Decomposition into deformation rates and rotation rates can be interpreted as a decomposition in 
variation of the norm of a vector and variation of its direction. 
 
A material point in the continuous medium can deform and undergo shears that are characterized by: 𝐷 = 12 (𝜕𝑉𝜕𝑥 + 𝜕𝑉𝜕𝑥 ) 

 
A material point can also undergo rotations that are characterized by: 
 𝛺 = 12 (𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑥 ) 

 
In the spatial plane x, y, we have the rotation (oriented in the direction of z): 𝛺 = 12 (𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦 ) 

 
We have the rotation rate tensor 𝛺: 

𝛺 = 0 𝛺 𝛺−𝛺 0 𝛺−𝛺 −𝛺 0  

 
The following diagram illustrates in two dimensions of Space, the deformations that a continuous 
medium can undergo: 
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Figure 1: shears and rotations, from Fluid Mechanics by Jean-François Sini 

 
III.3  Reminders on Maxwell Faraday's tensor, analogies between the tools of CMM 

and relativistic quantum Electrodynamics 
III.3.1 Maxwell Faraday's tensor 
Like CMM and General Relativity, relativistic quantum Electrodynamics uses the tensor tool. The 
most frequently used tensor is Maxwell Faraday's, noted here 𝐹 . 
 𝐹  is an antisymmetric tensor, describing the electromagnetic field. Despite its name inspired by two 
famous British physicists of the 19th century, it was proposed around the 1950s. 
 
There are several forms for 𝐹 . One is presented below: 
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𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 − 𝐸𝑙𝑐 − 𝐸𝑙𝑐 − 𝐸𝑙𝑐𝐸𝑙𝑐 0 −𝐵 𝐵𝐸𝑙𝑐 𝐵 0 −𝐵𝐸𝑙𝑐 −𝐵 𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 
The components of the tensor 𝐹  are defined from the electromagnetic quadrivector. 𝐹 = 𝜕 𝐴 − 𝜕 𝐴 = 𝜕𝐴𝜕𝜇 − 𝜕𝐴𝜕𝜈  𝜇, 𝜈 correspond to 𝑡, 𝑥, 𝑦, 𝑧. 
 
We propose to redefine the components of electric and magnetic fields on the model of tensor 
components 𝐹  (it will be argued in the next chapter). We then have: 𝐸𝑙 = 𝐹 = 𝜕 𝐴 − 𝜕 𝐴 = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

𝐵 = 𝐹 = 𝜕 𝐴 − 𝜕 𝐴 = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

 
We obtain for the tensor: 

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐𝐸𝑙𝑐 0 𝐵 𝐵𝐸𝑙𝑐 𝐵 0 𝐵𝐸𝑙𝑐 𝐵 𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐− 𝐸𝑙𝑐 0 𝐵 𝐵− 𝐸𝑙𝑐 −𝐵 0 𝐵− 𝐸𝑙𝑐 −𝐵 −𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 
III.3.2 Lagrangian of a fermion in QED 
In relativistic quantum Electrodynamics, we define the Lagrangian (or Lagrangian density) of a 
fermion (for example an electron) in an electromagnetic field (associated with a photon): 𝐿 = 𝑖ℏ𝑐𝜓𝛾 (𝜕 + 𝑖𝑞𝑐𝐴 )𝜓 − 𝑚𝑐 𝜓𝜓 𝐿 = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 − 𝑞𝑐𝜓𝛾 𝜓𝐴  

 
Note 1 
In particle physics, fermions are the particles that undergo the field, as opposed to the bosons that 
generate the field. Fermions have a half-integer spin and respond to the Fermi-Dirac statistic. Bosons 
have an integer spin and respond to the Bose-Einstein statistic. For electromagnetic interaction, the 
boson is actually a photon. We will come back to this extensively in future memoirs. 
 
Note 2 
We have the quadrivector charge density electric currents: 
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𝑗 = (𝜌 , 𝑗 , 𝑗 , 𝑗 ) 

with (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧) 

 
We have the generalized electromagnetic potential energy: 𝐸𝑝 = 𝑞 (𝐴 − (�⃗� ⋅ 𝐴) = 𝑗 𝐴  

 
In QED, we define 𝑗  by: 𝑗 = 𝑞𝑐𝜓𝛾 𝜓 

 
We find in the Lagrangian of a fermion, the generalized electromagnetic potential energy: 𝑞𝑐𝜓𝛾 𝜓𝐴 = 𝑗 𝐴  

 
By applying Euler-Lagrange − ( ̇) = 0 to the Lagrangian, we find the Dirac wave equation in 
an electromagnetic field: (𝑖ℏ𝑐𝛾 (𝜕 + 𝑖𝑞𝑐𝐴 ) − 𝑚𝑐 ))𝜓 = 0 

 
From the Maxwell Faraday tensor, we define a Lagrangian that allows to include the creation and 
disappearance of photons: 𝐿 = − 14𝜇 𝐹 𝐹  

 
By associating the two Lagrangians, we obtain the Lagrangian of relativistic quantum 
Electrodynamics: 𝐿 = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 − 𝑞𝑐𝜓𝛾 𝜓𝐴 − 14𝜇 𝐹 𝐹  

𝐿 = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 − 𝑗 𝐴 − 14𝜇 𝐹 𝐹  

 
III.3.3 Find Maxwell's source field equations from a Lagrangian 
Let's define a Lagrangian simply from the generalized electromagnetic potential energy and Maxwell 
Faraday tensor: 𝐿 = −𝑗 𝐴 − 14𝜇 𝐹 𝐹  

𝐿 = −𝑗 𝐴 − 14𝜇 (𝜕 𝐴 − 𝜕 𝐴 )(𝜕 𝐴 − 𝜕 𝐴 ) 

𝐿 = − 12𝜇 (𝜕 𝐴 𝜕 𝐴 − 𝜕 𝐴 𝜕 𝐴 ) − 𝑗 𝐴  

 
By applying Euler-Lagrange − 𝜕 ( ( )) = 0 to this Lagrangian, we find the two Maxwell's 

source field equations (Ampère and Gauss) in the form source tensor: 
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𝜇 𝑗 = 𝜕 𝐹  

 
Note 1 
According to the initial conventions taken on the constants 𝜇  and 𝜀 , we can also find the following 
source tensor relation: 𝑗𝜀 = 𝜕 𝐹  

 
Note 2 
Through these tensor source relationships, we note the construction symmetry for the 2 source field 
equations of Maxwell Ampère and Maxwell Gauss, symmetry not very visible in the equations 
proposed by Oliver Heaviside and Willard Gibbs at the end of the 19th century, but explicitly apparent 
here. 
In memoir 3, we will also propose the same mode of construction for the 2 Maxwell’s source field 
equations. 
 
III.3.4 Analogies between CMM tools and those of the QED 
Let us now highlight the analogies between: 

- the tensor 𝛺  (𝜇, 𝜈 = 𝑥, 𝑦, 𝑧) of rotation rates in the three dimensions of Space, 
- the Maxwell Faraday tensor 𝐹  (𝜇, 𝜈 = 𝑡, 𝑥, 𝑦, 𝑧) in the four dimensions of Space-Time. 

 
Both are antisymmetric and constructed from intersecting differences in potential derivatives. 

𝛺 = 0 𝛺 𝛺−𝛺 0 𝛺−𝛺 −𝛺 0  

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐− 𝐸𝑙𝑐 0 𝐵 𝐵− 𝐸𝑙𝑐 −𝐵 0 𝐵− 𝐸𝑙𝑐 −𝐵 −𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

𝛺 = 12 (𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦 ) 

𝐸𝑙 = 𝐹 = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

𝐵 = 𝐹 = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

 
Two observations are made: 

- the tools of the QED are similar to an extension of 3 to 4 dimensions of the tools of the CMM 
with a consideration of the Time dimension, 

- if we bring the rotation vector 𝛺 closer to the magnetic field 𝐵, it is the electric field 𝐸𝑙 which 
appears as the extension to the Time dimension. 
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Note 1 
Note that to describe the weak and strong interactions, symmetric tensors similar to maxwell Faraday's 
are used in the Standard Model: 

𝐹 = ⎣⎢⎢⎢
⎡ 0 𝐸𝑙 𝐸𝑙 𝐸𝑙−𝐸𝑙 0 −𝐵 𝐵−𝐸𝑙 𝐵 0 −𝐵−𝐸𝑙 −𝐵 𝐵 0 ⎦⎥⎥⎥

⎤
 

 
For strong interaction, with a parameter a ranging from 1 to 8, strong fields are defined 𝐸𝑙  and 𝐵  
analogous to electric and magnetic fields. 
 
For weak interaction, with a parameter a ranging from 1 to 3, weak fields are also defined 𝐸𝑙  and 𝐵  
analogous to electric and magnetic fields. 
 
Note 2 
We can wonder about the antisymmetric character of all these tensors, especially since as we have 
seen in CMM, the tensor 𝐿 is in the general case neither symmetrical nor antisymmetric. 
Only the rotation rate tensor 𝛺 built from 𝐿 is symmetrical. 
 
Some models suggest that the anti-symmetry of the tensors of relativistic quantum electrodynamics 
and the Standard Model, is related to the conservation of charges and mass. 
The question remains open. 
 
III.4 Conclusion of the chapter 
Like General Relativity, relativistic quantum Electrodynamics uses 4-dimensional tensors of Space-
Time, tools previously developed in the mechanics of continuous media in 3 dimensions of Space. 
The Maxwell-Faraday electromagnetic tensor 𝐹  explicitly reveals the formal similarities between the 
magnetic field 𝐵 = 𝐹  and the electric field 𝐸𝑙 = 𝐹 . The electric field is built on exactly the 
same mode as the magnetic field, with an extension to the Time dimension. 
In the next chapter, we will use this idea to define the electric field as a "generalized" rotation vector 
in a spatiotemporal plane. 
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Chapter IV "Generalized" rotation vectors and fields 
 
Purpose of the chapter 
We propose here to explain the notions: 

- of "generalized" rotation vector taken in a broad sense (in a spatial plane and then in a 
spatiotemporal plane) that is cancelled during a change of reference frames, 

- of the field obtained after the change of reference frames and cancellation of the "generalized" 
rotation vector. 

 
We will define the notions of wave vector field 𝐾 /  and pulsation field 𝛺 / . On the model of the 
electric field �⃗�𝑙 /  extension to the Time dimension of the magnetic field 𝐵 / , the wave vector field 𝐾 /  will be the extension to the Time dimension of the pulsation field 𝛺 / . 
 

IV.1 Analogies between magnetic fields �⃗�, electric field 𝑬𝒍 and rotation vector �⃗� 

IV.1.1 Analogies between magnetic fields �⃗� and electric field �⃗�𝒍 
In the Electromagnetism of the 19th century, we conventionally derive the electric field �⃗�𝑙 and the 
magnetic field 𝐵 from an electric scalar potential 𝐴  and from a magnetic vector potential 𝐴. 
 
We have the following equations where electric field and magnetic field appear formally different: �⃗�𝑙 = −𝑔𝑟�⃗�𝑑(𝐴 ) − 𝜕𝐴𝜕𝑡  

(𝜇 = 𝑥, 𝑦, 𝑧) 𝐵 = 𝑟�⃗�𝑡𝐴  

 
We have for example for the component 𝐵  of the magnetic field 𝐵: 𝐵 = 𝜕𝐴𝜕𝑦 − 𝜕𝐴𝜕𝑥  

 
During the 1930s, relativistic quantum Electrodynamics developed, influenced by the theory of 
Relativity. In particular, it takes up the notion of space-time quadrivector, and introduces an 
electromagnetic potential quadrivector that will be noted here 4𝐴 or 𝐴  (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧): 

4𝐴 = 𝐴𝐴 ′𝐴𝐴 ′ = 𝐴−𝐴−𝐴−𝐴  

with 𝐴  the electric scalar potential and 𝐴 the magnetic vector potential (we put here an apostrophe 𝐴 ′ 
to distinguish the old from the new terms of the magnetic vector potential, but thereafter we will not 
put more). 
 
Note on the electrical potential defined as a time component 
We can wonder about the deep reasons for defining an electromagnetic quadrivector with an electric 
potential in time component and a magnetic potential in spatial components. 
The only answer to this, it is true unsatisfactory, is to see that it works perfectly in the calculations. 
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As already mentioned in the previous chapter, this electromagnetic potential quadrivector 4𝐴 
highlights much more than the equations of the 19th century the similarities between fields 𝐵 and field �⃗�𝑙. 
 
We have for example for the component 𝐸𝑙 : 𝐸𝑙 = − 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥 = 𝜕𝐴 ′𝜕𝑡 − 𝜕𝐴𝜕𝑥  

 
And for the component 𝐵 : −𝐵 = − 𝜕𝐴𝜕𝑥 + 𝜕𝐴𝜕𝑦 = 𝜕𝐴 ′𝜕𝑥 − 𝜕𝐴 ′𝜕𝑦  

 
To bring the fields �⃗�𝑙 and 𝐵 closer together, we modify their indices, and we now take those of the 
Maxwell Faraday tensor. For example, we have for 𝐸𝑙  and 𝐵 : 𝐸𝑙 = 𝐸𝑙 = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

𝐵 = −𝐵 = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

 
We obtain thus a field �⃗�𝑙 and a field 𝐵 which are constructed identically (except for the index) using 
the electromagnetic potential quadrivector 𝐴  (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧). 
 
IV.1.2 Orient the fields �⃗�𝒍 and �⃗� in analogy with a rotation vector �⃗� 
In mechanics, the rotation vector 𝛺  with respect to a spatial plan x, y is oriented perpendicular to 
this plane. It is therefore classically oriented in the direction of z in a three-dimensional space x, y, z. 
 
Here we keep the idea of treating Time in the same way as Space. In a three-dimensional space (2 for 
Space and 1 for Time), the dimension t is perpendicular to the spatial plane x, y. So, we have a rotation 
vector 𝛺 /  oriented according to Time (and in line with its units that are in 𝑟𝑎𝑑 × 𝑠 , hence here the 1/𝑡). 
 
The same notation is used for the fields 𝐵 /  et 𝐸𝑙 /  which will be respectively associated with a 
"generalized" rotation in a spatial plane x, y and oriented in the direction of t, to a "generalized" 
rotation in a spatiotemporal plane t, x and oriented in the direction of y. 
 
We have the following notations that we will keep from now on: 2𝛺 / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦  

𝐵 / = −𝐵 = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

𝐸𝑙 / = 𝐸𝑙 = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  
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Following these analogies, an important consequence is the reorientation of the electric field 𝐸𝑙 / =𝐸𝑙 . Indeed, it is usually considered that the electric field 𝐸𝑙 / = 𝐸𝑙  is oriented in the direction of x. 
To continue the analogy to the end, it must be reoriented in the direction of y. The interest is to define 
the field 𝐸𝑙 /  as a true "generalized" rotation vector in a spatiotemporal plane. The inappropriate 
thing is to have to use most of the classic formulas where the electric field intervenes. 
 
If the electric field is redirected, the magnetic field is not 𝐵 / = −𝐵  which retains its usual 
orientation in the dimension perpendicular to x, y. Whether this dimension is z in a space x, y, z, or t in 
a space x, y, t, it remains the dimension perpendicular to the plane x, y. 
 
Note 1 
In a 4-dimensional space, the problem arises again since two dimensions can be perpendicular to a 
plane. In this essay, we will most often stick to the simple case of 3 dimensions. 
 
Note 2 
If the electric field is reoriented, we will see that this will not be the case for the electric force, nor for 
other so-called classical forces. 
 
IV.1.3 Definition of a potential velocity quadrivector 
We have previously highlighted the similarities between electrostatics and gravitation, between 
electrical potential 𝐴  and Newtonian potential 𝑉 . 

On the model of the electromagnetic potential quadrivector 4𝐴 = 𝐴𝐴𝐴𝐴 , we define a potential velocity 

quadrivector from the linear velocities that we cancel during a change of reference frames and the 
Newtonian potential: 

4�⃗� = 𝑉𝑉𝑉𝑉  

 
Note 
Note that in Special Relativity, the velocity quadrivector is defined as: 

4�⃗� = 𝛾𝑐𝛾𝑣𝛾𝑣𝛾𝑣  

with 𝛾 =  

 
So, it's not the same physical notion. 
 
 
IV.2 Vector generalized rotations and fields in spatial or spatiotemporal planes 

We propose to define the fields 𝐵 / , �⃗�𝑙 / , 𝛺 / , 𝐾 /  such as generalized rotation vectors in spatial 
and spatiotemporal planes that are cancelled during a change of reference frames. We place ourselves 
here in a space with three dimensions orthogonal between them (two dimensions x, y for Space, and 
one dimension t for Time). 



Memoir 2: "Generalized" rotation vectors and fields in a spatiotemporal plane    105 

 
We will distinguish a little artificially the notion of field deriving from a potential from that of 
generalized rotation vector in a spatial or spatiotemporal plane, by the fact that: 

- the generalized rotation vector is the physical quantity present before the change of reference 
frames, 

- the field is the physical quantity obtained after the cancellation of the "generalized" rotation 
vector when changing reference frames and potentially available if the reverse reference frame 
change is performed. 

 
IV.2.1 Pulse field �⃗�𝒙𝒚𝟏/𝒕 
We define a pulsation field corresponding to the rotation vector in a spatial plane 𝛺 / : 2𝛺 / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦  

 
This is defined from a velocity vector potential (with components 𝑉 , 𝑉 ), corresponding to the linear 
velocities cancelled when changing reference frames. 
 
IV.2.2 Magnetic field �⃗�𝒙𝒚𝟏/𝒕 
We define a usual magnetic field in a vacuum, derived from the magnetic potential 𝐴 , 𝐴 : 𝐵 / = 𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦  

 
Like the pulsation field, the magnetic field appears as a generalized rotation vector in a spatial plane. 
The velocity potentials 𝑉 , 𝑉  and magnetic potentials 𝐴 , 𝐴  are both components defined in Space. 
 
Note on the Larmor relation 
We have highlighted the analogies between velocity vector potential 𝑉 , 𝑉  and magnetic vector 
potential 𝐴 , 𝐴 . By contrast, the root causes that require distinguishing these velocity potential and 
magnetic potential will remain unexplained here. 
 
It is noted that using the Larmor relation between 𝛺 /  à 𝐵 / , one can find a simple relationship 
between velocity potential and magnetic potential. 
 
We have: 𝛺 / = 𝑒2𝑚 𝐵 /  

with −𝑒 the charge of the electron and 𝑚  the mass of the electron. 
 
We have for the potentials: 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦 = 𝑒𝑚 (𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦 ) 

 
If we equalize one by one, we find: 𝑉 = 𝑒𝑚 𝐴  

𝑉 = 𝑒𝑚 𝐴  
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We have the equality between potential momentums: 𝑚 𝑉 = 𝑒𝐴  𝑚 𝑉 = 𝑒𝐴  

 
IV.2.3 Electric field �⃗�𝒍𝒕𝒙𝟏/𝒚 

In the same way, we define an electric field �⃗�𝑙 /  deriving from an electric potential 𝐴  and from a 
magnetic potential 𝐴 : 𝐸𝑙 / = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

 
IV.2.4 Wave vector field 𝑲𝒕𝒙𝟏/𝒚 

The magnetic field 𝐵 /  and the electric field �⃗�𝑙 /  both derive from the electromagnetic quadrivector 
potential. The first corresponds to a generalized rotation vector in a spatial plane, the second 
corresponds to a generalized rotation vector in a spatiotemporal plane. 
The pulsation field 𝛺 /  corresponds to a vector rotation in a spatial plane and derives from the 
velocity vector potential. 
We are looking for the counterpart of 𝛺 / , generalized rotation vector in a spatiotemporal plane and 
derived from the velocity quadrivector potential. 
 
In wave theory, we have the analogies between Time and Space for the following quantities: 
 

Time Space 

Period 𝑇 in 𝑠 
 

Wavelength 𝜆 in 𝑚 

Frequency 𝜈 =  in 𝐻𝑧 or 𝑠  
 

Wavenumber 𝜎 =  in 𝑚  

Pulse 𝜔 = 2𝜋𝜈 =  in 𝑟𝑎𝑑 × 𝑠  
 

Wave vector 𝑘 = 2𝜋𝜎 =  in 𝑟𝑎𝑑 × 𝑚   

 
The analogue in the Space of the pulsation 𝜔 = 2𝜋𝜈, it is the wave vector 𝑘 = 2𝜋𝜎. 
 
The idea is to define a wave vector field 𝐾 /  equal to: 2𝑐 𝐾 / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥  

 2𝑐 �⃗� /  is in 𝑚 × 𝑠  (as an acceleration). 
 
Note 1 
The Newtonian potential 𝑉  must be in 𝑚 × 𝑠  in order to  is in 𝑚 × 𝑠 . 
 
Note 2 
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We add here 𝑐  in the expression of the wave vector field 2𝑐 𝐾 /  for the sake of homogeneity. In a 
medium other than vacuum (where the phase velocity of the wave 𝑣  is no longer equal to 𝑐), it 
should be possible to generalize with: 2𝑣 𝐾 / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥  

 
IV.2.5 Newtonian gravitational field and Einsteinian gravitational field 

We propose to decompose the wave vector field 2𝑐 𝐾 / = −  in two terms. 
 
One, the Newtonian gravitational field 𝐺𝑟  which appears as a special case of the wave vector field 
when = 0, 𝐺𝑟 = − . 
 
The other, an acceleration field 𝑎 = −  that is added during an implicit change of reference 
frames. It is referred to here as an Einsteinian acceleration or an Einsteinian gravitational field in 
reference to the principle proposed by A. Einstein of equivalence between acceleration and 
gravitational field. This acceleration occurs classically in the fundamental principle of Newton's 
dynamics: 𝑚�⃗� = 𝛴�⃗� 

 
We have the relationship between the wave vector field 𝐾 / , the Newtonian gravitational field and 
the Einsteinian gravitational field: 2𝑐 𝐾 / = �⃗�𝑟 / − �⃗�  

 
Note 1 
To be checked if it can be generalized in this form in refractive index media 𝑛 ≠ 1: 2𝑣 𝐾 / = �⃗�𝑟 / − �⃗� ? 

 
Note 2 
Let us observe that like 𝐾 / , �⃗�𝑟 /  and �⃗�  can both be considered generalized rotation vectors in 
a spatiotemporal plane t, x and oriented according to y. 
 
IV.2.6 Tensor 𝑫𝝁𝝂 of wave vector field and pulsation field 
We remind the Maxwell Faraday tensor. 

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐− 𝐸𝑙𝑐 0 𝐵 𝐵− 𝐸𝑙𝑐 −𝐵 0 𝐵− 𝐸𝑙𝑐 −𝐵 −𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 
By analogy between 𝐾 and �⃗�𝑙, then between 𝛺 and 𝐵, we define the pulsation wave vector tensor in 
the 4 dimensions of Space-Time: 
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𝐷 = ⎣⎢⎢⎢
⎡ 0 𝑐𝐾 𝑐𝐾 𝑐𝐾−𝑐𝐾 0 𝛺 𝛺−𝑐𝐾 −𝛺 0 𝛺−𝑐𝐾 −𝛺 −𝛺 0 ⎦⎥⎥⎥

⎤
 

 
We have it in the following form if we divide all the terms by 𝑐: 

𝐷 =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 0 𝐾 𝐾 𝐾−𝐾 0 𝛺𝑐 𝛺𝑐−𝐾 − 𝛺𝑐 0 𝛺𝑐−𝐾 − 𝛺𝑐 − 𝛺𝑐 0 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
IV.3 Conclusion of the chapter 
In this chapter, we defined "generalized movements" of the type generalized rotation vectors in a 
spatial or spatiotemporal plane, rotation vectors that become potential quantities, that is to say fields 
deriving from potentials, when they are cancelled during a change of reference frames. 
 
The real objective that we will address in the next chapter is to match any cancellation of a generalized 
movement during a change of reference frames to a so-called amount of inertia (such as force, 
acceleration, potential energy, etc.), which is added to preserve the invariance of the main laws of 
Nature. In the next chapter, the main law of Nature to be preserved will be the fundamental principle 
of Newton's dynamics. 
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Chapter V Build any force on the model of the Coriolis inertial force and 
the Lorentz magnetic force 

 
Purpose of the chapter 
We now seek to construct any so-called classical force (we exclude strong and weak nuclear 
interactions) on the model of the Coriolis inertial force, a force that is added in the fundamental 
principle of Newton's dynamics when we cancel the rotation vector 𝛺. 
 
For this we will use fields and generalized rotation vectors in spatial and spatiotemporal planes, which 
was defined in the previous chapter. 
 
V.1 Objective and angles of attack 
V.1.1 Objectives and angles of attack of General Relativity 
In the theory of General Relativity, A. Einstein set as his main objective the respect of the principle of 
generalized relativity, that is to say an invariance of the laws of Nature regardless of the change of 
reference frames. 
 
For this, A. Einstein seeks to preserve the space-time interval 𝑑𝑠 = 𝑔 𝑑𝑥 𝑑𝑥  regardless of the 
change of reference frame. He describes the notion of field as deformations of Space-Time and draws 
inspiration from the source potential equation of Poisson gravitation to propose the so-called Einstein 
equation of General Relativity. We will come back to this in the last Memoir, when we talk about the 
Big Bang theory. 
 
In this chapter, we take up the objective of A. Einstein of General Relativity, an invariance of the laws 
of Nature regardless of the change of reference frames. However, we limit ourselves to changes of 
reference frames of the type cancellation of a generalized rotation vector. In addition, we will use 
another angle of attack based more on the so-called classical forces, on the Electromagnetism of the 
19th century and on the Quantum Electrodynamics of the 20th. 
 
V.1.2  Angle of attack, modelled on the inertial Coriolis force 
In the 1st Memoir, we mentioned the reasons for bringing any "normal" force closer to an inertial 
force: 

- first, a conceptual difficulty in accepting that there are privileged so-called inertial or Galilean 
reference frames. The reference frames in rotational movement pose in particular problem 
because they also "work" in isolation. One thinks in particular of the Bohr electron model, 
where the rotating electron in a stationary state, does not radiate energy, 

- secondly, a difficulty in accepting the existence of two types of forces: inertial forces that are 
added during a change of reference frames and "normal" forces that would be somehow pre-
existing. 

 
We also highlighted the analogies between: 

- the generalized electromagnetic potential energy that must be added (in local gauge theories, 
in partial derivatives of the wave function 𝜓) when cancelling part of the wave function phase 𝜓 (corresponding to a transformation of local gauge), 

- the inertial forces to be added (in the fundamental principle of Newton’s dynamics) when 
cancelling the rotation vector 𝛺 (corresponding to a change of reference frames), 

in order to have an invariant for the main laws of Nature, for wave equations or for the fundamental 
principle of Newton's dynamics. 
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In this 2nd Memoir, we have highlighted the similarities between the Coriolis force �⃗� = 𝑚�⃗� ∧2𝛺 /  and the Lorentz magnetic force �⃗� = 𝑞�⃗� ∧ 𝐵 / , forces defined from a momentum or electric 
current and a field (pulsation field or magnetic field), and perpendicular to these quantities. 
 
We also highlighted the similarities between pulsation field 𝛺 / , wave vector field 𝐾 / , magnetic 
field 𝐵 /  and electric field �⃗�𝑙 / . 
 
Following these analogies and similarities, the idea is to build the electric force, the magnetic force 
and the gravitational force on the model of the Coriolis inertial force, taking up or expanding the 
following 3 characteristics: 

- a quantity cancelled during a change of reference frames, a quantity to be matched to a 
generalized rotation vector in a spatial or spatiotemporal plane. The cancelled quantity is 𝛺 / , 𝐾 / , 𝐵 / , 𝐸𝑙 / . The change of reference frames is performed from a reference state 𝑅  to a 
reference frame 𝑅 , 𝑅 , 𝑅 , 𝑅  where one cancels one of the 4 generalized rotation vectors, 

- a quantity retained during the change of reference frames (which will take the form of a speed, 
a momentum, a current, an electric charge or a mass), 

- a force to be added in the fundamental principle of Newton's dynamics, force both 
perpendicular to the conserved quantity and the cancelled quantity. 

 
Note 1 on the electric field and electric force 
Usually, the electric force and the electric field have the same direction. Reorienting the electric field �⃗�𝑙 /  from x to y (such as a rotation vector), achieves an electric force that is perpendicular to both the 
electric charge 𝑞  and to the field �⃗�𝑙 / . The electric force thus defined will retain the same 
orientation as the usual one. We will come back to that. 
 
Note 2, restriction with vector product 
On the model of the Coriolis force, all the forces studied here will be built from a vector product, a 
notion proposed by Willard Gibbs at the end of the 19th century. 
The vector product is defined in three dimensions of a space, this implies an important restriction: to 
place itself only in three-dimensional spaces, for example a space with two dimensions of Space and 
one dimension of Time. 
 
Note 3 on contact forces 
It will be admitted in this Memoir that the so-called contact forces (friction, etc.) that intervene in the 
fundamental principle of Newton's dynamics can always be reduced to gravitational and/ or electric 
forces and that therefore the study of the latter forces is sufficient. 
 
 
V.2 Quantities retained and quantities cancelled when changing reference frame, 

speed, mass, and electric charge 
V.2.1 Findings on quantities retained and cancelled when changing reference frame 
When looking at a Coriolis acceleration �⃗� = 2𝛺 / ∧ �⃗� , we find that when changing reference 
frame from 𝑅  to 𝑅 , there is a quantity cancelled the field 𝛺 /  and a quantity retained specific to the 
body studied: �⃗�  the relative speed of the body studied. 
 
By analogy between the Coriolis force and magnetism, we propose that it may be the same for the 
electromotor field �⃗�𝑚 = �⃗� ∧ 𝐵 / . When changing the reference frame from 𝑅  to 𝑅 . There is a 
quantity cancelled the generalized rotation vector 𝐵 /  and a conserved quantity specific to the body 
studied: �⃗�  the speed of the electric charge. 
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If we take the table potential momentums and potential energies, each potential energy and potential 
momentum can be broken down into: 

- a quantity retained (lowercase) when changing reference frames, the electric charge 𝑞  and the 
mass 𝑚 , 

- a cancelled quantity (in uppercase)) when changing reference frames, electromagnetic 
potential quadrivectors 𝐴  and speed potential quadrivectors 𝑉  (from which the fields 
derive). 

 
 Electromagnetism Gravitation 

Potential energy 𝐸𝑝  𝐸𝑝 = 𝑞 𝐴  
 

𝐸𝑝 = 𝑚 𝑉  
 

Potential momentum in 
the direction of x 

𝑝 = 𝑞 𝐴  𝑝 = 𝑚 𝑉  

Potential momentum in 
the direction of y 

𝑝 = 𝑞 𝐴  𝑝 = 𝑚 𝑉  

 
It is noted that the quantities retained are specific to the particle and that the quantities cancelled are 
external to it. 
 
V.2.2 Conserved quantities in physics, Noether's theorem 
In 1918, Emilie Noether proposed a famous theorem that bears her name, and which speaks of 
quantities conserved during transformations. Let us now say a few words. 
 
Let be a Lagrangian 𝐿 with symmetry. This means that 𝐿 is not modified, when applied a family of 
transformations parameterized by a variable 𝑠, sending a position 𝑞 to a new position 𝑞(𝑠). 
 
This is expressed by the nullity of the Lagrangian derivative with respect to 𝑠: 𝜕𝐿𝜕𝑠 = 0 

 
Noether's theorem states that there is a quantity 𝐶 conserved during the transformation parameterized 
by 𝑠 and which is equal to: 𝐶 = 𝜕𝐿𝜕�̇�(𝑠) 𝜕𝑞(𝑠)𝜕𝑠 = 𝑝 𝜕𝑞(𝑠)𝜕𝑠  

 
Note that as for the Lagrangian 𝐿, we have for 𝐶: 𝜕𝐶𝜕𝑠 = 0 

For example, when 𝐿 is invariant by a translation into Space = 0, the variable 𝑠 is then the position 𝑞. We obtain as a conserved quantity: 𝐶 = 𝜕𝐿𝜕�̇� 𝜕𝑞𝜕𝑞 = 𝑝 𝜕𝑞𝜕𝑞 = 𝑝 

 
The momentum is therefore the quantity conserved when the Lagrangian is invariant by translation in 
Space. 
 
Similarly, it is shown that the quantity conserved is: 
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- the energy (i.e., Hamiltonian) 𝐻) when the Lagrangian is invariant by translation in Time, 
- the kinetic moment when the Lagrangian is invariant by rotation, 
- an electric charge current density quadrivector when the Lagrangian is invariant by phase 

change of the wave function, that is, by global gauge transformation. 
 
Let's look at this last point in the next paragraph. 
 
V.2.3 Application of Noether's theorem: conservation of the electric charge current density 

quadrivector when the Lagrangian is invariant by global gauge transformation 
Let's take the simple example of a global gauge transformation that applies to the wave function: 𝜓(𝑥) → 𝑒 𝜓(𝑥) 𝛼 can take any real value, 𝑥 here refers to a local variable, i.e., a moment or position. 
 
Note 
We differentiate between global gauge transformation and local gauge transformation with 𝛼 
independent of the time or position variables for the first and 𝛼(𝑥) function of a time or position 
variable for the second. 
 
We have the Lagrangian of a free electron described by the wave function 𝜓: 𝐿 = 𝜓(𝑖𝛾 𝜕 − 𝑚𝑐ℏ )𝜓 

 
Note that this Lagrangian is invariant by 𝜓(𝑥) → 𝑒 𝜓(𝑥). 
 
According to Noether's theorem, there is a quantity conserved during the transformation. 
 
We have for the electric charge density: 𝑗 = 𝜕𝐿𝜕�̇�(𝛼) 𝜕𝜓(𝛼)𝜕𝛼  

 
For the electric current density: 𝑗 = 𝜕𝐿𝜕 𝛻𝜓(𝛼) 𝜕𝜓(𝛼)𝜕𝛼  

(𝜇 = 𝑥, 𝑦, 𝑧) 

 
By developing these two equations, we obtain the electric charge current density quadrivector defined 
in relativistic quantum Electrodynamics: j = −eψγ ψ 

(𝜇 = 𝑡, 𝑥, 𝑦, 𝑧) 
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V.3 Coriolis inertial acceleration and induced electromotor field, both obtained from 
the cancellation of a generalized rotation vector in a spatial plane 

V.3.1 What distinguishes an inertial acceleration from an inertial force? 
When changing reference frames, we cancel (or modify) a movement. In this case, we wonder why we 
add in the fundamental dynamic principle an inertial force and not an inertial acceleration, acceleration 
which is indeed much more similar to a movement? 
 
The notion of force is widely used in physics. It is strange, or at least less intuitive than the notion of 
acceleration. In the fundamental principle of dynamics, it is not quantities of movements that intervene 
on either side of the relationship. On one side (on the right), we have a vector sum of forces. On the 
other side (on the left), we have a variation of movement (or acceleration) once a mass (whose 
presence we cannot intuitively understand). 
 
The notions of acceleration and inertial acceleration are much more intuitive. When a body is in 
rectilinear motion, it can have tangential acceleration. When this body enters rotation, it acquires 
normal acceleration in addition to tangential acceleration. If we place ourselves in the reference frame 𝑅  where we cancel the rotation vector 𝛺, we must add a centrifugal inertial acceleration which is 
precisely the normal acceleration. All this is very well demonstrated mathematically and can 
intuitively be understood. 
By contrast, the notion of inertial force (because of the consideration of mass) is not demonstrated 
mathematically. 
 
To explain what distinguishes the notion of inertial acceleration from the notion of inertial force, the 
following idea is proposed. 
What if the inertial acceleration were added in all general laws of Nature invariant by change of 
reference frames, when we cancel during a change of reference frames a generalized rotation vector in 
a spatial plane? 
What if the inertial force were added in all general laws of Nature invariant by change of reference 
frames, when we cancel during a change of reference frames a generalized rotation vector in a 
spatiotemporal plane? 
 
The Coriolis inertial acceleration is perpendicular to a velocity �⃗�  and a rotation vector (the first term 
retained and the second term cancelled when changing reference frames). For a force, it would be 
almost the same. Nevertheless, the force would be distinguished from an inertial acceleration by the 
cancellation not of a generalized rotation vector in a spatial plane, but in a spatiotemporal plane. 
Thus, the force would be perpendicular to something analogous to the velocity. �⃗�  and to a generalized 
rotation vector in a spatiotemporal plane. 
 
It is this idea that we will evaluate in the next paragraphs. 
 
V.3.2 Generalized rotation vectors in a spatial plane 
Let be the pulsation field 𝛺 /  and magnetic field 𝐵 /  both correspond to a generalized rotation 
vector in a spatial plane x, y: 2𝛺 / = (𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑦 ) /  

𝐵 / = (𝜕𝐴𝜕𝑥 − 𝜕𝐴𝜕𝑦 ) /  

 
V.3.3 Coriolis inertial acceleration 
By cancelling the rotation vector 𝛺 / , that is, by going from 𝑅  to 𝑅 : 
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- we add the centrifugal inertial acceleration (with the drive speed �⃗� = 𝛺 / ∧ 𝑥 which is also 
cancelled when changing reference frames): �⃗� = −𝑣 ∧ 𝛺 / = −(𝛺 / ∧ �⃗�) ∧ �⃗� /  

- we add the Coriolis inertial acceleration with the relative velocity �⃗�  as the quantity retained: �⃗� = −𝑣 ∧ 2𝛺 /  

 
Note 𝑥 holds here the role of the normal (or radial) coordinate and 𝑦 the role of tangential coordinate. 
 
We have the following figure for the Coriolis inertial acceleration: 
 

 

Figure 2: Coriolis inertial acceleration 

 
Note 
We have in 𝑅 , the absolute speed: �⃗� = 𝑣 + �⃗�  

 
V.3.4 Induced electromotor field 
The magnetic field 𝐵 /  corresponds to a generalized rotation in a spatial plane. According to our 
initial idea, if we cancel the generalized rotation vector 𝐵 /  when changing reference frame from 𝑅  
to 𝑅 , we expect to get something to add that is more like an acceleration than a force. 
 
This is precisely what we see, since we obtain an induced electromotor field �⃗�𝑚 when passing from 𝑅  to 𝑅 : �⃗�𝑚 = 𝑣 ∧ 𝐵 /  

with �⃗�  the speed of the electric charges, quantity conserved during the passage from 𝑅  to 𝑅  
 
We have the following figure: 
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Figure 3: induced electromotor field 

 
Note 1 �⃗�𝑚  usually has the same direction as the electric field 𝐸𝑙 = − . However, here, since we 
redirect the electric field 𝐸𝑙 , they no longer have the same direction. 
 
Note 2 
Since we reorient the electric field 𝐸𝑙 , we can no longer use Maxwell Faraday's equation as it is: 𝑟�⃗�𝑡�⃗�𝑙 = − 𝜕𝐵𝜕𝑡  

On the other hand, since the electromotor field 𝐸𝑚 is not oriented, we can use it in Maxwell Faraday's 
equation: 𝑟�⃗�𝑡�⃗�𝑚 = − 𝜕𝐵𝜕𝑡  

 
We can also apply Lenz Faraday's law to it. We therefore have an electromotive induced force: 𝑒 = �⃗�𝑚. 𝑑𝑙 = − 𝑑𝛷𝑑𝑡  𝛷  refers to the total magnetic flux cut by the electrical circuit when it is moved. We will come back to 
these phenomena of induction in the next Memoir. 
 
V.4 Forces obtained from the cancellation of a generalized rotation vector in a 

spatiotemporal plane 
V.4.1 Generalized rotation vectors and fields in a spatiotemporal plane 
We have the electric field: �⃗�𝑙 / = 𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥  

 
We have the wave vector field: 2𝑐 �⃗� / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥  

Spatial plan x, y 
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V.4.2 Electric force and Coulomb electrostatic force 
For the electric force, the quantity conserved during the change of reference frames from 𝑅  to 𝑅  is 
the electric charge 𝑞 . 
As we want to build the (classical) forces on the model of the Coriolis inertial acceleration, we need an 
electric charge of the vector type. That is, in addition to its norm, it needs a direction and a sens. In 
physics (quantum, relativistic, etc.), charge density is frequently defined as the temporal component of 
an electric charge current density quadrivector. This makes it possible to orient the electric charge 
density according to Time. 
We build an electric force on the model of the Coriolis force, 𝑞  the quantity retained, �⃗�𝑙 /  the 
generalized rotation vector in a spatiotemporal plane cancelled during the passage from 𝑅  to 𝑅 . We 
obtain: �⃗� = �⃗� ∧ �⃗�𝑙 /  

 
We have the following figure: 

 

Figure 4: electric force 

 
Note 1 
We note that the electric force thus obtained has the same direction as the electric force as it is usually 
defined. 
 
Note 2 
For an electromagnetic wave, we speak of horizontal or vertical polarization when the electric field is 
horizontal or vertical. A vertical or horizontal antenna is then used to transmit or receive this type of 
wave. 
In the case of a reorientation of the electric field (which then has the same direction as the wave vector 𝑘 of the electromagnetic wave), the polarization of the electromagnetic wave corresponds to the 
direction of the electric force and no longer to that of the electric field. 
 
Note 3 
The term electric force is used quite infrequently, since always coupled with the magnetic force 
(except in the case of the electrostatic force), it gives the electromagnetic force. 
 
When = 0, magnetic phenomena are absent, and we simply have the electrostatic field: 
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�⃗�𝑠 / = − 𝜕𝐴𝜕𝑥  

 
We also obtain the Coulomb electrostatic force (special case of the electric force): �⃗� = �⃗� ∧ �⃗�𝑠 /  

 
Note, intuitive analogy 
In a uniform circular motion, we have the relationship between the rotation angular velocity 𝛺 /  and 
rotation linear speed 𝑉 : 𝑉 = 𝑟𝛺 /  (𝑉  being considered here as a speed potential). 
 
To find 𝛺 / , one can derive 𝑉  with respect to 𝑟. 𝛺 / = 𝜕𝑉𝜕𝑟 = 𝜕𝑟𝛺 /𝜕𝑟 = 𝛺 /  

 
In electrostatics, we have: 𝐸𝑠 / = − 𝜕𝐴𝜕𝑥  

 
If we continue the analogy, the electric potential 𝐴  plays the role of a "generalized rotation linear 
velocity" in a cancelled spatiotemporal plane when moving from 𝑅  to 𝑅 . 
 
V.4.3 Gravitational force 
We have seen that the wave vector field 𝐾 /  corresponding to the "generalized" rotation vector in a 
spatiotemporal plane, is the counterpart of the pulsation field 𝛺 /  corresponding to the rotation vector 
in a spatial plane. 
 
Following a strict analogy with the electric force, the idea is to build a gravitational force with: 

- a wave vector field 𝐾 / , whose corresponding "generalized" rotation vector cancels out when 
changing reference frame from 𝑅  to 𝑅 , 

- a conserved quantity that will no longer be an electric charge �⃗�  but a mass directed in Time �⃗� . 
 
A difficulty is therefore to accept the vectorization of the mass �⃗�  directed in Time. It is true that mass 
is very rarely vectorized in classical mechanics. In relativistic physics, we sometimes distinguish 
between the notions of longitudinal mass and transverse mass. 
 
Following a strict analogy with the electric force, we have the gravitational force (which includes the 
so-called Newtonian gravitation and so-called Einsteinian gravitation): �⃗� = �⃗� ∧ 2𝑐 𝐾 /  

with: 2𝑐 �⃗� / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥  

 
We have: 



118     Invariances and transformations 

2𝑐 𝐾 / = �⃗�𝑟 / − �⃗�  

with: 𝑎 = − 𝜕𝑉𝜕𝑡  

𝐺𝑟 / = − 𝜕𝑉𝜕𝑥  

We have the following figure: 

 

Figure 5: gravitational force 

 
In the case of Newtonian gravitation, we have: �⃗�𝑟 / = 2𝑐 �⃗� / = (− 𝜕𝑉𝜕𝑥 )  

with: 

 = 0 

We have the classical Newtonian gravitational force that is added in the reference frame 𝑅  where we 
cancel �⃗�𝑟 / : �⃗� = �⃗� ∧ �⃗�𝑟 / = −�⃗� ∧ (𝜕𝑉𝜕𝑥 )  

 
In the case of Einsteinian gravitation, we have: �⃗� = −2𝑐 𝐾 / = (− 𝜕𝑉𝜕𝑡 )  

with: 

 = 0 

 
We have the Einsteinian gravitational force that is added in the reference frame 𝑅  where we cancel �⃗� : 
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�⃗� = �⃗� ∧ �⃗� = −�⃗� ∧ (𝜕𝑉𝜕𝑡 )  

 
It is pointed out that the Einsteinian gravitational force �⃗�  is oriented in the same direction 𝑥 as the 
speed �⃗� . 
 
Note 1, infinite wavelength 
In the event that we have: 
 𝑚�⃗� = 𝑚�⃗�𝑟 /  

 
We obtain: − 𝜕𝑉𝜕𝑡 = − 𝜕𝑉𝜕𝑥  

2𝑐 𝐾 / = 𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥 = 0 

 
The wavelength 𝜆 = /  is therefore infinite. 

 
Note 2, analogue of the Larmor relation for generalized rotation vectors in a spatiotemporal 
plane 
We recall the Larmor relation which translates identical effects of a pulsation field 𝛺 /  and a 
magnetic field 𝐵 /  (i.e., 2 fields in a spatial plane), when the mass and electric charge values are 
correctly chosen (here 𝑚  electron mass and −𝑒 electron charge): 2𝑚 �⃗� / = 𝑒𝐵 /  

 
We look for an analogous relation for rotation vectors in a spatiotemporal plane. 
 
We apply the fundamental principle of Newton’s dynamics for an electron in both a Newtonian 
gravitational field and an electric field: 𝑚 �⃗� = 𝑚 �⃗�𝑟 / − 𝑒�⃗�𝑙 /  𝑚 �⃗� − 𝑚 �⃗�𝑟 / = −𝑒�⃗�𝑙 /  

Moving to velocity potentials: 𝑚 (− 𝜕𝑉𝜕𝑡 + 𝜕𝑉𝜕𝑥 ) = −𝑒�⃗�𝑙 /  

𝑚 (𝜕𝑉𝜕𝑡 − 𝜕𝑉𝜕𝑥 ) = 𝑒�⃗�𝑙 /  

We obtain: 2𝑚 𝑐 𝐾 / = 𝑒�⃗�𝑙 /  
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We find a relation analogous to the Larmor relation for generalized rotation vectors in a 
spatiotemporal plane. 2𝑚 𝑐 �⃗� /  and 𝑒�⃗�𝑙 /  have the same effects here that can be compensated. 
 
V.4.4 What distinguishes an inertial acceleration from a inertial force? 
An inertial acceleration (centrifugal or Coriolis type) is distinguished from an inertial force by the fact 
that: 

- when an inertial acceleration must be added during a change of reference frames, what is 
cancelled is a "generalized" rotation vector in a spatial plane (rotation vector associated with a 
pulsation field 𝛺 / ), 

- when an inertial force must be added during a change of reference frames, what is cancelled is 
a "generalized" rotation vector in a spatiotemporal plane (rotation vector associated with an 
electric field �⃗�𝑙 /  or a wave vector field 𝐾 / ). 

 
A force is oriented in Space and an acceleration is oriented in Time. An inertial acceleration is in a 
way the analogue, in Time, of the inertial force of inertia. 
 
V.4.5 Definitions of an electric-type force and a gravitational-type force 
We call electric force, any force whose quantity conserved during the change of reference frames is an 
electric charge �⃗� . 
The quantity cancelled when changing frames of reference is a generalized rotation vector in a 
spatiotemporal plane (corresponding to the field �⃗�𝑙 / ), we have an electric force �⃗� = �⃗� ∧ �⃗�𝑙 /  
oriented in Space (e.g. in the direction x). 
 
We call gravitational force, any force whose quantity conserved during the change of reference frames 
is a mass  �⃗� . 
The quantity cancelled when changing frames of reference is a generalized rotation vector in a 
spatiotemporal plane (corresponding to the field 𝐾 / ), we have a gravitational force �⃗� = �⃗� ∧𝑐 2�⃗� /  oriented in Space (e.g. in the direction x). 
 
V.5 Transition from Coriolis inertial acceleration and electromotor field to forces 
In the preceding paragraphs, it was proposed: 

- on the one hand, that an inertial acceleration or an electromotor field are added when we 
cancel a generalized rotation in a spatial plane, 

- on the other hand, that a force is added when we cancel a generalized rotation in a 
spatiotemporal plane. 

 
The goal now is to see how to move from an inertial acceleration (or an electromotor field) to a 
gravitational or electric force. 
 
V.5.1 Transition from centrifugal, Coriolis, Einsteinian inertial accelerations to centrifugal, 

Coriolis, Einsteinian gravitation inertial forces 

The Einsteinian gravitational field (�⃗� ) = (− )  is of the acceleration type such as centrifugal 
inertial accelerations (�⃗� )  and as Coriolis inertial accelerations(�⃗� ) . 
In addition, (�⃗� ) , (�⃗� ) , (�⃗� )  are of the generalized rotation type in a spatiotemporal 
plane t, y or t, x. 
So, according to these 2 points, we can expect, when we cancel one of these 3 accelerations during a 
change of reference frames (and that we keep a mass �⃗� ), to have to add a gravitational-type inertial 
force. 
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This is exactly what Newtonian mechanics predicts, since when we cancel one of these accelerations, 
we must add a centrifugal inertial force. (�⃗� ) , a Coriolis inertial force (�⃗� )  or an Einsteinian 
gravitational force (�⃗� ) . 
 
Transition from a Coriolis inertial acceleration to a Coriolis inertial force 
Let be the Coriolis inertial acceleration (�⃗� )  with �⃗�  the quantity retained when the reference 
frame is changed, and 𝛺 /  the cancelled rotation vector: (�⃗� ) = −�⃗� ∧ 2𝛺 /  

Note that the Coriolis acceleration (�⃗� )  can be thought of as a generalized rotation vector in a 
spatiotemporal plane (however, we will have to reorient this acceleration to get what we want). 
 
If we cancel (�⃗� )  when changing reference frames, and the quantity retained is a mass �⃗� , we 
obtain the Coriolis gravitational inertial force oriented according to x (always built on the same 
model): (�⃗� ) = �⃗� ∧ (𝜕𝑉𝜕𝑡 )  

 
Even if the precise reason remains to be clarified, it is noted that the Coriolis acceleration must be 
reoriented in order to become the generalized rotation vector in a spatiotemporal plane ( ) , that is 
cancelled when reference frames are changed. 
We have the passage from the Coriolis acceleration (following x) to the generalized rotation vector in 
a spatiotemporal plane t, x: (�⃗� ) → (𝜕𝑉𝜕𝑡 )  

 
We have the two equivalent expressions to obtain the Coriolis inertial force (it’s a gravitational-type 
force): (�⃗� ) = �⃗� ∧ (𝜕𝑉𝜕𝑡 )  (�⃗� ) = 𝑚 (�⃗� ∧ 2𝛺 / ) = −𝑚 (�⃗� )  

 
In the first, ( )  is a generalized rotation vector in a spatiotemporal plane. In the second, (�⃗� ) = (�⃗� ∧ 2𝛺 / )  is an inertial acceleration. 
 
Note 
Let us observe that the vector product applies only once, either in the expression of the Coriolis 
acceleration, or in the expression of the Coriolis force. 
 
 
V.5.2 From the electromotor field �⃗�𝒎𝒕𝒚𝒙  to the Lorentz magnetic force (𝑭𝑳𝒐𝒓)𝒕𝒚𝒙  
Transition from an electromotor field to a Lorentz magnetic force 
When changing reference frames that cancels the magnetic field 𝐵 /  and who keeps �⃗�  (the speed of 
the electrical circuit), we must add an electromotor field of the type: �⃗�𝑚 = �⃗� ∧ 𝐵 /  
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Note that the electromotor field �⃗�𝑚  is constructed in the same way as Coriolis acceleration (�⃗� ) . The analogy will continue when we switch from the electromotor field to the Lorentz 
magnetic force. 
 
If we cancel �⃗�𝑚  when changing reference frame, and the amount retained is an electric charge �⃗� , 
we obtain an electric force oriented according to x (always built on the same model): (�⃗� ) = �⃗� ∧ (𝜕𝐴𝜕𝑡 )  

 
Even if the precise reason remains to be clarified, it is noted that the electromotor field must be 
reoriented in order to become the generalized rotation vector in a spatiotemporal plane corresponding 
to the induced electric field �⃗�𝑖 = ( ) , that is cancelled when reference frames are changed. 
 
We have the passage of an electromotor field �⃗�𝑚  to a generalized rotation vector in a 
spatiotemporal plane corresponding to the induced electric field �⃗�𝑖 : �⃗�𝑚 → �⃗�𝑖 = (𝜕𝐴𝜕𝑡 )  

 
We have the two equivalent expressions to obtain the Lorentz magnetic force (of electric type): (�⃗� ) = �⃗� ∧ �⃗�𝑖 = �⃗� ∧ (𝜕𝐴𝜕𝑡 )  (�⃗� ) = (𝑞 �⃗� ∧ 𝐵 / ) = 𝑞 (�⃗�𝑚)  

 
In the first, �⃗�𝑖 = ( )  is a rotation vector in a spatiotemporal plane. In the second, �⃗�𝑚 = �⃗� ∧𝐵 /  is an electromotor field. 
 
The electromotor field �⃗�𝑚  has the same orientation as the Lorentz magnetic force (�⃗� ) . As with 
gravitation, the vector product applies only once. 
 
Note on acceleration and electromotor field 
From the above, it is possible to better understand why in a Newtonian gravitational field the 
acceleration of a body does not depend on its mass, while in an electrostatic field the acceleration of a 
body depends on its mass charge. 
 
Indeed, the analogue of gravitation, for electricity, it is not a spatiotemporal vector of the type an 
acceleration, but a spatiotemporal vector of the type an induced field. 
Thus, the analogue of: “In a Newtonian gravitational field, the acceleration of a body does not depend 
on its mass”, it is: “in a Coulombian electrostatic field, the induced field of a body does not depend on 
its electric charge”. 
 
V.5.3 Axial vectors (or pseudo-vectors) and true vectors (or polar vectors) 
When a quantity is completely defined by an intensity, an axis, and a direction of rotation around that 
axis, as in the case of a rotation vector 𝛺 / , this quantity is said to be an axial vector or a pseudo-

vector. It is sometimes written surmounted by a curvilinear arrow: , indicating that this quantity 
requires knowledge of a direction of rotation. 
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According to the ideas developed here, the notion of generalized rotation vector in a spatial plane is 

identical to that of axial vector. The notation 𝛺 /  or 𝐵 /  is therefore here equivalent to  or . 
 
For "classical" vectors, of the type a velocity �⃗� or a force �⃗�, sometimes referred to as true vectors or 
polar vectors. 
The components of an axial vector are transformed by changing coordinate systems, like those of a 
polar vector. However, when moving from a direct coordinate system to an inverse coordinate system, 
the components of an axial vector do not change signs, unlike those of a polar vector. 
 
True (or polar) vector 
A true vector �⃗� of components (𝑣 , 𝑣 , 𝑣 ) in the coordinate system (O, 𝑒 , 𝑒 , 𝑒 ) is represented in 
the inverse coordinate system (O, −𝑒 ,  −𝑒 ,  −𝑒 ) by a vector of components (−𝑣 , −𝑣 , −𝑣 ). 
The velocity vector �⃗�, the momentum vector 𝑝 = 𝑚�⃗�, the force vector �⃗� are examples of true vectors. 
They are all in the plane of rotation, hence the qualifier of polar. 
 
Axial vector of a generalized rotation in a spatial plane 
An axial vector 𝐴 /  or pseudo-vector of components (𝑎 , 𝑎 , 𝑎 ) in the coordinate system (O, 𝑒 , 𝑒 , 𝑒 ) is represented in the inverse coordinate system (O, −𝑒 ,  −𝑒 ,  −𝑒 ) by the same components (𝑎 , 𝑎 , 𝑎 ). 
The rotation vector 𝛺 / , the magnetic field 𝐵 / , the kinetic moment at a point O: �⃗� / = 𝑂�⃗� ∧ 𝑚�⃗�, 
the moment of a force at point O: �⃗� / = 𝑂�⃗� ∧ �⃗� are examples of axial vectors. They are all 
perpendicular to the spatial plane of rotation, hence the qualifier axial. 
 
We can notice: 

- that the vector product of two true vectors behaves like an axial vector, for example �⃗� / =𝑂�⃗� ∧ 𝑚�⃗�, 
- that the vector product of a polar vector and an axial vector behaves like an axial vector, for 

example �⃗� = 𝑞�⃗� ∧ 𝐵 / . 
 
Axial vector of a generalized rotation in a spatiotemporal plane 
Usually, the electric field �⃗�𝑙 is presented as a true vector. It is proposed in this Memoir to interpret it 
as an axial vector of a generalized rotation in a spatiotemporal plane. We thus have the electric force, 
true vector, vector product of a true vector �⃗�  and an axial vector �⃗�𝑙 / : �⃗� = �⃗� ∧ �⃗�𝑙 /   
 
Like the electric field, the wave vector field 𝐾 /  is also an axial vector of a generalized rotation in a 
spatiotemporal plane. 
 
An acceleration vector �⃗� , a force vector �⃗� , an electromotor field vector �⃗�𝑚  are all 3 true vectors, 
vector products of a true vector and an axial vector of a generalized rotation. 
 
V.6 General table (quantities cancelled and retained when changing reference 

frames) 
To conclude the chapter, the table below summarizes what has just been stated: 
 

 Retained quantity: velocity Retained quantity: velocity 
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Cancelled quantity: rotation 
vector in a spatial plane 

Coriolis 
Cancelled quantity 𝛺 /  
Retained quantity �⃗�  (relative 
velocity) 
We must add a Coriolis inertial 
acceleration �⃗� = −�⃗� ∧ 2�⃗� /  
 

Electromotor 
Cancelled quantity 𝐵 /  
Retained quantity �⃗�  (velocity 
of the electrical circuit). 
We must add an electromotor 
field �⃗�𝑚 = �⃗� ∧ 𝐵 /  

 Retained quantity: mass Retained quantity: electric 
charge 

Cancelled quantity: rotation 
vector in a spatiotemporal 
plane 

Gravitation 
Cancelled quantity 𝐾 /  
Retained quantity �⃗�  
It is necessary to add a 
gravitational-type force �⃗� = �⃗� ∧ 2𝑐 𝐾 /  
 

Electromagnetism 
Cancelled quantity 𝐸𝑙 /  
Retained quantity �⃗�  
It is necessary to add an 
electric-type force �⃗� = �⃗� ∧ �⃗�𝑙 /  
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Chapter VI Thoughts on 𝑹𝟎  and new interpretation for the mass? 
 
Purpose of the chapter 
To conclude this Memoir, we conduct some final thoughts on the reference frame 𝑅 , as well as on a 
new physical interpretation to be given to the mass, in view of what has been proposed in the previous 
chapters. 
 
VI.1 Some thoughts on the reference frame 𝑹𝟎  

VI.1.1 On a general definition for 𝑹𝟎  
If we take up the definition of a Galilean reference frame, as a reference frame in which the 
fundamental principle of Newton's dynamics applies, without having inertial forces to add, this 
definition can be extended to 𝑅  and define 𝑅 , as a reference frame in which the fundamental 
principle of Newton's dynamics applies, without having forces to add, since all forces are inertial 
forces: 𝑑𝑝𝑑𝑡 = 𝛴�⃗� = 0  

 
Thus, 𝑅  is the reference frame in which all the movements of spatial and spatiotemporal rotations are 
carried out and in which no (inertial) force exists. No generalized rotation has been undone in this 
reference frame 𝑅 . 
 
Once again, the definition is a bit circular and remains theoretical. What is the true meaning of 𝑅 ? 
What does it correspond to physically? 
 
Note, on the Galilean reference frame 
We can interpret the Galilean reference frame as an intermediate reference frame where the 
generalized rotation vectors 𝐵 / , �⃗�𝑙 / , �⃗�𝑟 / = −  have been cancelled (and where the 
corresponding fields have been added 𝐵 / , �⃗�𝑙 / , �⃗�𝑟 / , as well as their corresponding forces in the 

fundamental principle of Newton's dynamics) and where the generalized rotation vectors 𝛺 / ,  
have not been cancelled. 
 
VI.1.2 On Foucault's pendulum and Mach's principle 
Let us take the case of the Coriolis force again and dwell on the Foucault pendulum experiment. 
 
The rotation of the plane of oscillation of the Foucault pendulum makes it possible to prove that the 
Earth rotates on itself. This rotation of the plane of oscillation is explained by the Coriolis force. What 
remains difficult to grasp is the physical understanding of this reference frame 𝑅  in relation to which 
the Earth rotates? 
According to Mach’s principle, this reference frame 𝑅  could be represented by all the masses, as 
well as the movements of the Universe. This is a satisfactory idea for the mind, but Mach's principle 
remains a conjecture that is difficult to prove. 
 
Be that as it may, by generalizing the case of the Coriolis force to all forces, we have on the one hand 
aggravated the question of the physical meaning of the reference frame. 𝑅 , since it is now posed to 
all forces. 
On the other hand, it can also be seen as a simplification. Indeed, when the question of the reference 
frame 𝑅  will be solved for the Coriolis force, it will also be solved for all forces. 
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VI.1.3 What would be the speed of rotation of the Sun on itself according to a Foucault 
pendulum placed on its surface? 

For the Earth, the rotation vector 𝛺 which is used in the Coriolis force or in the calculation of the 
oscillation period of the Foucault pendulum, is quasi similar with the speed of rotation of the Earth on 
itself relative to the Sun (the corresponding period 𝑇 =  is called the sidereal day). 
 
A priori, this is only a (good) approximation, because the notion of 𝛺 used in the Coriolis force and 
requiring a Galilean reference frame differs from the notion of rotational speed of the Earth on itself 
and taking as a reference the Sun (non-Galilean reference a priori). 
 
An interesting experiment would be to measure the period of oscillation of a Foucault pendulum 
around the Sun and see what speed of rotation on itself would be obtained for the Sun? What would 
then be the reference for the Sun? 
 
Note on the non-equivalence of reference frames 
According to Foucault's pendulum, Earth and Sun are not equivalent references in the quest for 𝑅 . 
The Sun seems a much better approximation of 𝑅  than the Earth, but obviously the Sun is not 𝑅 . 
The unresolved question is: what is 𝑅 ? 
 
VI.1.4 Understand what is 𝑹𝟎 , same question for Coriolis force or weight 
The Earth rotates on itself with 𝛺, but in relation to what? That is to say, in relation to which reference 
frame 𝑅 , the Earth is spinning? The Sun is already a good approximation of 𝑅 , but as we have seen, 
it is only an approximation. 
In the reference frame 𝑅 , where the rotation of the Earth has been cancelled, when a body retains a 
velocity �⃗� , we must add a Coriolis inertial acceleration of the type �⃗� = −�⃗� ∧ 2𝛺 / . 
 
Similarly, in a gravitational field �⃗�𝑟 / , we have like a "rotation" in a spatiotemporal plane; but in 
relation to what is this "spatiotemporal rotation" carried out? That is to say, in relation to which 
reference frame 𝑅 , we "turn" in the spatiotemp planeorel. The issue is also not resolved. 
In the reference frame 𝑅 , where the "spatiotemporal rotation" was cancelled �⃗�𝑟 / , when a body 
retains a mass �⃗� , it is necessary to add an inertial force of the type �⃗� = �⃗� ∧ �⃗�𝑟 / , which is 
more commonly called body weight. 
 
In conclusion, the question of understanding the nature of 𝑅 , arises for both the Coriolis force and 
the weight. 
 
VI.2 A new interpretation for the mass 𝒎𝒕 ? 
Some see aging as the analogue in Time of velocity v in Space. We will propose in this paragraph that 
this analogue, for physics, is not aging, but mass. �⃗� . 
 
VI.2.1 An analogue in Time of velocity v in Space? 
In the previous chapters, we proposed the parallel between: 

- the Coriolis acceleration �⃗� = −�⃗� ∧ 2�⃗� /  in Space, 

- the weight �⃗� = �⃗� ∧ �⃗�𝑟 /  (or more generally �⃗� = �⃗� ∧ 2𝑐 �⃗� / ) in Time. 
 
In the case of Coriolis acceleration, �⃗�  is the quantity conserved when a change of reference frames 
cancelling the rotation vector in a spatial plane is made: 𝛺 / . 
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In the case of weight, the mass �⃗�  (and by extension matter) appears as the analogue in time of 
velocity �⃗�  in Space. Indeed, �⃗�  is the quantity conserved when a change of reference frames is 
made cancelling the "generalized" rotation vector in a spatiotemporal plane: �⃗�𝑟 / . 
 
In physics, we define velocities �⃗� , ,  in Space, but not " velocities in Time". The mass �⃗�  would be 
interpreted precisely as this "velocity" in Time? 
If so, the mass �⃗�  of a body would be the measure of its " velocity " in Time. By extension, 
everything that is material and endowed with a mass �⃗�  would have a " velocity" in Time. 
 
Note 1 on gravitational potential 
Like the mass �⃗� , the gravitational potential 𝑉  is also the analogue in Time of a velocity in Space. 
By contrast, it's about velocity potential 𝑉 , ,  that is cancelled when reference frames are changed 
(not the reference frame that is retained). 
 
Note 2 on mass energy (energy at rest in Space) 
The mass energy 𝐸 = 𝑚 𝑐 , which a physical concept similar to mass, would also be interpreted as 
a "velocity" in Time. 
 
Note 3 on analogue of 𝑚  
According to the above, the analogue in the Space of �⃗�  in Time, it's not the momentum 𝑝 , , , but 
the velocity �⃗� , , . If we multiply frequently �⃗� by 𝑚 , it is to get 𝑝, a physical quantity that can be 
compared in particular with energy 𝐸  in the equations. 
 
Similarly, the analogue in Space of the gravitational force in Time is not the Coriolis inertial force, but 
the Coriolis inertial acceleration. If one frequently multiplies an inertial acceleration by 𝑚 , it is to 
obtain an inertial force and therefore a physical quantity that can be compared with other forces in the 
equations. 
 
Note 4 on extensivity and intensity in Space and Time 
The mass 𝜕𝑚  of a volume 𝜕𝑉𝑜𝑙 is a so-called extensive quantity in Space: this mass 𝜕𝑚  can add up 
in Space. 
The small distance 𝜕𝑥 traveled by a system for a small period of time  𝜕𝑡 is a so-called intensive 
quantity in Space: this distance travelled 𝜕𝑥 is the same at any point in the Space of the isolated 
system studied. 
 
If we swap Space and Time, 𝜕𝑚  and 𝜕𝑥, we obtain: 
The distance 𝜕𝑥 travelled by a system for a period of Time 𝜕𝑡 is a so-called extensive quantity in 
Time: this distance travelled 𝜕𝑥 can add up in Time. 
The mass 𝜕𝑚  of a volume 𝜕𝑉𝑜𝑙 is a so-called time-intensive quantity: this mass 𝜕𝑚  is the same at 
all times of the Time of the isolated system studied. 
 
Note 5 on density of mass as the analogue in Time of velocity in Space 
You can also see the mass volumetric density masse (or volumetric mass) 𝜌 =  as the analogue in 

the Time of velocity 𝑣 =  in Space. Both are also intensive quantities in Space, defined locally. 
 
Note 6 on electric charge 
The electric charging �⃗�   is also close to the notion of "speed" in Time. We have the parallels: �⃗�𝑚 = �⃗� ∧ 𝐵 /  �⃗� = �⃗� ∧ �⃗�𝑙 /  
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This observation is also part of a broader question: what brings together, but ultimately distinguishes a 
mass from an electric charge? 
 
VI.2.2 A cinematic in Space-Time? 
Following a relativistic approach to movements, a non-zero mass body �⃗�  would have a "velocity" in 
Time different from the observer who measures its mass. Similarly, a zero-mass body �⃗�  would have 
a "velocity" in Time identical to the observer. 
 
More generally, matter and motion could be described by a kinematics extended to Space-Time. Both 
would be interpreted as movements in Space-Time. 
 
Many academic books on the mechanics of point, fluids or solids are composed of: 

- a first kinematic chapter that describes the movements in Space, 
- a second kinetic chapter that introduces the notions of mass and momentum. 

 
It is proposed here, in a way, to group these two chapters into a single kinematic chapter that would 
describe the movements in Space-Time. 
 
Note 1 on the enigma of the absence of negative mass 
Unlike electric charges (and other charges such as strong, weak nuclear ...), there is no negative mass. 
This remains an enigma and has the consequence that the gravitational force is always attractive. 
 
In the absence of negative mass, there is not a priori for "velocity" in Time any notion of sense as for 
speed in Space. 
It should be noted, however, that the study interval [−𝑐, +𝑐] of a speed �⃗� , ,  in Space is restricted as 
the interval [0, +∞[ of a mass �⃗� . 
This difference in restriction in the two study intervals: [−𝑐, +𝑐] and [0, +∞[, could it simply be due 
to a difference in views in the way speed and mass are measured? 
 
Some physicists such as John Wheeler or Richard Feynman have also proposed to interpret the signs 
of electric charges, as advances in one direction of Time or in the other direction. 
 
Note 2 on relativistic mass 𝛾𝑚  
In Special Relativity, we introduce the notion of relativistic mass 𝛾𝑚 , with: 

- 𝑚  the resting mass of a body with respect to an observer, 
- 𝛾𝑚  its mass when this body has a velocity v with respect to the observer. 

 
For example, photons, if they were at rest in Space from an observer, would have zero mass 𝑚 , and 
therefore a zero "velocity" in Time. 
 
Note 3 on "Light Time" 
In the Memoir 6 more speculative than the previous ones, we will propose the notion of Light Time, 
with as a first meaning: a Light Time that would be that of Light and photons, and with as a second 
meaning: a Light Time that would also be ours, human beings, who will measure a zero mass 𝑚 = 0, 
that is, a zero "speed" in the Time of Light, if the Light were at rest in Space with respect to us. 
 
VI.3  Conclusion of the Memoir, on the choice of the inertial reference framework 
In this 2nd Memoir, we have taken up the initial principle set by A. Einstein in the theory of General 
Relativity: an invariance of the laws of Nature regardless of the change of reference frames. 
Nevertheless, we have presented a different approach from that proposed by A. Einstein in General 
Relativity, where he relies on a conservation of the Space-Time interval: 𝑑𝑠 = 𝑔 𝑑𝑥 𝑑𝑥  
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regardless of the change of reference frames. 
Here, we focused on the classical forces. We wanted to erase the differences between "normal" force 
and inertial force by building any classical force on the model of the Coriolis inertial force. 
 
The main idea was as follows: to choose a reference frame describing a body: 

- in generalized rotational motion in a spatial and/or spatiotemporal plane, 
- subjected to no force, inertial acceleration, or electromotor field, 

we have the possible change in a reference frame describing the body: 
- motionless in Space-Time, except its own speed �⃗�  and its own mass �⃗� , the generalized 

rotation vectors in spatial or spatiotemporal planes that have been cancelled when changing 
reference frames, 

- subjected to forces, inertial accelerations and/or electromotor fields. 
In the next Memoir, we will propose using the fields 𝐾 /  and 𝛺 /  defined in this Memoir, some 
source field equations fields analogous to Maxwell's equations and which apply to gravitation. 
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 Memoir 3 Maxwell's source field equations to gravitational 
equations 
 
Summary of the Memoir 
In this 3rd Memoir, we are interested in Maxwell's source field equations, equations involving 
magnetic and electric fields, electric charge and electric currents, and applying to electromagnetism. 
Following an analogy electricity gravitation, we will propose source equations fields involving the 
pulsation and wave vector fields, the mass and the momentum, and applying to gravitation. At the end 
of the Memoir, we will also propose for gravitation the analogue of Maxwell Faraday's homogeneous 
equation. 
 
This Memoir is also an opportunity to discuss some important discoveries in physics. We return to the 
work of André-Marie Ampère, in particular the observation that a magnet and a current loop produce 
identical effects (work carried out from 1820), then to Maxwell's equations proposed by James Clerk 
Maxwell in 1865 and transcribed using partial derivatives in 1884 by Oliver Heaviside and Willard 
Gibbs. 
 
We also talk about Louis de Broglie's idea (1924) of an electron that is both wave and particle. In 
passing, we deal with a little Newtonian mechanics (Isaac Newton's Principia published in 1687), 
Hamiltonian mechanics (William Rowan Hamilton around 1833), Einsteinian mechanics (with 𝐸 =𝑚𝑐  proposed by Albert Einstein in 1905 as part of Special Relativity). There is also mention of the 
Compton scattering (1922). We also discuss the gravitational waves suggested by A. Einstein in 1916 
as part of General Relativity and confirmed experimentally in 2015 by researchers at LIGO (Laser 
Interferometer Gravitational-Wave Observatory). 
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Chapter I Original idea of memory, velocity of electric charge and 
historical reminders 

 
Purpose of the chapter 
We evoke the original idea of this Memoir: a velocity of the electric charge comparable to a group 
velocity. We then perform a historical reminder on Maxwell's equations, then on gravitational waves. 
 
I.1 Original idea of the Memoir, a velocity of the electric charge comparable to a 

group velocity? 
In 1924, L. De Broglie defends a thesis in which he proposes that the electron corpuscle is also similar 
to an electron wave. According to him, the velocity of the electron corpuscle orbiting the nucleus of 
the atom (in the Bohr electron model), corresponds to the group velocity 𝑣 =  of the electron wave. 
Thus, with great audacity for his time, he associates the notion of velocity developed in Newtonian 
mechanics with that of group velocity developed in wave mechanics. 
 
In this Memoir, we will see that by making the ratio of the two Maxwell source field equations (that of 
Gauss and that of Ampère), we can find a physical quantity, ratio of the electrical current density: 𝑗 =𝜌𝑣 (unit:  or × ) and the electrical charge volumetric density (or electrical charge bulk density): 𝜌 

(unit: ), involving magnetic fields 𝐵 and electric field 𝐸𝑙: 𝜇 𝜀 𝑗𝜌 = 𝜇 𝜀 𝑣 = 𝜕𝐵𝜕𝐸𝑙 
This last equation is formally similar to that of group velocity, especially if we bring the magnetic 
field 𝐵 closer to a pulsation field 𝛺, and the electric field 𝐸𝑙 closer to a wave vector field 𝐾. 
 
Based on these findings, the idea developed in the next chapters is that, like Maxwell source field 
equations, involving 𝐵 and 𝐸𝑙, and applying to electromagnetism, there are source field equations 
involving the pulsation field 𝛺 and the wave vector field 𝐾, and applying to gravitation. 
 
The sources of these equations will no longer be charge volumetric density 𝜌 and electrical current 
density 𝑗, but mass volumetric density 𝜌 (unit: ), as well as masses 𝑚 and momentums 𝑝. By 
making the ratio of these source field equations applied to gravitation, it must be possible to regain 
velocity group 𝑣 =  of the wave of a mass particle. 
 
One of the questions will be to determine the constants that intervene in the source field equations of 
gravitation. In Maxwell's source field equations, we use constants 𝜇  et 𝜀 , related by the relationship: 𝑐 = 1𝜇 𝜀  

Note that these constants appear in 𝜇 𝜀 𝑣 = , while there is no constant for group velocity 𝑣 = . 
At a minimum, it is expected that the gravitational G constant will be found in the source field 
equations of gravitation. 
 
I.2 Historical reminders, Maxwell source field equations 
During the 1860s, J. C. Maxwell published a voluminous treatise of more than 1,000 pages on 
electricity and magnetism. In this treatise entitled A Treatise on Electricity and Magnetism, the 
physicist is inspired by the work of Michael Faraday on the magnetic field, as well as those of William 
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Thomson (Lord Kelvin) or André-Marie Ampère. He proposes the mathematization of this work, 
inspired by the tools of fluid mechanics. 
J. C. Maxwell opposes the Newtonian conception of forces with remote action. It takes up Mr. 
Faraday's conception of a continuous medium supporting the transformations of a field through Space, 
transformations of a field that thus makes it possible to propagate the force. 
 
In his treatise, J. C. Maxwell proposes eight equations that are now grouped together as Maxwell's 
equations. In 1884, these eight equations were transcribed by O. Heaviside and W. Gibbs into four 
equations and rewritten using partial derivatives. 
 
We are interested here in the first two, the so-called source field and designated by Maxwell Gauss: 𝜌𝜀 = 𝑑𝑖𝑣�⃗�𝑙 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡  

 
As the name suggests, these two equations connect electric and magnetic fields to sources of electrical 
charge density and electrical current density. They differ from Maxwell Thomson's homogeneous 
equations: 𝑑𝑖𝑣𝐵 = 0 

and Maxwell Faraday: 𝑟𝑜𝑡�⃗�𝑙 = − 𝜕𝐵𝜕𝑡  

which they involve only electric field and magnetic field. 
 
Before J. C. Maxwell's treatise, the maxwell Gauss and Maxwell Ampère equations had already been 
proposed in different forms. The main innovation of J. C. Maxwell is to add in the Maxwell Ampere 
equation a displacement current: 𝚥 = 𝜀 𝜕�⃗�𝑙𝜕𝑡  

which on the model of the conservation of the mass, allows the conservation of the electric charge. 
 
The principles of conservation of mass or electric charge are thus translated into the same equation: 𝜕𝜌𝜕𝑡 + 𝑑𝑖𝑣(𝜌�⃗�) = 0 

with 𝜌 the volumetric density of mass or electric charge and �⃗� the velocity of particles of mass or 
electric charge. 
 
I.3 Drawing inspiration from gravitational waves 
In 1916, as part of General Relativity, A. Einstein proposed the notion of gravitational waves, which 
he interpreted as an oscillation of the curvature of Space-Time. It also relies on an analogy with 
electromagnetic waves. 
 
According to the principle of the transmitting antenna, an electric charge in accelerated motion in an 
antenna (for example, a sinusoidal alternating electric current in an antenna) radiates an 
electromagnetic wave propagating at the speed of light in a vacuum. Similarly, a mass in accelerated 
motion could radiate a gravitational wave propagating at the speed of light in a vacuum. 
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According to the principle of the receiving antenna, an electromagnetic wave generates an acceleration 
of the electric charges present in an antenna (for example an alternating current). Similarly, a 
gravitational wave would generate an acceleration of the masses present in an antenna. 
 
Let's study the case of a radio antenna called half-wave with length 𝑙 =  traversed by a sinusoidal 
electric current: 𝐼(𝑧, 𝑡) = 𝐼 𝑒  

The antenna radiates an electromagnetic field. We give below the electric field part in polar 
coordinates (𝑟, 𝜃): �⃗�𝑙 (𝑀, 𝑡) ≈ 𝑖𝐼2𝜋𝜀 𝑐𝑟 𝑐𝑜𝑠( 𝜋2 𝑐𝑜𝑠 𝜃)𝑠𝑖𝑛 𝜃 𝑒 ( )�⃗�  

 
The half-wave radio antenna and the electric field can be symbolized by the following figure: 
 

 
Figure 1: half-wave radio antenna 

 
The principle of the transmitting and receiving antenna derives in particular from Maxwell Ampere's 
source field equation: 𝜇 𝚥 = 𝑟𝑜𝑡𝐵 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡  

This equation translates that a current (a moving electric charge) produces a magnetic field 𝐵 and an 
electric field �⃗�𝑙. Conversely, these two fields behave in a vacuum like an electromagnetic wave, which 
generates an electric current in an antenna. 
 
Note, transition from Maxwell's equations to d’Alembert's wave equation 
From Maxwell Faraday, considering Maxwell Gauss and Maxwell Ampère, we find 𝛥�⃗�𝑙 − 𝜇 𝜀 𝜕𝜕𝑡 �⃗�𝑙 = 𝛻 𝜌𝜀  

with 𝑐 = 1𝜇 𝜀  

In a vacuum, we obtain: 𝛥�⃗�𝑙 − 1𝑐 𝜕 �⃗�𝑙𝜕𝑡 = 0 

From Maxwell Ampère, considering Maxwell Thomson and Maxwell Faraday, we find: 𝛥𝐵 − 𝜇 𝜀 𝜕𝜕𝑡 𝐵 = 𝛻 × (𝜇 𝚥) 
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In a vacuum, we obtain: 𝛥𝐵 − 1𝑐 𝜕 𝐵𝜕𝑡 = 0 

These 2 equations indicate that electric and magnetic fields follow the d'Alembert wave equation in a 
vacuum. 
 
 
In 2015, the hypothesis of A. Einstein of a gravitational wave appears to be confirmed. Detectors 
called LIGO (Laser Interferometer Gravitational-Wave Observatory), one located in Louisiana, the 
other in the state of Washington record the expected signals. Without going into the details of the 
complex operation of these detectors, they are based on a principle of receiving antennas, with masses 
set in motion accelerated during the presence of gravitational waves. 
 
Since there are source field equations in electromagnetism (Maxwell Ampère and Maxwell Gauss) 
describing the link between the antennas (i.e., the source: charge in accelerated motion) and the 
electromagnetic wave (i.e., the fields �⃗�𝑙 et 𝐵 spreading at speed 𝑐 in a vacuum), we conjecture for 
gravitation analogous source field equations, describing the link between antennas (i.e., the source: 
mass in accelerated motion) and the gravitational wave. 
 
In the 2nd Memoir, we highlighted the analogies between the fields 𝐵, �⃗�𝑙, 𝛺, 𝐾. We would therefore 
like source field equations applying to gravitation and involving field 𝛺 and field 𝐾. It is these source 
field equations that we will research and propose in this 3rd memory. 
 
Note 
We conjecture here gravitational waves constructed from fields 𝛺 and 𝐾 rather than simply from the 
Newtonian gravitational field 𝐺𝑟 = −  as General Relativity does. We will come back to this 
delicate point at the end of this Memoir, and in the 6th Memoir when we will evoke the Poisson’s 
source potential equation: 4𝜋𝐺𝜌 = 𝛥𝑉  
an equation on which General Relativity is based. 
 
I.4 Conclusion of the chapter 
Following an analogy gravitation electromagnetism, we conjecture the existence of source field 
equation applying to gravitation, and involving fields 𝛺 et 𝐾. 
 
This conjecture comes in particular from a velocity of the electric charge comparable to a group 
velocity and obtained from Maxwell's source field equations. It is also inspired by gravitational waves. 
 
In the next chapter, we will return to the notions of phase velocity and group velocity. 
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Chapter II Reminders phase velocity, group velocity, extensions of 
relativistic mechanics and Newtonian mechanics to wave mechanics, 
elements of Special Relativity 

 
Purpose of the chapter 
L. de Broglie's particle wave approach was first justified because it made it possible to intuitively 
explain certain aspects of relativistic mechanics. Yet, as a paradox, the ideas of L. de Broglie first led 
to the Schrödinger wave equation which is not relativistic. 
In this chapter, we will explain the notions of phase velocity and group velocity that are at the heart of 
L. de Broglie's "wave" approach. We will also see how the "wave" ideas of L. de Broglie can 
intuitively illuminate certain points of relativistic mechanics, as well as Newtonian mechanics. 
 
II.1 Reminders on phase velocity and group velocity 
II.1.1 Phase velocity 
The phase velocity 𝑣 =  of a progressive wave is the velocity at which the phase of the wave 𝜙 =𝜔𝑡 − 𝑘𝑥 spreads into Space. 
 
Let be a progressive monochromatic wave defined by the wave function: 𝜓(𝑥, 𝑡) = 𝜓 𝑐𝑜𝑠( 𝜔𝑡 − 𝑘𝑥) 

The phase plan is the set of points with the same phase value 𝜙. The phase plan is located in 𝑥 at the 
moment 𝑡, and in 𝑥 + 𝑑𝑥 at the moment 𝑡 + 𝑑𝑡. 
 
So, we have: 𝜙 = 𝜔𝑡 − 𝑘𝑥 𝜙 = 𝜔(𝑡 + 𝑑𝑡) − 𝑘(𝑥 + 𝑑𝑥) 

 
By subtraction, we obtain: 0 = 𝜔𝑑𝑡 − 𝑘𝑑𝑥 

 
So, we have a phase velocity ratio of the pulsation 𝜔 and the wave vector 𝑘: 𝑣 = 𝑑𝑥𝑑𝑡 = 𝜔𝑘  

 
Nota 
In a refractive medium (medium where we observe a refraction of light, that is to say a deviation of the 
light ray), we have the relationship (with 𝑛 the refractive index of the medium): 𝑛 = 𝑐𝑣 < 1 

 
II.1.2 Group velocity 
In the 1880s, in order to better understand wave phenomena, physicists Louis Georges Gouy and John 
William Rayleigh proposed to distinguish a phase velocity and a group velocity. Group velocity is 
thought of as the speed of a wave packet of very close pulsations (or periods), as well as a very close 
wave vector (or wavelengths). 
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Let us take the simple case of a wave packet consisting of the superposition of two waves of close 
pulsations 𝜔  and 𝜔 , of close wave vectors 𝑘  and 𝑘 , with amplitude equal to the unit: 𝜓(𝑥, 𝑡) = 𝑐𝑜𝑠( 𝜔 𝑡 − 𝑘 𝑥) + 𝑐𝑜𝑠( 𝜔 𝑡 − 𝑘 𝑥) 𝜓(𝑥, 𝑡) = 2 𝑐𝑜𝑠( 𝜔 + 𝜔2 𝑡 − 𝑘 + 𝑘2 𝑥) 𝑐𝑜𝑠( 𝜔 − 𝜔2 𝑡 − 𝑘 − 𝑘2 𝑥) 

 
The wave packet obtained is the product of 2 terms: 

- the first is a monochromatic phase velocity wave 𝑣 =  corresponding to a weighted 
average of the pulsations of the two waves by their respective wave vectors, 

- the second is a monochromatic wave of phase velocity 𝑣 = . It acts as an amplitude 
modulator of the first term. 

 
There is a phenomenon of beating. A high-frequency sinusoid with characteristics close to those of the 
two pulsations 𝜔 + 𝜔  is modulated in amplitude by a sinusoid of lower pulsation 𝜔 − 𝜔 . This 
one, of low frequency, forms a kind of envelope around the other. 
 
For values close to the two pulsations and the two wave vectors, the group velocity of the wave packet 
is approximately equal to the velocity of the wave. 𝑣 = . By making tender 𝜔 − 𝜔  and 𝑘 −𝑘  towards 0, we obtain the group velocity: 𝑣 = 𝑑𝜔𝑑𝑘  

 
Note 
For an electromagnetic wave, the phase velocity and the group velocity are related by the relationship 
(valid for low frequencies only): 𝑣 𝑣 = 𝑐𝑛  

 
II.2 Extensions of relativistic mechanics and Newtonian mechanics to wave mechanics 
II.2.1 General information on relativistic mechanics 
Relativistic mechanics developed at the beginning of the 20th century, thanks in particular to the work 
of A. Einstein in the theory of Relativity. In many ways, it resembles classical Newtonian mechanics 
of which it is often considered a generalization. We find, for example, the notions of energy and 
momentum. Nevertheless, it differs singularly from it in certain respects. 
 
For example, a coefficient 𝛾 =  marking the deformations of durations and distances is 

introduced into relativistic mechanics. 
Thus, in classical mechanics, we have the momentum: 𝑝 = 𝑚𝑣 and in relativistic mechanics, the 
momentum: 𝑝 = 𝛾𝑚𝑣. 
Similarly, in classical mechanics, we have the energy momentum relationship: 𝐸 = 𝑝2𝑚 + 𝐸𝑝 
and in relativistic mechanics, we have the energy momentum relationship: 𝐸 = 𝑐𝑣 𝑝 = 𝛾𝑚𝑐  
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It is sometimes difficult to intuitively understand the reasons for these differences. We will now see 
that the wave approach of L. de Broglie makes it possible to intuitively understand certain equations of 
relativistic mechanics. 
 
II.2.2 Ideas of L. de Broglie to intuitively understand the Lorentz transform 
We recall here the ideas of L. de Broglie developed at the beginning of his thesis (1924), which make 
it possible to understand intuitively the Lorentz transform. As a paradox, these ideas imbued with 
relativism lead a few years later to the Schrödinger equation which has nothing relativistic (but which 
has everything waving). 
 
Let be a standing wave of wave function: 
 𝜓 = 𝑐𝑜𝑠 𝜔 𝑡  

In his thesis, L. de Broglie schematizes this wave function by a clock. 
 
Let be an observer 𝐵 motionless with respect to this wave function and let be an observer 𝐴 mobile 
with respect to 𝐵, advancing at uniform rectilinear velocity 𝑣  (this is a Newtonian mechanical 
velocity in the sense of describing point bodies, but we write 𝑣  because L. de Broglie then makes it 
correspond to a group velocity). 
 
The question asked by L. de Broglie is how 𝐴 will the wave (or the clock) see? 
 
According to L. de Broglie, 𝐴 sees it as a progressive (and no longer stationary or standing) wave 
propagating at phase velocity 𝑣 =  and with wave function: 𝜓 = 𝑐𝑜𝑠 𝜔 𝑡 − 𝑥𝑣  

 
Following the relativistic ideas of A. Einstein, we have the relationship between the energy 𝐸 of a 
relativistic body moving at velocity 𝑣  and the energy 𝐸  of the same body if it is considered 
motionless: 𝐸 = 𝛾𝐸  with 𝛾 = > 1 

 
We have 𝐸 = ℏ𝜔 with 𝜔 the pulsation of the progressive wave, 𝐸 = ℏ𝜔  with 𝜔  the pulsation of 
the standing wave. 
 
We obtain: 𝜔 = 𝛾𝜔  

with 𝛾 > 1. The progressive wave therefore has a higher pulsation and frequency than the standing 
wave. 
 
We have for the wave function of the progressive wave: 𝜓 = 𝑐𝑜𝑠 𝛾 𝜔 𝑡 − 𝑥𝑣  

 
We have the relationship between the group velocity and the phase velocity: 𝑣 𝑣 = 𝑐  
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with 𝑛 = 1 since we are in a vacuum. 
 
If we replace v  by 𝑣  in the wave function, we obtain: 𝜓 = 𝑐𝑜𝑠 𝛾 𝜔 𝑡 − 𝑣𝑐 𝑥  

 
If we equalize the phases of the two standing and progressive wave functions, we obtain: 𝜙 = 𝜔 𝑡 = 𝛾𝜔 𝑡 − 𝑣𝑐 𝑥  

 
By eliminating the pulsation on both sides 𝜔 , we find the Lorentz transform between the moments t  
of the observer 𝐵 and 𝑡 of the observer 𝐴: 𝑡 = 𝛾 𝑡 − 𝑣𝑐 𝑥  

 
Following the ideas of L. de Broglie, the relativistic effect is interpreted as the variation of the period 𝑇 (and the frequency 𝑓 = ) of a wave as a function of the phase velocity of the wave 𝑣 = , 

velocity measured relative to an observer. In other words, when a standing wave moves relative to an 
observer and becomes progressive with a phase velocity 𝑣 = , the observer measures a variation in 

the period 𝑇 and in the frequency 𝑓 of the wave relative to the period 𝑇  and to the frequency 𝑓  of the 
standing wave. 
 
 
Note 1 
By analogy between Space and Time, by substituting 𝑐𝑡 by 𝑥, we have the Lorentz transform for the 
positions: 𝑥 = 𝛾 𝑥 − 𝑣 𝑡  

 
Note 2 
What is not explained intuitively here is why we have the relationship between energies: 𝐸 = 𝐸 , that is, the origin of 𝛾 = ? 

 
We will look at this in a future paragraph. 
 
In summary, L. de Broglie questions the variations in the frequency of a wave, or more generally the 
frequency variations of any periodic phenomenon, when it becomes mobile. 
Let be a periodic phenomenon, motionless in relation to an observer, with a pulsation 𝜔 . When this 
periodic phenomenon becomes mobile, with a uniform rectilinear velocity 𝑣  relative to the observer, 
does this phenomenon retain the same pulsation 𝜔  for the observer?  
 
Special Relativity answers that no. When a periodic phenomenon of initial pulsation 𝜔  becomes 
mobile, with a uniform rectilinear velocity 𝑣  relative to the observer, the observer measures for the 
periodic phenomenon a new pulsation 𝜔 always greater than 𝜔  and equal to: 𝜔 = 11 − 𝑣𝑐 𝜔  
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Note on mass 
According to relations 𝐸 = ℏ𝜔 = 𝑚𝑐 = 𝛾𝐸 = 𝛾ℏ𝜔 = 𝛾𝑚 𝑐 , it is noted that the faster a body 
moves, the more its mass 𝑚 = 𝛾𝑚  increases.  
 
II.2.3 Phenomenon of duration expansion (or slowing down of clocks) 
The term Time dilation refers to an effect of Special Relativity, according to which the time interval  
between two events measured in any Galilean (or inertial) reference frame 𝑅 is always greater than the 
time interval measured in the Galilean reference frame 𝑅  (in relative motion with respect to 𝑅), 
where these two events have the same spatial position (but do not take place at the same time). 
 
In Special Relativity, Time is not the same according to the reference frame. To characterize these 
differences, clocks are used, each of which is specific to a reference frame. To an observer, the clock 
of a moving reference frame seems slowed down compared to the clock of a stationary (or a standing) 
reference frame. We are talking about slowing down the clocks. 
 
To find the phenomenon of dilation of durations, we can use the Lorentz transform: 𝑡 = 𝛾 𝑡 − 𝑣𝑐 𝑥  

We have the Time interval between 2 events: 𝛥𝑡 = 𝛾 𝛥𝑡 − 𝑣𝑐 𝛥𝑥  

In the case of a fixed body in 𝑅 , with the 2 events separated from 𝛥𝑡  having the same spatial 
position, we have: 𝛥𝑥 = 0. We obtain: 𝛥𝑡 = 11 − 𝑣𝑐 𝛥𝑡  

𝛥𝑡 ≥ 𝛥𝑡  𝛾 = 11 − 𝑣𝑐 ≥ 1 

 
Note, length contractions 
We have the analogous phenomenon (and inverse in the result) for lengths. Following the Lorentz 
transform: 𝛥𝑙 = 𝛾 𝛥𝑙 − 𝑣 𝛥𝑡  

When the 2 measures allowing to obtain 𝛥𝑙  are made in 𝑅  at the same moment, we have: 𝛥𝑡 = 0. 
We obtain: 𝛥𝑙 = 1 − 𝑣𝑐 𝛥𝑙  𝛥𝑙 ≤ 𝛥𝑙  

 
II.2.4 Group velocity, check that 𝜸 works 
We are now looking for the relationship between group velocity 𝑣  and 𝛾. 
The group velocity of the particle wave must check: 
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𝑣 = 𝜕𝜔𝜕𝑘 = 𝜕𝐸𝜕𝑝 = 𝜕𝐸𝜕 𝐸𝑣𝑐  

We obtain: 𝑐𝑣 = 𝜕𝐸 𝑣𝑐𝜕𝐸  

 
The energy 𝐸 is proportional to 𝛾 and to a constant (in Special Relativity, we take the energy of an 
motionless mass 𝐸 = 𝑚 𝑐 , and we have 𝐸 = 𝛾𝑚 𝑐 = 𝛾𝐸 = 𝛾ℏ𝜔 ). 
 
So, we have the differential equation to solve to find the relationship between 𝑣  and 𝛾: 𝑐𝑣 = 𝜕 𝑣𝑐 𝛾ℏ𝜔𝜕𝛾ℏ𝜔 = 𝜕 𝑣𝑐 𝛾𝜕𝛾  

 
Note that if we propose: 𝛾 = 11 − 𝑣𝑐  

 
That is, if 𝑣  and 𝛾 verify the relationship: (𝛾) − (𝛾 𝑣𝑐 ) = 1 

(𝛾 𝑣𝑐 ) = (𝛾) − 1 

 
The differential equation is well solved: 𝜕 𝑣𝑐 𝛾𝑐𝜕𝛾 = 𝜕 (𝛾) − 1𝑐𝜕𝛾 = 2𝛾2𝑐 (𝛾) − 1 = 1𝑣  

 
The value 𝛾 (dilation of durations) is therefore imposed by the phase velocity, the group velocity, the 
relationship 𝑣 𝑣 = 𝑐 , the relationships 𝐸 = ℏ𝜔 = 𝑚 𝑐  and 𝑝 = ℏ𝑘. 
 
Note 1 
If we pose 𝐸 = 𝛾𝐸 = 𝛾𝑚 𝑐 , from the relationship (𝛾) − (𝛾 ) = 1, multiplying by 𝑚 𝑐 , we 
find again: (𝛾) 𝑚 𝑐 − (𝛾 𝑣𝑐 ) 𝑚 𝑐 = 𝑚 𝑐  𝐸 − 𝑝 𝑐 = 𝑚 𝑐  

 
Note 2 
In the theory of Relativity, the energy momentum quadrivector (or four-momentum) is defined by: 4𝑝 = (𝑝 𝑐 = 𝛾𝑚 𝑐 , 𝑝 = 𝛾𝑚 𝑣 , 𝑝 = 𝛾𝑚 𝑣 , 𝑝 = 𝛾𝑚 𝑣 ) 
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4𝑝 = (𝑝 𝑐 = 𝑚 𝑐 , 𝑝 = 𝑚 𝑣 , 𝑝 = 𝑚 𝑣 , 𝑝 = 𝑚 𝑣 ) with 𝛾 = 1 

 
We have: 𝐸 = 𝑝 𝑐 = 𝛾𝑚 𝑐 = 𝑚 𝑐1 − 𝑣𝑐  

 
If we develop in series at the limit << 1, we obtain: 𝐸 = 𝑚 𝑐 + 12 𝑚 𝑣 + 38 𝑚 𝑣𝑐 + ⋯ 

 
If 𝑣 = 0, we find again 𝐸 = 𝑚 𝑐 . 𝑚 𝑣  corresponds to kinetic energy. 

The term 𝑚 , as well as the following, can be seen as a relativistic correction to kinetic energy. 
 
A relativistic mass is frequently defined 𝑚 with: 𝑚 = 𝛾𝑚 = 𝑚1 − 𝑣𝑐  

 
II.2.5 Dispersion relation in the case of classical Newtonian mechanics 
In the context of the Schrödinger equation, we saw in Memoir 1 that wave mechanics could also be 
considered as an extension (or even a generalization) of Newtonian classical mechanics. Here we 
make some reminders on group and phase velocities in mechanics applied to Newtonian mechanics. 
 
Group velocity 
We have the energy of classical Newtonian mechanics (non-relativistic): 𝐸 = ℏ𝛺 = 𝑝2𝑚 + 𝐸𝑝 

with 𝐸𝑝 a potential energy. 
 
We obtain the momentum of classical Newtonian mechanics: 𝑝 = 𝑚𝑣 = 2𝑚(ℏ𝛺 − 𝐸𝑝) 

 
According to de Broglie, we have: 𝑝 = ℏ𝐾 

 
We obtain: 𝜕ℏ𝐾𝜕ℏ𝛺 = 𝜕 2𝑚(ℏ𝛺 − 𝐸𝑝)𝜕ℏ𝛺 = 𝑚2𝑚(ℏ𝛺 − 𝐸𝑝) = 𝑚𝑝 = 1𝑣  

 
We find again the group velocity: 
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𝑣 = 𝜕𝛺𝜕𝐾 

 
Phase velocity 
For the phase velocity, we have the dispersion relation of Newtonian wave mechanics: 𝑣 = 𝛺𝐾 = 𝐸𝑝 = 𝐸2𝑚(𝐸 − 𝐸𝑝) 

 
We can define a refractive index 𝑛 with 𝑣  the phase velocity of the wave in the absence of potential: 𝑣𝑛 = 𝑣 = 𝐸√2𝑚𝐸 

 
We obtain for the index 𝑛 by eliminating 𝑣  in the last two expressions: 𝑛 = 1 − 𝐸𝑝𝐸  

 
We obtain for the phase velocity: 

𝑣 = 1 − 𝐸𝑝𝐸 𝐸√2𝑚𝐸 = 𝑛 𝐸√2𝑚𝐸 

 
When 𝑛 tends towards 1 (𝐸𝑝 tends towards 0), we find again the dispersion relationship between the 
momentum and the energy for a wave in a vacuum: 𝑣 = 𝑣 = 𝑣 = 𝐸√2𝑚𝐸 = 𝐸𝑝 

 
II.2.6 Phase velocity, finding the dispersion relationship between energy and momentum in 

the case of relativistic mechanics 
For a photon, we have a phase velocity equal to: 𝑣 =  with 𝑣 = 𝑣 = 𝑐 

 
If we pose 𝐸 = ℏ𝜔 𝑝 = ℏ𝑘, we have the dispersion relation: 𝑣 = 𝐸𝑝 𝐸 = 𝑝𝑣 = 𝑝𝑐 

 
For any particle wave, we always have the dispersion relation: 𝐸 = 𝑝𝑣  (by contrast 𝑣 ≠ 𝑣 ≠ 𝑐) 

 
We have: 𝑣 𝑣 = 𝑐  
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Note: In non-relativistic theories, we do not use 𝑣 𝑣 = 𝑐  to have the relationship between 
momentum and energy. 
 
We obtain the dispersion relationship between the momentum and the energy of relativistic 
mechanics: 𝐸 = 𝑐𝑣 𝑝 

 
When 𝑣  tends towards 𝑐, we find the dispersion relationship of a wave in a vacuum: 𝐸 = 𝑝𝑐 

 
Nota 1 
In Special Relativity, we have: 𝐸 = 𝑝 = 𝑝 𝑐 + 𝑚 𝑐 . We also find the dispersion relationship 

of a wave in a vacuum: 𝐸 = 𝑝𝑐, when the mass of the particle tends to 0. 
 
Note 2 
The dispersion relationship 𝐸 = 𝑝𝑣 = 𝑝𝑐 is a borderline case: 

- in relativistic mechanics, when the mass of the particle tends to 0, 
- in classical Newtonian mechanics, when the potential energy (of the particle in a field) tends 

to 0. 
 
II.3 Some reminders about the relativistic Doppler-Fizeau effect 
II.3.1 Interpretation of the relativistic Doppler-Fizeau effect 
The interpretation of the relativistic effect may be reminiscent of the Doppler-Fizeau effect. Indeed, 
for these two effects, we have a variation in the frequency as a function of the velocity 𝑣  between the 
body emitting the signal and the body receiving it. We will remind in this paragraph and the next one 
that the cumulation of the Doppler-Fizeau effect and the dilation effect of the durations corresponds 
exactly to the relativistic effect (Lorentz transform). 
 
Let's first consider the case of a transmitter that moves at velocity 𝑣  and a receiver that is fixed. 
Following the "classic" Doppler effect, we have the relationship between the frequency 𝑓  received 
by the fixed receiver and frequency 𝑓  issued by the mobile transmitter: 𝑓 = 11 + 𝑣𝑐 𝑓  

 
Depending on the expansion effect of the durations, the durations of the mobile transmitter measured 
by the fixed receiver are increased by a factor . The frequencies of the mobile transmitter 

measured by the fixed receiver are therefore reduced by a factor 1 − . So, we have: 

𝑓 = 1 − 𝑣𝑐 𝑓  

 

By cumulating the 2 effects, we have the relativistic Doppler-Fizeau effect: 
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𝑓 = 11 + 𝑣𝑐 × 1 − 𝑣𝑐 𝑓 = 1 − 𝑣𝑐 1 + 𝑣𝑐1 + 𝑣𝑐 𝑓  

𝑓 = 1 − 𝑣𝑐1 + 𝑣𝑐 𝑓  

 
Next consider the case of a receiver that moves at velocity 𝑣  and a transmitter that is fixed. Following 
the Doppler effect, we have the relationship between the frequency 𝑓  received by the mobile 
receiver and frequency 𝑓  issued by the fixed transmitter: 𝑓 = 1 − 𝑣𝑐 𝑓  

 
Depending on the expansion effect of the durations, the durations of the fixed transmitter measured by 

the mobile receiver are reduced by a factor 1 − . The frequencies of the mobile transmitter 

measured by the fixed receiver are therefore increased by a factor . So, we have: 

𝑓 = 11 − 𝑣𝑐 𝑓  

 
By cumulating the 2 effects, we have the relativistic Doppler-Fizeau effect: 

𝑓 = 1 − 𝑣𝑐1 − 𝑣𝑐 𝑓 = 1 − 𝑣𝑐1 − 𝑣𝑐 1 + 𝑣𝑐 𝑓  

𝑓 = 1 − 𝑣𝑐1 + 𝑣𝑐 𝑓  

 
We get the same formula as before. The relativistic Doppler-Fizeau effect is perfectly symmetrical and 
depends only on the relative speed between transmitter and receiver. 
 
II.3.2 Relativistic Doppler effect via the Lorentz transform 
We can also find the relativistic Doppler effect from the Lorentz transform. 
 
Let be a monochromatic source, fixed in a reference frame R associated with a coordinate system 
Oxyzt, and which emits a flat light wave, with frequency f, in the direction Ou of the plan xy, such as 
(Ox,Ou) = 𝜃. An observer A is associated with a reference frame R’, this reference frame associated 
with a coordinate system Ox’y’z’t’ and in uniform rectilinear translation of velocity 𝑣  in the direction 
x relative to the reference frame R. The emitted signal (i.e., the plane light wave) makes an angle 𝜃 in 
R and an angle 𝜃  in R’. 
The diagram below summarizes this statement: 
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Figure 2: Plane light wave 

 
We have the 4 components of the wave quadrivector in R: 𝑘 = 2𝜋𝑓𝑐 𝑐𝑜𝑠𝜃 𝑘 = 2𝜋𝑓𝑐 𝑠𝑖𝑛𝜃 𝑘 = 0 𝜔𝑐 = 2𝜋𝑓𝑐  
 
We have the 4 components of the wave quadrivector in R’: 𝑘 = 2𝜋𝑓𝑐 𝑐𝑜𝑠𝜃′ 𝑘 = 2𝜋𝑓𝑐 𝑠𝑖𝑛𝜃′ 𝑘 = 0 = 𝑘  𝜔𝑐 = 2𝜋𝑓𝑐  
 
We have the Lorentz transform for the time component: 𝜔𝑐 = 11 − 𝑣𝑐

𝜔𝑐 − 𝑣𝑐 𝑘  

2𝜋𝑓𝑐 = 11 − 𝑣𝑐
2𝜋𝑓𝑐 − 𝑣𝑐 2𝜋𝑓𝑐 𝑐𝑜𝑠𝜃  

We deduce the relationship between the frequency 𝑓  issued in R and frequency 𝑓  received by 
observer A motionless in R’: 𝑓′ = 𝛾(1 − 𝑣𝑐 𝑐𝑜𝑠𝜃)𝑓 𝑓 = 𝛾 1 − 𝑣𝑐 𝑐𝑜𝑠𝜃 𝑓  
 
We have the Lorentz transform of the following component x: 𝑘 = 11 − 𝑣𝑐 𝑘 − 𝑣𝑐 𝜔𝑐  

2𝜋𝑓𝑐 𝑐𝑜𝑠𝜃 = 11 − 𝑣𝑐
2𝜋𝑓𝑐 𝑐𝑜𝑠𝜃 − 𝑣𝑐 2𝜋𝑓𝑐 𝜃 = 𝑓𝑓′ 11 − 𝑣𝑐 (𝑐𝑜𝑠𝜃 − 𝑣𝑐 ) 
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𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠𝜃 − 𝑣𝑐1 − 𝑣𝑐 𝑐𝑜𝑠𝜃 

 
We have the Lorentz transform of the following component y: 𝑘 = 𝑘  2𝜋𝑓𝑐 𝑠𝑖𝑛𝜃 = 2𝜋𝑓𝑐 𝑠𝑖𝑛𝜃 
 
For the observer A with velocity 𝑣   relative to the source, there is usually a change in the frequency 
(and therefore the wavelength) and the direction of the wave. 
 
When 𝑐𝑜𝑠𝜃 = 1, i.e., when the light wave is emitted following x and has the same direction as 𝑣 , we 
find again: 

𝑓 = 1 − 𝑣𝑐1 − 𝑣𝑐 𝑓 = 1 − 𝑣𝑐1 − 𝑣𝑐 1 + 𝑣𝑐 𝑓  

𝑓 = 1 − 𝑣𝑐1 + 𝑣𝑐 𝑓  

 
The relativistic effect is therefore the combination of the classical Doppler effect and the phenomenon 
of slowing down the clocks of Special Relativity. 
 
When 𝑐𝑜𝑠𝜃 = , the wave propagates according to y perpendicular to 𝑣 , we have: 𝑓 = 11 − 𝑣𝑐 𝑓  

 
II.4 Some reminders of special relativistic electromagnetism 
II.4.1 Invariance of Maxwell's equations by the Lorentz transform 
It is reminded that Maxwell's equations are invariant by Lorentz transform and therefore by change of 
Galilean reference frames in the context of Special Relativity. On a dans R and R’, 2 refence frames in 
rectilinear motion uniform with respect to each other: 
 
Maxwell Gauss: = 𝑑𝑖𝑣�⃗�𝑙 in R et = 𝑑𝑖𝑣�⃗�𝑙’ in R’ 
 
Maxwell Ampère:  𝜇 𝚥 = 𝑟𝑜𝑡𝐵 − 𝜇 𝜀 ⃗

 in R and 𝜇 𝚥 = 𝑟𝑜𝑡𝐵⃗ − 𝜇 𝜀 ⃗
 in R’ 

 
Maxwell Thomson: 𝑑𝑖𝑣𝐵 = 0 in R and 𝑑𝑖𝑣𝐵⃗ = 0 in R’ 
 

Maxwell Faraday: 𝑟𝑜𝑡�⃗�𝑙 = − ⃗
 in R and 𝑟𝑜𝑡�⃗�𝑙 = − ⃗

 in R’ 
 
Note on Maxwell Ampère 
Maxwell Ampere is invariant by the Lorentz transform if Maxwell Gauss is verified. 
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Note on mass 𝑚  and electric charge q 
In Special Relativity, it is postulated that mass 𝑚  and electric charge q (as well as the electric charge 
density 𝜌)  are relativistic invariants. 
 
II.4.2 Electromagnetic field quadrivector? 
Remember that the quantities 𝐸�⃗�. 𝐵 = 𝐸�⃗� . 𝐵⃗ et 𝐸�⃗�. 𝐸�⃗� − 𝐵. 𝐵 = 𝐸�⃗� . 𝐸𝑙⃗ − 𝐵⃗. 𝐵⃗ are invariant by 
Lorentz transform. We could therefore imagine an electromagnetic field quadrivector of the type: 𝐸𝑙𝑐 , 𝐵  

 
Nevertheless, the nature of 𝐵, here scalar, remains fuzzy and in Special Relativity we rather define an 
electromagnetic field tensor or Maxwell Faraday tensor 𝐹 . 
 
II.4.3 Transformation of electromagnetic fields during a passage from R to R’ 
Let be a change of Galilean reference frame from R to R’, with R’ animated by a uniform rectilinear 
velocity 𝑣  in the direction x. We remind the transforms of the electromagnetic field to pass from the 
reference frame R to R’: 𝐸𝑙 = 𝐸𝑙  𝐸𝑙 = 𝛾 𝐸𝑙 − 𝑣 𝐵  𝐸𝑙 = 𝛾 𝐸𝑙 + 𝑣 𝐵  𝐵 = 𝐵  𝐵 = 𝛾 𝐵 + 𝑣𝑐 𝐸𝑙  𝐵 = 𝛾 𝐵 − 𝑣𝑐 𝐸𝑙  

 
Note 1 
Note that these are not quadrivectors, because the transformation is not exactly that of Lorentz. 
 
Note 2 
We find these transforms, via the Lorentz transform of the Lorentz force, which is a force 
quadrivector. For El, we place ourselves in the special case where the electric charge q is immobile in 
R. For B, we place in the special case where the electric charge q moves according to z. 
 
 
II.4.4 Lorentz transformation of fields K and 𝜴 
In a space x y t=z (plane light wave emitted in a plane xy), we have the Lorentz transforms for the 
pulsation and wave vector, here for the fields K and Ω: 𝐾 = 𝐾  𝐾 = 𝛾 𝐾 − 𝑢𝑐 Ω  Ω = 𝛾 Ω − 𝑢𝐾  
 
With reorientation of the electromagnetic field, we obtain the values of the electromagnetic field: 𝐸𝑙 = 𝐸𝑙  𝐸𝑙 = 𝛾 𝐸𝑙 − 𝑢𝐵  𝐵 = 𝛾 𝐵 − 𝑢𝑐 𝐸𝑙  
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Analogous forms are obtained for the pulsation field, wave vector field and for the reoriented 
electromagnetic field. When the electromagnetic field is reoriented, it transforms by a Lorentz 
transform and can then be considered a quadrivector. 
 
II.5 Conclusion of the chapter 
We have explained the notions of group velocity and phase velocity, which according to the ideas of 
L. de Broglie make it possible to interpret wave mechanics as an extension (or even a generalization) 
of both classical Newtonian mechanics and relativistic mechanics. 
 
After studying the phase and group velocities of wave mechanics, we will look at the possible links 
between phase velocity, group velocity and Maxwell source field equations. 
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Chapter III Maxwell’s source field equations and group velocity 
 
Purpose of the chapter 
Several times, we have mentioned the idea of L. de Broglie to bring the velocity of an electron particle 
moving around the nucleus (velocity used for example in the Bohr electron model) closer to the group 
velocity of an electron wave. 
The purpose of this chapter is to see if we can also compare the velocity of a moving electric charge 
(i.e., an electric current) to the group velocity of a wave. 
 
Using the source field equations of Maxwell Ampère and Maxwell Gauss (involving charge and 
electric currents), we will see that it is possible to find an equation involving the velocity of an electric 
charge and formally resembling that of the group velocity. 
 
III.1 Reminder on Maxwell's sources field equations 
Maxwell Ampère 
Maxwell Ampere's equation describes the magnetic field and electric field generated by a density of 
electric currents (moving electric charges). 
 
Maxwell Ampère is reminded in integral form: 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 ⋅ 𝑑𝑙 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡 ⋅ 𝑑𝑆 

 
Maxwell Ampère is reminded in local form: 𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡  𝜇 (𝚥 + 𝚥 ) = 𝑟𝑜𝑡𝐵 

with 𝚥 = 𝜀 ⃗
 the displacement current introduced by J. C. Maxwell. 

 
Maxwell Gauss 
Maxwell Gauss's equation describes the electric field generated by a density of electric charges. 
 
Maxwell Gauss is reminded in integral form: 𝛴𝑄𝜀 = 1𝜀 𝜌𝑑𝜏 = �⃗�𝑙 ⋅ 𝑑𝑆 

with 𝜌 the density of electric charges. 
 
Maxwell Gauss is reminded in local form: 𝜌𝜀 = 𝑑𝑖𝑣�⃗�𝑙 
 
Gauss gravitation 
There are strong analogies between Maxwell Gauss and Gauss gravitation, giving the gravitational 
field generated by a mass density. We remind here Gauss gravitation in integral form: −4𝜋𝐺(𝛴𝑀) = −4𝜋𝐺 𝜌 𝑑𝜏 = �⃗�𝑟 ⋅ 𝑑𝑆 
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Withe 𝜌  the mass volumetric density. 
 
Gauss gravitation is reminded in local form: −4𝜋𝐺𝜌 = 𝑑𝑖𝑣�⃗�𝑟 

 
III.2 Rewriting Maxwell's sources field equations in a 3-dimensional Space-Time 
We place ourselves in a space oriented with three dimensions x, y, t. 
 
III.2.1 Maxwell Ampère 
We have Maxwell Ampère in local form: 𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡  

 
Moving to partial derivatives, we have with an electric current density in the y direction: 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕𝐸𝑙 /𝜕𝑡  

𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥 − 𝜕𝐸𝑙 /𝑐 𝜕𝑡  

 
Note 
The electric field has been reoriented 𝐸𝑙 = 𝐸𝑙 /  in the manner of the magnetic field (i.e., in the 
manner of a generalized rotation vector), which makes it possible to have in the expression of 
Maxwell Ampère the same formalism for the electric field and the magnetic field. 
 
This gives with an electric current in the x direction: 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑦 − 𝜇 𝜀 𝜕𝐸𝑙 /𝜕𝑡  

𝜇 𝑗 = 𝜕𝐵 /𝜕𝑦 − 𝜕𝐸𝑙 /𝑐 𝜕𝑡  

 
III.2.2 Maxwell Gauss 
Maxwell Gauss is reminded locally: 𝑑𝑖𝑣�⃗�𝑙 = 𝜌𝜀  

 
The electric field is reoriented on the model of the magnetic field, Maxwell Gauss is transformed into 
an analogue of Maxwell Ampère. 
 
We have with a volume density of electric charge 𝜌  following t: 𝜌𝜀 = 𝜕𝐸𝑙 /𝜕𝑥 − 𝜕𝐸𝑙 /𝜕𝑦  
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Note 
In the previous Memoir, during the study of the Maxwell Faraday tensor 𝐹  and from the rewriting of 
Maxwell's source field equations with this tensor, we have already seen that we can construct these 
equations under the same mode. 
 
III.3 From Maxwell's sources field equations to group velocity of a particle wave 
III.3.1 Maxwell’s sources field equations 
Let us now seek, from the equations of Maxwell Gauss and Maxwell Ampère, to find the equation of 
group velocity. 
 
We place ourselves in the case that: 

- the electric field 𝐸𝑙 is permanent in Time and depends on only one variable in space x. It 
therefore depends neither on t nor on y. 

- the magnetic field 𝐵 depends only on x (no electric current following x). 
 
According to Maxwell Ampère, we have: 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕𝐸𝑙 /𝜕𝑡  

(no current following x) 
The field 𝐸𝑙 /  is permanent. 
 
So, we have: 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥  

 
According to Maxwell Gauss, we have: 𝜌𝜀 = 𝜕𝐸𝑙 /𝜕𝑥 − 𝜕𝐸𝑙 /𝜕𝑦  

The field 𝐸𝑙 does not depend on y. 
 
So, we have: 𝜌𝜀 = 𝜕𝐸𝑙 /𝜕𝑥  

 
III.3.2 Link between group velocity and Maxwell’s source field equations 
Dividing Maxwell Ampère by Maxwell Gauss, we find: 𝜇 𝜀 𝑗𝜌 = 𝜕𝐵 /𝜕𝑥 × 𝜕𝑥𝜕𝐸𝑙 /  

We have: 𝑗 = 𝜌 𝑣  

with 𝑣  the velocity of the electric charge. 
 
We then have: 
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𝜇 𝜀 𝑣 = 𝜕𝐵 /𝜕𝐸𝑙 /  

With 𝜇 𝜀 = , we obtain: 

𝑣 = 𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  

 
We find a relationship that resembles that of group velocity: 𝑣 = 𝜕𝛺 /𝜕𝐾 /  

 
According to the Larmor relation (which contains two generalized rotation vectors in a spatial plane), 
we have: 𝐵 / = 2𝑚𝑒 𝛺 /  

 
From the fundamental principle of Newton's dynamics, we saw that we had a similar relation that 
contains two generalized pawns in a spatiotemporal plane: 𝐸𝑙 / = 2𝑚 𝑐𝑒 𝐾 /  

 
Note, vacuum check 
Let's check the following relationship in a vacuum: 𝐵𝐸𝑙 = 𝛺𝑐 𝐾 

In a vacuum, we have: 𝑐 = 𝛺𝐾 

From = , we obtain: 𝐵𝐸𝑙 = 1𝑐 

This verifies the relationship between the field norms 𝐵 and �⃗�𝑙 in a vacuum. 
 
 
By substituting the magnetic and electric fields by the pulsation field and wave vector field, we obtain: 

𝑣 = 𝑐 𝜕 2𝑚𝑒 𝛺 /𝜕 2𝑚 𝑐𝑒 𝐾 /  

𝑣 = 𝜕𝛺 /𝜕𝐾 /  
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We obtain a velocity of the electric charge identical to the expression of a group velocity. 
 
III.4 Conclusion of the chapter 
From Maxwell's source field equations, it is possible to find a velocity of the electric charge 𝑣 =𝑐 //  similar to a group velocity 𝑣 = // . 

 
Further to this finding: 

- since there are source field equations associating the fields 𝐵 and 𝐸𝑙, equations that make it 
possible to find a group velocity, 

- in addition, since the fields 𝛺 and 𝐾 are involved in the definition of group velocity, 
let's see if it is possible to obtain source field equations applied to gravitation, involving fields 𝛺 and 𝐾, and allowing to find a group velocity. 



Memoir 3: Maxwell's source field equations to gravitational equations    157 

Chapter IV Ampère and Gauss theorems, source field equations for 
gravitation 

 
Purpose of the chapter 
In this chapter we propose analogues for gravitation, Maxwell's source field equations for 
electromagnetism. 
We first give a graphical representation of Ampère's theorem. This makes it possible to explain 
Maxwell's source field equations, and then to propose different source field equations applying to 
gravitation. 
 
We place ourselves here in a space x, y, t oriented. 
 
IV.1 Space-oriented sources: electric current density, Maxwell Ampere equation 
IV.1.1 Magnetic field 
We have according to Ampere's theorem (magnetic part) in a 3-dimensional space x, y, l: 𝜇 ∬ 𝚥 ⋅ 𝑑𝑆 = ∮ 𝐵 / (𝑀) ⋅ 𝑑𝑙 𝑆  is a surface in the spatial plane x, 𝑙 𝑆  perpendicular to the surface 𝑆  𝛤  is a contour following 𝑙 𝚥  the density of the oriented in the y direction and to be integrated on a surface 𝑆  
 
Note on electric current densities 
The volumetric current density 𝚥 is expressed in Ampere per square meter:  . 

We also define a surface current density 𝚥 , which is expressed in  
The current I, linear density, is expressed in Ampere. 
 
In the case of spatial symmetries, we have the equivalence relations for current densities: 𝚥 𝑑𝑉𝑜𝑙 = 𝚥 𝑑𝑆 = 𝐼 𝑑𝑥 
 
In the case of magnetism, for the 3rd dimension perpendicular to the plane of rotation x, y, it is 
assumed to be able to reason similarly on a spatial dimension 𝑙 or on a temporal dimension t. 
 
So, we take 𝐵 / = 𝐵 /  directed following Time. 
We also take 𝛤  directed following Time. 
Finally, we can have: 𝑑𝑙 = 𝑐𝑑𝑡. 
 
We have according to Ampère's theorem (magnetic part) in a 3-dimensional space x, y, t: 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 / (𝑀) ⋅ 𝑐𝑑𝑡 

𝑆  is a surface in the spatiotemporal plane x, t 𝑆  is perpendicular to the spatiotemporal surface 𝑆  𝛤  is a contour directed following Time, included in the surface 𝑆  𝚥  the volumetric current of electric charges density, directed following y and to be integrated on a 
surface 𝑆  
 
Graphically, Ampère's theorem translates as: 
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Figure 3: Maxwell Ampère, magnetic field 𝐵 /  and current volumetric density 𝚥  

 
By applying Stockes' theorem to: 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 / (𝑀) ⋅ 𝑐𝑑𝑡 

We have: 𝜇 𝚥 ⋅ 𝑑𝑆 = − 𝜕𝐵 /𝜕𝑥 𝑑𝑆  

 
We obtain the local shape to be integrated on a surface 𝑆 : 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥  

Note 
We take l as the 3rd dimension of Space, but we can just as easily choose z as the notation. We find the 
magnetic field oriented according to z as it is conventionally defined: 𝐵 / . 
 
IV.1.2 Electric field (displacement currents) 
We have according to Ampère's theorem (displacement currents part): 𝜇 𝚥 ⋅ 𝑑𝑆 = −𝜇 𝜀 �⃗�𝑙 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatiotemporal plane x, t 𝑆  perpendicular to the spatiotemporal surface 𝑆  𝛤  contour following x, included in the surface 𝑆  𝚥  the volumetric current density, directed following y and to be integrated on a surface 𝑆  
 
We have graphically: 
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Figure 4: Maxwell displacement currents, field �⃗�𝑙 /  and current volumetric density 𝚥  

 
In local form, we have: 𝜇 𝚥 = −𝜇 𝜀 𝜕�⃗�𝑙 /𝜕𝑡  

 
If we combine the two Maxwell Ampère equations, we have: 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕�⃗�𝑙 /𝜕𝑡  

 
IV.2 Time-oriented sources: electric charge density, Maxwell Gauss equation 
IV.2.1  Electric field 1 
According to Ampère and Gauss's theorems, we have: 1𝜀 �⃗� ⋅ 𝑑𝑆 = �⃗�𝑙 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatial plane x, y 𝑆  perpendicular to the surface 𝑆  𝛤  contour following y, included in the surface 𝑆  �⃗�  the volumetric electric charge density directed following t and to be integrated on a surface 𝑆  
 
Note 1 on electric charge densities 
The volumetric electric charge density 𝜌  is expressed in Coulomb per cubic meter: . 

We also usually define a surface electric charge density which is expressed in , and a linear electric 

charge density in . 
The electric charge q is expressed in C. 
 
In the case of spatial symmetries, we have the equivalence relations for the current density and electric 
charge density: 
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𝚥 𝑑𝑉𝑜𝑙 = 𝚥 𝑑𝑆 = 𝐼 𝑑𝑥 �⃗� 𝑑𝑉𝑜𝑙 = �⃗� 𝑑𝑆 = 𝜆 𝑑𝑙 = 𝑑�⃗�  
 
Note 2 on Ampère and Gauss's theorems 
With the reorientation of the electric field on the model of the magnetic field, the usual Maxwell 
Gauss relation turns into an analogue of Ampère's theorem. 
Thus, we can see the theorem used above as a Gauss theorem, analogous to Ampère by a permutation 
of t by y. 
In the rest of this Memoir, we will rather speak of Gauss for time-oriented sources and Ampere for 
space-oriented sources, knowing that all the source field equations proposed here are fundamentally 
based on the same Ampere’s theorem. 
 
 
We have graphically: 
 

 
Figure 5: Maxwell Gauss 1, field �⃗�𝑙 /  and volumetric electric charge density �⃗�  

 
In local form, we have: �⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥  

 
IV.2.2 Electric field 2 
According to Ampère and Gauss's theorems, we have: 1𝜀 �⃗� ⋅ 𝑑𝑆 = − �⃗�𝑙 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatial plane x, y 𝑆  perpendicular to the spatial surface 𝑆  𝛤  contour following x, included in the surface 𝑆  �⃗�  the volumetric electric charge density directed following t and to be integrated on a surface 𝑆  
 
We have graphically: 
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Figure 6: Maxwell Gauss 2, field �⃗�𝑙 /  and volumetric electric charge density �⃗�  

 
In local form, we have: �⃗�𝜀 = − 𝜕�⃗�𝑙 /𝜕𝑦  

 
If we combine the two Maxwell Gauss equations, we have: �⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥 − 𝜕�⃗�𝑙 /𝜕𝑦  

 
IV.3 Analogies electromagnetism and gravitation, momentum-type sources oriented in 

Space, Ampere's theorem 
IV.3.1 Analogues of charge, current densities, and a focus about constants 
In analogy to the electromagnetism source source field equations, we want to construct source source 
field equations for fields 𝛺 and 𝐾. 
 
There are two problems: 

- what are the analogues of electric charge density and electric current density? 
- which constants are used for the gravitational source fieldequations. Is it the same 

(permittivities 𝜀  and permeability 𝜇  used in electromagnetism, gravitational constant𝐺) or 
do we have to find others? 

 
IV.3.2 Current density and momentum density 
In electromagnetism, we integrate the volumetric electric current density 𝚥 = 𝚥  on a spatial plane x, 𝑙, with the idea that the temporal dimension t and the spatial dimension 𝑙 can correspond: 𝑙 = 𝑐𝑡. 
 
For gravitation, temporal dimension and spatial dimension cannot a priori correspond. The analogue of 
the volumetric electric current density 𝚥  must be integrated on a spatiotemporal plane x, t. The 
analogue of 𝚥  is therefore not simply a volumetric momentum density 𝑝. 
 
It is proposed here that the analogue of the linear electric current density 𝐼  (usually called electric 
current I) is for gravitation, a linear momentum density that will have to be integrated on t. It then 
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corresponds to the derivative with respect to Time of the momentum 𝑝, i.e., ( ⃗)  or to �̇⃗�  to use the 
notation of I. Newton (or to (∑ �⃗�)  if we apply the fundamental principle of Newton's dynamics). 
 
To then switch from linear density to volumetric density, the same method is used for the current I or 
for �̇⃗�: we divide by m2. 
 
To differentiate respectively linear density and volumetric density, the notations are used �̇⃗�  and �̇⃗� . 
We obtain the following table, with indication of the units for each concept used: 
 
 Linear density Volumetric density 

Current of electric charges 
 

𝐼 𝑑𝑦 𝚥 𝑑𝑉𝑜𝑙 
Unit 𝐴 𝐴𝑚  
Current of masses (derived 
from the momentum) 

�̇⃗� 𝑑𝑦 
 

�̇⃗� 𝑑𝑉𝑜𝑙 
 

Unit 𝐾𝑔. 𝑚𝑠  
𝐾𝑔𝑚. 𝑠  

 
We define 𝑉𝑜𝑙, a volume on 2 dimensions of Space and 1 of Time. 
 
In case of symmetry of 2 dimensions of Space-Time, we have the equivalence relations for the electric 
current density and for the momentum derived with respect to Time density: 𝚥 𝑑𝑉𝑜𝑙 = 𝐼 𝑑𝑦 �̇⃗� 𝑑𝑉𝑜𝑙 = �̇⃗� 𝑑𝑦 
 �̇⃗� 𝑑�⃗� corresponds to the notion of elementary work 𝛿𝑊. 
 
We end this paragraph with the following summary table: 
 
 Momentum linear density, 

that is, the derivative of the 
momentum with respect to t 

Momentum volumetric 
density on x, y, t 

 
Current of masses (derived 
from the momentum) (𝑑𝑝𝑑𝑡 ) = �̇⃗�  (𝑑𝐩𝑑𝑡 ) = �̇⃗�  
Elementary work 𝛿𝑊 (𝑑𝑝𝑑𝑡 ) 𝑑𝑦 = �̇⃗� 𝑑�⃗� (𝑑𝐩𝑑𝑡 ) 𝑑𝑉𝑜𝑙 = �̇⃗� 𝑑𝑉𝑜𝑙 
 
IV.3.3 The constant to use 
In the following paragraphs, we will see that if we introduce Planck's constant ℏ (or rather −ℏ), the 4 
source field equations obtained from sources oriented in Space, correspond to 3 equations already 
known. A for the 4th equation, a priori unknown, it will allow to find the wavelength of Compton: 𝜆 = 2𝜋 ℏ𝑚𝑐 

 
IV.3.4 Source: linear momentum density and pulsation field �⃗�𝒙𝒚𝟏/𝒕  
According to Ampère's theorem we have in a space x, y, t, with k a constant in  to be determined: 
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(𝑑𝐩𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝑘𝛺 / ⋅ 𝑑𝑐𝑡 𝐾𝑔𝑚. 𝑠 . 𝑚  
𝐾𝑔𝑠 . 𝑚𝑠  

 𝑆  is a surface in the spatiotemporal plane x, t 𝑆  perpendicular to the spatiotemporal surface 𝑆  𝛤  contour following t, included in the surface 𝑆  ( 𝐩 )  the volumetric momentum density (or the volumetric current of masses density) directed 
following y and to be integrated on a surface 𝑆  
 
By applying Stockes' theorem to: 1𝑘 (𝑑𝐩𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝛺 / ⋅ 𝑑𝑡 

We have: 1𝑘 (𝑑𝐩𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝜕𝛺 /𝜕𝑥 𝑑𝑆  

 
We obtain the local form to be integrated on a surface 𝑆 : (𝑑�⃗�𝑑𝑡 ) = − 𝜕𝑘𝛺 /𝜕𝑥  

 
We observe that we obtain an equation very close to the fundamental principle of Newton's dynamics, 
if we replace: 

- on the one hand the volumetric momentum density ( 𝐩 )  by the linear momentum density ( ⃗ )  
- on the other hand, the constant 𝑘 by Planck's constant ℏ. 

 
We then have: (𝑑�⃗�𝑑𝑡 ) = − 𝜕ℏ𝛺 /𝜕𝑥  
 
If we go back this last equation, we have in the 1st column of the table below: 
 1ℏ (𝑑𝑝𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝜕𝛺 /𝜕𝑥 𝑑𝑆  

1𝑘 (𝑑𝐩𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝜕𝛺 /𝜕𝑥 𝑑𝑆  1ℏ (𝑑𝑝𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝛺 / ⋅ 𝑑𝑡 
1𝑘 (𝑑𝐩𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝛺 / ⋅ 𝑑𝑡 1ℏ �̇⃗� ⋅ 𝑑𝑆 = − 𝛺 / ⋅ 𝑑𝑡 

1𝑘 �̇⃗� ⋅ 𝑑𝑆 = − 𝛺 / ⋅ 𝑑𝑡 

 
We look for the value of the constant k as a function of ℏ which allows to pass from one to the other of 
the 2 equations above: 1𝑘 �̇⃗� ⋅ 𝑑𝑆 = 1ℏ �̇⃗� ⋅ 𝑑𝑆  1𝑘 �̇⃗� 𝑑𝑥𝑑𝑐𝑡 = 1ℏ �̇⃗� 𝑑𝑥𝑑𝑐𝑡 
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However, in the case of a symmetry of 2 dimensions of Space-Time, we have the equivalence: �̇⃗� 𝑑𝑉𝑜𝑙 = �̇⃗� 𝑑𝑦 �̇⃗� 𝑑𝑥𝑑𝑦𝑑𝑐𝑡 = �̇⃗� 𝑑𝑦 
 
We take the equation again: 1𝑘 �̇⃗� 𝑑𝑥𝑑𝑐𝑡 = 1ℏ �̇⃗� 𝑑𝑥𝑑𝑐𝑡 
We multiply each term by 𝑑𝑦: 1𝑘 �̇⃗� 𝑑𝑥𝑑𝑦𝑑𝑐𝑡 = 1ℏ �̇⃗� 𝑑𝑥𝑑𝑦𝑑𝑐𝑡 

We replace  �̇⃗� 𝑑𝑥𝑑𝑦𝑑𝑐𝑡 by �̇⃗� 𝑑𝑦: 1𝑘 �̇⃗� 𝑑𝑦 = 1ℏ �̇⃗� 𝑑𝑦𝑑𝑥𝑑𝑐𝑡 
 
We obtain the searched relationship between ℏ and k: 
 ℏ = 𝑘 × 𝑑𝑥𝑑𝑐𝑡 ℏ𝑑𝑦 = 𝑘 × 𝑑𝑉𝑜𝑙 
Unit 𝐾𝑔. 𝑚𝑠 = 𝐾𝑔𝑠 ⋅ 𝑚  

𝐾𝑔. 𝑚𝑠 ⋅ 𝑚 = 𝐾𝑔𝑠 ⋅ 𝑚  
 
By choosing the constant k correctly, we find on the one hand Ampère's theorem applied to the 
momentum linear density �̇⃗�  and to the pulsation field 𝛺 / , and on the other hand the fundamental 
principle of Newton's dynamics: (𝑑�⃗�𝑑𝑡 ) ⋅ 𝑑𝑆 = − ℏ𝛺 / ⋅ 𝑑𝑐𝑡 𝐾𝑔. 𝑚𝑠 . 𝑚  𝐾𝑔. 𝑚𝑠 . 𝑚𝑠  (𝑑�⃗�𝑑𝑡 ) ⋅ 𝑑𝑆 = − 𝜕ℏ𝛺 /𝜕𝑥 𝑑𝑆  

 
We have graphically: 
 

 
Figure 7: source �̇⃗�  and field 𝛺 /  

 
Why we find the fundamental principle of Newton's dynamics: 
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Using the relation of Max Planck and A. Einstein between an energy and a pulsation 𝐸 = ℏ𝛺 (𝐸 =ℎ𝜈), we get: (𝑑𝑝𝑑𝑡 ) = − 𝜕ℏ𝛺 /𝜕𝑥 = − 𝜕𝐸𝜕𝑥  

We find the fundamental principle of Newton's dynamics with forces that derive with respect to space 
of a (potential) energy. 
 
This is also William Rowan Hamilton's 2nd canonical equation: �̇� = − 𝜕𝐻𝜕𝑞  

with the Hamiltonian 𝐻 matching with energy 𝐸 = ℏ𝛺. 
 
We will call: (𝑑�⃗�𝑑𝑡 ) = − 𝜕ℏ𝛺 /𝜕𝑥  
the Newton's source field equation. 
 
Note 1, on Special Relativity 
Newton's source field equation is here verified in the context of Einsteinian Special Relativity 
(invariance by the Lorentz transform). We have, with 𝑚  the resting mass and with 𝛺⃗ /

 the resting 
pulsation field, the relationship: (𝑑𝛾𝑚 �⃗�𝑑𝑡 ) = − 𝜕ℏ𝛾𝛺⃗ /𝜕𝑥  
We obtain: (𝑑𝑚 �⃗�𝑑𝑡 ) = − 𝜕ℏ𝛺⃗ /𝜕𝑥  
We find above the fundamental principle of dynamics verified in the framework of Newtonian 
“special or restricted” mechanics (invariance by the Galileo transform). 
 
Note 2, on rotation 𝛺 
In the relationship 𝐸 = ℏ𝛺 (𝐸 = ℎ𝜈), We replace the notion of pulsation 𝜔 by the notion of rotation 𝛺, Implicitly, the frequency or wave phenomenon of the particle can be reduced to a rotation and a 
pulsation field 𝛺. The mystery remains to understand what exactly this rotation would be: what 
revolves and around what? 
 
Note 3, on frictional forces 
To recover the fundamental principle of Newton’s dynamics, we admit here that all force derives from 
potential energy. We must therefore disregard, for example, frictional forces that do not derive from 
potential energy. 
 
 
We can propose an analogue of the law of Biot and Savart, in the context of "Pulsatiostatics" with 𝛺 /  time independent: 
 Magnetostatics « Pulsatiostatics » 
Law of Biot and Savart 𝐵 / = 𝜇4𝜋 𝐼 𝑑�⃗� ∧ �⃗�𝑥  𝛺 / = −14𝜋ℏ (𝑑𝑝𝑑𝑡 ) 𝑑�⃗� ∧ �⃗�𝑥  

 
One can also propose an 
analogue of Ampère's Magnetostatics « Pulsatiostatics » 
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theorem in local form: 
 
Ampere's theorem in 
local form 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 1ℏ �̇⃗� = 𝑟𝑜𝑡�⃗� 

 
Note on the tensor of momentum flux density 
For those familiar with fluid dynamics or General Relativity, ℏ𝛺 /  has a physical significance very 
similar to that of the tensor of momentum flux density, noted here Π . 
 
In a volume V, we have the relationship between the momentum density and the tensor of momentum 
flux density: 𝜕𝜕𝑡 𝜌𝑣 𝑑𝑉 = − 𝜕𝛱𝜕𝑥 𝑑𝑉 

 
According to the Green–Ostrogradski theorem, we have: 𝜕𝜕𝑡 𝜌𝑣 𝑑𝑉 = − �⃗� . 𝑑𝑆 

 
On a surface S, we also have: 𝜕𝜕𝑡 𝜌𝑣 𝑑𝑆 = − 𝜕𝛱𝜕𝑥 𝑑𝑆 

 
According to Stockes' theorem, we have: 𝜕𝜕𝑡 𝜌𝑣 𝑑𝑆 = − �⃗� . 𝑑𝑙 
Compare to: (𝑑𝑝𝑑𝑡 ) ⋅ 𝑑𝑆 = − ℏ𝛺 / ⋅ 𝑑𝑐𝑡 

 
IV.3.5   Source: linear momentum density and wave vector field 𝑲𝒕𝒚𝟏/𝒙 
According to Ampère's theorem we have in a space x, y, t, with the linear momentum density as the 
source ( ⃗ )  and as a field 𝐾 / : 1ℏ (𝑑𝑝𝑑𝑡 ) ⋅ 𝑑𝑆 = 𝐾 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatiotemporal plane x, t 𝑆  perpendicular to the spatiotemporal surface 𝑆  𝛤  contour following x, included in the surface 𝑆  ( ⃗ )  the linear momentum density directed following y and to be integrated on a surface 𝑆  
 
Note 
The remarks made in the previous paragraph for volumetric and linear momentum densities also hold 
here. It is assumed that we always have a two-dimensional symmetry of Space-Time. We therefore 
directly propose Ampère's theorem from the linear momentum density ( ⃗ )  and the constant ℏ. 
 
We have graphically: 
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Figure 8: source �̇⃗�  and field 𝐾 /  

 
By applying Stockes' theorem to: 1ℏ (𝑑�⃗�𝑑𝑡 ) ⋅ 𝑑𝑆 = 𝐾 / ⋅ 𝑑�⃗� 

We get: 1ℏ (𝑑�⃗�𝑑𝑡 ) ⋅ 𝑑𝑆 = 𝜕𝐾 /𝜕𝑡 ⋅ 𝑑𝑆  

 
We have the local form to integrate on a surface 𝑆 : 1ℏ (𝑑�⃗�𝑑𝑡 ) = 𝜕𝐾 /𝜕𝑡  

 
If the derivative with respect to Time is equal to the partial derivative with respect to Time, we find 
the relation of Einstein and de Broglie relating the momentum to the wavelength: 𝑝 = ℏ𝐾 /  

that is: 𝑝 = ℎ𝜆 

γ𝑚 𝑣 = ℎ𝜆 

with 𝛾 =  and v the velocity of the body studied. 

 
We will call: 1ℏ (𝑑�⃗�𝑑𝑡 ) = 𝜕𝐾 /𝜕𝑡  
the de Broglie’s source field equation (Einstein's name will be used for a future source field equation 
where the famous equation comes into play 𝐸 = 𝑚𝑐 ). 
 
If we combine the two source field equations involving the momentum, we have: 
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− 1ℏ (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  

 
Note 
Following the ideas proposed here, we observe that the constant ℏ is not directly related to 
electromagnetism but to gravitation. 
 
Historical note 
The relationship 𝑝 = =  was first proposed by A. Einstein to give the momentum of a photon from 

its wavelength. We have the relations for a photon of zero mass: 𝐸 = ℎ𝜈 =  and 𝐸 = 𝑝𝑐. We thus 

find 𝑝 = . 

In 1924, L. de Broglie proposed to extend this relationship 𝑝 =  to all particles, especially mass 
particles such as the electron. According to L. de Broglie's hypothesis, particles are associated with 
waves. The association between the momentum 𝑝 of a particle and the wavelength 𝜆 of the wave is 
done precisely through the relationship 𝑝 = . 
 
IV.4 Analogies electromagnetism and gravitation, mass-type sources oriented in 

Space, Ampere's theorem 
We propose in this paragraph an analogy, which unlike that of the previous paragraph, does not 
correspond exactly to Maxwell's equations. This analogy nevertheless seems to be of interest since it 
contains equations known from quantum physics. 
 
IV.4.1 A second analogue for gravitation at the electric current linear density? 
Previously, it was pointed out that we could pass from the equations of Ampère to Gauss by permuting 
moment and position. 
Note that if we swap x and t in momentum linear density ( ⃗ ) , we find a quantity also oriented in 
Space and which, moreover, includes a term of mass with the replacement of 𝑝  by �⃗� . We obtain: (𝑑�⃗�𝑑𝑥 )  

 
In the following paragraphs, we propose to construct and test source field equations created from 
momentum and mass densities oriented in Space, as are current densities in the case of Ampere's 
theorem. 
 
We summarize in the table below, the sources oriented in Space that we will test: 
 
 Impulsion Mass 

Momentum or mass linear 
densities, both oriented in 
Space 

(𝑑𝑝𝑑𝑡 ) = �̇⃗�  (𝑑�⃗�𝑑𝑥 )  

Unit 𝐾𝑔. 𝑚𝑠  
𝐾𝑔𝑚  

 
IV.4.2 Source: linear mass density and pulsation field 𝛀𝐱𝐲𝟏/𝐭 
According to Ampère's theorem in a space x, y, t: 
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𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = 𝛺 / ⋅ 𝑑𝑡 

𝑆  is a surface in the spatiotemporal plane x, t 𝑆  perpendicular to the spatiotemporal surface 𝑆  𝛤  contour following t, included in the surface 𝑆  ( ⃗ )  the linear mass density directed following y and to be integrated on a surface 𝑆  
 
We have graphically: 
 

 
Figure 9: source ( ⃗ )  and field 𝛺 /  

 
By applying Stockes' theorem to: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = 𝛺 / ⋅ 𝑑𝑡 

We have: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = 𝜕𝛺 /𝜕𝑥 ⋅ 𝑑𝑆  

 
We obtain the local form to be integrated on a surface 𝑆 : 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = 𝜕𝛺 /𝜕𝑥  

 
Considering that the derivative with respect to x is equal to the partial derivative with respect to x, we 
have: �⃗� 𝑐 = ℏ𝛺 /  

 
We find the famous relations of A. Einstein and M. Planck giving the mass energy 𝐸  of a motionless 
particle of mass 𝑚  and the energy of a body considered a standing (or stationery) wave of frequency  𝜈 : 𝐸 = 𝑚 𝑐 = ℎ𝜈  
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If the particle becomes mobile with velocity v, then it has a relative mass: 𝑚 = 11 − v𝑐 𝑚 = γ𝑚  

Similarly, if the wave is no longer standing (or stationery) and becomes progressive (or travelling), it 
then has a frequency: 𝜈 = 11 − v𝑐 𝜈 = γ𝜈  

We then have for the energy E of the moving particle or the progressive (or travelling) wave: 𝐸 = γ𝐸 = γ𝑚 c = 𝑚c = ℎγν = ℎ 𝜈 = 𝑝 𝑐 − 𝑚 c  
We have: 𝑚c = ℎ 𝜈 𝑚c = ℏ 𝜔 
 
We will call: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = 𝜕𝛺 /𝜕𝑥  
the Einstein source field equation. 
 
Note 
The Einstein source field equation is here verified in the context of Einsteinian Special Relativity 
(invariance by the Lorentz transform). We have with 𝑚  the mass at rest and with  𝛺⃗ /

 the pulsation 
field at rest, the relationship: 𝑐ℏ (𝑑𝛾𝑚⃗𝑑𝑥 ) = 𝜕𝛾𝛺⃗ /𝜕𝑥  𝑚 c = ℏ 𝜔 = 𝐸  
 
IV.4.3 Source: linear mass density and wave vector field 𝑲𝒕𝒚𝟏/𝒙 
According to Ampère's theorem in a space x, y, t: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = − 𝐾 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatiotemporal plane x, t 𝑆  perpendicular to the spatiotemporal surface 𝑆  𝛤  contour following x, included in the surface 𝑆  ( ⃗ )  the linear mass density directed following y and to be integrated on a surface 𝑆  
 
We have graphically: 
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Figure 10: source ( ⃗ )  and field 𝐾 /  

 
By applying Stockes' theorem to: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = − 𝐾 / ⋅ 𝑑�⃗� 

We get: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) ⋅ 𝑑𝑆 = − 𝜕𝐾 /𝜕𝑡 ⋅ 𝑑𝑆  

 
We have the local form to integrate on a surface 𝑆 : 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = − 𝜕𝐾 /𝜕𝑡  

 
That we can write in a simpler way: 𝑑𝑚𝑐𝑑𝑥 = − 𝜕ℏ𝐾𝜕𝑡  

 
If we assimilate partial derivative and derivative, we have: 𝑐ℏ 𝑑𝑚𝑑𝑥 = 𝑑𝐾𝑑𝑡  

𝑐 𝑑𝑚 = 𝑑𝑥𝑑𝑡 𝑑ℏ𝐾 

 
We place ourselves in the case of: 𝑑𝑥𝑑𝑡 = 𝑐 𝑐𝑑𝑚 = 𝑑ℏ𝐾 

 
By integrating to within a constant, we have: 
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𝑐𝑚 = ℏ𝐾 

 
We find again the Compton wavelength:  
 𝜆 = 2𝜋𝐾 = 2𝜋 ℏ𝑚𝑐 = ℎ𝑚𝑐 

 
We will call: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = − 𝜕𝐾 /𝜕𝑡  
the Compton source field equation. 
 
We also have: 𝑐ℏ (𝑑𝛾�⃗�𝑑𝑥 ) = − 𝜕𝐾 /𝜕𝑡  
with �⃗�  the mass of the particle if it were motionless (or stationary), 

with 𝛾 =  and v the velocity of the body studied, 

and from the moment we have: 𝐾 / , the wave is progressive (or travelling) according to 𝑝 = . 

 
If we combine the two source field equations involving mass, we have: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  

 
Note 1, on the source field equations used by Newtonian mechanics and relativistic mechanics 
Newtonian classical mechanics and its extension to the wave mechanics (non-relativistic) of Bohr, de 
Broglie and Schrödinger use the de Broglie source field equation: 𝑝 = ℏ𝑘 and the Newton source field 
equation: = − ℏ = − . 
 
Special Relativity and its extension of Dirac's relativistic wave mechanics (Relativistic quantum 
Electrodynamics) use the de Broglie source field equation: 𝑝 = ℏ𝑘 and the Einstein source field 
equation: 𝐸 = 𝑚𝑐 = ℏ𝛺 . 
 
Note 2, Newton and Compton, Einstein and de Broglie, analogy between Space and Time 
There is a formal analogy between: 

- the Newton source field equation ( ⃗ ) = − ℏ ⃗ /
 and the Compton source field equation ( ⃗ ) = − ℏ ⃗ /

, 

- the de Broglie source field equation 𝑝 = ℏ𝐾 /  and the Einstein source field equation �⃗� 𝑐 = ℏ𝛺 / . 
 
Indeed, we pass from one to the other by swapping 𝑥 and 𝑐𝑡, i.e., Space and Time. For example, by 
swapping 𝑥 and 𝑐𝑡, the momentum 𝑝  becomes mass energy 𝐸 = 𝑝 𝑐 = �⃗� 𝑐  (with here 𝛾 = 1). 
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IV.5 Reminders on the Compton wavelength 
IV.5.1 Compton scattering 
In 1923, Arthur Compton observed what is now called the Compton effect or Compton scattering. It is 
an experimental confirmation of light considered particle, that is to say formed of photons. 
 
During Compton scattering, an incident photon hits a free particle (e.g., an electron or proton). A 
scattered photon is emitted with a slightly higher wavelength than the incident photon (i.e., a slightly 
lower energy). 
 
The difference in wavelength between the incident photon and the scattered photon is proportional to a 
constant value 𝜆  named Compton wavelength. We have the following relationship: 𝛥𝜆 = 𝜆 (1 − 𝑐𝑜𝑠 𝜃) 

with 𝜆 =  

where: 𝛥𝜆 is the shift between the wavelengths of the incident photon and the scattered photon, 𝜆  is the Compton wavelength, 𝜃 is the scattering angle of the scattered photon, 𝑚 mass of the free particle (e.g., electron or proton). 
 
We can compare the constant 𝜆  at a quantum wavelength. Unlike the de Broglie wavelength 𝜆 = , 
the Compton wavelength does not correspond to an observable wavelength in a propagation, it is a 
priori only an auxiliary calculation. 
 
IV.5.2 Schema of a scattering 
We schematize a Compton scattering between a photon and an electron initially at rest. The electron 
and photon are scattered respectively with angles 𝜑 and 𝜃. 

 
Figure 11: Compton scattering 

 
The table below shows the Compton wavelength of the electron, proton, and neutron. It is noted that 𝜆  is very close for proton and neutron, these 2 particles therefore have very close masses. 
 

Particle Symbol Valeur 
Electron 𝜆 ,  ≈ 2,426 × 10 𝑚 
Proton 𝜆 ,  ≈ 1,321 × 10 𝑚 
Neutron 𝜆 ,  ≈ 1,320 × 10 𝑚 
 
Note on the study of the infinitely small 

Incident photon  

Scattered photon 

Scattered electron 
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In particle colliders, it is often said that the more energy you increase, the more small distances you 
probe. 
 
This can be intuitively understood via a wave approach. The more we increase energy 𝐸 = ℎ𝜈 and 
thus the frequency 𝜈, the more we decrease the wavelength 𝜆 and the more we probe small distances. 
 
This can also be understood through the relationship 𝐸 = 𝑚𝑐 = 𝑐ℏ𝐾. The more we increase energy 𝐸 = 𝑚𝑐 , the more we increase 𝐾 inverse of a distance and more we probe small distances. 
 
 
IV.6 Hamiltonian mechanics reminders 
IV.6.1 Hamilton's canonical equations 
In 1833, William Rowan Hamilton was inspired by the work of Joseph-Louis Lagrange and proposed 
a reformulation of Newtonian classical mechanics. Instead of the fundamental principle of dynamics, 
he imagines 2 equations of identical form and with first derivatives. 
We remind here some principles of Hamiltonian mechanics, which was also frequently used by 
pioneers of quantum and wave mechanics such as L. de Broglie, E. Schrödinger or W. Heisenberg. 
 
Let 𝑞 be a position variable, 𝑝 a momentum variable (called also conjugate momentum) and 𝐻 the 
energy of the system studied (also called Hamiltonian). We have the two Hamilton’s canonical 
equations: �̇� = 𝜕𝐻𝜕𝑝  

�̇� = − 𝜕𝐻𝜕𝑞  

 
IV.6.2 Link with the gravitational source field equations 

We have already pointed out that the 2nd canonical equation�̇� = −  corresponds to the Newton 
source field equation with 𝐻 = ℏ𝛺. 
 
Note 
It is customary to say that the Hamiltonian 𝐻 represents energy. Nevertheless, it is a "wave" energy. 𝐻 = ℏ𝛺 of type field, a priori possibly distinct from mass energy 𝐸 = 𝑝 = 𝑚 𝑐  of type source. 
 
To find the 1st canonical equation �̇� = , the definition of group velocity and the de Broglie source 
field equation must be used. 
 
We have: 𝑣 = 𝜕𝛺𝜕𝐾 = 𝜕ℏ𝛺𝜕ℏ𝐾 

By definition, we have: 𝐻 = ℏ𝛺 

According to L. de Broglie: 𝑝 = ℏ𝐾unit 

In addition: 𝑣 = �̇� 
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We find: �̇� = 𝜕𝐻𝜕𝑝  

 
For example, if we have a non-relativistic mechanical energy of the form: 𝐻 = ℏ𝛺 = 𝑝2𝑚 + 𝐸𝑝(𝑞) 

 
Using Hamilton's 1st canonical equation (i.e., the de Broglie source field equation and the definition of 
group velocity), we find the usual definition of momentum: �̇� = 𝜕𝐻𝜕𝑝 = 𝑝𝑚 𝑝 = 𝑚�̇� 

 
IV.7 Analogies between electromagnetism and gravitation, Time-oriented sources, 

Gauss's theorem 
IV.7.1 Maxwell Gauss electrostatic and Gauss gravitation 
In this paragraph, we will focus on the analogies between the source field equations: Maxwell Gauss 
and Gauss gravitation (or Newton's Law of Universal Gravitation). These analogies have already been 
discussed at length in this essay. Since their discoveries, they have also been the subject of numerous 
studies by physicists. Here we briefly recall the main analogies between Coulomb electrostatics and 
Newtonian gravitation. 
 
 Coulomb electrostatics Newtonian gravitation 

Charge 
density, mass 
density 

𝜌  𝜌  

Constant 1𝜀  −4𝜋𝐺 

Field (fields 
not redirected) 𝐸𝑠 = − 𝜕𝐴𝜕𝑟  �⃗�𝑠 = 14𝜋𝜀 𝑞𝑟 𝑢  

𝐺𝑟 = − 𝜕𝑉𝜕𝑟  �⃗�𝑟 = −𝐺 𝑚𝑟 𝑢  

Gauss 
(fields not 
redirected) 

𝑑𝑖𝑣�⃗�𝑠 = 𝜌𝜀  𝑑𝑖𝑣�⃗�𝑟 = −4𝜋𝐺𝜌  

Curl 
(fields not 
redirected) 

𝑟�⃗�𝑡�⃗�𝑠 = 0⃗ 
 

𝑟�⃗�𝑡�⃗�𝑟 = 0⃗ 

 
IV.7.2 Gauss gravitation 1 
Following a strict analogy with Maxwell Gauss equation proposed previously for electromagnetism 
and the electric field, we have for gravitation and the field 𝐾 / : −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = 2𝑐 𝐾 / ⋅ 𝑑�⃗� 

𝑆  is a surface in the spatiotemporal plane x, y 
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𝑆  perpendicular to the spatial surface 𝑆  𝛤  contour following y, included in the surface 𝑆  �⃗�  the mass volumetric density directed following t and to be integrated on a surface 𝑆  
 
Note on units for mass densities 
The mass volumetric density 𝜌  is expressed in kilograms per cubic metre: . 

We also define a mass surface density which is expressed in , and a mass linear density in . 
The mass m is expressed in Kg. 
 
In the case of spatial symmetries, we have equivalence relations for mass densities: �⃗� 𝑑𝑉𝑜𝑙 = �⃗� 𝑑𝑆 = 𝜆 𝑑𝑙 = 𝑑�⃗�  
 
We have the relationship between the wave vector field and the gravitational field: 2𝑐 �⃗� / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑡  2𝑐 �⃗� / = �⃗�𝑟 / − 𝜕𝑉𝜕𝑡  
 
Note 
According to the notations used in this Memoir, we have: �⃗�𝑟 / = 𝜕𝑉𝜕𝑥  �⃗�𝑟 / = − 𝜕𝑉𝜕𝑥  
 
We obtain the source field relation with the gravitational field: 
 −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = (�⃗�𝑟 / − 𝜕𝑉𝜕𝑡 ) ⋅ 𝑑�⃗� 

 
We remind the Gauss gravitation equation which should be obtained from the "usual" relationship: −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = �⃗�𝑟 / ⋅ 𝑑�⃗� 

 
Note that in Gauss gravitation "usual" equation, there is no term − , corresponding to acceleration −  cancelled when changing reference frames from 𝑅  to 𝑅  (cancelled acceleration referred to as 
Einsteinian acceleration in previous Memoirs). 
 
For Gauss gravitation "usual" equation, we will speak of "gravitostatic", by analogy with 
electrostatics, even if it should perhaps not be seen as an identical meaning. We propose here 3 
hypotheses to this difference between the Gauss gravitation "usual" equation and the Gauss gravitation 
equation proposed here, 3 hypotheses that are also compatible with each other. 
 
First hypothesis 
Gravitostatic can correspond like electrostatics in case there is no term −  or − , that is, the case 
where there is no acceleration cancelled when changing reference frames. 
 
We then have: 2𝑐 �⃗� / = �⃗�𝑟 / − 𝜕𝑉𝜕𝑡 = �⃗�𝑟 / − 0 
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�⃗�𝑙 / = �⃗�𝑠 / − 𝜕𝐴𝜕𝑡 = �⃗�𝑠 / − 0 
 
Second hypothesis 
The cancelled acceleration does not appear in Gauss gravitation "usual" equation, because it is 
implicitly present in the acceleration used. For example, when applying the fundamental principle of 
Newton's dynamics, we can have: 𝑚�⃗� = 𝑚�⃗�𝑟 + 𝛴�⃗� 𝑚(�⃗� + �⃗� ) = 𝑚�⃗�𝑟 + 𝛴�⃗� 
with �⃗�  that is matched to , 

with  �⃗�𝑟 that is matched to �⃗�𝑟 / , 
and with 𝛴�⃗� the sum of the non-gravitational forces. 
 
We get: 𝑚�⃗� = 𝑚(�⃗�𝑟 − �⃗� ) + 𝛴�⃗� 𝑚�⃗� = 𝑚2𝑐 �⃗� + 𝛴�⃗� 
 
In this case, it is noted that the choice of the initial reference frame 𝑅 , is not the same, since it is also 
necessary to add �⃗� . 
 
Third hypothesis 
Cancellation of acceleration is not considered  in Newtonian theory, nor indeed in General 
Relativity. Should we then see a weakness of these 2 theories and a track to explain dark matter other 
than an addition of additional mass? 
In a future chapter, seeking to transpose Maxwell Faraday and the phenomena of induction of 
electromagnetism to gravitation, we will focus on the so-called Neuman case, where we define an 
electromotive field: �⃗�𝑚 = 𝜕𝐴𝜕𝑡  
This electromotor field explains (with also the case of Lorentz) the phenomena of magnetic induction. 
It will be suggested that this is a possible explanation for the non-compliance with the Keplerian 
expectation for galaxies. 
End of the 3 hypotheses 
 
We summarize in this table the equations of Gauss gravitation, distinguishing the gravitational case 
and the gravitostatic one: 
 

Gravitation Gravitostatic −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = 2𝑐 �⃗� / ⋅ 𝑑�⃗� −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = �⃗�𝑟 / ⋅ 𝑑�⃗� −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆
= − (�⃗�𝑟 / − 𝜕𝑉𝜕𝑡 ) ⋅ 𝑑�⃗� 

 

 
We have graphically: 
 

Gravitation Gravitostatic 
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Figure 12: Gauss gravitation 1, fields 𝐾 / ,�⃗�𝑟 /  and mass volumetric density �⃗�  

 

By applying Stockes' theorem to: −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = 2𝑐 𝐾 / ⋅ 𝑑�⃗� 

We get: −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = − 𝜕2𝑐 𝐾 /𝜕𝑥 𝑑𝑆  

 
We have the local form to integrate on a surface 𝑆 : 

Gravitation Gravitostatic −4𝜋𝐺�⃗� = 𝜕2𝑐 𝐾 /𝜕𝑥  −4𝜋𝐺�⃗� = 𝜕�⃗�𝑟 /𝜕𝑥  
 
IV.7.3 Gauss gravitation 2 
Still following a strict analogy with the proposed Maxwell Gauss equation, we have: 
 

Gravitation Gravitostatic −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = − 2𝑐 �⃗� / ⋅ 𝑑�⃗� −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆 = − �⃗�𝑟 / ⋅ 𝑑�⃗� −4𝜋𝐺 �⃗� ⋅ 𝑑𝑆
= − (�⃗�𝑟 / − 𝜕𝑉𝜕𝑡 ) ⋅ 𝑑�⃗� 

 

𝑆  is a surface in the spatial plane x, y 𝑆  perpendicular to the space surface 𝑆  𝛤  contour following x, included in the surface 𝑆  �⃗�  the mass volumetric density directed following t and to be integrated on a surface 𝑆  
 
We have the relationship between the wave vector field and the gravitational field: 
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2𝑐 �⃗� / = 𝜕𝑉𝜕𝑦 − 𝜕𝑉𝜕𝑡  2𝑐 𝐾 / = 𝐺𝑟 / − 𝜕𝑉𝜕𝑡  
 
We have graphically: 
 

Gravitation Gravitostatic 

  

Figure 13: Gauss gravitation 2, fields 𝐾 / ,�⃗�𝑟 /  and mass volumetric density �⃗�  

 
In local form, we have: 
 

Gravitation Gravitostatic 

−4𝜋𝐺�⃗� = − 𝜕2𝑐 �⃗� /𝜕𝑦  −4𝜋𝐺�⃗� = − 𝜕�⃗�𝑟 /𝜕𝑦  

 
If we combine the two Gauss gravitation equations, we have: 
 

Gravitation Gravitostatic 

−4𝜋𝐺�⃗� = 𝜕2𝑐 𝐾 /𝜕𝑥 − 𝜕2𝑐 �⃗� /𝜕𝑦  −4𝜋𝐺�⃗� = 𝜕�⃗�𝑟 /𝜕𝑥 − 𝜕�⃗�𝑟 /𝜕𝑦  

−4𝜋𝐺�⃗� = (𝜕�⃗�𝑟 /𝜕𝑥 − 𝜕 𝑉𝜕𝑥𝜕𝑡 ) − (𝜕�⃗�𝑟 /𝜕𝑦 − 𝜕 𝑉𝜕𝑦𝜕𝑡 ) 
 

−4𝜋𝐺�⃗� = (𝜕�⃗�𝑟 /𝜕𝑥 − 𝜕�⃗�𝑟 /𝜕𝑦 ) − (𝜕 𝑉𝜕𝑥𝜕𝑡 − 𝜕 𝑉𝜕𝑦𝜕𝑡 ) 
 

 
Note 1, clarify the source field equations 
Let us explain in words the Maxwell source field equations and those just proposed. 
 
Maxwell Gauss source field 
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�⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥 − 𝜕�⃗�𝑙 /𝜕𝑦  

A volumetric density of electric charge (motionless or stationary in Space) generates an electric field 
variable in Space. 
 
Maxwell Ampère source field 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥  
A volumetric density of electric current (electric charge moving in Space, for example a rotation 
movement) generates a magnetic field variable in Space. 
 
Maxwell displacement current source field 𝚥 = − 𝜕�⃗�𝑙 /𝜕𝑡  
A volumetric density of electric current (electric charge moving in Space, for example a rotation 
movement) generates an electric field variable in Time. 
 
Newton source field (𝑑�⃗�𝑑𝑡 ) = − 𝜕ℏ𝛺 /𝜕𝑥  𝑑𝑝𝑑𝑡 = − 𝜕ℏ𝛺𝜕𝑥  
A linear momentum density (accelerated moving mass in space) generates a pulsation field variable in 
Space. 
 
By reexplaining the fundamental principle of Newton's dynamics according to a source field approach, 
we emphasize the analogy between this principle and Ampère's theorem: 

- Fundamental principle: an accelerated moving mass generates a pulsation field (or potential 
energy) that varies in Space. 

- Ampere's theorem: a moving electric charge generates a magnetic field that varies in Space. 
 
Keep in mind that in the fundamental principle of Newton's dynamics, mass is not necessarily constant 
and that by analogy, this should apply to electric charge in Ampère's theorem. 
 
De Broglie source field (𝑑�⃗�𝑑𝑡 ) = 𝜕ℏ𝐾 /𝜕𝑡  𝑝 = ℏ𝐾 
A linear momentum density (mass in motion accelerated in Space) generates a wave vector field 
variable in Time. 
 
Einstein source field 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = 𝜕𝛺 /𝜕𝑥  𝐸 = 𝑚𝑐 = ℏ𝛺 
A linear density of mass (motionless or stationary in Space) generates a pulsation field variable in 
Space. 
 
Compton source field 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = − 𝜕𝐾 /𝜕𝑡  
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𝑑𝑚𝑐𝑑𝑥 = − 𝜕ℏ𝐾 /𝜕𝑡  
A linear density of mass (motionless or stationary in Space) generates a wave vector field variable in 
Time. 
 
Gauss gravitation source field 

−4𝜋𝐺�⃗� = 𝜕2𝑐 �⃗�𝜕𝑥 − 𝜕2𝑐 �⃗�𝜕𝑦  

A mass volumetric density (motionless or stationary in Space) generates a wave vector field variable 
in Space. 
 
Note 2 
For gravitational source field equations (space-oriented sources, equations with constant ℏ) the flows 
of sources occur through spatiotemporal surfaces. 
For Maxwell Ampere source field equations (space-oriented sources, the magnetic part equation with 
constant 𝜇  and the displacement current with constant 𝜀 ), the flows of sources also occur through 
spatiotemporal surfaces. 
 
For Maxwell Gauss source field equations (time-oriented sources, with constant 𝜀 ) and the 2 
equations of Gauss gravitation (sources oriented in Time, with constant −4𝜋𝐺), the flows of sources 
occur through spatial surfaces. 
 
 
IV.8 Tensor approach  

IV.8.1 Maxwell Faraday electromagnetic tensor 𝑭𝝁𝝂 
We remind Maxwell Faraday's electromagnetic tensor: 

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐𝐸𝑙𝑐 0 𝐵 𝐵𝐸𝑙𝑐 𝐵 0 𝐵𝐸𝑙𝑐 𝐵 𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐− 𝐸𝑙𝑐 0 𝐵 𝐵− 𝐸𝑙𝑐 −𝐵 0 𝐵− 𝐸𝑙𝑐 −𝐵 −𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 
Maxwell source field equations can be put in the compact form below which translates their form 
identity in a Space-Time:𝑐𝑡, 𝑥, 𝑦, 𝑧 𝜕 𝐹 = 𝜇 𝑗  𝑗 = (𝑗 , 𝑗 , 𝑗 , 𝑗 ) 

 
IV.8.2 Gravitation tensor 𝑫𝝁𝝂 
We have the source field equations of gravitation: − 1ℏ𝑐 (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝑐𝜕𝑥 − 𝜕𝐾 /𝜕𝑐𝑡  

−2𝜋𝐺𝑐 �⃗� = 𝜕𝐾 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑦  
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We define the gravitation tensor 𝐷 : 

𝐷 =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 0 𝐾 𝐾 𝐾−𝐾 0 𝛺𝑐 𝛺𝑐−𝐾 − 𝛺𝑐 0 𝛺𝑐−𝐾 − 𝛺𝑐 − 𝛺𝑐 0 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
We define the quadrivector energy momentum density: 𝑝 = (−2𝜋𝐺𝑐 �⃗� , −1ℏ𝑐 �̇⃗� , −1ℏ𝑐 �̇⃗� , −1ℏ𝑐 �̇⃗� ) 

Nota 
This quadrivector energy momentum density here has a different meaning from the quadrivector 
energy momentum of Special Relativity equal to 𝑝 = (𝑝 𝑐 = 𝛾𝑐 𝑚 , 𝑝 = 𝛾𝑚 𝑣 , 𝑝 , 𝑝 ). 
 
Note that for energy, it is here a volumetric density while for momentum, it is here a linear density. To 
see if this can pose a problem of homogeneity in the definition of this tensor? 
 
 
We obtain the compact form that emphasizes the identity of form of the gravitation source field 
equations in a Space-Time 𝑐𝑡, 𝑥, 𝑦, 𝑧: 𝜕 𝐷 = 𝑝  

Note 
Considering the Time dimension as identical to a Space dimension, constructing all the fields in the 
same mode, therefore makes it possible to have source field equations that are singularly compact and 
simple. This works for electromagnetism as well as gravitation. 
 
 
IV.9 Conclusion of the chapter 
Following an analogy between gravitational electromagnetism, several source field equations for 
gravitation have been proposed using the theorems of Ampere and Gauss. 
As expected, we found the Gauss gravitation equation, although slightly modified compared to 
Newton's law of universal gravitation. More surprisingly, we also found the fundamental principle of 
Newton's dynamics, as well as the de Broglie wavelength momentum relation for Maxwell Ampère's 
analogues. 
 
At the beginning of this Memoir, it was pointed out that it was possible to find a group velocity of an 
"electrically charged" particle wave from Maxwell's equations. In the next chapter, we will test 
whether it is also possible to find a group velocity of a "mass" particle wave from the source field 
equations obtained for gravitation. 
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Chapter V Conditions for obtaining group velocity 
 
Purpose of the chapter 
From the source field equations of gravitation obtained in the previous chapter, we look for which 
conditions must respect certain constants, in order to find the expected group velocities. 
 
V.1 Uniting constants ℏ and 𝑮 in the same model? 
V.1.1 Reminder on the type-group velocity obtained from Maxwell's equations 
Previously, in the context of electromagnetism, we divided one by the other the following source field 
equations: 𝜇 𝑗 = 𝜕𝐵 /𝜕𝑥  𝜌𝜀 = 𝜕𝐸𝑙 /𝜕𝑥  

By taking 𝑗 = 𝜌 𝑣 , we had: 𝜇 𝜀 𝑣 = 𝜕𝐵 /𝜕𝐸𝑙 /  

With the condition between constants 𝜇 𝜀 = , we obtained for the velocity of an electric charge: 

𝑣 = 𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  

a relationship similar to that of the group velocity: 𝑣 = 𝜕𝛺 /𝜕𝐾 /  

 

Thus, so that the "classical" velocity of an electric charge (i.e., an electrically charged particle) is well 

comparable to the group velocity of a wave, we used on one hand a relationship between electric 

current density 𝑗  and electric charge density 𝜌 , with 𝑗 = 𝜌 𝑣 , on the other hand a condition 

relating to constants  and 𝜇 , with 𝜇 𝜀 = . 

For the "classical" velocity of a mass (i.e., a mass particle) to be equal to the group velocity of a wave, 

we will now seek to have on the one hand a relationship between the momentum density �̇⃗�  and mass 

density 𝜌 , on the other hand a condition relating to constants 𝐺 and ℏ. 

 

V.1.2  Search for a relationship between momentum volumetric density �̇⃗�𝐱𝐭𝐲  and mass 
volumetric density 𝝆𝒙𝒚𝒕   

We have the table below giving the different momentum mass densities: 
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 Momentum 
linear density 

Momentum 
volumetric density 

Mass 
volumetric 

density 

Momentum volumetric 
density expressed as a 

function of mass 
volumetric density and 

velocity 
 �̇⃗�  �̇⃗�  𝜌  𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 )  
Units 𝐾𝑔. 𝑚𝑠  

𝐾𝑔𝑚. 𝑠  
𝐾𝑔𝑚  

𝐾𝑔𝑚 × 𝑚 × 𝑚𝑠  
 
In order to have consistency at the unit level, we propose the relationship between the momentum 
volumetric density, the mass volumetric density and the velocity of a mass: �̇⃗� = (𝑑𝐩𝑑𝑡 ) = 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 )  

 

Based on the 
following 
analogies: 
 

Electromagnétisme Constantes Gravitation Constantes 

Ampère 
Space-oriented 
sources 

𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥  
𝜇  1ℏ �̇⃗� = − 𝜕𝛺 /𝜕𝑥  1𝑘 �̇⃗� = − 𝜕𝛺 /𝜕𝑥  

− 1ℏ − 1𝑘 

Gauss 
Time-oriented 
sources 

�⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥  
1𝜀  − 2𝜋𝐺𝑐 �⃗� = 𝜕𝐾𝑙 /𝜕𝑥  − 2𝜋𝐺𝑐  

Relationship 
between space-
oriented and 
time-oriented 
sources 

𝑗 = 𝜌 𝑣   �̇⃗� = (𝑑𝐩𝑑𝑡 )= 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 )  

 

Relationship 
between 
constants 

 1𝑐 = 𝜇 𝜀   ? 

 
We would like to examine, in the case of gravitation, by dividing the gravitational source field relation 
of the 1st line by that of the 2nd line, whether it is possible to find a group velocity, as well as a 
condition between the constants used, in particular between ℏ and 𝐺. 
 
Another way of saying, the physical meaning of 𝜇 𝜀 , It is the inverse of the speed of light squared, is 
there a physical meaning to be found on the gravitational side for constants ℏ and 𝐺? 
 
In summary, what is the condition between the constants ℏ and 𝐺, so that the group velocity is equal 
to: 𝑣 = 𝑣 = 𝜕𝛺 /𝜕𝐾 /  

 
V.1.3 Uniting constants ℏ and 𝑮 in the same model? 
We will use the following source field equations that we will divide one by the other: 
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 Source equations fields Units 

Ampère gravitation 1𝑘 (𝑑𝐩𝑑𝑡 ) = − 𝜕𝛺 /𝜕𝑥  1𝑘 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 ) = − 𝜕𝛺 /𝜕𝑥  

𝑠𝐾𝑔 𝐾𝑔𝑚. 𝑠 = 1𝑚. 𝑠 𝑠𝐾𝑔 𝑚 𝐾𝑔𝑚 𝑚𝑠 = 1𝑚. 𝑠 

Gauss gravitation − 2𝜋𝐺𝑐 �⃗� = 𝜕𝐾 /𝜕𝑥  
𝑚𝐾𝑔. 𝑠 𝐾𝑔𝑚 = 1𝑠  

 
We want to: 𝑣 = 𝜕𝛺 /𝜕𝑥 × 𝜕𝑥𝜕𝐾 / = 1𝑘 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 ) × 𝑐2𝜋𝐺𝜌 ? 

𝑣 = 1𝑘 × 𝑑𝑦𝑑𝑣𝑑𝑐𝑡 × 𝑐2𝜋𝐺 ? 
 
With ℏ = 𝑘 × 𝑑𝑥𝑑𝑐𝑡, we want to: 𝑣 = 𝑑𝑥𝑑𝑐𝑡ℏ × 𝑑𝑦𝑑𝑣𝑑𝑐𝑡 × 𝑐2𝜋𝐺 ? 𝑣 = 𝑑𝑥𝑑𝑦ℏ × 𝑐2𝜋𝐺 𝑑𝑣 ? 
 
So, that the group velocity 𝑣  of a wave is equal to the "classical" velocity 𝑑𝑣  of a mass particle, it is 
necessary to: 𝑑𝑥𝑑𝑦ℏ × 𝑐2𝜋𝐺 = 1? 
 
Note on introduced infinitesimals 
In the term momentum volumetric density �̇⃗� = 𝜌 𝑑𝑦( ⃗ ) , we introduce the 2 infinitesimals: 𝑑𝑦 
and 𝑑�⃗� . We then find ourselves at the end of the calculations with one infinitesimal too many: 𝑑𝑣 , 
whereas we would only like 𝑣 . 
It remains to be seen whether we should not rather introduce a term such as 𝜌 , with if 𝑣  is 

constant as a function of Time, obtaining: 𝜌 𝑣  and therefore the desired term? 
 
 
In the case of a symmetry of Space, we pose 𝑑𝑥 = 𝑑𝑦. It is therefore necessary to: (𝑑𝑥) = 2𝜋𝐺ℏ𝑐  𝑚 = 𝑚𝐾𝑔. 𝑠 . 𝐾𝑔. 𝑚𝑠 . 𝑠𝑚  

 

Units 

 
If we correct, and take as elementary length: 𝑑𝑦 = 2𝜋𝑑𝑥 (this may seem more relevant, because we 
have rather a cylindrical symmetry on x, y, t), we get: 2𝜋(𝑑𝑥) = 2𝜋𝐺ℏ𝑐  
 
We find the Planck length: 𝑑𝑥 = 𝑙 = 𝐺ℏ𝑐  
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In conclusion, so that the "classic" velocity 𝑣  of a mass particle is well equal to the group velocity 𝑣 = //  of a wave, we have the condition between the constants ℏ and 𝐺, on the infinitesimal 

length: 𝑙 = 𝐺ℏ𝑐  

𝑐 = 𝐺ℏ𝑐𝑙  

 
Search for a relationship between ℏ and 𝒌 
We posed in the previous chapter: ℏ = 𝑑𝑥𝑑𝑐𝑡 × 𝑘 
In the case of symmetry between 𝑑𝑐𝑡 and 𝑑𝑦, we have: ℏ = 𝑑𝑥𝑑𝑦 × 𝑘 ℏ = 2𝜋(𝑑𝑥) × 𝑘 
We obtain the relation: ℏ = 2𝜋𝑙 × 𝑘 
 
Note on the direction of group velocity 
We find a group velocity for a mass oriented according to x (instead of y for an electric charge). The 
case of mass is a priori more satisfactory, because perpendicular to both  𝛺 /  and 𝐾 / . To see where 
is the error at the level of 𝑣  for the electric current? We have: 𝑣 = 𝑣 = 𝜕𝛺 /𝜕𝐾 /  

𝑣 = 𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  

Thus, instead of asking: 𝑗 = 𝜌 𝑣  

Should we not rather ask: 𝚥 = �⃗� ∧ �⃗� ? 

We would then have for the group velocity: 

𝑣 = 𝑐 𝜕𝐵 /𝜕𝐸𝑙 /  

 
V.1.4 Justification for wave vector expression 
In Memoir 2, following an analogy with the pulsation field, we posed for the wave vector field (in 
vacuum): 2𝑐 𝐾 / = 𝜕𝑉𝜕𝑥 − 𝜕𝑉𝜕𝑡  

2𝑐 𝐾 / = 𝐺𝑟 / − 𝜕𝑉𝜕𝑡  
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The constant 𝑐  was introduced for the sake of homogeneity, and without any real justification. 
 
The fact of proposing source field equations of gravitation involving the pulsation field and wave 

vector field, then to find from these source field equations, the expression of the group velocity 𝑣 =//  provides justification for the expression 2𝑐 𝐾 / = −  and for the introduction of 𝑐 . 

 
We can also see this group velocity as the keystone (or the stumbling block) and the expected 
justification for a number of hypotheses made in Memoirs 1, 2, 3. 
 
V.1.5 Planck mass and Planck electric charge 
From the smallest wavelength 𝜆 = 2𝜋𝑙  (𝑑𝑦 = 2𝜋𝑑𝑥), constructed as the perimeter of a radius circle 𝑑𝑥 = 𝑙 : 𝜆 = 2𝜋 𝐺ℏ𝑐  

and the Compton wavelength relation: 𝑚 𝑐 = 2𝜋ℏ𝜆  

we obtain the Planck mass: 𝑚 𝑐 = ℏ 𝑐𝐺ℏ 

𝑚 = ℏ𝑐𝐺  

 
We also frequently introduce the Planck duration constructed from 𝑡 = : 

𝑡 = 𝐺ℏ𝑐  

 
We thus obtain minimum bounds for length, mass, duration..., similar notions, but still different from 
the quantification of a physical quantity, which would then take a discrete series of values. 
We touch on quantum gravity and a quantum of gravitational interaction, but are we really there? We 
will return to this delicate question at the end of the 5th Memoir. 
 
We can also find 𝑙  and 𝑚  by equalizing mass energy 𝐸  and potential energy 𝐸 , then using the 
Compton wavelength. By analogy between gravitation and electrostatics, a Planck electric charge is 
obtained by substituting gravitational potential energy with electrostatic energy (or by substituting 

directly on the term 𝑚 = ℏ   the constant 𝐺  by the constant ). The table below summarizes the 

2 approaches for gravitation and electrostatics. 
 

 Gravitation Electrostatique 

Constant 𝐺 
 

14𝜋𝜀  
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Compton wavelength 𝑚 = ℏ𝑐𝑙  

 

𝑚 = ℏ𝑐𝑙  

 
Potential energy between 
2 masses or 2 Planck 
charges 

𝐸 = 𝐺𝑚𝑙  

 

𝐸 = 14𝜋𝜀 (𝑞 )𝑙  

 
Mass energy 𝐸 = 𝑚 𝑐  

 
𝐸 = 𝑚 𝑐  

 
 𝐸 = 𝐸  𝑚 𝑐 = 𝐺𝑚𝑙  

Using the Compton wavelength: ℏ𝑐𝑙 𝑐 = 𝐺𝑚𝑙  

We get: 

𝐸 = 𝐸  𝑚 𝑐 = 14𝜋𝜀 (𝑞 )𝑙  

Using the Compton wavelength: ℏ𝑐𝑙 𝑐 = 14𝜋𝜀 (𝑞 )𝑙  

We get: 
Planck mass or charge 𝑚 = ℏ𝑐𝐺  

 

𝑞 = 4𝜋𝜀 ℏ𝑐 
 

 
Note on entropy S of a black hole 
For the record, we recall the Bekenstein-Hawking relationship, proposed in the 1970s by Stephen 
Hawking and Jacob Bekenstein, giving entropy S of a black hole as a function of its surface A and 
Planck length 𝑙 : 𝑆 = 𝑘 𝐴4𝑙 = 𝑘 𝑙𝑛𝑊 

with 𝑘  the Boltzmann constant, 
and 𝑊 = 𝑒𝑥𝑝( ) the number of configurations. 

We will come back to this more broadly in the 6th Memoir. 
 
 
V.2 Uniting constants ℏ and 𝜺𝟎 in the same model? 
V.2.1 Reminders on the fine structure constant 𝜶 and its interpretation from Planck's charge 
Historically, the fine structure constant 𝛼 was introduced by A. Sommerfeld in 1916 in a relativistic 
model decrying the electron and inspired by the non-relativistic model of the Bohr atom. The constant 𝛼 was first interpreted as the ratio between the speed of the electron in Bohr's model and the speed of 
light in vacuum . 
 
The constant 𝛼 was named in reference to the fine structure, which describes the duplication of the 
spectral lines of a particle, and of which the relativistic model of Sommerfeld proposed a first 
explanation. Subsequently, the spin model provided a better understanding of these duplications. 
 
We remind here this constant: 𝛼 = 𝑒4𝜋𝜀 ℏ𝑐 

 
The constant 𝛼 being dimensionless, its very existence implies the existence of an underlying 
mechanism fixing its value. We will suggest in the next paragraph a way forward to this mechanism. 
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The constant 𝛼 can also be interpreted as the square of the ratio between the elementary charge and the 
Planck charge: 𝛼 = 𝑒𝑞  

 
Note that the model of the Bohr atom, the constant 𝛼, Planck electric charge and many other physical 
notions include both constants 𝜀  and ℏ. The first constant 𝜀  is present in the source field equation 
Gauss electromagnetic, the second constant ℏ is present in Ampere gravitation. We will therefore look 
for a model that unites these 2 source field equations and thus these 2 constants 𝜀  andt ℏ. 
 
V.2.2 Uniting the constants ℏ and 𝛆𝟎 in the same model? 
Previously, Ampere electromagnetism was first divided by Gauss electromagnetism, then Ampere 
gravitation by Gauss gravitation to obtain group velocities or similar. Let us now see what happens if 
we divide Ampere gravitation by Gauss electromagnetism, that is to say if we "mix" gravitation and 
electricity. 
 
We use the following source field equations that are divided one by the other: 
 

 Source equations fields Units 

Ampère Gravitation 1𝑘 (𝑑𝐩𝑑𝑡 ) = − 𝜕𝛺 /𝜕𝑥  1𝑘 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 ) = − 𝜕𝛺 /𝜕𝑥  

𝑠𝐾𝑔 𝐾𝑔𝑚. 𝑠 = 1𝑚. 𝑠 𝑠𝐾𝑔 𝑚 𝐾𝑔𝑚 𝑚𝑠 = 1𝑚. 𝑠 

Gauss Electromagnetism �⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥  
 

 
With �⃗� , the electric charge volumetric density, to be distinguished from the mass volumetric 
density. 
 

By analogy with 𝑣 = // , we introduce in the desired ratio the term 𝑐 . We have (to within a sign 

–): 𝜕2𝛺 /𝜕𝑥 × 𝑐 𝜕𝑥𝜕�⃗�𝑙 / = 2𝑘 𝜌 𝑑𝑦(𝑑�⃗�𝑑𝑡 ) × 𝜀 𝑐𝜌  

 
With ℏ = 𝑘 × 𝑑𝑥𝑑𝑐𝑡, we have: 𝑐 𝜕2Ω /𝜕𝐸𝑙 / = 𝑑𝑥𝑑𝑐𝑡ℏ × 𝑑𝑦𝑑𝑣𝑑𝑐𝑡 × 2𝜀 𝑐 × 𝜌𝜌  

 
With 𝑑𝑦 = 2𝜋𝑑𝑥, we have: 𝑐 𝜕2Ω /𝜕𝐸𝑙 / = 𝑑𝑥 × 4𝜋𝜀 𝑐ℏ × 𝜌𝜌 × 𝑑𝑣  

 
We set aside the ratio of charge densities  and we propose the condition to have a group velocity of 

the type 
// : 



190    Invariances and transformations 

𝑑𝑥 × 4𝜋𝜀 𝑐ℏ = 1 
 
We obtain the condition on an infinitesimal quantity (not exactly homogeneous at a distance, because 
of the term  set aside): 

𝑙𝑒 = ℏ4𝜋𝜀 𝑐  

 
The analogies are given in the following table: 
 

 Gauss gravitation 
Ampère gravitation 

Gauss electrostatic 
Ampère gravitation 

Constant used in Gauss −𝐺 
 

14𝜋𝜀  

Constant used in 
Ampere 
 

−ℏ −ℏ 

Conditions on 
infinitesimal quantities 𝑙 = 𝐺ℏ𝑐  𝑙𝑒 = ℏ4𝜋𝜀 𝑐  

Compton wavelength 𝑚 = ℏ𝑐𝑙  

 

𝑚 = ℏ𝑐𝑙  

 
Potential energy between 
2 Planck masses or 2 
Planck charges 

𝐸 = 𝐺𝑚𝑙  

 

𝐸 = 14𝜋𝜀 (𝑞 )𝑙  

We take 𝑙  and not 𝑙𝑒 , because we 
will equalize 𝐸  with 𝐸  

Mass energy 𝐸 = 𝑚 𝑐  
 

𝐸 = 𝑚 𝑐  
 

 𝐸 = 𝐸  𝑚 𝑐 = 𝐺𝑚𝑙  

Using the Compton wavelength: ℏ𝑐𝑙 𝑐 = 𝐺𝑚𝑙  

We get: 

𝐸 = 𝐸  𝑚 𝑐 = 14𝜋𝜀 (𝑞 )𝑙  

Using the Compton wavelength: ℏ𝑐𝑙 𝑐 = 14𝜋𝜀 (𝑞 )𝑙  

We get: 
Planck mass or Planck 
charge 𝑚 = ℏ𝑐𝐺  

 

𝑞 = 4𝜋𝜀 ℏ𝑐 
 

 𝐺𝑚𝑙 = 𝑚 𝑐  

 

𝑞4𝜋𝜀 𝑙𝑒 = 𝑞 𝑐  

 
Planck mass or Planck 
charge from Planck 
lengths 

𝑚 = 𝑐 𝑙𝐺  
 

𝑞 = 4𝜋𝜀 𝑐 𝑙𝑒  
 

  
If we pose 𝑙𝑒 = ℏ , we 
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actually find: 𝑞 = 4𝜋𝜀 ℏ𝑐 
 

 
In the case of the Bohr atom, we have for an electron of mass 𝑚   and speed 𝑣 , on the Bohr orbit of 
radius 𝑟 : 𝑚 𝑣 = 𝑚 (𝛼𝑐) = 14𝜋𝜀 𝑒𝑟  

 
Following de Broglie's ideas: 𝑚 𝑣 = ℏ𝑟  ℏ𝑟 𝛼𝑐 = 14𝜋𝜀 𝑒𝑟  

 
We get: 𝑒 = 𝛼4𝜋𝜀 ℏ𝑐 
 

To obtain a group velocity of type 
// , the condition must be checked: 

𝑙𝑒 = ℏ4𝜋𝜀 𝑐  

 
By analogy between gravitation and electrostatics, we define the Planck charge 𝑞  function of 𝑙𝑒 : 𝑞 = 4𝜋𝜀 𝑐 𝑙𝑒  
 

By replacing with 𝑙𝑒 = ℏ , We have the condition to respect on 𝑞 , to get the group velocity: 

𝑞 = 4𝜋𝜀 𝑐 ℏ4𝜋𝜀 𝑐  𝑞 = 4𝜋𝜀 ℏ𝑐 
 
The fine-structure constant is defined as the ratio of the elementary electric charge and the Planck 
electric charge: 𝛼 = 𝑒𝑞  

 
We therefore have the condition to respect on the fine structure constant, to obtain the group velocity // : 𝛼 = 𝑒4𝜋𝜀 ℏ𝑐 

 
V.2.3 Planetary models 
To finish this "mixing" gravitation and electricity, we propose the table below which highlights the 
analogies between the Kepler-Newton planetary model and that of Bohr. The differences are explained 
in the case of the Bohr model by a "crossing" of the gravitational and electromagnetism source field 
equations. 
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 Kepler-Newton planetary model 
The planet is "stabilized" by the 
gravitational force generated by the 
Sun and by the centrifugal inertial 
force 

Planetary model of the Bohr electron 
The electron is "stabilized" by the 
electrostatic force generated by the 
proton and by the centrifugal inertial 
force 

Source field 
equations of 
Ampère-type 

− 1ℏ (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  
 

− 1ℏ (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  
 

Constants 
 

−ℏ −ℏ 

Source field 
equations of 
Gauss-type 

−4𝜋𝐺�⃗� = 𝜕2𝑐 �⃗� /𝜕𝑥 − 𝜕2𝑐 �⃗� /𝜕𝑦  
�⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥 − 𝜕�⃗�𝑙 /𝜕𝑦  

 
Constants −𝐺 

 
14𝜋𝜀  

Condition on an 
infinitesimal 
quantity for 
obtaining a 
group velocity 

𝑙 = 𝐺ℏ𝑐  𝑙𝑒 = ℏ4𝜋𝜀 𝑐  

Infinitesimal 
mass and 
infinitesimal 
electric charge 

𝑚 = ℏ𝑐𝐺  

𝑚 = 𝑐 𝑙𝐺  

𝑞 = 4𝜋𝜀 ℏ𝑐 𝑞 = 4𝜋𝜀 𝑐 𝑙𝑒  

Study scale Planetary system Atom 

 
It should be noted that the planetary model of the Bohr electron does not involve magnetism and the 
constant 𝜇 , Hence its sometimes somewhat "old-fashioned" appearance. 
 
V.3 Uniting the constants 𝛍𝟎 and 𝐆 in the same model? 
In the previous paragraph, we looked for a model including constants 𝜀  and ℏ from the source field 
equations of electromagnetism and gravitation. Note that always from these source field equations, it 
is also possible to "mix" the constants 𝜇  and 𝐺. 
However, unlike 𝜀  and ℏ, There is a priori no known physical notion that includes both 𝜇  and 𝐺, that 
is, magnetism and gravitation. 
However, let's see what happens if we divide Ampere electromagnetism by Gauss gravitation. 
 

 Source field equations Units 

Ampère electromagnetism 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥  𝚥 = 𝜌 �⃗�  𝜇 𝜌 �⃗� = 𝜕𝐵 /𝜕𝑥  

 

Gauss gravitation − 4𝜋𝐺𝑐 �⃗� = 𝜕2𝐾 /𝜕𝑥  
 

𝑚𝐾𝑔. 𝑠 𝐾𝑔𝑚 = 1𝑠  

 
We have (to within the sign –): 
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𝜕𝐵 /𝜕𝑥 × 𝜕𝑥𝜕2𝐾 / = 𝜇 𝜌 𝑣 × 𝑐4𝜋𝐺𝜌  𝜕𝐵 /𝜕2𝐾 / = 𝜇 𝑐4𝜋𝐺 × 𝜌𝜌 𝑣  

 

If we put aside , we have the condition for obtaining a group velocity: 𝜇 𝑐4𝜋𝐺 = 1 
 
This results in a condition that cannot be verified. To explain why, we cannot "mix" here gravitation 
and magnetism? 
 
V.4 Conclusion of the chapter 
As hoped at the beginning of this Memoir, in order to find a "classical" velocity of a mass particle 
equal to a group velocity of a wave, by dividing the source field equation of Ampere gravitation by 
that of Gauss gravitation, we obtain a condition between ℏ and 𝐺, a condition giving an infinitesimal 
length identical to the Planck length. 
Similarly, we obtain a condition between ℏ and 𝜀 . On the other hand, it was not possible to obtain a 
condition between 𝜇  and 𝐺. 
 
Thanks to the condition between ℏ and 𝐺, quantum physics and Newtonian gravity are unified in the 
same model. For this, it was hypothesized, in the previous Memoir, that the gravitational field �⃗�𝑟 is a 
constituent of the wave vector field 𝐾 (the other constituent being the acceleration cancelled by 
changing reference frames). This hypothesis is supported by obtaining the group velocity. 
 
In this and the previous chapter, there has been a lot of talk about source field equations. Nevertheless, 
there has been little debate about the underlying reasons for these relationships between sources and 
fields. Why and how can a source located in Space-Time generate a field extended to Space-Time? It 
is these questions that we will focus on in the next chapter. 



194    Invariances and transformations 

Chapter VI Can we intuitively understand Ampère's theorem? Study of 2 
tracks 

 
Purpose of the chapter 
We examine 2 tracks to intuitively understand what can connect a local source to the derivative of a 
field that extends to Space-Time. 
 
VI.1 What is demonstrated and what is not 
In the previous chapter, source field equations for gravitation were proposed in analogy with those of 
electromagnetism. However, for all these source field equations, there is a priori no demonstration. 
 
Indeed, in vector analysis, what we prove from Stockes' theorem is the link between a vector along a 
closed contour and the rotational flux of this vector through a surface S (i.e., the passage from one to 
two dimensions): 𝐵 ⋅ 𝑑𝑙 = 𝑟𝑜𝑡𝐵 ⋅ 𝑑𝑆 

 
By contrast, what is not proven is the link between a field generally extended in Space-Time and a 
source generally located in Space-Time. 
So, why 𝜇 𝚥 = 𝑟𝑜𝑡𝐵? A local relation that yields Ampère's theorem in integral form: 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 ⋅ 𝑑𝑙 = 𝑟𝑜𝑡𝐵 ⋅ 𝑑𝑆 

 
We will not make here a mathematical proof of 𝜇 𝚥 = 𝑟𝑜𝑡𝐵. We will simply propose two tracks that 
could lead to a better understanding of the different source field equations and Ampère's theorem. 
 
Note 1 
There is a proof of Ampère's theorem from the law of Biot and Savart: 𝐵(𝑟) = 𝜇4𝜋 𝐼𝑑𝑙 ∧ 𝑟𝑟  

, but then you have to prove that law. 
 
Note 2 
We have the same problem of demonstration with the Maxwell Gauss source field equation: 𝜌𝜀 = 𝑑𝑖𝑣�⃗�𝑙 
, also called Gauss's theorem. As we treat here identically Maxwell Gauss, Maxwell Ampère and the 
source field equations of electromagnetism and gravitation, to demonstrate one of these equations is to 
demonstrate the others. 
 
 
VI.2 First track: 2 analogies between fluid mechanics and magnetism 
We remind the first analogy between fluid mechanics and magnetism, analogy mainly used in this 
essay: 
 
 Fluid mechanics Magnetism 

Field 2𝛺 𝐵 
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Vector potential �⃗� 

 
𝐴 

Condition of field 
conservation 

𝑑𝑖𝑣𝛺 = 0 𝑑𝑖𝑣𝐵 = 0 

Potential field 
relationship 

2𝛺 = 𝑟�⃗�𝑡�⃗� 𝐵 = 𝑟�⃗�𝑡𝐴 

 
We have also mentioned a second analogy between fluid mechanics and magnetostatics, an analogy 
proposed by H. Poincaré in one of his lectures. Compared to the first analogy, the rotation vector (or 
vortex vector) 𝜔 corresponds to the current density 𝜇 𝚥, the magnetic field 𝐵 corresponds to the 
velocity field �⃗�. 
 
We have the following table: 
 
 Fluid mechanics 

(rotational, permanent, 
incompressible) 

Magnetostatics 

Source 𝜔(𝑀) 
Vortex vector 

𝚥(𝑀) 
Current density 

Constant 2 
 

𝜇  

Field �⃗�(𝑀) 
 

𝐵(𝑀) 

Potentiel vecteur 𝐴 
 

𝐴 

Condition of field 
conservation 

𝑑𝑖𝑣�⃗� = 0 𝑑𝑖𝑣𝐵 = 0 

Potential field 
relationship 

�⃗� = 𝑟�⃗�𝑡𝐴 𝐵 = 𝑟�⃗�𝑡𝐴 

Condition of source 
conservation 

div𝜔=0 𝑑𝑖𝑣𝜇 𝚥 = 0 

Source field 
relationship 

2𝜔 = 𝑟�⃗�𝑡�⃗� 
 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 

Potential source 
relationship 

𝛥𝐴 + 2𝜔 = 0 𝛥𝐴 + 𝜇 𝚥 = 0 

Ampère's theorem 2𝜔(𝑀) ⋅ 𝑑𝑆 = �⃗�(𝑀) ⋅ 𝑑𝑙 𝜇 𝚥(𝑀) ⋅ 𝑑𝑆 = 𝐵(𝑀) ⋅ 𝑑𝑙 
 
Note 1 
It should be noted that 𝜔 and 𝛺 are two distinct notations for the same rotation vector. 
It is proposed here to use: 

- 𝜔 when the rotation vector is interpreted as a source or a rotation of a body on itself (spin 
rotation), both located in Space (even if, as we will see, the source and the body rotating on 
itself do not have the same limits in Space), 

- 𝛺 when the rotation vector is interpreted as a field or an orbital rotation, both extended in 
Space. 

We will come back to this in the next paragraph, when we study the second track. 
 
Note 2 
Let us observe that in fluid mechanics, the vector 𝛺 (or 𝜔) is not generally oriented according to Time, 
but according to a dimension of Space. It is therefore noted 𝜔 and not 𝜔 . 
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In the case of a source 𝜔 uniform, we have the velocity field: �⃗� = 𝜔 ∧ 𝑂𝑀 = 𝛺 ∧ 𝑂𝑀 2𝜔 = 𝑟�⃗�𝑡�⃗� = 𝑟�⃗�𝑡(𝜔 ∧ 𝑂𝑀) 

 
In the case of a source 𝜇 𝚥 uniform, we have the magnetic field: 𝐵 = 12 𝜇 𝚥 ∧ 𝑂𝑀 

𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 = 12 𝑟�⃗�𝑡(𝜇 𝚥 ∧ 𝑂𝑀) 

 
It is noted that 𝐵 takes the form of a magnetic moment. 
 
The comparison of the two analogies is interesting. In the first, the rotation vector 𝛺 plays the role of a 
field. In the second, the rotation vector 𝜔 plays the role of a source. We thus have the same physical 
quantity which alternately plays the role of a field or a source, hence a possible passage from one to 
the other. 
The same applies to 𝐵, which can be analysed as the source of the “field” 𝐴. 
 
We summarize the 2 analogies in the following table: 
 
 Fluid mechanics 

(rotational, permanent, 
incompressible) 

Magnetostatics 
(with in particular zero 
displacement currents) 

Magnetism 

Source 𝜔(𝑀) 
 

𝚥(𝑀) 𝐵(𝑀) 

Constant 2 
 

𝜇  1 

Field �⃗�(𝑀) 
 

𝐵(𝑀) 𝐴(𝑀) 

Condition of 
source 
conservation 

𝑑𝑖𝑣2𝜔=0 div𝜇 𝚥=0 div𝐵=0 

Source field 
relationship 

2𝜔 = 𝑟�⃗�𝑡�⃗� 
 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 𝐵 = 𝑟�⃗�𝑡𝐴 

 If the source 𝜔 is uniform 
in a volume Vol of Space, 
the field �⃗� is calculated in 
this volume Vol: �⃗� = 𝜔 ∧ 𝑂𝑀 

If the source 𝜇 𝚥 is 
uniform in a volume Vol 
of Space, the field 𝐵 is 
calculated in this volume 
Vol: 𝐵 = 12 (𝜇 𝚥 ∧ 𝑂𝑀) 

If 𝐵 is uniform in a 
volume Vol of Space, 𝐴 
is calculated in this 
volume Vol: 𝐴 = 12 (𝐵 ∧ 𝑂𝑀) 

Ampère's 
theorem 2𝜔 ⋅ 𝑑𝑆 = �⃗� ⋅ 𝑑𝑙 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 ⋅ 𝑑𝑙 𝐵 ⋅ 𝑑𝑆 = 𝐴 ⋅ 𝑑𝑙 
Law of Biot and 
Savart 

If the source 𝜔 is located 
in Vol a finite volume of 
Space, the field �⃗� is 
calculated at any point in 
Space according to the 

If the source 𝜇 𝚥 is 
located in Vol a finite 
volume of Space, the field 𝐵 is calculated at any 
point of Space according 

If 𝐵 is located in Vol a 
finite volume of Space, 𝐴 is calculated at any 
point in Space 
according to the 
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analogue of Biot and 
Savart's law: �⃗�(𝑂𝑀)= 12𝜋 𝜔𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀  

to the law of Biot and 
Savart: 𝐵(𝑂𝑀)= 𝜇4𝜋 𝚥𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀  

analogue of Biot and 
Savart's law: 𝐴(𝑂𝑀)= 14𝜋 𝐵𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀  

 
In variable regime, we can try the following analogy: 
 
 Mécanique des fluides Electromagnétisme 
Source field 
relationship 

 𝜇 𝚥 = 𝑟�⃗�𝑡𝐵 − 𝜇 𝜀 𝜕�⃗�𝑙𝜕𝑡  
Source field 
relationship 

2(𝜔 + 𝜔 ) = 𝑟𝑜𝑡�⃗� 
 

𝜇 (𝚥 + 𝚥 ) = 𝑟𝑜𝑡𝐵 

  𝚥 = 𝜀 𝜕�⃗�𝑙𝜕𝑡  
Condition of source 
conservation 𝑑𝑖𝑣𝜔 + 𝜕𝜔𝜕𝑡 = 0 𝑑𝑖𝑣𝚥 + 𝜕𝑞𝜕𝑡 = 0 
 
See then the physical meanings of 𝜔  and 𝜔 ? 
 
VI.3 Second track: change of points of view, study of two bodies of the Earth-Sun type 
The second track repeats the old trick of A. Einstein: see if we can explain two phenomena of different 
appearance but in reality equal (or even identical), by different points of observation. 
 
Note, search for relationships between something localized in Space and something extended in 
Space 
The Ampère and Gauss source field relations relate a source located in Space and an extended field in 
Space. The track followed here is therefore to look for phenomena that relate something localized in 
Space with something extensive. 
 
Two phenomena are cited here for the record: 

- The first is an orbital rotation that is extended in Space and a spin rotation (rotation on 
oneself) that is localized in Space. The two can be related by a change of reference frames (it 
is this phenomenon that is examined in this second track). 

- The second is the particle wave duality, with a wave that is extended into Space and a 
corpuscle that is localized. 

 
 
VI.3.1 Earth Sun System 
Let be a system with two bodies for example the Earth and the Sun. 
 
Let be 𝑅  the solar reference system 
In 𝑅 , the Sun is motionless, and the Earth has, as a first approximation, two movements: 

- an orbital rotational motion of angular velocity [𝛺 ] . 
We have: [𝛺 ] = 2𝜋𝑇  

with 𝑇 ≈ 365𝑑𝑎𝑦𝑠 to be converted to seconds to express the angular velocity in 𝑟𝑎𝑑 ×𝑠 . 
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- a rotational movement on itself (spin rotation) of angular velocity [𝜔 ] . 
We have: [𝜔 ] = 2𝜋𝑡  

with 𝑡 ≈ 24ℎ𝑜𝑢𝑟𝑠. 
 
Let be 𝑅  the terrestrial reference frame 
In 𝑅 , the Earth is motionless, and the Sun has, as a first approximation, two movements: 

- an orbital rotational motion of angular velocity [𝛺 ] . 
We have: [𝛺 ] = 2𝜋𝑇  

with 𝑇 ≈ 24ℎ𝑜𝑢𝑟𝑠. 
 

- a rotational movement on itself (spin) of angular velocity [𝜔 ] . 
We have: [𝜔 ] = 2𝜋𝑡  

with 𝑡 ≈ 365𝑑𝑎𝑦𝑠. 
 
The following figure illustrates: 

- when in 𝑅 , the Earth rotates in orbit in one direction, 
- when in 𝑅 , the Sun rotates in the other direction. 
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Figure 14: Earth Sun system 

 
In a two-body Earth-Sun system, we therefore have the relations: [𝛺 ] = −[𝜔 ]  [𝜔 ] = −[𝛺 ]  

 
To switch from 𝑅  to 𝑅 , it is necessary to cancel the movements of the Earth: [𝛺 ]  
and [𝜔 ] . Thus, we obtain a reference that is immobile. 
 
We have the change of reference frames: 𝑅 = 𝑅  

with 𝜔  and 𝛺  movements cancelled when passing from 𝑅  to 𝑅  
 
With [𝜔 ] = −[𝛺 ] , we get: 𝑅 = 𝑅  𝑅 = 𝑅  
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We see that this works for both the Earth and the Sun. This is desirable since there is no reason a priori 
to favour one celestial body more than another. 
 
It is noted that the relationship [𝜔 ] = −[𝛺 ]  can remind a source field relation, 
with [𝜔 ]  the rotation on itself that would play something local and [𝛺 ]  the orbital 
rotation that would play something extensive. 
 
VI.3.2 Combination of the 2 tracks 
If we combine this second track, change of points of view, with the table of analogies between Fluid 
Mechanics and Magnetostatics proposed in the first track, we get: 
 
 Fluid mechanics Magnetostatics 

Source 𝜔(𝑀) 
 

𝚥(𝑀) 

Constant 2 
 

𝜇  

Field �⃗�(𝑀) 
 

𝐵(𝑀) 

Condition of source 
conservation 

𝑑𝑖𝑣2𝜔=0 div𝜇 𝚥=0 

Source field 
relationship 

2𝜔 = 𝑟�⃗�𝑡�⃗� 
 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 

Ampère's theorem 2𝜔 ⋅ 𝑑𝑆 = �⃗� ⋅ 𝑑𝑙 𝜇 𝚥 ⋅ 𝑑𝑆 = 𝐵 ⋅ 𝑑𝑙 
- with −𝜔(𝑀) the spin rotation of the body studied (localized in O), measured by the other 

bodies (located in M), that is to say in the reference frame of these other bodies. 
- and with �⃗�(𝑀) the speed of the other bodies at the distance 𝑂𝑀, in the reference frame of the 

body studied (located in O). 
 
VI.4 Analogies between Gauss's theorem and Earth-Sun or Earth-Star systems 
VI.4.1 Intuitively understand the transition from local to extended  
We always try to understand in an intuitive way the Ampère’s theorem, and the one we propose as its 
analogue (with permutation of moments and positions), the Gauss’s theorem. 
 
We always pursue the track of a relationship between a source (localized) and a field (extended), 
corresponding to a change of views between a spin rotation (localized) and an orbital rotation 
(extended). 
We will now focus on a qualitative comparison between Gauss's theorem and Earth Sun or Earth Star 
systems. 
 
VI.4.2 Study of spherical or cylindrical symmetry sources 
Spherical symmetry (3 dimensions) 
Let be the case of a finite source, with spherical symmetry of radius R in Space, of volumetric density 𝜌  (of electric charge or mass) uniformly distributed (e.g., a planet of uniformly distributed mass 
volumetric density). 
 
Applying Gauss's theorem, we have: 
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- first a field (electrostatic 𝐸𝑠(𝑟) or gravitational 𝐺𝑟(𝑟) field), inside the source (electric or 
mass source) 𝑟 ≤ 𝑅, which increases in × 𝑟 with K the constant function of the nature of 
the field, 

- then an (electrostatic or gravitational) field outside the source 𝑟 ≥ 𝑅, which decreases in × . We also have a constant flow of the field through spherical surfaces of 4𝜋𝑟 , and a 
zero limit of the field at infinity. 

 
Cylindrical symmetry (2 dimensions +1) 
Let be the case of a source with cylindrical symmetry of radius R and infinite height ℎ → +∞ (In a 
way, the passage of the previous case from 3 to 2 dimensions), of the same uniformly distributed 
volumetric density 𝜌  (electric charge or mass). 
 
Applying Gauss's theorem, we have: 

- first a field (electrostatic 𝐸𝑠(𝑟) or gravitational 𝐺𝑟(𝑟) field), inside the source (electric or 
mass source) 𝑟 ≤ 𝑅, which increases in × 𝑟, 

- then an (electrostatic or gravitational) field outside the source 𝑟 ≥ 𝑅, which decreases in × . We also have a constant flow of the field through cylindrical surfaces of 2𝜋𝑟 × ℎ, 
and a zero limit of the field at infinity. 

 
We summarize in the following table these 2 cases, as well as the relationships and analogies that can 
be used in the following pages: 
 
 Fluid mechanics 

(rotational, 
permanent, 

incompressible) 

Magnetostatics 
 

Electrostatics Gravitation 

Source 𝜔 , , (𝑀) 
Vortex vector 

𝚥 , , (𝑀) 
Current volumetric 
density 

𝜌 (𝑀) 
Electrical volumetric 
charge density 

𝜌 (𝑀) 
Mass volumetric 
density 

Constant 2 𝜇  1𝜀  −4𝜋𝐺 

Field (with 
cylindrical 
source) 

𝑉 (𝑀) 𝐵 (𝑀) �⃗�𝑠 (𝑀) �⃗�𝑟 (𝑀) 

Study space 𝑥, 𝑦, 𝑧 𝑥, 𝑦, 𝑧 𝑥, 𝑦, 𝑡 𝑥, 𝑦, 𝑡 
Source 
conservation 

div𝜔=0 div𝜇 𝚥=0 𝜕𝜌𝜕𝑡 = 0 
𝜕𝜌𝜕𝑡 = 0 

Source field 
relationship 

2𝜔 = 𝑟�⃗�𝑡𝑉 
 

𝜇 𝚥 = 𝑟𝑜𝑡𝐵 �⃗�𝜀 = 𝜕�⃗�𝑠𝜕𝑥  −4𝜋𝐺�⃗� = 𝜕�⃗�𝑟𝜕𝑥  

Ampère's 
theorem 
 

2 𝜔 ⋅ 𝑑𝑆= 𝑉 ⋅ 𝑑�⃗� 

𝜇 𝚥 ⋅ 𝑑𝑆= 𝐵 ⋅ 𝑑�⃗� 

1𝜀 �⃗� ⋅ 𝑑𝑆= �⃗�𝑠 ⋅ 𝑑�⃗� 

−4𝜋𝐺 �⃗�⋅ 𝑑𝑆 = �⃗�𝑟 ⋅ 𝑑�⃗� 

Gauss's 
theorem 
(non-
redirected 
fields) 

  1𝜀 𝜌 𝑑𝑉= �⃗�𝑠. 𝑑 𝑆 

−4𝜋𝐺 𝜌 𝑑𝑉= �⃗�𝑟. 𝑑 𝑆 

Law of Biot 
and Savart 
 
 
 

𝑉(𝑂𝑀)= 12𝜋 𝜔𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀 𝐵(𝑂𝑀)= 𝜇4𝜋 𝚥𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀  

�⃗�𝑠(𝑂𝑀)= 14𝜋𝜀 �⃗� 𝑑𝜏 ∧ 𝑂𝑂𝑀
�⃗�𝑟(𝑂𝑀)= −𝐺 �⃗� 𝑑𝜏 ∧ 𝑂𝑀𝑂𝑀
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Cylindrically 
symmetricall
y symmetric 
source of 
radius R and 
infinite 
height 𝒓 ≤ 𝑹 

𝑉 (𝑟) = 𝜔𝑟 
0( )

2rz
jrB r 𝐵 (𝑟) = 𝜇  

Avec: 𝑗 = 𝐼𝜋𝑅  

𝐸𝑙 (𝑟) = 1𝜀 𝜌 𝑟2  𝐺𝑟 (𝑟) = −4𝜋𝐺 𝜌 𝑟2  

Cylindrically 
symmetricall
y symmetric 
source of 
radius R and 
infinite 
height 𝒓 ≥ 𝑹 

𝑉 (𝑟) = 𝜔𝑅𝑟  𝐵 (𝑟) = 𝜇 𝑗𝑅2𝑟  𝐸𝑠 (𝑟) = 1𝜀 𝜌 𝑅𝑟  
𝐺𝑟 (𝑟)= −4𝜋𝐺 𝜌 𝑅𝑟  

Spherically 
symmetricall
y symmetric 
source of 
radius R 𝒓 ≤ 𝑹 

  𝐸𝑠 (𝑟) = 1𝜀 𝜌 𝑟3  𝐺𝑟 (𝑟)= −4𝜋𝐺 𝜌 𝑟3  

Spherically 
symmetricall
y symmetric 
source of 
radius R 𝒓 ≥ 𝑹 

  𝐸𝑠 (𝑟) = 1𝜀 𝜌 𝑅3𝑟  𝐺𝑟 (𝑟)= −4𝜋𝐺 𝜌 𝑅3𝑟  

 
VI.4.3 Field within the source of uniformly distributed density, increasing in 𝐫 
Let's take the example of a simplified Earth-Sun system, where the Earth no longer has an orbital 
rotation around the Sun and simply a spin rotation −𝜔 of 24 hours. 
From Earth, an observer sees the Sun rotate with an orbital rotation 𝛺. of 24 hours. If other bodies, for 
example stars, are fixed with respect to the Sun, the terrestrial observer also sees them rotate with an 
orbital rotation. of 24 hours. 
 
Note that this example corresponds precisely to the case of a source, with spherical or cylindrical 
symmetry, radius 𝑅 in Space, with uniformly distributed mass volumetric density 𝜌 , with 𝑟 ≤ 𝑅. 
 
Indeed, we have: 

- on the one hand, an uniformly distributed source 𝜔, for example in a Space volume 𝑉𝑜𝑙 =𝜋𝑅  or 𝑉𝑜𝑙 = 𝜋𝑅 × ℎ. The source 𝜔 is uniformly distributed within this volume Vol, 
because all the stars in this volume see the Earth rotate on itself with the same spin rotation −𝜔, 

- on the other hand, a field �⃗� which increases in 𝑟 inside the source 𝜔 uniformly distributed 
over the volume 𝑉𝑜𝑙. 

 
 Fluid mechanics 

(rotational, permanent, incompressible) 
Source field 
relationship 

2𝜔 = 𝑟�⃗�𝑡�⃗� 
 

Condition 
 

𝑑𝑖𝑣𝜔 = 0 

 If the source 𝜔 is uniformly distributed across a Space volume Vol, the field �⃗� is calculated in this volume Vol: 
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�⃗� = 𝜔 ∧ 𝑂𝑀 
- with −𝜔(𝑀) the spin rotation of the Earth (located in O), measured by the stars (located in 

M), that is to say in the reference frame of these stars. 
- and with �⃗�(𝑀) the speed of stars at distance 𝑂𝑀, in the reference frame of the Earth. 

 
It should be noted that the spatial location of the source 𝜔(𝑀) does not correspond to the Earth, but to 
the sphere of 𝑉𝑜𝑙 = 𝜋𝑅  (or to the cylinder of 𝑉𝑜𝑙 = 𝜋𝑅 × ℎ), within which the stars (of position 
M) see the Earth turn (of position O) with the same spin rotation −𝜔(𝑀). Even if the source is 
localized, it is a priori more extensive than the body studied (here the Earth). 
 
Conclusion of the paragraph 
More generally, let us remember that the source 𝜔(𝑀) uniformly distributed in a volume Vol 
corresponds to a common reference frame, within which all studied bodies of position M, measure 
for the reference body located in O (for example an observer O), the same spin rotation −𝜔(𝑀). 
For his part, the observer O measures for all studied bodies within Vol, a velocity field �⃗�(𝑀) 
responding to the source field equation 2𝜔(𝑀) = 𝑟�⃗�𝑡�⃗�(𝑀) (we even have �⃗� = 𝜔 ∧ 𝑂𝑀). 
 
VI.4.4 Field outside the source, with a zero limit to infinity 
We now wish to continue the analogy with Gauss's theorem, to get out of the source 𝜔 of volume Vol 
and have a field �⃗� who: 

- on the one hand, decreases in Space by moving away from the source, 
- on the other hand, has a zero limit to infinity. 

 
Let's take the example of a simplified Earth-Sun system, where the Earth no longer has an orbital 
rotation around the Sun and simply a spin rotation −𝜔 of 24 hours. Previously, it had been proposed 
that the other bodies in the Universe, called stars, are fixed with respect to the Sun, and therefore also 
see the Earth with a spin rotation. −𝜔 of 24 hours. 
 
Now propose that stars are not fixed with respect to the Sun (more realistic case). Nevertheless, let us 
remain in a simplified case where the Earth, in relation to these stars, has no orbital rotation, but 
simply a spin rotation. 
 
At a very distant distance from the Earth (tending towards infinity), what will be for these stars the 
spin rotations −𝜔 , …, −𝜔 …, −𝜔 … of the Earth? They are likely to be all possibilities. The spin 
rotation −𝜔  will for example be in a sense and −𝜔  in another sense. For the terrestrial observer, 
these stars will have a zero average orbital rotation 𝛺 and therefore a zero average speed (and also a 
field) �⃗� = 𝛺 ∧ 𝑟. 
 
We have the somewhat paradoxical idea, but intuitively understandable, that the terrestrial reference 
frame (that is to say, the reference frame where the Earth is fixed) is both in itself and at infinity. 
 
Qualitatively, we are therefore similar here to Gauss's theorem, case of a source with spherical or 
cylindrical symmetry of radius 𝑅 in Space, of uniformly distributed volumetric density 𝜌  din the 
source, with 𝑟 ≥ 𝑅, and a field �⃗� which is infinitely zero. 
 
VI.4.5 Field outside source, decay 
Let now be a Star very far from the Sun, which sees the Sun rotate with a spin rotation of −𝜔 . The 
Sun itself sees the Earth rotate with a spin rotation of −𝜔 . 
 
If the distance Earth to Sun is negligible compared to the distance Sun Star and if the spin rotations are 
all in the same plane, the Star sees the Earth rotate with a spin rotation of −𝜔 = −𝜔 − 𝜔 . 
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In the case that −𝜔  is opposite sense to −𝜔 , the terrestrial observer sees the Star rotate with an 
orbital rotation 𝛺  lower than that of the Sun 𝛺 . 
 
Moving away from Earth, it is likely that stars see Earth with spin rotations. −𝜔 , …, −𝜔  more and 
more divergent. 
For the terrestrial observer, these stars have an average orbital rotation 𝛺 which is decreasing. 
 
To qualitatively find Gauss's theorem, it is necessary for the terrestrial observer, that the stars have an 
average orbital rotation 𝛺 which decreases in  (or  in 2 dimensions of Space) and a field �⃗� = 𝛺 ∧ 𝑟 

which decreases in  (or  in 2 dimensions of Space). 
 
In other words, what are the characteristics to attribute to a Space, to find these laws of decay of the 
field? 
 
VI.5 Conclusion of the chapter 
We proposed 2 tracks that could lead to a better understanding of source field equations and theorems 
of Ampère and Gauss. One insists on the interchangeability between source and field, the other on a 
difference in points of view to move from local to extent. 
 
By combining the 2 tracks, it was found that a vortex vector source 𝜔(𝑀) uniformly distributed in a 
volume Vol, corresponds to a common reference frame of volume Vol, within which all the bodies 
studied of position M, measure for the reference body located in O (for example an observer O), the 
same spin rotation −𝜔(𝑀). 
For its part, the observer O measures for all the studied bodies within Vol, a velocity field �⃗�(𝑀) 
responding to the source field equation 2𝜔(𝑀) = 𝑟�⃗�𝑡�⃗�(𝑀). 
 
The target (not met here) is to broaden the demonstration of the relationship 2𝜔(𝑀) = 𝑟�⃗�𝑡�⃗�(𝑀) to 
any sources (and then to the types of reference frames to be matched with those sources) and to the 
bodies M outside the source. 
 
In the next chapter, we will focus on homogeneous field equations, i.e., equations involving only 
fields. 
 
Note on the principle of least action 
As mentioned in Memoir 1, Joseph-Louis Lagrange proposed in 1788 to demonstrate the fundamental 
principle of Newton's dynamics from the principle of least action. This could also be a way to 
demonstrate source field equations. 
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Chapter VII Gravitationally analogous to Maxwell Faraday's 
equation? 

 
Purpose of the chapter 
Previously, analogues for gravitation to Maxwell's source field equations were proposed. Now let's 
study what could be the gravitational analogue of Maxwell Faraday's field field equation. 
 
VII.1 On the phenomena of electrical induction 
VII.1.1 Historical reminders 
Mr. Faraday's main experiments took place in the 1830s. As A.-M. Ampere, M. Faraday is inspired by 
the experiences of H. C. Ørsted. Nevertheless, he works on another branch of magnetism, that of 
electromagnetic induction phenomena. A.-M. Ampère studied how a direct electric current (the 
source) can generate a magnetic field like a magnet. By contrast, Faraday studied how a magnetic field 
can induce an electric current in a circuit, (in relation to an electric field). 
 
Initially, Mr. Faraday studied continuous currents in time. He made rapid progress when he extended 
his work to variable currents in time, which could generate variable magnetic fields in time. 
Its fundamental idea is that a variation in time of the flow of a magnetic field through an electric 
circuit generates in this circuit the appearance of an electromotor field (or an 𝑒. 𝑚. 𝑓. electromotive 
force of induction) and therefore of an induced electric current. 
 
Mr. Faraday's work is at the origin of the electric generator (dynamo) and the electric motor. They 
allow the conversion of mechanical energy into electrical energy, and vice versa. 
For example, a metal bar sliding on two rails generates a variation in Time of the magnetic field flux 
through the electrical circuit consisting of the two rails, the movable bar and a fixed bar. This induces 
the appearance in the circuit of an induction electromotive force 𝑒. 𝑚. 𝑓. and an induced electric 
current. 
 
VII.1.2 Faraday's Law 
We recall Faraday's law, a mathematical translation of his ideas: 𝑒. 𝑚. 𝑓. = − 𝑑𝛷𝑑𝑡  

 
The 𝑒. 𝑚. 𝑓. is the electromotive force that sets in motion the electrical charges of the circuit. Contrary 
to its name, it is not a force since it is homogeneous at a voltage (i.e., at a difference in electrical 
potentials) and is expressed in volts. If it is multiplied by an electric charge 𝑞 , it can be likened to the 
work of an electric force. 
 
Note on the law of moderation 
We often talk about Lenz Faraday's law of moderation, enunciated by Heinrich Lenz in 1834 
following the work of Mr. Faraday. According to this law, the direction of the current induced in the 
circuit is such that by its effects, it opposes the variation of the magnetic flux which gave rise to it. 
 
In the case of a closed circuit, purely resistive, of total resistance 𝑅 , we have the current: 𝑖 = |𝑒. 𝑚. 𝑓. |𝑅 = 𝑑𝛷𝑅𝑑𝑡 

 
To find the direction, sense of the current, Lenz Faraday's law of moderation is used. If we take the 
example of a metal bar sliding on two rails, the current 𝑖 = 𝑞𝑣 passing through the movable bar 
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creates a Lorentz magnetic force �⃗� = 𝑞�⃗� ∧ 𝐵. The direction, sense of the current is determined by 
the direction, sense of the magnetic force, which must oppose the force moving the movable bar (for 
example, the weight of the movable bar). 
 
VII.1.3 Neuman's case and Lorentz's case 
In the phenomena of magnetic induction, we usually distinguish two cases: 

- the case of Neuman, a fixed electrical circuit in a variable in Time field 𝐵 / , 
- the case of Lorentz, displacement of the electrical circuit in a stationary field 𝐵 /  (magnetic 

field independent of Time). 
 
In the case of Neuman, we have: 𝑒. 𝑚. 𝑓. = 𝜕𝐴𝜕𝑡 ⋅ 𝑑�⃗� = − 𝑑𝛷𝑑𝑡  𝛷 is the magnetic flux through the circuit. 
 
In the case of Lorentz, we have: 𝑒. 𝑚. 𝑓. = (�⃗� ∧ 𝐵 ) ⋅ 𝑑�⃗� = − 𝑑𝛷𝑑𝑡  𝛷  is the total magnetic flux cut by the circuit as it moves. 
 
If the closed filiform circuit undergoes deformation without there being a discontinuity of velocity 
(without switching), one has 𝑑𝛷 = 𝑑𝛷 since the flow of 𝐵  is conservative. The 𝑒. 𝑚. 𝑓. induced 
then has the same expression in both cases: 𝑒. 𝑚. 𝑓. = − 𝑑𝛷𝑑𝑡  

 
In the case of Lorentz, we take into account an electromotor field: �⃗�𝑚 = (�⃗� ∧ 𝐵 )  

with �⃗�  the velocity of movement of the electrical circuit. 
 
We have the electric force defined from this electromotor field: �⃗� = 𝑞 (�⃗�𝑚) = (𝑞 �⃗� ∧ 𝐵 )  

 
In the case of Neuman, we take into account an electric field of induction: �⃗�𝑖 = (𝜕𝐴𝜕𝑡 )  
translation of the variation of the magnetic field in Time. 
 
As we reorient in this essay the electric induction field �⃗�𝑖, and not the electromotor field �⃗�𝑚 (which 
retains the same direction as the electric force �⃗� ), �⃗�𝑖 and �⃗�𝑚 do not have the same direction. 
 
In the case of Neuman, we define an electromotive field: �⃗�𝑚 = (𝑢 ∧ �⃗�𝑖 ) = 𝑢 ∧ (𝜕𝐴𝜕𝑡 )  

with 𝑢  unit vector directed in Time. 



Memoir 3: Maxwell's source field equations to gravitational equations    207 

 
We have the electric force defined from the electromotor field �⃗�𝑚 or from the electric field of 
induction �⃗�𝑖: �⃗� = 𝑞 (�⃗�𝑚) = �⃗� ∧ �⃗�𝑖 = �⃗� ∧ (𝜕𝐴𝜕𝑡 )  

 
Reunion of the two cases Lorentz and Neuman 
If we combine the two cases, we have an electromotive field: �⃗�𝑚 = (�⃗� ∧ 𝐵 / ) + (𝑢 ∧ (𝜕𝐴𝜕𝑡 ) )  

 
We have the electric force defined from this electromotor field: �⃗� = 𝑞 (�⃗�𝑚) = 𝑞 (�⃗� ∧ 𝐵 / + 𝑢 ∧ (𝜕𝐴𝜕𝑡 ) )  

 
VII.1.4  Maxwell Faraday equation 
We remind Maxwell Faraday's equation in integral form: 𝑓. 𝑒. 𝑚. = �⃗�𝑚 ⋅ 𝑑�⃗� = −𝜕𝐵 /𝜕𝑡 ⋅ 𝑑𝑆 = − 𝑑𝛷𝑑𝑡  

with 𝛤  a closed contour and 𝑆  a surface. 
 
Maxwell Faraday is recalled locally: 𝑟𝑜𝑡(�⃗�𝑚 ) = −𝜕𝐵 /𝜕𝑡  

 
Note 

Classically we have 𝑟𝑜𝑡(�⃗�𝑙) = ⃗ /
. But as we reorient the electric field �⃗�𝑙 and not the electromotor 

field �⃗�𝑚, we use in Maxwell Faraday (in local form) the electromotor field (which retains the same 
direction as the electric force). 
 
Previously, we proposed analogues for gravitation to Maxwell's electromagnetic source field 
equations. Now let's see what could be the analogue for gravitation to Maxwell Faraday's field field 
equation. To do this, let's take a closer look at this equation. 
 
VII.2 Maxwell Faraday's equation transcribed from electromagnetism to gravitation 
VII.2.1 From an integrated electromotor field on a closed contour to a potential difference 
In Maxwell Faraday in integral form, two parts can be distinguished. 
A first part that makes the link between the induced 𝑒. 𝑚. 𝑓. and the electromotive field �⃗�𝑚 , that is: 𝑒. 𝑚. 𝑓. = �⃗�𝑚 ⋅ 𝑑�⃗� = (�⃗� ∧ 𝐵 / + 𝑢 ∧ 𝜕𝐴𝜕𝑡 ) ⋅ 𝑑�⃗� 

A second part that makes the link between the electromotor field �⃗�𝑚  and the magnetic part, with the 
variation of the magnetic flux, i.e.: 
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�⃗�𝑚 ⋅ 𝑑�⃗� = −𝜕𝐵 /𝜕𝑡 ⋅ 𝑑𝑆 = − 𝑑𝛷𝑑𝑡  

 
Note 1 
Integration on a closed contour 𝛤  reflects the transition from an electromotor field to a difference in 
electric potentials. 
If we multiply by a electric charge 𝑞 , the integration on a closed contour 𝛤  translates the transition 
from an electric force to an electrical energy. 
 
Note 2 
Note that a Coulomb electrostatic field of the type (𝑢 ∧ �⃗�𝑠 / )  cannot induce a 𝑒. 𝑚. 𝑓. in a closed 
contour. We have: 𝑓. 𝑒. 𝑚. = (𝑢 ∧ �⃗�𝑠 / ) ⋅ 𝑑�⃗� = (𝑢 ∧ 𝜕𝐴𝜕𝑥 ) ⋅ 𝑑�⃗� = 𝑢 ∧ (𝐴 (𝑀) − 𝐴 (𝑀)) = 0 

 
Only the terms (�⃗� ∧ 𝐵 / )  and (𝑢 ∧ ( ⃗ ) )  can induce 𝑒. 𝑚. 𝑓. in a closed contour. 
 
For an electric field �⃗�𝑙 / = ⃗ − ⃗

, we have: 𝑓. 𝑒. 𝑚. = (𝑢 ∧ �⃗�𝑙 / ) ⋅ 𝑑�⃗� = (𝑢 ∧ (𝜕𝐴𝜕𝑡 − 𝜕𝐴𝜕𝑥 )) ⋅ 𝑑�⃗� = (𝑢 ∧ 𝜕𝐴𝜕𝑡 ) ⋅ 𝑑�⃗� 

 
The electric potential 𝐴  does not intervene, only the magnetic potential is taken into account 𝐴 . 
 
VII.2.2 Analogy of electromagnetism and gravitation 
We have the Coriolis acceleration: �⃗� = −(�⃗� ∧ 2𝛺 / )  

 
Similarly, we have the Einsteinian acceleration (acceleration cancelled during a change of reference 
frames): �⃗� = (𝑢 ∧ 𝜕�⃗�𝜕𝑡 )  

with 𝑢  unit vector directed in Time. 
 
Note on

⃗
 

In the Gauss gravitational source field equation, we add an additional term: 
⃗

 compared to the 

"usual" Gauss gravitation equation. We have introduced this additional term 
⃗   as an acceleration 

cancelled when changing reference frame from 𝑅 to 𝑅 . It is noted that it is also analogous, for 
electromagnetism, to the electric field of induction �⃗�𝑖 = ( ) . 
 
We have Maxwell Faraday in integral form: 
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�⃗�𝑚 ⋅ 𝑑�⃗� = ((�⃗� ∧ 𝐵 / ) + (𝑢 ∧ 𝜕𝐴𝜕𝑡 ) ) ⋅ 𝑑�⃗� = −𝜕𝐵 /𝜕𝑡 ⋅ 𝑑𝑆 = −𝑑𝛷𝑑𝑡  

with 𝛷  the magnetic field flux. 
 
Its analogue for gravitation is: (−�⃗� + �⃗� ) ⋅ 𝑑�⃗� = ((�⃗� ∧ 2𝛺 / ) + (𝑢 ∧ 𝜕�⃗�𝜕𝑡 ) ) ⋅ 𝑑�⃗� = 𝜕2𝛺 /𝜕𝑡 ⋅ 𝑑𝑆

= 2𝑑𝛷𝑑𝑡  

with 𝛷  the pulsation field flow. 
 
Note 1 
There is no sign here −  here in . We'll see why in the next paragraph. 
 
Note 2 
By integrating on a closed contour 𝛤 , we have the passage from an acceleration to a difference of 
Newtonian potentials: 𝛥𝑉 = (−�⃗� + �⃗� ) ⋅ 𝑑�⃗� = ((�⃗� ∧ 2𝛺 / ) + (𝑢 ∧ 𝜕�⃗�𝜕𝑡 ) ) ⋅ 𝑑�⃗� 

 
If we multiply the above equation by a mass 𝑚 , Integration on a closed contour 𝛤  translates the 
transition from a gravitational force to a gravitational energy. 
 
Note 3 
Note that the Newtonian gravitational force �⃗� = �⃗� ∧ ( )  cannot produce a difference in 
Newtonian potentials in a closed contour. We have: 𝛥𝑉 = (𝑢 ∧ 𝜕�⃗�𝜕𝑥 ) ⋅ 𝑑�⃗� = 𝑢 ∧ (𝑉 (𝑀) − 𝑉 (𝑀)) = 0 

 
Only the terms (𝑣 ∧ 2𝛺 / )  and (𝑢 ∧ ⃗ )  can produce a difference in Newtonian potentials in a 
closed contour. 
 
For a wave vector field 𝐾 / = ⃗ − ⃗

, we have: 𝛥𝑉 = (𝑢 ∧ 𝐾 / ) ⋅ 𝑑�⃗� = (𝑢 ∧ (𝜕�⃗�𝜕𝑡 − 𝜕�⃗�𝜕𝑥 )) ⋅ 𝑑�⃗� = (𝑢 ∧ 𝜕�⃗�𝜕𝑡 ) ⋅ 𝑑�⃗� 

 
Newtonian potential 𝑉  does not intervene, only the velocity potential 𝑉  is taken into account. 
 
VII.2.3 Changes in reference frames, understand Faraday gravitation 
We recognize in �⃗� − �⃗�  the terms of acceleration when changing the reference frames from 𝑅  to 𝑅 . 
 
We recall the decomposition of an acceleration: 
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[�⃗�] = 𝑑�⃗�𝑑𝑡 + 𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀 + 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) + 2𝛺 ∧ �⃗�  

with 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) the centrifugal inertial acceleration and 2𝛺 ∧ �⃗�  the Coriolis acceleration. 
 
The Einsteinian acceleration corresponds to the acceleration cancelled when changing reference 
frames from 𝑅  to 𝑅 , i.e., the difference between the initial acceleration [�⃗�]  and the remaining 

acceleration ⃗ . 
 
We have: �⃗� = [�⃗�] − 𝑑�⃗�𝑑𝑡  

 
Without explaining it physically, we note that we must also consider the centrifugal inertial 
acceleration 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) as a remaining acceleration. We get: �⃗� = [�⃗�] − 𝑑�⃗�𝑑𝑡 − 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) 

 
Note 
It is a little easier to understand why there is no explicit equivalent to centrifugal inertia acceleration 𝛺 ∧ (𝛺 ∧ 𝑂𝑀) in electromagnetism. This equivalent must be implicitly included in the electric field of 
induction �⃗�𝑖 = ( ) , as it is here included in the Einsteinian acceleration. 
 
So, we have: �⃗� = �⃗� + 𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀 

�⃗� − �⃗� = 𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀 

 
We have the velocity potential vector defined from the pulsation field: �⃗� = 𝛺 ∧ 𝑂𝑀 

 
We have: 2𝛺 = 𝑟�⃗�𝑡�⃗� = 𝑟�⃗�𝑡(𝛺 ∧ 𝑂𝑀) 

 
Deriving with respect to time: 𝜕2𝛺𝜕𝑡 = 𝜕𝑟�⃗�𝑡(𝛺 ∧ 𝑂𝑀)𝜕𝑡  𝜕2𝛺𝜕𝑡 = 𝑟�⃗�𝑡(𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀) 

 
Based on Stockes' theorem along a closed path 𝛤  delimiting a surface 𝑆 , we have: 
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(𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀) ⋅ 𝑑�⃗� = 𝑟�⃗�𝑡(𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀) ⋅ 𝑑𝑆 = 𝜕2�⃗�𝜕𝑡 ⋅ 𝑑𝑆 = 2𝑑𝛷𝑑𝑡  

 
We therefore find: 𝛥𝑉 = (�⃗� − �⃗� ) ⋅ 𝑑�⃗� = (𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀) ⋅ 𝑑�⃗� = 𝜕2𝛺𝜕𝑡 ⋅ 𝑑𝑆 = 2𝑑𝛷𝑑𝑡  

 
We have Maxwell Faraday's analogue for gravitation: 𝛥𝑉 = (�⃗� − �⃗� ) ⋅ 𝑑�⃗� = 2𝑑𝛷𝑑𝑡  

 
This last equation will be called Faraday gravitation. 
 
Note 1 
For a good analogy between gravitation and electromagnetism, it is also necessary that 𝛺  is 
conservative flow as 𝐵 . 
 
Note 2, look for examples of Faraday gravitation: where can there be a Newtonian potential 
greater than expected? 
Maxwell Faraday can be presented as the generation of a difference in electric potentials from a 
variation in the flux of the magnetic field. Maxwell Faraday can be interpreted as obtaining an 
additional Coulomb electric potential, without having to go through electrostatic Maxwell Gauss. 
 
Following an analogy between gravitation and electromagnetism, let's look for examples where 
Faraday gravitation could intervene, that is to say cases where we would have a Newtonian potential 
higher than expected if we simply used Gauss gravitation? 
 
Note 3, "luminous mass" and "dynamic mass", the enigma of dark matter 
In 1933, astronomer Fritz Zwicky studied a small group of 7 galaxies in the Berenice's Hair cluster. 
These galaxies are comparable to vast vortices composed of spirals or arms of stars that revolve 
around a particularly dense center of stars. 
 
For each galaxy, Zwicky measured the distances of stars from the galactic center, their rotation periods 
around the galactic center, as well as their average velocities. From a formula inspired by Kepler's 3rd 
law =  with 𝜆 = 1 + , with 𝑀 the estimated mass of the galactic center and 𝑚 the mass of 
the rotating star (𝑚 << 𝑀), the astronomer deduces the "dynamic mass" of the Galaxy. 
 
F. Zwicky also measured brightness 𝐿 emitted by the 7 galaxies, and through the relation of 
proportionality 𝐿 ∝ 𝑀 , he obtained for each galaxy a "luminous mass". 
The astronomer then notes that the speed of stars in the arms of galaxies is much higher than one 
would expect. Indeed, the dynamic mass is 400 times greater than the luminous mass. 
 
In the 1970s, the American astronomer Vera Rubin took over the work of F. Zwicky using observation 
instruments with greater precision. She calculated the rotation speed of galaxy arms as a function of 
the distance to the galactic center. The rotation speed of a spiral galaxy is supposed to decrease away 
from the center, following a Keplerian decay. 
However, like F. Zwicky's observations, V. Rubin noted that the stars on the periphery rotate far too 
fast. For example, for  the Andromeda galaxy, the velocities remain virtually constant as one moves 
away from the center. 
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To explain these velocities in peripheries much higher than the Keplerian decay, it is necessary to 
postulate a Newtonian potential higher than expected. Indeed, a higher rotational speed implies a 
higher centrifugal inertial force, and therefore a higher Newtonian gravitational attractive force to 
balance the centrifugal inertial force, and therefore a higher Newtonian potential. 
 
If we use "usual" Gauss gravitation (without the term 

⃗ ), an additional Newtonian potential involves 
additional mass to generate this Newtonian potential. 
Thus, following the work of F. Zwicky and V. Rubin, it is proposed the hypothesis of a dark matter, a 
halo of non-visible matter surrounding galaxies, a halo that would represent up to 90% of the mass of 
the galaxy. This dark matter would generate the additional Newtonian potential, which would explain 
the velocities of stars higher than expected Keplerian. 
 
Another way to obtain an additional Newtonian potential would be to use Faraday gravitation, and in 
particular the term 

⃗
 which is also proposed to be added to Gauss gravitation. We can see the 

rotation vector (or pulsation field) 𝛺 of a galaxy as the analogue of the magnetic field 𝐵, the arms of 
stars of a galaxy as the analogue of an electrical circuit delimiting a closed surface. 
In this case, the variation in the shape of the arms of stars would produce a variation in the flux of the 
pulsation field. 𝛺 through the closed surface bounded by the arms and would induce the appearance of 
an additional difference in Newtonian potentials on the periphery of the galaxy (as there appears an 
additional difference of Coulombian electric potentials in electrical circuits during induction 
phenomena). Track ahead. 
 
Note 4 on the proposed modification of Gauss gravitation 
It is proposed in this essay to modify Gauss gravitation slightly, i.e., to modify the classical equation −4𝜋𝐺�⃗� = ⃗ / − ⃗ /

 to −4𝜋𝐺�⃗� = ⃗ / − ⃗ /
, this amounts to introducing terms 

such as 
⃗

 et 
⃗

. 
These terms that are added in Gauss gravitation are the analogues for electromagnetic induction of the 
Neuman case where an electromotive field appears: 𝐸�⃗� / = ⃗

, 𝐸�⃗� / = ⃗
 and an electromotive 

induction force appears: 𝑒 = ∫ �⃗�𝑚. 𝑑𝑙 = − , with 𝛷 the magnetic field flux. 
 
 
VII.3 Tensor approach, Maxwell Faraday and Maxwell Thomson 

VII.3.1 Maxwell Faraday electromagnetic tensor 𝑭𝝁𝝂 
We remind Maxwell Faraday's electromagnetic tensor: 

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐𝐸𝑙𝑐 0 𝐵 𝐵𝐸𝑙𝑐 𝐵 0 𝐵𝐸𝑙𝑐 𝐵 𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 0 𝐸𝑙𝑐 𝐸𝑙𝑐 𝐸𝑙𝑐− 𝐸𝑙𝑐 0 𝐵 𝐵− 𝐸𝑙𝑐 −𝐵 0 𝐵− 𝐸𝑙𝑐 −𝐵 −𝐵 0 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 
We remind Maxwell Faraday and Maxwell Thomson given from the tensor 𝐹 : 𝜕 𝐹 + 𝜕 𝐹 + 𝜕 𝐹 = 0 
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In space x, y, z, we have: 𝜕𝐹𝜕𝑧 + 𝜕𝐹𝜕𝑥 + 𝜕𝐹𝜕𝑦 = 0 𝜕𝐵𝜕𝑧 + 𝜕𝐵𝜕𝑥 + 𝜕𝐵𝜕𝑦 = 0 

This corresponds to: 𝑑𝑖𝑣𝐵 = 0 

 
In space x, y, ct, we have: 𝜕𝐹𝜕𝑐𝑡 + 𝜕𝐹𝜕𝑥 + 𝜕𝐹𝜕𝑦 = 0 𝜕𝐵𝜕𝑐𝑡 + 𝜕𝐸𝑙𝑐𝜕𝑥 + 𝜕𝐸𝑙𝑐𝜕𝑦 = 0 𝜕𝐵𝜕𝑐𝑡 + 𝜕𝐸𝑙𝑐𝜕𝑦 − 𝜕𝐸𝑙𝑐𝜕𝑥 = 0 

This corresponds to: 𝜕𝐵𝜕𝑡 + 𝑟𝑜𝑡�⃗�𝑙 = 0 

𝑟�⃗�𝑡�⃗�𝑙 = ⎝⎛
𝜕𝐸𝑙𝜕𝑦− 𝜕𝐸𝑙𝜕𝑥 ⎠⎞ 

In plane x, y 

 
VII.3.2 Gravitational tensor 𝑫𝝁𝝂 
We remind the gravitational tensor: 

𝐷 =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 0 𝐾 𝐾 𝐾−𝐾 0 𝛺𝑐 𝛺𝑐−𝐾 − 𝛺𝑐 0 𝛺𝑐−𝐾 − 𝛺𝑐 − 𝛺𝑐 0 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
Following a strict analogy between the 2 tensors 𝐹  and 𝐷 , we pose for the analogue of Maxwell 
Faraday and Maxwell Thomson: 𝜕 𝐷 + 𝜕 𝐷 + 𝜕 𝐷 = 0 

 
In space x, y, ct, we have: 𝜕 𝐷 + 𝜕 𝐷 + 𝜕 𝐷 = 0 
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𝜕 𝛺𝑐 − 𝜕 𝐾 + 𝜕 𝐾 = 0 

In the spaces x, z, ct and y, z, ct, we have: 𝜕 𝛺𝑐 − 𝜕 𝐾 + 𝜕 𝐾 = 0 

𝜕 𝛺𝑐 − 𝜕 𝐾 + 𝜕 𝐾 = 0 

We thus find Faraday gravitation. 
 
In space x, y, z: 𝜕 𝐷 + 𝜕 𝐷 + 𝜕 𝐷 = 0 𝜕 𝛺 + 𝜕 𝛺 + 𝜕 𝛺 = 0 𝑑𝑖𝑣𝛺 = 0 

We find the pulsation field with conservative flow. For a pulsation field, there can be no monopole. 
 
VII.4 Conclusion of the chapter 

In electricity, a variation in the flux of the magnetic field 𝐵 involves the appearance of a difference in 
electrical potentials in a closed contour. Similarly, for gravitation, if we follow a strict analogy with 
electricity, a variation in the flux of the pulsation field 𝛺 involves the appearance of a difference in 
Newtonian potentials in a closed contour. 
To see if this can explain, in the Galaxies, the observed velocities of stars that do not respect the 
Keplerian expectation? 
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Chapter VIII Wave character of electric, magnetic, wave vector and 
pulsation fields 

 
Purpose of the chapter 
In previous chapters, analogues of Maxwell's equations for gravitation have been proposed. 
As was pointed out at the beginning of this Memoir, from Maxwell's equations, it is possible to find 
wave equations for electric and magnetic fields, and thus to propose electromagnetic waves that 
propagate at the speed c of light in vacuum. 
This had also been one of the great contributions of J. C. Maxwell to bring together theoretically, in 
the 1860s, electromagnetism and optics. Almost two decades later, in 1888, Heinrich Hertz discovered 
electromagnetic waves in the air. 
 
From the analogues of Maxwell's equations obtained previously, and always following a strict analogy 
with electromagnetism, we will propose in this chapter wave equations for the wave vector and 
pulsation fields. We will then obtain gravitational waves that also propagate at speed c in vacuum. 
 
VIII.1 Electric field and wave vector field 
Take the rotational of Maxwell Faraday equation, taking into account Maxwell Gauss and Maxwell 
Ampere, we obtain for the electric field �⃗�𝑙 / , and by analogy for the wave vector field 𝐾 / , the 
wave equations in the table below: 
 
 Electromagnetism Gravitation 

Wave equation of 
spatiotemporal fields 
in vacuum, absence of 
charge, current, mass 
and momentum 
densities 

𝜕 �⃗�𝑙 /𝜕𝑥 − 𝜇 𝜀 𝜕 �⃗�𝑙 /𝜕𝑡 = 0 
 

𝜕 𝐾 /𝜕𝑥 − 𝑙 𝑐ℏ𝐺 𝜕 𝐾 /𝜕𝑡 = 0 
 

Constants 𝜀  − 12𝜋𝐺 
 

Constants 𝜇  − 2𝜋𝑙 𝑐ℏ  
 

Conditions on 
constants 𝜇 𝜀 = 1𝑐  𝑙 𝑐ℏ𝐺 = 1𝑐  

 
Wave equation of 
spatiotemporal fields 
in vacuum 

𝜕 �⃗�𝑙 /𝜕𝑥 − 𝜕 �⃗�𝑙 /𝜕𝑐𝑡 = 0 
 

𝜕 𝐾 /𝜕𝑥 − 𝜕 𝐾 /𝜕𝑐𝑡 = 0 
 

Wave equation of 
spatiotemporal fields 
in the presence of 
charge, current, mass 
and momentum 
densities 

𝜕 �⃗�𝑙 /𝜕𝑥 − 𝜕 �⃗�𝑙 /𝜕𝑐𝑡  = 1𝜀 𝜕�⃗�𝜕𝑥 + 𝜇 𝜕𝚥𝜕𝑡  

𝜕 𝑐 �⃗� /𝜕𝑥 − 𝜕 𝑐 𝐾 /𝜕𝑐𝑡  = −2𝜋𝐺 𝜕�⃗�𝜕𝑥 − 2𝜋𝑙 𝑐ℏ 𝜕�̇⃗�𝜕𝑡  
 𝜕 𝑐 �⃗� /𝜕𝑥 − 𝜕 𝑐 𝐾 /𝜕𝑐𝑡  = −2𝜋𝐺 𝜕�⃗�𝜕𝑥 − 𝑐ℏ 𝜕�̇⃗�𝜕𝑡  
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Wave equation of 
potentials 

𝜕 𝐴𝜕𝑥 − 𝜕 𝐴𝜕𝑐𝑡 = − 𝜌𝑡𝜀0  

 

𝜕 𝑉𝜕𝑥 − 𝜕 𝑉𝜕𝑐𝑡 = 4𝜋𝐺𝜌𝑡  
 

 
Unit verification: 
 𝜕 𝑐 𝐾 /𝜕𝑥  

2𝜋𝑙 𝑐𝜕�̇⃗�ℏ𝜕𝑡  
 

Units 1𝑚𝑠  𝑚 × 𝐾𝑔 × 𝑠 × 𝑚 × 𝑚𝑚 × 𝐾𝑔 × 𝑠 × 𝑚 × 𝑠 = 1𝑚𝑠  

 
 
Nota 
To obtain the wave equation of electromagnetic potentials, we must respect the condition of the 
Lorenz gauge: ∇⃗. 𝐴 , , + 𝜇 𝜀 𝜕𝐴𝜕𝑡 = 0 
 
VIII.2 Magnetic fields and pulsation 
Take the rotational equation of Maxwell Ampère, taking into account Maxwell Thomson and Maxwell 
Faraday, we obtain for the magnetic field 𝐵 / , and by analogy for the pulsation field 𝛺 / , the wave 
equations in the table below: 
 
 Electromagnetism Gravitation 

Wave equation of 
spatial fields in 
vacuum, absence of 
charge, current, mass 
and momentum 
densities 

𝜕 𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕 𝐵 /𝜕𝑡 = 0 
 

𝜕 𝛺 /𝜕𝑥 − 𝑙 𝑐𝐺ℏ 𝜕 �⃗� /𝜕𝑡 = 0 
 

Constants 𝜀  − 12𝜋𝐺 
 

Constants 𝜇  − 2𝜋𝑙 𝑐ℏ  
 

Conditions on 
constants 𝜇 𝜀 = 1𝑐  𝑐 = 1𝜇 𝜀  

 

𝑙 𝑐ℏ𝐺 = 1𝑐  𝑐 = ℏ𝐺𝑙 𝑐 

 
Wave equation of 
spatial fields in 
vacuum 

𝜕 𝐵 /𝜕𝑥 − 𝜕 𝐵 /𝜕𝑐𝑡 = 0 
 

𝜕 𝛺 /𝜕𝑥 − 𝜕 �⃗� /𝜕𝑐𝑡 = 0 
 

Wave equation of 
spatial fields in the 
presence of charge, 
current, mass and 
momentum densities 

𝜕 𝐵 /𝜕𝑥 − 𝜕 𝐵 /𝜕𝑐𝑡 = 𝜇 𝜕𝚥𝜕𝑥  
 

𝜕 𝑐𝛺 /𝜕𝑥 − 𝜕 𝑐𝛺 /𝜕𝑐𝑡  = − 2𝜋𝑙 𝑐ℏ 𝜕�̇⃗�𝜕𝑥  
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𝜕 �⃗� /𝜕𝑥 − 𝜕 𝛺 /𝜕𝑐𝑡 = − 1ℏ 𝜕�̇⃗�𝜕𝑥  
 
Note on Klein Gordan's wave equation 
From the wave equation: 𝜕 𝛺 /𝜕𝑥 − 𝜕 �⃗� /𝜕𝑐𝑡 = − 1ℏ 𝜕�̇⃗�𝜕𝑥  
 
If we replace the source �̇⃗� = ( ⃗ )  by the source −( ⃗ ) 𝑐 = ( ⃗ ) 𝑐  (that is, by a 

permutation of x and t), we obtain (further deriving the source by a partial derivative ( ⃗ ) 𝑐 ): 𝜕 �⃗� /𝜕𝑥 − 𝜕 𝛺 /𝜕𝑐𝑡 = − 1ℏ 𝜕 �⃗� 𝑐𝜕𝑥  
 
By replacing 𝛺 /  by 𝜓 any wave function: 
 𝜕 𝜓𝜕𝑥 − 𝜕 𝜓𝜕𝑐𝑡 = 1ℏ 𝜕 𝑚 𝑐𝜕𝑥  𝜓 
 
By expanding to the 3 dimensions of Space: 𝛥𝜓 − 𝜕 𝜓𝜕𝑐𝑡 = 1ℏ 𝛥𝑚 𝑐 𝜓 
 
We obtain a wave equation that is reminiscent of Klein Gordan's wave equation: 𝛥𝜓 − 𝜕 𝜓𝜕𝑐𝑡 = 𝑚 𝑐ℏ 𝜓 

 
VIII.3 Examples of solving wave equations 

For an electric field 𝐸𝑙 / , we have as a solution of the wave equation in vacuum, for example the 
following wave function: 𝐸𝑙 / (𝑡, 𝑦) = 𝐸𝑙′𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑦) 
with = 𝑐. 
 
In this example, the electromagnetic wave propagates in the direction y. 
 
Note 1 on longitudinal and transverse waves 
We speak of a longitudinal wave when the deformation of the medium is in the same direction as the 
propagation of the wave. Sound is a good example. 
We speak of a transverse wave when the deformation of the medium is in a direction perpendicular to 
the propagation of the wave. A wave or an electromagnetic wave (as it is usually presented), are good 
examples. 
 
In this essay, by reorienting in a space x, y, t, the electric field 𝐸𝑙 /  from direction x to direction y, 
one obtains for the electric field part, a longitudinal wave. Indeed, the deformations of the electric 
field are then in the direction of the propagation of the wave. 
The electric force remains oriented according to x. We therefore preserve, for the electric force part, a 
transverse wave. 
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As for the magnetic field 𝐵 /  which deforms following t, one can intuition for the magnetic field part, 
a wave that "propagates in Time" in the same direction as the deformations of the magnetic field, that 
is to say a wave "longitudinal in Time". 
 
Note 2 on polarized waves 
In the case of a polarized wave (types of rectilinear polarization, circular polarization, vertical 
rectilinear polarization, horizontal rectilinear polarization...), the type of polarization is usually 
indicated by the directions of the electric field. As it is proposed to reorient it, the polarization type is 
then indicated by the directions of the electric force to which an electric charge would be subjected. 
 
 
By analogy between electromagnetism and gravitation, for a pulsation field Ω / , we have as a 
solution of the wave equation in vacuum, for example the following wave function: Ω / (𝑡) = Ω′𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑦) 
with = 𝑐. 
 
This example can be interpreted as a "virtual carrousel", propagating in the y direction of Space, and 
possessing a velocity of rotation Ω / (𝑡, 𝑦) varying sinusoidally according to the moments t and the 
positions y occupied by this "virtual carrousel". 
 
If this "virtual carrousel " is stationary with respect to an observer, it responds to a standing wave 
function: Ω / (𝑡) = Ω 𝑐𝑜𝑠(𝜔𝑡) 
Physically, this "virtual carrousel" can be interpreted as motionless in Space relative to the observer, 
and possessing a velocity of rotation Ω / (𝑡) sinusoidally varying over time. 
 
Note on physical quantities both field or potential and wave function 
In this chapter, we have studied physical quantities of the field or potential type, which under certain 
conditions, are also wave functions. In the next Memoir, we will study the Yukawa potential 
(describing nuclear interactions), which is also both potential and wave function. 
 
 
VIII.4 Conclusion of the chapter 
The different equations obtained show that the variations in Space and Time of a moving (accelerated) 
electric charge, generate an electromagnetic wave composed of an electric field and a magnetic field, a 
wave propagating at speed c in a vacuum. 
Similarly, variations in Space and Time of an accelerated moving mass generate a gravitational wave 
composed of a wave vector field and a pulsation field, a wave propagating at speed c in a vacuum. 
 
Light characterized by its velocity c in vacuum, is therefore a form of electromagnetic radiation, and 
also gravitational radiation. 
Conversely, these electromagnetic and gravitational waves (that is, in the visible part of the spectrum, 
light) can generate in "antennas" accelerated movements of electric charges and masses, i.e., electric 
currents and mass currents. 
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Chapter IX Why 2 types of electric charges and only 1 of mass? Example of 
a simplified tidal model 

 
Purpose of the chapter 
We try to understand the differences that remain between electromagnetism and gravitation, in 
particular the existence in electromagnetism of two natures of electric charges, positive or negative, 
and the existence in gravitation of a single nature of mass, always positive. In other words, the 
existence in electricity of two natures of forces, attractive and repulsive, and the existence in 
gravitation of a single nature of force, always attractive. 
To understand these differences between gravitation and electromagnetism, we will take as an 
example a static and simplified model of the tides. 
 
IX.1 Analogies between electromagnetism and gravitation 
IX.1.1 Why 2 types of charge and only 1 of mass? 
In the introduction of this essay, we have pointed out the similarities between gravitation and 
electromagnetism. We also noted some differences. In Memoirs 2 and 3, we noted that most of these 
differences fade away, if the analogy is taken a little further than usual. 
 
For example, in an electric field, the acceleration of a body is a function of its electric mass charge, 
whereas in a gravitational field, the acceleration of this body does not depend on its mass. If we push 
the analogy a little further, as we did in Memoir 2, in electromagnetism, the analogue of acceleration is 
not acceleration, but the induced field (or electromotor field). We can then say: in an electric field, the 
induced field of a body does not depend on its electric charge. 
Similarly, in this Memoir 3, Maxwell's equations have been proposed for the gravitation of analogues. 
These analogues have allowed us to find wave equations for gravitation similar to those of 
electromagnetism. 
 
Nevertheless, despite all these analogies, there remains an important difference for which no 
explanation has been provided. There are two natures of electric charge and one nature of mass. What 
for? 
 
IX.1.2 The electron that goes back in Time 
As often in this essay, we try to understand if the differences between electricity and gravitation, 
cannot be explained simply by changes of reference frames and by different movements in Space-
Time? 
 
In a way, we use the old "trick" of A. Einstein, and we take up the old lens of John Archibald Wheeler 
and Richard Feynman. In the 1940s, these two physicists had proposed to explain the difference in 
nature between the electron and the positron by a different movement in Time: the electron advances 
in Time for example in the same sense as we human observers, the positron advances in Time in the 
opposite sense to us. 
 
This interpretation of the + and – charges provides a convincing and intuitive explanation for the 
annihilation between an electron and a proton. Indeed, this annihilation is interpreted as an electron 
making a U-turn in Time and turning into a positron. Positron and electron are therefore here the two 
faces of the same particle, differentiated by a reversal of their progress in Time (we will come back to 
this in the 6th memory). 
 
Note 
In the 1950s, J. A. Wheeler, continuing the work of A. Einstein on General Relativity, worked on a 
theory called Geometrodynamics. This theory was an attempt to describe Space-Time in terms of 
geometry and possibly motions, without recourse to the notion of matter (we also followed a similar 
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objective, when in the 2nd memory, it was proposed to interpret mass as an analogue in Time of 
velocity in Space). 
Geometrodynamics is  also related to  super-substantialism, a doctrine according to which Space-Time 
is the only  physical substance of the Universe. All physical properties then consist of properties, 
points or regions of Space-Time. 
 
To return to our initial objective: to understand why 2 natures of charge and 1 only nature of mass, 
note that the idea of an electron that goes back in time, can not a priori be transposed to that of a mass 
that goes back in time. Indeed, there is no negative mass. The analogy of electromagnetism and 
gravitation does not work a priori here. 
Nevertheless, in the next paragraphs, we will look at whether, pursuing more the analogy between 
gravitation and electromagnetism, it would not be possible to make it compatible with the idea of J. A. 
Wheeler and R. Feynman: that of an electron going back in Time? 
 
First, let's do some reminders about dipole moments. 
 
IX.2 Reminders on dipole moments and dipoles 
IX.2.1 Dipole moment of an electrostatic dipole 
An electrostatic dipole is defined by a zero-sum distribution of electric charges, with a barycentre of 
positive charges not coinciding with that of negative charges. The simplest dipole is a pair of charges 
of opposite sign, distant by a length 2a. We have the following figure: 
 

 
Figure 15: simplest electrostatic dipole 

 
We usually define a dipole moment �⃗� of an electrostatic dipole, oriented from charge –q toward 
charge +q  by the formula: �⃗� = 2𝑞�⃗� 
 
To calculate the electrostatic field generated by this dipole, we frequently place ourselves in the case 
where 𝑟 = 𝑂𝑀 ≫ 𝑎 (with O the center of the dipole). We obtain simple radial and orthoradial 
components for the electrostatic field: 𝐸𝑙 = − 𝜕𝐴𝜕𝑟 = 14𝜋𝜀 2𝜇 𝑐𝑜𝑠𝜃𝑟  𝐸𝑙 = − 1𝑟 𝜕𝐴𝜕𝑟 = 14𝜋𝜀 𝜇 𝑠𝑖𝑛𝜃𝑟  

with 𝜃 = (𝜇, 𝑂�⃗�). 
 
It is noted that for an electrostatic dipole, there is a faster decrease in the electrostatic field, in , 

instead of  for a point charge. 
 
Electrostatic field lines answer the equation: 
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𝑟 = 𝐾𝑠𝑖𝑛 𝜃 
 
We obtain field lines: 
 

 
Figure 16: Field lines for electrostatic or magnetic dipoles 

 
Note on electric field reorientation 
Since it is proposed to redirect the electric field (but not the electric force), these field lines correspond 
to the directions of an electric force, to which a point electric charge would be subjected. 
 
 
We have the potential energy of a dipole 𝜇 placed in an external electric field 𝐸�⃗�: 𝐸 = −𝜇. 𝐸�⃗� 
 
We have the torque exerted on the dipole 𝜇 by an external electric field 𝐸�⃗�: Γ⃗ = 𝜇 ∧ 𝐸�⃗� 
 
IX.2.2 Dipole moment of a magnetic dipole 
Under magnetostatic conditions, we usually define the magnetic moment (orbital) 𝜇 of a magnetic 
dipole in the form of: 𝜇 = 𝐼𝑑𝑠 = 𝐼𝑆 

with I the electric current, 𝑆 and 𝑑𝑠 perpendicular to surfaces𝑆 and 𝑑𝑠, 𝑛𝑑𝑠 = 𝑑𝑠 unit vector perpendicular to the surface 𝑑𝑠. 
 
To calculate the magnetic field generated by this magnetic dipole, we frequently place ourselves in the 
case where 𝑟 = 𝑂𝑀 ≫ 𝑎 (with O the center of the magnetic dipole). This makes it possible to obtain 
simple radial and orthoradial components for the magnetic field: 
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𝐵 = 𝜇4𝜋 2𝜇 𝑐𝑜𝑠𝜃𝑟  𝐵 = 𝜇4𝜋 𝜇 𝑠𝑖𝑛𝜃𝑟  

with 𝜃 = (𝜇, 𝑂�⃗�). 
 
Magnetic field lines also answer the equation: 𝑟 = 𝐾𝑠𝑖𝑛 𝜃 
 
IX.2.3 Dipole moment of a kinetic dipole 
We have the following analogies between the dipole moments of an electrostatic, magnetic and kinetic 
dipole: 
 
 Electrostatics 

Electrostatic dipole 
Magnetostatics 
Magnetic dipole 

"Pulsatiostatic" or 
"Kinetostatic" 
Kinetic dipole 

Source field equation �⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥  𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥  − 1ℏ (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥  

Independence of Time Static electric charges 𝜕𝐵 /𝜕t = 0⃗ 
𝜕𝛺 /𝜕t = 0⃗ 

Linear density 𝜆  𝐼  �̇⃗�  
 

Dipole moment 𝜇 𝜇 = 2𝑞�⃗� 
Electrostatic dipole 

moment 

𝜇 = 𝐼�⃗� = 12 �⃗� ∧ 𝑞�⃗� 
Magnetic dipole moment 

𝜇 = 12 �⃗� ∧ 𝑚�⃗� 
Kinetic dipole moment 

Potential energy of the 
dipole in an exterior field 
(fields not reoriented) 

𝐸 = −𝜇. 𝐸�⃗�  𝐸 = −𝜇. �⃗�  𝐸 = −𝜇. 2Ω⃗ 

Torque exerted on the 
dipole by an exterior field 
(fields not reoriented) 

Γ⃗ = μ⃗ ∧ El⃗ 
 

Γ⃗ = μ⃗ ∧ B⃗ 
 

Γ⃗ = μ⃗ ∧ 2Ω⃗ 
 

 
Since potential energies 𝐸  (in absolute terms) tend to be maximized and couples Γ⃗ (en module) tend 
to be minimized, the different dipole moments μ⃗ tend to orient themselves along field lines. 
 
We symbolize on the following diagrams, the electrostatic, magnetic, kinetic and "gravitostatic" 
dipoles, by 2 different sources of meanings, close in Space and separated by 2a, and a zero sum of 
these 2 sources as soon as we deviate a little in Space. 
 

 
Figure 17: diagrams highlighting the analogies between the 4 dipoles 

 
In the absence of 2 types of mass, positive and negative, there is no "gravitostatic" dipole. 
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In the next few paragraphs, we will focus on the tides. We will see that we observe a phenomenon 
with similarities with a "gravitostatic" dipole. Indeed, under the effect of an external gravitational 
field, we observe the polarization of a static mass, that is to say the appearance of 2 differentiated 
poles. 
 
IX.3 Static model I of the tides, existence of a "gravitostatic" dipole? 
IX.3.1 Simplified models of the tides 
We propose in this part and in the following two, some simplified models of the tides observed on the 
Earth, based on the combination of 2 phenomena: 

- the first phenomenon is the deformation of the Earth (appearance of 2 bulges or bulges on 
both sides of the Earth), deformation due in particular to the gravitational force generated by 
the Moon (and also by the Sun). We will talk about static tide. This phenomenon will be 
studied in this and the following section. 

- the second phenomenon is the displacement of these 2 bulges following the movements of the 
Earth relative to the Moon (and the Sun). We will talk about a dynamic tide. We will stop on 
the simplest and most impactful movement: that of the rotation on itself of the Earth relative to 
the moon. It already makes it possible to understand variations in sea level during a rotation 
period. 

 
We will use 2 planets: 

- a planet T (as Terra in Latin) composed of a hard core, not or little deformable (in brown), 
surrounded by a deformable layer (in blue) and can symbolize an immense ocean. 

- a planet L (as Luna in Latin) formed of a single and deformable material (in grey). 
 
To explain the 2 bulges, we will always place ourselves in static cases, that is to say an Earth and a 
Moon immobile with respect to each other. Here we will discuss 2 static models often used to explain 
static tides. 
These 2 static models achieve the same result, the explanation of 2 bulges totally symmetrical with 
respect to the cutting plane of the Earth (plane passing through its center and perpendicular to the 
Earth-Moon axis). Nevertheless, they have subtle differences that are interesting to study. 
 
Note 
The term planet is used for the Moon, even if it is a moon. 
 
 
IX.3.2  Study of a system with 2 deformable and static masses 
Electrostatics studies the phenomena created by static electric charges for the observer. In this 
Memoir, by analogy, we speak of "gravitostatic" for static masses. In this chapter, these masses will 
also be deformable for the observer. 
 
We assume here that the 2 planets T and L are static relative to each other. The distance between their 
2 centres remains constant. Under the effects of both, these 2 planets (which alone in the Universe 
would be spherical in shape) deform. For example, under the effect of the gravitational force of planet 
L on planet T, 2 bulges form on planet T. 
 
The formation of these 2 bulges is explained by a gravitational force of planet L on planet T which 
decreases with distance, and therefore by masses of planet T subjected to gravitational forces of 
different values. 
 
At the center of planet T, we pose a mass m subjected to gravitational force: �⃗� = 𝑚�⃗�𝑟 
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In the 1st bulge of planet T, the masses (closer to planet L) are subjected to a greater gravitational force �⃗� than at the center (the difference is noted by the gravitational field 𝛬): �⃗� = 𝑚(𝐺𝑟 + 𝛬) 
 
These masses will be more attracted (than the other masses of planet T) and will therefore tend to 
move closer to planet L. It appears on planet T a 1st bulge, just facing planet L. 
 
In the 2nd bulge of planet T, the masses (farther from planet L) are subjected to a gravitational force �⃗� 
less important than at the center (the difference is denoted by the gravitational field −𝛬): �⃗� = 𝑚(𝐺𝑟 − 𝛬) 
 
These masses will be less attracted (than the other masses of planet T) and will therefore tend to move 
away from planet L. It appears on planet T a 2nd bulge, on the other side of the planet, symmetrical to 
the 1st bulge, and whose existence is due to an opposite reason. 
 
Planet L is deformed by the gravitational force of planet T, and 2 bulges also appear. We have the 
following diagram: 
 

 
Figure 18: planets T and L deforming under the effects of each other 

 
Rating on scales 
Neither the planets nor the bulges are here to scale. 
 
Note on centrifugal forces 
If these 2 planets were subject only to gravitational forces, they would attract and end up crashing 
against each other. It is therefore implicitly assumed here that other forces intervene and hold their 
centres, so that they are static with respect to each other. 
 
Note on flattenings at Earth's North and South Poles 
For the Earth, the flattenings observed at the North Pole and the South Pole are not (or very little) due 
to gravitational force. They are essentially caused by the centrifugal force generated by the rotation of 
the Earth on itself. 
 
On the following diagrams, we propose for planets T and L, an elevation, frontal and transverse 
sections. Note that for reasons of symmetry, the frontal and transverse sections are in fact identical for 
each planet. 
There is also a slight flattening on the sides which compensates, at the material level, the 2 bulges. 
 



Memoir 3: Maxwell's source field equations to gravitational equations    225 

 
Figure 19: planets T and L, elevations, and sections 

 
IX.3.3 “Gravitostatic” dipole 
It is observed that the 2 bulges, which are created on planet T in the case of the "gravitostatic", under 
the effect of the gravitational force of planet L, are similar to a phenomenon of polarization of planet 
T. There is indeed appearance of a pole + and a pole -, with differentiation of these 2 poles. 
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Figure 20: "Gravitostatic" dipole 

 
In the case where we take as a reference for weight: �⃗� = 𝑚�⃗�𝑟 = 0⃗ 
 
We find as a positive mass at the + pole, and as a negative mass at the - pole. In the following 
diagram, we highlight the analogies between "gravitostatic" dipole and electrostatic dipole. 
 

 
Figure 21: analogies between dipoles 

 
IX.4 Static model II of tides, existence of attractive and repulsive forces for 

gravitation? 
IX.4.1 Study of a system with 2 deformable and static masses with respect to each other, 

system rotating on itself with respect to a Galilean reference frame 
It is now assumed that the Earth-Moon system rotates relative to a Galilean reference frame, with the 
center of mass of the Earth Moon system (i.e., the mass-weighted barycenter of the Earth Moon 
system) as the center of rotation. 
 
Compared to Model I, Model II may seem a bit more complicated. It requires the introduction of an 
additional movement, that of the rotation on itself of the Earth Moon system. Nevertheless, it has a 
significant advantage: it is sufficient in itself to explain that the Earth and the Moon are static with 
respect to each other. 
Indeed, in Model I, we have only one attractive force. To prevent the Earth and the Moon from 
colliding (since they attract each other), it is necessary to assume the existence of other forces or other 
movements that stabilize the system. 
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To perform experiments on this system, it would be necessary to use as 2 long stakes supporting 
respectively the Earth and the Moon and then study the deformations of each planet, deformations 
induced by the other planet. 
 
In Model II, thanks to rotational motion, a centrifugal repulsive force is obtained, which balances the 
gravitational attractive force. The system is stabilized, static, internally. In particular, the distance 
between the centers of the Earth and the Moon remains constant. There is no need to call for force or 
other movement. 
 
Gravitational attractive force 
For the first bulge of the Earth (the one facing the Moon), it is explained as in Model I by the 
gravitational attractive force of the Moon on the Earth. By this force alone, we obtain a first bulge a 
priori a little larger than in model I. 
 
We give the expression of the gravitational force at a point M of the Earth: �⃗� (𝑀) = 𝑚 𝐺𝑚𝑟 𝑢  
with: 
r distance between a point M of the Earth and the center L of the Moon, 
m mass of the volume studied at point M, 𝑚  mass of the Moon, 𝑢  unit vector oriented from point M to center L of the Moon. 
 
We have the following deformations (which are not at full scale): 

 
Figure 22: Gravitational attractive force that creates a first bulge 

 
Centrifugal force (repulsive) 
To explain the 2nd bulge, it is assumed that the Earth Moon system has a rotation on itself with respect 
to a Galilean reference frame, with W the center of mass of the Earth Moon system also defined as the 
center of this rotation. We have the speed of rotation: Ω = 2𝜋T  

with T = 27.3 𝑑𝑎𝑦𝑠  (quite close to a month or menstrual cycle) 
 
It should be noted that we always remain in the case of statics, since the Earth and the Moon are 
always static with respect to each other. 
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Figure 23: the Earth-Moon system on a carrousel of W center and rotational speed 𝛺 =  

 
Note 
In reality, the Moon is much smaller than the Earth, and the center of mass of the Earth Moon system 
is as in the figure above, located inside the Earth. 
 
By assumption, the centres of the Earth and the Moon are static relative to each other. In the reference 
frame 𝑅 , they are therefore static or immobile. In this reference frame 𝑅 , we apply the 
fundamental principle of Newton's dynamics, for a mass m located at the point T center of the Earth: Σ�⃗� = 𝑑�⃗�𝑑𝑡 = 0⃗ 
 
Nota 
It is often noted 𝑅∗ the reference frame of the center of mass W of the system studied (here the Earth 
and the Moon). It should be noted that in the example studied, 𝑅∗ is considered like a Galilean 
reference frame. We go from 𝑅∗ to 𝑅  by cancelling the rotational speed Ω  and then adding the 
centrifugal inertial force �⃗� (𝑇) when applying the fundamental principle of Newton’s dynamics in 𝑅 . 
 
We therefore have, including the centrifugal force (inertial force): �⃗� (𝑇) + �⃗� (𝑇) = 0⃗ �⃗� (𝑇) = −�⃗� (𝑇) 
 
For a mass m localized in T, we have: �⃗� (𝑇) = 𝑚�⃗� (𝑇) = −𝑚∆ Ω �⃗�  �⃗� (𝑇) = 𝑚�⃗�𝑟(𝑇) = 𝑚 𝐺𝑚∆ 𝑢  

So, we have: 
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�⃗� (𝑇) = 𝑚�⃗� (𝑇) = −𝑚𝐺𝑟(𝑇) �⃗� (𝑇) = −𝑚∆ Ω 𝑢 = −𝑚 𝐺𝑚∆ 𝑢  

with the following notations: 
m mass of the volume studied, 
T center of the Earth, 
L center of the Moon, 
W center of mass of the Earth-Moon system, ∆  distance between the center of the Earth and that of the Moon, ∆  distance between the centre of the Earth and the centre of mass W, ∆  distance between the center of the Moon and the center of mass W, 𝑚  mass of the Moon, 𝑚  mass of the Earth, Ω  speed of rotation on itself (or spin speed) of the Earth Moon system, 𝑇  period of rotation on itself of the Earth Moon system in a Galilean reference frame, 𝑢  unit vector in the direction of Earth Moon, 𝑢  unit vector in the direction of Moon Earth. 
 
We have analogous equations on the Moon side: �⃗� (𝐿) = 𝑚�⃗� (𝐿) = 𝑚�⃗�𝑟(𝐿) �⃗� (𝐿) = −𝑚∆ Ω �⃗� = 𝑚 𝐺𝑚∆ 𝑢  �⃗� (𝐿) = −∆ Ω 𝑢  �⃗�𝑟(𝐿) = 𝐺𝑚∆ 𝑢  

 
Why is centrifugal force the same at every point on Earth? 
The centrifugal force at a point M is a function of the distance between M and the center of rotation. 
However, in this case, not all points on the Earth have of course the same distance from the center of 
mass W. 
In fact, in the case of a solid rotation, not all points on the Earth revolve around W. They revolve 
around other points. On the other hand, they all perform a rotation of radius ∆  and period 𝑇 . Thus, 
they are all subjected to the same centrifugal force. The following figure helps to better understand. 
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Figure 24: solid rotation of the Earth 

 
Note that the vectors 𝑇 𝑀⃗, 𝑇 𝑀⃗, 𝑇 𝑀⃗…, have the same direction, the same sense and the same 
norm in the course of Time. They are said to be equipollents. 
The trajectories of all points on the Earth form circles of the same radius. We are for the Earth (and 
also for the Moon) in the case of a circular translational motion. 
 
We therefore have for any point M of the Earth: �⃗� (𝑇) = 𝑚 �⃗� (𝑇) = �⃗� (𝑀) = 𝑚 �⃗� (𝑀) �⃗� (𝑇) = �⃗� (𝑀) = −∆ Ω �⃗�  
 
We have: �⃗� (𝑇) = −𝑚 𝐺𝑚∆ 𝑢  

Therefore: �⃗� (𝑀) = −𝑚∆ Ω 𝑢 = −𝑚 𝐺𝑚∆ 𝑢  

 
Note 
The orbits of the different points of the Earth are actually slightly elliptical, but to simplify the model, 
we will consider them here as circular. 
This centrifugal force should not be confused with that due to the rotation of the Earth on itself (spin) 
which increases with the distance from the point considered to the axis of rotation. 
 
We schematize the deformations of the Earth and the Moon due to the rotation of the Earth Moon 
system: 
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Figure 25: centrifugal repulsive force that creates a second bulge 

 
Tidal force, vector sum of gravitational attractive force and centrifugal repulsive force 
For a mass m localized in M and subjected to the tidal force, we have the following figure: 
 

 
Figure 26: Attractive and repulsive force superposition 

 
We recall the 2 forces to which is subjected this mass m located in M: �⃗� (𝑀) = −𝑚 𝐺𝑚∆ 𝑢  �⃗� (𝑀) = 𝑚 𝐺𝑚𝑟 𝑢  
 
When we add the effects of gravitation and the effects of centrifugal force, we obtain the tidal force: �⃗� é (𝑀) = �⃗� (𝑀) + �⃗� (𝑀) �⃗� é (𝑀) = 𝑚(𝐺𝑚𝑟 𝑢 − 𝐺𝑚∆ 𝑢 ) 

with: 
m mass of the volume studied, ∆  the distance between the centre of the Earth and that of the Moon, 
r the distance between a point M of the Earth and the centre L of the Moon, 𝑅  the radius of the Earth, 𝑚  the mass of the Moon. 
 
Then by making some simplifications, with ∆ ≫ 𝑅 , one obtains by projecting on the axes of the 
point M considered: 
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�⃗�(𝑀) ≈ 𝑚𝑔 𝑚𝑚 (𝑅  ∆ ) ((3𝑐𝑜𝑠 𝜃 − 1)𝑢 + 32 𝑠𝑖𝑛2𝜃𝑢 ) �⃗�(𝑀) ≈ 𝑚𝑔 𝑚𝑚 (𝑅  ∆ ) 3𝑐𝑜𝑠 𝜃 + 1 

with: 
the constant 𝑔 =  acceleration of gravity on the Earth's surface, 𝜃 the latitude of the point M considered. 
 
We have the deformations of the 2 planets with indicated the attractive and repulsive forces: 

 
Figure 27: attractive and repulsive forces 

 
We have the deformations with indicated the tidal forces: 

 
Figure 28: tidal forces 

 
Why are the 2 bulges identical when the causes are different? 
The gravitational attractive force distorts the Earth. Nevertheless, these deformations are symmetrical 
with respect to a plane perpendicular to the Earth-Moon axis, plane slightly offset towards the Moon 
with respect to the center T of the Earth. 
The centrifugal repulsive force has the effect, in a way, of shifting this plane and passing it through the 
center T of the Earth. Thus, the 2 bulges are symmetrical with respect to this plane passing through T 
and perpendicular to the Earth-Moon axis. 
 
IX.4.2 Bridging the gap between "gravitostatic" and electrostatics? 
In the static model II, we note the presence of two forces, one repulsive and the other attractive, as in 
the case of electrostatics. 
Let us retain from the study of this model II, that any system with 2 static bodies with respect to each 
other, and rotating on itself with respect to a Galilean reference frame, can be interpreted by an 
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observer located in this Galilean reference frame, as presenting a repulsive force between these 2 
bodies. 
 
When an observer notices a repulsion between 2 electric charges, he usually explains this repulsion by 
an identical sign of the 2 charges (charges + or charges -). Could he finally explain this repulsion by a 
2-body system having a rotation on itself, and generating a centrifugal force greater than the attractive 
force between the 2 bodies? 
Similarly, when an observer notices an attraction between 2 electric charges, he usually explains this 
repulsion by an opposite sign of the 2 charges (charges + and charges -). Could he finally explain this 
attraction by a 2-body system having a rotation on itself, and generating a centrifugal force lower than 
the attractive force between the 2 bodies? 
These interpretations would bring together electrostatic and "gravitostatic", with bodies (or charges) of 
the same nature. These bodies would simply be distinguished by their respective movements and 
explain the existence of attractive and repulsive forces. 
 
IX.4.3 Explain 2 types of electric charge simply by movements? 
Model of the Bohr hydrogen atom, proton and electron 
In the Bohr model of the hydrogen atom, the proton is generally considered fixed with respect to a 
Galilean reference frame, and the electron as rotating around the proton. The electron is "stabilized" by 
an attractive electric force and a repulsive centrifugal force depending on the speed of the electron in 
the Galilean reference frame. 
Note that in this Bohr model, we are not in the case of electrostatics, since the 2 charges + and -, are 
mobile with respect to each other. 

 
Figure 29: Bohr model of the hydrogen atom 

 
Model with 2 electric charges of the same nature, static in relation to each other, rotating on a 
carrousel (charges in circular translational motion) 
In this model, we are again in the case of electrostatics. When the carrousel turns in one sense, for 
example clockwise, the 2 charges + repel each other under the effect of centrifugal force. When the 
carrousel turns in the other sense, the 2 charges - also repel each other under the effect of centrifugal 
force. The difference in nature between the + and - charges is explained here by the sense of rotation 
of the carrousel. 
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Figure 30: 2 electric charges + on a carrousel 

 
Figure 31: 2 electric charges - on a carrousel 

 
Note 1 on the sense of rotation reference 
Here we assume that the carrousel is clockwise for electric charges +, and in the "trigo" or 
counterclockwise sense for electric charges -. It is a random choice, obviously without justification. 
Moreover, if an observer looking "over" these 2 carrousels, then looks at them "below", he will see 
them turn in the other sense. 
 
The reference of the sense of rotation of these carrousel is therefore not defined in relation to an 
external observer, but in relation to the charges between them., with the idea that a carrousel formed of 
2 static charges + turns in one sense, and that a carrousel formed of 2 static charges – turns in the other 
sense. 
According to these ideas, if we superimpose a + charge and a charge -, we obtain a carrousel of low 
speed of rotation on itself compared to a Galilean reference frame, and therefore 2 charges that attract 
each other. To stabilize the system, it is necessary to use other forces or movements, such as a rotation 
of the electron around the proton (case of the Bohr atom). 
 
Note 2 on a circular translation 
We talk about carrousel and rotation. Nevertheless, as for the Earth and the Moon in Model II, it 
would in fact be a circular translation for the points of the bodies studied. 
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Note 3, the analogue of the carrousel in electromagnetism is the magnetic field 
A mass on a merry-go-round, its analogue in electromagnetism, is an electric charge in a magnetic 
field. 
 
IX.4.4 The electron that goes back in Time 
We take up in this paragraph the idea of J. A. Wheeler and R. Feynman of an electron going back in 
Time, an electron that would be a positron. We mix this idea with that of the carrousel with 2 static 
bodies in relation to each other. We have the following figure: 
 

 
Figure 32: 2 charges - on a carrousel turning in the sense "trigo", advancing in the sense of Time 

identical to ours 

 
When we go back in time, we modify the previous figure, with following the idea of J. A. Wheeler and 
R. Feynman, an electron that transforms into a positron. Note that during this time revival, the 
characteristics of the 2-body system are preserved, since the carrousel always turns in the same trigo 
sense. We have the following figure: 
 

 
Figure 33: 2 charges + on a carrousel turning in the sense "trigo", advancing in the sense of Time 

opposite to ours 

 
In our Time, an observer sees this carrousel rotate clockwise sense, and therefore in the opposite sense 
to that of the carrousel of 2 electrons of charge -. He can therefore conclude the existence of 2 
positrons of charge +. We have the following figure: 
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Figure 34: 2 charges + on a carrousel turning clockwise sense, in the sense of Time identical to ours 

 
IX.4.5 Decomposition of an acceleration   
We remind the decomposition of an acceleration: [�⃗�] = 𝑑�⃗�𝑑𝑡 + 𝜕𝛺𝜕𝑡 ∧ 𝑂𝑀 + �⃗� ∧ (𝛺 ∧ 𝑂𝑀) + 2𝛺 ∧ �⃗�  

 
In the 2nd Memoir, it was proposed that the Coriolis force 𝑚�⃗� ∧ 2𝛺 is for gravitation the analogue of 
the Lorentz force 𝑞�⃗� ∧ 𝐵 of electromagnetism. In the previous chapter, it was proposed that the drive 
acceleration 

⃗ ∧ 𝑂𝑀 is the analogue of the phenomena of induction of M. Faraday. 
By contrast, as pointed out in the same chapter, there is no analogue in electromagnetism to centrifugal 
inertial acceleration 𝛺 ∧ (𝛺 ∧ 𝑂𝑀). To see if finally, there would not be an analogue in the 
phenomena of repulsion observed between 2 electric charges of the same nature? 
 
IX.5 Tides in motion  
This section does not deal with analogies between "gravitostatic" and electrostatic. It simply has the 
advantage of proposing a dynamic tidal model, explaining in a simplified way the variations in the 
level of the ocean during a day. 
 
IX.5.1 The formation of continents 
We slightly modify the previous patterns, adding to planet T, 3 non-deformable islands: X, Y and Z. 
Island X is positioned on the North Pole of Planet T. Islands Y and Z are positioned on the equator of 
planet T, with island Y facing planet L, and island Z on the side, relative to L. 
At the bottom left of the figure, we symbolize the constant levels of the ocean, functions of the 
position of the 3 islands in relation to planet L. 
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Figure 35: Planet T with 3 islands 

 
IX.5.2 Study of moving masses 
We now wish to observe for the 3 islands tidal phenomena, that is to say periodic variations in the 
level of the ocean. 
 
In the case of the Earth, the Moon and the Sun, the movements are numerous and complex, hence 
many periodic phenomena (high tides, etc.). We stop here at a simplified case, with: 

- a planet L always static (in model I in a Galilean reference frame, in model II on the carrousel 
of the Earth Moon system), 

- a planet T rotating on itself with respect to L, according to a period 𝑇  of approximately 
24h50. 

 𝑇  is the period of rotation on itself (spin) of the Earth in the lunar reference frame (duration close to 
one Earth day). In this lunar reference frame, we have the speed of rotation of the Earth on itself 
(spin): Ω = 2π𝑇  

 
For Island X, located at the North Pole of planet T, there is no variation in ocean level. On the other 
hand, for islands Y and Z, located on the equator, there are 2 cycles of high tide, low tide during the 
period of 24:50. We give on the following diagrams a division into 4 stages of these tides. 
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Figure 36: 4 steps of rotation of planet T, with variation of the ocean level of islands Y and Z 

 
In the following diagram, we give for island Y, the sinusoidal variations of the ocean level over a 
period of 24h50. 
 

 
Figure 37: Sinusoidal variations in ocean level 
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IX.6 Complements on accelerations and inertial forces, summary of their analogues on 

the one hand between Gravitation and Electromagnetism, on the other hand 
between Space and Time 

IX.6.1 Analogues of Coriolis inertial acceleration 
 Gravitation Analogue for electromagnetism 
Space Coriolis inertial acceleration �⃗� = −�⃗� ∧ 2�⃗� /  

Electromotor field �⃗�𝑚 = �⃗� ∧ 𝐵 /  
Analogue for 
Time 

Gravitational force �⃗� = �⃗� ∧ 2𝑐 𝐾 /  
Electric force �⃗� = �⃗� ∧ �⃗�𝑙 /  

 
IX.6.2 Analogues of the acceleration of drive inertia due to the variation in rotation velocity �⃗�𝒙𝒚𝟏/𝒕 
 Gravitation Analogue pour l’électromagnétisme 

Space Drive inertial acceleration due to 
variation in rotation velocity 𝛺 /  
 �⃗� = 𝜕𝛺 /𝜕𝑡 ∧ 𝑂𝑀 𝜕�⃗�𝜕𝑡  

𝑟𝑜𝑡(�⃗� ) = 𝜕2𝛺 /𝜕𝑡  

 

Neumann case of induction 
 
 
 �⃗�𝑚 = − 𝜕𝐵2𝜕𝑡 ∧ 𝑂𝑀 𝜕𝐴𝜕𝑡  

𝑟𝑜𝑡(�⃗�𝑚 ) = −𝜕𝐵 /𝜕𝑡  

 
Analogue for 
Time 

𝜕�⃗�𝜕𝑥  
Gravitational field 

𝜕𝐴𝜕𝑥  

Electrostatic field 

 
IX.6.3 Analogues of centrifugal drive inertia acceleration 
 
 Gravitation Analogue for electromagnetism 
Space Centrifugal drive inertia acceleration �⃗� = 𝛺 ∧ 𝛺 ∧ 𝑂𝑀  

Repellent electric field? 

Analogue 
pour le Temps 

? ? 

 
IX.7 Conclusion 
In this chapter, we focused on the analogies and differences between electrostatics and "gravitostatic", 
testing whether it is possible to erase certain differences (such as 2 natures of charge and 1 single 
nature of mass) by a kinetic approach in Space-Time. 
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In these "tests", we took simplified and static tidal models as examples. This was an opportunity first 
to look at a hypothetical "gravitostatic" dipole, then to try an explanation of the repulsive electric force 
by movements in Space-Time. 
According to this last "test", the + and - charges would in fact be identical, and it would be their 
movements in Space-Time that would distinguish them. Thus, there would be only one nature of 
electric charge, as there is only one nature of mass (this mass itself being interpreted as a "velocity" in 
Time, according to the ideas proposed in Memoir 2). 
 
However, it must be admitted, we have remained far from a quantitative explanation. Some tracks 
have been sketched, but there are still many unexplained elements, such as the ratio always contant 
and very far from 1, between the mass of a proton and that of an electron. 
There are also other important differences between electromagnetism and gravitation, including the 
quantization by a photon particle representing the electromagnetic field, and the absence of an 
analogous particle for the gravitational field. We will return in future Memoirs to this question of 
quantification and particles representing fields. 



242    Invariances and transformations 

Chapter X Form and conclusion of the Memoir 
 
X.1 Summary of the main equations (in a space x, y, t) 
In this Memoir, many analogies between electromagnetism and gravitation have been conducted. This 
allowed us to propose new source field equations for gravitation. Often, and surprisingly, these 
analogies were not easily spotted, precisely because they had not been taken far enough. 
 
For example, it has been proposed that the analogue of Maxwell Gauss = 𝑑𝑖𝑣�⃗�𝑙, is for gravitation, 

as expected, Gauss gravitation −4𝜋𝐺𝜌 = 𝑑𝑖𝑣�⃗�𝑟, is Newton's law of universal gravitation, albeit 
slightly modified. 
 
Similarly, it has been proposed that the analogue of Maxwell Ampère 𝜇 𝚥 = 𝑟𝑜𝑡𝐵, is for gravitation, 
the fundamental principle of Newton's dynamics �̇� = −  (written here as Hamilton's 2nd canonical 
equation). 
Similarly, it has been proposed that the analogue of Maxwell Ampère drive current 𝜇 𝚥 = 𝜇 𝜀 ⃗

, is 

for gravitation, the Einstein and de Broglie's relation 𝑝 = . 

Finally, it has been proposed that the analogue of Maxwell Faraday 𝑟𝑜𝑡�⃗�𝑙 = − ⃗
, is for gravitation, 

the rotation velocity Ω⃗ of a carrousel that varies over time, and the necessary addition of an inertial 
acceleration: �⃗� = ⃗ ∧ 𝑂𝑀. 
These main analogies are recalled in the following form. 
 
Source field equations: 
 
 Electromagnetism Gravitation 

Time-oriented sources 
(Gauss) 

�⃗�𝜀 = 𝜕�⃗�𝑙 /𝜕𝑥 − 𝜕�⃗�𝑙 /𝜕𝑦  

Electrostatics: �⃗�𝜀 = 𝜕�⃗�𝑠 /𝜕𝑥 − 𝜕�⃗�𝑠 /𝜕𝑦  

 

−4𝜋𝐺�⃗� = 𝜕2𝑐 𝐾 /𝜕𝑥 − 𝜕2𝑐 �⃗� /𝜕𝑦  

Gravitostatic: −4𝜋𝐺�⃗� = 𝜕�⃗�𝑟 /𝜕𝑥 − 𝜕�⃗�𝑟 /𝜕𝑦  

Space-oriented sources 
(Ampère) 𝜇 𝚥 = 𝜕𝐵 /𝜕𝑥 − 𝜇 𝜀 𝜕�⃗�𝑙 /𝜕𝑡  − 1ℏ (𝑑𝑝𝑑𝑡 ) = 𝜕𝛺 /𝜕𝑥 − 𝜕𝐾 /𝜕𝑡  

− 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = 𝜕𝐾 /𝜕𝑡 − 𝜕𝛺 /𝜕𝑥  

 
Note 
These source field equations are verified in restricted Einsteinian mechanics, i.e., they are invariant by 
the Lorentz transform. 
 
 
Maxwell Faraday electromagnetism homogeneous field equations: 



Memoir 3: Maxwell's source field equations to gravitational equations    243 

((�⃗� ∧ 𝐵 / ) + (𝑢 ∧ 𝜕𝐴𝜕𝑡 ) ) ⋅ 𝑑�⃗� = −𝜕𝐵 /𝜕𝑡 ⋅ 𝑑𝑆 = − 𝑑𝛷𝑑𝑡  

�⃗�𝑚 ⋅ 𝑑�⃗� = − 𝑑𝛷𝑑𝑡  

 
Faraday gravitation homogeneous field equations: ∮ ((�⃗� ∧ 2𝛺 / ) + (𝑢 ∧ ⃗ ) ) ⋅ 𝑑�⃗� = ∬ ⃗ ⋅ 𝑑𝑆 =  

(−�⃗� + �⃗� ) ⋅ 𝑑�⃗� = 2𝑑𝛷𝑑𝑡  

 
X.2 Conclusion of the Memoir 
Maxwell's equations proposed in the 19th century may appear to have a complex form. However, we 
see that if we push the analogy between Time and Space, between magnetic field and electric field, 
between Maxwell Gauss and Maxwell Ampère, we find much simpler forms, both for source field 
equations and for homogeneous field equations, both for electromagnetism and for gravitation. 
 
In addition, in order to find velocities of electric charges or masses equal to group velocities, by 
dividing the proposed source field equations, we find on the one hand a known condition between the 
constants 𝜀  and 𝜇 , on the other hand a condition between ℏ and 𝐺 giving an infinitesimal length 
identical to the Planck length. 
 
Nevertheless, there remains an unresolved question: this is the underlying reason for the equalities 
between sources and fields in Space-Time. This question is eminently important, because these source 
field equations appear to be the most fundamental of physics. 
We will come back in the 5th Memoir on these source field equations. But first, in the 4th Memoir, we 
will be interested in nuclear interactions and physics of the 20th century. 
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Memoir 4 Elements on nuclear interactions 
 
Summary 
This 4th Memoir focuses on what happens in the nucleus of the atom, that is to say nuclear interactions. 
It is mainly a historical account of the main models on this subject, from the 1910s to the 1970s. 
 
We will first mention the scattering of Ernest Rutherford (1911), the work of W. Heisenberg on 
isospin (1932), the theory of E. Fermi on the weak interaction (1933), Hideki Yukawa's model for 
nuclear interactions (1935). This model involves a photon-type mediating particle, but with mass (the 
particle was named mesotron by H. Yukawa, it was later called the meson). 
 
We will then talk about the work of Chen Ning Yang and Robert Mills (1954), decrying the strong 
interaction, from Gauge transformations belonging to the group 𝑆𝑈(2) . We will focus on the 
Glashow-Weinberg-Salam electroweak model (1960s), bringing together the electromagnetic 
interaction based on the group 𝑈(1) , the weak interaction based on 𝑈(1)  and a 3rd interaction based 
on 𝑈(1) . Finally, we will briefly mention the BEH mechanism (mechanism proposed 
independently in 1964 by R. Brout and F. Englert, as well as by P. Higgs) to assign a mass to particles.  
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Chapter I Ernest Rutherford's scattering (1911) and particle collisions 
 
Purpose of the chapter 
We are interested in Rutherford scattering, a precursor of experiments of collisions between particles 
and involving the electromagnetic force. We will approach collisions between particles according to a 
classical approach, then according to a relativistic quantum approach. 
 
I.1 The discovery of radioactivity by Henri Becquerel (1886) 
Usually, the first research on the nucleus is dated by the discovery in 1896 of radioactivity. Studying 
uranium salts away from sunlight, Henri Becquerel observed that these salts emit radiation. 
Subsequent experiments conducted by H. Becquerel himself, as well as by Marie Skłodowska-Curie 
and Pierre Curie concluded that there were three types of radiations called 𝛼, 𝛽 and 𝛾 (following the 
first 3 letters of the Greek alphabet). 
 
The discovery aroused strong interest among physicists. Many people studied uranium salts and the 
nature of their radiation. Quickly, it was realized that the radiations 𝛼 are positively charged, that the 
radiations 𝛽 are negatively charged, and that the radiations 𝛾 are neutral. In addition, it was found that 
radiations 𝛼 are much more massive than radiations 𝛽. Gradually, it was understood that radiations 𝛼 
consist of positively charged helium nuclei, that radiations 𝛽 consist of negatively charged electrons, 
and that radiations 𝛾 are an electromagnetic wave. 
 
During the 1930s and 1940s, physicists came to distinguish between two types of nuclear interactions. 
They linked radiation 𝛽 to the so-called weak interaction and the decay of the nucleus. They 
associated the so-called strong interaction with the cohesion of the nucleus, i.e., what holds the 
nucleons together. 
 
Note on the scope of weak and strong interactions 
Weak and strong nuclear interactions are characterized by a very low scope (at the level of the nucleus 
of the atom). In this, they are opposed to gravitational and electromagnetic forces that have an infinite 
scope. 
 
 
I.2 Rutherford's experiments (1909-1911) 
From 1909 to 1911, E. Rutherford and his two collaborators Hans Geiger and Ernest Marsden used 
radiations of particles 𝛼 (helium nuclei) to cause collisions between particles. We speak of incident 
particles before the collision and scattered particles after the collision, hence the term Rutherford 
scattering. 
These experiences are of great importance for several reasons. First, they can be presented as the 
precursors of collisions between particles in accelerators. Then, they allow E. Rutherford to propose a 
new model for the atom. 
 
Let's explain one of these experiences. Using a beam of particles 𝛼, E. Rutherford and his two 
collaborators bombard a very thin layer of gold. Most of the particle beam passes through the gold 
layer and reaches its target, i.e., propagates in a straight line. However, some particles 𝛼, in a very 
small proportion (of the order of 0.01%), are deflected with a very wide angle. 
 
To explain these results, E. Rutherford imagines a planetary model of the atom, which a few years 
later will inspire N. Bohr in his explanation of the luminous lines emitted by excited atoms (see 
Memoir 1). 
In this planetary model, the atom is mainly composed of vacuum, which explains why most particles 𝛼 
can get through. In the centre, there is an electrically positively charged nucleus. 
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By effect of the electrostatic Coulomb force, this nucleus deflects in a small proportion and with a 
very large angle some particles 𝛼. Finally, around the nucleus, there are electrons of negative charge in 
rotation. 
 
I.3 Rutherford scattering in classical mechanics 
Let us study Rutherford scattering in the context of classical mechanics (non-quantum and non-
relativistic), such as E. Rutherford describes it himself. 
 
Let be incident particles of positive charge 𝑞 (helium nuclei) in motion that collide with positive 
charged particles 𝑄 (the nuclei of the atoms of the gold leaf). Using the Coulomb electrostatic force, 
we deduce the effective cross-section 𝜎 of Rutherford scattering: 𝑑𝜎𝑑𝛺 = ( 𝑞𝑄16𝜋𝜀 𝐸 ) 1𝑠𝑖𝑛 ( 𝜃2) 

with: 𝐸 = 𝑚𝑣  the initial energy of the incident particle on the scattering center (immobile particles of 
the gold leaf), 𝜃 angle of the scattered particle, 𝜎 the effective cross-section of incident particles, 𝛺 the solid angle of the scattered particles. 
 
According to the diagram below, if an incident particle passes through the corona 𝑑𝜎, the scattered 
particle passes through the corona 𝑑𝛺. The scattering center is for example an atom nucleus of gold 
leaf. 

 
 
Figure 1: Rutherford scattering (source Wikipedia) 

 
For electron or proton particles of electric charge 𝑒, we usually express the effective section 𝜎 using 𝛼 . We have: 𝑑𝜎𝑑𝛺 = (𝛼 ℏ𝑐4𝐸 ) 1𝑠𝑖𝑛 ( 𝜃2) 

 
Note 

Scattering center 
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𝛼 = ℏ ≈  (fine-structure constant or electromagnetic coupling constant). 
 
 
I.4 Rutherford scattering in the context of relativistic quantum electrodynamics 
I.4.1 Preview on mediating particles 
Let us give a simplified version of Rutherford scattering in the context of relativistic Quantum 
Electrodynamics (QED). We take up Richard Feynman's ideas on collisions between particles, ideas 
developed in the years 1940-1950. 
 
We will come back to this later, but note that one of the main ideas of relativistic quantum 
electrodynamics is that an incident particle 1 (for example, an electron 1) does not react directly with a 
particle 2 of the scattering center (for example, another electron 2) via the Coulomb electrostatic force. 
There is a mediating particle called boson that reacts on the one hand with the incident electron 1, on 
the other hand with the electron 2 of the scattering center. In the case of electromagnetic interaction, 
the mediating particle is the photon. 
 
I.4.2 Probability amplitude of a propagator and vertices 
We remind Klein Gordon's relativistic wave equation: 
 ((𝑝 ) 𝑐 − 𝑚 𝑐 )𝜓(0) = 0 

with (𝑝 ) = (𝐸 , 𝑝 , 𝑝 , 𝑝 ) the quadrivector energy momentum of Special Relativity. 
 
In relativistic quantum electrodynamics, the Klein Gordon wave function is interpreted as the boson 
wave equation (Mediating particle of interactions). 
 
From this equation, R. Feynman defines a propagator, associated with the boson that propagates with a 
quadrivector energy momentum 𝑝  and a mass 𝑚: 𝑃𝑟 𝑜 𝑝𝑎 = 𝑖(𝑝 ) 𝑐 − 𝑚 𝑐  

𝑃𝑟 𝑜 𝑝𝑎 = 𝑖(𝑝 ) − 𝑚  

with the constant 𝑐 chosen as equal to 1. 
 
R. Feynman also defines a probability amplitude of vertices 1 and 2 describing the emission 
absorption of the boson by particles 1 and 2. This probability amplitude depends directly on the 
coupling constant with the particles 1 and 2 (for example proportional to charges with coupling 𝑔  or 𝑔 ). 
 
We have: 𝑉𝑒𝑟𝑡𝑖𝑐𝑒 = 𝑔  𝑉𝑒𝑟𝑡𝑖𝑐𝑒 = 𝑔  

 
We obtain the probability amplitude 𝑀 during the collision between the particles 1 and 2: 𝑀 ∝ 𝑔 . 𝑖(𝑝 ) − 𝑚 . 𝑔  

 
We have the probability: 
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𝑃𝑟 𝑜 𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑔 𝑔(𝑝 ) − 𝑚  

 
This interpretation makes it possible to develop a simple graphical method and to calculate the 
probability of certain processes. This graphical method is called Feynman diagrams. 
 
We have below the Feynman diagram corresponding to the collision between 2 moving particles and 
the intervention of an intermediate boson. 
 

 
Figure 2: collision between two particles 1 and 2, intermediate boson 

 
Note 
The arrows of a Feynman diagram indicate the sense of the particle's momentum and not the sense of 
the reaction (which is indicated by Time). The particles have an arrow oriented in the sense of Time. 
Antiparticles have an arrow oriented in the opposite sense of Time. 
In QED, fermions (particles of matter) have a straight line. Photons (light-mediating particles) have a 
wavy line. 
 
 
I.4.3 Example of electromagnetic interaction 
For electromagnetic interaction, the mediating particle is the photon 𝛾 of zero mass with 𝑃𝑟 𝑜 𝑝𝑎 =( )  and coupling charge 𝑔 = 𝑒. So, we have: 

𝑃𝑟𝑜𝑏𝑎𝑙𝑖𝑙𝑖𝑡𝑦 ∝ 𝑒(𝑝 ) = 𝑒(𝑝 ) ∝ 𝛼(𝑝 )  

 
We give the Feynman diagram for the Rutherford scattering between two moving electrons. 
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Figure 3: collision between two electrons and intermediate photon 𝛾 

 
I.4.4 Rediscover Rutherford scattering in the classic setting 
We give the cross section for the collision of charged particles, during Rutherford scattering, in the 
context of relativistic electrodynamics: 𝑑𝜎𝑑𝛺 ∝ 𝛼(𝑝 ) 𝐸  

 (𝑝 ) is the amount of momentum energy transferred to the scattering center by the incident particle 
during the scattering process. It is also equal to the amount of momentum energy transported by the 
photon mediating particle. 𝐸  is the initial energy of the incident particle. 
 
We have the relationship between the initial energy 𝐸 , the momentum energy transferred (𝑝 ), and 
angle 𝜃 of the scattered particle: (𝑝 ) = 2𝐸 (1 − 𝑐𝑜𝑠 𝜃) (𝑝 ) = 4𝐸 𝑠𝑖𝑛 ( 𝜃2) 

 
From ∝ ( ) 𝐸  and using (𝑝 ) = 4𝐸 𝑠𝑖𝑛 ( ), we find the expression of Rutherford 
scattering in the context of the classical approach: 𝑑𝜎𝑑𝛺 = (𝛼 ℏ𝑐4𝐸 ) 1𝑠𝑖𝑛 ( 𝜃2) 

 
I.5 Conclusion of the chapter 
Rutherford scattering is the precursor to particle collisions. E. Rutherford gave it a classic description. 
This scattering can also be more finely described by relativistic quantum electrodynamics and 
Feynman diagrams. 
These collisions make it possible to study incident and scattered particles, mediating particles, as well 
as the interactions involved. For example, they provide information on certain characteristic properties 
of particles. Among these properties is the spin or isospin that we will deal with in the next chapter. 
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Chapter II The spin of Uhlenbeck and Goudsmit (1925) and the isospin of 
Heisenberg (1932) 

 
Purpose of the chapter 
The spin 𝑆 is a physical notion proposed by G. Uhlenbeck and S. Goudsmit in 1925, to describe 
electromagnetic interaction. The isospin 𝐼 is a notion proposed by W. Heisenberg in 1932, by 
mathematical analogy with spin, to describe nuclear interactions. We remind here some analogies 
between the spin which reverses during a hyperfine transition of the electron, and the isospin which 
reverses during a decay 𝛽  when you go from a neutron to a proton. 
 
II.1 Le spin S by G. Uhlenbeck and S. Goudsmit (1925) 
II.1.1 Change of states and modification of the orbital angular momentum of an electron 
In 1913, the physicist N. Bohr managed to explain the luminous lines emitted by an excited hydrogen 
atom, by proposing the model of an electron rotating around the proton. In this model, the electron can 
only occupy certain possible orbits (or possible orbital angular momentums). N. Bohr matches these 
orbits to electron states and energy levels. The passage from one state to another of the electron 
corresponds to the emission of a luminous line by the hydrogen atom. 
Nevertheless, in the Bohr model of the electron, there are still some unexplained phenomena such as a 
doubling of the light lines. There is not a single line, but actually two lines very close in wavelength 
called doublets. 
 
II.1.2 Change of states and modification of the spin S of an electron, hyperfine transition   
In 1922, Otto Stern and Walther Gerlach passed a beam of silver atoms through a magnetic field. 
While conventionally, silver atoms should not undergo the effect of the magnetic field, the 2 
experimenters observe a separation of the beam in two. 
 
To explain these facts (doubling of the lines, separation of the beam in two and others such as the 
anomalous Zeeman effect), George Uhlenbeck and Samuel Goudsmit proposed in 1925 that particles 
such as the electron have their own magnetism (this must also be the case of silver atoms in the 
experiment of Stern and Gerlach). 
 
In a way, the electron is not only comparable to a small electric charge, but also to a small magnet. 
The model represents the electron as a small charged and massive sphere, rotating on itself and 
possessing a magnetic moment of spin, connected to a spin angular momentum taking values of the 
type: + ℏ, − ℏ (hence the 2 beams for silver atoms of the Stern and Gerlach experiment). 
 
The doublets of light lines very close in wavelength to each other, are explained by an inversion of the 
spin of the electron, passing for example from + ℏ to − ℏ, inversion of the spin called hyperfine 
transition. 
Even if the electron has one of its physical characteristics modified (in this case spin), it is indeed the 
same particle in two different states. 
 
The spin hypothesis is particularly fruitful. As we saw in Memoir 1, it is then incorporated into many 
models such as the non-relativistic Pauli wave equation or the Dirac relativistic wave equation. 
Spin also inspired W. Heisenberg to develop the notion of isospin., which a priori has nothing to do 
physically with spin, but has strong formal and mathematical analogies. 
 



254    Invariances and transformations 

II.1.3 Mathematical treatment of total angular momentum and spin 
In quantum mechanics, we define operators on the wave function 𝜓, transcriptions of notions from 
classical mechanics to quantum mechanics. We thus have the position and momentum operators on a 
wave function 𝜓 defined by: 𝑥𝜓 = 𝑥 ⋅ 𝜓 �̂� 𝜓 = −𝑖ℏ 𝜕𝜓𝜕𝑥  

 
In classical mechanics, the oriented angular momentum following z, has the expression: 𝐿 = 𝑥𝑝 − 𝑦𝑝  

 
In quantum mechanics, the orbital angular momentum operator is defined on the wave function 𝜓: 𝐿 = 𝑥�̂� − 𝑦�̂�  

 
The total angular momentum operator noted 𝐽 is the vector sum of the orbital angular momentum 
operator noted 𝐿 and the (intrinsic) spin angular momentum operator noted 𝑆: 𝐽 = 𝐿 + 𝑆 

 
We usually define 𝐽 using 𝐽  the angular momentum along the z-axis and its norm (𝐽) = (𝐽 ) +(𝐽 ) + (𝐽 ) . 
 
We look for eigenstates (eigenvectors) common to (𝐽)  and 𝐽 , as well as their eigenvalues. 
Mathematically, it is shown that |𝑗, 𝑚⟩ is the desired eigenstate, ℏ 𝑗(𝑗 + 1) the eigenvalue of (𝐽) , ℏ𝑚 
the eigenvalue of 𝐽 . 
 
We get: (𝐽) |𝑗, 𝑚⟩ = ℏ 𝑗(𝑗 + 1)|𝑗, 𝑚⟩ 𝐽 |𝑗, 𝑚⟩ = ℏ𝑚|𝑗, 𝑚⟩ 
with 𝑗 integer or half integer, 
with −𝑗 ≤ 𝑚 ≤ +𝑗 per jump of one unit. 
 
The mathematical treatment is exactly the same for an orbital angular momentum 𝐿 or a spin angular 
momentum 𝑆. In the case of 𝑆, we usually define angular momentum operators 𝑆  and (𝑆) =(𝑆 ) + (𝑆 ) + (𝑆 ) . We have the eigenstates common to (𝑆)  and 𝑆 , as well as eigenvalues: (𝑆) |𝑠, 𝑚 ⟩ = ℏ 𝑠(𝑠 + 1)|𝑠, 𝑚 ⟩ 𝑆 |𝑠, 𝑚 ⟩ = ℏ𝑚 |𝑠, 𝑚 ⟩ 
with 𝑠 integer or half integer, 
with −𝑠 ≤ 𝑚 ≤ +𝑠 per jump of one unit. 
 

II.1.4 Building a composite body formed by 2 particles with spin 𝟏𝟐 

By binding 2 particles bearing spin 𝑠 =  and 𝑠′ =  in an orbital angular momentum state 𝐿 = 0, we 
can construct 2 total spin states 𝑆 = 1 and 𝑆 = 0. The total spin state 𝑆 = 1 in turn breaks down into 3 
states, with 𝑆 = ±1 and 𝑆 = 0. 
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Below, we take as example 2 electrons 𝑒 and 𝑒′ with spin 𝑠  and 𝑠 ′. |𝑆 = 1, 𝑆 = 1⟩ = 𝑠 = 12 , 𝑠 = 12 ; 𝑠′ = 12 , 𝑠 ′ = 12 = |𝑒 ; 𝑒 ′⟩ 
|𝑆 = 1, 𝑆 = 0⟩ = 1√2 ( 𝑠 = 12 , 𝑠 = 12 ; 𝑠 = 12 , 𝑠 = − 12 + ( 𝑠 = 12 , 𝑠 = − 12 ; 𝑠 = 12 , 𝑠 = 12 )= 1√2 (|𝑒 ; 𝑒 ′⟩ + |𝑒 ; 𝑒 ′⟩) |𝑆 = 1, 𝑆 = −1⟩ = 𝑠 = 12 , 𝑠 = − 12 ; 𝑠′ = 12 , 𝑠 ′ = − 12 = |𝑒 ; 𝑒 ′⟩ 
|𝑆 = 0, 𝑆 = 0⟩ = 1√2 ( 𝑠 = 12 , 𝑠 = 12 ; 𝑠′ = 12 , 𝑠 ′ = − 12 − ( 𝑠 = 12 , 𝑠 = − 12 ; 𝑠′ = 12 , 𝑠 ′ = 12 )= 1√2 (|𝑒 ; 𝑒 ′⟩ − |𝑒 ; 𝑒 ′⟩) 

 
II.2 Heisenberg isospin (1932) defined as a strong nuclear charge of the neutron and 

proton 
II.2.1 Analogies of proton and neutron behaviour 
The isospin 𝐼 is a concept introduced by Werner Heisenberg in 1932 to explain certain facts involved 
in nuclear interactions. 
At the end of the 1920s, it was noticed that vis-à-vis a certain nuclear interaction (those we call today 
the strong interaction), the proton and the neutron behave in the same way. 
 
Like electromagnetism, where the intensity of the interaction is the same in absolute value between 2 
electrons, between 2 protons or between 1 electron and 1 proton, the intensity of the strong nuclear 
interaction is roughly the same in absolute value between 2 protons, between 2 neutrons or between 1 
proton and 1 neutron. 
 
It is also noted that proton and neutron have a very close mass. Finally, it is known that the neutron 
can decay into a proton during decay. 𝛽  where an electron is emitted. This reaction involves another 
nuclear interaction that is now called the weak interaction. 
 
To explain these different facts, W. Heisenberg imagined that the proton and the neutron are two sides 
of the same particle called the nucleon. 
First, he assigned to the proton and neutron a strong opposite nuclear charge, which he named isospin. 
This strong opposite nuclear charge explains the attraction between proton and neutron and therefore 
the cohesion of the atomic nucleus. 
Then, he transposed the change of spin state of the electron via the hyperfine transition, to a change of 
state of the isospin of the particles of the nucleus (protons and neutrons) via decay. 𝛽 . Neutron and 
proton are nucleons of opposite isospins (+ ℏ for the proton, and − ℏ for the neutron), the transition 
from one to the other is explained by an inversion of their isospin. 
 
Note 1 
For spin and isospin values, rather than saying + ℏ or − ℏ, it is also used very frequently +  or − . 
 
Note 2 
By convention, in quantum physics, it is usually chosen that it is the 3rd component of spin, noted here 𝑆 , that perpendicular to the plane x, y and oriented according to z, which is equal to ± ℏ and which 
reverses during the hyperfine transition. 
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Similarly, it is chosen that it is the 3rd component of isospin, noted here 𝐼 , which is equal to ± ℏ and 
which reverses during decay 𝛽 . 
 
Note 3 
Like the proton and the electron which respectively have an electric charge 𝑄 of +1 and −1, it will be 
seen in a future chapter on the strong interaction, that the Yang-Mills theory assigns to the neutron and 
the proton a strong nuclear charge identified with isospin, and respectively equal to −  and + . 
 
Note 4 
In the 1950s and 1960s, the notion of isospin is taken up in the Quark Model, with the notion of flavor 
(for quarks of 1st generation) which corresponds to that of isospin. An up flavored quark has an 
isospin equal to +  and a down flavor quark has an isospin equal to − . We'll come back to that. 
 
Note 5 
At the time of W. Heisenberg, there was only one notion of isospin noted here 𝐼. Today, we can 
distinguish 3 distinct notions: 

- the weak isospin or weak charge noted 𝑇, 
- the isospin 𝐼 (which is reversed when one passes from a neutron to a proton), 
- the strong nuclear charge that will be noted in this essay 𝐶𝑜 as color. 

 𝐼 and 𝐶𝑜 are sometimes confused as in the Yang-Mills theory on strong interactions. The strong 
charge 𝐶𝑜 is then considered equal to isospin 𝐼 (we speak of strong isospin and strong charge for 𝐼). 
 
Weak isospin or weak charge 𝑇 is a notion proposed by S. Glashow to describe the weak interaction, 
in strict analogy with the Yang-Mills theory describing the strong interaction, where the strong charge 
is considered equal to the isospin 𝐼. 
In that case, 𝐼 and 𝑇 are both considered to be the charge of a nuclear interaction, respectively strong 
and weak. They also share the same mathematical formalism, since they are associated with the gauge 
transformations of the group 𝑆𝑈(2). 
 
We will return to all these concepts at length in this Memoir and in the next. 
 
 
II.2.2 Mediating particle 
To explain the change of state of the particle (electron or nucleon), W. Heisenberg proposes the 
existence of a mediating particle, carrying the quantum quantity spin or isospin, and which allows the 
conservation of the quantum quantity in reactions between particles. The mediating particle is emitted 
or absorbed by the particle when the latter changes state. 
 
Thus, just as a light particle such as the electron, can by changing its spin state emit or absorb an ultra-
light particle that is the photon, so a heavy particle that is the nucleon could by changing its isospin 
state emit light particles that are electrons or positrons. 
This is what we observe in decay 𝛽 , when the neutron turns into a proton and an electron is emitted. 
 
Like isospin, the particle mediating hypothesis will be particularly fruitful. Nevertheless, in the case of 
isospin change, the electron and positron will not in fact be the mediating particle sought. It will soon 
be seen that other mediating particles will be proposed for nuclear interactions, in particular by Hideki 
Yukawa in 1935. 
 
II.2.3 Mathematical treatment of isospin 𝑰 
We have the same mathematical treatment for spin and isospin. Isospin operators are usually defined 𝐼  and (𝐼) = (𝐼 ) + (𝐼 ) + (𝐼 ) . 
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We have the eigenstates common to (𝐼)  and 𝐼 , as well as eigenvalues: (𝐼) |𝑖, 𝑚 ⟩ = ℏ 𝑖(𝑖 + 1)|𝑖, 𝑚 ⟩ 𝐼 |𝑖, 𝑚 ⟩ = ℏ𝑚 |𝑖, 𝑚 ⟩ 
with 𝑖 integer or half integer, 
with −𝑠 ≤ 𝑚 ≤ +𝑠 per jump of one unit. 
 
By binding 2 particles carrying an isospin 𝑖 = , we can construct 4 states of total isospin 𝐼 = 1 and 𝐼 = 0, 𝐼 = ±1. Here we take as an example a proton and an isospin neutron 𝑖  opposites (as well as 
an antiproton and an antineutron). 
 
For matter, we have the proton neutron doublet 

𝑛𝑝 . For antimatter, we have the doublet −�̄��̄� . 
 
We get: |𝐼 = 1, 𝐼 = 1⟩ = 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 = |𝑝; −�̄�⟩ 
|𝐼 = 1, 𝐼 = 0⟩ = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖 = 12 , 𝑖 = − 12 + ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 )= 1√2 (|𝑝; �̄�⟩ + |𝑛; −�̄�⟩) |𝐼 = 1, 𝐼 = −1⟩ = 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 = |𝑛; �̄�⟩ 
|𝐼 = 0, 𝐼 = 0⟩ = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖 = 12 , 𝑖 = − 12 − ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖 = 12 , 𝑖 = 12 )= 1√2 (|𝑝; �̄�⟩ − |𝑛; −�̄�⟩) 

 
II.3 Analogies between spin 𝑺 reversal and isospin 𝑰 reversal 
II.3.1 Spin 𝑺 reversal during a hyperfine transition of the electron 
The hyperfine transition of the hydrogen atom is the emission by the hydrogen atom of invisible light, 
which has a wavelength of 21cm in the case where the electron returns to its most stable state (lowest 
orbit or Bohr radius). This corresponds to the passage from an energy level to a new level very close to 
the previous one, hence the term hyperfine. 
 
As mentioned above, G. Uhlenbeck and S. Goudsmit proposed that this hyperfine transition 
corresponds to the passage of a movement where electron and proton rotate on themselves in the same 
sense, to a movement where electron and proton rotate on themselves in opposite senses (we speak of 
a spin passage of the proton and the electron from parallel to antiparallel). 
 
To take a comparison with the Earth-Sun system, a hyperfine transition would be equivalent to 
reversing the spin of the Earth or that of the Sun. For example, if we reverse the spin of the Earth, for 
Earthlings, the Sun no longer rises in the east, but in the west. If we reverse the spin of the Sun, for 
Earthlings, the Sun always rises in the east, but its rotation on itself in one year (relative to the Earth) 
is done in the other sense. 
 
We can write the hyperfine transition (with global conservation of the spin 𝑆  during the reaction and 
conservation of the electric charge 𝑄 by the electron): 
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𝑒 (𝑆 = ℏ2 , 𝑄 = −1) → 𝑒 (𝑆 = − ℏ2 , 𝑄 = −1) + 𝛾(𝑆 = ℏ, 𝑄 = 0) 

 
Nota 
In the case of the hydrogen atom, the most stable case (least excited atom for spin) corresponds to 
electron and proton of antiparallel spins. 
 
We have the following figure which symbolizes the passage from parallel to anti-parallel with 
emission of a photon of energy 𝛥𝐸 = 10 𝑒𝑉. 
 

 
Figure 4: Hyperfine transition of the electron 

 
II.3.2 Isospin 𝑰 inversion of the nucleon during a decay 𝜷  
By analogy with the hyperfine transition that reverses the spin 𝑆 of the electron, we assume a reaction 
that reverses isospin 𝐼 of the nucleon. For example, we have the passage from a neutron to a proton 
observed during a decay 𝛽 . 𝑛(𝐼 = − ℏ2 , 𝑄 = 0) → 𝑝(𝐼 = ℏ2 , 𝑄 = 1) + 𝐵(𝐼 = −ℏ, 𝑄 = −1) 

 
By analogy with the photon 𝛾 who carries a spin 𝑆 = ℏ, here we assume the existence of a boson 𝐵 
who carries an isospin 𝐼 = −ℏ and which allows the conservation of 𝐼 . 
 
Note 
During the passage from the neutron to the proton, the electric charge 𝑄 is not conserved at nucleon 
level. 
 
In the next Memoir, it will be proposed that the analogue of electric charge 𝑄 when reversing spin 𝑆, 
this is the weak hypercharge 𝑌  (concept introduced in the Electroweak Model) when reversing 
isospin 𝐼. 
As the electric charge 𝑄 is conserved by the electron during a hyperfine transition, the weak 
hypercharge 𝑌  is conserved by the nucleon (left-handed) when this nucleon passes from neutron to 
proton: 𝑛(𝐼 = − ℏ2 , 𝑌 = 1) → 𝑝(𝐼 = ℏ2 , 𝑌 = 1) + 𝐵(𝐼 = −ℏ, 𝑌 = 0) 

 

Proton and electron spins, parallel 
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II.4 Mediating particle and the notion of interaction 
II.4.1 Classical mechanics and electromagnetism (before the 1920s), do not distinguish the 

particle that undergoes the field from the one that generates it 
In mechanics and classical electromagnetism, a body (mass or electrically charged) entering a field, is 
subjected to a force from this field. 
 
As a possible ambivalence, the body (mass or charged) can itself create a field (gravitational or 
electromagnetic), to which other bodies will be subjected. We then speak of sources (electric charge, 
electric current, magnet or mass) for the body generating the field. 
 
During the years 1920-1930, a new approach appeared with the idea of distinguishing particles 
undergoing the field and particles generating the field (or carrying the field). 
 
The particles undergoing the field are called fermions because they follow the Fermi-Dirac statistic. 
They have a half-integer spin. Often, they are persistent particles of matter, in the sense that they do 
not appear or disappear frequently. 
They participate in scattering reactions: collision with another fermion and then transformation of 
certain characteristics such as spin, momentum, etc. They also participate in annihilation reactions, for 
example between an electron and a positron. They follow the exclusion principle proposed by W. 
Pauli in 1926: all fermions in the same system cannot simultaneously share the same quantum state. 
 
The particles generating the field are the mediating particles mentioned above. They are called bosons 
because they follow the Bose-Einstein statistic. They have an entire spin. 
These mediating particles are often ephemeral, in the sense that they can appear or disappear easily. 
Among them are photons, particles of light. Bosons do not respect the Pauli exclusion principle and 
can therefore, in the same system, simultaneously share the same quantum state. 
 
Note on Supersymmetry 
With this new conception of a mediating particle (or boson) representing the field, we lose the idea of 
interchangeability between fermion particles that can undergo a field and boson particles that can 
create a field. 
In the 1960s, Russian researchers developed Supersymmetry models with the idea of matching each 
fermion particle, a boson particle, in order to find this interchangeability between particle that creates 
the field and particle that undergoes it. 
The particles predicted by supersymmetry models were ultimately not discovered. Despite the 
theoretical interest they had, these models have not been confirmed. 
 
 
II.4.2 The notion of interaction 
The notion of force dear to classical mechanics is gradually replaced by the notion of interaction. This 
can be seen as a more all-encompassing approach than that of force. It also distinguishes between 
particles of matter undergoing the field and mediating particles generating it. 
 
Particles undergoing the field and carrying a half integer spin 𝑆  or a half integer isospin 𝐼 , cannot 
react directly to each other. They interact with mediating particles carrying integer spin or integer 
isospin, which act as intermediaries. 
 
During the hyperfine transition, it is the electromagnetic interaction that intervenes. The photon 𝛾 is 
presented as the mediating particle of the interaction (as well as the representative of the 
electromagnetic field). 
 
When decay 𝛽 , we will see at the end of this Memoir that the Electroweak Model involves 3 
interactions: electromagnetic interaction, weak interaction and a last one called hyper interaction. 
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II.5 Conclusion 
In this chapter, the notion of isospin 𝐼 introduced by W. Heisenberg in 1932 was mentioned. 
The isospin 𝐼 first has analogies with electric charge 𝑄, in the sense that 𝐼 is presented as the strong 
nuclear charge with opposite values for the proton and neutron, thus explaining their attraction in the 
nucleus. 
 
The isospin 𝐼 also has analogies with spin 𝑆 both mathematical and physical during reactions between 
particles. The spin 𝑆 reverses during a hyperfine transition transforming an electron into an electron of 
opposite spin, with the two electrons being presented as two faces of the same particle. The isospin 𝐼 
reverses when switching from a neutron to a proton, with the two nucleons being presented as two 
sides of the same particle. 
 
In the next chapter, we will focus on decay 𝛽± and the first weak model on weak interaction, that of 
Enrico Fermi in 1933. In particular, we will discuss the idea of electromagnetic currents charge 
density quadrivector 𝑗 . . (noted here 𝑗  because carrying an electric charge 𝑄) and weak currents 
charge density quadrivector 𝑗 .  
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Chapter III Fermi's theory about weak interaction (1933) 
 
Purpose of the chapter 
We summarize in broad outline the Fermi theory on the weak interaction, a theory based on an 
analogy with electromagnetism and on a universality of the phenomena of decay of particles. 
 
On the model of the electromagnetic current charge density quadrivector 𝑗  formed with electron and 
positron decaying into photon-mediating particles 𝛾, Fermi theory defines a weak current charge 
density quadrivector 𝑗  also decaying into particles. 
 
III.1 Analogy between particle decays 
III.1.1 Fermi's idea: universality of decay phenomena 
In 1933, E. Fermi proposed a first theory on weak interaction and decay 𝛽 . His idea is to make an 
analogy between: 

- the decay of an electron and a positron into a photon, a decay that involves electromagnetic 
interaction, the photon in turn materializing as a positron and an electron, 

- the decay 𝛽 , decay that involves the weak interaction, with the neutron decaying into a 
proton, an electron and an antineutrino. 

 
Thus, E. Fermi tries to show the universality of several phenomena of decay of particles. 
 
Note 
W. Heisenberg had studied analogies between hyperfine transition and decay 𝛽  to develop his notion 
of isospin. For his part, E. Fermi studies analogies between electron positron annihilation and decay. 𝛽  to develop a general notion of current charge density quadrivector. 
Note that hyperfine transition and positron electron annihilation both generate a photon and involve 
electromagnetic interaction. We will come back to this later. 
 
 
III.1.2 Dirac's idea: current charge density quadrivector, electron and positron couple 
A few years before E. Fermi, P. Dirac proposes that the electron 𝑒 (wave function 𝜓) and positron �̄� 
(wave function 𝜓) couple forms an electromagnetic currents charge density quadrivector 𝑗 (𝑒 , �̄� ) =𝑄𝜓𝛾 𝜓 (with 𝜇 = 𝑥, 𝑦, 𝑧, 𝑡 or 𝜇 = 0,1,2,3 and 𝑄 the number of elementary electric charges 𝑒). 
 
We have the interaction energy between the currents charge density quadrivector 𝑗  and 
electromagnetic potential 𝐴 : 𝐸 = 𝑒𝑗 𝐴  

The electron positron couple also forms an electromagnetic current charge density quadrivector 𝑗 ′(�̄� ′, 𝑒 ′). If the disintegration (or decay) and reintegration is punctual (very fast), the current 𝑗 (𝑒 , �̄� ) interacts directly with the current 𝑗 ′(�̄� ′, 𝑒 ′). We do not then have intervention of a 
mediating particle such as the photon. 
 
Note 1 
For brevity, we will often speak abusively of current 𝑗 (𝑒 , �̄� ), whereas it is actually a current 
charge density quadrivector 𝑗 (𝑒 , �̄� ) (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧). The term 𝑗 (𝑒 , �̄� ) = 𝑄𝜓𝛾 𝜓 represents the 
density of electric charge. The terms 𝑗 , , (𝑒 , �̄� ) = 𝑄𝜓𝛾 , , 𝜓 represent the densities of electric 
currents. 
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For electromagnetic interaction, the interaction energy 𝐸 = 𝑒𝑗 𝐴  corresponds to the electromagnetic 
generalized potential energy. 
 
Note 2 
In the energy of interaction 𝐸 = 𝑒𝑗 𝐴 , the current term 𝑒𝑗  represents the electron and positron, the 
term potential quadrivector 𝐴  represents the photon 𝛾. 
 
Note 2 
We remind the Pauli matrices: 𝜎 = 0 11 0 , 𝜎 = 0 −𝑖𝑖 0 , 𝜎 = 1 00 −1  

We remind the matrixs 𝛾: 𝛾 = 1 00 −1 , 𝛾 = 0 𝜎−𝜎 0  with 𝑖 = 1,2,3 

 
We define the conjugate spinor: 𝜓 = 𝜓 𝛾  

with 𝜓  adjoint (or adjugate) matrix, transposed from the conjugate. 
 
 
We have the reaction during the interaction between the two currents 𝑗 (𝑒 , �̄� ) and 𝑗 ′(�̄� ′, 𝑒 ′): 𝑒 + �̄� → �̄� ′ + 𝑒 ′ 
 
This corresponds to the following diagram: 
 

 
Figure 5: Positron electron annihilation, then positron electron materialization 

 
Note on electric current and electric-type force 
According to the photoelectric effect of A. Einstein and electron model of N. Bohr's, we can interpret 
the term interaction energy 𝐸 = 𝑒𝑗 𝐴  as the effect of a photon represented by the potential 
quadrivector 𝐴  on an electron carrying electric charge 𝑒𝑄 and in "stable" orbit around the core. 
According to N. Bohr, the photon by interacting with the electron, generates a change in orbital 
angular momentum (or spin according to G. Uhlenbeck and S. Goudsmit) of the electron, a change of 
orbit and a displacement of the electron. We have a displacement of charge 𝑒𝑄 and therefore an 
electric current 𝑗 . We find the idea that an electric-type force has the effect of a displacement of 
electric charge. 
 
Note that in electromagnetic interaction, 2 quantum numbers are used: 

- First, the spin 𝑆 which is exchanged between the photon and the electron and whose exchange 
generates a change of orbit and a displacement of the electron, 

e

e

'e

'e

Time 

)','('  eejQ
),(  eejQ





Memoir 4: Elements on nuclear interactions    263 

- Next, the electrical charge 𝑄 characteristic specific to the electron, set in motion when the 
electron changes orbit. 

 
 
III.2 Fermi theory 
III.2.1 Weak current 
In 1933, E. Fermi took up P. Dirac's idea of the positron electron couple forming an electromagnetic 
current. He imagined that the proton neutron and electron anti-neutrino pairs can also form a so-called 
weak current. The neutron proton weak current 𝑗 (𝑛, 𝑝 ) interacts with another antineutrino 
electron weak current 𝑗 (�̄� , 𝑒 ). 
 
Note, foretaste on weak isospin 𝑻 (also called weak charge) 
Weak isospin 𝑇 is a quantum number proposed in the 1960s by S. Glashow as part of the Electroweak 
Model. 
Weak isospin 𝑇 sharing similarities with spin 𝑆 and isospin 𝐼. Like them, 𝑇 is group-based 𝑆𝑈(2). The 
3rd component of weak isospin is frequently used: 𝑇 . 
There are also analogies between 𝑇  and 𝑄, since these are quantities transported respectively by weak 
currents and electromagnetic currents. It is often referred to as 𝑇  as the number of elementary weak 
charges, by analogy with 𝑄 which is the number of elementary electric charges. 
We will see at the end of this Memoir that there are several types of weak currents. 𝑗 . The current 𝑗  is one of them. 
 
 
When decay 𝛽 , we have the reaction between the two weak currents 𝑗 (𝑛, 𝑝 ) and 𝑗 (�̄� , 𝑒 ): 𝑛 → 𝑝 + 𝑒 + �̄�  

 
This corresponds to the following diagram: 
 

 
Figure 6: decay 𝛽  

 
III.2.2 Taking into account a mediating particle for the positron electron current 
For electromagnetic interaction, we have a probability amplitude 𝑀 between two currents 𝑗 (𝑒 , �̄� ) 
and 𝑗 ′(�̄� ′, 𝑒 ′) equal to: 𝑀 = 𝑒(𝑝 ) 𝑗 (𝑒 , �̄� )𝑗 ′(�̄� ′, 𝑒 ′) 

with 𝑝  (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧) the momentum energy quadrivector carried during the interaction between the 
two currents 𝑗  et 𝑗 ′, i.e., the energy momentum quadrivector carried by the photon mediating 
particle 𝛾. 
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This corresponds to the following diagram: 

 
Figure 7: annihilation electron positron, photon, then materialization electron positron 

 
Note 
In the relationship 𝑀 = ( ) 𝑗 𝑗 ′, we actually have a contravariant-covariant summons. 
 
 
III.2.3 Probability amplitude 
At the time of E. Fermi, the idea of the mediating particle is in its infancy and E. Fermi assumes that 
the weak interaction is punctual. 
 
For the reaction 𝑛 → 𝑝 + 𝑒 + �̄� , E. Fermi constructs a probability amplitude 𝑀 for the interaction 
between the two weak currents: 𝑀 = 8𝐺√2 𝑗 (𝑛, 𝑝 ) ⋅ 𝑗 (�̄� , 𝑒 ) 

 
E. Fermi also notes that the probability amplitude is proportional to a constant 𝐺  playing for weak 
interaction the role of ( ) . 𝐺  is now called Fermi constant. E. Fermi finds as a value for this 
constant: 𝐺 = 1,166 × 10 𝐺𝑒𝑉  

 
III.3 Foretaste of Glashow-Weinberg-Salam electroweak model and of quark model 
The Glashow-Weinberg-Salam electroweak model and the Quark Model both use the notion of weak 
Fermi current, which will be particularly fruitful. Here we give a foretaste of these two theories. 
 
III.3.1 Foretaste of the Glashow-Weinberg-Salam electroweak model 
If the weak interaction is no longer considered punctual as in the Fermi model, we have a diagram 
involving mediating particles (as used in the Glashow-Weinberg-Salam electroweak model that will be 
studied at the end of this Memoir): 
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Figure 8: decay 𝛽  with mediating particles 

 
We have a probability amplitude 𝑀 equal to: 𝑀 = −𝑔(𝑝 ) − 𝑀 , 𝑗 (𝑛, 𝑝 ) ⋅ 𝑗 ′(�̄� , 𝑒 ) 

 𝑔  is the weak elementary charge related to the weak interaction (the analogue of the electric 
elementary charge 𝑒). 𝑀 ,  is the mass of weak bosons 𝑊± and 𝑍 , mediating particles of the Electroweak Model. 
 
Note 
At the end of this Memoir, it will be seen that 𝑔 𝑇  for the weak interaction is the analogue of 𝑒𝑄 for 
electromagnetic interaction. 
 
 
The idea is to approach the energy momentum quadrivector (𝑝 ) toward 0, to find the Fermi model: −𝑔(𝑝 ) − 𝑀 →( )→ 𝑔𝑀 = 8𝐺√2  

 
According to Fermi's theory, coupling is introduced: 𝑔𝑀 = 8𝐺√2  

 
We will see that this relationship makes it possible to find the mass of weak bosons. 𝑊±. 
 
Note: why is it assumed that weak bosons 𝑊± and 𝑍  have a mass unlike the photon 𝜸? 
It is assumed that weak bosons 𝑊± and 𝑍  have mass, because the weak interaction has a very small 
range (or scope) compared to electromagnetic and gravitational interactions (which have infinite 
range). 
 
Following the ideas of H. Yukawa proposed in 1935, we approach the Compton wavelength 𝜆 =  
to the range of the interaction, with 𝑚 the mass of the particle mediating the interaction. For weak 
interactions, since the range (and therefore 𝜆 ) is very small, it is assumed that the mediating particles 𝑊± and 𝑍  have a relatively large mass. 
This will be explained in the next chapter on the Yukawa mesotron. 
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III.3.2 Foretaste of the Quark Model 
In the Quark Model proposed by M. Gell-Mann and G. Zweig in the 1960s, the neutron is formed by 
two down quarks and one up quark. The proton is formed by two up quarks and one down quark. The 
notions of up and down represent the flavor of the quark and are distinguished by isospin 𝐼 . An up-
flavor quark has an isospin 𝐼 = , a down flavor quark has an isospin 𝐼 = − . 
 
The Quark Model seeks to model the strong interaction. In this context, the notions of flavor and 
isospin 𝐼 can be brought closer to the strong nuclear charge. 
 
By analogy with the strong interaction, isospin 𝐼  and the strong nuclear charge, the Electroweak 
Model defined for the weak interaction, a weak isospin, or a weak nuclear charge 𝑇 , which takes for 
the up and down quarks the same values. 
 
We have: 𝑇 = 𝐼 =  for the up quark 𝑢. 𝑇 = 𝐼 = −  for the down quark 𝑑. 
 
Note 
This is true only for so-called left-handed up and down quarks. We will explain in a future chapter the 
notions of helicity and right-handed and left-handed particles. 
 
 
In the Quark Model, leptons (electron and neutrino) have no isospin 𝐼. Indeed, the latter is considered 
a strong charge, and leptons are not subject to strong interaction. 
On the other hand, leptons are subject to the weak interaction and the Electroweak Model assigns to 
the electron and the neutrino (left-handed only), a weak charge corresponding to that of the down 
quark and the up quark. 
 
We have: 𝑇 =  for the neutrino 𝜈  (𝑇 = −  for the antineutrino �̄� ). 𝑇 = −  for electron 𝑒 . 
 
We can rewrite the decay 𝛽  with an up quark that transforms into a down quark: 𝑑(𝑇 = − 12 , 𝑄 = − 13) → 𝑢(𝑇 = 12 , 𝑄 = 23) + 𝑒 (𝑇 = − 12 , 𝑄 = −1) + �̄� (𝑇 = − 12 , 𝑄 = 0) 

 
The weak boson 𝑊  is the mediating particle involved in the reaction. The boson 𝑊  carries an 
electric charge 𝑄 = −1. Currents 𝑗 (𝑑, �̄�) and 𝑗 (�̄� , 𝑒 ) are the weak currents interacting with the 
boson 𝑊  (we will come back to this when we deal with the Electroweak Model). 
 
We have the corresponding Feynman diagram: 
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Figure 9: decay 𝛽  according to the Quark Model 

 
Note on the neutrino 
The neutrino was proposed by W. Pauli in 1930 to explain the apparent non-conservation of angular 
momentum during a decay. 𝛽 . W. Pauli initially used the term neutron. To distinguish it from the 
neutron present in the nucleus, it was renamed a neutrino by physicists Edoardo Amaldi and Enrico 
Fermi. 
 
Like the proton neutron doublet (or up quark and down quarks), the electron and neutrino form a 
doublet of opposite weak charges (and different electric charges). 𝑒 (𝑇 = − 12 , 𝑄 = −1) 

𝜈 (𝑇 = 12 , 𝑄 = 0) 

 
However, unlike both nucleons (and two quarks), electron and neutrino do not have a close mass. The 
electron has a priori a mass much higher than that of the neutrino. 
 
 
III.4 Fermi process and Gamow Teller process 
III.4.1 Decay 𝜷 , Fermi process and Gamow Teller process 
For decay 𝛽 , there are two types of weak interaction or two types of processes: 

- vector interaction V, with the weak boson 𝑊  that does not carry spin, and which decays into 
two particles of opposite half-integer spin. It is called the Fermi process. 

- axial interaction A, with the weak boson 𝑊  who carries a spin 1 or -1, and which decays into 
two particles of the same half-integer spin. It is called the Gamow Teller process. 

 
III.4.2 Fermi process, vector interaction 
We can write schematically the Fermi process, with a boson 𝑊  that does not carry spin: 
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Figure 10: Fermi process 

 
III.4.3 Gamow Teller process, axial interaction 
We can write schematically the process of Gamow Teller, with a boson 𝑊  with an integer spin: 
 

 
Figure 11: Gamow Teller process 

 
Nota 1 𝑊  is indeed a boson, because in the 2 cases it has an integer spin. 
 
Nota 2 
For the 2 diagrams, the spin values 𝑆  are given as examples. Other values can be carried by the 
particles. 
 
 
III.5 Conclusion of the chapter 
P. Dirac had the idea of an electromagnetic current composed of a positron electron couple that decays 
into a photon, then materializes into an electron positron couple. 
Inspired by this idea and following a generalizing approach to decay phenomena, E. Fermi proposes a 
weak current formed by a proton neutron couple that decays, then materializes into an antineutrino 
electron couple. 
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Fermi's weak interaction theory does not include the notion of mediating particles. In the next chapter, 
we will focus on the theory of the Yukawa mesotron which proposes a mass mediating particle to 
explain the small range of nuclear interactions. 
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Chapter IV The Mesotron of Yukawa (1935) 
 
Purpose of the chapter 
We explain here the theory of Hideki Yukawa, which in order to explain the small range of nuclear 
interactions, proposes a mass-mediating particle: the mesotron. Inspired by the Schrödinger wave 
equation that describes the electron, H. Yukawa proposes a wave equation that describes the mesotron. 
He also proposes to confuse this wave equation with the so-called Yukawa potential generated by the 
mesotron. At the end of the chapter, we will evoke the pion mesons (or pi mesons), particles 
discovered in the years 1940-1950 and in some way experimental confirmation of the Yukawa 
mesotron. 
 
IV.1  Hideki Yukawa's theory to describe nuclear interactions, the mesotron or meson 
In 1935, H. Yukawa developed a successful theory to describe nuclear interactions within the nucleus 
between nucleons (for example between a proton and a neutron). 
 
To explain that these nuclear interactions have a limited scope 𝑅  (approximately 𝑅 = 10 𝑚, 
which corresponds to the radius of the nucleus of the hydrogen atom or a nucleon), H. Yukawa 
assumes the existence of a mass mediating particle: the mass mesotron 𝑚 , particle later called the 
meson. 
 
H. Yukawa proposes to bring the Compton wavelength 𝜆  closer to the limited range of the nuclear 
interaction: 𝜆2𝜋 = 1𝐾 = 2𝑅  

 
Using the Compton relation: 𝑚 𝑐 = ℎ2𝜋 2𝜋𝜆 = ℎ𝜆 = ℏ𝐾  

H. Yukawa deduces the mass of the mediating particle, the mesotron or meson: 𝑚 𝑐 = ℏ2𝑅 = ℎ𝜆  

 
Digital application 𝑚 𝑐 = 1,973 × 10 𝑒𝑉. 𝑛𝑚2 × 10 ≈ 100𝑀𝑒𝑉 

 
Following the idea of H. Yukawa, we can thus relate the scope 𝑅  from an interaction to the mass of 
its mediating particle 𝑚: 𝑅 = ℏ2𝑚𝑐 

 
Note 1 on Heisenberg's uncertainty principle 
To find the mass of the mediating particle, we can also use Einstein's source field equation 𝑚𝑐 = ℏ𝛺 
and Heisenberg's uncertainty principle, instead of Compton's relation. 
 
We have: 
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𝛥𝐸𝛥𝑡 ≈ ℏ2 

We suppose 𝛥𝐸 = 𝑚 𝑐 = ℏ𝛺 (i.e., Einstein's source field equation). 
 
We arrive at: 𝛥𝑡 ≈ ℏ2𝛥𝐸 = ℏ2𝑚 𝑐  

 
We suppose 𝑅 ≈ 𝑐𝛥𝑡, assuming that the speed of the mesotron is close to that of light. We find: 𝑅 ≈ ℏ2𝑚 𝑐 

 
Note 2 on the radius of the hydrogen atom 
Remind that: 

- the radius of the nucleus of the hydrogen atom (i.e., a proton) corresponds to the range of the 
nuclear interaction 𝑅 , 

- the radius of the hydrogen atom corresponds in the Bohr model to the orbit of the electron 
(stabilized by the electrostatic force and the centrifugal inertia force) in its most stable energy 
level. 

 
 
IV.2 Analogy Schrödinger wave equation and Yukawa wave equation, case of an 

electron and a mesotron 
In the 1st Memoir, taking up the ideas of L. de Broglie, a method was proposed to find the Schrödinger 
equation that applies to an electron. We propose here a similar method to find the Klein Gordon wave 
equation independent of Time, wave equation that applies to a mesotron according to H. Yukawa. 
 
We first remind in a few lines the method for the electron wave. We then approach the mesotron wave. 
 
IV.2.1 Electron wave method 
We start from the following wave equation: 𝛻 𝜓 + 𝛺𝑣 𝜓 = 0 

 
Following the ideas of L. Broglie, it is stated that the electron is similar to a phase velocity wave: 𝑣 = 𝛺𝐾 

 
We obtain for the wave equation: 𝛻 𝜓 + 𝐾 𝜓 = 0 

 
According to de Broglie's source field equation, we have the relation of the momentum with the wave 
vector: 𝑝 = ℏ𝐾 

 
According to Einstein's source field equation, we have the relation of energy with pulsation: 
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𝐸 = 𝑚𝑐 = ℏ𝛺 

 
Speed 𝑣  of the electron wave is then equal to: 𝑣 = 𝛺𝐾 = 𝐸𝑝 

 
We have the relationship between the energies: 𝐸 = 𝐸 + 𝑉 (with 𝑉 potential energy). 𝐸 = 𝐸 − 𝑉 = 𝑝2𝑚é  

 
The momentum can be deduced from this: 𝑝 = 2𝑚é (𝐸 − 𝑉) 

 
We have the wave vector: 𝐾 = 2𝑚é (𝐸 − 𝑉)ℏ  

𝐾 = 2𝑚é (𝐸 − 𝑉)ℏ  

 
We find the Schrödinger equation: 𝛻 𝜓 + 2𝑚éℏ (𝐸 − 𝑉)𝜓 = 0 

 
IV.2.2 Mesotron wave method 
We start from the wave equation: 𝛻 𝜓 + 𝛺𝑣 𝜓 = 0 

 
It is assumed that the meson is similar to a phase velocity wave (in complex): 𝑣 = 𝛺𝑖𝐾 

 
We obtain the wave equation: 𝛻 𝜓 − 𝐾 𝜓 = 0 

 
We use the Compton relation: 𝑚 𝑐 = ℏ𝐾 

 
We obtain the Klein Gordon wave equation independent of time that applies to a mesotron: 𝛻 𝜓 − (𝑚 𝑐ℏ ) 𝜓 = 0 
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IV.3 The potential of Yukawa 
IV.3.1 Nuclear field potential 
H. Yukawa uses the Klein Gordon wave equation independent of time: 𝛻 𝜓 − (𝑚 𝑐ℏ ) 𝜓 = 0 
and interprets the wave function 𝜓 as a spherical symmetry potential. 
 
H. Yukawa confuses thus: 

- the wave function 𝜓 representing the mesotron particle wave, 
- the potential of the nuclear field generated by the mesotron mediating particle. 

 
 
H. Yukawa rewrites the time-independent Klein Gordon wave equation in spherical coordinates: 1𝑟 𝑑𝑑𝑟 (𝑟 𝑑𝜓(𝑟)𝑑𝑟 ) = (𝑚 𝑐ℏ ) 𝜓(𝑟) 

 
Note 
The wave function 𝜓(𝑟) is considered a potential, so it is the part cancelled during a change of 
reference frames. 
From the wave function 𝜓(𝑟), we can define a nuclear field (also called mesonic field because created 
by the meson) equal to ( ). 
 
 
By solving the differential equation, we obtain a spherically symmetric Yukawa potential (presented 
here as a potential energy, because we have the term 𝑔 ): 

𝜓(𝑟) = −𝑔 𝑒 ( ℏ )𝑟 = −𝑔 𝑒 ( )𝑟  

 
One can interpret 𝑔  as a coupling constant between the meson and a nucleon, 𝑔 as an elementary 
charge of nuclear interaction. 
 
Reminder on the Compton wavelength 𝑚 𝑐ℏ = 2𝜋𝜆 = 𝐾  

 
IV.3.2 Screened potentials 
If we make the mass of the mesotron 𝑚  tend toward 0, we obtain a Coulombian or Newtonian 
potential which decreases in  dans l’Espace et défini à une constante multiplicative près. 
 
We have the electrostatic potential energy generated by an electric charge 𝑞 on another electric charge −𝑞: 𝑞𝐴 (𝑟) = −𝑔𝑟 = −𝑞4𝜋𝜀 𝑟 

We have the gravitational potential energy generated by a mass 𝑚 on another mass 𝑚: 𝑚𝑉 (𝑟) = −𝑔𝑟 = −𝐺𝑚𝑟  
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The Yukawa potential is sometimes presented as a screened Coulombian or Newtonian potential. 
 
Note 1, screened magnetic vector potential and superconductivity phenomenon 
The Yukawa potential can also be likened to a screened magnetic vector potential 𝐴  𝑎 = 𝑥, 𝑦, 𝑧. 
 
According to the theorem of Biot and Savart, we have a decay of the magnetic field in  and the 

vector potential in . 
 
We have the Klein Gordon equation independent of time: 𝛻 𝜓 − (𝑚𝑐ℏ ) 𝜓 = 0 

 
By replacing the wave function 𝜓 By a screened magnetic vector potential, we obtain: 𝛻 𝐴 − (𝑚𝑐ℏ ) 𝐴 = 0 

 
We replace 𝐴  by a magnetic field 𝐵 = 𝛻 × 𝐴 , we get: 𝛻 × 𝐵 = 𝜇 𝚥 = −(𝑚𝑐ℏ ) 𝐴  

 
If we add a rotational on each side, we have: 𝛻 𝐵 = −𝛻 × ((𝑚𝑐ℏ ) 𝐴 ) 

𝛻 �⃗� = −(𝑚𝑐ℏ ) 𝛻 × 𝐴 = −(𝑚𝑐ℏ ) 𝐵 

𝛻 𝐵 = −(𝑚𝑐ℏ ) 𝐵 

 
We solve this differential equation, and we find: 𝐵 = 𝐵 𝑒𝑥𝑝 ℏ = 𝐵 𝑒𝑥𝑝  

 
We obtain a magnetic field 𝐵 which is expelled from the material from a wavelength: 𝜆 = ℎ𝑚𝑐 

This corresponds to the phenomenon of superconductivity where the range of the magnetic field 𝐵 is 
highly reduced in a superconducting material. 
According to the model described here, the photon particle mediating the electromagnetic interaction 
acquires a mass 𝑚. This mass of the photon tends towards infinity 𝑚 → ∞, when the magnetic field 𝐵 
is increasingly expelled from the material, i.e., when 𝜆 → 0. 
 
We will return to this when we discuss the BEH mechanism, which is inspired by the ideas of H. 
Yukawa and the phenomenon of superconductivity, explains the small range of nuclear interactions 
and makes it possible to assign a mass to particles. 
 
Note 2, link between mass and orbit 
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In his model of the electron, N. Bohr assimilates the radius of the orbit of the electron 𝑟  to the 
inverse of the wave vector: 𝑟 = 1𝐾 

Using Broglie's source field relation 𝑝 = ℏ𝐾, we find the radius of the orbit of the electron according 
to its momentum: 𝑟 = ℏ𝑝 

It is noted that the higher the momentum of the particle, the smaller the orbit. This relationship 𝑟 = ℏ 
may be a priori valid for massless particles such as the photon. 
 
In his model of the mesotron, H. Yukawa assimilates the scope 𝑅  of the nuclear interaction to the 
inverse of the wave vector (with a factor ): 𝑅 = 12𝐾 

Using the Compton relation 𝑚𝑐 = ℏ𝐾, we find the scope 𝑅  of the interaction carried by the particle 
as a function of its mass: 𝑅 = ℏ2𝑚𝑐 

 
As Bohr does, we can also equate the inverse of the wave vector to an orbit of radius 𝑟 of the particle: 𝑟 = 1𝐾 

Using the Compton relation 𝑚𝑐 = ℏ𝐾, we find the radius of the orbit of the particle as a function of its 
mass: 𝑟 = ℏ𝑚𝑐 = 2𝑅  

It is noted that the higher the mass of the particle, the smaller the orbit. 
 
Different masses of particles are given. 
Mesotron mass: 𝑚 𝑐 ≈ 100𝑀𝑒𝑉 
Pion meson mass: 𝑚 𝑐 ≈ 139,6𝑀𝑒𝑉 
Proton mass: 𝑚 𝑐 ≈ 938,3𝑀𝑒𝑉 
Boson mass 𝑍 : 𝑚 𝑐 ≈ 91,2𝐺𝑒𝑉 = 91 200𝑀𝑒𝑉 
Boson mass 𝑊±: 𝑚 𝑐 ≈ 80,4𝐺𝑒𝑉 = 80 400𝑀𝑒𝑉 
 
The Yukawa mesotron has a mass about 10 times smaller than the proton and an orbit of radius about 
10 times larger than the proton. 
 
The boson 𝑍  has a mass about 100 times larger than the proton and an orbit about 100 times smaller 
than the proton. 
 
 



276    Invariances and transformations 

IV.4 On pions as mediating particles of the strong interaction, foretaste on Yang-Mills 
theory, the Quark Model, and the Yukawa interaction 

IV.4.1 Discovery of the pion meson (1947) 
In 1936, a charge particle –, with a mass close to that predicted by H. Yukawa is discovered in cosmic 
rays. It is called the mu meson. However, it is quickly realized that this particle cannot participate in 
nuclear reactions. It is actually a kind of large electron that is renamed the muon 𝜇  (we will come 
back to this when we study lepton generations.). 
In 1947, thanks to collisions between particles, a new particle was discovered that finally seemed to 
play a role in nuclear interactions. The particle is called the pion meson. 
 
Meanwhile, Yukawa's theory is refined and the existence of three types of mesons is postulated. (+, – 
and neutral). Neutral, because for a certain nuclear interaction (the one later called strong), in some 
cases there seems to be no difference between proton and neutron. A proton can change state into a 
proton (ditto for a neutron changing state into a neutron). For this type of change of state from proton 
to proton (or neutron to neutron), the mediating particle must be neutral since it does not carry electric 
charge. 
 
Yukawa's theory agrees with the experiment since we discover 3 types of pions, 2 electrically charged: 
les pions 𝜋  and 𝜋 , and 1 electrically neutral: the pion 𝜋 .  
 
IV.4.2 Pion mesons as mediating particles of strong interaction, Yang-Mills theory 
In the 1950s, the theory of H. Yukawa has as an extension a theory of the strong interaction called 
here of Yang-Mills. The pions 𝜋 , 𝜋 , 𝜋  are presented as the mediating particles of the interaction 
and isospin 𝐼 is designated both as the strong charge of the interaction and as the quantum quantity 
carried by the pions. 
 
Note 
The Yang-Mills theory describing the strong interaction is mainly based on Gauge transformations. 
We will come back to this in a future chapter. 
 
 
This theory of strong interaction and that of electromagnetic interaction both have mediating particles. 
However, there is an important difference between the 2. In electromagnetic interaction, photons do 
not carry electric charge: these are spins that they exchange with other particles. In the strong 
interaction, the pions carry strong charge (or isospin) and they exchange them with the other particles. 
 
The pions 𝜋 , 𝜋 , 𝜋  have the following spins 𝑆 and isospins 𝐼: 

Pions (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝜋  (0,0) (1,1) 𝜋  (0,0) (1, −1) 𝜋  (0,0) (1,0) 
 
We give for example some isospin exchange reactions 𝐼 via the pions, reactions that ensure the 
cohesion of the nucleus between nucleons. 𝑝 (𝐼 = 12) → 𝑛(𝐼 = − 12) + 𝜋 (𝐼 = 1) 

𝑛(𝐼 = − 12) + 𝜋 (𝐼 = 1) → 𝑝 (𝐼 = 12) 

𝑛(𝐼 = − 12) → 𝑝 (𝐼 = 12) + 𝜋 (𝐼 = −1) 
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𝑝 (𝐼 = 12) + 𝜋 (𝐼 = −1) → 𝑛(𝐼 = − 12) 

𝑝 (𝐼 = 12) → 𝑝 (𝐼 = 12) + 𝜋 (𝐼 = 0) 

𝑛(𝐼 = − 12) → 𝑛(𝐼 = − 12) + 𝜋 (𝐼 = 0) 

 
An analogous reaction is given, for electromagnetic interaction (hyperfine transition), with spin 
exchange 𝑆  and as a mediating particle the photon 𝛾. 𝑒 (𝑆 = 12) → 𝑒 (𝑆 = − 12) + 𝛾(𝑆 = 1) 

 
Note 
Despite the analogy, let us again emphasize this profound difference. For the strong interaction, it is 
the strong charge or 𝐼  which is exchanged between the nucleon and the pion mediating particle. For 
electromagnetic interaction, this is spin 𝑆  (and not the electric charge 𝑄) which is exchanged between 
the electron and the photon mediating particle. 
 
 
IV.4.3 Foretaste of the Model of quarks, nucleons and mesons described as composite 

particles 
Following the ideas of H. Yukawa, we can describe the strong interaction by the exchange of pion 
mesons between nucleons. This idea is found in the Quark Model developed in the 1960s, with an 
extension to other mesons as mediating particles of the strong interaction. In addition to up flavor 𝑢 
and down flavor 𝑑 corresponding respectively to 𝐼 = +  and 𝐼 = − , the Quark Model proposes 
strange flavor 𝑠 and charm flavor 𝑐. Like isospin 𝐼 in Yang-Mills theory, the flavors 𝑢, 𝑑, 𝑠, 𝑐 are 
identified with the strong charge. 
 
Note 
There are also 2 additional flavors of quarks, 𝑡, 𝑏, which were subsequently proposed. 
 
 
In the Quark Model, additional flavors 𝑠 and 𝑐 make it possible to describe new mesons and nucleons 
that are grouped under the term baryons. Baryons and mesons are described as composite particles 
formed from quarks 𝑢, 𝑑, 𝑠, 𝑐 (which then become the elementary components of the model). 
 
The Quark Model distinguishes between two main types of particles: 

- the baryons formed of 3 quarks (as well as antibaryons formed of 3 antiquarks) and whose 
best-known representatives are proton and neutron nucleons. These are the particles subject to 
strong interaction, 

- the mesons, particles composed of an even number of quarks  and antiquarks. These are the 
mediating particles of the strong interaction, carrying a strong charge identified with the 4 
flavors. 

 
Note 
Other particles were later proposed, such as pentaquarks formed by 5 quarks. 
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IV.4.4 Decomposition of mesons into quarks, quantum numbers 
Below is a list of some mesons, with their decomposition into quarks and their quantum numbers 
(source Wikipedia, Mesons for masses and lifetimes). 
 

  (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐵𝑎 𝑆𝑡 𝐶 Masses 𝑀𝑒𝑣/𝑐  Lifetimes 𝒔 𝜋 𝑢𝑑  (0,0) (1, +1) 0 
 

0 
 

0 
 

139,6 2,60 × 10  

 �̄�𝑑 
 

 (0,0) 
 

(1, −1) 0 
 

0 
 

0 
 

139,6 2,60 × 10  

𝜋 (𝑢�̄�− 𝑑𝑑)/√2 

 (0,0) (1,0) 0 0 0 139,6 2,60 × 10  

𝐾 𝑢�̄� 
 

 (0,0) 
 

 
 

0 1  493,7 1,24 × 10  

K �̄�𝑠  (0,0)  
 

0 −1  493,7 1,24 × 10  𝐾 𝑑�̄� 
 

 (0,0) 
 

 
 

0 1  497,7  𝐷 𝑐𝑑  (0,0)  
 

0 0 1 1 869,4 10,6 × 10  

D �̄�𝑑 
 

 (0,0) 
 

 
 

0 0 −1 1 869,4 10,6 × 10  𝐷 𝑐�̄�  (0,0)  
 

0 0 1 1 864,6 4,2 × 10  𝐷 𝑐�̄� 
 

 (0,0) 
 

 
 

0 1 1 1 969 4,7 × 10  𝐷 𝑠�̄�  (0,0)  
 

0 −1 −1 1 969 4,7 × 10  

 
Note 1 𝑆𝑡 is the quantum number of strangeness. 𝐶 is the quantum number of charm. 
 
Note 2 
Let's look at the analogy between pion mesons 𝜋 , 𝜋 , 𝜋  for isospin 𝐼 , and kaon mesons 𝐾 , 𝐾 , 𝐾  for strangeness 𝑆𝑡. 
 
Note 3 
Mesons are bosons and therefore have whole spins. 
 
Note 4 
An assembly of 2 half-integer spin fermions is always an integer spin boson. Hence the recurring idea 
proposed by many physicists, that like mesons formed of 2 elementary particles (in this case 1 quark 
and 1 antiquark), any boson can actually be formed of 2 fermions. 
 
 
IV.4.5 Pions in the Quark Model 
If we assemble quarks 𝑢 and 𝑑 (and their antiquarks) according to their respective isospin 𝐼 (as was 
done previously for the proton and neutron), we obtain 4 states that correspond to the 3 pions 𝜋 , 𝜋 , 𝜋 . The 4th state has a zero isospin 𝐼 and therefore does not correspond to a particle. 
 
We thus differentiate the three pions 𝜋 , 𝜋 , 𝜋 : 
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𝐼 = 1, 𝐼 = 1 = 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 = 𝑢; −𝑑 = |𝜋 ⟩ 
𝐼 = 1, 𝐼 = 0 = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 + ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 )

= 1√2 (|𝑢; �̄�⟩ + 𝑑; −𝑑 ) = |𝜋 ⟩ 
𝐼 = 1, 𝐼 = −1 = 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 = |𝑑; �̄�⟩ = |𝜋 ⟩ 
𝐼 = 0, 𝐼 = 0 = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 − ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 )

= 1√2 (|𝑢; �̄�⟩ + 𝑑; 𝑑 ) 

 
Note, analogy between pions 𝝅 , 𝝅 , 𝜋  and weak bosons 𝑊 , 𝑊 , 𝑊 = 𝑍  
In Yukawa's strong interaction theory, pions 𝜋 , 𝜋 , 𝜋  carry a strong charge equal to isospin 𝐼. Pions 𝜋 , 𝜋  are called scale operators. By reacting with fermions, they can increase or decrease the stong 
charge with one 𝐼  of the fermion. 
 
In the chapter dealing with the electroweak model, we will see that it is defined in analogy to pions 𝜋 , 𝜋 , 𝜋 , 3 weak bosons 𝑊 , 𝑊 , 𝑊 = 𝑍  that carry a weak charge 𝑇 and which are mediating 
particles of the weak interaction. Weak bosons 𝑊 , 𝑊  are also of the scale operator type. By 
reacting with fermions, they can increase or decrease the weak charge with one 𝑇  of the fermion. 
 
 
IV.4.6 Elements on the angular momentum of mesons, scalar meson and pseudoscalar meson 
We define the total angular momentum 𝐽 of a meson: 𝐽 = �⃗� + 𝑆 

with �⃗� the orbital angular momentum of a quark relative to the antiquark, 
with 𝑆 the sum of the spins of the quark and the antiquark. 
 
Let be the parity operator 𝑃, the operator that transforms �⃗� → −�⃗�. 
For a particle, we define a quantum number of parity 𝑃 (or intrinsic parity), following the relationship: 𝑃|𝑠, 𝑚 ⟩ = 𝑃|𝑠, 𝑚 ⟩ 
with 𝑃 = ±1, 𝑠 integer or half integer, −𝑠 ≤ 𝑚 ≤ +𝑠 per jump of one unit. 
 
For mesons, the parity quantum number 𝑃 provides information on orbital angular momentum �⃗� 
following the relationship: 𝑃 = (−1)  

 
A so-called pseudo-scalar meson possesses 𝑆 = 0 and 𝐽 = 0  (that is 𝑃 = −1). This is the case, for 
example, with pions. 
A so-called scalar meson possesses 𝑆 = 0 and 𝐽 = 0  (that is 𝑃 = +1). 
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IV.4.7 Elements about the Yukawa interaction 
The so-called Yukawa interaction was developed in the 1950s and 1960s following a Lagrangian 
formalism, in order to describe the strong interaction between nucleons (then called Dirac fields or 
spinorial fields) and meson mediating particles, for example pions (called pseudo-scalar fields). 
This interaction is not proposed by H. Yukawa, but it is attributed its name, because it is partly 
inspired by his idea of mass mediating particle of nuclear interactions. 
 
Note on the Higgs boson 
The Yukawa interaction is also used in the Electroweak Model, to couple quarks and leptons (then 
called Dirac fields) with the Higgs boson (then called scalar field), in order to assign a mass to quarks 
and leptons. We will come back to this in the chapter dealing with the Electroweak Model. 
 
 
We remind here the main Lagrangians used in the interaction of Yukawa. 
 
For a pseudoscalar meson represented by the wave function 𝜑 (for example, a pion-type mediating 
particle, 𝑆 = 0 and 𝐽 = 0 ), we have the Lagrangian of the Yukawa interaction with the meson 
which interacts with a fermion represented by the wave function 𝜓: 𝐿 (𝜑, 𝜓) = −𝑔𝜓𝑖𝛾 𝜑𝜓 

with 𝛾 = 0 11 0  and 𝑔 the elementary charge of the Yukawa interaction. 
 
For a scalar meson (𝑆 = 0 and 𝐽 = 0 ), we have the Lagrangian of Yukawa's interaction: 𝐿 (𝜑, 𝜓) = −𝑔𝜓𝜑𝜓 

 
To obtain the total Lagrangian 𝐿 (𝜑, 𝜓), we must also take into account the Dirac Lagrangian 𝐿 (𝜓) of the fermion: 𝐿 (𝜓) = 𝑖ℏ𝑐𝜓𝛾 (𝐷 )𝜓 − 𝑚𝑐 𝜓𝜓 

 
and the Lagrangian of the meson 𝐿 (𝜑): 𝐿 (𝜑) = 12 𝜕 𝜑𝜕 𝜑 − 𝑉(𝜑) 

 𝑉(𝜑) is a term of self-interaction. It is given in the form: 𝑉(𝜑) = 𝜇 𝜑  with 𝜇 the mass of the 

meson. It is also given in a more developed form 𝑉(𝜑) = 𝜇 𝜑 + 𝜆𝜑 , with 𝜆 a constant that avoids 
discrepancies. 
 
Nota 
To better understand the origin of 𝐿 (𝜑) = 𝜕 𝜑𝜕 𝜑 − 𝑉(𝜑), it is necessary to be interested in 
the theory of the scalar field (and more generally in the theory of relativistic quantum fields). 
 
Generally, a scalar field is required to be relativistic (i.e., invariant with respect to Lorentz 
transformations), to be as simple as possible, that it does not contain derivatives with respect to Time 
of order greater than one. 
 
 
We obtain the total Lagrangian: 𝐿 (𝜑, 𝜓) = 𝐿 (𝜑) + 𝐿 (𝜓) + 𝐿 (𝜑, 𝜓) 
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IV.5 Conclusion of the chapter 
Yukawa's theory introduces the notion of mass mediating particle and explains the limited scope of 
nuclear interactions. 
It proposes a "screened" potential depending on the mass of the mediating particle. When we tend this 
mass towards 0, we find the shape of the potentials of fields of infinite range, such as the Newtonian 
gravitational field or the Coulomb electrostatic field. 
In the 1950s, the theory of H. Yukawa has as an extension a theory of strong interaction, with pions as 
a mediating particle, carrying a strong charge equal to isospin 𝐼. 
 
In the next chapters, we will focus on the description of interactions between particles from Gauge 
theories. This description developed particularly from the 1950s following the work of Chen Ning 
Yang and Robert Mills, it formed the major theoretical corpus of the Standard Model. In preliminary, 
we will make some mathematical reminders on rotation groups 𝑆𝑈(𝑛). 
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Chapter V Mathematical reminders about rotation groups 𝑺𝑼(𝒏), physical 
applications to gauge transformations 

 
Purpose of the chapter 
Gauge theories require a lot of mathematical background. In this chapter, we will make some 
mathematical reminders on rotation groups 𝑆𝑈(𝑛) used to describe Gauge transformations. We will 
also be interested in quantum numbers (in particular charges) involved in reactions between particles 
and in Gauge transformations. 
 
V.1 General information on gauge theories and quantum numbers 
V.1.1 Gauge invariances and gauge transformations 
The expressions gauge invariances and gauge transformations were introduced in 1918 by H. Weyl. 
He was inspired by the ideas of A. Einstein of an invariance of the laws of Nature whatever the 
transformation, in this case a Gauge transformation to be compared to a change of frames of reference. 
 
In the first Memoir of this essay, it was pointed out that Gauge theories are based, like Newtonian 
mechanics, on: 

- the concepts of cancelled quantities and quantities retained during a local gauge 
transformation (or during a change of reference frames), 

- "inertial" terms to be added in the wave equation or in the fundamental principle of Newton's 
dynamics, in order to make these 2 laws invariant ("inertial" terms of the potential energy 
momentum type or the inertial force type). 

 
Nota 
In Gauge theories, terms such as momentum energy potential are added in the wave equation and 
interaction energy in the Lagrangian. 
 
 
V.1.2 Historical reminders, march of ideas 
The Gauge theory formulated by H. Weyl in the 1920s, describes the electromagnetic interaction, the 
Gauge transformations belong to the group of rotations 𝑈(1) , with 𝑄 the electric charge. 
 
In 1954, to explain the strong interaction, Chen Ning Yang and Robert Mills introduced a non-abelian 
Gauge theory where Gauge transformations belong to rotation groups 𝑆𝑈(2) , with isospin 𝐼 presented 
as the strong charge. 
 
In the late 1950s, early 1960s, through the Quark Model, Gell-Mann perfected the Yang-Mills theory 
and proposed a strong interaction theory based on the group 𝑆𝑈(3) . The strong charge is based 
on isospin 𝐼 and a new quantum number called strangeness 𝑆𝑡. The whole thing is called flavors. 
 
In the early 1960s. S. Glashow transcribes the Yang-Mills theory, from the strong interaction to the 
weak interaction, always based on 𝑆𝑈(2). By analogy with strong isospin 𝐼 seen as the strong charge, 
S. Glashow introduces the notion of weak isospin or weak charge 𝑇, with 𝑆𝑈(2) . In the late 1960s, 
the theory was completed by Steven Weinberg and Abdus Salam in the so-called Electroweak Model. 
 
In 1973, to explain the strong interaction, H. David Politzer, Frank Wilczek and David Gross 
introduced quantum chromodynamics, a theory based on 𝑆𝑈(3) , with the notion of color charge 
presented as the strong charge. 
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We group together these different theories describing electromagnetic interactions, strong and weak, 
based on groups of rotations 𝑆𝑈(𝑛), and essentially developed in the 1950s-1970s, in what is called 
the Standard Model. 
 
It is to these groups of rotations 𝑆𝑈(𝑛), which we will focus on in this chapter. We will first do some 
mathematical reminders, and then we will see how this physically applies to particles. 
 
Reminder, difference between global and local gauge transformation 
We speak of a global gauge transformation on a wave function 𝜓: 𝜓 → 𝜓′ = 𝑒 𝜓 

with 𝛼 a constant and 𝑞 a quantum quantity (e.g., an electric charge). 
 
We speak of local gauge transformation on a wave function 𝜓 when 𝛼(𝑥) is a function of local 
variables 𝑥, positions and/or moments: 𝜓 → 𝜓′ = 𝑒 ( ) 𝜓 

 
Global and local gauge transforms are both rotations belonging to groups 𝑆𝑈(𝑛). Usually, we speak of 
global version gauge transformations and local version gauge transformations. 
 
 
V.1.3 2 types of quantum numbers 
In particle physics, we note the existence of quantized quantities, to which we associate quantum 
numbers. We can distinguish 2 types of quantum numbers. 
 
First type: charge-like quantum numbers (noted here 𝑋 in a general sense) that can generate 
interaction fields. In the Standard Model, there are 4 of them: electric charge 𝑄, weak charge 𝑇, weak 
hypercharge 𝑌 , strong charge (or color charge) 𝐶𝑜. 
 
In this chapter, we will see that these charge-type quantum numbers are the generators of global gauge 
transformations (rotations of the group 𝑆𝑈(𝑛)), that they are retained during a Global Gauge 
transformation. They can be associated with velocities and obtain common charge density 
quadrivectors that are also conserved by global gauge transformation. 
For example, we have electromagnetic current 𝑗 , the weak current 𝑗 , the weak hypercharge current 𝑗 , the strong current 𝑗 . We will come back to the first 3 currents when we study the Electroweak 
Model. 
 
On the model of the inertial forces that are added during a change of reference frames, in order to 
preserve the invariance of the fundamental principle of Newton's dynamics, we add in the Lagrangian 
interaction energy terms composed of these currents 𝑗 , 𝑗 , 𝑗  and potential quadrivectors, during a 
local gauge transform, in order to preserve the invariance of the wave equations. 
 
Second type: quantum numbers that are involved in reactions between particles and that frequently 
reverse or change. For example, we find the spin 𝑆, the isospin 𝐼, the baryonic number 𝐵𝑎, strangeness 𝑆𝑡, etc. These quantum numbers do not generate a priori interaction fields. For example, if an 
electrical charge 𝑄 generates an electric field, there is no spin field or baryonic field. 
 
For a particle and its associated wave function, one can during a reaction between particles, modify 
these quantum numbers. The particle then transforms into its conjoined particle. For example, for 
isospin 𝐼, the reaction makes it possible to pass from a neutron to a proton. For spin 𝑆, the so-called 
hyperfine transition reaction makes it possible to pass from a right electron to a left electron. 
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Generally, during reactions between particles, the quantum quantity retains the same total value (at the 
beginning and end of the reaction). For spin, we actually have a global conservation of total angular 
momentum. 
 
Nota 
The isospin 𝐼 is here classified in the 2nd type and close to spin 𝑆. Following the original ideas of W. 
Heisenberg and the Yangs-Mills gauge theory, isospin 𝐼 is presented as the strong charge of the strong 
interaction. It is therefore classified in the 1st type. The same goes for strangeness 𝑆𝑡, which in the 
Quark Model, is presented with the other flavors associated with 𝐼, as the strong charge of strong 
interaction. An explanation for this will be proposed in the next Memoir. It will be suggested that the 
strong charge (noted here 𝐶𝑜) is a concept to be distinguished from 𝐼 or 𝑆𝑡, but which is nevertheless a 
function of these quantum numbers 𝐼 and 𝑆𝑡. 
 
 
V.2 Mathematical reminders about rotation groups 𝑺𝑼(𝒏) 
V.2.1 Elements of mathematics on rotation groups 
The Standard Model is based on gauge transformations belonging to the rotation groups of dimension 
vectors n in complex spaces. These rotation groups are called 𝑆𝑈(𝑛), 𝑆 as special to say that the 
determine of the matrix describing the rotation is equal to 1, 𝑈 as unitary and n the dimension of the 
vector concerned by the rotation. 
 
We classify these groups 𝑆𝑈(𝑛) in the Lie groups named after S. Lie, a Norwegian mathematician 
who originated these mathematical notations and who published his papers in the 1870s. These groups 
are usually noncommutative. 
 
Unit matrices satisfy the condition: 𝑈∗𝑈 = 𝑈𝑈∗ = 𝐼  

The adjoint matrix of 𝑈 is noted 𝑈∗ (or 𝑈  in  physics, and more specifically in quantum physics). 
 
Nota 
An adjoint matrix 𝑀 of a matrix with complex coefficients  is the transposed matrix of  the conjugate 
matrix of 𝑀. For example: 1 + 𝑖 133 − 2𝑖 𝑖 ∗ = 1 − 𝑖 3 + 2𝑖13 −𝑖  

 
The group 𝑆𝑂(𝑛) is the group of rotations of vectors with dimension n in real spaces. 𝑆 as special to 
say that the determination of the matrix is equal to 1. 𝑂 as orthogonal and who verifies the condition 𝐴𝐴 = 𝐼  with 𝐴 the transposed matrix. 
 
In the following paragraphs, some examples of rotation groups are given. 
 
V.2.2   Group rotations 𝑼(𝟏) 
A complex vector 𝑉 with dimension 1 turns into a vector 𝑉′ by angle rotation 𝜃: 𝑉′ = 𝑒 𝑉 

 
The rotation matrix is 𝑒 . 
 
V.2.3 Group rotations 𝑺𝑶(𝟐) 
A reral vector 𝑉 with dimension 2 turns into a vector 𝑉′ by the rotation matrix: 
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𝑉 ′𝑉 ′ = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑉𝑉  

 
There is a correspondence between rotations 𝑈(1) and 𝑆𝑂(2) (This is called isomorphism). 
We have: 𝑉± = 1√2 (𝑉 ± 𝑖𝑉 ) 

 
We can rewrite a rotation of 𝑆𝑂(2): 𝑉 ′𝑉 ′ = 𝑒 00 𝑒 𝑉𝑉  𝑉 ′ = 𝑒 𝑉  𝑉 ′ = 𝑒 𝑉  

 
We have a general form that is part of 𝑈(1), with 𝛼 which is a real: 𝑊′ = 𝑒 𝑊 

 
V.2.4 Group rotations 𝑺𝑶(𝟑) 
A real vector 𝑉 with dimension 3 turns into a vector 𝑉′ by the following rotation matrices 
corresponding to rotations about the axes x, y and z: 𝑅 (𝜃) = 1 0 00 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃0 − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃  

























cos0sin
010

sin0cos
)(yR  

𝑅 (𝜃) = 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 00 0 1  

 𝑅 (𝜃) is an angle rotation 𝜃 in a spatial plan y, z around the axis x. 𝑅 (𝜃) in a spatial plan x, z around 
the axis y. 𝑅 (𝜃) in a spatial plan x, y around the axis z. 
We orient all rotations according to the rule of the right hand. 
 
Note 
There is also a correspondence between the rotations of 𝑆𝑂(3) and those of 𝑆𝑈(2) (this is also called 
isomorphism). 
 
 
V.3 Mathematical reminders about generators of group 𝑺𝑼(𝒏) 
V.3.1 General 
The generators of a group make it possible to generate by linear combinations all the elements of a 
group. The number of generators in a group 𝑆𝑈(𝑛) is equal to 𝑛 − 1. 
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Any rotation matrix 𝑈 of a group 𝑆𝑈(𝑛) can be written as the linear combination (at the exponential 
level) of 𝑛 − 1 generators. We have: 𝑈 = 𝑒 = 𝑒 = 𝑒 ( ...) 
with: 𝑎 = 1,2,3, . . . , 𝑛 − 1, 𝛼  actual parameters, 𝑇  matrix 𝑛  with complex coefficients called generators of the group 𝑆𝑈(𝑛). 
 
Note 
Here we have matrix exponentials. 
 
 
V.3.2 Generators of group 𝑺𝑼(𝟐) 
The group 𝑆𝑈(2) has 3 generators, for example the halves of the 3 Pauli matrices: = 0 11 0 , = 0 −𝑖𝑖 0 , = 1 00 −1  

 
Note 
It is reminded that the Pauli matrices were introduced by W. Pauli to take into account the effects of a 
magnetic field on an electron. The electron is modelled as a small magnet with spin angular 
momentum and spin magnetic moment. Taking into account this notion of spin in the Schrödinger 
wave equation, gives the Pauli wave equation. 
In Dirac's relativistic wave equation, the notion of spin is directly incorporated. 
 
 
A matrix 𝑈 of 𝑆𝑈(2) can be defined as a linear combination of these 3 generators: 𝑈(𝛼 , 𝛼 , 𝛼 ) = 𝑒 ( ) 
 
Let 𝑋 be a doublet that turns into 𝑋′ by rotation 𝑈(𝛼 , 𝛼 , 𝛼 ) of 𝑆𝑈(2). 
So, we have: 𝑋 → 𝑋′ = 𝑈(𝛼 , 𝛼 , 𝛼 )𝑋 𝑋 → 𝑋′ = 𝑒 ( )𝑋 

 
For a rotation 𝑅 (𝜃) with angle 𝜃 around the axis x, it is shown that it can be defined from the 
generator 𝜎 : 𝑅 (𝜃) = 𝑒  𝑋 → 𝑋′ = 𝑒 𝑋 

 
Around the axis y, we have the same from the generator 𝜎 : 𝑅 (𝜃) = 𝑒  𝑋 → 𝑋′ = 𝑒 𝑋 

 
Around the axis z, we have the same from the generator𝜎 : 
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𝑅 (𝜃) = 𝑒 = 𝑒 00 𝑒  

𝑋 → 𝑋′ = 𝑒 𝑋 

 
For example, if 𝜃 = 2𝜋, We have: 𝑒 = 𝑒 00 𝑒 = −1 00 −1  

 
V.3.3 Generators of group 𝑺𝑼(𝟑) 
In the Quark Model and in Quantum Chromodynamics (both describing the strong interaction and 
included in the Standard Model), we have triples of particles of dimension 3. The Gauge 
transformations on these particle triples belong to the group 𝑆𝑈(3). 
 
Note, transition from flavors to colors 
A little strangely, during the 1960s, we passed: 

- from a triplet based on flavors up, down, and strange proposed by M. Gell-Mann in the Quark 
Model (with a strong charge based on flavors), 

- to a triplet based on the colors red, green, and blue in quantum chromodynamics (with a strong 
charge based on colors). 

 
 
The group 𝑆𝑈(3) has 3 − 1 = 8 generators, e.g., the 8 Gell-Mann matrices, 𝜆 …𝜆 , formed from 
Pauli matrices: = 0 1 01 0 00 0 0 , = 0 −𝑖 0𝑖 0 00 0 0 , = 1 0 00 −1 00 0 0  

= 0 0 10 0 01 0 0 , = 0 0 −𝑖0 0 0𝑖 0 0  

= 0 0 00 0 10 1 0 , = 0 0 00 0 −𝑖0 𝑖 0 , = √ 1 0 00 1 00 0 −2  

 
Any transformation of a triplet of particles can be written as a linear combination of the 8 Gell-Mann 
matrices. 
 
A matrix 𝑈 of 𝑆𝑈(3) can be defined as a linear combination of these 8 generators: 𝑈(𝛼 , 𝛼 , . . . , 𝛼 ) = 𝑒 ( ... ) 
 
Let 𝑋 be a triplet of particles that transforms into 𝑋′ by rotation 𝑈(𝛼 , 𝛼 , . . . , 𝛼 ) of 𝑆𝑈(3). 
So, we have: 𝑋 → 𝑋′ = 𝑈(𝛼 , 𝛼 , . . . , 𝛼 )𝑋 𝑋 → 𝑋′ = 𝑒 ( ... )𝑋 
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V.3.4 Elements on the structure constant of Lie groups 
In group theory, we define the commutator of a couple x, y: [𝑥, 𝑦] = 𝑥𝑦𝑥 𝑦  

 
x and y commute if and only if [𝑥, 𝑦] = 1. 
 
For three generators of a Lie group, we have the relation: 𝑇 , 𝑇 = 𝑖𝑓 𝑇  

 
This relation defines the algebra of the Lie group. Quantities 𝑓  called structure constants, are 
constant parameters that characterize each group. 
 
For 𝑆𝑈(2), noncommutative group, the commutation relation is written: 𝑇 , 𝑇 = 𝑖𝜀 𝑇  

where the structure constant 𝑓  is equal to the tensor 𝜀  of Levi-Civita. 
 𝜀 = +1 if (𝑖𝑗𝑘) is an even permutation of (123), 𝜀 = −1 if (𝑖𝑗𝑘) is an odd permutation of (123), 𝜀 = 0 otherwise. 
 
V.4 Physical application, charge defined as a generator of group 𝑺𝑼(𝒏), multiplets of 

particles and wave functions 
V.4.1 General 
In the Standard Model, a charge 𝑋  (𝑎 = 1,2,3, . . . , 𝑛 − 1) is defined as the generator of a group 𝑆𝑈(𝑛). 
 
Particles are grouped by multiplet of particles. The number 𝑛 of 𝑆𝑈(𝑛) indicates the number of 
particles in the multiplet. It also indicates the number of possible states and the number of wave 
functions associated with the multiplet of particles. 
 
Nota 
We still retain the fundamental idea of L. de Broglie to associate a particle with a wave (or wave 
function).𝜓 
 
 
V.4.2 Electric charge 𝑸, generator of group 𝑼(𝟏)𝑸 
In electromagnetic interaction, electric charge 𝑄 is the generator of the group 𝑈(1) . 
 
We have 𝑛 = 1 and thus a multiplet formed of a single particle. A particle with an electric charge 𝑄 
has only one possible state. If we reason in terms of wave function 𝜓 and probability, there is only one 
wave function 𝜓 corresponding to the probability amplitude of observing the electrically charged 
particle. 
 
V.4.3 Strong charge: isospin 𝑰, generator of group 𝑼(𝟐)𝑰 
In the Yang-Mills theory describing the strong interaction, the strong charge 𝐼 is the generator of the 
group 𝑈(2) . 
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We have 𝑛 = 2 and thus a multiplet formed of 2 particles, for example 2 quarks 𝑢 and 𝑑 with strong 
charges 𝐼 = +  and 𝐼 = −  (that is to say, up and down flavors). 
We define two wave functions associated with the strong charge 𝐼: 𝜓  and 𝜓  corresponding to the 
probability amplitude of observing the particle doublet. We have the doublet of wave functions: 𝜓 =𝜓𝜓 . 

 
V.4.4 Strong charge of flavors, generator of group 𝑼(𝟑)𝒇𝒍𝒂𝒗𝒐𝒓𝒔 
In the initial Quark Model describing the strong interaction, the strong charge is the generator of the 
group 𝑈(3) . Compared to the Yang-Mills theory, we have one more flavor that is strange or 𝑠. 
 
We have 𝑛 = 3 and thus a multiplet formed by 3 particles, for example 3 quarks 𝑢, 𝑑 and 𝑠 with 
strong charges, with flavors up, down, and strange. 
 
We define three wave functions each corresponding to the probability amplitudes of observing the 

triplet of particles. We have the wavefunction triplet: 𝜓 = 𝜓𝜓𝜓 . 

 
Note 
If we add a charm or 𝑐 flavor, we have a group 𝑈(4)  and a quadruplet of wave function: 𝜓 =𝜓𝜓𝜓𝜓 . 

 
V.4.5 Weak charge 𝑻, generator of group 𝑼(𝟐)𝑻 
In the Electroweak Model describing the weak interaction, the weak charge 𝑇 is the generator of the 
group 𝑈(2) . 
 
We have  and thus a multiplet formed by 2 particles, for instance 2 quarks, one of weak charge 𝑇 = +  (i.e., flavor quarks 𝑢, 𝑐, 𝑡), the other weak charge 𝑇 = −  (i.e., flavor quarks 𝑑, 𝑠, 𝑏). 
 
We define two wave functions associated with the weak charge 𝑇: 𝜓 , ,  and 𝜓 , , , corresponding to 
the probability amplitude of  observing the doublet of particles of weak charges 𝑇 = +  and 𝑇 =− . We have the doublet of wave functions: 𝜓 = 𝜓 , ,𝜓 , , . 

 
Note 1 
If we stop at the 1st generation of quarks, that is to say the first 2 flavors 𝑢 and 𝑑. We have the doublet 

of wave functions: 𝜓 = 𝜓𝜓 . 

 
Note 2 
In the Electroweak Model, this only applies to left-handed quarks (and right-handed antiquarks), that 
have a non-zero weak charge 𝑇. Right-handed quarks (and left-handed antiquarks) have a zero weak 
charge 𝑇 and are therefore not subject to weak interaction. We will come back to this in a future 
chapter. 
 
 

2n
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V.4.6 Strong charge of colors, generator of group 𝑼(𝟑)𝒄𝒐𝒍𝒐𝒓𝒔 
In quantum chromodynamics describing the strong interaction, the strong charge is the generator of 
the group 𝑈(3) . 
 
We have 𝑛 = 3 and thus a multiplet formed by 3 quarks, for example 3 quarks of strong charges of 
color 𝑅, 𝐺, 𝐵 (red, green, blue). 
We define three wave functions each corresponding to the probability amplitudes of observing the 

triplet of color particles 𝑅, 𝐺, 𝐵. We have the wavefunction triplet: 𝜓 = 𝜓𝜓𝜓 . 

 
Note 
The group 𝑆𝑈(3)  was developed by M. Gell-Mann prior to 𝑆𝑈(3) . For this reason, its 
name is found in the Gell-Mann matrices used in quantum chromodynamics. 
 
That the strong charge is generating 𝑆𝑈(3)  or 𝑆𝑈(3) , the mathematical model is the same 
for groups. 
 
 
V.5 Physical application, Global Gauge transformations and conservation of the 

charges 
V.5.1 General 
The rotations of group 𝑆𝑈(𝑛) allow you to define Global Gauge transformations on the multiplets of 
wave functions associated with the multiplexes of particles. For example, we have the global gauge 

transform on a multiplet of wave functions 
𝜓. . .𝜓  defined from the matrix 𝑈 of the group 𝑆𝑈(𝑛): 𝜓. . .𝜓 → 𝜓. . .𝜓 ′ = 𝑈 𝜓. . .𝜓  

 
V.5.2 Case of 𝑼(𝟏)𝑸, electric charge 𝑸 
If 𝑈 belongs to 𝑈(1) , then 𝜓 is a singlet of wave functions and we have: 𝑈 = 𝑒  𝜓 → 𝜓′ = 𝑒 𝜓 

 
We have the global gauge transformation approximated by the infinitesimal transformation: 𝜓 → 𝜓′ = (1 + 𝑖𝛼𝑄)𝜓 

 
If 𝜓 → 𝜓′ = (1 + 𝑖𝛼𝑄)𝜓 is a symmetry of the system, then the electric charge 𝑄 is preserved by the 
Global Gauge transformation. 
 
Explanation 
According to Noether's theorem, any transformation that leaves the equations of motion invariant or in 
other words, that commutes with the Hamiltonian 𝐻 of the system (energy of the system), we can 
associate a conserved quantity. 
 
If the infinitesimal transformation 𝜓 → 𝜓′ = (1 + 𝑖𝛼𝑄)𝜓 leaves the motion invariant, so we have the 
commutation with the Hamiltonian: 
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[𝐻, (1 + 𝑖𝛼𝑄)] = 0 

 
We get: [𝐻, 𝑄] = 0 

 
The electric charge 𝑄 is here the quantity conserved by the infinitesimal transformation. 
 
 
Global Gauge transformation example 
To pass from the electron of electric charge −1 to the antielectron of electric charge +1, we do a 
rotation of 𝜋 = 𝛼𝑄 in the space of electric charges: �̄� (+1) = 𝑒 𝑒 (−1) 𝑒  belongs to the group 𝑈(1) . 
 
V.5.3 Case of 𝑺𝑼(𝟐)𝑻, weak charge 𝑻 (weak isospin) 

If 𝑈 belongs to 𝑆𝑈(2) , then 𝜓𝜓  is a doublet of wave functions and we have: 𝑈 = 𝑒 ( ) 𝜓𝜓 → 𝜓 ′𝜓 ′ = 𝑒 ( ) 𝜓𝜓  

 
Note 
We are studying here only the first generation of quarks. 
 
 
The weak charges 𝑇 =  (𝑎 = 1,2,3) are considered to be the generators of 𝑆𝑈(2) . So, we have 3 
weak charges. 
 
If 𝑈 is a symmetry of the system then the matrices  are retained, i.e., weak charges 𝑇 =  are 
retained. 
 
Example of Global Gauge transformation 
Let be the doublet of particles of the nucleus (hadrons) of opposite weak charges, a quark 𝑢  and a 
quark 𝑑  (the particles are both left-handed, as only left-handed particles are subject to the weak 
interaction.): 

𝑋 = 𝑢𝑑 = 𝑇 = 12𝑇 = − 12  

 
Similarly, let be the doublet of particles around the nucleus (leptons) of opposite weak charges, a left-
handed electron 𝑒  and a left-handed neutrino 𝑣 : 

𝑌 = 𝑣𝑒 = 𝑇 = 12𝑇 = − 12  
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In the space of weak charges 𝑇, to switch from the quark doublet 𝑋 = 𝑢𝑑  to the quark doublet 𝑋′ =𝑢 ′𝑑 ′ , we perform a rotation 𝑅 (𝜃) = 𝑒 of 𝑆𝑈(2)  with angle 𝛼 = 2𝜋 and 𝜎 = 1 00 −1 . 

 
We have: 

𝑋′ = 𝑒 𝑋 = 𝑒 12− 12  

𝑒 = 𝑒 00 𝑒 = −1 00 −1  

 
So, we have: 
 

𝑋′ = 𝑢 ′𝑑 ′ = −1 00 −1 12− 12 = − 1212 = 𝑑𝑢  

 
We have an identical treatment with the lepton doublet 𝑌: 

𝑌′ = 𝑣 ′𝑒 ′ = 𝑒 𝑌 = − 1212 = 𝑣𝑒  

 
Note 1 
A rotation about the z-axis with 𝛼 = 2𝜋, reverses the weak charge 𝑇. A rotation about the z-axis with 𝛼 = 4𝜋, leaves invariant weak charge 𝑇. We have the same observation for spin and isospin 𝐼 which 
share with the weak charge the same mathematical formalism. We will come back to this at the end of 
this chapter. 
 
Note 2 
What we just explained in the previous example about left-handed quarks, left-handed leptons, and the 
weak charge 𝑇, also applies to quarks (both left-handed and right-handed) and isospin 𝐼, when the 
latter is considered a strong charge (this is the case in the Yang-Mills theory that we will study in a 
future chapter). The high charge is then conserved by gauge transformation of the group 𝑆𝑈(2) . 
This does not apply to leptons that are not subject to strong interaction. 
 
 
V.5.4 Case of 𝑺𝑼(𝟑)𝑪𝒐𝒍𝒐𝒓𝒔, strong charge of colors 

If 𝑈 belongs to 𝑆𝑈(3) , then 
𝜓𝜓𝜓  is a triplet of wave functions and we have: 

𝑈(𝛼 , 𝛼 , . . . , 𝛼 ) = 𝑒 ( ... ) 
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𝜓𝜓𝜓 → 𝜓 ′𝜓 ′𝜓 ′ = 𝑒 ( ... ) 𝜓𝜓𝜓  

 
If 𝑈 is a symmetry of the system then the matrices  are retained, that is, strong charges of color are 
preserved by Global Gauge transformation. 
 
Note on the strong charge of flavors 
This also applies to 𝑆𝑈(3) , since we have the same mathematical formalism as to groups 𝑆𝑈(3). Strong charges of flavor are also preserved by Global Gauge transformation. 
 
 
V.6 Physical application, currents charge quadrivector conserved during a global 

gauge transform, Noether's theorem 
V.6.1 Electromagnetic currents 
In Memoir 2, it was mentioned that using Noether's theorem, one obtains the conservation of an 
electromagnetic currents charge quadrivector during a global gauge transformation. This is succinctly 
reminded. 
 
We have the Global Gauge transformation belonging to the group 𝑈(1) : 𝜓(𝑥) → 𝑒 𝜓(𝑥) 𝛼 can take any real value. 
 
We have the Lagrangian of a free electron described by the wave function 𝜓: 𝐿 = 𝜓(𝑖𝛾 𝜕 − 𝑚𝑐ℏ )𝜓 

 
This Lagrangian is invariant by the global gauge transformation 𝜓(𝑥) → 𝑒 𝜓(𝑥). 
According to Noether's theorem, there is a quantity conserved in the global gauge transformation. 
 
The density of electric charge is the quantity conserved with 𝜇 = 𝑡: 𝑗 = 𝜕𝐿𝜕�̇�(𝛼) 𝜕𝜓(𝛼)𝜕𝛼  

 
The density of electric currents is the quantity conserved with 𝜇 = 𝑥, 𝑦, 𝑧: 𝑗 = 𝜕𝐿𝜕(𝛻𝜓(𝛼)) 𝜕𝜓(𝛼)𝜕𝛼  

 
By developing these two equations, we obtain as conserved quantity the electromagnetic currents 
charge density quadrivector: 𝑗 = −𝑒𝑄𝜓𝛾 𝜓 

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

with 𝑒 the elementary electric charge and 𝑄 the number of elementary electric charges. 
 
We also have the conservation electromagnetic currents charge: 
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𝜕 𝑗 = 0 

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
V.6.2 Currents carrying a charge 𝑿𝒂 
What we have just stated about electromagnetic currents and the group 𝑈(1) , can generalize to 
groups 𝑆𝑈(𝑛) , with 𝑋  the charges who are generators of the group 𝑆𝑈(𝑛). We then have 𝑛 − 1 
currents 𝑗  carrying a charge 𝑋  that check conservation of currents charge: ∂ j = 0 

with 𝑎 = 1, . . . , 𝑛 − 1 and 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
For instance, in the case of strong interaction of the group 𝑆𝑈(2)  and in the case of weak interaction 
of the group 𝑆𝑈(2) , we speak respectively of strong currents 𝑗  and weak currents 𝑗 . We have 3 
strong currents: 𝑗 , 𝑗 , 𝑗  and 3 weak currents: 𝑗 , 𝑗 , 𝑗 . 
 
We will return to this type of weak currents in the chapter dealing with the Glashow-Weinberg-Salam 
electroweak model. 
 
V.7 Physical application, transformations of spin 𝑺 and isospin 𝑰 based on 𝑺𝑼(𝟐) 
In the previous paragraphs, we have mainly mentioned quantum numbers of the charge type, 
generating the rotations of 𝑆𝑈(𝑛). 
Note that for quantum numbers of the other type, such as spin 𝑆 and isospin 𝐼, we also have 
transformations of 𝑆𝑈(2). These transformations can reverse these quantum numbers and describe 
some of the changes observed during a hyperfine transition or beta decay. We will see that the 
mathematical treatment is identical for spin and isospin. 
 
V.7.1 Hyperfine transition, inversion of spin 𝑺𝟑  
Let be a doublet of electrons of opposite spins, of the same momentum et d’hélicités opposées 𝑋 =𝑒𝑒 = 𝑆 =𝑆 = −  (a right-handed electron and a left-handed electron). 

 
We can symbolize a hyperfine transition that reverses the spin states of the two electrons by a rotation 𝑅 (𝛼 = 2𝜋) around z axis: 

𝑋′ = 𝑒 ′𝑒 ′ = 𝑒 𝑋 = 𝑒 12− 12  

 
We have: 𝑒 = 𝑒 00 𝑒 = −1 00 −1  

 
So, we have: 
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𝑋′ = 𝑒 ′𝑒 ′ = −1 00 −1 12− 12 = − 1212 = 𝑒𝑒  

 
The electron doublet 𝑋′ has the spins inverted with respect to the electron doublet 𝑋. 
 
More generally, any transformation of a spin doublet can be written as a linear combination of the 3 
Pauli matrices. We will see in the following example that it is the same for isospin doublets. 
 
V.7.2 Beta decay, inversion of isospin 𝑰𝟑  
Let be the doublet of particles of the nucleus (hadrons) of opposite isospins, a quark 𝑢 and a quark 𝑑: 

𝑋 = 𝑢𝑑 = 𝐼 = 12𝐼 = − 12  

 
We can symbolize a beta decay that reverses the isospin states of a quark 𝑢 and of a quark 𝑑 by 
rotation 𝑅 (𝛼 = 2𝜋) around z axis: 
 
Note 
Instead of having a doublet 𝑢𝑑 , we can also reason on a proton neutron doublet: 

𝑋 = 𝑝𝑛 = 𝐼 = 12𝐼 = − 12  

 
In isospin space, to pass from the quark doublet 𝑋 = 𝑢𝑑  to the doublet 𝑋′ = 𝑢′𝑑′ , we perform a 

rotation 𝑅 (𝛼) = 𝑒 of 𝑆𝑈(2) with angle 𝛼 = 2𝜋 and with 𝜎 = 1 00 −1 . 
 
Like spin, we have: 

𝑋′ = 𝑢′𝑑′ = 𝑒 𝑋 = 𝑒 12− 12  

𝑒 = 𝑒 00 𝑒 = −1 00 −1  

 
So, we have: 

𝑋′ = 𝑢′𝑑′ = −1 00 −1 12− 12 = − 1212 = 𝑑𝑢  

 
Note: foretaste on the hyper interaction and the boson B 
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In the case of hyperfine transition, the spin number 𝑆  is retained via the radiated photon 𝛾 which 
carries the difference in spins between right-handed and left-handed electrons. 
In the case of beta decay, we will propose in the next Memoir that the isospin number 𝐼  is conserved 
via the radiated boson 𝐵, which carries the difference in isospins between the neutron and the proton. 
Like the photon 𝛾 (carrying spins 𝑆 ) which is the mediating particle of the electromagnetic 
interaction of electric charge 𝑄, we will propose that the boson 𝐵 (carrying isospins 𝐼 ) is the particle 
mediating the hyper interaction of weak hypercharge 𝑌 . 
 
 
V.8 Conclusion of the chapter 
In this chapter, we first made some mathematical reminders on rotation groups 𝑆𝑈(𝑛)  used by the 
Standard Model. We then mentioned as physical applications, charges 𝑋  defined in the Standard 
Model, and generators of these rotation groups 𝑆𝑈(𝑛) . 
These charges 𝑋  are preserved by Global Gauge transformation. They are each associated with a 
current 𝑗  which, according to Noether's theorem, is also conserved by a global gauge transformation. 
 
After these mathematical reminders and these physical applications, we will return in more detail to 
the 1st Gauge theory using a charge 𝑋  with more than one dimension: the Yang-Mills gauge theory 
describing the strong interaction and having isospin as a strong charge. 
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Chapter VI  Yang-Mills local gauge theory on strong interaction (1954) 
 
Purpose of the chapter 
We remind in general the theory of local gauge of Yang-Mills which describes the strong interaction. 
In the 1st Memoir, we compared Weyl gauge transformations to cancellations (or modifications) of 
rotation vectors in two dimensions of a real space (or a dimension of a complex space). 
We can see the local Yang-Mills gauge theory as the generalization of one to two complex dimensions 
of Weyl's gauge theory. Thus, Yang-Mills Local Gauge transformations can be compared to 
cancellations (or modifications) of rotation vectors in two dimensions of a complex space. 
 
VI.1 Preamble 
In 1954, inspired by the ideas of A. Einstein and H. Weyl, Chen Ning Yang and Robert Mills 
published a local gauge theory describing the strong interaction. 
 
The Yang-Mills local gauge theory is based on the same principle as H. Weyl's local gauge theory 
describing electromagnetism. The objective is to obtain the invariance of the great laws of Nature, in 
this case: 

- Dirac's relativistic wave equation (𝑖𝛾 𝜕 − ℏ )𝜓 = 0 with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧, 
- Lagrangian 𝐿 = 𝑖ℏ𝑐𝜓𝛾 (𝜕 )𝜓 − 𝑚𝑐 𝜓𝜓 which makes it possible to find, using it in the 

Euler-Lagrange equation, this relativistic wave equation. 
 
The Yang-Mills theory is essentially distinguished from that of Weyl by the number of dimensions 
used, with 1 complex dimension in Weyl and 2 complex dimensions in Yang-Mills. For example, in 
Weyl, the electric charge 𝑄 has 1 component, in Yang-Mills, the strong charge identified with isospin 𝐼  (𝑎 = 1,2,3) has 2 components. In Weyl, the wave function is a singlet, in Yang-Mills the wave 
function is a doublet. In Weyl, local gauge transformations on the wave function belong to group of 
rotations 𝑈(1) , at Yang-Mills, local gauge transformations on the wave function belong to group of 
rotations 𝑆𝑈(2) . 
 
The transition from 1 to 2 dimensions has important consequences, because while 𝑈(1) is a 
commutative group, 𝑆𝑈(2) is not. This introduces additional terms into the gauge transform of the 
potential quadrivector and into the Yang-Mills Lagrangian. This will be discussed in the following 
paragraphs. 
 
Like Yukawa's theory of nuclear interactions, Yang-Mills theory uses mediating particles called pion 
mesons, which are represented by potential quadrivectors (also called gauge fields). 
The main handicap of Yang-Mills is that unlike the Yukawa mesotron, the mediating particles must be 
massless to obtain the invariance of the laws of Nature (in particular the invariance of the Lagrangian 
by local gauge transformation). Thus, the very short scope of nuclear interactions is not explained at 
Yang-Mills. 
 
The Yang-Mills theory is of great historical importance. In the 2 decades following its publication, its 
ideas were widely reflected in the Standard Model, which was inspired by them to describe both 
strong and weak interaction. 
 
At the end of the next chapter, we will see briefly how in the Standard Model, a mass is assigned to 
mediating particles via the BEH (or Higgs) mechanism, and how the small scope of nuclear 
interactions is thus explained. 
 
In the next paragraphs, we will remind the main characteristics of a Yang-Mills local gauge theory, an 
essential prerequisite for better understanding the Standard Model. 
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VI.2 Local gauge transformation, analogy electromagnetic interaction and strong 
nuclear interaction 

VI.2.1 Local gauge transformation in the case of electromagnetic interaction 
In the case of electromagnetic interaction, we have the local gauge transformation of the wave 
function: 𝜓 → 𝜓′ = 𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥))𝜓 

with 𝛼(𝑥) function of local variable 𝑥 (positions and/or moments). 
 
The local gauge transformation belongs to the group of rotations: 𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥)) ∈ 𝑈(1)  

 𝑄 is the number of elementary electric charges. It is an integer number since the electric charge is 
quantified as a multiple of elementary electric charges 𝑒. We can consider 𝑄 as a matrix 1 × 1. 
 
We have the local gauge transform of the electromagnetic potential quadrivector: 𝐴 → 𝐴 ′ = 𝐴 + 𝜕 𝛼(𝑥) 

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
In the local gauge theory of electromagnetism, the electromagnetic potential quadrivector is associated 
with a photon 𝛾, mediating particle of electromagnetic interaction. 
 
VI.2.2 Covariant derivative of electromagnetic interaction 
In the 1st Memoir, we saw that to obtain the invariance of the relativistic Dirac wave equation, it is 
necessary to define a covariant derivative: 𝜕 → 𝐷 = 𝜕 + 𝑖𝑞𝑄𝐴  

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 and 𝑞 the elementary charge. 
 
We have the relativistic Dirac wave equation in the reference frame 𝑅  where we carried out the 
transformation of Local Gauge: (𝑖𝛾 𝐷 − 𝑚𝑐ℏ )𝜓 = 0 

 
Note 
In the case of an electron, 𝑞 = −𝑒, we then have: 𝜕 → 𝐷 = 𝜕 − 𝑖𝑒𝑄𝐴  (𝑖𝛾 (𝜕 − 𝑖𝑒𝑄𝐴 ) − 𝑚𝑐ℏ )𝜓 = 0 

 
VI.2.3 Local Gauge Transformation of the wave function in the case of strong interaction 
In the case of the strong interaction, according to the Yang-Mills theory, we have the local gauge 
transform of a doublet of wave functions: 𝜓 → 𝜓′ = 𝑒𝑥𝑝( 𝑖𝑔 𝐼 ⋅ 𝛼 (𝑥))𝜓 

(𝑎 = 1,2,3) 

with 𝛼 (𝑥) function of the local variable 𝑥 (moments, positions). 
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 𝜓 and 𝜓′ are here doublets of wave functions. 𝑔  is the elementary strong charge in analogy with the elementary electric charge 𝑒. 𝐼  is the number of elementary strong charges (or more simply the strong charge). In Yang-Mills, the 
strong charge is identified with isospin. 𝐼  (𝑎 = 1,2,3) are the 3 components of isospin. They are matrices 2 × 2 frequently defined from Pauli 
matrices: 𝐼 = , with 𝜎  the 3 Pauli matrices. 
 
The local gauge transformation belongs to the group of rotations: 𝑒𝑥𝑝( 𝑖𝑔 𝐼 ⋅ 𝛼 (𝑥)) ∈ 𝑆𝑈(2) 

(𝑎 = 1,2,3) 

 
Note 1 
In the next chapter describing the electroweak model and the weak interaction, we will see that the 
proposed model is largely inspired by that of Yang-Mills. Since the interaction described is weak, we 
will use the weak charge 𝑇, defined by S. Glashow in analogy with the strong charge 𝐼 of Yang-Mills. 
 
In the table below, we summarize the analogies between electric charges, strong and weak charges: 
 
 Electromagnetic 

interaction 
Weyl theory 

Strong interaction 
Yang-Mills theory 

Weak interaction 
Electroweak model 

Number of charges 
conserved per Global 
Gauge 
transformation 
 

𝑄 (Electric charge) 𝐼  (Strong charge) 𝑎 = 1,2,3 
𝑇  (Weak charge) 𝑎 = 1,2,3 

Elementary charge 𝑔 = 𝑒 𝑔  𝑔  
Total charge 𝑒𝑄 𝑔 𝐼  𝑔 𝑇  
 
Note 2 
As already mentioned, isospin 𝐼 is also to be compared to spin 𝑆. Both are reversed during reactions 
between particles, decay 𝛽 for isospin 𝐼 and hyperfine transition for spin 𝑆. 
 
In the next Memoir, it will be proposed to distinguish the strong charge noted here 𝐶𝑜 (like a strong 
charge of color) from the isospin 𝐼. 
However, in the case of nucleons and quarks of 1st generation, the strong charge 𝐶𝑜 remains precisely 
equal (probably with a very good approximation) to isospin 𝐼. We then understand better why the 
Yang-Mills theory takes isospin 𝐼 as the strong charge. 
 
 
VI.2.4 Local gauge transformation of potential quadrivectors in the case of the strong 

interaction 
In the Yang-Mills theory, we do not have a single potential quadrivector 𝐴 , but three noted: 𝐴 , 𝐴 , 𝐴  who each interacts with a strong current 𝑗  (𝑎 = 1,2,3) carrying a strong charge respectively 𝐼 , 𝐼 , 𝐼 . 
 
We have the local gauge transform of the 3 potential quadrivectors (we give it here for 𝐴 ): 𝐴 → 𝐴 ′ = 𝐴 + 𝜕 𝛼 (𝑥) + 𝑔 𝑓 𝛼 (𝑥)𝐴  
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with 𝑓  the group structure constant. For 𝑆𝑈(2), 𝑓  are the components of the tensor 𝜀  of Levi-
Civita. 
 
Note 1 
For a group of rotations 𝑆𝑈(𝑛), the number of potential quadrivectors is equal to 𝑛 − 1, therefore 
identical to the number of generators in the group 𝑆𝑈(𝑛), to the number of charges 𝑋  and to the 
number of currents 𝑗 . 
 
Note 2 
In Yang-Mills, the 3 potential quadrivectors of the strong interaction correspond to the mediating 
particles of the interaction, i.e., three mesons 𝐴 , 𝐴 , 𝐴 . 
 
To pass from mesons 𝐴 , 𝐴 , 𝐴  of the theory, to the electrically charged pions 𝜋 , 𝜋  that we 
observe, we pose the relationships between the potential quadrivectors of mesons: 𝜋 = 1√2 (𝐴 + 𝑖𝐴 ) 

𝜋 = 1√2 (𝐴 − 𝑖𝐴 ) 

 
Unlike the photon 𝛾 that does not carry an electrical charge, the pions 𝜋 , 𝜋  carry a strong charge (in 
this case isospin 𝐼 ). The pions 𝜋 , 𝜋  are of the scale operator type, they can increase or decrease by 
a 𝐼 , the strong charge of the particle with which they interact. 
 
 
VI.2.5 Covariant derivative of strong interaction 
To obtain the invariance of the Dirac relativistic wave equation, Yang–Mills theory defines a covariant 
derivative: 𝜕 → 𝐷 = 𝜕 + 𝑖𝑔 𝐼 ⋅ 𝐴  

(𝑎 = 1,2,3) 

 𝑔 𝐼  are the quantities retained during the local gauge transformation. 𝐴 , 𝐴 , 𝐴 : are the three potential quadrivectors cancelled during the local gauge transformation. 
 
We have the relativistic Dirac wave equation in the reference frame 𝑅  where the local gauge 
transformation is performed: (𝑖𝛾 𝐷 − 𝑚𝑐ℏ )𝜓 = 0 

(𝑖𝛾 (𝜕 + 𝑖𝑔 𝐼 ⋅ 𝐴 ) − 𝑚𝑐ℏ )𝜓 = 0 

(𝑎 = 1,2,3) 

 
Note 
To see if we can associate in a more encompassing theory: 

- rotations of 𝑆𝑈(2) (or 𝑆𝑈(𝑛) if we generalize) corresponding to the Yang-Mills Local Gauge 
transformations, 

- the generalized rotation vectors in a spatial or spatiotemporal plane that we proposed in the 2nd 
Memoir, and which are cancelled during a change of reference frames. 
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These were rotations in a real two-dimensional space or in a complex one-dimensional space. With 𝑆𝑈(𝑛), We switch to rotations in 𝑛 complex dimensions. 
 
 
VI.3 Reminders on the Lagrangians used in electromagnetism and relativistic 

quantum electrodynamics 
VI.3.1 Lagrangian of d’Alembert 
We remind the Lagrangian of d’Alembert: [𝐿] = 𝑖𝜓𝛾 (𝜕 )𝜓 

with 𝜇 = 0,1,2,3 and 𝜇 = 𝑐𝑡, 𝑥, 𝑦, 𝑧. 
 
The reference frame of the Lagrangian is the vacuum 𝑅 . 
 
Reminder 
The conjugate of the wave function is defined by: 𝜓 = 𝜓 𝛾  
 
 
Applying the Euler Lagrange equation: 𝜕 ( ( )) − = 0 or 𝜕 ( ( )) − = 0 on the 

Lagrangian of d'Alembert, then squared, we find the wave equation of d’Alembert: 𝜕 𝜓𝜕𝑥 − 1𝑐 𝜕 𝜓𝜕𝑡 = 0 

 
In compact form: 𝜕 𝜓 = 0 

with 𝜇 = 𝑐𝑡, 𝑥, 𝑦, 𝑧 

 
VI.3.2 Lagrangian of free Dirac 
We remind the Lagrangian of free Dirac: [𝐿] = 𝑖ℏ𝑐𝜓𝛾 (𝜕 )𝜓 − 𝑚𝑐 𝜓𝜓 

 
The reference frame 𝑅  of the Lagrangian of free Dirac is no longer the vacuum since there are 
masses. 
 
Applying the Euler Lagrange equation: 𝜕 ( ( )) − = 0 or 𝜕 ( ( )) − = 0 on the 

Lagrangian of free Dirac, we find the free Dirac equation in the reference frame 𝑅 : (𝛽[𝜕 ] + 𝛽�⃗� ∘ 𝜕 + 𝑖 𝑚𝑐ℏ )𝜓 = 0 

 
In compact form: (𝑖𝛾 𝜕 − 𝑚𝑐ℏ )𝜓 = 0 

 
Then squared, we find the Klein Gordan wave equation in 𝑅 : 
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([𝜕 ] − [𝜕 ] + 𝑚 𝑐ℏ )𝜓 = 0 

 
VI.3.3 Dirac Lagrangian in an electromagnetic field 
We remind the Lagrangian of Dirac in an electromagnetic field: [𝐿] = 𝑖ℏ𝑐𝜓𝛾 (𝐷 )𝜓 − 𝑚𝑐 𝜓𝜓 

with 𝑅  the reference frame where the electromagnetic potential quadrivector is cancelled 𝐴 , with 𝜇 = 0,1,2,3 or 𝜇 = 𝑐𝑡, 𝑥, 𝑦, 𝑧. 
 
We have the covariant derivative (in the case of an electron): 𝐷 = 𝜕 − 𝑖𝑒𝐴  

 
We obtain the Dirac Lagrangian in an electromagnetic field: [𝐿] = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 + ℏ𝑐𝑒𝜓𝛾 𝜓𝐴  

 −𝑒𝜓𝛾 𝜓𝐴  is the electromagnetic generalized potential energy, also called electromagnetic 
interaction energy. It is the interaction term between the particle (fermion) of currents charge 
quadrivector 𝑗 = −𝑒𝜓𝛾 𝜓 and the electromagnetic potential quadrivector 𝐴  (representing the 
photon 𝛾). 
 
We have the electric charge density: 𝑗 = −𝑒𝜓𝛾 𝜓 = −𝑒𝜓 𝜓 

We find the electrostatic potential energy: 𝐸𝑝 = −𝑒𝐴  

We have the electric currents: 𝑗 = −𝑒𝜓𝛾 𝜓 

with 𝜇 = 𝑥, 𝑦, 𝑧 

We find the magnetic generalized potential energy: 𝐸𝑝 = 𝑗 𝐴 = −𝑒�⃗� ⋅ 𝐴  

with 𝜇 = 𝑥, 𝑦, 𝑧 

 
We find the electromagnetic generalized potential energy (but with different signs, because the signs 
of the magnetic vector potential have been reversed.): 𝐸𝑝 = −𝑒(𝐴 − (�⃗� ⋅ 𝐴 ) 

with 𝜇 = 𝑥, 𝑦, 𝑧 

 
Note on magnetic potential energy 
Remind that the magnetic potential energy is zero, the magnetic force of Lorentz does not work. This 
is because there is a magnetic potential momentum 𝑒𝐴  (𝜇 = 𝑥, 𝑦, 𝑧) that we have this magnetic 
generalized potential energy. 
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Note 
To switch from the Lagrangian [𝐿]  to the Lagrangian [𝐿] , we perform the change of reference 
frames or transformation of local gauge: 𝜓 → 𝜓′ = 𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥))𝜓 𝐴 → 𝐴 ′ = 𝐴 + 𝜕 𝛼(𝑥) 

 𝜕 (𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥))𝜓) =  −𝑖(𝜕 𝛼(𝑥))  
 [𝐿] → [𝐿] = [𝐿] + (𝜕 𝛼(𝑥)) 𝜓𝛾 𝜓 
 
 
In relativistic quantum electrodynamics, there is also a Lagrangian describing the dynamics of the 
photon: 𝐿 = − 14 𝐹 𝐹  𝐹 = 𝜕 𝐴 − 𝜕 𝐴  is the Maxwell Faraday tensor, the electromagnetic field tensor, or the photon 
field tensor. 
 
We obtain the total Lagrangian in the reference frame 𝑅  where the electromagnetic potential 
quadrivector is cancelled 𝐴 : [𝐿] = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 + ℏ𝑐𝑒𝜓𝛾 𝜓𝐴 − 14 𝐹 𝐹  

 
VI.4 Lagrangians involved in the strong interaction 
VI.4.1 Lagrangian of d’Alembert 
In the Yang-Mills theory, the Lagrangians used for the strong nuclear interaction are built on the same 
model as the electromagnetic interaction. 
 
In the reference frame 𝑅  (i.e., vacuum), we have a Lagrangian for a doublet of particles (of the 
nucleus) corresponding to the d'Alembert wave equation: [𝐿] = 𝑖𝜓𝛾 (𝜕 )𝜓 

 
Note: 𝜓 above is a doublet of wave functions. 
 
 
VI.4.2 Lagrangian of free Dirac 
In the reference frame 𝑅  (with masses), we have the Lagrangian corresponding to Free Dirac: [𝐿] = 𝑖ℏ𝑐𝜓𝛾 (𝜕 )𝜓 − 𝑚𝑐 𝜓𝜓 

 
VI.4.3 Lagrangian of Dirac in a strong nuclear field 
In the reference frame 𝑅  where potential quadrivectors are cancelled 𝐴 , we replace 𝜕  by 𝐷  so 
that the wave equation is always respected (Gauge invariance principle). The Yang-Mills theory gives 
the Lagrangian for particles of the nucleus in a strong nuclear field: [𝐿] = 𝑖ℏ𝑐𝜓𝛾 (𝐷 )𝜓 − 𝑚𝑐 𝜓𝜓 
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We have the covariant derivative: 𝐷 = 𝜕 + 𝑖𝑔 𝐼 ⋅ 𝐴  

(𝑎 = 1,2,3) 

We get: [𝐿] = 𝑖ℏ𝑐𝜓𝛾 (𝜕 + 𝑖𝑔 𝐼 ⋅ 𝐴 )𝜓 − 𝑚𝑐 𝜓𝜓 [𝐿] = 𝜓(𝑖ℏ𝑐𝛾 𝜕 − 𝑚𝑐 )𝜓 − ℏ𝑐𝑔 𝐼 𝜓𝛾 𝜓 ⋅ 𝐴  

 −ℏ𝑐𝑔 𝐼 𝜓𝛾 𝜓 ⋅ 𝐴  is the term of strong interaction between particles (fermion) of strong currents 
charge density quadrivectors 𝑗 = 𝑔 𝐼 𝜓𝛾 𝜓 and strong potential quadrivectors 𝐴  (representing 
the meson mediating particles of the strong interaction). 
 
There is also a Lagrangian to describe the dynamics of gauge mesons: 𝐿 = − 14 𝐹 𝐹  

 
We have three tensors 𝐹 , 𝐹 , 𝐹  analogues of the electromagnetic tensor 𝐹  of Maxwell-Faraday. 
 
We give the expression of the tensor 𝐹 : 𝐹 = 𝜕 𝐴 − 𝜕 𝐴 + 𝑔 𝜀 𝐴 𝐴  𝜀  is the group structure constant 𝑆𝑈(2). For 𝑆𝑈(2), these are the components of the tensor 𝜀  of 
Levi-Civita. 
 
Note 1 
The group 𝑆𝑈(2) of isospin 𝐼 is noncommutative, the combination 𝑔 𝜀 𝐴 𝐴  involves 
interactions between mesons 𝐴 , 𝐴 , 𝐴  with exchange of quantities carried by mesons. 
 
Note 2 
Gauge invariance requires that mesons 𝐴 , 𝐴 , 𝐴  are massless. However, to explain the small range 
of nuclear interactions, according to the ideas of H. Yukawa, it is necessary that the mediating 
particles have a mass. 
 
This implies that the Lagrangian includes terms of mass of the form: 𝐿 = 𝑚 𝐴 𝐴  with 𝑚  the mass of mesons. 
But this Lagrangian 𝐿  is not local gauge invariant. To overcome this problem, we will study in a 
future chapter the BEH mechanism used by the Electroweak Model. 
 
 
VI.5 Chapter conclusion, summary on Global and Local Gauge Transformations   
During a Global Gauge transformation of 𝑆𝑈(𝑛), we have the charges 𝑋  (such as electric charge, 
strong charge of isospin, strong charge of flavor, weak charge of the Electroweak Model, strong 
charge of color, etc.) that are retained. We also have the currents charge density quadrivectors 
(electromagnetic, strong, weak) that are retained and that satisfy the retention equation: 𝜕 𝑗 = 0 
with 𝑋  the generating charge of the group 𝑆𝑈(𝑛) , 𝑎 = 1, . . . , 𝑛 − 1 and 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧. 
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During a local Gauge transformation of 𝑆𝑈(𝑛), we obtain according to a principle of Invariance of the 
great laws of Nature, covariant derivatives, and interaction terms to be added in the Lagrangian. We 
have 𝑛 − 1 potential quadrivectors (or gauge fields) that are cancelled during the transformation of 
Local Gauge. To these 𝑛 − 1 potential quadrivectors, we associate 𝑛 − 1 mediating particles. Those 𝑛 − 1 mediating particles of potential quadrivectors 𝐴  react via interaction terms with fermions 
carrying charges 𝑋  associated with currents 𝑗 . If 𝑛 ≥ 2, the 𝑛 − 1 mediating particles react with 
each other. 
 
In the next chapter, we will continue to focus on the work of Chen Ning Yang. This time, we will 
focus on the work on weak interaction and the violation of parity that we encounter there. 
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Chapter VII Lee Yang Wu's parity violation (1957) and the negative 
helicity of Golhaber's neutrino (1958) 

 
Purpose of the chapter 
Like particles of zero electric charge that are not subject to electromagnetic interaction, like leptons of 
zero strong charge that are not subject to the strong interaction, we will focus here on particles of zero 
weak charges that are not subject to the weak interaction. 
 
Symptoms of zero weak charge are manifested in the parity violation encountered in the weak 
interaction. A violation of parity that implies that certain particles distinguish right from left. 
 
Helicity is defined as the projection of the spin of a particle on its direction of propagation. We study 
the absence of neutrino of positive helicity (or right-handed neutrino), as well as the non-participation 
of certain particles in the weak interaction according to their helicity and therefore, having a zero weak 
charge. 
 
VII.1 Reminders on helicity 
VII.1.1 Definition 
We call helicity 𝐻 of a particle, the projection of the spin of this particle on its direction of 
propagation: 
 𝐻 = 𝑆 ⋅ 𝑝|𝑝|  

with 𝑆 the spin (generally e following) and 𝑝 the momentum. 
 
The following figure schematizes for an electron and an antineutrino, the momentum 𝑝 by a thin arrow 
and spin 𝑆 by a thick arrow. 

 
Figure 12: helicity of an electron and an antineutrino 

 
In the figure above, we have the following helicities for the electron and antineutrino: 𝐻 = − 12 

with 𝑆 =  

𝐻 ̄ = 12 

with 𝑆 ̄ =  

If the helicity is positive, i.e., if the spin has the same direction as the momentum, we speak of a right-
handed particle (right or R). If the helicity is negative, i.e., if the spin has a direction opposite to the 
momentum, we speak of a left-handed particle (left or L). We have on the figure above a left-handed 
electron (𝑒 )  and a right-handed antineutrino (�̄� ) . 
 

Le )( 
Re )(
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VII.1.2 Hyperfine transition example 
The notion of helicity makes it possible to distinguish the two faces, at the spin level, of the same 
particle. 
For example, if a right-handed proton 𝑝  has a spin (actually the 3rd component of spin) 𝑆 = + , a 

left-handed proton 𝑝  with the same momentum has a spin 𝑆 = − . Similarly, if a right-handed 

electron (𝑒 )  has a spin 𝑆 = + , a left-handed electron (𝑒 )  with the same momentum has a spin 𝑆 = − . 
 
Generally, during a hyperfine transition, the electron retains the same momentum. Spin and helicity 
reverse. For example, we go from a right-handed electron to a left-handed electron. We have the 
reaction: (𝑒 ) (𝑆 = 12) → (𝑒 ) (𝑆 = − 12) + 𝛾(𝑆 = 1) 

 
VII.2 Historical reminders on parity violation and negative helicity of the neutrino 
VII.2.1 Parity violation in weak interactions 
In the early 1950s, there was an anomaly in the weak interaction decay of two so-called strange 
mesons 𝜃  and 𝜏  (today both known as positive kaon 𝐾 ) into pions 𝜋. 
In 1956, to explain this anomaly, Tsung-Dao Lee and Chen Ning Yang predicted a violation of parity 
in the weak interaction. 
 
Reminder about the parity operator 𝑃 
The parity operator 𝑃 reverses the Space coordinates: 𝑥 → 𝑥′ = −𝑥 
 
The orbital angular momentum 𝐿 and spin angular momentum 𝑆 are not affected by the parity 
operation. Energy 𝐸 and momentum 𝑝 are reversed at the sign level. We have the following 
transformations by 𝑃: 𝐿 → 𝐿′ = 𝐿 𝑆 → 𝑆′ = 𝑆 𝑝 → 𝑝′ = −𝑝 𝐸 → 𝐸′ = −𝐸 
 
 
In 1957, Chien-Shiung Wu's cobalt-60 experiments investigated the possible violation of parity. When 
decay 𝛽  of cobalt-60, we have the following reaction: 𝐶𝑜 → 𝑁𝑖 + 𝑒 + �̄�  

 
Graphically, this corresponds to the following diagram, with momentum 𝑝 always symbolized by a 
thin arrow and spin 𝑆 symbolized by a thick arrow. It is noted that the antineutrino �̄�  has positive 
helicity. 
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Figure 13: observed schema of decay of the cobalt 𝐶𝑜 

 
We give the symmetric schema obtained by parity operation 𝑃, with reversed roles for electron and 
antineutrino: electron 𝑒  is emitted forward, antineutrino �̄�  is emitted backwards. In this case, the 
antineutrino �̄�  should have negative helicity. This schema is not observed since there is a maximum 
violation of parity. 
 

 
Figure 14: schema obtained by parity operation 𝑃 on the previous schema, schema not observed 

 
The experiments of Chien-Shiung Wu on cobalt 60 therefore conclude at a maximum of the violation 
of parity (we will return to this experiment in the 6th Memoir). 
 
VII.2.2 Negative helicity of the neutrino and positive helicity of the antineutrino 
Inspired by these facts, in 1957 and 1958, Maurice Goldhaber, Lee Grodzins and Andrew Sunyar set 
up an experiment to measure the helicity of the neutrino. The principle of the experiment is based on 
the transfer of the helicity of the neutrino to a more easily detectable particle: the photon. 
 
The trio noted that the helicity of the neutrino is always negative (neutrino always left-handed), with a 
degree of accuracy however quite low: of the order of 10%. Similarly, it was found that the helicity of 
the antineutrino is always positive (antineutrino always right-handed). 

Co60
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Figure 15: observed neutrino and antineutrino, not observed neutrino and antineutrino  

 
Note on antimatter 
Note that during the passage from matter to antimatter, there is reversal of the momentum, but not of 
the spin. The helicity is therefore reversed. The antiparticle of a right-handed electron (𝑒 )  is a left-
handed antielectron (�̄� ) . They both have the same spin, for example 𝑆 = , an opposite 
momentum and helicity. 
Similarly, the antiparticle of a left-handed neutrino (𝜈 )  is the right-handed antineutrino (�̄� ) . 
 
 
VII.2.3 Helicity and weak charge 𝑻 
Goldhaber Grodzins Sanyara's experiment reveals that there are only left-handed neutrinos (and no 
right-handed neutrinos). On the other hand, there are protons or electrons both right-handed and left-
handed. 
Nevertheless, it is experimentally observed that only left-handed particles (and right-handed 
antiparticles) are involved in the weak interaction. Right-handed particles (and left-handed particles) 
are not subject to the weak interaction.  
 
To explain this, right-handed particles are attributed a zero weak charge. (𝑇, 𝑇 ). 
For example, for the right-handed proton (𝑝) , the right-handed neutron (𝑛)  or the right-handed 
electron (𝑒 ) , we have (𝑇, 𝑇 ) = (0,0). 
Similarly, for left-handed antiproton (�̄�) , left-handed antineutron (�̄�)  or left-handed antielectron (�̄�) , we have (𝑇, 𝑇 ) = (0,0). 
 
Note 
The weak charge 𝑇 is a function of the helicity and therefore the spin of the particle. Indeed, 
depending on their helicity, some particles do not participate in the weak interaction and have a zero 
weak charge 𝑇 nulle. 
 
 
VII.3 Quantum numbers of particles 
In the tables below, we give the electric charge 𝑄, the spin (𝑆, 𝑆 ), the helicity 𝐻 and the weak charge (𝑇, 𝑇 ) for some particles and antiparticles. 
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It is considered that the particles all have a momentum of the same direction and sense, that the 
antiparticles all have a momentum of the same direction and opposite sense. 
 
VII.3.1 Left-handed leptons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (𝑒 )  −1 (12 , − 12) − 12 (12 , − 12) (𝜈 )  0 (12 , − 12) − 12 (12 , + 12) 
 
VII.3.2 Right-handed leptons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (𝑒 )  −1 (12 , + 12) + 12 (0,0) (𝜈 )  (Not 
observed) 

0 (12 , + 12) + 12 (0,0) 

 
VII.3.3 Left-handed anti-leptons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (�̄� )  +1 (12 , − 12) + 12 (0,0) (�̄� )  (Not 
observed) 

0 (12 , − 12) + 12 (0,0) 

 
VII.3.4 Right-handed anti-leptons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (�̄� )  +1 (12 , + 12) − 12 (12 , + 12) (�̄� )  0 (12 , + 12) − 12 (12 , − 12) 
 
VII.3.5 Left-handed nucleons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (𝑝) (𝑢𝑢𝑑)  
 

+1 (12 , − 12) − 12 (12 , + 12) (𝑛) (𝑢𝑑𝑑)  
 

0 (12 , − 12) − 12 (12 , − 12) 

 
VII.3.6 Right-handed nucleons 
Particle Electric 

charge 
Spin (𝑆, 𝑆 ) 

Helicity 𝐻 
Weak charge (𝑇, 𝑇 ) 
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𝑄 (𝑝) (𝑢𝑢𝑑)  
 

+1 (12 , + 12) + 12 (0,0) (𝑛) (𝑢𝑑𝑑)  
 

0 (12 , + 12) + 12 (0,0) 

 
VII.3.7  Left-handed anti-nucleons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (�̄�) (�̄��̄�𝑑)  −1 (12 , − 12) + 12 (0,0) (�̄�) (�̄��̄�𝑑)  
 

0 (12 , − 12) + 12 (0,0) 

 
VII.3.8  Right-handed anti-nucleons 
Particle Electric 

charge 𝑄 

Spin (𝑆, 𝑆 ) 
Helicity 𝐻 

Weak charge (𝑇, 𝑇 ) (�̄�) (�̄��̄�𝑑)  −1 (12 , + 12) − 12 (12 , − 12) (�̄�) (�̄��̄�𝑑)  
 

0 (12 , + 12) − 12 (12 , + 12) 

 
VII.3.9 Particle charge following the interaction 
In the table below, we order the particles according to their participation in the interactions described 
by the Standard Model. It is noted that right-handed neutrinos do not participate in any interaction and 
have all their charges zero. They have never been detected and a priori do not exist. 
 
Does not participate in 
the interaction if zero 
charge 

Electromagnetic 
interaction 

Weak interaction Strong interaction 
 

Left-handed proton (𝑝)  
 

x +x +x 
Left-handed neutron (𝑛)  
 

 -x -x 
Right-handed proton (𝑝)  
 

x  +x 
Right-handed neutron (𝑛)  
 

  -x 
Left-handed electron (𝑒 )  
 

-x -x  
Left-handed neutrino (𝜈 )  
 

 +x  
Right-handed electron (𝑒 )  

-x   
Right-handed neutrino (𝜈 )  (not observed) 

   
 
Note 
If, as in the Quark Model, it is assumed that the neutron is a composite particle formed by electrically 
charged quarks, then the neutron is also subject to electromagnetic interaction. 
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VII.4 Chapter conclusion 
The weak interaction has a weak charge 𝑇 analogous to the electric charge 𝑄 of the electromagnetic 
interaction. 
 
For some particles, depending on their spin and helicity, this weak charge 𝑇 is null. These particles do 
not intervene in the weak interaction, or even do not exist a priori like left-handed antineutrinos. This 
is the cause of the parity violation in weak interactions. 
 
In the next chapter, we focus on the Electroweak Model, which to describe the weak interaction, takes 
the mathematical Yangs-Mills model developed for the strong interaction, and adapts it to particles 
subject or not to the weak interaction according to their helicity. 
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Chapter VIII Glashow-Weinberg-Salam electroweak model (1960s) 
 
Purpose of the chapter 
We present the Glashow-Weinberg-Salam electroweak model strongly inspired by the Yang-Mills 
gauge theory, transcribed from the strong interaction to the weak interaction. The electroweak model 
brings together in the same theory the electromagnetic interaction, the weak interaction, and an 
interaction with a weak hypercharge. 𝑌 . Using the Higgs mechanism, mass is assigned to the 
mediating bosons of the weak interaction and thus explains the very small range (or scope) of this 
interaction. 
 
VIII.1 History of the Electroweak Model 
The Glashow-Weinberg-Salam electroweak model is developed during the 1960s. It is inspired by the 
Yang-Mills gauge theory that we saw earlier. In the early 1960s, Sheldon Glashow proposed a first 
model combining electromagnetic interaction and weak interaction based on a gauge theory of the type 𝑈(1) × 𝑈(1) × 𝑆𝑈(2) . 
 
However, this model only concerns leptons (electron, neutrinos, etc., i.e., particles outside the nucleus 
not subject to the strong interaction). The decay of the neutron into proton is not considered. In 
addition, the mediating bosons of the weak interaction have no mass (like the photon). Implied, the 
weak interaction has a very large range, which is not experimentally the case. 
 
In the late 1960s, Steven Weinberg and Abdus Salam had the idea of using the Brout-Englert-Higgs 
mechanism (BEH) to give mass to the mediating bosons of the weak interaction and thus explain the 
low range. Hadrons (i.e., particles of the nucleus formed by quarks subjected to the strong interaction) 
are this time integrated into the Electroweak Model. The BEH mechanism also makes it possible to 
assign mass to leptons and quarks. 
 
In the following paragraphs, the main characteristics of the Electroweak Model will be presented. The 
presentation is based on an article by S. Glashow and Howard Georgi in Physics Today in September 
1980. 
S. Glashow starts from an analogy between the Coulomb electrostatic force and the weak interaction 
to define coupling constants. We will come to this in a few paragraphs. First, let's do a reminder about 
the quantum numbers of the particles used in the Electroweak Model. 
 
VIII.2 Quantum numbers of the Electroweak Model, analogies between strong and 

weak interactions 
VIII.2.1 General 
Previously, it was seen in the Yang-Mills theory describing the strong interaction that isospin 𝐼 is 
presented as the strong charge. By analogy between strong and weak interactions, we will now see that 
S. Glashow defines an isospin or weak charge 𝑇. Similarly, he defines a weak hypercharge 𝑌  in 
analogy with strong hypercharge 𝑌 that is found in the Quark Model. 
 
VIII.2.2 Strong hypercharge 𝒀 and isospin 𝑰𝟑 , Gell-Mann Nishijima's relationship 
Based on experimental data on collisions between particles involving the strong interaction, K. 
Nishijima (1953) and M. Gell-Mann (1956) proposed a formula linking the charge 𝑄 to strong 
hypercharge 𝑌 and to isospin 𝐼 , for particles of the same strong hypercharge 𝑌 rgrouped in a 
multiplet. 
 
For each particle of the multiplet, we have the Gell-Mann Nishijima relation: 
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𝑄 = 𝐼 + 𝑌2 

 
In addition, we have: 𝑌 = 𝐵 + 𝑆𝑡 

with 𝐵 the baryonnic number and 𝑆𝑡 the strangeness number of the particle. 
 
We get: 𝑄 = 𝐼 + 𝐵 + 𝑆𝑡2  

 
The particles of the multiplet usually have opposite isospins. Thus, on average for the multiplet, the 
isospins cancel each other out: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐼 ) = 0 

 
We have the strong hypercharge of each particle equal to that characterizing the multiplet. So, we have 
an average: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑌) = 𝑌 

 
According to 𝑄 = 𝐼 + , we then have: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐼 ) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑌2) = 𝑌2 

 
We have the strong hypercharge of each particle equal to that characterizing the multiplet, equal to 
twice the average of the charges of the particles of the multiplet. 
 
Example of a doublet 
For a neutron proton doublet, we have the values: 
 
Particle Electric 

charge 𝑸 

Strong 
hypercharge 𝒀 

Isospin identified 
with strong charge 𝐼  𝑝 1 1 + 12 𝑛 0 1 − 12 

 
For each particle of the doublet, we have according to the Gell-Mann Nishijima relation: 𝑄 = 𝐼 + 𝑌2 = ± 12 + 1 

 
On average, we have: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) = 𝑌2 = 12 
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VIII.2.3 Weak hypercharge 𝒀𝑾 and weak charge 𝑻𝟑  
In the early 1960s, Sheldon Glashow was looking for a local gauge theory that could unify 
electromagnetic and weak interactions. By analogy with the Gell-Mann–Nishijima relation, he 
proposed a relationship between the electric charge, a weak isospin (or weak charge) 𝑇  and weak 
hypercharge 𝑌 . For each particle of a multiplet, we have the Glashow relation: 𝑄 = 𝑇 + 𝑌2  

 
On average for the multiplet, we have: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) = 𝑌2  

 
Since leptons are subject to weak interaction, S. Glashow assigns them a weak charge 𝑇  identical to 
that of the corresponding nucleon. On the other hand, he differentiates left-handed and right-handed 
particles since the latter are not subject to weak interaction. 
 
Examples of left-handed doublets 
For a left-handed lepton doublet (electron (𝑒 ) , neutrino (𝜈 ) ), we have the values: 
Particle Electric 

charge 𝑸 

Weak 
hypercharge 𝑌  

Weak charge 𝑇  (𝑒 )  −1 −1 − 12 (𝜈 )  0 −1 + 12 
 
On average, we have: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) = 𝑌2 = − 12 

 
Although Glashow's initial model does not contain hadrons, they are later included in a form 
analogous to leptons. For a left-handed neutron proton doublet, we have the values: 
 
Particle Electric 

charge 𝑄 

Strong 
hypercharge 𝑌 

Isospin 𝐼  
Weak 
hypercharge 𝑌  

Weak charge 𝑇  (𝑝)  1 1 + 12 1 + 12 (𝑛)  0 1 − 12 1 − 12 
 
On average, we have: 𝑚𝑜𝑦(𝑄) = 𝑌2 = 12 

 
Example of a right-handed singlet 
We define groups of particles containing a single particle. In this case, the single particle has a zero 
weak charge 𝑇  and is not subject to weak interaction. 
 
For example, we have the electron of right helicity (𝑒 ) : 
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Particle Electric 
charge 𝑸 

Weak 
hypercharge 𝑌  

Weak charge 𝑇  (𝑒 )  
 

−1 −2 0 (𝜈 )  not 
observed 

   

 
VIII.2.4 Quantum numbers of the Electroweak Model 
The table below summarizes the quantum numbers of the particles involved in the Electroweak Model. 𝐵𝑎 is the baryonic number, 𝐿  is the leptonic number. 
 
    Charges 

 Particle 
generations 

(𝑆, 𝑆 ) 𝐵𝑎𝐿  𝑄 (𝑇, 𝑇 ) 𝑌2 = 𝑄 − 𝑇  

Left-handed 
quarks 

𝑢 , 𝑐 ,𝑡  (12 , − 12) + 13 + 23 (12 , + 12) + 13 𝑑 , 𝑠 , 𝑏  
 (12 , − 12) + 13 − 13 (12 , − 12) + 13 

Right-
handed 
quarks 

𝑢 , 𝑐 ,𝑡  (12 , + 12) + 13 + 23 (0,0) + 43 𝑑 , 𝑠 , 𝑏  
 (12 , + 12) + 13 − 13 (0,0) − 23 

Left-handed 
leptons 

𝑒 , 𝜇 , 𝜏  (12 , − 12) −1 −1 (12 , − 12) −1 𝜈 , 𝜈 , 𝜈  (12 , − 12) −1 0 (12 , + 12) −1 

Right-
handed 
leptons 

𝑒 , 𝜇 , 𝜏  (12 , + 12) −1 −1 (0,0) −2 𝜈 , 𝜈 , 𝜈  
not observed 

  0 (0,0) 0 

 
Note that: 

- the 3 generations of particles (quarks and leptons) have the same number of charges (this 
would no longer be the case if we included the strong charge in the table above), 

- the weak charge (𝑇, 𝑇 ) and the weak hypercharge 𝑌  are functions of helicity and therefore 
spin. 

 
Like the strong interaction that differentiates hadrons and leptons depending on whether or not they 
are subject to the strong interaction, the weak interaction differentiates left-handed and right-handed 
particles depending on whether or not they are subject to the weak interaction. 
 
VIII.3 Coupling constants 
VIII.3.1 Analogy with electrostatics 
To define the coupling constants involved in the electroweak model, S. Glashow starts from the 
Coulomb electrostatic force: 𝐹 = 𝑄𝑄′𝑒4𝜋𝜀 𝑟  

 𝑄 and 𝑄′ are integers that indicate the number of elementary electric charges. 
 
The electrostatic force is rewritten from the electromagnetic coupling constant 𝛼 : 
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𝐹ℏ𝑐 = 𝛼 𝑄𝑄′𝑟  

 
VIII.3.2 Coupling constants 𝜶𝒀 and 𝜶𝑻 
On the model of 𝛼 , the Electroweak Model defines two additional coupling constants. 
 
We remind the coupling constant of the electromagnetic interaction with an elementary electric charge 𝑒 = 𝑔 : 𝛼 = 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 = 𝑒4𝜋𝜀 ℏ𝑐 

 
On this model, S. Glashow defines a coupling constant 𝛼  and an elementary charge 𝑔  associated 
with weak hypercharge 𝑌 : 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 

 
He also defines a coupling constant 𝛼  and an elementary charge 𝑔  associated with weak charge 𝑇: 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 

 
Note 
Like 𝛼 = 𝛼 , coupling constants 𝛼  and 𝛼  are dimensionless. 
 
 
Numerically, we have the following values (for energy equivalent to 𝑀 ≈ 90𝐺𝑒𝑉): 𝛼 = 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 = 𝑒4𝜋𝜀 ℏ𝑐 ≈ 1137 

𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 ≈ 130 

𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 ≈ 1100 

 
Note 
The following alternative notations are also used for coupling constants 𝛼  and 𝛼 : 𝛼 = 𝛼 = 𝛼′ 𝛼 = 𝛼 = 𝛼 
 𝑔 = 𝑔 = 𝑔′ 𝑔 = 𝑔 = 𝑔 
 
Here we prefer to use the indices 𝑄, 𝑌 and 𝑇 to mark the link between the coupling constant and the 
quantum number of charges (electric, hyper weak or weak). 
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VIII.4 Local Gauge transformations and covariant derivatives 
VIII.4.1 Group 𝑺𝑼(𝟐)𝑻 
As before, S. Glashow is inspired by the Yang-Mills theory describing the strong interaction, 
transcribed for the weak interaction. 
 
He proposes that the weak charge 𝑇 is the generator of a group of rotations 𝑆𝑈(2)  with 𝑒𝑥𝑝( 𝑖𝑔 𝑇 ⋅𝛼 (𝑥)) ∈ 𝑆𝑈(2) . 
 
He also proposes a local gauge transformation on a doublet of wave functions 𝜓 , associated with left-
handed particles: 𝜓 → 𝜓 ′ = 𝑒𝑥𝑝( 𝑖𝑔 𝑇 ⋅ 𝛼 (𝑥))𝜓  

(𝑎 = 1,2,3) 

 
Note 
As in Yang-Mills, we usually take a weak charge 𝑇 =  (𝑎 = 1,2,3) with 𝜎  the 3 Pauli matrices. 
 
 
He defines 3 weak potential quadrivectors 𝑊 , 𝑊 , 𝑊 , corresponding to three massive bosons 𝑊 , 𝑊 , 𝑊  particles mediating the weak interaction. 
 
We have the local gauge transformation of the 3 potential quadrivectors: 𝑊 → 𝑊 ′ = 𝑊 + 𝜕 𝛼 (𝑥) + 𝑔 𝑓 𝛼 (𝑥)𝑊  

with 𝑓 = 𝜀  the group structure constant. 
 
VIII.4.2 Group 𝑼(𝟏)𝒀𝑾 
For weak hypercharge 𝑌  to one dimension (such as the electric charge 𝑄), S. Glashow proposes that 
it be the generator of a group of rotations 𝑈(1)  witg 𝑒𝑥𝑝( 𝑖𝑔 𝑌 ⋅ 𝛼(𝑥)) ∈ 𝑈(1) . 
 
He also offers a local gauge transformation on a wave function 𝜓: 𝜓 → 𝜓′ = 𝑒𝑥𝑝( 𝑖𝑔 𝑌 ⋅ 𝛼(𝑥))𝜓 

 
S. Glashow defines a potential quadrivector 𝐵  corresponding to a boson 𝐵. We have the local 
gauge transformation of the potential quadrivector: 𝐵 → 𝐵 ′ = 𝐵 + 𝜕 𝛼(𝑥) 

 

VIII.4.3 Hypercharge 𝒀𝑾𝟐 , covariant derivative and hyper interaction 
For a multiplet of particles, we have on average: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) = 𝑌2  

Since the charge 𝑄 is retained during a global gauge transformation, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑄) must also be 
retained, and therefore also . 
 
For electromagnetic interaction, after a local gauge transformation, we have a covariant derivative of 
the form: 𝐷 = 𝜕 + 𝑖𝑒𝑄 ⋅ 𝐴  
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For weak hypercharge 𝑌 , after a local gauge transformation, a covariant derivative of the form is 
posed: 𝐷 = 𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 +. .. 
 
We put three small points because we do not yet consider in the covariant derivative of the term weak 
interaction. 
 
We may feel like we are defining a new interaction based on the particle mediating the boson 𝐵 and on 
the weak hypercharge 𝑌 . It is proposed here that this is indeed the case. We will talk in this Memoir 
and in the next Memoir of hyper interaction. 
 
VIII.4.4  Weak charge 𝑻𝟑 , covariant derivative and weak interaction 
For each particle of a multiplet, we have the Glashow relation between the 3 charges: 𝑄 = 𝑇 + 𝑌2  

 
Since the electric charge 𝑄 et the weak hypercharge 𝑌  are quantities retained during a Global Gauge 
transformation, weak charge 𝑇  is also. 
 
We can therefore define a Gauge quadrivector 𝑊  that is cancelled during a Local Gauge 
transformation and is associated with the quantity retained 𝑇 . 
We generalize to potential quadrivectors 𝑊  and weak charges 𝑇 , with 𝑎 = 1,2,3. 
 
For left-handed fermions subject to weak interaction, the Electroweak Model poses a covariant 
derivative, after local Gauge transformation: 𝐷 = 𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 + 𝑖𝑔 𝑇 ⋅ 𝑊  

with 𝑎 = 1,2,3 𝑔  and 𝑔 𝑇  are the quantities kept during a Global Gauge transformation. 𝑊 , 𝑊  and 𝑊  are the three quadrivectors cancelled during the local gauge transformation that 
we match the mediating particles of the weak interaction, that is, to the three weak bosons 𝑊 , 𝑊 , 𝑊 . 𝐵  is a cancelled quadrivector that is matched to the boson 𝐵. 
 
Note 
For right-handed particles not subject to weak interaction, a covariant derivative is posed: 𝐷 = 𝜕 + 𝑖𝑔 ⋅ 𝐵 . 
 
 
VIII.5 Study of Lagrangians involved in the Electroweak Model 
In order not to weigh down the expressions, we choose for the constants ℏ = 1 and 𝑐 = 1. 
 
VIII.5.1 Lagrangian of d’Alembert 
The Lagrangians used for the weak interaction are built on the model of those of the electromagnetic 
interaction and those of the Yang-Mills interaction. 
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In the reference frame 𝑅  (the vacuum), we have a Lagrangian for the left-handed electron 
corresponding to the d’Alembert wave equation: [𝐿] = 𝑖𝜓 𝛾 (𝜕 )𝜓  

 
Note 
Antiparticle associated with the wave function 𝜓  is actually a right-handed antiparticle. It is subject 
to weak interaction. 
 
 
VIII.5.2 Lagrangian of Dirac libre 
In the reference frame 𝑅  (with masses), we have the Lagrangian for the left-handed electron 
corresponding to free Dirac: [𝐿] = 𝑖𝜓 𝛾 (𝜕 )𝜓 − 𝑚𝜓 𝜓  

 
VIII.5.3 Lagrangian of Dirac in a weak field 
In the reference frame 𝑅  where we cancel potential quadrivectors 𝐵  and 𝑊 , we replace 𝜕  by 𝐷  so that the wave equation is always respected (Gauge invariance principle), the electroweak model 
gives the Lagrangian for left-handed fermions: [𝐿] = 𝑖𝜓 𝛾 (𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 + 𝑖𝑔 𝑇 ⋅ 𝑊 )𝜓 − 𝑚𝜓 𝜓  

 
The Electroweak Model gives the Lagrangian for right-handed fermions: [𝐿] = 𝑖𝜓 𝛾 (𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 )𝜓 − 𝑚𝜓 𝜓  

 
Like Yang-Mills, there is also a Lagrangian to describe the dynamics of gauge bosons: 𝐿 = − 14 𝐵 𝐵 − 14 𝑊 𝑊  

(Summation on 𝑎 = 1,2,3) 

 
We have for the tensor 𝐵 : 𝐵 = 𝜕 𝐵 − 𝜕 𝐵  

with 𝐵  of the same type as the Maxwell Faraday tensor 𝐹 . 
 
We have for the 3 tensors 𝑊 , 𝑊 , 𝑊 : 𝑊 = 𝜕 𝑊 − 𝜕 𝑊 + 𝑔 𝜀 𝑊 𝑊  

 
Note 1 
The group 𝑆𝑈(2)  of weak isospin is noncommutative. As at Yang-Mills, the combination 𝑔 𝜀 𝑊 𝑊  involves interactions between weak bosons 𝑊 , 𝑊 , 𝑊 . 
 
Note 2 
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As with Yang-Mills, local gauge invariance requires that all four bosons 𝐵 and 𝑊 , 𝑊 , 𝑊  are 
massless. However, to explain the small range of nuclear interactions, it’s necessary that bosons 𝑊 , 𝑊 , 𝑊 , and that observed bosons 𝑊 , 𝑊 , 𝑊 = 𝑍  have a mass. 
 𝑊  and 𝑊  are the two bosons carrying an electric charge and involved in decays 𝛽  and 𝛽 . 
 
This implies that the Lagrangian includes terms of mass of the form: 𝐿 = 𝑀 𝑊 𝑊 + 𝑀 𝑊 𝑊 + 𝑀 𝑍 𝑍  

 
But this Lagrangian 𝐿  is not Gauge invariant. To overcome this problem, we will see later that the 
idea of the Electroweak Model is to use the BEH mechanism. 
 
 
VIII.6 Weak bosons 𝑾 , 𝑾  and 𝒁𝟎  
VIII.6.1 Weak bosons 𝑾  and 𝑾  electrically charged 
As mentioned, decays 𝛽  and 𝛽  are known since the end of the 19th century with the discovery by 
H. Becquerel of radioactivity. Following the idea of mediating particles, in the late 1940s, there was a 
conjecture for decays 𝛽  and 𝛽 , of electrically charged mediating particles, that interact with the 
weak currents proposed by E. Fermi. 
Intervening respectively in the decays 𝛽  and 𝛽 , these mediating particles will later be called weak 
bosons 𝑊  and 𝑊 . According to H. Yukawa, these weak bosons must have a mass. 
 
VIII.6.2 The neutral weak boson 𝒁𝟎  
In the early 1950s, experimenters noticed the existence of reactions involving weak interactions, but 
whose exchanges between the particles of the reaction did not seem to involve any electrical charge. 
(unlike decays 𝛽  and 𝛽 ). For example, muon neutrinos 𝜈  appear to react with matter, and then give 
muon neutrinos 𝜈  with slightly different energy. 
 
In 1958, following a certain analogy with the pion meson 𝜋  electrically neutral mediating particle of 
the strong interaction, Sydney Bludman puts forward the idea of an electrically neutral weak current 
that interacts with a weak boson, both mass and electrically neutral, later called the boson 𝑍 . 
 
The photon 𝛾 and the boson 𝑍  have fairly similar characteristics. Both are electrically neutral, that is, 
they do not carry electrical charges. 
 
Note 
There is also the notation 𝑊  for the boson 𝑍 . 
 
 
VIII.6.3 Weak boson quadrivectors 𝑾  and 𝑾  
For his Electroweak Model, S. Glashow seeks to obtain from bosons 𝑊  and 𝑊 , bosons 𝑊  and 𝑊 , which respectively carry an electric charge + and −. Since these electrically charged weak 
bosons can increase or decrease the weak charge of a 𝑇  of the fermions with which they interact, S. 
Glashow defines them as scale operators. 
 
We give the potential quadrivectors of the weak electrically charged bosons: 
 𝑊 = 1√2 (𝑊 + 𝑖𝑊 ) 
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𝑊 = 1√2 (𝑊 − 𝑖𝑊 ) 

 
We give the weak charges carried by the weak currents (i.e., the fermions) with which the electrically 
charged weak bosons interact: 𝑇 = 𝑇 + 𝑖𝑇  𝑇 = 𝑇 − 𝑖𝑇  

 
If we construct the weak charges 𝑇  and 𝑇  from the Pauli matrices, we get: 𝑇 = 𝑇 + 𝑖𝑇 = 12 ( 0 11 0 + 𝑖 0 −𝑖𝑖 0 ) = 0 10 0  

𝑇 = 𝑇 − 𝑖𝑇 = 12 ( 0 11 0 − 𝑖 0 −𝑖𝑖 0 ) = 0 01 0  

 
Note 1, reminder on scale operators 
Let us briefly remind the theory of scale operators originally used for quantum angular momentum 𝐽 or 
for spin 𝑆. We also talk about creation and annihilation operators. We define angular momentum scale 
operators 𝐽± from operators 𝐽  and 𝐽 : 𝐽 = 𝐽 + 𝑖𝐽  𝐽 = 𝐽 − 𝑖𝐽  

 𝐽  and 𝐽  are scale operators for the eigenvalue ℏ𝑚 of the operator 𝐽 . 
 |𝑚⟩ is a common eigenvector for operators (𝐽)  and 𝐽 . We have for the operator 𝐽 : 𝐽 |𝑚⟩ = ℏ𝑚|𝑚⟩ 
 
Let 𝑗 be the maximum value of 𝑚. 
Operators 𝐽± allow you to increase or decrease the eigenvalues of the operator 𝐽 : 𝐽 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 − 1)|𝑚 − 1⟩ 𝐽 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 + 1)|𝑚 + 1⟩ 
 
The theory can be used for spin 𝑆, isospin 𝐼 or for weak charge 𝑇, all of which have formal analogies 
to quantum angular momentum 𝐽. 
 𝑇  and 𝑇  are scale operators for the eigenvalue 𝑚ℏ of the operator 𝑇 . |𝑚⟩ is an eigenvector common to (𝑇)  and 𝑇 . We have for the operator 𝑇 : 𝑇 |𝑚⟩ = 𝑚ℏ|𝑚⟩ 
 
Let 𝑗 be the maximum value of 𝑚. 
We have: 𝑇 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 − 1)|𝑚 − 1⟩ 
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𝑇 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 + 1)|𝑚 + 1⟩ 
 
Operators 𝑇  and 𝑇  can be associated with bosons 𝑊  and 𝑊  that increase or decrease the weak 
charge 𝑇  of the particle. These bosons 𝑊  and 𝑊  therefore carry weak charges 𝑇  and are 
electrically charged according to the Glashow relation 𝑄 = 𝑇 + . 
 
Note that the weak boson 𝑊  associated with 𝑇  is not a scale operator for 𝑇 . 𝑊  therefore, cannot 
increase or decrease the weak charge 𝑇  of a fermion. It does not carry weak charge . 
 
Note 2 on the top index of mediating particles 
Mediating particles are usually indicated not by the quantum quantity they carry, but by the charge 
carried by the fermions (weak currents) with which they interact. 
 
For example, bosons 𝑊  and 𝑊  interact with weak-charge fermions 𝑇  and 𝑇 . bosons 𝑊  and 𝑊  carry as weak charge 𝑇  and −𝑇 . 
 
Bosons 𝑊 , 𝑊 , 𝑊  interact with weak charge fermions 𝑇 , 𝑇 , 𝑇 . 
 
Note 3, analogy between pions (or meson pi) 𝝅 , 𝝅 , 𝝅𝟎 and weak bosons 𝑾 , 𝑾 , 𝑾𝟎 = 𝒁𝟎 
If we only consider the 1st generation of left-handed quarks, following a strict analogy with pions 𝜋 , 𝜋 , 𝜋 , we should have for weak bosons 𝑊 , 𝑊 , 𝑊 = 𝑍 : 𝑇 = 1, 𝑇 = 1 = 𝑡 = 12 , 𝑡 = 12 ; 𝑡′ = 12 , 𝑡 ′ = 12 = 𝑢 ; −𝑑 = |𝑊 ⟩ 
𝑇 = 1, 𝑇 = 0 = 1√2 ( 𝑡 = 12 , 𝑡 = 12 ; 𝑡′ = 12 , 𝑡 ′ = − 12 + ( 𝑡 = 12 , 𝑡 = − 12 ; 𝑡′ = 12 , 𝑡 ′ = 12 )

= 1√2 (|𝑢 ; �̄� ⟩ + 𝑑 ; −𝑑 ) = |𝑍 ⟩ 
𝑇 = 1, 𝑇 = −1 = 𝑡 = 12 , 𝑡 = − 12 ; 𝑡′ = 12 , 𝑡 ′ = − 12 = |𝑑 ; �̄� ⟩ = |𝑊 ⟩ 
𝑇 = 0, 𝑇 = 0 = 1√2 ( 𝑡 = 12 , 𝑡 = 12 ; 𝑡′ = 12 , 𝑡 ′ = − 12 − ( 𝑡 = 12 , 𝑡 = − 12 ; 𝑡′ = 12 , 𝑡 ′ = 12 )

= 1√2 (|𝑢 ; �̄� ⟩ + 𝑑 ; 𝑑 ) 

 
If we want to take into account the 2nd generation of quarks, we should a priori replace 𝑑  by 𝑑 ′ =−𝑑 𝑐𝑜𝑠 𝜃 + 𝑠 𝑠𝑖𝑛 𝜃 , with 𝜃  the Cabibbo angle (for the model of N. Cabibbo, see Memoir 5). 
 
Note 4 on weak hypercharge 
According to the relationship 𝑄 = 𝑇 + , It is noted that bosons 𝑊 , 𝑊 , 𝑊 = 𝑍  all have zero 
weak hypercharge. 
 
 

3T
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VIII.7 Weak currents carrying a weak charge 𝑻 
VIII.7.1 Definition 
We remind the electromagnetic currents charge density quadrivector (we distinguish here right-handed 
and left-handed particles, even if there is no need for electromagnetic interaction): 𝑗 = 𝑄(𝜓 𝛾 𝜓 + 𝜓 𝛾 𝜓 ) 

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
In analogy with this current and following the ideas of E. Fermi, the Electroweak Model defines 3 
weak currents, each of which carries a weak charge 𝑇  and interacts with a weak boson 𝑊  (𝑎 =1,2,3): 𝑗 = 𝑇 𝜓 𝛾 𝜓  

with 𝜇 = 𝑡, 𝑥, 𝑦, 𝑧 

 
Note 
The weak current only applies to left-handed fermions, since they are the only ones subject to the 
weak interaction. 
 
 
From 𝑗  and 𝑗 , we define weak currents carrying a charge 𝑇±, who each interacts with a boson 𝑊  
and 𝑊 : 𝑗 = 𝑗 + 𝑖𝑗  𝑗 = 𝑗 − 𝑖𝑗  

 
Note 
So, we have: 

- 2 bosons 𝑊  and 𝑊  that interact with weak currents 𝑗  and 𝑗 , and which carry the weak 

charge 𝑇 , 
- 1 boson 𝑍  that interacts with weak current 𝑗 . 

 
VIII.7.2 Examples of electromagnetic currents, examples of electrically neutral and electrically 

charged weak currents 
Case of 1st generation leptons 
If we simply consider the leptons of 1st generation, we have an electromagnetic current: 𝑗 = 𝑄�̄�𝛾 𝑒 

 
Note 
The wave function 𝜓 of the particle is here symbolized directly by the particle. 
 
 
We have a neutral weak current formed by a doublet of left-handed particles: 𝑗 = 𝑇 (𝜈 𝑒 ) 𝛾 𝑣𝑒  𝜈  is the antiparticle of 𝑣 , 𝜈 = �̄�  is of right helicity. 
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The Electroweak Model gives electrically charged weak currents 𝑗 ±, carrying weak charges 𝑇  and 𝑇 , Left-handed particle compounds, interacting with bosons 𝑊  and 𝑊 : 𝑗 = (𝑒 )𝛾 (𝑣 ) 𝑗 = (𝑣 )𝛾 (𝑒 ) 

 
Case of 1st and 2nd generation quarks 
If we consider the quarks of 1st and 2nd generation, we have an electromagnetic current: 𝑗 = 𝑄�̄�𝛾 𝑢 + 𝑄𝑑𝛾 𝑑 + 𝑄�̄�𝛾 𝑐 + 𝑄�̄�𝛾 𝑠 

𝑗 = 23 �̄�𝛾 𝑢 − 13 𝑑𝛾 𝑑 − 23 �̄�𝛾 𝑐 − 13 �̄�𝛾 𝑠 

 
We have a neutral weak current: 𝑗 = 𝑇 (𝑢 𝑑) 𝛾 𝑢𝑑 + 𝑇 (𝑐 𝑠) 𝛾 𝑐𝑠  𝑢  is here the antiparticle of 𝑢 , 𝑢 = �̄�  is of right helicity. 
 
The Electroweak Model gives electrically charged weak currents 𝑗 ±: 𝑗 = (𝑢 𝑐) 𝛾 𝑑𝑠  

𝑗 = (𝑑 𝑠) 𝛾 𝑢𝑐  

 
Note 
We will come back to these electrically charged weak currents in the next Memoir. 
We do not consider here angle of Cabibbo 𝜃  (concerning quarks) and angle of Pontecorvo 𝜃  
(concerning leptons). This will also be discussed in the next Memoir. 
 
 
VIII.8 Study of interaction energies 
VIII.8.1 Weak interaction energy 
We remind the Lagrangian of left-handed particles proposed by the Electroweak Model: [𝐿] = 𝑖𝜓 𝛾 𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 + 𝑖𝑔 𝑇 ⋅ 𝑊 𝜓 − 𝑚𝜓 𝜓  𝑎 = 1,2,3 

 
We have the weak interaction energy between the currents 𝑗 = 𝑇 𝜓 𝛾 𝜓  and potentials 𝑊 : [𝐸] = −𝑖𝑔 𝑇 𝜓 𝛾 𝜓 ⋅ 𝑊  

(𝑎 = 1,2,3) [𝐸] = −𝑖𝑔 𝑗 ⋅ 𝑊  

 



326    Invariances and transformations 

By replacing with the charged quantities, we obtain: [𝐸] = −𝑖𝑔 1√2 (𝑗 ⋅ 𝑊 + 𝑗 ⋅ 𝑊 ) + 𝑗 ⋅ 𝑊  

 
Note 
It should be noted that in this weak charge interaction energy, only left-handed particles are involved. 
 
 
VIII.8.2 Hyper currents carrying a weak hypercharge 𝒀𝑾 
In analogy with the electromagnetic current, we define a hyper current carrying a weak hypercharge 𝑌 : 𝑗 = 𝑌 𝜓 𝛾 𝜓 + 𝑌 𝜓 𝛾 𝜓  

 
Note 
Remember that left-handed and right-handed particles do not have the same weak hypercharge. 𝑌 . 
For example, for a quark 𝑢, we have a hyper current: 𝑗 = 13 𝑢 𝛾 𝑢 + 43 𝑢 𝛾 𝑢  

 
Since we have the relationship between the charges transported by the currents and conserved by 
global gauge transformation: 𝑌2 = 𝑄 − 𝑇  

We have the relationship between the currents conserved by global gauge transformation: 𝑗2 = 𝑗 − 𝑗  

 
VIII.8.3 Hyper interaction energy 
We have the hyper interaction energy between hyper current 𝑗  and potential 𝐵 : [𝐸] = −𝑖 𝑔2 (𝑌 𝜓 𝛾 𝜓 + 𝑌 𝜓 𝛾 𝜓 ) ⋅ 𝐵 = −𝑖𝑔 𝑗2 ⋅ 𝐵  

[𝐸] = −𝑖𝑔 𝑗2 ⋅ 𝐵 = −𝑖𝑔 (𝑗 − 𝑗 ) ⋅ 𝐵  

 
If we look at the interaction energies: 

- [𝐸] = −𝑖𝑔 √ (𝑗 ⋅ 𝑊 + 𝑗 ⋅ 𝑊 ) + 𝑗 ⋅ 𝑊 , 

- [𝐸] = −𝑖𝑔 ⋅ 𝐵 = −𝑖𝑔 (𝑗 − 𝑗 ) ⋅ 𝐵 , 
we recognize in: 

- the term −𝑖𝑔 √ (𝑗 ⋅ 𝑊 + 𝑗 ⋅ 𝑊 )  the contribution of electrically charged weak 
currents, 

- the terms −𝑖𝑔 𝑗 ⋅ 𝑊  et 𝑖𝑔 (𝑗 − 𝑗 ) ⋅ 𝐵 the contribution of electrically "neutral" weak 
currents, respectively with weak charge 𝑇  and weak hypercharge 𝑌 . 
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However, we do not distinguish at first glance what we detect experimentally: 
- an electrically neutral weak current 𝑗  that interacts with a boson 𝑍  of potential 𝑍 , 
- an electromagnetic current 𝑗  that interacts with a photon 𝛾 of potential 𝐴 . 

 
For this reason, the Electroweak Model introduces the so-called Weinberg angle. 
 
VIII.8.4 Angle of Weinberg 
The Electroweak Model considers that the potentials 𝑊 , 𝐵  are linear combinations of potentials 𝑍 , 𝐴 . Following the ideas of S. Glashow, the Electroweak Model defines a matrix of mixing 
between potentials 𝑊 , 𝐵  et les potentiels 𝑍 , 𝐴 . 
 
We have the mixing matrix: 𝑊𝐵 = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑍𝐴  𝜃  is commonly referred to as the Weinberg angle. 
 
Note, reminder on associations between potential quadrivectors and bosons 
The potential quadrivector W  is associated with the boson W . 
The potential quadrivector B  is associated with the boson B. 
The potential quadrivector Z  is associated with the boson Z . 
The potential quadrivector A  is associated with the photon 𝛾. 
 
The first 2 bosons, W   and B, have not been observed experimentally. The next 2, Z  and 𝛾, are 
observed. 
 
 
Experimentally, we measure: 𝑠𝑖𝑛 𝜃 ≈ 0,231 𝜃 ≈ 28,7° 
 
Nota 
Intuitively, the Weinberg angle 𝜃  can be interpreted as the manifestation of the violation of parity by 
the boson 𝑍 . 𝑍  reacts by favouring left-handed particles of negative helicity. 
 
 
By substituting the expressions of 𝑊  and 𝐵  by the expressions of 𝑍  and 𝐴 , we obtain for the 
interaction energies, contribution of electrically "neutral" currents of weak charge 𝑇  and weak 
hypercharge 𝑌 : [𝐸] = −𝑖 (𝑔 𝑠𝑖𝑛 𝜃 − 𝑔 𝑐𝑜𝑠 𝜃 )𝑗 + (𝑔 𝑐𝑜𝑠 𝜃 )𝑗 ⋅ 𝐴  −𝑖 (𝑔 𝑐𝑜𝑠 𝜃 − 𝑔 𝑠𝑖𝑛 𝜃 )𝑗 − (𝑔 𝑠𝑖𝑛 𝜃 )𝑗 ⋅ 𝑍  

 
VIII.8.5 Electromagnetic interaction energy 
We have the electromagnetic interaction energy: [𝐸 ] = −𝑖 (𝑔 𝑠𝑖𝑛 𝜃 − 𝑔 𝑐𝑜𝑠 𝜃 )𝑗 + (𝑔 𝑐𝑜𝑠 𝜃 )𝑗 ⋅ 𝐴  
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The Electroweak Model seeks to find the electromagnetic interaction energy usually defined: [𝐸 ] = −𝑖𝑒𝑗 ⋅ 𝐴  

 
It is found if we pose the 2 relations between the 3 elementary charges 𝑒 = 𝑔 , 𝑔 , 𝑔 : 𝑒 = 𝑔 𝑐𝑜𝑠 𝜃  𝑒 = 𝑔 𝑠𝑖𝑛 𝜃  

 
We replace the elementary charges in the interaction energies (contribution of "neutral" currents), and 
we obtain: [𝐸] = −𝑖𝑒𝑗 ⋅ 𝐴 − 𝑖 𝑔𝑐𝑜𝑠 𝜃 (𝑗 − 𝑠𝑖𝑛 𝜃 𝑗 ) ⋅ 𝑍  

 
VIII.8.6 Relationships between coupling constants, elementary charges, and Weinberg angle 
We remind the different relationships between coupling constants, elementary charges and the 
Weinberg angle proposed by the Electroweak Model: 𝑔𝑔 = 𝑡𝑎𝑛 𝜃  1𝑔 + 1𝑔 = 1𝑒 = 1𝑔  1𝛼 + 1𝛼 = 1𝛼  

𝛼 = 𝛼 𝑐𝑜𝑠 𝜃  𝛼 = 𝛼 𝑖𝑛 𝜃  𝑔 + 𝑔𝑔 𝑔 = 1𝑒  𝑔 𝑔𝑔 + 𝑔 = 𝑒 = 𝑔  

𝑐𝑜𝑠 𝜃 = 𝑒𝑔 = 𝑔𝑔 + 𝑔  

𝑠𝑖𝑛 𝜃 = 𝑒𝑔 = 𝑔𝑔 + 𝑔  
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Figure 16: elementary charges and Weinberg angle 

 
VIII.8.7 Neutral weak current carrying weak charge 𝑻𝟎 interacting with the boson 𝒁𝟎 
We define a neutral weak current carrying a weak charge 𝑇  interacting with the boson 𝑍 : 𝑗 = 𝑗 − 𝑠𝑖𝑛 𝜃 𝑗  𝑗 = 𝜓 𝛾 (𝑇 − 𝑠𝑖𝑛 𝜃 𝑄)𝜓 − 𝜓 𝛾 𝑠𝑖𝑛 𝜃 𝑄𝜓  

 
We obtain in terms of interaction energy: [𝐸] = −𝑖𝑒𝑗 𝐴 − 𝑖 𝑔𝑐𝑜𝑠 𝜃 𝑗 𝑍  

 
We have the elementary charge 𝑔  and the coupling constant 𝛼 : 𝑔 = 𝑔𝑐𝑜𝑠 𝜃 = 𝑒𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃  

𝛼 = 𝛼𝑐𝑜𝑠 𝜃 = 𝛼𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃  

 
Note 
For leptons of 1st generation, we have neutral weak currents interacting with the boson 𝑍 : 𝑗 = (𝑇 − 𝑠𝑖𝑛 𝜃 𝑄)𝑒 𝛾 𝑒 − 𝑠𝑖𝑛 𝜃 𝑄𝑒 𝛾 𝑒  𝑗 = (𝑇 + 𝑠𝑖𝑛 𝜃 )𝑒 𝛾 𝑒 + 𝑠𝑖𝑛 𝜃 𝑒 𝛾 𝑒  𝑗 = 𝑇 �̄� 𝛾 𝑣  

 
For quarks of 1st generation, we have neutral weak currents interacting with the boson 𝑍 : 𝑗 = (𝑇 − 𝑠𝑖𝑛 𝜃 23)𝑢 𝛾 𝑢 + (𝑇 + 𝑠𝑖𝑛 𝜃 13)𝑑 𝛾 𝑑  

− 𝑠𝑖𝑛 𝜃 23 𝑢 𝛾 𝑢 − 𝑠𝑖𝑛 𝜃 13 𝑑 𝛾 𝑑  
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VIII.8.8 Covariant derivative rewritten according to potentials 𝑾 𝝁, 𝑾 𝝁, 𝑨𝝁 and 𝒁𝟎𝝁 
We have the covariant derivative: 𝐷 = 𝜕 + 𝑖𝑔 𝑌2 ⋅ 𝐵 + 𝑖𝑔 𝑇 ⋅ 𝑊  

with 𝑎 = 1,2,3 

 
It is rewritten according to potentials  𝑊 , 𝑊 , 𝐴  and 𝑍 : 𝐷 = 𝜕 + 𝑖√2𝑔 (𝑇 ⋅ 𝑊 + 𝑇 ⋅ 𝑊 ) + 𝑖𝑒𝑄 ⋅ 𝐴 + 𝑖𝑔 (𝑇 − 𝑠𝑖𝑛 𝜃 𝑄) ⋅ 𝑍  

 
VIII.9 Brout Englert Higgs mechanism (BEH), assign mass to bosons and fermions 
We now remind in broad outline the BEH mechanism which makes it possible to assign a mass to the 
three massive bosons 𝑊 , 𝑊 , and 𝑍 , and to the fermions. 
 
VIII.9.1 Superconducting materials 
The BEH mechanism is inspired by Vitaly Ginzburg's - Lev Davidovich Landau theory of 
superconducting materials, where the magnetic field 𝐵 is expelled from inside the material. In this 
case, the magnetic field 𝐵 no longer has an infinite range, since it is zero inside the superconducting 
material. 
 
During the study of the Yukawa mesotron, this theory has already been mentioned. It is assumed that 
the mediating particle associated with the electromagnetic field, in this case a photon 𝛾, acquires mass 
in the superconducting material. We have for the magnetic field: 𝐵 = 𝐵 𝑒𝑥𝑝 ℏ = 𝐵 𝑒𝑥𝑝  

with 𝑚  the mass of the mediating particle 𝛾 associated with the short-range magnetic field in the 
superconducting material. 
 
We have the relationship between 𝑚  and wavelength 𝜆 which represents the range of the magnetic 
field inside the superconducting material: 𝑚 𝑐ℏ = 2𝜋𝜆  

 
When the range 𝜆 of the magnetic field 𝐵 decreases to 0, the mass of 𝛾 tends towards infinity. 
 
It is J. Goldstone, on a suggestion of Y. Nambu, who had the idea of transposing the Ginzburg-Landau 
theory in superconductivity, to the Gauge theories. 
 
VIII.9.2 Elements on the BEH mechanism 
To transpose the model of a superconducting material to all of Space-Time, we postulate the existence 
of a scalar field present everywhere, even in a vacuum. 
 
The idea is that the fundamental reference frame (the one that can be called the quantum vacuum) has 
a scalar field with a wave function not zero, but equal to a doublet: 𝜙 = 1√2 0𝜇𝜆  
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with 𝜇 and 𝜆 independent constants (nothing to do with the wavelength for 𝜆). 
 
Note: thus, in the Electroweak Model, the fundamental reference frame𝑅  or quantum vacuum, has 
dysmetry, quantitatively towards the distances of 10 cm, this in order to assign a mass to the gauge 
bosonse 𝑊±, 𝑍 . 
Some will only see it as a "pirouette" because the fundamental question is obviously, what exactly is 𝑅 ? 
 
 
We remind the Lagrangian of a scalar meson of wave function 𝜙 used in the Yukawa interaction: 𝐿 (𝜙) = 12 𝜕 𝜙𝜕 𝜙 − 𝑉(𝜙) 

 
Let 𝜑 be the doublet of wave functions, representing the scalar field-type mediating particle, a 

mediating particle called the Higgs boson. This doublet 𝜑 has the limit 𝜑 = √ 0
. 

 
Note: we find the fundamental idea of H. Yukawa which associates a mediating particle, a wave 
function, and a potential (or a gauge field). 
 
 
On the model of the scalar meson of the Yukawa interaction, the Lagrangian of the Higgs scalar boson 
is written: 𝐿 (𝜑) = 12 𝜕 𝜑𝜕 𝜑 − 𝑉(𝜑) 

with 𝑉(𝜑) = 𝜇 𝜑 + 𝜆𝜑  the self-interaction potential of the Higgs boson, 𝑀 = √2𝜇 the mass of the Higgs boson. 
 
Note: note that the Higgs boson is thus defined as a scalar meson particle mediating the strong 
Yukawa interaction. Since the strong interaction of Yukawa has a limited range, the Higgs boson has a 
mass 𝑀 . 
 
 
VIII.9.3 Assign mass to gauge bosons 
The scalar field associated with the Higgs boson is coupled to the Gauge interaction. We obtain for the 
Lagrangian of the Higgs boson in the reference frame where we cancelled the gauge fields 𝐵  and 𝑊 : 𝐿 (𝜑) = 12 𝐷 𝜑𝐷 𝜑 − 𝑉(𝜑) 

with 𝐷 𝜑 = 𝜕 𝜑 + 𝑖𝑔 ⋅ 𝐵 𝜑 + 𝑖𝑔 𝑇 ⋅ 𝑊 𝜑 the covariant derivative of the Electroweak 
Model which applies to particles with a non-zero weak charge. 
 
We assume a weak hypercharge 𝑌 = −1 for the Higgs boson. 
 
We obtain for the covariant derivative of the doublet of wave functions of the Higgs boson: 𝐷 𝜑 = 𝜕 𝜑 − 𝑖 𝑔2 ⋅ 𝐵 𝜑 + 𝑖𝑔 𝑇 ⋅ 𝑊 𝜑 
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When we tend towards vacuum, we have: 𝐷 𝜑 = 𝐷 ( 1√2 0𝜇𝜆 ) 

 

We take for weak charges 𝑇 =  (𝑎 = 1,2,3), with 𝜎  the 3 Pauli matrices. 
 
We obtain for the covariant derivative: 𝐷 𝜑 = 𝑖2√2 𝜇𝜆 (𝑔 𝐵 1 00 1 + 𝑔 𝑊 0 11 0 + 𝑔 𝑊 0 −𝑖𝑖 0 + 𝑔 𝑊 1 00 −1 ) 01  

𝐷 𝜑 = 𝑖2√2 𝜇𝜆 𝑔 𝑊 − 𝑖𝑔 𝑊𝑔 𝐵 − 𝑔 𝑊  

 
We obtain for the Lagrangian of the Higgs boson: 𝐿 (𝜑 ) = 18 (𝜇𝜆) ((𝑔 𝐵 − 𝑔 𝑊 ) + (𝑔 𝑊 − 𝑖𝑔 𝑊 )  

𝐿 (𝜑 ) = 18 (𝜇𝜆) ((𝑔 𝐵 − 𝑔 𝑊 ) + (𝑔 ) 𝑊 𝑊 + (𝑔 ) 𝑊 𝑊 )) 

 
We take as before: 𝑊 = 1√2 (𝑊 + 𝑖𝑊 ) 

𝑊 = 1√2 (𝑊 − 𝑖𝑊 ) 

𝐴 = 𝑔 𝐵 + 𝑔 𝑊𝑔 + 𝑔  

𝑍 = 𝑔 𝐵 − 𝑔 𝑊𝑔 + 𝑔  

 
After some calculations, we deduce a Lagrangian of the masses of the type: 𝐿 (𝜑 ) = (𝑔2 𝜇𝜆) 𝑊 𝑊 + (𝑔2 𝜇𝜆) 𝑊 𝑊 + (12 𝑔 + 𝑔 𝜇𝜆) 𝑍 𝑍  

 
We identify the terms in the Lagrangian of the masses, with the masses of the bosons 𝑊± and 𝑍 . The 
results are shown below. 
 
Boson mass 𝑊±: 𝑀 ± = 𝑔2 𝜇𝜆 

 
Boson mass 𝑍 : 
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𝑀 = 12 𝑔 + 𝑔 𝜇𝜆 

 
Mass ratio: 𝑀 ±𝑀 = 𝑔𝑔 + 𝑔 = 𝑒𝑔 = 𝑐𝑜𝑠 𝜃  

 
Note that photons with potential 𝐴  are eliminated from 𝐿 (𝜑 )  and therefore have 
no mass. 
Nothing is said about a possible mass of the boson 𝐵 and we can assume, like the photon, that it does 
not have one. 
 
VIII.9.4 Calculation of 𝝁𝝀 with Fermi constant 
At the limit of the electroweak model, we have seen that we can pose a link with the Fermi constant: 𝑔8𝑀 ± = 𝐺√2 

 
Note: Bosons 𝑊± have a non-zero mass and a priori a zero momentum energy quadrivector. Indeed, 
the momentum energy quadrivector is tended towards 0, in order to find the Fermi constant 𝐺 . 
 
 
Digital application 
We calculate: 𝜇𝜆 = (√2𝐺 ) ≈ (√2 × 1,166 × 10 )  𝜇𝜆 ≈ 246𝐺𝑒𝑉 𝑀 ±𝑔 ≈ 123𝐺𝑒𝑉 𝑔 ≈ 0,65 𝑀 ± ≈ 79,6𝐺𝑒𝑉 

𝑀 = 𝑀 ±𝑐𝑜𝑠 𝜃 ≈ 79,60,87 ≈ 90,8𝐺𝑒𝑉 

 
Note that the mechanism BEH makes no predictions here about the values of 𝜇 and 𝜆 taken separately 
and accordingly on the mass 𝑀 = √2𝜇 of the Higgs boson. 
 
Nota: The Standard Model theoretically provides for (in 2022) a mass of 91,187GeV for the boson 𝑍  
and a mass of 80,357GeV for bosons 𝑊±. For the latter, the mass measured and published in work in 
April 2022 is of the order of 80,433GeV. 
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VIII.9.5 Assign mass to leptons 
The BEH mechanism also makes it possible to assign mass to quarks and leptons. We explain only 
here the case of electrons, the simplest case. 
 
We remind the Yukawa interaction between a scalar meson (called scalar field of wave function 𝜑) 
and a fermion (called Dirac field of wave functions) 𝜓): 𝐿 (𝜑, 𝜓) = −𝑔 𝜓𝜑𝜓 

with 𝑔  an arbitrary coupling constant. 
 
The BEH mechanism uses a Yukawa interaction that connects the left and right components of the 
doublets of 𝑆𝑈(2) : 𝐿 (𝜑, 𝜓) = −𝑔 (𝜓 𝜑𝜓 + 𝜓 𝜑 𝜓 ) 

 
In the case of a coupling between a Higgs boson (called wave function scalar field 𝜑 ) and 
lepton doublets (called Dirac field), we have: 𝐿 , = −𝑔 ( 𝜈𝑒 𝜑 𝑒 + 𝑒 𝜑 𝜈𝑒 ) 

with 𝜙 = 𝜙 = √ 0
 

𝐿 , = − 𝑔√2 𝜇𝜆 ( 𝜈𝑒 𝑒 + 𝑒 𝜈𝑒 ) 

 
The electron acquires a mass of: 𝑚 = 𝑔√2 𝜇𝜆 

 
VIII.10 The Higgs boson 𝑯𝟎, a composite particle? 
VIII.10.1 Bosons, composite particles? 
Since bosons have an integer spin and fermions a half-integer spin, some physicists hypothesize that 
bosons are actually particles composed of 2 fermions, whose half-integer spins add up to give an 
integer spin. 
 
This would make it possible to understand that bosons do not follow the Pauli exclusion principle, 
since in this case, they form a system and within this system, both fermions follow the Pauli exclusion 
principle. 
 
Some bosons are actually presented today as composite particles, such as mesons (formed by a quark 
and an antiquark) or Cooper peers (formed by 2 electrons). Other bosons, such as photons, are 
generally not presented as composite particles. We are now looking at what could happen to the Higgs 
boson. 
 
VIII.10.2 Reminder of the main characteristics of the Higgs boson 
The Higgs boson 𝐻  has the following characteristics, it is: 

- of integer spin (a boson), with zero spin:(𝑆, 𝑆 ) =(0,0), 
- of zero electric charge, 
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- meson-type, particle mediating the strong interaction according to the model of H. Yukawa. It 
has mass, thus explaining the limited range of the strong interaction in Space. As a zero 
electric charge meson, we can expect a strong charge or strong isospin equal to (𝐼, 𝐼 ) =(1,0). 
It should be noted, however, that the Standard Model postulates for 𝐻  a strong charge or of 
zero color, and that it is not presented as a composite particle like other mesons, 

- of type equal to its own antiparticle, 
- of scalar meson type (a so-called scalar meson has 𝑆 = 0 and 𝐽 = 0 , that is 𝑃 = +1), 
- non-zero weak charge (𝑇, 𝑇 ) = ( , − ), this is why it is subject to weak interaction and 

couples with bosons 𝑊± and 𝑍 , 
- of non-zero weak hypercharge (𝑌 = 1 and 𝑌 = −1 according to the initial assumptions), 

this is why it couples with the boson B. 
 
On the first 4 characteristics, we can compare 𝐻  to the pion 𝜋 . It differs on: 

- Parity (𝜋  is a pseudoscalar meson, with 𝑆 = 0 and 𝐽 = 0 , that is 𝑃 = −1), 
- non-zero weak charge, 
- non-zero weak hypercharge. 

 
They both have relatively similar masses: about 134,98 MeV.c-2 for 𝜋  and approximately 125,18 
MeV.c-2 for 𝐻 . 
 
VIII.10.3 Speculation about Higgs bosons 
If we deviate from the Standard Model, who sees 𝐻  like an elementary particle, we can propose an 
analogy of the type between 𝐻  and 𝜋  for strong isospin, all 2 then composite particles: 𝐼 = 1, 𝐼 = 0 = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 + ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 )

= 1√2 (|𝑢; �̄�⟩ + 𝑑; −𝑑 ) = |𝜋 ⟩ 
𝐼 = 1, 𝐼 = 0 = 1√2 ( 𝑖 = 12 , 𝑖 = 12 ; 𝑖′ = 12 , 𝑖 ′ = − 12 + ( 𝑖 = 12 , 𝑖 = − 12 ; 𝑖′ = 12 , 𝑖 ′ = 12 )= |𝐻 ⟩ 

 
It is noted that the bound particles would however be different for 𝐻  and 𝜋 . 
 
We can also suggest the existence of 3 Higgs bosons 𝐻 , 𝐻 , 𝐻  in analogy with pions 𝜋 , 𝜋 , 𝜋 . 

We would have the following tables: 

Pions (𝑆, 𝑆 ) (𝐼, 𝐼 ) (𝑇, 𝑇 ) 𝑄 𝑌  𝜋  
 

(0,0) (1,1) (0,0) +1 2 𝜋  
 

(0,0) (1, −1) (0,0) −1 -2 𝜋  
 

(0,0) (1,0) (0,0) 0 0 

 
Higgs (𝑆, 𝑆 ) (𝐼, 𝐼 ) (𝑇, 𝑇 ) 𝑄 𝑌  𝐻  (0,0) (1,1) (12 , − 12) +1 +3 𝐻  (0,0) (1, −1) (12 , − 12) −1 -1 
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𝐻  (0,0) (1,0) (12 , − 12) 0 1 

 
VIII.11 Analogies between the 3 interactions of the Electroweak Model 
VIII.11.1 Questions about the boson B 
The Electroweak Model provides little information about the boson 𝐵. A priori, this boson 𝐵 must not 
have mass since it is not calculated via the BEH mechanism. Just like the photon 𝛾, the boson 𝐵 
presumably has a non-zero momentum. In the next Memoir, it will also be proposed that it has an 
electric charge. 
 
The boson 𝐵 is the mediating particle of an interaction called hyper. Nothing is said about the scope 
(or range) of hyper interaction. But if the mass of the boson 𝐵 is effectively zero, it can be assumed 
that the range of the hyper interaction is infinite like that of the electromagnetic interaction or the 
gravitational interaction. 
 
Note, a relationship between the boson B and the boson X17? 
In the 2010s, as part of research on dark matter (postulated because of a non-respect of Newtonian 
gravitation in galaxies), Hungarian physicist Attila Krasznahorkay and his colleagues at ATOMKI 
(Atomki Nuclear Research Institute) bombarded lithium 7 𝐿𝑖 with protons. This creates unstable (or 
excited) beryllium 8 𝐵𝑒∗ which decays into: 𝐵𝑒∗ → 𝐵𝑒 + 𝑒 + 𝑒  
 
In an article signed in 2015, to explain during this decay, an angle of 140 ° between the electron and 
the positron, as well as an energy release of 17 MeV, the Hungarian team postulates the existence of a 
new particle X17 of mass 17 MeV, with intermediate decays: 𝐵𝑒∗ → 𝐵𝑒 + 𝑋17 𝑋17 → 𝑒 + 𝑒  
 
In 2016, physicist Jonathan L. Feng suggested that this particle or boson X17 could be the mediating 
particle of a fifth fundamental interaction of very long range. 
Finally, in 2019, the Hungarian team obtained similar results with no longer beryllium, but helium  𝐻𝑒∗ and a particle of mass almost identical to that of the X17. 
 
This reminder of the events raises questions about a possible link between boson X17 and boson B of 
the Electroweak Model, which remains a "technical object" and undiscovered. 
 
Note that the boson X17 has characteristics a priori different from those of the boson B, en particular a 
zero electric charge for the X17 and a priori non-zero electric charge for the B. 
Nevertheless, the hypothesis that the boson B has zero mass and the observation that the boson X17 
has a low mass, bring them both together in the idea that they would convey a new interaction of 
infinite range, or at least very long range. This interaction would have consequences on gravitation, 
especially at the scale of galaxies. 
To be continued… 
 
 
VIII.11.2 Analogies between electric charge 𝑸, weak charge 𝑻𝟑  and weak hypercharge 𝒀𝑾 
The table below shows the analogies between electric charge 𝑄, weak charge 𝑇  and weak 
hypercharge 𝑌  found in the Electroweak Model (𝜇 = 𝑡, 𝑥, 𝑦, 𝑧). 
 
Quantum number 
conserved during a 
global gauge transform 
and generator of the 

Charge 𝑄 Weak charge 𝑇  Weak hypercharge 𝑌  
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transformation 
Related interaction 
 

Electromagnetic 
interaction 
Infinite range 

Weak interaction 
Low range 

Hyper interaction 
Infinite range? 

Charge function of 
quantum numbers 
 

𝑄 = 𝐼 + 𝐵𝑎2 + 𝑆𝑡2   𝑌2 = 𝑄 − 𝑇  

Coupling constant, 
elementary charge 
 

𝛼 = 𝛼= 𝑒4𝜋𝜀 ℏ𝑐 𝑒 = 𝑔  
𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 

Particle mediating the 
interaction 

Photon 𝛾 
transporting a spin 𝑆 
(quantum quantity 
with momentum) 

Bosons 𝑊 , 𝑊 , 𝑊  
transporting a quantum 
quantity with mass 

Boson 𝐵 transporting 
a quantum quantity 
with momentum? 

Group of rotations, 
global and local gauge 
transformations 

𝑈(1)  𝑆𝑈(2)  𝑈(1)  

Local gauge 
transformation on the 
wave function 

𝜓→ 𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥))𝜓 
𝜓𝜓→ 𝑒𝑥𝑝( 𝑖𝑔 𝑇⋅ 𝛼 (𝑥)) 𝜓𝜓 𝑎 = 1,2,3 

𝜓→ 𝑒𝑥𝑝( 𝑖𝑔 𝑌 𝛼(𝑥))𝜓 

Covariant derivative of 
local gauge 
transformation 
 

𝐷 = 𝜕 + 𝑖𝑒𝑄 ⋅ 𝐴  𝐷 = 𝜕 + 𝑖𝑔 𝑇 ⋅ 𝑊  𝑎 = 1,2,3 
𝐷 = 𝜕 + 𝑖𝑔 𝑌2⋅ 𝐵  

Lagrangian fermions 𝑖𝜓𝛾 (𝜕 + 𝑖𝑒𝑄⋅ 𝐴 )𝜓 − 𝑚𝜓𝜓 
𝑖𝜓 𝛾 (𝜕 + 𝑖𝑔 𝑇⋅ 𝑊 )𝜓 − 𝑚𝜓 𝜓  𝑎 = 1,2,3 

𝑖𝜓 𝛾 (𝜕 + 𝑖𝑔 𝑌2⋅ 𝐵 )𝜓 − 𝑚𝜓 𝜓  𝑖𝜓 𝛾 (𝜕 + 𝑖𝑔 𝑌2⋅ 𝐵 )𝜓 − 𝑚𝜓 𝜓  
 

Potential quadrivectors 
related to mediating 
particles 

𝐴  𝑊 , 𝑊 , 𝑊  𝐵  

Currents quadrivectors 𝑗 = 𝑄𝜓𝛾 𝜓 𝑗 = 𝑇 𝜓 𝛾 𝜓  𝑎 = 1,2,3 
𝑗= 𝑌 𝜓 𝛾 𝜓+ 𝑌 𝜓 𝛾 𝜓  

 
 
VIII.12 Conclusion, on the mediating particles used by the Electroweak Model 
The Electroweak Model involves 3 types of mediating particles (if we do not count the Higgs boson 
used to assign a mass and which would be included in the particles mediating the strong interaction). 
 
First, the photon 𝛾 having non-zero momentum and zero mass. This photon 𝛾 is the mediating particle 
of the electromagnetic interaction of infinite range (hence the zero mass of the photon). It carries a 
spin 𝑆, which exchanged with a fermion, generates a change in the energy level of the fermion and a 
displacement of the fermion electric charge 𝑄. 
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Next, bosons 𝑊 , 𝑊 , 𝑊  having zero momentum and non-zero mass. These bosons 𝑊 , 𝑊 , 𝑊  
are the mediating particles of the weak interaction of limited range (hence the non-zero mass of these 
bosons according to the ideas of H. Yukawa). 
 
Finally, the boson 𝐵 possessing, a priori, a non-zero momentum and a zero mass. It is the mediating 
particle of an interaction called here hyper. 
 
In the 3rd Memoir, several source field equations applied to gravitation were proposed. In particular, 4 
equations were proposed with space-oriented sources: the first 2 with sources constructed from linear 
momentum density, the next 2 with sources constructed from linear mass density. 
 
After this 4th Memoir, which remains essentially a course of particle physics in the 20th century, the 5th 
Memoir will again be very speculative. Its purpose will be to examine whether it is possible to 
reconcile 3 of these 4 source field equations with the 3 types of mediating particles involved in the 
Electroweak Model: 

- the photon 𝛾 with a momentum, 
- the bosons 𝐵 with a momentum, 
- the bosons 𝑊 , 𝑊 , 𝑊  with a mass. 

 
For the last source field equation involving a mass, it will be examined whether it is possible to bring 
it closer to mass mediating particles of the strong interaction, also limited in scope. 
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Memoir 5 The effect of Einstein and the parable of Bohr 
 
Objectives of the Memoir 
Although it bears the names of Einstein and Bohr, this 5th Memoir will focus mainly on the work of 
the years 1950-1970 and will again be speculative. We will focus on the following 4 interactions 
present in the Standard Model: electromagnetic, hyper, weak and strong interactions (with two 
interactions of infinite range and two of finite range). 
 
We will set aside the Higgs field, which in our opinion, would be closer to the strong interaction, since 
the Higgs boson intervenes as a meson mediator of the strong interaction, to assign a mass to the 
particles of the Electroweak Model. As for gravitational interaction, we will return to its case at the 
end of this Memoir. 
 
Throughout this 5th Memoir, we will essentially try to show that there is a greater analogy between the 
first interaction: electromagnetic and the other 3: hyper, weak and strong, than the Standard Model 
usually presents. 
Thus, its main objective will be to generalize the Einstein photoelectric effect and the Bohr parable to 
the 4 interactions mentioned above. 
 
For this, we will first look for, for each of the 4 interactions, a quantum number analogous to that of 
the spin number 𝑆  (𝑎 = 1,2,3)  involved in electromagnetic interaction. We will qualify these 4 
quantum numbers as a "source field", because for each, we suggest pairings with gravitational source 
field equations proposed in the 3rd Memoir. We will see that 2 quantum numbers are of impulse type 
and that the other 2 are of mass type. 
 
We will then relate each quantum number "source field" to: 

- reactions between fermion-type particles that reverse or modify these source field quantum 
numbers, 

- Mediating particles carrying these 4 quantum numbers "source field": photon 𝛾 and boson 𝐵, 
both momentum boson type, bosons 𝑊  and gluons 𝐺 , both mass boson type. 

 
Finally, from each quantum number source field, we will define a quantum number of charges X, 
complementary to the quantum number "source field" and function of the other 3 quantum numbers 
"source field". 
 
Beyond the very speculative ideas put forward here, this Memoir will also be an opportunity to focus 
on the history of ideas in physics. We will start with a parallel between the law of areas of J. Kepler 
(1609), the notions of angular momentum, then quantum spin proposed by S. Goudsmit and G. 
Uhlenbeck (1925). We will discuss the proposals of new quantum numbers that are the strong 
hypercharge 𝑌 or strangeness 𝑆𝑡 (K. Nishijima and M. Gell-Mann in the 1950s). We will also be 
interested in the Quark Model (M. Gell-Mann and G. Zweig from 1961 to 1964), a model based on the 
strong interaction between particles in the nucleus (hadrons). 
We will then talk about the angle of N. Cabibbo (1963). This angle makes it possible to describe from 
the up and down quarks the electrically neutral and charged weak currents of fermions interacting with 
the weak bosons. We will also deal with the mechanism of S. L. Glashow-J. Illiopoulos-L. Maiani, 
mechanism that imagines the existence of a 4th quark, the quark 𝑐 and which involves an electrically 
neutral weak current. 
 
Through the work of Bruno Pontecorvo  and Ziro Maki (from the 1960s), we will be interested in the 
oscillations of neutrinos: hypothesis of several families of neutrinos, existence of an angle (today 
called Pontecorvo angle similar for leptons to that of Cabibbo for quarks). The similarities between 
quarks and leptons in the weak and hyper interactions will be highlighted. 
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Finally, we will discuss Quantum Chromodynamics, a theory describing the strong interaction and 
based on the strong charge of color generating the group 𝑆𝑈(3) . We will also briefly discuss the 
notions of confinement and asymptotic freedom proposed in 1973 by H. David Politzer, Frank 
Wilczek and David Gross. 
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Chapter I Relating the de Broglie source field equation and the spin 
quantum number 𝑺 

 
Purpose of the chapter 
We try to show the link between the source equation Broglie field 𝑝 = ℏ𝐾 /  and spin 𝑆. 
More generally, we wish to propose that: 

- the invariance of the source field equation of de Broglie 
corresponds to: 

- conservation of orbital and spin angular momentum during reactions between particles. 
 
I.1 Reminders: from Kepler's 2nd law to orbital angular momentum and orbital 

magnetic moment, then to spin 
Here we make some reminders on the existing relations between Kepler's law of areas and the notion 
of angular momentum encountered in gravitation, magnetic moment encountered in electromagnetism 
and spin encountered in quantum physics. 
 
I.1.1 Kepler's 2nd law 
In 1609, Johannes Kepler proposed Kepler's 2nd law (also called Law of areas) which applies to the 
motion of the planets in the sky. 
 
Let 𝐴(𝑡) be the area of the surface “swept” by a vector ray 𝑟. According to Kepler's 2nd law, equal 
areas 𝐴(𝑡) are swept in equal times. For example, for a planet orbiting the Sun, this qualitatively 
means that its speed is greater the shorter its distance from the Sun. 
 
We define an areal velocity, derived from the area 𝐴(𝑡) with respect to time: 𝑑𝐴(𝑡)𝑑𝑡  

 
Using Kepler's 2nd law, we obtain a constant areal velocity: 𝑑𝐴(𝑡)𝑑𝑡 = 12 𝑟 𝑑𝜃𝑑𝑡 = 𝑐𝑜𝑛𝑠𝑡 

 

I.1.2 Relationship between areal velocity 𝒅𝑨(𝒕)𝒅𝒕  and orbital angular momentum �⃗� 
We define an orbital angular momentum following 𝑧: �⃗� = �⃗� ∧ 𝑝  

 
Note 1 𝑥 and 𝑦 define a spatial plan here, 𝑦 is the radial component and 𝑥 the tangential component of a 
rotational motion. 
 
Note 2 
Usually, the term orbital angular momentum is rather reserved for quantum mechanics. In classical 
mechanics, we simply speak of angular momentum. It is used here to show the proximity between the 
classical notion and the quantum notion. 
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We obtain the relationship between the areal velocity and the orbital angular momentum by 
multiplying the areal velocity by twice the mass of the body studied: �⃗� = 2𝑚 𝑑𝐴(𝑡)𝑑𝑡 𝑧 

 
In the case of a constant mass m, Kepler's 2nd law can be rewritten with angular momentum: �⃗� = 2𝑚 𝑑𝐴(𝑡)𝑑𝑡 𝑧 = 𝑐𝑜𝑛𝑠𝑡 

and thus translates the conservation over time of a constant quantity, the angular momentum. 
 
Note, reminder on the conservation of angular momentum in the case of a central force motion 
A central force movement is the movement of a material point subjected to a force passing through a 
fixed-point O. This is for example the case of the Earth, subject to the central gravitational force of the 
Sun, in the models of Kepler and Newton. 
In the case of a central force motion, we have conservation of angular momentum. We have: �⃗� = 𝑂𝑀 ∧ 𝑝 
Deriving with respect to time, we have: 𝑑�⃗�𝑑𝑡 = (𝑑𝑂𝑀𝑑𝑡 ∧ 𝑝) + (𝑂𝑀 ∧ 𝑑𝑝𝑑𝑡 ) 𝑑�⃗�𝑑𝑡 = (�⃗� ∧ 𝑝) + (𝑂𝑀 ∧ �⃗�) �⃗� ∧ 𝑝 = 0⃗, because �⃗� and 𝑝 are collinear 𝑂𝑀 ∧ �⃗� = 0⃗, because 𝑂𝑀  and �⃗� are collinear, because the motion is central force 
 
We get:  𝑑�⃗�𝑑𝑡 = 0⃗ 
 
Angular momentum �⃗�  is therefore constant during the movement. 
 
 

I.1.3 Relationship between areal velocity 𝒅𝑨(𝒕)𝒅𝒕 , orbital angular momentum �⃗� and orbital 
magnetic moment �⃗�𝑳 

We obtain the relationship between the areal velocity ( ) and orbital magnetic moment 𝜇  by 
multiplying the areal velocity by the charge of the body studied (A sign − is introduced): 𝜇 = −𝑞 𝑑𝐴(𝑡)𝑑𝑡 𝑧 

 
We have the relationship between orbital magnetic moment and orbital angular momentum: 𝜇 = − 𝑞2𝑚 �⃗� 𝜇 = 𝛾𝐿 where 𝛾 = −  the gyromagnetic ratio of the magnetic dipole considered. 
 
Note, reminder about the magnetic dipole 
A magnetic dipole can be visualized as a small magnet. It is characterized by a magnetic moment 𝜇 . 
In the presence of a magnetic field 𝐵, the magnetic dipole is subjected to a torque 𝜏 and a force �⃗�, to 
which potential energy is associated 𝐸𝑝. 
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We have the relationships: 𝜏 = 𝜇 ∧ 𝐵 𝐸𝑝 = −𝜇 ⋅ 𝐵 �⃗� = −𝛻𝐸𝑝 = −𝛻(𝜇 ⋅ 𝐵) 

 
The small magnet tends to orient itself according to the magnetic field 𝐵 to minimize its torque 𝜏 and 
maximize its 𝐸𝑝 (in absolute value). 
 
 
I.1.4 Relationship between orbital angular momentum �⃗� and orbital magnetic moment �⃗�𝑳, 

case of the electron 
The electron of the Bohr model has an orbital angular momentum �⃗� = ℏ𝑧 and an orbital magnetic 
moment 𝜇  called the Bohr-Procopiu magneton (in reference to Niels Bohr and Ștefan 
Procopiu). 
 
We have the relationship between the orbital angular momentum and the orbital magnetic moment: 𝜇 = 𝑒2𝑚 �⃗� = 𝑒ℏ2𝑚 𝑧 

𝛾 = 𝑒2𝑚  

 
I.1.5 Passage of orbital angular momentum �⃗� to spin angular momentum �⃗� 
In Memoir 2, it was mentioned that the transition from an orbital rotation to a rotation on oneself (spin 
rotation) is done via a change of reference frames (for example from a terrestrial reference frame to a 
solar reference frame). 
We can imagine that the passage of an orbital angular momentum �⃗� to a spin angular momentum 𝑆 is 
also done via a change of reference frame. 
We expect a same relationship between the spin magnetic moment 𝜇  and the spin angular momentum 𝑆 for an elementary particle. This is the case for the electron with a good approximation. We'll look at 
that in the next paragraph. 
 
Note 
In the case of a point particle, the radius involved in the spin angular momentum does not really make 
sense. However, instead of thinking radius 𝑟, we can think wavelength 𝜆 and wave vector 𝐾 as does 
wave mechanics. 
 
 
I.1.6 Relationship between the spin magnetic moment �⃗�𝑺 and spin angular momentum �⃗�, 

case of the electron, Landé factor 𝒈 
In quantum mechanics, spin angular momentum 𝑆 is defined with an additional factor  relative to 
orbital angular momentum �⃗� = ℏ𝑧. We have: 𝑆 = ± 12 ℏ𝑧 

 
To explain: 
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- this 1st fact of an additional factor  (case of the electron), 
- as well as a 2nd fact concerning other particles (such as the proton or the neutron), which 

measures a ratio between the magnetic moment of spin and the angular momentum of spin, 
not depending only on the mass and charge of the particle, 

Alfred Landé introduced in 1921 a factor 𝑔: 𝜇 = 𝑔 𝑞2𝑚 𝑆 

 
For the electron, we have a Landé factor as expected: 𝑔 ≈ −2. 
 
We find: 𝜇 ≈ 𝑒ℏ2𝑚 𝑧 

similar to Bohr's magneton 𝜇 = ℏ 𝑧. 
 
Note 1 
The Dirac wave equation of electron predicts 𝑔 = −2. The experimental value is in fact 𝑔 ≈−2,002319. To explain it, we speak in relativistic quantum electrodynamics of quantum vacuum with 
the appearance of virtual particles. 
 
An anomaly is introduced 𝑎 with: 𝑔 = 2(1 + 𝑎) 

 
We have a power series of the electromagnetic coupling constant: 𝑎 = 𝐴 𝛼 + 𝐴 𝛼 + 𝐴 𝛼 + 𝑜(𝛼 ) 

 
The power series is symbolized by virtual particles. This makes it possible to calculate 𝐴 , 𝐴 , 𝐴 , etc. 
 
Note 2 
The proton has a Landé factor 𝑔 ≈ +5,586 and the neutron 𝑔 ≈ −3,826, contrary therefore to the 
expectation which is true for the electron. 
To explain this, it can be assumed that proton and neutron (both subject to strong interaction) are not 
elementary particles but composite particles. This is one of the strong arguments in favor of the Quark 
Model. 
 
 
I.2 Combining the source field equation of de Broglie with orbital angular 

momentum and spin angular momentum 
I.2.1 Quantization of orbital angular momentum 𝑳 
We give the quantization proposed by N. Bohr of orbital angular momentum in his model of the 
electron: 𝐿 = 𝑦𝑝 = 𝑛ℏ 

with 𝑛 an integer 

 
In the following lines, we remind the ideas proposed by L. de Broglie in his model of the electron 
wave, in order to explain the quantization of the orbital angular momentum of N. Bohr. 
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According to the source field equation of de Broglie, we have: 𝑝 = ℎ𝜆 = ℏ𝐾 /  

 
We place ourselves in the reference frame 𝑅  where the electron is motionless and is interpreted as a 
circular stationary (or standing) wave. To have a constructive interference of this wave, L. de Broglie 
proposes the condition: 𝜆 = 𝑙𝑛 = 2𝜋𝑦𝑛  

or 𝐾 / =  

 
Note on the wave vector 
Since we reason on a circular wave (and not rectilinear), we do not have 𝐾 /  function of  but of , 
i.e., function of the radius. 
 
 
We get: 𝑝 = ℏ𝐾 / = 𝑛ℏ 1𝑦 

𝑝 = ℎ𝜆 = 𝑛ℏ 1𝑦 

 
We find the Bohr quantification: 𝐿 = 𝑦𝑝 = 𝑛 𝑝𝐾 / = 𝑛ℏ 

 
I.2.2   Define orbital angular momentum from the source field equation of de Broglie 
From the above, we note that the source field equation of de Broglie: 1ℏ (𝑑𝑝𝑑𝑡 ) = ℏ𝐾 /𝜕𝑡  𝑝 = ℏ𝐾 /  
is associated with the quantization of orbital angular momentum. 
 
It is proposed to define the orbital angular momentum 𝐿 from the source field equation of de Broglie. 
We obtain the 3 components of the orbital angular momentum in the case where 𝑛 = 1: 𝐿 = ℏ = 𝑝𝐾 /  

𝐿 = ℏ = 𝑝𝐾 /  

𝐿 = ℏ = 𝑝𝐾 /  
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Note 1 
Following the classical definition of angular momentum �⃗� = �⃗� ∧ 𝑝 = �⃗� ∧ 𝑚�⃗� , it is a linear speed 
of rotation �⃗�  and thus a rotation vector in a spatial plane 𝛺, which intervenes in the expression of 
angular momentum. 
With this new definition of angular momentum, it is a generalized rotation vector in a spatiotemporal 
plane: 𝐾, which intervenes in the expression of angular momentum 
 
Note 2 
This new definition clarifies the quantization in quantum mechanics of orbital angular momentum, 
whereas in classical mechanics orbital angular momentum has no reason to be quantized. 
 
 
I.2.3 Same notion for orbital angular momentum 𝑳 and spin angular momentum 𝑺, with 

change of reference frames? 
Previously, it was suggested that orbital angular momentum 𝐿 and spin angular momentum 𝑆 
correspond to the same notion with change of reference frames. 
 
This idea of the same notion grouping together 𝐿 and 𝑆, is also found at the operator level. In quantum 
mechanics, we define a total angular momentum, denoted vector operator 𝐽, sum of an orbital angular 
momentum 𝐿 and of a spin angular momentum 𝑆: 𝐽 = 𝐿 + 𝑆 

 
The idea that 𝐿 and 𝑆 corresponds to the same notion (with change of reference frames), is also found 
in the (not relativist) electron model of Pauli (an adaptation of the electron model of de Broglie 
Schrödinger, with in addition the spin) when a photon (with spin angular momentum 𝑆) reacts with an 
electron and changes its orbital angular momentum 𝐿 (and also its orbit) during an energy transition. 
 
I.2.4 Quantization of spin angular momentum 
In the Bohr electron model, only orbital angular momentum 𝐿 is quantized (not the spin angular 
momentum 𝑆 which is not included in the model). 
Following the idea that 𝐿 and 𝑆 correspond to the same notion (with change of reference frames), we 
must also have a quantification of the spin 𝑆. This is precisely what we observe with: 𝑆 = 𝑛 ℏ2 

with 𝑛 = ±1 positive or negative integer 

 
Note 
In electron model of de Broglie Schrödinger, there are actually three quantum numbers: 

- the principal quantum number n, which (roughly) corresponds to that of the Bohr model, 
- the secondary quantum number l which corresponds to the quantization of the modulus of the 

orbital angular momentum, 
- the magnetic quantum number m which corresponds to the quantization of the projection 

along the reference axis Oz of the orbital angular momentum vector, 
 
To take into account the 4th quantum number, the spin s in a wave equation, we must use the electron 
model of Pauli. 
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I.2.5 Define spin angular momentum 𝑺 à partir de l’équation source champ de Broglie 
According to the finding that 𝐿 and 𝑆 are both quantified and correspond to the same notion (with 
change of reference frames), we also define the spin 𝑆 from the source field equation of de Broglie: 𝑆 = 12 ℏ = 12 𝑝𝐾 /  

𝑆 = 12 ℏ = 12 𝑝𝐾 /  

𝑆 = 12 ℏ = 12 𝑝𝐾 /  

 
I.3 Conclusion of the chapter 
It has been proposed to link the source field equation of de Broglie to orbital and spin angular 
momentum, and thus to the electromagnetic interaction. This link helps explain the quantization in 
quantum mechanics of orbital angular momentum in integer multiples of ℏ, whereas this moment is 
not quantized in classical mechanics. 
 
More broadly, we thus corresponded the invariance of a law of Nature: the source field equation of de 
Broglie, with conservation during reactions between particles of a quantum quantity: orbital and spin 
angular momentum. 
 
Following this correspondence between the invariance of a law of Nature and conservation during 
reactions between particles of a quantum quantity, we wonder, would it be possible to find other 
examples and even to generalize more? 
This is what will be examined in the next chapters., by searching in additional to bring the 4 
interactions (electromagnetic, hyper, weak, and strong) closer in their form than does the Standard 
Model. 
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Chapter II The photoelectric effect of Einstein (1905) and the parable of 
Bohr (1913) 

 
Purpose of the chapter 
We present the main objective of this Memoir: that of generalizing the photoelectric effect of Einstein 
and the parable of Bohr applying to the electromagnetic interaction, to the 3 other interactions 
involved in the Standard Model: electromagnetic, hyper, weak and strong interactions. 
 
II.1 The photoelectric effect of Einstein and the parable of Bohr 
II.1.1 Reminders 
In 1905, A. Einstein provided a quantum explanation for the photoelectric effect discovered 65 years 
earlier by Antoine Becquerel and Edmond Becquerel. The idea of A. Einstein is that particles of light, 
photons, carrying a quantized number today called the spin, exchange this spin with electrons. This 
spin 𝑆 exchange generates a displacement of electrons and therefore an electric current of conserved 
electric charge 𝑄. 
 
Here we call parable of Bohr, the Bohr model of the electron proposed by N. Bohr in 1913. It is an 
extension of Einstein's photoelectric effect to the hydrogen atom. Following the parable, light waves of 
photons carrying spins 𝑆, can generate changes in the orbits of the electron and thus an electric current 
with charge 𝑄. 
The parable works in 2 senses. Indeed, changes in the orbit of the electron (change of orbit comparable 
to a displacement of conserved electric charge 𝑄 and therefore to an electric current), can radiate light 
waves composed of photons carrying spins 𝑆. 
 
Note on quantum numbers 𝑺 and 𝑸 involved in electromagnetic interaction 
In relativistic quantum electrodynamics, the electromagnetic field is associated with the photon 𝛾 that 
is the spin carrier. The relationship between angular momentum and electric force, i.e., between 
quantum numbers 𝑆 and 𝑄, is found, for example, in N. Bohr's electron model, when he proposes: 𝑟𝑚𝑣 × 𝑣 = 𝑒4𝜋𝜀  

ℏ × 𝑣 = 𝑒4𝜋𝜀  

with ℏ the quantized orbital angular momentum 𝐿 that is matched with 𝑆 in the same notion of total 
angular momentum 𝐽, 𝑒 the elementary electric charge of Q. 
 
Historical note on Einstein's idea 
All the electromagnetism of the 19th century developed by knowing only the quantum number of 
electric charge Q. The genius of A. Einstein is to have understood that to properly describe the 
electromagnetic interaction, it was necessary to add a second quantum number: the spin 𝑆. 
Today, it may seem obvious that it is necessary to use both Q and 𝑆 to describe the electromagnetic 
interaction, but at the time of A. Einstein little or nothing suggested it, since Q and 𝑆 are so different. 
 
 
In the figure above, the currents of electric charges correspond to the dotted arrows, when the electron 
passes from one orbit to another (i.e., from one level n to another level n).  
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Figure 1: photon absorption and photon emission, current of electric charges 

 
II.1.2 Photon absorption and photon emission, Feynman diagrams 
Let's explain the 2 senses of Einstein's photoelectric effect and Bohr's parable, through Feynman's 
diagrams below. 
 
A mediating particle generates a current of electric charges, photon absorption 
We have the disappearance of a field and the mediating particle representing it, in the sense of Time. 
 

 
Figure 2: disappearance of the photon and creation of fermions 

 

 
Figure 3: disappearance of the photon and scattering of fermions 

 
A current of electric charges radiates a mediating particle, photon emission 
We have the creation of the field or the mediating particle representing it, in the sense of Time. 
 

Time 

Time 
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Figure 4: Photon creation and fermion scattering 

 

 
Figure 5bis: Photon creation and fermion annihilation 

 
II.1.3 The main steps of Bohr's parable 
Here we divide Bohr's parable into 6 steps: 

1. A quantum number qualified here as a "source field" number: the orbital and spin angular 
momentum, which is partially summarized by spin 𝑆  (𝑎 = 1,2,3), 

2. light-mediating particles, photons 𝛾 that can appear and disappear, that carry an entire spin, 
and that are electrically neutral, 

3. particles of matter (fermions) that persist (during a scattering reaction), which carry half-
integer spins that can reverse, as well as a non-zero retained electric charge 𝑄, 

4. a reaction between particles of light and matter, which consists of an exchange of spins 
between a photon 𝛾 and a fermion (for examples, an energy transition that changes the orbital 
angular momentum of the fermion, a hyperfine transition that reverses the spin angular 
momentum of the fermion, passage from 𝑒  to 𝑒 ), 

5. a change of orbit and therefore a displacement of the fermion which keeps its electric charge 
constant 𝑄 during this movement, i.e., an electromagnetic current 𝑗 , 

6. in summary an electromagnetic interaction between photons and fermions, where we find the 
photoelectric effect of A. Einstein. 

 
Main question 
Is it the same for other Standard Model interactions? That is to say, can we find the 6 stages of Bohr 
parable and associate them with: 

- quantum numbers qualified here as "source field" number, which reverse (or change) during 
reactions between particles, 

- charges that move and are kept during that movement, 
- interactions between boson-type mediating particles (which can appear and disappear) and 

fermion-type particles (which are generally persistent)? 
 
Subsidiary question: 
At the beginning of this Memoir, a new feature for electromagnetic interaction was proposed. 
Matching the invariance of a law of Nature: the source field equation of de Broglie: 1ℏ (𝑑�⃗�𝑑𝑡 ) = 𝜕𝐾 /𝜕𝑡  
with the conservation, during reactions between particles, of a quantum quantity: orbital and spin 
angular momentums. Is it possible to find such matches for the other 3 interactions? 
 

Time 

Time 
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II.2 Associate interactions, quantum numbers and bosons 𝑾𝒂 and 𝑩 intervening in 
beta decays 

II.2.1 Program of work: search for analogies between the 3 electromagnetic, weak and hyper 
interactions 

In the following chapters, we will examine whether it is possible to generalize the Einstein effect and 
the Bohr parable to the weak interaction and the hyper interaction. 
 
Main question for weak interaction 
Thus, we will study if it is possible to have for the weak interaction, the following Bohr parable: 

1. a generation quantum number 𝐺𝑒 qualified here as a "source field" number, 
2. mediating particles: weak bosons 𝑊  that carry 𝐺𝑒, 
3. left-handed fermions which carry a non-zero retained weak charge 𝑇  and a generation 

quantum number 𝐺𝑒 (which can be modified), 
4. a reaction between bosons 𝑊  and left-handed fermion, with a change in 𝐺𝑒 of the fermion 

(for example, passage of omega baryon 𝛺  to proton 𝑝 ), 
5. a change in generation of the fermion, which results in a "movement" of the left-handed 

fermion and its weak charge 𝑇 , i.e., a weak current 𝑗 , 
6. a weak interaction between bosons and fermions. 

 
Note on 𝐺𝑒 
In this Memoir, the number of generations is defined as the sum of:𝐺𝑒 𝐺𝑒 = 𝑆𝑡 + 𝐶 + 𝐵 + 𝑇 
We will come back to this at length later. 
 
 
Subsidiary question for weak interaction 
Is it possible, for the weak interaction, to match the invariance of a law of Nature: the source field 
equation of Compton: 𝑐ℏ (𝑑�⃗�𝑑𝑥 ) = − 𝜕𝐾 /𝜕𝑡  
with the conservation, during reactions between particles, of a quantum quantity: the number of 
generations. 
 
We would then have for the generation number 𝐺𝑒: 𝐺𝑒 = ℏ = −(𝑑�⃗� 𝑐𝑑𝑥 ) 𝜕𝑡𝜕𝐾 /  

 
Main question for hyper interaction 
We will study if it is possible to have for the hyper interaction, the following Bohr parable: 

1. An isospin quantum number 𝐼  qualified here as a "source field" number, 
2. a boson 𝐵 that carry 𝐼 , 
3. fermions that carry a non-zero hypercharge 𝑌  and 𝐼  (which can be reversed), 
4. a reaction between boson 𝐵 and fermions, with inversion of 𝐼  of the fermion (for example, 

passing from 𝑛 to 𝑝), 
5. a change from neutron to proton, which results in a "movement" of the nucleon and its 

hypercharge 𝑌 , i.e., a hyper current 𝑗 , 
6. a hyper interaction. 

 
Subsidiary question for hyper interaction 
Is it possible, for the hyper interaction, to match the invariance of a law of Nature: the source field 
equation of Newton: 
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1ℏ (𝑑𝑝𝑑𝑡 ) = − 𝜕𝛺 /𝜕𝑥  
with the conservation, during reactions between particles, of a quantum quantity: the isospin number. 
 
We would then have for isospin 𝐼: 𝐼 = 12 ℏ = − 12 (𝑑𝑝𝑑𝑡 ) 𝜕𝑥𝜕𝛺 /  

𝐼 = 12 ℏ = − 12 (𝑑𝑝𝑑𝑡 ) 𝜕𝑦𝜕𝛺 /  

𝐼 = 12 ℏ = − 12 (𝑑𝑝𝑑𝑡 ) 𝜕𝑧𝜕𝛺 /  

Note on 𝑺𝑼(𝟐) (ou sur 𝑺𝑶(𝟑)) 
The transformations of the orbital angular momentum (as well as the spin angular momentum) are 
based on the group of rotations 𝑆𝑈(2) (or 𝑆𝑂(3) if we work on a real space). Spin is a vector defined 
in the three dimensions of Space. Note that we find the three dimensions of Space at the level of 
momentum in the source field equation od de Broglie: 𝑝 = ℏ𝐾 /  

with 𝑎 = 𝑥, 𝑦, 𝑧. 
 
For source field equation of Newton: ℏ = −(𝑑𝑝𝑑𝑡 ) 𝜕𝑥𝜕𝛺 /  

which also involves a momentum in the 3 dimensions of Space, we must look for a quantum number 
whose transformations belong to 𝑆𝑈(2) (or to 𝑆𝑂(3)). Isospin 𝐼 therefore seems appropriate to be 
compared to the source field equation of Newton. 
 
 
Main question for strong interaction 
Later, at the end of the Memoir, we will study whether it is possible to have for the strong interaction, 
the following Bohr parable: 

1. a baryonic number 𝐵𝑎 qualified here as a "source field" number, 
2. bosons that carry 𝐵𝑎, 
3. fermions that carry a strong charge noted 𝐶𝑜  and 𝐵𝑎 (which can be modified), 
4. a reaction between boson and fermion, with change in number 𝐵𝑎 of the fermion, 
5. a "movement" of the strong charge 𝐶𝑜  and a strong current 𝑗 , 
6. a strong interaction. 

 
Subsidiary question for strong interaction 
Is it possible, for the strong interaction, to match the invariance of a law of Nature: source field 
equation of Einstein: ℏ = �⃗� 𝑐𝛺 /  

with the conservation, during reactions between particles, of a quantum quantity: the baryonic number. 
 
We would then have for the baryonic number 𝐵𝑎: 𝐵𝑎 = ℏ = (𝑑�⃗� 𝑐𝑑𝑥 ) 𝜕𝑥𝜕𝛺 /  
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II.2.2 Search for analogies between electric, hyper, weak, strong charges 
For electromagnetic interaction, electric charge 𝑄 carried by a fermion is constructed according to the 
Gell-Mann Nishijima relation: 𝑄 = 𝐼 + 𝐵𝑎2 + 𝐺𝑒2  

from 3 quantum numbers 𝐼 , 𝐵𝑎 and 𝐺𝑒 which is proposed to be linked to the other three interactions 
of the Standard Model. 
 
The electric charge 𝑄 appears as the complement of spin 𝑆, constructed from the other three source 
field quantum numbers: 𝐼 , 𝐵𝑎 et 𝐺𝑒. 
Inspired by Gell-Mann Nishijima relation, we will examine in this paper whether the charge 𝑄 can be 
expressed from a function 𝑓  such as: 𝑄 = 𝑓 (𝐼, 𝐼 ), 𝐵𝑎, 𝐺𝑒 ? 

 
Note 
We expect a function 𝑓  more complicated than a simple sum as proposed by the Gell-Mann Nishijima 
relation. Indeed, we add terms of different natures, with on one side 𝐼 , and on the other side 𝐵𝑎 and 𝐺𝑒. 
 
 
For the hyper interaction, we have according to the Glashow relation of the electroweak model: 𝑌2 = 𝑄 − 𝑇  

By analogy with electric charge 𝑄, It will be examined whether the weak hypercharge 𝑌  can be 
complementary to isospin 𝐼, constructed from the other 3 source field quantum numbers. That is, do 
we have a function 𝑓  such as: 𝑌 = 𝑓 (𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒 ? 

 
Similarly, we will examine whether the weak charge 𝑇  can be complementary to the number of 
generations 𝐺𝑒, constructed from the other 3 source field quantum numbers. That is, do we have a 
function 𝑓  such as: (𝑇, 𝑇 ) = 𝑓 (𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎 ? 

 
Similarly, we will examine whether the strong charge (noted here 𝐶𝑜  as color charge) can be 
complementary to 𝐵𝑎, constructed from the other 3 source field quantum numbers. That is, do we 
have a function 𝑓  such as: (𝐶𝑜, 𝐶𝑜 ) = 𝑓 (𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒 ? 

 
Note 1 
It is assumed here that the weak charges 𝑇  and strong charges 𝐶𝑜  are generators of groups of 𝑆𝑈(2). We'll come back to that. 
 
Note 2 
In the previous Memoir, we highlighted the existence of 2 types of quantum numbers: 

- quantum numbers of charge 𝑋 type that can radiate fields of interaction, 
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- quantum numbers involved in reactions between particles, which frequently reverse or change, 
and which cannot radiate fields of interaction. It is these quantum numbers that we propose to 
link to 4 source field equations of gravitation. 

 
We will try here to show that the first (charge type) are functions of the second (source field type). 
 
 
II.3 Conclusion of the chapter 
The main objective of this thesis is to study the generalization of the Einstein photoelectric effect and 
the Bohr parable, from the electromagnetic interaction to the 3 other interactions involved in the 
Standard Model. 
 
In the next chapters, we will look for more analogies between electromagnetic, strong, weak and hyper 
interactions than usually presented in the Standard Model. On the model of electromagnetic 
interaction, we will look for particles mediating weak and hyper interactions, non-charge 𝑋 carrying, 
which by exchange of source field quantum quantities with charge carrying fermions, generate a 
displacement of charges and thus electromagnetic, weak, or hyper currents. 
We will thus try to generalize the photoelectric effect of A. Einstein, to an effect bosons 𝑊 - weak 
currents, then to an effect boson 𝐵 - hyper currents.  
 
For this, we will first study the possible connections between source field equations and quantum 
numbers carried by the mediating particles. We will return to the physics of the 1950s and 1960s, and 
the discovery of a new quantum number the strangeness 𝑆𝑡. 
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Chapter III  New quantum numbers: the baryonic number 𝑩𝒂, the 
hypercharge 𝒀 and strangeness 𝑺𝒕 (1950s) 

 
Purpose of the chapter 
We return here to the discovery in the 1950s of new quantum numbers such as the baryonic number 𝐵𝑎, the strong hypercharge 𝑌 and strangeness 𝑆𝑡, conserved globally during reactions between 
particles (except for 𝑆𝑡 in some cases). 
 
III.1 Historical Preamble, particle Accelerators 
After the World War of 1939-1945 and following the use of atomic weapons, there was a rapid 
development of particle physics. States are ready to spend colossal sums on nuclear research, on what 
happens inside the nucleus of the atom. Particle accelerators are built, they make it possible to study 
the physics of particles of increasingly important energy, that is to say of smaller and smaller particle 
size (or wavelength smaller and smaller). 
 
The experiments carried out in these particle accelerators will make it possible to discover new 
quantum numbers that are globally conserved during reactions. 
 
III.2 The baryonic number 𝑩𝒂, the isospin 𝑰𝒂 and the hypercharge 𝒀 
III.2.1 Baryonic number 𝑩𝒂 
Fact 1: During a decay 𝛽  involving the weak interaction (as well as the hyper interaction), a neutron 
decays into a proton. These two particles are called nucleons, they have close and relatively large 
masses for particles. 
 
2nd fact: in reactions involving the strong interaction, we find that a proton never decays into a lighter 
particle. In the products of proton decay, there is always a particle of relatively large mass. 
 
To clarify these 2 facts, as well as to mark the conservation of the number of nucleons (proton or 
neutron) and the close mass of these particles, the baryonic number 𝐵𝑎 is introduced. 
 
For example, we have the proton decay reaction, where the strong interaction intervenes, with the 
conservation of the baryonic number: 𝑝 (𝐵𝑎 = 1) + 𝑝 (𝐵𝑎 = 1) → 𝛬 (𝐵𝑎 = 1) + 𝑝 (𝐵𝑎 = 1) + 𝐾 (𝐵𝑎 = 0) 

 
The lambda baryon 𝛬  decays in turn by involving the weak interaction, always with conservation of 
the baryonic number: 𝛬 (𝐵𝑎 = 1) → 𝑝 (𝐵𝑎 = 1) + 𝜋 (𝐵𝑎 = 0) 

 
We assign a baryonic number 𝐵𝑎 = 1 to baryons such as proton, neutron, or lambda baryon 𝛬 . We 
assign a baryonic number 𝐵𝑎 = −1 to antibaryons (antiproton, antineutron, etc.). 
 
Mesons (light particles) consisting of a quark and an antiquark (such as the 𝐾  or the 𝜋 ) have a 
baryonic number 𝐵𝑎 = 0. 
 
Note 1 
In analogy to the baryonic number 𝐵𝑎 for proton and neutron, there is a leptonic number 𝐿 = 1 for 
the electron and neutrino, which is also conserved during reactions between particles. 
For positron and antineutrino, we have a leptonic number 𝐿 = −1. 
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When in this Memoir, we will refer to 𝐵𝑎 as a source field quantum number, for leptons, it will be 
necessary to understand implicitly that it is a question of −𝐿 . 
 
Note 2 
The baryonic number is like the mass number 𝐴 which counts the number of nucleons in the nucleus. 
The atomic number 𝑍 counts the number of protons. 
 
 
III.2.2 Isospin 𝑰𝒂 
In the previous Memoir, we have already mentioned isospin 𝐼  (𝑎 = 1,2,3) proposed by W. 
Heisenberg in 1932 to explain a close mass and similarities in the behaviour of the proton and neutron 
vis-à-vis the strong interaction. Experiments in particle accelerators in the 1950s supported 
Heisenberg's ideas on isospin. It has been seen that in the theory of Yang-Mills (1954), isospin 𝐼  is 
identified with the strong charge. 
 
Like spin 𝑆 , isospin 𝐼  can be reversed during a reaction between particles, and yet remains globally 
conserved. For example, spin 𝑆  of an electron reverse during a hyperfine transition where 
electromagnetic interaction occurs. Isospin 𝐼  of a nucleon reverse during a decay 𝛽  where hyper and 
weak interactions occur. 
 
III.2.3 Hypercharge 𝒀 and Gell-Mann Nishijima relation 
During a decay 𝛽 , We have a transformation of the neutron into proton and inversion of the 3rd 
component of isospin 𝐼  which goes from −  to + . We also have the electric charge 𝑄 of the 
nucleon that goes from 0 to 1. 
 
It is noted that isospin 𝐼  contains a share of electric charge 𝑄. To link 𝑄 with 𝐼 , we postulate the 
existence of another quantum number, the hypercharge 𝑌, which also contains a share of electric 
charge. 
 
We have the so-called Gell-Mann Nishijima relation proposed independently by Kazuhiko Nishijima 
in 1953 and by Murray Gell-Mann in 1956: 𝑄 = 𝐼 + 𝑌2 

 
The proton and neutron have the same hypercharge 𝑌 = 1, conserved during decay 𝛽 . 
 
This makes it possible to find for the proton the electric charge: 𝑄 = 12 + 12 = 1 

 
And for the neutron: 𝑄 = − 12 + 12 = 0 

 
III.3 Strangeness 𝑺𝒕 
III.3.1 Introduction of strangeness 𝑺𝒕 
In the 1950s, experimenters discovered particles produced in collisions involving strong interactions. 𝛥𝑡 ≈ 10 𝑠 (quick reactions), but with relatively long average lives 𝜏 ≈ 10 𝑠 (slow reactions), that 
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is, a characteristic quantity of weak interactions. Thus, these particles (for example, the kaon meson 𝐾  ou le lambda baryon 𝛬 ) are produced by the strong way and disintegrate by the weak way. 
 
We have the rapid reaction, where the strong interaction intervenes: 𝑝 + 𝑝 → 𝛬 + 𝑝 + 𝐾  

 
We have the slow reaction, where the weak interaction intervenes: 𝛬 → 𝑝 + 𝜋  

 
To explain these two facts, K. Nishijima and M. Gell-Mann introduced a new quantum number: 
strangeness, which will be noted here 𝑆𝑡 to differentiate it from spin 𝑆. 
 
Strangeness 𝑆𝑡 is globally conserved in the strong interaction, where particles are produced in pairs of 
opposite strangeness: 𝑝 (𝑆𝑡 = 0) + 𝑝 (𝑆𝑡 = 0) → 𝛬 (𝑆𝑡 = −1) + 𝑝 (𝑆𝑡 = 0) + 𝐾 (𝑆𝑡 = 1) 

 
The decay of strange particles into non-strange particles goes through the weak way, which explains 
why the strangeness does not seem a priori preserved in the weak interaction: 𝛬 (𝑆𝑡 = −1) → 𝑝 (𝑆𝑡 = 0) + 𝜋 (𝑆𝑡 = 0) 

 
Note 
The number is called strangeness precisely because it is conserved in the strong interaction and not in 
the weak interaction. 
 
 
III.3.2 Relationship between the hypercharge 𝒀, the baryonic number 𝑩 and strangeness 𝑺𝒕 
Physicists note that the hypercharge 𝑌 can sometimes be confused with strangeness 𝑆𝑡. For baryons, it 
is also necessary to take into account the baryonic number. We have the relationship: 𝑌 = 𝐵𝑎 + 𝑆𝑡 

 
We obtain for the Gell-Mann Nishijima relation: 𝑄 = 𝐼 + 𝑌2 

𝑄 = 𝐼 + 𝐵𝑎2 + 𝑆𝑡2  

 
Note 1 on 𝑻 and 𝒀𝑾 seen in the Electroweak Model 
In the Electroweak Model, S. Glashow introduces 2 new quantum numbers, the weak charge 𝑇 and 
weak hypercharge 𝑌 , by analogy respectively with isospin 𝐼 (seen as the strong charge in Yang-Mills 
theory) and hypercharge 𝑌 (also called strong hypercharge). 
 
To define the weak hypercharge, S. Glashow introduces the relationship between 𝑄, 𝑇  and 𝑌 : 𝑄 = 𝑇 + 𝑌2  
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We can speak of so-called strong quantum numbers for 𝐼 and 𝑌 because they intervene in the strong 
interaction, and so-called weak quantum numbers for 𝑇 and 𝑌  because they intervene in the weak 
interaction. 
 
In this Memoir, however, we propose another distinction. We rank 𝑇 and 𝑌  in charge type quantum 
numbers and isospin 𝐼 in source field type quantum numbers. The same applies to hypercharge 𝑌 =𝐵𝑎 + 𝑆𝑡, classified here in the source field quantum number, because sum of 2 source field quantum 
numbers. 
We will offer an explanation later. 
 
Note 2 on 𝑰, 𝒀, 𝑻, 𝒀𝑾 
We list the equalities (valid in some cases) between the so-called strong quantum numbers and the so-
called weak quantum numbers. 
 
For left-handed quarks of 1st generation (as well as for their antiparticles), we have: 𝐼 = 𝑇  𝑌 = 𝐵𝑎 = 𝑌  

 
For left-handed quarks of 1st, 2nd, and 3rd generation (as well as for their antiparticles), we have: 𝐵𝑎 = 𝑌  

 
For left-handed leptons of 1st, 2nd, and 3rd generation (as well as for their antiparticles), we have: −𝐿 = 𝑌  

 
For left-handed quarks and leptons of 1st, 2nd, and 3rd generation (as well as for their antiparticles), we 
have: 𝐵𝑎 − 𝐿 = 𝑌  

 
Note 3 
According to the relation 𝑄 = 𝐼 + + , quantum numbers 𝐼 , 𝐵𝑎 and 𝑆𝑡 are electrically charged. 
That is, a particle carrying one of these three quantum numbers is electrically charged. 
 
 
III.4 Conclusion of the chapter 
Four quantum numbers have been mentioned: the baryonic number 𝐵𝑎, the isospin 𝐼 , the strong 
hypercharge 𝑌 and strangeness 𝑆𝑡 which are involved in reactions between particles, and which are 
generally conserved (except 𝑆𝑡 in weak interaction). 
Following the Gell-Mann-Nishijima relation, the electric charge 𝑄 is the sum of three of these 
quantum numbers: 𝐼 , 𝐵𝑎, 𝑆𝑡. In the next chapters, we will study the links between these three 
quantum numbers 𝐼 , 𝐵𝑎, 𝑆𝑡 and hyper, strong, and weak interactions. But first, we will look at the 
theories developed in the years 1950-1690 and describing the strong interaction. 
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Chapter IV  The strong interaction, the Eightfold Way, and the Quark 
Model (1960s) 

 
Purpose of the chapter 
We first briefly describe the theories that followed one another from 1950 to 1970 to describe the 
strong interaction: the Yang-Mills theory with the strong charge generating 𝑆𝑈(2) , the Eightfold Way 
and the Gell-Mann Quark Model with the strong charge generating 𝑆𝑈(3) , finally quantum 
chromodynamics with the strong charge generating 𝑆𝑈(3) . 
We then return in more detail to the Eightfold Way and the Quark Model, two theories that use the 
strong quantum numbers mentioned in the previous chapter. 
 
IV.1 Theories on strong interaction (1950-1970) 
IV.1.1 Strong charge based on 𝑺𝑼(𝟐)𝑰 with pions as mediating particles (scale operator type 

for electrically charged pions) 
In the 1950s, Chen Ning Yang and Robert Mills developed a theory of strong interaction, theory based 
on the group 𝑆𝑈(2) , with isospin 𝐼 as a strong charge. 
 
The inspiration of the Yang-Mills theory is found in particular in the proton neutron couple, which 
attracts according to the strong interaction by their strong opposing charges, strong charges precisely 
equal to isospin 𝐼 = −  for the neutron and isospin 𝐼 =  for the proton. 
 
In Yang-Mills theory, the mediating particles of the strong interaction are the 3 pions 𝜋 , 𝜋 , 𝜋 . 
Unlike photons that do not carry electric charges, these 3 pions are strong charged particles in the 
sense that they carry an isospin. 𝐼. They can change the strong charge (respectively 𝐼 , 𝐼 , 𝐼 ) of the 
fermion with which they interact. 
 
Pions 𝜋  and 𝜋  are referred to as scale operators (create and annihilate operators), that is, they can 
increase or decrease isospin 𝐼  of a fermion carrying a strong charge 𝐼± with which they interact. 
 
We have the relations between 𝐼± and 𝐼 , 𝐼 : 𝐼 = 𝐼 + 𝑖𝐼  𝐼 = 𝐼 − 𝑖𝐼  

 
The pions 𝜋  and 𝜋  are electrically charged, since isospin 𝐼  is electrically charged. 
 
Let be |𝑚⟩ a common eigenvector for operators (𝐼)  and 𝐼 , and let be ℏ𝑚 an eigenvalue of 𝐼 . 
We have the following relationships, where the pions 𝜋  and 𝜋  increase or decrease by 𝐼  the strong 
charge of the fermion with which they interact: 𝐼 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 − 1)|𝑚 − 1⟩ 𝐼 |𝑚⟩ = ℏ 𝑗(𝑗 + 1) − 𝑚(𝑚 + 1)|𝑚 + 1⟩ 
 
Note 
The 3 pions 𝜋 , 𝜋 , 𝜋  of the strong interaction are the analogues of the 3 weak bosons 𝑊 , 𝑊 , 𝑊  
of the weak interaction. The first 2 𝑊  and 𝑊  are also scale operators and carry a weak charge 𝑇 . 
They interact with fermions of weak charges 𝑇± by decreasing or increasing their weak charge by 𝑇 . 
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As a preview of the Quark Model, we remind the decomposition of the 3 pions into quarks and 
antiquarks of 1st generation: 𝐼 = 1, 𝐼 = 1 = − 𝑢; 𝑑 = |𝜋 ⟩ 𝐼 = 1, 𝐼 = −1 = |𝑑; �̄�⟩ = |𝜋 ⟩ 𝐼 = 1, 𝐼 = 0 = 1√2 (|𝑢; �̄�⟩ − 𝑑; 𝑑 ) = |𝜋 ⟩ 
 
IV.1.2 Strong charge based on 𝑺𝑼(𝟑)𝒇𝒍𝒂𝒗𝒐𝒓 with mesons as mediating particles (scale operator 

type for electrically charged mesons) 
To include the quantum number of strangeness 𝑆𝑡, M. Gell-Mann proposed in the early 1960s in the 
Eightfold Way, then in the Quark Model (the second model being an extension of the first), that the 
strong charge is based on 𝑆𝑈(3) , that is, on flavors 𝑢, 𝑑, 𝑠. 
 
Note 
The 2 flavors 𝑢, 𝑑 are related to isospin 𝐼 . 𝑢 corresponds to 𝐼 =  and 𝑑 to 𝐼 = − . 
Flavour 𝑠 is related to the number of strangeness 𝑆𝑡 = −1. 
 
The mediating particles are expanded from pions to mesons formed by a quark and an antiquark, to be 
chosen from the flavors 𝑢, 𝑑, 𝑠 (�̄�, 𝑑, �̄� for antiquarks). Like the pions, the mesons of 𝑆𝑈(3)  can 
change the strong charge of the fermion with which they interact. 
 
We find electrically charged mesons whose electric charge is due to either isospin 𝐼 , or the 
strangeness number 𝑆𝑡, depending on the relationship: 𝑄 = 𝐼 + 𝐵𝑎2 + 𝑆𝑡2  

 
As for pions 𝜋 , 𝜋 , electrically charged mesons are of the scale operator type. 
 
Note 
The electrical charge of mesons cannot be due to 𝐵𝑎, since this quantum number is zero for mesons. 
 
However, the symmetry between the different mesons only seems to be approached. For example, 
kaon mesons (strange particles) have a very different mass than pions. Thus, in the 1970s, quantum 
chromodynamics introduced a strong charge based on 𝑆𝑈(3) . 
 
IV.1.3 Strong charge based on 𝑺𝑼(𝟑)𝒄𝒐𝒍𝒐𝒓 with gluons as mediating particles (scale operator 

type) 
Quantum Chromodynamics (QCD) was proposed in 1973 by H. David Politzer, Frank Wilczek and 
David Gross, in particular to obtain a theoretically perfect symmetry for strong charges vis-à-vis 
rotations of 𝑆𝑈(3) . Strong charges are renamed color charges and based on the group 𝑆𝑈(3) . 
We have 3 strong charges of colors: 𝑅, 𝐺, 𝐵, like red, green, and blue. 
 
The particles mediating the interaction are no longer the mesons. These are the gluons 𝐺 who carry a 
color charge and can also be considered as scale operators. They increase or decrease the strong color 
charge of the quark with which they interact. 
 
Quantum chromodynamics attributes two important characteristics to quarks. A first called color 
confinement, a second called asymptotic freedom. These two characteristics are reminiscent of certain 
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characteristics of the electrostatic force and the Bohr electron model. We will return to these two 
characteristics at the end of this thesis in a final chapter devoted to strong interaction. In the immediate 
future, let's study the Eightfold Way and the Quark Model. 
 
IV.2 The Eightfold Way   
IV.2.1 The strong charge of flavor and the group 𝑺𝑼(𝟑)𝒇𝒍𝒂𝒗𝒐𝒓 
In the Eightfold Way, the strong charge is the generator of the group 𝑆𝑈(3) . The rotations of 𝑆𝑈(3)  (with type Global Gauge transformation) act on triplets of particles with all three flavors. 
 
We have the passage from one triplet to another triplet of particles associated with wave functions 𝜓: 𝜓 ′𝜓 ′𝜓 ′ = 𝑈 𝜓𝜓𝜓  

with 𝑈 ∈ 𝑆𝑈(3)  

 𝑈 can be written 𝑈(𝛼 , 𝛼 , . . . , 𝛼 ) = 𝑒 ( ... ) with 𝜆 …𝜆  eight generators of 𝑆𝑈(3) . 
 
Starting from a hadron (e.g., wave function 𝜓 ), and applying to it a transformation 𝑈 ∈ 𝑆𝑈(3) , 
we end up with another hadron (e.g. wave function 𝜓 ′) with a modified strong charge, but with in 
theory comparable properties (same mass, same orbital angular momentum, same spin, etc.). 
 
Note 1 
For example, when passing from neutron to proton, we have a strong modified charge (𝐼 = −  for 

the neutron, 𝐼 =  for the proton), but comparable properties for the 2 nucleons (same mass, same 
orbital angular momentum, same spin, etc.). 
 
Note 2 
Hadrons are the particles of the atomic nucleus subject to the strong interaction. They are composed of 
baryons and mesons. 
 
IV.2.2 Example of fundamental mesons  
The Eightfold Way organizes hadrons according to their electric charge 𝑄 and their strong charge: 
isospin 𝐼  and strangeness 𝑆𝑡. 
 
For example, we have nine fundamental mesons that rank among a singlet and an octet of 𝑆𝑈(3) , hence the term Eightfold Way. We indicate them below following 𝑄 and 𝑆𝑡. 
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Figure 6: octet of the 8 fundamental mesons 

 
IV.3 The Quark Model 
IV.3.1 General 
In 1964, M. Gell-Mann and George Zweig proposed that hadrons are not really elementary particles, 
but are made up of more fundamental components: quarks. 
 
To account for the variety of hadrons known at the time, we need 3 types of quarks: 𝑢 (up), 𝑑 (down) 
and 𝑠 (strange) which correspond to the three flavors used by the Eightfold Way in the group 𝑆𝑈(3) . 
 
In the Quark Model, baryons are formed by three quarks and have a positive baryonic number 𝐵𝑎. 
Anti-baryons are formed by three antiquarks and have a negative baryonic number 𝐵𝑎. Mesons consist 
of a quark and an antiquark and have a zero baryonic number 𝐵𝑎. 
 
We have the following diagram that schematizes hadrons from the Quark Model. 
 

 
Figure 7: hadrons according to the Quark Model 

 
Note 1 
All hadrons are subject to strong interaction. This differentiates them from leptons that do not 
participate. 
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Note 2 
The diagram is not exhaustive. Other fermions were later discovered, such as pentaquarks formed by 5 
quarks. 
 
IV.3.2 Examples of triplets of particles 
We give the quantum numbers of a triplet of particles formed by quarks 𝑢, 𝑑, 𝑠. 
 

 Electric charge  Strong charge   
Particle 𝑄 = 𝐼 + 𝐵𝑎2 + 𝑆𝑡2  Isospin (𝐼, 𝐼 ) 

Strangeness 𝑆𝑡 
Hypercharge 𝑌 = 𝐵𝑎 + 𝑆𝑡 

Baryonic 
number 𝐵𝑎 𝑢 + 23 (+ 12 , + 12) 0 + 13 + 13 𝑑 − 13 (+ 12 , − 12) 0 + 13 + 13 𝑠 − 13 (0,0) −1 − 23 + 13 

 
Note 
Note that for the strong interaction, when modifying the strong charge, the baryonic number 𝐵𝑎 is 
retained. For electromagnetic interaction, when we change the electric charge, it is the spin 𝑆 that is 
retained. 
 
We obtain the following triangle if we position the quarks 𝑢, 𝑑, 𝑠 depending on their isospin 𝐼  and 
their hypercharge 𝑌 = 𝐵𝑎 + 𝑆𝑡: 
 

 
Figure 8: quarks 𝑢, 𝑑, 𝑠 

 
Similarly, we give the quantum numbers of a triplet of particles formed by antiquarks �̄�, 𝑑, �̄�. 
 

 Electric charge Strong charge   
Particle 𝑄 = 𝐼 + 𝐵𝑎2 + 𝑆𝑡2  Isospin (𝐼, 𝐼 ) 

Strangeness 𝑆𝑡 
Hypercharge 𝑌 = 𝐵𝑎 + 𝑆𝑡 

Baryonique 
number 𝐵𝑎 �̄� − 23 (+ 12 , − 12) 0 − 13 − 13 
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𝑑 + 13 (+ 12 , + 12) 0 − 13 − 13 �̄� + 13 (0,0) +1 + 23 − 13 
 
We obtain the following triangle if we position the antiquarks �̄�, 𝑑, �̄� depending on their isospin 𝐼  
and their hypercharge 𝑌: 
 

 
Figure 9: antiquarks �̄�, 𝑑, �̄� 

 
IV.3.3 6 flavors and 3 generations 
In 1974, experimenters discovered the particle 𝐽/𝜓, a linked state of 𝑐�̄�, that is, a 4th flavor of quarks 
called the charm flavor 𝑐. To preserve the Quark Model, the strong charge becomes the generator of 
the group 𝑆𝑈(4) . 
 
Nota 
Meanwhile, in 1973, in quantum chromodynamics, it is proposed a strong charge of color that 
generates the group 𝑆𝑈(3) . 
 
In the decade that followed, two more quarks and 2 other flavors: 𝑏 bottom and 𝑡 top were discovered. 
Which makes 6 flavors in total. Flavour doublets are grouped by generation. So, we have 3 
generations of 2 quarks each. 
 
For leptons (particles orbiting the nucleus and not subject to strong interaction), we have a surprisingly 
similar pattern, also with 6 flavors and 3 generations. 
 
We have 3 flavors of electrons: the electron 𝑒, the muon 𝜇 (kind of heavy electron, for the anecdote 
initially confused with the hypothetical mesotron of Yukawa), the tau 𝜏 (kind of electron even 
heavier), 3 flavors of neutrino: 𝜈 , 𝜈 , 𝜈  corresponding to the 3 electrons 𝑒, 𝜇 and 𝜏. 
 
These 6 quarks and 6 leptons are grouped into 3 generations of two quarks and two leptons. We have 
the following summary table: 
 
Generations I II III 
Quarks 𝑢𝑑  𝑐𝑠  𝑡𝑏  
Leptons 𝜈𝑒  𝜈𝜇  
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IV.3.4 Generalized Gell-Mann Nishijima relation, number of generations 𝑮𝒆 
The addition of 3 new flavours 𝑐, 𝑏, 𝑡 modifies the Gell-Mann Nishijima relation. We obtain the 
generalized Gell-Mann Nishijima relation: 𝑄 = 𝐼 + 𝑌2 = 𝐼 + 𝐵𝑎 + 𝑆𝑡 + 𝐶 + 𝐵 + 𝑇2  

with 𝐵𝑎: baryonic number, 𝑆𝑡: number of strangeness, 𝐶: number of charms, 𝐵: number of bottoms, 𝑇: number of tops. 
 
This Memoir defines the number of generations 𝐺𝑒 as the sum: 𝐺𝑒 = 𝑆𝑡 + 𝐶 + 𝐵 + 𝑇 
 
Example for left-handed quarks of the 3 generations (𝑢 , 𝑑 , 𝑐 , 𝑠 , 𝑡 , 𝑏 ), we have the quantum 
numbers: 
 
 Electric 

charge 
 Strong charge   Weak 

charge 
Weak 
hyperc
harge 

 𝑄  (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐺𝑒 𝑆𝑡 𝐶 𝐵 𝑇 𝑌 𝐵𝑎 (𝑇, 𝑇 ) 𝑌  𝑢  23 (12 , − 12) (12 , 12) 0 0 0 0 0 13 
13 (12 , 12) + 13 𝑑  − 13 (12 , − 12) (12 , − 12) 0 0 0 0 0 13 
13 (12 , − 12) + 13 𝑐  − 13 (12 , − 12) (0,0) +1 0 +1 0 0 − 23 
13 (12 , 12) + 13 𝑠  − 13 (12 , − 12) (0,0) −1 −1 0 0 0 − 23 
13 (12 , − 12) + 13 𝑡  − 13 (12 , − 12) (0,0) +1 0 0 0 +1 − 23 
13 (12 , 12) + 13 𝑏  − 13 (12 , − 12) (0,0) −1 −1 0 −1 0 − 23 
13 (12 , − 12) + 13 

 
Note 
The last two columns (weak charge (𝑇, 𝑇 ) and weak hypercharge 𝑌 ) are not about strong 
interaction. We find the weak charge and the weak hypercharge defined in the Electroweak Model. 
Right-handed quarks have the same quantum numbers as left-handed quarks, for the strong charge, the 
hypercharge 𝑌 and the baryonic number 𝐵𝑎. 
 
IV.4 Conclusion of the chapter 
Following experiments in particle accelerators, many particles were discovered in the 1950s such as 
baryons or mesons. The Quark Model, based on the strong interaction, makes it possible to order these 
particles and reduce the number of elementary components. 
 
Via the Quark Model, we were interested in the strong interaction and the quantum numbers related to 
it. In the next chapter, we will focus on the quantum numbers found in the Electroweak Model and 
related to electromagnetic, weak, and hyper interactions. We will see that we often find the same 
quantum numbers as in the Quark Model. 
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Chapter V Quantum numbers of Electroweak model 
 
Purpose of the chapter 
We remind the quantum numbers used in the Electroweak Model. Some quantum numbers like (𝐼, 𝐼 ), 𝐵𝑎, 𝐺𝑒 are used to describe the strong interaction in the Quark Model and are related to the 
Electroweak Model via charge 𝑄. 
We then examine the excited states of the particles vis-à-vis the spin. We propose an analogy between 
spin and baryonic number 𝐵𝑎, with quarks that would be excited states of nucleons, following the 
strong interaction, vis-à-vis the baryonic number. 
We also examine how quantum numbers transform when we move from matter to antimatter. 
 
V.1 Quantum numbers for 1st and 2nd generation particles 
V.1.1 Quarks 𝒖, 𝒅, 𝒄, 𝒔 of 1st and 2nd generation 
In the table below, we give the quantum numbers used in the Electroweak Model, for left-handed and 
right-handed quarks of 1st and 2nd generation. 
 
 Source field quantum numbers 

 
Charges 

 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 Electric 
charge 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

Weak 
hypercharge 𝑌2 = 𝑄 − 𝑇  

Weak 
charge (𝑇, 𝑇 ) 

𝑢  (12 , − 12) (12 , 12) + 13 0 
 + 23 + 13 (12 , 12) 𝑑  (12 , − 12) (12 , − 12) + 13 0 − 13 + 13 (12 , − 12) 𝑐  (12 , − 12) (0,0) + 13 +1 
 + 23 + 13 (12 , 12) 𝑠  (12 , − 12) (0,0) + 13 −1 − 13 + 13 (12 , − 12) 𝑢  (12 , 12) (12 , 12) + 13 0 
 + 23 + 43 (0,0) 𝑑  (12 , 12) (12 , − 12) + 13 0 − 13 − 23 (0,0) 𝑐  (12 , 12) (0,0) + 13 +1 
 + 23 + 43 (0,0) 𝑠  (12 , − 12) (0,0) + 13 −1 − 13 − 23 (0,0) 

 
Note on momentum, spin, and helicity 
We consider that the particles all have a momentum of the same direction and sense, that the 
antiparticles all have a momentum of the same direction and opposite sense (by parity operation 𝑃) 
compared to particles. This makes it possible to match in the table above spin 𝑆  and helicity 𝐻. 
We fix the spin to 𝑆 = −  for a left-handed electron 𝑢 , we deduce the spin for the other particles. 
 
 
V.1.2 Nucleons of 1st and 2nd generation 
This table gives the quantum numbers used in the Electroweak Model for nucleons of 1st and 2nd 
generation. 
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 Source field quantum numbers 

 
Charges 

 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 Electric 
charge 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

Weak 
hypercharge 𝑌2= 𝑄 − 𝑇  

Weak 
charge (𝑇, 𝑇 ) 

𝑝  𝑢𝑢𝑑 (12 , − 12) (12 , 12) +1 0 +1 +1 (12 , 12) 𝑛  𝑢𝑑𝑑 (12 , − 12) (12 , − 12) +1 0 0 +1 (12 , − 12) 𝛺  𝑐𝑐𝑠 not 
observed 

(12 , − 12) (0,0) +1 +1 +1 +1 (12 , 12) 

𝛺  𝑐𝑠𝑠 (12 , − 12) (0,0) +1 −1 0 +1 (12 , − 12) 𝑝  𝑢𝑢𝑑 (12 , 12) (12 , 12) +1 0 +1 +2 (0,0) 𝑛  𝑢𝑑𝑑 (12 , 12) (12 , − 12) +1 0 0 0 (0,0) 𝛺  𝑐𝑐𝑠 not 
observed 

(12 , 12) (0,0) +1 +1 +1 +2 (0,0) 

𝛺  
 

css  
)

2
1,

2
1(  (0,0) +1 −1 0  0  )0,0(  

 
Note 1 on the weak charge (𝑇, 𝑇 ) 
Weak charge (𝑇, 𝑇 ) cancels out when switching from left-handed to right-handed particles. (𝑇, 𝑇 ) 
is therefore a function of spin (𝑆, 𝑆 ). 
 
For quarks and nucleons of 1st generation, we have 𝑇 = 𝐼 . 
 𝑇  reverses when reversed 𝐵𝑎 (Transition from particle to antiparticle). 
On the other hand, 𝑇  remains the same when passing from a proton with 𝐵𝑎 = 1 to a quark with 𝐵𝑎 = . 
 𝑇  is not modified when changing generations from 𝐺𝑒 = 0 to 𝐺𝑒 = ±1. 
On the other hand, 𝑇  reverses when reversed 𝐺𝑒 (for example, when changing the flavour for the 
same generation, or for a change from particle to antiparticle). 
 
We therefore have a priori a function 𝑓  with: (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎2 ) 

 
Note 2 on weak hypercharge 𝑌  
The weak hypercharge 𝑌  changes when switching from left-handed to right-handed particles. 𝑌  is 
therefore a function of spin (𝑆, 𝑆 ). 
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𝑌  reverses when reversed 𝐵𝑎 (transition from particle to antiparticle). 
For1st generation left-handed quarks and nucleons, we have: 𝑌 = 𝐵𝑎. 
 𝑌  is not modified when changing generations from 𝐺𝑒 = 0 to 𝐺𝑒 = ±1. 
On the other hand, 𝑌  reverses when reversed 𝐺𝑒. 
 𝑌  is not changed when reversed 𝐼 . 
More generally, 𝑌  is not modified when changing the flavor for the same generation. 
 
We therefore have a priori a function 𝑓  with: 𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐵𝑎2 ) 

Instead of 𝑌 = 𝑓 ((𝑆, 𝑆 ), , ) expected 

 
V.2 More and more excited states 
V.2.1 Spin 𝑺 
Following the model of the Bohr Goudsmit Uhlenbeck electron, when an electron is excited, it is 
brought in: 

- either to occupy energy levels higher than that which it occupies in a stable way, that is to say 
to have higher orbital angular moments (Bohr model), 

- or to know an inversion of its spin angular momentum (Goudsmit and Uhlenbeck model). For 
example, we go from a stable configuration of an electron and a proton of antiparallel spins ↑↓ 
to an excited configuration of an electron and a proton of parallel spins ↑↑. 

 
Previously, it was proposed to group orbital angular momentum and spin angular momentum under 
one identic notion. It is proposed here to schematize the different excited states of a particle with 
respect to the angular momentum, according to the electromagnetic interaction, by a simplified series 
based simply on 𝑆  and of the type: 𝑆 = ± 12 , ± 32 , ± 52 . .. 
 
V.2.2 Isospin 𝑰 
By analogy between spin and isospin 𝐼 , we propose for a simplified series of the same kind, with 
states increasingly excited vis-à-vis isospin: 𝐼 = ± 12 , ± 32 , ± 52 . .. 
 
For example, we have delta particles 𝛥 (𝑢𝑢𝑢) and 𝛥 (𝑑𝑑𝑑) which respectively have 𝐼 =  and 𝐼 = − . 
 

 
 

Source field quantum numbers 

 (𝑆, 𝑆 )𝑯 (𝐼, 𝐼 ) 𝐵𝑎  𝐺𝑒 𝛥 (𝑢𝑢𝑢) 
 (32 , ± 32) (32 , + 32) +1 0 𝛥 (𝑑𝑑𝑑) 
 (32 , ± 32) (32 , − 32) +1 0 
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Figure 10: variation of 𝐼  by half-integer (source Wikipedia) 

 
V.2.3 Baryonic number 𝑩𝒂 
We give the table of the 4 source field quantum numbers for quarks and for their nucleon analogues 
formed of 3 quarks. We find the same values except for the baryonic number 𝐵𝑎. 
 
 Source field quantum numbers 
 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒  (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 𝑢 (12 , ± 12) (12 , 12) + 13 0 

 
𝑝 𝑢𝑢𝑑 (12 , ± 12) (12 , 12) +1 0 

 𝑑 (12 , ± 12) (12 , − 12) + 13 0 𝑛 𝑢𝑑𝑑 (12 , ± 12) (12 , − 12) +1 0 𝑐 
 (12 , ± 12) (0,0) + 13 +1 

 
𝛺  𝑐𝑐𝑠 (12 , ± 12) (0,0) +1 +1 

 𝑠 (12 , ± 12) (0,0) + 13 −1 𝛺  𝑐𝑠𝑠 (12 , ± 12) (0,0) +1 −1 

 
Note on the charges 
We assume in this Memoir that the strong charge is not a function of 𝐵𝑎, but that the other 3 charges 
(electric, hyper, weak) are. 
 
Quark and nucleon do not have the same electric charge 𝑄 and weak hypercharge 𝑌 , as expected 
since they have different baryonic numbers. They even have weak charge (𝑇, 𝑇 ) (contrary to the 
expected) and even strong charge (as expected). 
 
 
For the baryonic number 𝐵𝑎, we have for quarks 𝐵𝑎 =  and for nucleons (protons, neutrons) 𝐵𝑎 =3 × = 1. 
 

3I

St

dd 
d 

du 
d 

uu 
d 

uu 
u 

ss 
s 

dd 
s 

ud 
s 

uu 
s 

su 
s 

sd 
s 



374     Invariances et transformations 

In the Quark Model, the difference between quark and nucleon is explained by a non-elementary 
particle nucleon formed by 3 quarks. However, in an analogy with excited spin states 𝑆 : , , . .. and 

excited spin states 𝐼 : , , . .., We could think of the difference between quark and nucleon as a 
difference in excitation vis-à-vis 𝐵𝑎. Thus, quark and nucleon would in fact be the same particle, but 
would be distinguished by their excitation vis-à-vis 𝐵𝑎, following the strong interaction described by 
the Quark Model. 
 
For spin 𝑆  (if we retain only the positive terms), We have a series of the type: , , . ... For 𝐵𝑎, we 

expect by analogy to a series of the type: , , . ... The problem is that the nucleons of 𝐵𝑎 = = 1 are 

much more stable than quarks of 𝐵𝑎 =  (quarks that have never actually been observed). 
 
To get out of this contraction, it is proposed for 𝐵𝑎 a series of the type: 𝐵𝑎 = , , . ... 
For the inverse of 𝐵𝑎, We have a series of the type: = 1,3,5. .. with particles that are increasingly 
excited vis-à-vis 𝐵𝑎. 
 
To check if the series 𝐵𝑎 = , , . .. is more adequate than the series 𝐵𝑎 = , , . .., let us examine 

whether there are no particles with 𝐵𝑎 = . 
 
V.2.4 The pentaquarks 
We give some examples of pentaquarks, very unstable particles formed of 5 quarks: 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�), 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�). In the table below, they have the same source field quantum number as their 
corresponding nucleons. 
 
 Source field quantum numbers 
 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒  (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 [𝑐𝑠][𝑐𝑠]𝑑 (12 , ± 12) (12 , 12) +1 0 𝑝 𝑢𝑢𝑑 (12 , ± 12) (12 , 12) +1 0 [𝑐𝑠][𝑐𝑠]�̄� (12 , ± 12) (12 , − 12) +1 0 𝑛 𝑢𝑑𝑑 (12 , ± 12) (12 , − 12) +1 0 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�) (12 , ± 12) (0,0) +1 +1 𝛺  𝑐𝑐𝑠 (12 , ± 12) (0,0) +1 +1 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�) (12 , ± 12) (0,0) +1 −1 𝛺  𝑐𝑠𝑠 (12 , ± 12) (0,0) +1 −1 

 
Like a nucleon, a pentaquark has 𝐵𝑎 = 1 (four quarks 𝐵𝑎 = +  and an antiquark 𝐵𝑎 = − ). It can 

also be interpreted as consisting of 5 excited quarks of 𝐵𝑎 = . 
 
In this case, we have a series 𝐵𝑎 = , , . ... The steady state is the nucleon, then an excited state with 

quarks 𝐵𝑎 = , then an even more excited state with quarks 𝐵𝑎 =  (and forming between them a 
pentaquark). 
 
We have the following table: 
 
 Source field quantum numbers 
 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒  (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 
Quark excited of [𝑐𝑠][𝑐𝑠]𝑑 (12 , ± 12) (12 , 12) + 15 0 

 
𝑝 𝑢𝑢𝑑 (12 , ± 12) (12 , 12) +1 0 
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Quark excited of [𝑐𝑠][𝑐𝑠]�̄� (12 , ± 12) (12 , − 12) + 15 0 𝑛 𝑢𝑑𝑑 (12 , ± 12) (12 , − 12) +1 0 

Quark excited of 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�) 
 

(12 , ± 12) (0,0) + 15 +1 𝛺  𝑐𝑐𝑠 (12 , ± 12) (0,0) +1 +1 

Quark excited of 𝛩 ([𝑢𝑑][𝑢𝑑]�̄�) (12 , ± 12) (0,0) + 15 −1 𝛺  𝑐𝑠𝑠 (12 , ± 12) (0,0 +1 −1 

 
Note on the Landé factor 
As mentioned, interpreting the proton or neutron as a composite particle makes it possible to explain 
Landé factors not equal to 2 for nucleons. 
To see if interpreting nucleon and quarks as states not composite, but states more and more excited 
vis-à-vis 𝐵𝑎, also helps to explain a Landé factor not equal to 2? 
 
 
V.2.5 Table of excited states 
We propose the following series with increasing or excited states for the 4 source field quantum 
numbers. 
 
 Source field quantum numbers 
 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 1𝐵𝑎 

1𝐺𝑒 𝑢  
 − 12 , − 32 , − 52 . .. + 12 , + 32 , + 52 . .. +1, +3, +5. .. 0 𝑑  − 12 , − 32 , − 52 . .. − 12 , − 32 , − 52 . .. +1, +3, +5. .. 0 𝑐  
 − 12 , − 32 , − 52 . .. 0 +1, +3, +5. .. +1, +3, +5. .. 

 𝑠  − 12 , − 32 , − 52 . .. 0 +1, +3, +5. .. −1, −3, −5. .. 
 
Note 1 
In the table above, quarks 𝑢 , 𝑑 , 𝑐 , 𝑠  correspond to the 1st state of excitation for spin 𝑆𝟑 , isospin 𝐼 , and to the 2nd state of excitation for 𝐵𝑎. 
 
Note 2 
Excited states vis-à-vis 𝐺𝑒 indicated in the table above, are purely speculative and are given in analogy 
with 𝐵𝑎. 
 
It is questionable whether the 3rd generation of quarks can correspond to an excited state vis-à-vis 𝐺𝑒? 
This is not a priori the case since we find the same quantum numbers, especially for 𝐺𝑒. 
 
 Source field quantum numbers Charges 
 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

𝑌2= 𝑄 − 𝑇  

(𝑇, 𝑇 ) 

𝑡  (12 , − 12) (0,0) + 13 +1 
 + 23 + 13 (12 , 12) 𝑏  (12 , − 12) (0,0) + 13 −1 − 13 + 13 (12 , − 12) 𝑐  

 (12 , − 12) (0,0) + 13 +1 
 + 23 + 13 (12 , 12) 𝑠  

 (12 , − 12) (0,0) + 13 −1 − 13 + 13 (12 , − 12) 
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V.3 Transition to antimatter 
V.3.1 Operations 𝑪 and 𝑷, transition from matter to antimatter 
The parity operator 𝑃 represents the inversion of the Space coordinates: 𝑥 → 𝑥′ = −𝑥 

 
The electric charge conjugation 𝐶 (or operator 𝐶) is a transformation that reverses the electric charge 
of the particle. 
 
Remind that the passage from matter to antimatter does not only correspond to the conjugation of 
charge 𝐶, but also to the parity operator 𝑃. 
 
It can be seen in the diagram below, decay of a pion 𝜋  in (𝜈 )  and (𝜇 ) . To obtain the passage 
from matter to antimatter, i.e., the decay of a pion 𝜋  in (�̄� )  and (𝜇 ) , we must carry out the 
operations 𝐶 and 𝑃. 
 

 
Figure 11: decay of a pion 𝜋  in (𝜈 )  and (𝜇 ) , decay of a pion 𝜋  in (�̄� )  and (𝜇 )  

 
Note 
The momentums of the particles are in fine and black arrows, the spins of the particles are in fat and 
colored arrows, we can deduce the helicities. Muon neutrino antiparticle (𝜈 )  is (�̄� ) . 
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V.3.2 Inversion of quantum numbers 𝑸, 𝑩𝒂, 𝑰𝟑 , 𝑮𝒆 
During the transition from matter to antimatter, there is reversal of the electric charge 𝑄 and the 3 
quantum numbers from which it is built: 𝐵𝑎, 𝐼 , 𝐺𝑒. 
 
When passing from matter to antimatter, there is no spin reversal . This appears as the complement 
of 𝑄 and does not reverse during a transformation 𝐶 or 𝐶𝑃. 
 
On the other hand, the operator 𝑃 intervenes, with a reversal of the impulse. So, we have the helicity 
that reverses. Quarks 𝑢 , 𝑑 , 𝑐 ,𝑠  have for antiparticles 𝑢 , 𝑑 , 𝑐 ,𝑠  with, for example, 𝑢 = (𝑢) . 
 
Reminder 
Orbital angular momentum 𝐿 and spin angular momentum 𝑆 are not affected by the Parity operation. 
The energy and momentum are reversed. We have by parity operation 𝑃: 𝐿 → 𝐿′ = 𝐿 𝑆 → 𝑆′ = 𝑆 𝑝 → 𝑝′ = −𝑝 𝐸 → 𝐸′ = −𝐸 
 
V.3.3 Antiquarks �̄�, 𝒅, �̄�, �̄� 
In the table below, we give the quantum numbers used in the Electroweak Model, for left-handed and 
right-handed antiquarks of 1st and 2nd generation. 
 
 Source field quantum numbers Charges 
 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 Electric 

charge 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

Weak 
hypercharge 𝑌2 = 𝑄 − 𝑇  

Weak 
charge (𝑇, 𝑇 ) 

𝑢  (12 , − 12) (12 , − 12) − 13 0 − 23 − 13 (12 , − 12) 𝑑  (12 , − 12) (12 , 12) − 13 0 + 13 − 13 (12 , 12) 𝑐  (12 , − 12) (0,0) − 13 −1 
 − 23 − 13 (12 , − 12) 𝑠  (12 , − 12) (0,0) − 13 +1 + 13 − 13 (12 , 12) 𝑢  (12 , 12) (12 , − 12) − 13 0 − 23 − 43 (0,0) 𝑑  (12 , 12) (12 , 12) − 13 0 + 13 + 23 (0,0) 𝑐  (12 , 12) (0,0) − 13 −1 − 23 − 43 (0,0) 𝑠  (12 , 12) (0,0) − 13 +1 + 13 + 23 (0,0) 

 
Note 1 on spin and helicity 
Since helicity reverses and not spin when moving from matter to antimatter, helicity is not equal to 
spin in the table below. 
 
Note 2 on Majorana particles 
Majorana particles are their own antimatter. They have zero electric charge, zero isospin, zero 
baryonic number and zero number of generations. For example, we find the mesons 𝑢�̄�, 𝑑𝑑, etc. 
Majorana particles can have a non-zero and always integer spin. 

3S
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Note 3 on antimatter, weak anti-charge, strong anti-charge, and hyper anti-charge 
Antimatter concerns the electromagnetic interaction, it reverses 3 quantum numbers that are 
electrically charged and that intervene in the Gell-Mann Nishijima relation 𝑄 = 𝐼 + + , the 
isospin 𝐼 , the baryonic number 𝐵𝑎 et the number of generations 𝐺𝑒. On the other hand, it does not 
reverse the spin which is not electrically charged, and which is carried by the photon 𝑆𝛾. 
 
By analogy with antimatter related to electromagnetic interaction (the antimatter matter association 
corresponds to an electromagnetic current 𝑗 ), It can be assumed that there is a weak anti-charge 
related to the weak interaction (the association weak charge weak anti-charge would correspond to a 
weak current 𝑗 ). 
 
If we assume a relationship (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), ), 3 quantum numbers, the spin 𝑆 , the 
isospin 𝐼  and the baryonic number 𝐵𝑎 are then weak charged. The transition from the weak charge to 
the weak anti-charge, must reverse these 3 quantum numbers. 
Like spin 𝑆  transported by the photon (electrically neutral)𝛾), which is not changed during the 
transition from matter to antimatter, the source field quantum number carried by weak bosons 𝑊  (no 
weak charged), shall not be changed when switching from weak charge to weak anti-charge. It will 
later be proposed that the source field quantum number transported by bosons 𝑊  is the number of 
generations 𝐺𝑒. 
We can see the operator switching to weak anti-charge as a transformation 𝐶  (to see if there are also 
transformations 𝑃 or 𝑇 to be included?). 
 
The same assumptions can be made for a transition from weak hypercharge to weak hyper anti-charge. 
If we assume a relationship: 𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒), we have a reversal or a change of (𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒, and a conservation of (𝐼, 𝐼 ) the source field quantum number that will be proposed transported 
by the boson 𝐵. 
 
Ditto for a transition from the strong charge to the strong anti-charge. If we assume a relationship: (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒), we have a reversal or a change of (𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒, and a 
conservation of 𝐵𝑎 the source field quantum number that will be proposed transported by the particles 
mediating the strong interaction. 
 
 
V.3.4 Cross channels and prescription of E. Stueckelberg and R. Feynman   
According to the prescription of E. Stueckelberg and R. Feynman, we have an equivalence between: 

- an antiparticle of positive energy, 
- a particle of negative energy that goes back in time. 

 
and conversely an equivalence between: 

- a particle of positive energy, 
- an antiparticle of negative energy that goes back in time. 

 
This prescription applies to a 4-particle process and their 4 anti-particles: 𝐴 + 𝐵 → 𝐶 + 𝐷 

makes it possible to anticipate the existence of three other cross channels: 𝐴 + 𝐷 → 𝐶 + 𝐵 or 𝐶 + 𝐵 → 𝐴 + 𝐷 

 𝐷 + 𝐵 → 𝐶 + 𝐴 or 𝐴 + 𝐶 → 𝐵 + 𝐷 
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 𝐴 → 𝐵 + 𝐶 + 𝐷 or 𝐵 → 𝐴 + 𝐶 + 𝐷 

 
Nota 
These crossed channels are not true for spin, since spin does not reverse when moving from matter to 
antimatter. They apply only to quantum numbers and physical quantities that reverse during the 
transition from matter to antimatter. 
 
 
V.4 Conclusion of the chapter 
We reminded and commented for quarks and antiquarks the quantum numbers assigned to them by the 
Electroweak Model. We mentioned the 4 source field quantum numbers that we want to associate with 
the 4 interactions of the Standard Model. We also mentioned the 3 charges involved in 
electromagnetic, weak, and hyper interactions, charges that we propose to build from 3 source field 
quantum numbers. We also proposed to interpret quarks as excited states of nucleons, vis-à-vis the 
baryonic number, following the strong interaction. Finally, the transition from matter to antimatter was 
studied and the hypotheses of weak anti-charge, strong anti-charge and hyper anti-charge were 
suggested. 
 
These data will allow us in the next chapter to examine the electromagnetic, weak, and hyper currents 
that we encounter in the Electroweak Model. 
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Chapter VI Electromagnetic currents, weak currents, and hyper currents, 
Cabibbo angle and GIM mechanism, case of quarks 

 
Purpose of the chapter 
In this chapter, we focus on the extensions of the Electroweak Model developed in the 1960s and 
1970s. We will study the Cabibbo angle proposed by N. Cabibbo in 1963, then the GIM mechanism 
proposed by S. Glashow, J. Illiopoulos and L. Maiani in the early 1970s. From this, we will propose an 
analogy in the case of quarks between the electromagnetic current 𝑗  that interacts with the photon 𝛾, 
the weak currents 𝑗  that interact with weak bosons 𝑊 , the hyper current 𝑗  that interacts with the 
boson 𝐵. 
 
VI.1 Electromagnetic current 𝒋𝑸𝝁  

VI.1.1 Case of electrons 
We remind the electromagnetic current of Dirac for an electron and a positron: 𝑗 = 𝑄�̄�𝛾 𝑒 

with the wave function 𝜓 associated with the particle which is here symbolized by the particle itself: 𝑒. 
 
If we distinguish right and left helicity, we have: 𝑗 = 𝑄𝑒 𝛾 𝑒 + 𝑄𝑒 𝛾 𝑒  

 
For left-handed particles, we have: 𝑗 = 𝑄𝑒 𝛾 𝑒  

 
We have the Feynman diagram of annihilation type (cancellation of the electric charge and addition of 
the spin): 

 
Figure 12: annihilation of electric charge 

 
We have the Feynman diagram of scattering type (conservation of electric charge and spin reversal): 
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Figure 13: scattering of the electric charge, disappearance of the photon 

 

 
Figure 14: scattering of electric charge, appearance of photon 

 
VI.1.2 Case of quarks 
For a quark 𝑢  and its antiquarks 𝑢 , we have the electromagnetic current: 𝑗 = 𝑄𝑢 𝛾 𝑢  

 
We have the Feynman diagram of annihilation type: 

 
Figure 15: annihilation of electric charge 

 
We have the Feynman diagrams of scattering type (hyperfine transition): 
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Figure 16: scattering of the electric charge, disappearance of the photon 

 

 
Figure 17: scattering of electric charge, appearance of photon 

 
VI.1.3 Scattering: retained charge 𝑸 when reversing spin 𝑺𝟑  
When the spin is reversed 𝑆  during a hyperfine transition, only the electric charge 𝑄 is conserved. 
The other 2 charges used in the Electroweak Model, 𝑌  et (𝑇, 𝑇 ) are modified. 
 
In the table below, we visualize the passage from a quark 𝑢  to a quark 𝑢 , with reversal of the spin 𝑆 , conservation of other source field quantum numbers, conservation of electrical charge 𝑄, 
modification of charges 𝑌  and (𝑇, 𝑇 ). 
 
 Source field numbers Charges 

 
Conserved  X 

 
X 

 
X 

 
X 

 
  

Modified X 
 

    X 
 

X 
 

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

𝑌2 = 𝑄 − 𝑇  (𝑇, 𝑇 ) 

𝑢  ↓ (12 , − 12) (12 , 12) + 13 0 
 + 23 + 13 (12 , 12) 𝑢  

 (12 , 12) (12 , 12) + 13 0 
 + 23 + 43 (0,0) 𝑑  ↓ (12 , − 12) (12 , − 12) + 13 0 
 − 13 + 13 (12 , − 12) 
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𝑑  
 (12 , 12) (12 , − 12) + 13 0 

 − 13 − 23 (0,0) 

 
VI.1.4 Annihilation: cancellation of charge 𝑸 et addition of spin 𝑺 
We give the quantum numbers of the electromagnetic current 𝑗 (𝑢 , 𝑢 ): 
 
 𝑗 (𝑢 , 𝑢 ) 𝑢  𝑢  Total 

 
Charge  𝑄 −1 1 0 

 
 
 
Source field  
quantum number  

𝑆  − 12 − 12 −1 𝐺𝑒 0 0 0 
 𝐵𝑎 − 13 

13 0 𝐼  − 12 
12 0 

 
The electromagnetic current 𝑗  corresponds to a couple 𝑢  𝑢  where electrical charges 𝑄 cancel each 
other and where the spins 𝑆  add up, to donate a photon  𝛾 of zero electric charge and carrying a spin 𝑆 . 
 
Following an analogy with the electromagnetic current, we will examine whether it is the same for 
weak currents and hyper current. That is to say, we will look at whether: 

- we can match the weak current 𝑗  to a couple of quarks and antiquarks where the weak 
charges 𝑇  cancel each other and where the generation numbers 𝐺𝑒 add up to give a boson 𝑊  of zero weak charge 𝑇  and carrying a generation 𝐺𝑒, 

- we can match the hyper current 𝑗  to a couple of quarks and antiquarks where weak 
hypercharges 𝑌  cancel each other and where the isospins 𝐼  add up to give a boson 𝐵 of zero 
weak hypercharge and carrying isospin 𝐼 . 

 
For this, we will first focus on the Cabibbo angle, the GIM mechanism and the different currents 
present in this mechanism. 
 
VI.2 The model of N. Cabibbo 
VI.2.1 Angle of Cabibbo 
At the end of the 1950s, during experiments conducted in particle accelerators, it was observed that 
transitions with change of strangeness |𝛥𝑆𝑡| = 1 occur at a much lower rate than transitions without a 
change in strangeness |𝛥𝑆𝑡| = 0. This with a factor of about 20. 
 
In the early 1960s, we simply have a model with 3 left-handed quarks that are subject to weak 
interactions: 𝑢 , 𝑑  and 𝑠 . 
 
In 1963, Nicola Cabibbo proposed the following explanation for the much lower rate of transitions 
with change of strangeness. Since quarks 𝑑  and 𝑠  have the same quantum numbers (except for 
flavor, as well as for mass), it's possible that it's, not the quark 𝑑  that interacts with a weak boson 𝑊 , but a mixture 𝑑 ′ consisted of quarks 𝑑  and 𝑠 . 
 
N. Cabibbo defines the mixture: 𝑑 ′ = −𝑑 𝑐𝑜𝑠 𝜃 + 𝑠 𝑠𝑖𝑛 𝜃  
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with 𝜃  the angle of Cabibbo. 
 
Instead of a weak doublet: 

𝑢𝑑 , we have a weak doublet of the type: 𝑢𝑑 ′ = 𝑢𝑑 𝑐𝑜𝑠 𝜃 + 𝑠 𝑠𝑖𝑛 𝜃  
that interacts with a boson 𝑊 . 
 
Coupling 𝑢  𝑑  characterized by |𝛥𝑆𝑡| = 0 has a probability amplitude proportional to 𝑍𝑜 . For its 
part, the coupling 𝑢  𝛾 characterized by |𝛥𝑆𝑡| = 1 has a probability amplitude proportional to 𝑠𝑖𝑛 𝜃 . 
 
We have approximately: 𝑠𝑖𝑛 𝜃𝑐𝑜𝑠 𝜃 ≈ 120 

 
We get: 𝜃 ≈ 0,23𝑟𝑎𝑑𝑖𝑎𝑛𝑠 or 𝜃 ≈ 13,04° 
 
The fundamental idea of N. Cabibbo is that the eigenstates of masses (or energies), here quarks 𝑑  and 𝑠 , are not the eigenstates participating in reactions involving bosons 𝑊 . 
 
These are the quarks 𝑑 ′ and 𝑠 ′, defined as the proper states of flavors, which participate in these 
reactions. They are related to quarks 𝑑  and 𝑠  by a constant angle, the angle of Cabibbo 𝜃 . The 
Cabibbo angle is symbolized by the following figure representing a rotation of angle 𝜃 . 
 

 
Figure 18: angle of Cabibbo 

 
Note 
Remind that flavor is a notion initially related to the strong nuclear charge. 
 
 
We have the relationship between quarks 𝑑 , 𝑠 , 𝑑 ′, 𝑠 ′ via the Cabibbo matrix: 𝑑 ′𝑠 ′ = 𝑉 𝑉𝑉 𝑉 𝑑𝑠 = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑑𝑠  
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The vector on the left 𝑑 ′𝑠 ′  is the eigenstate of flavors, i.e., the eigenstate of reactions involving 

bosons 𝑊 . 
 

The vector on the right 𝑑𝑠  is the eigenstate of masses or energies. 
 
VI.2.2 Cabibbo-Kobayashi-Maskawa matrix, hypothesis of a 3rd generation of quarks 
In 1964, J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay highlighted the violation of 
symmetry 𝐶𝑃 (parity charge transformations, transition from matter to antimatter) by studying the 
properties of neutral kaons (strange particles of meson type) observed during decays 𝛽± (we will come 
back to this in the next Memoir). 
 
In 1973, Makato Kobayashi and Toshihide Maskawa found that the violation of symmetry 𝐶𝑃 cannot 
be explained by a simple 4-quark model. Generalizing the Cabibbo matrix, they proposed a matrix 𝑀 3 × 3 of Cabibbo-Kobayashi-Maskawa (CKM matrix) defined from 6 quarks: 𝑑 ′𝑠 ′𝑏 ′ = 𝑀 𝑑𝑠𝑏 = 𝑉 𝑉 𝑉𝑉 𝑉 𝑉𝑉 𝑉 𝑉 𝑑𝑠𝑏  

 
M. Kobayashi and T. Maskawa predicted a 3rd generation of quarks: the doublet of quarks 𝑏 bottom 
and 𝑡 top. The discovery of the bottom quark was confirmed a few years later by Fermilab in 1977. 
 
There are several representations of the CKM matrix. A common representation is as follows: 
We define 3 Euler angles 𝜃 = 𝜃 , 𝜃 , 𝜃  and a phase 𝛿. 
We have: 𝑐 = 𝑐𝑜𝑠 𝜃   𝑠 = 𝑠𝑖𝑛 𝜃  
 𝑀 = 𝑐 𝑐 𝑠 𝑐 𝑠 𝑒−𝑠 𝑐 − 𝑐 𝑠 𝑠 𝑒 𝑐 𝑐 − 𝑠 𝑠 𝑠 𝑒 𝑠 𝑐𝑠 𝑠 − 𝑐 𝑐 𝑠 𝑒 −𝑐 𝑠 − 𝑠 𝑐 𝑠 𝑒 𝑐 𝑐  

 
For example, the matrix breaks down as follows: 𝑀 = 1 0 00 𝑐 𝑠0 −𝑠 𝑐 𝑐 0 𝑠 𝑒0 1 0−𝑠 𝑒 0 𝑐 𝑐 𝑠 0−𝑠 𝑐 00 0 1  

 
It is a combination of three rotation matrices, except for the presence of the phase 𝛿 which reflects the 
violation of symmetry 𝐶𝑃. 
 
Experimentally, we measure: 𝜃 = 𝜃 ≈ 13,04°, 𝜃 ≈ 0,20, 𝜃 ≈ 2,38° and a phase 𝛿 ≈ 1,20𝑟𝑎𝑑. 
 𝑀 ≈ 0.97 0.22 0.004−0.22 0.97 0.040.008 −0.04 0.99  

 
Note 
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The CKM matrix can be interpreted as the ease (probability) of a quark changing flavor, for example 
the passage from a quark 𝑑  à un quark 𝑠 ′. 
 
 
VI.3 Glashow-Illiopoulos-Maiani GIM mechanism and electrically neutral weak 

currents 
VI.3.1 Finding of no change in strangeness in electrically neutral weak currents 
Experimentally, it was noted the absence of change in strangeness |𝛥𝑆𝑡| = 0 in reactions involving 
neutral weak currents 𝑗  and weak boson 𝑍 . It was then said that there are no neutral weak currents 
changing the flavor (in the sense that strangeness 𝑆𝑡 is one of the 3 flavors of quarks and that flavors 𝑢 
and 𝑑 are also not modified). 
 
For example, we had observed changes in strangeness. |𝛥𝑆𝑡| = 1 in reactions involving charged weak 
currents 𝑗  and bosons 𝑊 . This is the case in the disintegration of the kaon 𝐾 : 𝐾 (𝑢�̄�) → 𝜋 (𝑢�̄�) + 𝑒 + �̄�  

 
On the other hand, the kaon decay reaction 𝐾  with strangeness changes |𝛥𝑆𝑡| = 1 and causing 
neutral weak currents to interact 𝑗  and bosons 𝑍  is much rarer: 𝐾 (𝑢�̄�) → 𝜋 (𝑢𝑑) + 𝜈 + �̄� 

 
We have the report: 𝐾 (𝑢�̄�) → 𝜋 (𝑢𝑑) + 𝜈 + �̄�𝐾 (𝑢�̄�) → 𝜋 (𝑢�̄�) + 𝑒 + �̄� < 10  

 

 
Figure 19: charged weak current 𝑗  interacting with 𝑊  
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Figure 20: neutral weak current 𝑗  interacting with 𝑍  

 
Note 
On the figure, 𝜈 and �̄� represent several generations of neutrinos and antineutrinos. 
 
 
A priori, these selection rules were poorly understood. To explain this, in the early 1970s, S. Glashow, 
J. Illiopoulos and L. Maiani postulated the existence of a 4th quark, the quark charm 𝑐, in what is called 
the GIM mechanism. 
 
VI.3.2 Neutral weak current 𝒋𝑻𝟑𝝁  in the hypothesis of a 3-quark model 
We remind the neutral weak current 𝑗  interacting with the boson 𝑊 , current used in the 
Electroweak Model, if we use the original hypothesis of a model with only 3 quarks 𝑢, 𝑑, 𝑠: 𝑗 = 𝑇 (𝑢 −𝑑′) 𝛾 𝑢𝑑′  

𝑗 = 𝑇 (𝑢 −𝑑′) 𝛾 𝑢𝑑′  

with: 

𝑇 = 12 00 − 12  

 𝑇  are matrices here 2 × 2, defined from Pauli matrices 𝑇 =  and generators of the group 𝑆𝑈(2) . 
 
We have according to the Cabibbo matrix, the mixture: 𝑑′ = 𝑑 𝑐𝑜𝑠 𝜃 + 𝑠 𝑠𝑖𝑛 𝜃  𝑑′ = 𝑑 𝑐𝑜𝑠 𝜃 + �̄� 𝑠𝑖𝑛 𝜃  

 
We get: 𝑗 = 12 (𝑢 𝑐𝑜𝑠 𝜃 𝑑 + 𝑠𝑖𝑛 𝜃 𝑠) 𝛾 𝑢𝑐𝑜𝑠 𝜃 𝑑 + 𝑠𝑖𝑛 𝜃 𝑠  
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𝑗 = 12 (𝑢 𝛾 𝑢 + 𝑐𝑜𝑠 𝜃 𝑑 𝛾 𝑑 + 𝑠𝑖𝑛 𝜃 𝑠 𝛾 𝑠 + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (𝑑 𝛾 𝑠 + 𝑠 𝛾 𝑑 )) 

 
The 1st term 𝑢 𝛾 𝑢 + 𝑐𝑜𝑠 𝜃 𝑑 𝛾 𝑑 + 𝑠𝑖𝑛 𝜃 𝑠 𝛾 𝑠  corresponds to |𝛥𝑆𝑡| = 0. 
The 2nd term 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (𝑑 𝛾 𝑠 + 𝑠 𝛾 𝑑 ) corresponds to |𝛥𝑆𝑡| = 1. It is not or very little 
observed, which remains to be explained. 
 
VI.3.3 Neutral weak current 𝒋𝑻𝟑𝝁  in the hypothesis of a 4-quark model 
With a charm quark 𝑐, we have a new contribution and a neutral weak current of the form: 𝑗 = 𝑗 (𝑢, 𝑑′) + 𝑗 (𝑐, 𝑠′)  𝑗 = 𝑇 (𝑢 −𝑑′) 𝛾 𝑢𝑑′ + 𝑇 (𝑐 −𝑠′) 𝛾 𝑐𝑠′  

 𝑑′ = 𝑐𝑜𝑠 𝜃 𝑑 + 𝑠𝑖𝑛 𝜃 𝑠 𝑠′ = 𝑐𝑜𝑠 𝜃 𝑠 − 𝑠𝑖𝑛 𝜃 𝑑 

 
Note 
If we take into account three generations of quarks, we have two new contributions and a neutral weak 
current of the form: 𝑗 = 𝑇 (𝑢 −𝑑′) 𝛾 𝑢𝑑′ + 𝑇 (𝑐 −𝑠′) 𝛾 𝑐𝑠′ + 𝑇 (𝑡 −𝑏′) 𝛾 𝑡𝑏′  

 
We develop the new contribution: 𝑗 (𝑐, 𝑠′) = 𝑇 (𝑐 −𝑠′) 𝛾 𝑐𝑠′  

𝑗 (𝑐, 𝑠′) = 12 (𝑐 𝑐𝑜𝑠 𝜃 𝑠 − 𝑠𝑖𝑛 𝜃 𝑑) 𝛾 𝑐𝑐𝑜𝑠 𝜃 𝑠 − 𝑠𝑖𝑛 𝜃 𝑑  

𝑗 (𝑐, 𝑠′) = 12 (𝑐 𝛾 𝑐 + 𝑐𝑜𝑠 𝜃 𝑠 𝛾 𝑠 + 𝑠𝑖𝑛 𝜃 𝑑 𝛾 𝑑 − 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (𝑑 𝛾 𝑠 + 𝑠 𝛾 𝑑 )) 

 
By adding 𝑗 (𝑢, 𝑑′)  and 𝑗 (𝑐, 𝑠′) , it follows that the terms in |𝛥𝑆𝑡| = 1 cancel automatically, 
which explains their much greater rarity. We have: 𝑗 = 𝑗 (𝑢, 𝑑′) + 𝑗 (𝑐, 𝑠′)  

𝑗 = 12 (𝑢 𝛾 𝑢 + (𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜃 )𝑑 𝛾 𝑑 + 𝑐 𝛾 𝑐 + (𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜃 )𝑠 𝛾 𝑠 ) 

𝑗 = 12 (𝑢 𝛾 𝑢 + 𝑑 𝛾 𝑑 + 𝑐 𝛾 𝑐 + 𝑠 𝛾 𝑠 ) 

 
Note 
The Cabibbo angle disappears from the expression of the neutral weak current 𝑗  
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VI.3.4 "Real" weak currents 𝒋𝑻𝟑𝝁 (𝒅𝑳, 𝒔𝑳) and 𝒋𝑻𝟑𝝁 (𝒔𝑳, 𝒅𝑳) 

In the expression of 𝑗 , it can be seen that the terms 𝑑 𝛾 𝑠  and 𝑠 𝛾 𝑑  in |𝛥𝑆𝑡| = 1 correspond to 
what we are looking for. That is to say, currents that are called "true" weak currents noted 𝑗 (𝑑 , 𝑠 ) = 𝑇 𝑑 𝛾 𝑠  and 𝑗 (𝑠 , 𝑑 ) = 𝑇 𝑠 𝛾 𝑑 , where during an annihilation, the weak 
charges 𝑇  cancel each other and generation numbers 𝐺𝑒 add up. 
 

 
Figure 21: diagram of weak charge annihilation 

 
During a scattering, we have conservation of the weak charge 𝑇  and change in the number of 
generations 𝐺𝑒. 

 
Figure 22: diagram of weak charge scattering 

 
Let us now study the reactions of annihilation and scattering that involve these "real" weak currents. 𝑗 (𝑑 , 𝑠 ) and 𝑗 (𝑠 , 𝑑 ). 
 
VI.3.5 Annihilation: weak charge cancellation 𝑻𝟑 
Following a strict analogy with electromagnetic interaction, the objective is that during an annihilation 
reaction, the charge (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎) cancels and only the source field quantum 
number 𝐺𝑒, in order to generate a mediating particle. 
 
For 𝑗 (𝑑 , 𝑠 ), quantum numbers are computed during an annihilation reaction: 
 𝑗 (𝑑 , 𝑠 ) 𝑑  𝑠  Total 

 
Charge  𝑇  12 − 12 0 

 
 

𝐺𝑒 0 −1 −1 
 

Time 

)1,
2
1( 3  GeTsL

LLT dsTj  3
3 

)0,
2
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Source field 
quantum numbers 

𝐵𝑎 13 − 13 0 𝐼  12 0 12 𝑆  − 12 − 12 −1 

 
For 𝑗 (𝑠 , 𝑑 ), quantum numbers are computed during an annihilation reaction: 
 𝑗 (𝑠 , 𝑑 ) 𝑠  𝑑  Total 

 
Charge  𝑇  12 − 12 0 

 
 
Source field 
quantum numbers 

𝐺𝑒 1 0 1 
 𝐵𝑎 − 13 

13 0 𝐼  0 − 12 − 12 𝑆  − 12 − 12 −1 

 
Note 1 
It can be seen that one cannot reproduce for the "real" weak current a strict analogy with the 
electromagnetic current. For this, it would be necessary to eliminate 𝐼  and 𝑆  in the "Total" column. 
To see why 𝐼  and 𝑆  are not cancelled? 
 
Note 2 
When changing the weak charge (𝑇, 𝑇 ), we do not always have as expected conservation of 𝐺𝑒, for 
example when changing the generation of 𝑑  and 𝑠 . 
If we want to follow a strict analogy with electromagnetism, we must when reversing the weak charge 𝑇 , stay in the same generation of quarks. To see why? 
 
 
VI.3.6 Scattering: weak charge 𝑻𝟑  retained when changing generations 
In the table below, we visualize the passage from a quark 𝑢  to a quark 𝑐 , scattering-type passage, 
with weak charge conservation (𝑇, 𝑇 ) and modification of 𝐺𝑒. 
 
 Source field numbers Charges 

 
Conserved X 

 
 X 

 
 X 

 
X 

 
X 

 
Modified  X 

 
 X 

 
   

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

𝑌2 = 𝑄 − 𝑇  (𝑇, 𝑇 ) 

𝑢  ↓ (12 , − 12) (12 , 12) + 13 0 
 + 23 + 13 (12 , 12) 𝑐  

 (12 , − 12) (0,0) + 13 +1 
 + 23 + 13 (12 , 12) 
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It can be seen that we cannot repeat a strict analogy with the scattering of the electromagnetic 
interaction since: 

- the source field quantum number (𝐼, 𝐼 ) is modified when we wish it was not, 
- the charges 𝑄 and 𝑌  are retained when they would like to be modified. 

 
Note 1 
To explain the 1st concern, to see if instead of taking 𝐺𝑒 as a source field quantum number transported 
by the mediating particle, we should not rather take a quantum number function of 𝐺𝑒 and (𝐼, 𝐼 )? 
 
To explain the 2nd concern, to see if instead of taking (𝑇, 𝑇 ) as a weak charge conserved during a 
generation change, it is not necessary to associate the 3 charges instead: 𝑄, 𝑌  and (𝑇, 𝑇 ) in a “real” 
weak charge? 
 
Note 2 
It is observed that the weak charge (𝑇, 𝑇 ) is not conserved when reversing the number of strangeness 𝑆𝑡 (or the number of generations 𝐺𝑒). For example, when switching from 𝑠 to �̄�, we reverse the weak 
charge from 𝑇 = −  to 𝑇 = + . 
On the other hand, the weak charge 𝑇  remains well preserved, when moving from 𝑢  to 𝑐 , or from 𝑑  to 𝑠 , with 𝑇  which remains respectively equal to 𝑇 = +  and 𝑇 = − . 
 
 
VI.4 Electrically charged weak currents 
VI.5 Electrically charged weak currents 𝒋𝑻𝝁  

The Electroweak Model defines a charged weak current 𝑗  (carrying a weak charge 𝑇 ), interacting 
with the boson 𝑊  (carrier of a positive weak charge 𝑇 ): 𝑗 = (𝑢 𝑐) 𝛾 𝑑′𝑠′  

𝑗 = (𝑢 𝑐) 𝛾 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑑𝑠  

 
By developing, we obtain: 𝑗 = 𝑐𝑜𝑠 𝜃 𝑢 𝛾 𝑑 + 𝑠𝑖𝑛 𝜃 𝑢 𝛾 𝑠 − 𝑠𝑖𝑛 𝜃 𝑐 𝛾 𝑑 + 𝑐𝑜𝑠 𝜃 𝑐 𝛾 𝑠  𝑗 = 𝑐𝑜𝑠 𝜃 (𝑢 𝛾 𝑑 + 𝑐 𝛾 𝑠 ) + 𝑠𝑖𝑛 𝜃 (𝑢 𝛾 𝑠 − 𝑐 𝛾 𝑑 ) 

 
Note 1 
Charged weak current 𝑗  is given here from the Cabibbo matrix and for 2 generations of quarks. 
 
Note 2 
Like the photon 𝛾 that carries no electrical charge 𝑄, the mediating particle 𝑊  does not carry any 
weak charge 𝑇 . It is neutral according to the weak interaction. However, unlike photons, bosons 𝑊 , 𝑊 , 𝑊  can react to each other via terms like 𝑔 𝜀 𝑊 𝑊 . 
 
Bosons 𝑊  and 𝑊  carry a respectively positive and negative weak charge 𝑇 . This weak charge 𝑇  
is electrically charged, hence the electrical charge of 𝑊  and 𝑊 . 
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Bosons 𝑊  and 𝑊  are defined as scale operators that can increase or decrease the weak charge by 
one unit 𝑇  of fermions with weak charges 𝑇  and 𝑇 , fermions with which these weak bosons 
interact. 
For example, we have the interaction term between charged weak currents 𝑗  and 𝑗  (fermion 
representatives) and mediating particles 𝑊  and 𝑊 : 𝐸 = −𝑖𝑔 1√2 (𝑗 𝑊 + 𝑗 𝑊 )  

 
Note 3 
We have for the weak current charged electrically and negatively: 𝑗 = (𝑑′ 𝑠′) 𝛾 𝑢𝑐  

 
Note 4, how does the Electroweak Model define charged weak currents? 
We use the Brout-Englert-Higgs mechanism to assign mass to particles. We also use what is called the 
Yukawa interaction (see the work of S. Weinberg in 1967 and A. Salam to assign mass to fermions). 
 
We remind the Yukawa interaction used in the Electroweak Model between a scalar field 𝜑 and a 
fermion 𝜓: 𝐿 = −𝑔 (𝜓 𝜑𝜓 + 𝜓 𝜑 𝜓 ) 

with 𝑔  an arbitrary coupling constant. 
 
By performing the appropriate matrix transformations, where the eigenstates are those where the 
quarks have mass, we find for the charged weak currents: 𝑗 = (𝑢 𝑐) 𝛾 𝑑′𝑠′  

(𝜇 = 𝑡, 𝑥, 𝑦, 𝑧) 

With three generations of quarks, we have: 𝑗 = (𝑢 𝑐 𝑡) 𝛾 𝑑′𝑠′𝑏′  

Nota 5 
Only left-handed particles and right-handed antiparticles are subject to the weak interaction. We have: 𝜓 = (𝑢 𝑐) = (�̄�) (�̄�)  

 
VI.5.1 "Real" hyper current 𝒋𝒀𝑾𝝁 (𝒖𝑳, 𝒅𝑳) 

It is noted that the term 𝑢 𝛾 𝑑  corresponds to the "real" hyper current 𝑗  that we are looking for, 
that is, a current where during annihilation, weak hypercharges 𝑌  cancel each other and isospins 𝐼  
add up. 
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Figure 23: diagram of weak hypercharge annihilation 

 

 
Figure 24: diagram of weak hypercharge scattering 

 
VI.5.2 Annihilation: cancellation of weak hypercharge 𝒀𝑾 
Following a strict analogy with electromagnetism, the objective is that during an annihilation reaction, 
the charge 𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒) cancels and only the source field quantum number is retained (𝐼, 𝐼 ), in order to generate a mediating particle. 
 
For 𝑗 , we calculate the quantum numbers during an annihilation reaction: 
 𝑗 (𝑢 , 𝑑 ) 𝑢  𝑑  Total 

 
Charge  𝑌  −1 1 0 
 
 
Source field 
quantum numbers  

𝐼  − 12 − 12 −1 𝐺𝑒 0 0 0 𝐵𝑎 − 13 
13 0 𝑆  − 12 − 12 −1 

 
During an annihilation reaction, it would therefore be necessary a priori to eliminate 𝑆  in the column 
"Total". 
 
VI.5.3 Scattering: retained weak hypercharge 𝒀𝑾 when isospin is reversed 𝑰𝟑  
In the table below, we visualize the passage from a quark 𝑢  to a quark 𝑑 , with isospin inversion 𝐼 , 
conservation of other source field quantum numbers, conservation of weak hypercharge 𝑌 , 
modification of charges 𝑄 and (𝑇, 𝑇 ). 
 
 Source field numbers Charges 

Time 
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Conserved X 

 
 X 

 
X 

 
 X 

 
 

Modified  X 
 

  X 
 

 X 
 

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

𝑌2 = 𝑄 − 𝑇  (𝑇, 𝑇 ) 

𝑢  ↓ (12 , − 12) (12 , 12) + 13 0 
 + 23 + 13 (12 , 12) 𝑑  

 (12 , − 12) (12 , − 12) + 13 0 
 − 13 + 13 (12 , − 12) 𝑢  ↓ (12 , 12) (12 , 12) + 13 0 
 + 23 + 43 (0,0) 𝑑  

 (12 , 12) (12 , − 12) + 13 0 
 − 13 − 23 (0,0) 

 
The conservation of weak hypercharge 𝑌  when passing from a quark 𝑑 to a quark 𝑢 (or from a 
neutron to a proton) only works for left-handed particles. That is, the particles that also participate in 
the weak interaction. 
There is therefore a priori a strong link between hyper interaction, weak interaction, helicity, and spin. 
 
VI.6 Conclusion of the chapter 
In this chapter, it has been proposed to find in contributions of neutral weak currents, what is called 
here the "real" weak current. That is to say, in analogy with the electromagnetic current, a weak 
current formed by a pair of particles whose respective weak charges 𝑇  cancel each other out and 
whose respective generation numbers 𝐺𝑒 add up. 
 
Similarly, it has been proposed to find in contributions of charged weak currents, what is called the 
"real" hyper current. That is to say, in analogy with the electromagnetic current, a hyper current 
formed by a pair of particles whose respective hypercharges 𝑌  cancel each other out and whose 
respective isospin numbers 𝐼  add up. 
 
In the next chapter, we will study whether what has just been proposed for quarks on electromagnetic 
currents, weak currents, and hyper currents, is also true for leptons, knowing that the latter are also 
subject to the electromagnetic, weak and hyper interactions. 
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Chapter VII Weak currents and hyper currents, angle of Pontecorvo, 
case of leptons 

 
Objective of the chapter 
Leptons are essentially distinguished from baryons by the fact that they do not participate in the strong 
interaction (zero strong charge for leptons). 
We will first focus here on the oscillation of neutrinos, a phenomenon according to which a neutrino 
with a leptonic flavor (electron, muon, or tau neutrino) can be measured later with a different flavor. 
We will then study the Pontecorvo-Maki-Nakagawa-Sakata matrix, a matrix analogous for leptons to 
the Cabibbo-Kobayashi-Maskawa matrix for quarks, and which describes neutrino oscillations. 
For the weak interaction and the hyper interaction, it should be emphasized that the similarities are 
qualitatively very large between baryons and leptons. This will make it possible to offer the same type 
of weak and hyper currents. 
 
VII.1 Mass and oscillation of the neutrinos 
Around 1957, B. Pontecorvo proposed the possibility of a low but not zero mass of neutrinos. He 
points out that there is no requirement that the eigenstates of neutrino flavors (i.e., the eigenstates of 
reactions involving bosons 𝑊 ), be equal to the eigenstates of masses (or energies). These eigenstates 
of flavors would rather be a linear combination of the eigenstates of masses. 
He was inspired by the oscillation model of neutral kaons (de 𝐾  à 𝐾 ) and proposed a model of 
neutrino oscillation, moving from one flavor to another. 
 
VII.2 Matrix Pontecorvo-Maki-Nakagawa-Sakata (matrix PMNS) 
VII.2.1 2-dimensional matrix and angle of Pontecorvo 
In 1962, to describe the neutrino oscillations proposed by B. Pontecorvo, Z. Maki, M. Nakagawa et S. 
Sakata introduced the matrix of Pontecorvo-Maki-Nakagawa-Sakata (PMNS matrix), the analogue for 
leptons of the matrix of Cabibbo-Kobayashi-Maskawa (CKM matrix) for quarks. 
 
Like the CKM matrix, the PMNS matrix can be interpreted as the ease (or as the probability) of a 
neutrino changing flavor. 
 
We remind the Cabibbo matrix: 𝑑 ′𝑠 ′ = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑑𝑠  

 
We have an analogue matrix (in two dimensions) of the Cabibbo matrix for neutrinos of 1st and 2nd 
generation: 𝜈 ′𝜈 ′ = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝜈𝜈  

with 𝜃  angle of Pontecorvo 

 

The vector on the left 
𝜈 ′𝜈 ′  is the eigenstate of flavors, i.e., the eigenstate of reactions involving 

bosons 𝑊 . 
 
The vector on the right 

𝜈𝜈  is the eigenstate of masses or energies. 
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VII.2.2 3-dimensional matrix 
In 1962, the matrix introduced by Z. Maki, M. Nakagawa and S. Sakata involved only two generations 
of neutrinos.𝜈  and 𝜈 . 
In 1973, M. Kobayashi and T. Maskawa predicted a 3rd generation of quarks and leptons, necessary to 
explain the CP violation. We also have a 3rd generation of electrons with 𝜏 and a 3rd generation of 
neutrinos with 𝜈 . 
 
We obtain the extension of the PMNS matrix of Pontecorvo-Maki-Nakagawa-Sakata with 3 
generations of neutrinos: 𝜈 ′𝜈 ′𝜈 ′ = 𝑀 𝜈𝜈𝜈 = 𝑈 𝑈 𝑈𝑈 𝑈 𝑈𝑈 𝑈 𝑈 𝜈𝜈𝜈  

 
As with the CKM matrix, there are several representations of the PMNS matrix. We use the same 
representation as for the CKM matrix. 
 
We define 3 Euler angles 𝜃 = 𝜃 , 𝜃 , 𝜃  and a phase 𝛿. 𝑐 = 𝑐𝑜𝑠 𝜃  𝑠 = 𝑠𝑖𝑛 𝜃  
 

𝑀 = 𝑐 𝑐 𝑠 𝑐 𝑠 𝑒−𝑠 𝑐 − 𝑐 𝑠 𝑠 𝑒 𝑐 𝑐 − 𝑠 𝑠 𝑠 𝑒 𝑠 𝑐𝑠 𝑠 − 𝑐 𝑐 𝑠 𝑒 −𝑐 𝑠 − 𝑠 𝑐 𝑠 𝑒 𝑐 𝑐  

 
For example, the matrix breaks down as follows: 𝑀 = 1 0 00 𝑐 𝑠0 −𝑠 𝑐 𝑐 0 𝑠 𝑒0 1 0−𝑠 𝑒 0 𝑐 𝑐 𝑠 0−𝑠 𝑐 00 0 1  

 
It is a combination of three rotation matrices, except the presence of the phase 𝛿 that reflects the 
violation of 𝐶𝑃 symmetry. 
 
Experimentally, we measure (with values that vary significantly according to the experiments): 𝜃 = 𝜃 ≈ 33,62°, 𝜃 ≈ 8,54°, 𝜃 ≈ 47,2° and a phase 𝛿 ≈ 234° 
 𝑀 ≈ 0.82 0.54 −0.15−0.35 0.70 0.620.44 −0.55 0.70  

 
We had for the CKM matrix: 𝜃 = 𝜃 ≈ 13,04°, 𝜃 ≈ 0,20°, 𝜃 ≈ 2,38° and a phase 𝛿 ≈ 1,20𝑟𝑎𝑑 
 𝑀 ≈ 0.97 0.22 0.004−0.22 0.97 0.040.008 −0.04 0.99  
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VII.3 Leptons 𝒆  ,𝝂𝒆 ,𝝁  ,𝝂𝝁 of 1st and 2nd generation 
For leptons of 1st and 2nd generation, the following table is proposed in analogy with quarks: 
 
 Source field quantum numbers 

 
Charges

 

 (𝑆, 𝑆 )𝐻 (𝐼, 𝐼 ) 𝐵𝑎 𝐺𝑒 Electric 
charge 𝑄= 𝐼 − 𝐿𝑒2+ 𝐺𝑒2  

Weak 
hypercharge 𝑌2 = 𝑄 − 𝑇  

Weak 
charge (𝑇, 𝑇 ) 

𝑒  (12 , − 12) (12 , − 12) +1 0 −1 −1 (12 , − 12) 𝜈  (12 , − 12) (12 , + 12) +1 0 0 −1 (12 , + 12) 𝜇  (12 , − 12) (0,0) +1 −1 
 

−1 −1 (12 , − 12) 𝜈  (12 , − 12) (0,0) +1 +1 0 −1 (12 , + 12) 𝑒  (12 , + 12) (12 , − 12) +1 0 −1 −2 (0,0) 𝜈  
not observed (12 , + 12) (12 , + 12) +1 0 0 0 (0,0) 𝜇  (12 , + 12) (0,0) +1 −1 

 
−1 −2 (0,0) 𝜈  

not observed (12 , + 12) (0,0) +1 +1 0 0 (0,0) 

 
Note 1 
Usually, we do not assign isospin (𝐼, 𝐼 ) and 𝐺𝑒 to leptons. Indeed, (𝐼, 𝐼 ) and 𝐺𝑒 are considered like 
the strong charge in the Quark Model. However, leptons are not subject to strong interaction and 
therefore have a zero strong charge. 
 
In this Memoir, it is suggested to distinguish between strong charge 𝐶𝑜, isospin (𝐼, 𝐼 ) and 𝐺𝑒 (by 
proposing nevertheless that the first quantum number of type charge is a function of the next two of 
type source field quantum number). It is then decided to assign an isospin (𝐼, 𝐼 ) and a 𝐺𝑒 to leptons 
in analogy with quarks. This verifies the relationship for leptons: 𝑄 = 𝐼 − 𝐿𝑒2 + 𝐺𝑒2  
 
Here, (𝐼, 𝐼 ) and 𝐺𝑒 are not treated in analogy with a charge X, but in analogy with the spin(𝑆, 𝑆 ), 
i.e., a source field quantum number which, being modified, generates a X charging current. 
 
Note 2 
Several reactions between particles indicate that quarks of 1st generation 𝑢 and 𝑑, and leptons of 1st 
generation 𝑒  et 𝜈  have a priori the same 𝐺𝑒. 
For example, we have the decay reaction of a pion 𝜋 (𝑢�̄�/𝑑𝑑) in an electron, a positron and a photon: 𝜋 (𝑢�̄�/𝑑𝑑) → 𝛾 + 𝑒 + �̄�  

 
For the 𝐺𝑒 to be identical on both sides, one of the same values is needed for quarks and leptons of 1st 
generation 𝐺𝑒. 
 
Note 3 on hyper interaction, at once attractive, repulsive and infinite scope 
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According to S. Glashow's hypotheses, left-handed hadrons (particles of the nucleus) have a positive 
weak hypercharge 𝑌  and left-handed leptons have a negative weak hypercharge 𝑌 . Identical sign for 
weak hypercharge, left-handed hadrons repel each other. Similarly, of identical sign for weak 
hypercharge, left-handed leptons repel each other. Opposite sign for weak hypercharge, left-handed 
leptons and left-handed hadrons attract each other. For example, a left-handed neutron of weak 
hypercharge 𝑌 = 1 and a left-handed electron of hypercharge 𝑌 = −1 attract each other. 
Note that these attractions and repulsions have an infinite range, since the boson 𝐵 carrying the hyper 
interaction is a priori presented without mass in the Electroweak Model. 
 
Note that the case of right-handed particles is more complex, because according to the Electroweak 
Model some right-handed particles do not have 𝑌  and therefore do not participate in the hyper 
interaction. 
 
 
VII.4 Electrically neutral weak currents 
VII.4.1 Neutral weak current from PMNS matrix 
With two generations of left-handed leptons, we have a neutral weak current of the form: 𝑗 = 𝑗 (𝑒 , 𝑣 ′) + 𝑗 (𝜇, 𝑣 ′)  𝑗 = 𝑇 (𝑒 −𝑣 ′) 𝛾 𝑒𝑣 ′ + 𝑇 (𝜇 −𝑣 ′) 𝛾 𝜇𝑣 ′  

 
We have: 𝑗 (𝑒 , 𝑣 ′) = 12 (𝑒 𝛾 𝑒 + 𝑐𝑜𝑠 𝜃 𝑣 𝛾 𝑣 + 𝑠𝑖𝑛 𝜃 𝑣 𝛾 𝑣 + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (𝑣 𝛾 𝑣+ 𝑣 𝛾 𝑣 )) 

The 1st term 𝑒 𝛾 𝑒 + 𝑐𝑜𝑠 𝜃 𝑣 𝛾 𝑣 + 𝑠𝑖𝑛 𝜃 𝑣 𝛾 𝑣  corresponds to |𝛥𝑆𝑡| = 0. 
The 2nd term 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (𝑣 𝛾 𝑣 + 𝑣 𝛾 𝑣 ) corresponds to |𝛥𝑆𝑡| = 1. 
 
VII.4.2 "Real" weak current 𝒋𝑻𝟑𝝁 (𝒗𝒆𝑳, 𝒗𝝁𝑳) 

It is noted that the terms 𝑣 𝛾 𝑣  and 𝑣 𝛾 𝑣  in |𝛥𝑆𝑡| = 1 correspond to what we are looking for, 
"real" weak currents noted 𝑗 (𝑣 , 𝑣 ) and 𝑗 (𝑣 , 𝑣 ), where during an annihilation, the weak 
charges 𝑇  cancel each other and generation numbers 𝐺𝑒 add up. 
 

 
Figure 25: diagram of annihilation weak charge 
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Figure 26: diagram of scattering weak charge 

 
VII.4.3 Annihilation: cancellation of charge 𝑻𝟑 
For 𝑗 (𝑣 , 𝑣 ), quantum numbers are computed during an annihilation reaction: 
 
 𝑗 (𝑣 , 𝑣 ) 𝑣  𝑣  Total 

 
Charge  𝑇  − 12 

12 0 

 
 
Source field 
quantum numbers 

𝐺𝑒 0 1 1 
 𝐿  −1 1 0 
 𝐼  − 12 0 − 12 𝑆  − 12 − 12 −1 

 
Nota 1 
As for quarks, during a scattering with change of 𝐺𝑒, the 3 charges 𝑄, 𝑌 , (𝑇, 𝑇 ) are retained. To see 
why, since we wish that simply (𝑇, 𝑇 ) is retained? 
 
Nota 2 
See also why 𝐼  and 𝑆  are not cancelled as expected? 
 
 
VII.4.4 Scattering: conservation of weak charge 𝑻𝟑 when changing generations 
In the table below, we visualize the passage from 𝑒  to 𝜇 , scattering-type passage, with weak charge 
conservation (𝑇, 𝑇 ) and modification of 𝐺𝑒. 
 
 Source field quantum numbers Charges 

 
Conserved X 

 
 X 

 
 X 

 
X 

 
X 

 
Modified  X 

 
 X 

 
   

Time 

)0,
2
1( 3  GeTeL

)1,0( 33  GeTW

)1,
2
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 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐿  𝐺𝑒 𝑸= 𝑰𝟑 − 𝑳𝒆𝟐+ 𝑮𝒆𝟐  

𝒀𝑾𝟐 = 𝑸 − 𝑻𝟑 (𝑻, 𝑻𝟑 ) 

𝑒  ↓ (12 , − 12) (12 , − 12) 1 0 
 

−1 −1 (12 , − 12) 𝜇  
 (12 , − 12) (0,0) 1 −1 

 
−1 −1 (12 , 12) 

 
VII.5 Electrically charged weak currents 
VII.5.1 Electrically charged weak currents 𝒋𝑻𝝁  
The Electroweak Model determines a charged weak current 𝑗  carrying the weak charge 𝑇  
interacting with the boson 𝑊 : 𝑗 = (𝑒 𝜇) 𝛾 𝜈 ′𝜈 ′  

𝑗 = (𝑒 𝜇) 𝛾 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝜈 ′𝜈 ′  

 
By developing, we obtain: 𝑗 = (𝑐𝑜𝑠 𝜃 𝑒 𝛾 𝜈 + 𝑠𝑖𝑛 𝜃 𝑒 𝛾 𝜈 − 𝑠𝑖𝑛 𝜃 𝜇 𝛾 𝜈 + 𝑐𝑜𝑠 𝜃 𝜇 𝛾 𝜈 ) 𝑗 = 𝑐𝑜𝑠 𝜃 (𝑒 𝛾 𝜈 + 𝜇 𝛾 𝜈 ) + 𝑠𝑖𝑛 𝜃 (𝑒 𝛾 𝜈 − 𝜇 𝛾 𝜈 ) 

 
Nota 1 
The current is given from the PMNS matrix and for 2 generations of leptons. 
 
Nota 2 
We have the charged electrically and positively weak current: 𝑗 = (𝜈 ′ 𝜈 ′) 𝛾 𝑒𝜇  

 
VII.5.2 Hyper currents 𝒋𝒀𝑾𝝁 (𝒆𝑳, 𝝂𝒆𝑳) and 𝒋𝒀𝑾𝝁 (𝒆𝑳, 𝝂𝒆𝑳) 

It is noted that the term 𝑒 𝛾 𝜈  corresponds to the hyper current 𝑗  that we are looking for, that is to 
say a current where during an annihilation, the weak hypercharges 𝑌  cancel each other and isospins 𝐼  add up. 
 
Feynman diagrams are given for the current 𝜈 𝛾 𝑒 . 
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Figure 27: diagram of weak hypercharge creation 

 
Note 
Note the apparent instability of the boson 𝐵, which during a beta decay, interacts quickly with a 
couple electron 𝑒 , antineutrino 𝜈 . 
 
 

 
Figure 28: diagram of weak hypercharge scattering 

 
As with quarks, this only works for left-handed leptons, with the weak hypercharge 𝑌  which remains 
constant when isospin 𝐼  is reversed. For right-handed leptons, the neutrino 𝜈  is not observed. 
 

 
Figure 29: diagram of scattering for the quarks and creation for the leptons 
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VII.5.3 Scattering: weak hypercharge 𝒀𝑾 conserved when isospin is reversed 𝑰𝟑  
In the table below, we visualize the passage from 𝑒  to 𝜈 , with isospin inversion 𝐼 , conservation of 
other source field quantum numbers, conservation of weak hypercharge 𝑌 , modification of charges 𝑄 
and (𝑇, 𝑇 ). 
 
 Source field numbers  Charges 

 
Conserved X 

 
 X 

 
X 

 
 X 

 
 

Modified  X 
 

  X 
 

 X 
 

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 𝐿  𝐺𝑒 𝑸= 𝑰𝟑 − 𝑳𝒆𝟐+ 𝑮𝒆𝟐  

𝒀𝑾𝟐 = 𝑸 − 𝑻𝟑 (𝑻, 𝑻𝟑 ) 

𝑒  ↓ (12 , − 12) (12 , − 12) 1 0 
 

−1 −1 (12 , − 12) 𝜈  
 (12 , − 12) (12 , 12) 1 0 

 
0 −1 (12 , 12) 

 
VII.5.4 Annihilation: cancellation of weak hypercharge 𝒀𝑾 
For 𝑗 (𝑒 , 𝜈 ), quantum numbers are computed during an annihilation reaction: 
 𝑗 (𝑒 , 𝜈 ) 𝑒 , 𝜈  Total 

 
Charge  𝑌  1 −1 0 

 
 
 
Source field 
quantum numbers  

𝐼  12 
12 1 𝐺𝑒 0 0 0 𝐿  −1 1 0 𝑆  − 12 − 12 −1 

 
VII.6 Conclusion 
For weak and hyper interactions, the conclusion is qualitatively identical for quarks and leptons. 
 
Neutral weak currents contain what is called here the "real" weak current, that is, in analogy with the 
electromagnetic current, a weak current formed by a pair of leptons whose respective weak charges 𝑇  
cancel each other out and whose respective generation numbers 𝐺𝑒 add up. 
Charged weak currents contain what is called the "real" hyper current, that is, in analogy with the 
electromagnetic current, a hyper current formed by a pair of leptons whose respective weak 
hypercharges 𝑌  cancel each other out and whose respective isospin numbers 𝐼  add up. 
 
In the next chapter, we will focus on the strong interaction and the particles of the nucleus formed of 
quarks, the hadrons, the only particles subject to this interaction. 
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Chapter VIII Proposal of a model for strong interaction in analogy with 
electromagnetic interaction 

 
Purpose of the chapter 
We first recall some generalities on two properties of the strong interaction: color charge confinement 
and asymptotic freedom. Theory on these 2 properties were developed in the early 1970s as part of 
Quantum Chromodynamics. 
 
In strict analogy with the electromagnetic, weak and hyper interactions developed in the previous 
chapters, we then propose a model for the strong interaction based on a strong charge of color with 
mediating particles not charged with color, carrying a baryonic number, interacting with strong 
charged particles, modifying their baryonic number and generating a strong current 𝑗 . 
 
VIII.1 General on color charge confinement and asymptotic freedom 
VIII.1.1 Limited range of a force explained by the notion of charge confinement 
Charge confinement, it is the idea that opposing charges attract each other and that these charges 
attract each other so much that beyond a certain scale it is impossible to observe them separately. We 
then obtain, beyond this scale, zero, neutral or white charges to use the terminology of Quantum 
Chromodynamics. The resulting interaction (even if it has an infinite scope), no longer has any effect. 
 
VIII.1.2 Limited range of a force explained by the rapid decrease of the potential 
Both electrostatic force and strong interaction have charges that take opposite values and attract each 
other. The attractiveness of opposite charges of the electrostatic force and the strong interaction 
(following the ideas of H. Yukawa) is described respectively by: 

- electric potential of Coulomb 𝑞𝐴 (𝑟) = −𝑔4𝜋𝜀 𝑟 = −𝑒4𝜋𝜀 𝑟 

- strong potential of Yukawa 𝜓(𝑟) = −𝑔 𝑒 ( ℏ )𝑟  
 𝑔 = 𝑒  and 𝑔  are the coupling constants of respectively the electrostatic force and the strong 
interaction, 𝑔  and 𝑔  are the elementary electric charges and elementary strong charges. 𝑚  is the mass of the mesotron, the mass mediating particle proposed by H. Yukawa. 
 
The Coulomb potential decreases in  up to infinity, the range of the electrostatic force is infinite. 

The Yukawa potential decreases much faster because of the term in 𝑒 ( ℏ ), due to the mass of the 
mediating particle. This helps explain the small range of nuclear interactions that no longer act beyond 
the atomic nucleus. 
 
VIII.1.3 Strong color charges confinement 
There is an idea of confinement for both electrical charges and strong colored charges. For example, 
on the astronomical scale, when studying the motion of the planets, the electrostatic force no longer 
has any effect. The opposite electric charges compensate for each other. Only the gravitational force 
intervenes. 
 
In the theory of quantum chromodynamics based on 𝑆𝑈(3) , the scale of confinement of strong 
color charges is much smaller than that of electrostatic force. At the scale of nucleons or free mesons, 
the confinement of color charges already exists. It is impossible to observe free nucleons or free 
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mesons with charges of opposite colors (as on the astronomical scale, it is impossible to observe the 
effects of opposite electric charges). Free nucleons or mesons are said to have a white charge. The 3 
colors 𝑅, 𝐺, 𝐵 neutralize each other. 
You have to go to a smaller scale, that of quarks, to find particles that carry a color charge and that 
manifest the effects of the strong interaction. 
 
In quantum chromodynamics, the low scale of confinement of color charges is explained by variations 
in the coupling constant 𝛼 . This coupling constant 𝛼  is no longer a constant, it increases with 
distance (see later, in the paragraph Energy dependence of coupling constants). 
 
Note 1 
The scale of confinement is not a priori the same for 𝑆𝑈(2)  and 𝑆𝑈(3) . Indeed, in 𝑆𝑈(2)  
nucleons have a non-zero strong charge equal to (𝐼, 𝐼 ). In 𝑆𝑈(3) , nucleons have a strong charge 
of zero or white color. 
It is the same for pion mesons that have a strong charge equal to (𝐼, 𝐼 ) in 𝑆𝑈(2)  and a charge of 
white color in 𝑆𝑈(3) . 
 
Note 2 on the mass of gluons 
Contrary to the ideas of H. Yukawa, in quantum chromodynamics, gluons 𝐺 have zero mass. The 
small range of nuclear interaction between hadrons is explained solely by the confinement of color 
charges. 
 
In the model that we will propose, we will return to the original idea of H. Yukawa. Gluons 𝐺 will be 
attributed a quantum number, the baryonic number, containing a mass (or mass energy). 
 
Note 2 on the color charge 𝐶𝑜 of the gluons 
Unlike photons that carry no electric charge, the gluons 𝐺 of quantum chromodynamics carry a color 
charge and can therefore change the color charge of the particle. 
The gluons 𝐺 are in this analogous to pions 𝜋  and 𝜋  or to weak bosons 𝑊  and 𝑊 , which are 
defined as scale operators, can increase or decrease by 𝑇  the weak charge of a fermion, itself carrying 
a weak charge 𝑇±. 
 
In the following, in analogy with 𝛾 and 𝑊  that do not carry respectively an electrical charge and a 
weak charge, we will define gluons 𝐺 that do not carry a strong charge of color 𝐶𝑜, and therefore 
cannot modify the strong charge of the fermion. 
Like the photon 𝛾 who carry a spin 𝑆, and which can therefore modify the spin of a fermion, like the 
boson 𝑊  who carry a 𝐺𝑒 and which can modify the generation of a quark, we will assign to the gluon 
a baryonic number 𝐵𝑎 allowing it to modify the baryonic number of the fermion with which it 
interacts. 
 
Note that we can have 2 types of gluons 𝐺 (those carrying a strong charge and those not carrying one), 
as we can have the 2 types of bosons 𝑊 (those carrying a weak charge and those not carrying a weak 
charge). What interests us here are photon 𝛾 like mediating particles, that is, those that do not carry 
strong charges but a source field quantum number. 
 
 
VIII.1.4 Limit to attractiveness between 2 charges 
In physics, when two charges (or masses) attract, it is often found that these two (usually opposite) 
charges attract each other only up to a certain stage. Beyond this stage, a compensatory phenomenon 
comes into action, which prevents the two charges from crashing against each other. 
 
This idea is found in the Bohr electron model. The compensatory phenomenon to prevent the electron 
of electric charge – and the proton of electric charge + from attracting each other until they crash 
against each other, is the rotational movement of the electron around the proton. This movement is 
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interpreted as a centrifugal or repulsive inertia force, which compensates for the attractive electrostatic 
force, and "stabilizes" the electron on its orbit. 
 
This idea is also found in Newton's theory of gravitation. The phenomenon compensating for 
gravitational attraction is the same as in the Bohr electron model. It is a rotational movement, for 
example that of the Moon around the Earth, which is interpreted as a repulsive force of inertia. 
 
VIII.1.5 Asymptotic freedom of quarks 
According to Quantum Chromodynamics, the compensatory phenomenon that prevents two quarks of 
opposite color charges from crashing against each other is asymptotic freedom. 
 
To explain this asymptotic freedom, quantum chromodynamics proposes a coupling constant of the 
strong interaction 𝛼 , which decreases when distances become very small. Thus, quarks of opposite 
color charges no longer attract each other when the distances separating them become very small and 
that 𝛼  tends towards 0. At the limit, the strong interaction acting between them is so low, that quarks 
behave almost like free particles. 
 
Why and how does this coupling constant 𝛼  vary? Let us now briefly study what Quantum 
Chromodynamics proposes. 
 
VIII.2 Energy dependence of coupling constants 
VIII.2.1 Case of Relativistic Quantum Electrodynamics 
In relativistic quantum electrodynamics, to take into account the effects of the quantum vacuum, we 
assume a possible variation of the coupling constant as a function of the energy momentum 
quadrivector (here denoted 𝑞) of the virtual photon involved in the exchange mechanism. We call 
effective coupling constant, this constant 𝛼 (𝑞 ) function of 𝑞 . We have: 𝛼 (𝑞 ) ≈ 𝛼1 − 𝛼3𝜋 𝑙𝑛( 𝑞4𝑚 ) 

 
We have at the limit: 𝛼 ( 𝑞4𝑚 → 1) = 𝛼  

with 𝛼  the electromagnetic coupling constant. 
 
We note that the effective coupling constant 𝛼 (𝑞 ) increases when 𝑞  increases. 
 
VIII.2.2 Case of Quantum Chromodynamics 
In quantum chromodynamics, we construct a coupling constant of the same kind: 𝛼 (𝑞 ) ≈ 𝛼1 + 𝐵𝛼 𝑙𝑛( 𝑞𝑞 ) 

With 𝐵 = , 𝑁 : 3 colors of quarks, 𝑁 : number of quark flavors involved, 𝑞  reference value of 𝑞. 
 
We have at the limit: 
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𝛼 (𝑞𝑞 → 1) = 𝛼  

 
We note that the effective coupling constant 𝛼 (𝑞 ) decreases when 𝑞  increases. 
 
Let's list the salient features of 𝛼 (𝑞 ) according to Quantum chromodynamics. 
 
To the low momentums energies 𝑞 ≤ 200𝑀𝑒𝑉, i.e., at a large relative distance from quarks 𝑟 = ℏ ≥1 𝑓𝑚, 𝛼 ≥ 1. The coupling constant 𝛼  increases rapidly with remoteness. The potential of the 
strong interaction becomes approximately linear like a spring: 𝑉(𝑟) ≈ 𝜆𝑟 with 𝜆 a constant of the 
order of 1𝐺𝑒𝑉 × 𝑓𝑚 . This reflects the observed confinement effect of quarks. 
 
To the great momentums energies 𝑞 >> 1𝐺𝑒𝑉, i.e., at low relative distances 𝑟 << 1 𝑓𝑚, we have 𝛼 << 1. This makes quarks appear quasi-free. At the limit, we have 𝛼 (𝑞 → ∞) → 0, this is 
commonly referred to as asymptotic freedom. 
 
VIII.3 Hypotheses for a model of strong interaction with uncharged mediating particles 
After briefly mentioning some properties of quantum chromodynamics, we propose here a simple 
model for the strong interaction which is mainly inspired by 𝑆𝑈(2)  (i.e., the Yang-Mills gauge theory 
on the strong interaction). Despite the great interest of coupling constants, they will therefore be left 
aside in the rest of this Memoir. 
 
This model is in search of analogies with electromagnetic, hyper, and weak interactions. In particular, 
we will propose the existence of gluon-type mediating particles 𝐺 which are non-carrier of strong 
charge and carry a quantum number source field, the baryonic number 𝐵𝑎. 
 
VIII.3.1 Hypotheses on the strong charge and the group of rotations 𝑺𝑼(𝟐)𝑪𝒐 
Quantum chromodynamics is based on the group of rotations 𝑆𝑈(3) . 
 
For simplicity and analogy with: 

- the Yang-Mills theory is based on 𝑆𝑈(2)  with strong charge (𝐼, 𝐼 ), 
- the Electroweak Model which is based on 𝑆𝑈(2)  with weak charge (𝑇, 𝑇 ), 

we propose a model for strong interaction that is based on 𝑆𝑈(2)  with strong color charge (𝐶𝑜, 𝐶𝑜 ). 
 
We propose a color charge (𝐶𝑜, 𝐶𝑜 ), with for strong charged fermions values of the type: (𝐶𝑜, 𝐶𝑜 ) = (12 , ± 12) 
 
Note 1 on the number of dimensions of the rotation group 
If we accept the hypothesis of relating source field equations and interaction, there is no reason to 
differentiate strong and weak interaction by the number of dimensions of the associated rotation 
group. We choose here for simplicity to have strong and weak interactions based on 𝑆𝑈(2). But after 
all, these short-range nuclear interactions can be based on 𝑆𝑈(3), or on 𝑆𝑈(4), 𝑆𝑈(5)… 
 
Note 2 on the color charge of leptons 
Leptons must have (𝐶𝑜, 𝐶𝑜 ) = (0,0), since they are not subject to strong interaction. 
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VIII.3.2   Hypotheses on the particles mediating the interaction and on the transported source 
field quantum number 

Like the photon 𝛾 which is not electrically charged and carries a source field quantum number: the 
spin 𝑆, we define for the strong interaction of mediating particles, the gluons 𝐺, strong uncharged and 
carrying the source field quantum number 𝐵𝑎. 
 
Note on the baryonic number 
We will also take up the hypothesis proposed above that the quarks and quarks composing 
pentaquarks are in fact excited states of nucleons vis-à-vis the baryonic number, following the strong 
interaction. We have for nucleons = 1, for quarks = 3 and for quarks that are components of 

pentaquarks = 5. 
 
 
VIII.3.3 Hypotheses on the strong color charge 𝑪𝒐 
Inspired by the Gell-Mann Nishijima relation, it is suggested that the strong color charge is 
constructed from the 3 source field quantum numbers f, other than the one carried by the mediating 
particle. 
 
Thus, it is assumed that the mediating particle, the gluon 𝐺 carries a baryonic number 𝐵𝑎, and that the 
color charge 𝐶𝑜 is built from 𝑆, 𝐼 and 𝐺𝑒. 
 
We have a function 𝑓  with: (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) 

 
Note 
In Yang-Mills theory, the strong charge is identified with isospin (𝐼, 𝐼 ) and is generator of 𝑆𝑈(2) . In 
the original Quark Model, the strong charge is identified with flavors 𝑢, 𝑑, 𝑠 and is generator of 𝑆𝑈(3) . 
 
We find in 𝑢 and 𝑑 the isospin (𝐼, 𝐼 ) and in 𝑠 strangeness 𝑆𝑡, that is 𝐺𝑒. 
 
To be verified experimentally, if for the strong interaction, like the weak interaction, there is not also a 
violation of parity, that is to say a different strong charge depending on the helicity of the particle? We 
would then have a strong charge also function of the spin (𝑆, 𝑆 ). 
 
 
VIII.3.4 Hypotheses on strong currents 
On the model of electromagnetic current 𝑗  that carries an electrical charge 𝑄, of weak current 𝑗  that 
carries a weak charge 𝑇  or hyper current 𝑗  that carries a weak hypercharge 𝑌 , we define a strong 
current 𝑗  that carries a strong charge 𝐶𝑜 . 
 
To explain this current, we take up Bohr's parable. The exchange of a source field quantum number 
between a fermion and a mediating particle carrying this quantum number, generates a move of the 
charge 𝑋 (electric, hyper, weak or strong charge) and therefore a current. 
In the other sense, a current or a charge 𝑋 in motion radiates a mediating particle wave carrying the 
source field quantum number. 
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VIII.4 Application of the model to nucleons and quarks of 1st generation 
VIII.4.1 Starting from the Yang-Mills theory for the strong interaction 
It was proposed that: (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) 

 
If we take the Yangs-Mills theory for the strong interaction, in the case of nucleons and quarks of 1st 
generation, we can identify the strong charge 𝐶𝑜  to isospin 𝐼 : 𝐶𝑜 = 𝐼  

 
VIII.4.2 Scattering: strong charge (𝑪𝒐, 𝑪𝒐𝟑 ) conserved when modifying 𝑩𝒂 
During the passage from a proton 𝑝 to a quark 𝑢, We have the modification of the baryonic number 𝐵𝑎 and the conservation of the strong charge identified with isospin: 𝐶𝑜 = 𝐼 = 12 
 
 Source field numbers Charges 

 
Conserved X 

 
X 
 

 X 
 

  X 
 

X 
 

Modified   X 
 

 X 
 

X 
 

  

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 1𝐵𝑎 𝐺𝑒 electric 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

hyper 𝑌2= 𝑄 − 𝑇  

weak (𝑇, 𝑇 ) 
strong (𝐶𝑜, 𝐶𝑜 ) 

𝑝 ↓ (12 , ± 12) (12 , 12) 1 0 
 

+1 +1 +2 (12 , 12) (0,0) 
(12 , 12) 

𝑢 
 (12 , ± 12) (12 , 12) 3 0 

 + 23 + 13 + 43 

(12 , 12) (0,0) 
(12 , 12) 

 
Note 
La weak charge (𝑇, 𝑇 ) is a priori preserved when we go from 𝑝 to 𝑢 whereas in the general case we 
would like that this weak charge is modified. To see why? 
 
For left-handed nucleons and quarks of 1st generation, both the strong charge and the weak charge can 
be identified with isospin. 
 
 
During the passage from a neutron 𝑛 to a quark 𝑑, we have a change in the baryonic number 𝐵𝑎 and 
conservation of the strong charge equal to isospin: 𝐶𝑜 = 𝐼 = − . 
 
 Source field numbers  Charges 

 
Conserved X 

 
X 
 

 X 
 

  X? 
 

X 
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Modified   X 
 

 X 
 

X 
 

  

 (𝑆, 𝑆 ) (𝐼, 𝐼 ) 1𝐵𝑎 𝐺𝑒 electric 𝑄= 𝐼 + 𝐵𝑎2+ 𝐺𝑒2  

hyper 𝑌2= 𝑄 − 𝑇  

weak (𝑇, 𝑇 ) 
strong (𝐶𝑜, 𝐶𝑜 ) 

𝑛 ↓ (12 , ± 12) (12 , − 12) 1 0 
 

0 +1 0 (12 , − 12) (0,0) 
(12 , − 12) 

𝑑 
 (12 , ± 12) (12 , − 12) 3 0 

 − 13 + 13 − 23 

(12 , − 12) (0,0) 
(12 , − 12) 

 
We have Feynman diagrams of the scattering type: 
 

 
Figure 30: passage from a proton to an up quark, scattering of the strong charge 

 

 
Figure 31: passage from a neutron to a down quark, scattering of the strong charge 

 
Note 
It is assumed here that it can be summed the terms in  and not in 𝐵𝑎. This is purely speculative and 
needs to be verified experimentally. 
 
 
VIII.4.3 Annihilation: cancellation of the strong charge 𝑪𝒐𝟑 
For a strong current of the type 𝑗 (𝑛, 𝑝) = 𝐶𝑜 𝑛𝛾 𝑝, we calculate the quantum numbers during an 
annihilation: 
 
 𝑗 (𝑛, 𝑝) 𝑛 𝑝 Total 
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Strong charge 𝐶𝑜 = 𝐼  − 12 + 12 0 

 
 
Source field 
quantum numbers 

1𝐵𝑎 1 1 2 𝐺𝑒 0 0 0 𝐼  − 12 + 12 0 𝑆  ± 12 ± 12 0 

 

 
Figure 32: annihilation of the strong charge 

 
Note 1, on uncharged mediating particles 𝑀  
In this Memoir, we look for uncharged mediating particles 𝑀  analogues of the photon 𝛾, that do not 
change the charge 𝑋  of the fermion, generate the displacement of the charge 𝑋  when exchanging a 
source field quantum number, and create a current 𝑗 . 
 
We want to find Noether's theorem: a symmetry of the system, that is to say a quantity conserved by 
global gauge transformation, the charge 𝑋 , implies the existence of a retained current 𝑗  carrying the 
charge 𝑋 . 
 
Like the photon 𝛾, here proposed gluons 𝐺 , 𝐺 , 𝐺  do not carry a strong charge 𝐶𝑜 , 𝑎 = 1,2,3. 
They interact with fermions with strong charge 𝐶𝑜 , by exchanging baryon numbers 𝐵𝑎. 
 
For nuclear interactions, gluons 𝐺 , 𝐺 , 𝐺  are the analogues of the 3 weak bosons 𝑊 , 𝑊 , 𝑊 . The 
latter do not carry a weak charge 𝑇 , 𝑎 = 1,2,3. They interact with fermions with weak charge 𝑇 , by 
exchanging generation numbers 𝐺𝑒. 
 
Uncharged mediating particles associated with groups 𝑆𝑈(𝑛) with 𝑛 ≥ 2, may nevertheless react to 
each other via terms such as 𝑔𝜀 𝐴 𝐴 , and exchange source field quantum numbers. As these 
mediating particles do not possess a charge 𝑋 , their interactions cannot generate charge movements, 
i.e., currents 𝑗 . 
 
Note 2, on charged mediating particles 𝑀± 
Mediating particles 𝑀±, carriers of charge 𝑋±, which may increase or decrease by 𝑋± the charge 𝑋  
of a fermion, are referred to as scale operators. They are not presented here as the real particles 
mediating the interaction, in the sense that they are not like the photon, free of charge. 
 
Following the Yang-Mills theory of strong interaction, pions 𝜋 , 𝜋  are the mediating particles of the 
scale operator type of the strong interaction, i.e., these pions carry a strong charge and can modify by 𝐼  the strong charge of a nucleon, while maintaining its baryonic number 𝐵𝑎. 
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According to the Quark Model of the strong interaction, electrically charged mesons formed of a quark 
and an antiquark (to choose from the flavors 𝑢, 𝑑 and 𝑠) are the mediating particles of the scale 
operator type of the strong interaction, i.e., these mesons carry a strong charge and can modify the 
strong charge of a baryon, while maintaining its baryonic number 𝐵𝑎. 
 
According to the Electroweak Model, weak bosons 𝑊 , 𝑊  are the mediating particles of the scale 
operator type of the weak interaction, i.e., these weak bosons carry a weak charge and can modify by 𝑇  the weak charge of a left-handed fermion, while maintaining its number of generations (if we stay 
in the same generation of quarks). 
 
For electromagnetic interaction, the analogue of these mediating particles of scale operator type which 
modify by 𝑋± the charge 𝑋  of a particle, is not the photon mediating particle 𝛾, but rather protons 𝐻  
and electrons 𝑒  involved in chemical reactions (acid-base reactions, oxidation-reduction reactions, 
etc.) that modify the electric charge of a particle or a set of particles, while maintaining its spin 
number 𝑆. 
 
 
VIII.5 Conclusion of the chapter 
In previous chapters, we have tried to present more of the weak and hyper interactions encountered in 
the Electroweak Model in analogy with the electromagnetic interaction. 
 
In this chapter, we have proposed a simple model of strong interaction, in strict analogy with 
electromagnetic, hyper, and weak interactions, with strong uncharged mediating particles. 
Inspired by the Yang-Mills theory on the strong interaction, it has been proposed in the case of 
nucleons and quarks of 1st generation, a strong charge 𝐶𝑜  equal to isospin 𝐼 . During a scattering 
with passage from a nucleon to a quark, it was pointed out that the strong charge 𝐶𝑜 = 𝐼 = ±  is 
conserved and the baryonic number 𝐵𝑎 is modified. 
 
In the next chapter, we will summarize for each interaction, the source field equation and the quantum 
number that we propose to associate with it. 
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Chapter IX Source field equations, quantum numbers and interactions 
 
Purpose of the chapter 
In this chapter, we study for each of the 4 source field equations proposed for gravitation, its link with: 

1. a source field quantum number 𝑆 , 𝐼 , 𝐺𝑒, 𝐵𝑎, 
2. a mediating particle carrying the quantum number, 
3. a fermion carrying a charge 𝑋, 
4. an exchange of the source field quantum number between the mediating particle and the 

fermion, 
5. a displacement of the charge 𝑋, 
6. an interaction. 

 
IX.1 Source field equation of de Broglie, spin 𝑺, photon 𝜸, electromagnetic interaction 
At the beginning of this Memoir, it was proposed that the invariance of the source field equation of de 
Broglie corresponds to the conservation of orbital and spin angular momentum during reactions 
between particles. It is applied here to electromagnetic interaction. We will test in the next paragraphs 
a generalization on the other 3 interactions. 
 
IX.1.1 Quantity exchanged between the mediating particle and the fermion: orbital angular 

momentum or spin angular momentum 𝑺 
It is proposed to associate the spin 𝑆 with the source field equation of de Broglie: ℏ2 = 12 𝑝𝐾 /  

ℏ2 = 12 𝑝𝐾  

ℏ2 = 12 𝑝𝐾 /  

 

Note 
The 3 real dimensions or 2 complex dimensions of 𝑆𝑈(2)  are here related to the 3 dimensions of the 
momentum 𝑝 in Space. 
 
 
IX.1.2 Mediating particle, photon 𝜸 
The photon 𝛾 carries a spin 𝑆. Its other three quantum numbers (𝐼, 𝐺𝑒, 𝐵𝑎) are zero. Following the 
Gell-Mann Nishijima relation 𝑄 = 𝐼 + + , Its electric charge is zero: 𝑄 = 0. 
 
The spin ℏ = ⃗⃗ /  of the photon 𝛾 breaks down into a momentum 𝑝  and a wavelength / = . 

The photon 𝛾 has a momentum, a wavelength, but no mass. 
 
Note 1 on the pulsation of the photon 
For a photon 𝛾 propagating in a vacuum at speed 𝑐, we have 𝑣 = = 𝑣 = = 𝑐. 
If we know its wave vector 𝐾 = ℏ, we can easily deduce its pulsation 𝛺 = 𝐾𝑐. 
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Note 2 on bosons interpreted as composed of 2 particles 
Like meson bosons composed of a quark and an antiquark, it could be interesting to imagine that each 
mediating particle is in fact composed of two fermion-type particles, opposite values for three source 
field quantum numbers and the same value for the quantum number characterizing them. 
 
For example, a photon γ could be composed of: 
Particle Spin  𝑺𝟑 

Isospin  𝑰𝟑  
Generation 𝑮𝒆 

Baryonic 
number 𝑩𝒂 𝑢  − 12 + 12 0 + 13 𝑢  − 12 − 12 0 − 13 𝛾 −1 0 0 0 

 
We find very similar suggestions among many physicists. For example, L. de Broglie also proposes to 
interpret the photon as the assembly of 2 particles. Despite the speculative aspect of such a proposal, 
the interest is to reduce the number of elementary particles. 
Moreover, as already mentioned, this would also explain why the Pauli exclusion principle does not 
apply to Bosons. Indeed, the latter would be composite particles formed of 2 particles, for which on 
the other hand the Pauli principle would apply. 
 
 
IX.1.3 Particles subject to electromagnetic interaction 
Particles subject to electromagnetic interaction are fermions with a spin 𝑆  with half-integer number 
(positive or negative) and an electric charge 𝑄 ≠ 0. 
 
By exchanging spins 𝑆 with a photon 𝛾, fermions change orbits. We have displacement of the electric 
charge 𝑄 and appearance of an electromagnetic current 𝑗 . 
 
IX.1.4 Examples of reactions 
We give some reactions where the electromagnetic interaction intervenes: 

- reversal of the spin of an electron (hyperfine transition), for example an electron of left 
helicity becomes an electron of right helicity (if same momentum for the 2 electrons), 

- change in the energy level of an electron in an atom (change in its orbital angular momentum 
and change in its orbit), 

- annihilation of an electron and a positron of the same spin with production of a photon 𝛾. 
 

 
Figure 33: scattering of the electric charge, hyperfine transition  
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Figure 34: annihilation of the electric charge 

 
IX.2 Newton's source field equation, isospin 𝑰, boson 𝑩, hyper interaction hyper 
In analogy with what has been proposed for electromagnetism, we wish here to test whether the 
invariance of Newton's source field equation (or Newton's fundamental principle of dynamics), can 
correspond to the conservation of isospin (and its analogue in orbital) during reactions between 
particles. 
 
IX.2.1 Quantity exchanged between the mediating particle and the fermion: isospin 𝑰 
It is proposed to combine isospin 𝐼 to Newton's source field equation: ℏ2 = − 12 (𝑑�⃗�𝑑𝑡 ) 𝜕𝑥𝜕𝛺 /  

ℏ2 = − 12 (𝑑�⃗�𝑑𝑡 ) 𝜕𝑦𝜕𝛺 /  

ℏ2 = − 12 (𝑑�⃗�𝑑𝑡 ) 𝜕𝑦𝜕𝛺 /  

 

Note, propose a case where the isospin would be equal to the Newton's source field equation 
Following the Gell-Mann Nishijima relation, we have: 𝑄 = 𝐼 + 𝐵𝑎2 + 𝐺𝑒2  

 
In the event that + = 0, that is, where we eliminate the terms of mass, we get: 𝑄 = 𝐼  

 
Here we propose that isospin is the quantum number associated with Newton's source field equation: 𝐼 = − 𝑑𝑝𝑑𝑡 × 𝜕𝑟𝜕ℏ𝛺 

 
We thus obtain: 𝑄 = − 𝑑𝑝𝑑𝑡 × 𝜕𝑟𝜕ℏ𝛺 

We find the expression of the fundamental principle of dynamics for the electrostatic force: 
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𝑑𝑝𝑑𝑡 = −𝑄 𝜕ℏ𝛺𝜕𝑟  

with ℏ𝛺 = 𝑒𝐴  

We propose a 2nd case a little further where we take into account the masses. 
 
 
IX.2.2 Mediating particle, boson 𝑩 
The boson 𝐵 carry an isospin 𝐼. By analogy with the photon, its other three quantum numbers (𝑆, 𝐺𝑒, 𝐵𝑎) are zero and its weak hypercharge 𝑌  is zero. 
 
In addition to the S. Glashow relation for the Electroweak Model 𝑄 = 𝑇 + , we assume a 
relationship of the type: 𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐺𝑒, 𝐵𝑎) 

 
The boson 𝐵 has a momentum, a pulsation, but no mass. 
 
Note on the hypothetical characteristics of the boson B 
Although the boson 𝐵 is present in the Electroweak Model, it has not yet been discovered 
experimentally. It must be similar to the photon 𝛾 in the sense that both possess a momentum 𝑝 and no 
mass energy at rest 𝑚 𝑐 . 
Nevertheless, the boson 𝐵 is electrically charged via its isospin 𝐼. It should be subject to the effects of 
an electric field. It is he who "collects" the negative electric charge during a decay 𝛽  from a neutron 
to a proton. 
Note that the boson 𝐵 would be the only particle with an electric charge, but no rest mass. 
 
 
IX.2.3 Particles subject to hyper interaction: fermions with a non-zero weak hypercharge 𝒀𝑾 
By analogy with spin, particles subject to hyper interaction are fermions with a half-integer isospin 𝐼 
(positive or negative) and a non-zero weak hypercharge 𝑌 . 
 
By exchanging isospins 𝐼 with the mediating particle 𝐵, fermions change their orbits, while keeping 
their weak hypercharge 𝑌  constant (invariance of Newton's fundamental principle of dynamics). We 
observe the displacement of the weak hypercharge 𝑌  and the appearance of a hyper current 𝑗 . 
 
For example, during a decay 𝛽 , by switching from a neutron to a proton, there is a change of orbit 
(taken in the broad sense) of the nucleon, displacement of the weak hypercharge 𝑌  carried by the 
nucleon and appearance of a hyper current 𝑗 . 
 
IX.2.4 Example of reaction 
Decay 𝛽 , with transition from a left-handed neutron to a left-handed proton (or from a quark 𝑑  to a 
quark 𝑢 ). 
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Figure 35: scattering of the weak hypercharge 

 
Note 
Conservation of weak hypercharge 𝑌  only works for left-handed fermions. 
 
 
IX.3 Source field equation of Compton, number of generations 𝑮𝒆, Bosons 𝑾𝒂, weak 

interaction 
In analogy with what has been proposed for electromagnetism, we wish here to test whether the 
invariance of the source equation Compton field can correspond to the conservation of the number of 
generations during reactions between particles. 
 
IX.3.1 Quantity exchanged between the mediating particle and the fermion: number of 

generations 𝑮𝒆 
It is proposed to associate the number of generations 𝐺𝑒 to the Compton source field equation: ℏ = −(𝑑�⃗� 𝑐𝑑𝑥 ) 𝜕𝑡𝜕𝐾 /  

 
IX.3.2 Mediating particles, weak bosons 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 
Weak bosons 𝑊 , 𝑊 , 𝑊  are carriers of the number of generations 𝐺𝑒. 
 
By analogy with the photon, their other three quantum numbers ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎) are zero and their 
weak charge (𝑇, 𝑇 ) is zero. 
 
 
According to the electroweak model, we have a relationship of the type between the 3 charges: 𝑌2 = 𝑄 − 𝑇  

 
We also propose a relationship such as: (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎) 

 
Weak bosons 𝑊 , 𝑊 , 𝑊  possess mass energy 𝑝 𝑐 = 𝑚 𝑐  and wavelength 𝜆 = . Following the 
ideas of H. Yukawa, their mass energy explains the low range of the weak interaction. 
 
Note, on internal reactions between weak bosons 
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Even if they do not have a weak charge 𝑇 , weak bosons can react with each other via the term 𝑔 𝜀 𝑊 𝑊 . 
Since they do not carry a weak charge 𝑇 , weak bosons 𝑊 , 𝑊 , 𝑊  do not generate weak currents 𝑗  during their displacement. 
 
 
IX.3.3 Particles subject to weak interaction: fermions carrying a non-zero weak charge 𝑻𝒂 
Particles subject to weak interaction are left-handed fermions and right-handed anti-fermions of non-
zero weak charge 𝑇 . 
 
Right-handed fermions and left-handed anti-fermions have a zero weak charge 𝑇 , they are not subject 
to weak interaction. 
 
By exchanging 𝐺𝑒 with the mediating particle, Left-handed fermions change "orbits" while keeping 
constant their weak charge 𝑇 . We observe a displacement of the weak charge 𝑇  and the appearance 
of a weak current 𝑗 . 
 
IX.3.4 Example of reaction 
Decay of the kaon: 𝐾 (𝑢�̄�) → 𝜋 (𝑢𝑑) + 𝜈 + �̄� 
 

 
Figure 36: weak charge scattering 

 
IX.4 Source field equation of Einstein, baryonic number 𝑩𝒂, gluons 𝑮𝒂, strong 

interaction 
In analogy with what has been proposed for electromagnetism, we wish here to test whether the 
invariance of the source equation Einstein's field can correspond to the conservation of the baryonic 
number during reactions between particles. 
 
IX.4.1 Quantity exchanged between the mediating particle and the fermion: baryonic number 𝑩𝒂 
It is proposed to associate the baryonic number with Einstein's source field equation: ℏ = �⃗� 𝑐𝛺 /  

 
IX.4.2 Mediating particles, gluons 𝑮𝟏, 𝑮𝟐, 𝑮𝟑 
Gluons 𝐺 , 𝐺 , 𝐺  are carriers of the baryonic number 𝐵𝑎. 
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By analogy with the photon, their other three quantum numbers ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) are zero and their 
strong charge 𝐶𝑜 is zeo. 
 
We also propose a relationship such as: (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) 

 
Gluons 𝐺 , 𝐺 , 𝐺  possess mass energy and pulsation. 
 
IX.4.3 Particles subject to strong interaction: hadrons carrying a non-zero strong charge 
The particles subject to strong interaction are hadrons, which have a non-zero strong charge. 
 
IX.4.4 Example of reaction 
A proton 𝑝 transforms into a quark 𝑢. 
 

 
Figure 37: scattering of the strong charge 

 
Note, propose a second case where the isospin would be equal to the source field equation of 
Newton 
We are interested in nucleons. As a first approximation, the baryonic number corresponds to the mass 
number A: 𝐵𝑎 = 𝐴 
 
We have the mass of the nucleus of an atom, for example a carbon atom of mass number 𝐴 = 12, 𝐶: 𝑚 = 𝐴𝑚 = 12𝑚  

with 𝑚  the mass of the nucleon particle. 

 
It is proposed that 𝐵𝑎 is associated with the Einstein source field equation. We have: 𝐵𝑎 = 𝐴 = 𝑚 𝑐ℏ𝛺  

with  𝛺  the pulsation of the nucleon wave. 
 
For the nucleus of C, we have: 𝑚 = 12𝑚 = 𝑚 𝑐ℏ𝛺 𝑚  

 

Following the Gell-Mann Nishijima relation, we have: 

Time 

)11,
2
1( 33 

Ba
ICop

)21,0( 3 
Ba

CoG

)31,
2
1( 33 

Ba
ICou



Memoir 5: the effect of Einstein and the parable of Bohr     419 

𝑄 = 𝐼 + 𝐵𝑎2 + 𝐺𝑒2  

In the event that = 0, that is, where we eliminate the terms of the weak interaction, we get: 𝑄 = 𝐼 + 𝐵𝑎2  

𝐼 = 𝑄 − 𝐵𝑎2  

𝐼 = 𝑄 − 𝐴2 

It is proposed that isospin is the quantum number associated with Newton's source field equation. We 
have: 𝐼 = − 𝑑𝑝𝑑𝑡 × 𝜕𝑟𝜕ℏ𝛺 

𝑄 − 𝐴2 = − 𝑑𝑝𝑑𝑡 × 𝜕𝑟𝜕ℏ𝛺 𝑑𝑝𝑑𝑡 = −𝑄 𝜕ℏ𝛺𝜕𝑟 + 𝐴2 𝜕ℏ𝛺𝜕𝑟  

We suppose for energies: ℏ𝛺 = 𝑒𝐴  ℏ𝛺 = 2𝑚 𝑉  

We then have: 𝑑𝑝𝑑𝑡 = −𝑒𝑄 𝜕𝐴𝜕𝑟 + 𝑚 𝐴 𝜕𝑉𝜕𝑟  

We find the expression of the fundamental principle of dynamics with an electrostatic 
force: −𝑒𝑄 = 𝑒𝑄�⃗�𝑠 and a gravitational force: 𝑚  𝐴 = −𝑚 𝐴�⃗�𝑟: 𝑑𝑝𝑑𝑡 = 𝑒𝑄�⃗�𝑠−𝑚 𝐴�⃗�𝑟 

 
IX.5 Charge functions of 3 source field quantum numbers 
Let us now recap the arguments that have been mentioned in this Memoir, to express each charge 
according to the 3 complementary source field quantum numbers, that is to say other than that carried 
by the particle mediating the interaction concerned. 
 
IX.5.1 Electric charge 𝑸 = 𝒇𝑸((𝑰, 𝑰𝟑), 𝑩𝒂, 𝑮𝒆)? 
We have the Gell-Mann Nishijima relation: 𝑄 = 𝐼 + 𝐵𝑎2 + 

 where we find 𝐼 , 𝐵𝑎 and 𝐺𝑒 

 
A similar relationship has been proposed for leptons: 
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𝑄 = 𝐼 − 𝐿2 + 𝐺𝑒2  

 
Nevertheless, we expect a function 𝑓  more complex than a simple sum since we add terms of 
different nature with on one side 𝐼 , and on the other 𝐵𝑎, 𝐿  and 𝐺𝑒. 
 
Note on spin 
Electrical charge 𝑄 is not a function of spin (𝑆, 𝑆 ), since the spin is not modified when moving from 
matter to antimatter. 
 
 
IX.5.2 Strong charge (𝑪𝒐, 𝑪𝒐𝟑) = 𝒇𝑪𝒐((𝑺, 𝑺𝟑), (𝑰, 𝑰𝟑), 𝑮𝒆)? 
In Yang-Mills theory, the strong charge is identified with (𝐼, 𝐼 ). 
In the Quark Model, the strong charge is identified with (𝐼, 𝐼 ) × 𝐺𝑒. 
 
As mentioned, to be verified experimentally, if for the strong interaction, like the weak interaction, 
there is not also a different strong charge depending on the helicity of the particle? We would then 
have a strong charge also function of the spin (𝑆, 𝑆 ). 
 
Note 1 on the baryonic number 
Strong charge (𝐶𝑜, 𝐶𝑜 ) does not seem to be a function of the baryonic number 𝐵𝑎. In the Quark 
Model, nucleons and quarks have the same strong charge and a different baryonic number. 
 
Note 2 on the pion 𝝅𝟎 carrying a strong charge as a function of spin? 
In Yang-Mills theory, the pion 𝜋  carries a strong charge and can change the strong charge of a 
particle. The pion 𝜋  has a zero spin. Nevertheless, since 𝜋  is electrically neutral, the strong charge it 
carries, should be a function of spin, the only source field quantum number not electrically charged. 
 
 
IX.5.3 Weak charge (𝑻, 𝑻𝟑) = 𝒇𝑻((𝑺, 𝑺𝟑), (𝑰, 𝑰𝟑), 𝑩𝒂)? 
In the weak interaction, there is a violation of parity which is explained by a different weak charge 
depending on the helicity of the particle. So, we have a weak charge as a function of spin (𝑆, 𝑆 ). 
 
For left-handed baryons and leptons of 1st generation, the weak charge is identified at (𝐼, 𝐼 ). 
 
No arguments have been made in favour of a weak charge function of 𝐵𝑎 or of 𝐿 . 
During the transition from matter to antimatter, 𝑇  and 𝐵𝑎 both reverse. 
 
Note 1 on the number of generations 
Unlike the isospin (𝐼, 𝐼 ), the weak charge (𝑇, 𝑇 ) remains the same regardless of the generation 𝐺𝑒 of 
the particle. The weak charge (𝑇, 𝑇 ) is therefore not a priori function of 𝐺𝑒. 
On the other hand, during the transition from matter to antimatter, both 𝑇  and 𝐺𝑒 reverse. For 
example, when switching from the quark 𝑐 to the quark �̄�. 
 
Note 2 on the boson 𝒁𝟎 
In the Electroweak Model, the boson 𝑍  carries a weak charge and can change the weak charge of a 
particle. Unlike the pion 𝜋 , the boson 𝑍  has a non-zero spin equal to 1. Since the boson 𝑍  is 
electrically neutral, the weak charge it carries, should be a function of spin, the only source field 
quantum number not electrically charged. 
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IX.5.4 Weak hypercharge 𝒀𝑾 = 𝒇𝒀((𝑺, 𝑺𝟑), 𝑩𝒂, 𝑮𝒆)? 
The weak hypercharge is different depending on the helicity of the particle. So, we have a weak 
hypercharge function of spin (𝑆, 𝑆 ). 
 
For left-handed quarks and leptons of 1st, 2nd and 3rd generation (as well as for their antiparticles), we 
have: 𝐵𝑎 − 𝐿 = 𝑌  

The weak hypercharge is therefore a function of 𝐵𝑎 and of 𝐿 . 
 
Unlike (strong) hypercharge 𝑌, the weak hypercharge 𝑌  remains the same regardless of the 
generation 𝐺𝑒 of the particle. No arguments have been made in favour of a weak hypercharge function 
of 𝐺𝑒. 
On the other hand, during the transition from matter to antimatter, both 𝑌  and 𝐺𝑒 reverse. 
 
Note on isospin 
When 𝐼  varies, the weak hypercharge 𝑌  remains constant. Weak hypercharge 𝑌  is therefore not a 
priori function of (𝐼, 𝐼 ). 
 
 
IX.5.5 Charges generators of groups 𝑺𝑼(𝒏) 
The summary table is set out below: 
 
 Source field equations with wavevector Source field equations with pulsation 
Source field 
equations with 
momentum 

ℏ2 = 12 𝑝𝐾 /  

Spin (𝑆, 𝑆 ) generator of 𝑆𝑈(2)  
Electric charge 𝑄 generator of 𝑈(1)  

ℏ2 = − 12 (𝑑𝑝𝑑𝑡 ) 𝜕𝑥𝜕𝛺 /  

Isospin (𝐼, 𝐼 ) generator of 𝑆𝑈(2)  
Weak hypercharge 𝑌  generator of 𝑈(1)  

Source field 
equations with 
mass 

ℏ = −(𝑑�⃗� 𝑐𝑑𝑥 ) 𝜕𝑡𝜕𝐾 /  

Generation 𝐺𝑒 generator of 𝑈(1)  
Weak charge (𝑇, 𝑇 ) generator de 𝑆𝑈(2)  

ℏ = �⃗� 𝑐𝛺 /  

Baryonic number 𝐵𝑎 generator of 𝑈(1)  
Strong charge (𝐶𝑜, 𝐶𝑜 ) generator de 𝑆𝑈(2)  (or of 𝑆𝑈(3) ) 

 
It is observed that: 

- when the source field quantum number is a generator of 𝑆𝑈(2), its corresponding charge is 
generator of 𝑈(1), 

- When the source quantum number field is a generator of 𝑈(1), its corresponding charge is a 
generator of 𝑈(1). 

 
This goes in the direction of relationships: charges 𝑋 functions of the source field quantum numbers, 
which are proposed. We do indeed have a charge 𝑋 generator of 𝑆𝑈(𝑛) when 2 quantum numbers of 
which it is function, are generators of 𝑆𝑈(𝑛). 𝑄 = 𝑓 ((𝐼, 𝐼 ), 𝐵𝑎, 𝐺𝑒) 𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒) (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎) (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) 
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IX.5.6 Remarks and questions on charges 𝑿 
Note 1, inversion or modification of a charge 𝑿, conservation of the associated source field 
quantum number 
During a transformation where a charge 𝑋 is modified, the source field quantum number associated 
with the corresponding interaction must be retained. 
 
For electromagnetic interaction, when passing for example from an electron 𝑒 to an antielectron �̄� 
(reversal of electrical charge 𝑄), the spin 𝑆  is retained. This corresponds to the electromagnetic 
current �̄�𝛾 𝑒. 
 
For the strong interaction, when passing for example from a neutron 𝑛 to a proton 𝑝 (reversal of the 
strong charge 𝐶𝑜 = 𝐼 ), the baryonic number 𝐵𝑎 is retained. This corresponds to the strong current 𝑛𝛾 𝑝. 
 
For hyper interaction, when passing for example from an antiquark 𝑢  to a quark 𝑑  (reversal of the 
weak hypercharge 𝑌 ), the isospin 𝐼  is retained. This corresponds to the hyper current 𝑢 𝛾 𝑑  
(contribution to the weak charged current in the Electroweak Model). 
 
Let's observe that it works less well for weak interaction. When passing from an antiquark 𝑠  to a 
quark 𝑑  (reversal of the weak charge 𝑇 ), 𝐺𝑒 is not retained since it changes from to 10. This 
corresponds to the weak current 𝑠 𝛾 𝑑  (contribution to neutral weak current in the Electroweak 
Model). 
 
On the other hand, it works for nucleons and quarks of 1st generation. When passing from a neutron 𝑛  
to a proton 𝑝  or from a quark 𝑑  to a quark 𝑢  (reversal of the weak charge 𝑇 = 𝐼 ), the number of 
generations 𝐺𝑒 is retained. 
 
Note 2, moving charge = radiation of a progressive wave 
For electromagnetic interaction, an electric charge in accelerated motion radiates an electromagnetic 
progressive wave (photon 𝛾 carrying a spin 𝑆 following another representation of the phenomenon). 
This wave is interpreted as the variations in Space-Time of an electromagnetic field moving at speed 𝑐 
in the vacuum. 
 
Following an analogy between the 4 interactions, a moving electric charge 𝑄, a moving weak 
hypercharge 𝑌 , a moving weak charge 𝑇, a moving strong charge 𝐶𝑜 (that is, currents 𝑗 , 𝑗 , 𝑗 , 𝑗 ) 
respectively radiate an electromagnetic progressive wave (photon 𝛾 carrying a spin 𝑆), a hyper 
progressive wave (boson 𝐵 carrying an isospin 𝐼), a weak progressive wave (bosons 𝑊 carrying a 𝐺𝑒), 
a strong progressive wave (gluons 𝐺 carrying a 𝐵𝑎). 
These waves are interpreted as the variations in Space-Time respectively of an electromagnetic field, a 
hyper field, a weak field, a strong field, all these fields moving with a speed a priori equal to c in the 
vacuum. 
 
Note 3, on source field equations 
In the 3rd Memoir, source field equations for gravitation were proposed in analogy with Maxwell's 
source field equations based on electric charge. To see if there are also source field equations for the 
other 3 charges (weak, strong, and hyper)? 
 
Note 4, How to make the link between the field (or potential) representing the mediating particle 
and the source field quantum quantity transported by the mediating particle? 
In relativistic quantum electrodynamics, the link between the electromagnetic field, the photon and the 
spin 𝑆 is one of the fundamentals of the theory. 
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However, spin does not appear in the gauge transform of the wave function: 𝜓 → 𝜓′ =𝑒𝑥𝑝( 𝑖𝑒𝑄𝛼(𝑥))𝜓, nor in the covariant derivative: 𝜕 → 𝐷 = 𝜕 + 𝑖𝑞𝑄𝐴 , nor in the Lagrangian: 𝐿 =𝜓(𝑖𝛾 𝜕 − 𝑚)𝜓 + 𝑒𝜓𝛾 𝜓𝐴 . 
 
The link is therefore not so obvious between the electromagnetic field and spin 𝑆. 
 
It is the same for the other 3 interactions, where there is no obvious link between: 

- the field or potential representing the mediating particle (as well as the Gauge transform and 
interaction term), 

- the source field quantum number transported by the mediating particle. 
 
This is why, in our opinion, that the Standard Model does not associate the boson 𝐵, the bosons 𝑊 , 𝑊 , 𝑊 , and the gluons 𝐺 , 𝐺 , 𝐺  respectively to 𝐼 , 𝐺𝑒 and 𝐵𝑎. 
 
In the Bohr electron model, the link between angular momentum 𝜎 = 𝑟𝑚𝑣 = ℏ and electrostatic 
potential energy 𝐸𝑝 = 𝑒𝐴 = −  (in a way, the link between spin and the electromagnetic field) is 
done via the fundamental principle of Newton's dynamics. We have: 𝑚 𝑣𝑟 = 𝑒4𝜋𝜀 𝑟  𝜎 = 𝑟𝑚𝑣 = ℏ 

𝑟𝑚𝑣 × 𝑣 = 𝑒4𝜋𝜀  

We obtain the expression of the velocity of the electron: ℏ × 𝑣 = 𝑒4𝜋𝜀  

As well as the electromagnetic coupling constant: 𝛼 = 𝑒4𝜋𝜀 ℏ𝑐 

To see therefore, for the 4 interactions, how to obtain a general link between: 
- the field representing the mediating particle, 
- the source field quantum quantity transported by the mediating particle? 

 
 
IX.6 Stages of Bohr's parable 
IX.6.1 Stages of Bohr's parable for the 4 interactions 
In the table below, we summarize the steps of the Einstein effect and the Bohr parabola for the 4 
interactions (𝑎 = 1,2,3). 
 
Steps Electromagnetic 

interaction 
Hyper 
interaction 

Weak 
interaction 

Strong 
interaction 

1- The 
mediating 
particle 𝑀 and 
the source field 
quantity it 
carries 

A photon 𝛾 
carrier of spin 𝑆  
(electrically 
neutral quantity) 

A boson 𝐵 carrier 
of isospin 𝐼  
(electric charged 
quantity) 

A boson 𝑊 
carrier of number 
of generations 𝐺𝑒 
(electric charged 
quantity) 

A gluon 𝐺 carrier 
of baryonic 
number 𝐵𝑎 
(electric charged 
quantity) 



424     Invariances et transformations 

2- The fermion 
carrying a 
charge 𝑋 

A fermion carrier 
of electric charge 𝑄 

A fermion carrier 
of weak 
hypercharge 𝑌  

A left-handed 
fermion carrier of 
weak charge 𝑇  

A hadron carrier 
of strong charge 
forte 𝐶𝑜  

3- Exchange of 
the source field 
quantity 
between the 
mediating 
particle and the 
fermion 

Exchange of spin 𝑆  between 
photon and 
fermion 

Exchange of 
isospin 𝐼  
between the 
boson 𝐵 and the 
fermion 

Exchange of 
number of 
generations 𝐺𝑒 
between the 
boson 𝑊 and the 
left-handed 
fermion 

Exchange of 
baryonic number 𝐵𝑎 betwwen the 
gluon 𝐺 and the 
hadron 

 Modification of a 
quantity specific 
to the fermion and 
function of its 
momentum. 
Modification that 
involves a change 
in its energy level 
(corresponding 
for example to a 
change of orbit) 

Modification of a 
quantity specific 
to the fermion and 
function of its 
momentum. 
Does this imply a 
change in the 
orbit of the 
fermion? 

Modification of a 
quantity specific 
to the left-handed 
fermion and 
function of its 
mass. 
Does this imply a 
change in the 
orbit of the left-
handed fermion? 

Modification of a 
quantity specific 
to the hadron and 
function of its 
mass. 
Does this imply a 
change in the 
orbit of the 
hadron? 

4- Examples of 
observed 
reactions 

Change in the 
energy level of 
the electron 
Hyperfine 
transition 

Passage from a 
neutron 𝑛 to a 
proton 𝑝, for 
example during a 
decay 𝛽  
Change of flavors 
for quark or 
lepton of the same 
generation 

Change of 
fermion 
generations, for 
example during 
decay 𝛽 with 
neutral currents 
(passage from a 
quark �̄� to a quark 𝑑) 

Passage of the 
nucleon 𝑝 to a 
quark 𝑢, or to a 
quark component 
of a pentaquark 
 

5- Charge 
conserved 
during reaction 

𝑄 conserved 
during hyperfine 
transition, 𝑒  and 𝑒  have the same 𝑄 

𝑌  conserved 
during decay 𝛽 , 𝑛  and 𝑝  have 
the same 𝑌  

𝑇  conserved 
during generation 
change, �̄� and 𝑑 
have the same 𝑇  

𝐶𝑜  conserved 
during baryonic 
change, 𝑝 and 𝑢 
have the same 𝐶𝑜 = 𝐼  

6- Effect, 
appearance of a 
current, 
observation of 
the interaction 

Displacement in 
Space of the 
electric charge 𝑄 
between 2 energy 
levels (or 2 orbits 
of the electron) 
Electromagnetic 
current 𝑗  

Displacement in 
Space of the weak 
hypercharge 𝑌  
Hyper current 𝑗  

“Displacement in 
Time” of the 
weak charge 𝑇  
Weak current 𝑗  

“Displacement in 
Time” of the 
strong charge 𝐶𝑜  
Strong current 𝑗  

 
Note 1, on the 2 senses of the parable 
As already mentioned, the stages of Bohr's parable work the other way around. That is, a current with 
charge 𝑋 radiates a particle wave carrying a source field quantum number. 
 
Note 2, defining an interaction 
The notion of interaction is directly related to the displacement of the charge 𝑋 associated with the 
interaction. 
Following the exchange of a source field quantum number carried by a mediating particle, we observe 
an interaction when we have displacement of a charge 𝑋, which is a function of the source field 
quantum numbers other than that carried by the mediating particle. 
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For example, a photon 𝛾 can exchange spins. On the other hand, there is no displacement of the charge 𝑄, since hers is null. A photon 𝛾 is therefore not subject to electromagnetic interaction. 
 
Nota 3, change in mass and therefore in orbit? 
To try to answer the question: "does the modification of a quantity specific to the fermion and function 
of its mass, imply a change of orbit of this fermion?", let's take up Kepler's 3rd law modified by I. 
Newton: 𝑇𝑎 = 4𝜋𝐺(𝑀 + 𝑚) 

with T the period of revolution, 
a the semi-major axis of the elliptical trajectory, 
M the mass of the orbited body, 
m the mass of the orbiting body. 
 
Let us remember that according to this 3rd law, the variation of mass m of the orbiting body (for 
example when a hadron would pass from nucleon to quark, or when a left-handed fermion would 
change generations) modifies the ratio  and therefore its orbit. 
 
 
IX.6.2 Gauge transformation 𝑺𝑼(𝒏) 
During a Gauge transformation of 𝑆𝑈(𝑛), we have (with 𝑎 = 1,2,3 ): 

- potential quadrivectors 𝐴 , 𝐵 , 𝑊 , 𝐺 , representing respectively the mediating particles 𝛾, 𝐵, 𝑊 et 𝐺 , transporting quantum numbers 𝑆 , 𝐼 , 𝐺𝑒 and 𝐵𝑎, that are cancelled, 
- the 4 quantum numbers of type charge 𝑄, 𝑌 , 𝑇 , 𝐶𝑜 , associated with elementary charge 𝑔 = 𝑒, 𝑔 , 𝑔 , 𝑔  and charge current quadrivector 𝑗 , 𝑗 , 𝑗 , 𝑗 , that are conserved (in 

line with Noether's theorem), 
- interaction energy terms between current quadrivectors and potential quadrivectors, such as 𝑒𝑗 ⋅ 𝐴 , 𝑔 𝑗 ⋅ 𝐵 , 𝑔 𝑗 ⋅ 𝑊 , 𝑔 𝑗 ⋅ 𝐺 , which are to be added in the Lagrangian 

in order to make invariant the great laws of Nature. 
 
We summarize in the table below, for a Gauge transformation, the analogies between the 4 
interactions, with the corresponding steps of the Bohr parable: 
 
Stages of 
the 
parable 

Quantum notions Electromagne
tic interaction 

Hyper 
interaction 

Weak 
interaction 

Strong 
interaction 

1- Mediating particles 𝛾 𝐵 𝑊  𝐺  
1- Cancelled potential 

quadrivectors  
𝐴  𝐵  𝑊  𝐺  

1- Source field 
quantum numbers  

𝑆  𝐼  𝐺𝑒 𝐵𝑎 

2- Quantum numbers 
of charge 𝑋 

𝑄 𝑌  𝑇  𝐶𝑜  

2- Elementary charge 𝑔 = 𝑒 𝑔  𝑔  𝑔  
6- Current charge 

quadrivectors 
𝑗  𝑗  𝑗  𝑗  

6- Interaction energies 
to be added in the 
Lagrangian 

𝑒𝑗 ⋅ 𝐴  𝑔 𝑗 ⋅ 𝐵  𝑔 𝑗 ⋅ 𝑊  𝑔 𝑗⋅ 𝐺  
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IX.7 Conclusion of the chapter, hypotheses to be confirmed 
In this chapter we have summarized the analogies developed throughout this Memoir between the 4 
interactions. We have listed the arguments in favour of a charge 𝑋, which is function of the 3 source 
field quantum numbers other than that carried by the mediating particle. Then, it was reminded how 
the Einstein effect and Bohr's parable could be applied to each interaction. 
 
Nevertheless, if the similarities presented between the 4 interactions are often strong about this Bohr 
parable, the proposed link between source field equations and interactions is not, it is true, always 
convincing. For example, there is no concrete evidence that hyper interaction and isospin correspond 
to the fundamental principle of Newton's dynamics. As for the idea of constructing charges X from the 
complementary source field quantum numbers, it remains for the moment a hypothesis as long as the 
functions of the type 𝑓 , 𝑓  , 𝑓  , 𝑓  will not be better known. 
 
The following table is drawn to outline this conclusion: 
 
 Electromagnetic interaction Analogies with the other 3 

interactions 
Known characteristics of 
electromagnetism 
 

Photoelectric effect and Bohr 
parable 

Rather convincing 

New features proposed in this 
Memoir for electromagnetism 
 

Relationship between spin and 
source field equation of de 
Broglie 
 

Moderately convincing for the 
other 3 interactions 

Charge Q function of (𝐼, 𝐼 ), Ba 
and Ge, i.e., complementary 
source field quantum numbers 
 

Moderately convincing for the 
other 3 interactions 

 
In the next chapter, we will look again at gravitational waves and gravitational interaction. 
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Chapter X Reflections on gravitational interaction 
 
Purpose of the chapter 
We examine the links between the 4 quantum interactions that we have just mentioned with a 
hypothetical quantum gravitational interaction. 
 
X.1 Apply the Einstein effect and Bohr's parable to a possible quantum gravitational 

interaction 
X.1.1 Preamble 
In the previous chapters, 4 interactions were described: electromagnetic, hyper, weak and strong. In 
addition, there is another famous interaction: the gravitational interaction, an interaction that at the 
quantum level remains hypothetical. Indeed, it is not confirmed by experience and is not part of the 
Standard Model. For example, there is neither the Gauss gravitational source field equation nor the 
gravitational constant. 𝐺, nor the gravitational field Gr in the BEH mechanism assigning mass to 
fermions. 
 
Note 
If we find neither the Gauss gravitational source field equation, nor the gravitational constant 𝐺, nor 
the gravitational field Gr in the Electroweak Model, On the other hand, mass is omnipresent as a time 
component of the energy momentum quadrivector: (𝑝 𝑐 = 𝛾𝑚𝑐 , 𝑝 = 𝛾𝑚𝑣 , 𝑝 , 𝑝 ). 
 
 
In this chapter, we will examine whether the hyper interaction and the electromagnetic interaction can 
be compared to the gravitational interaction, since all three interactions have an infinite range. 
 
It should first be noted that the notions of gravitational force developed in the 17th century by I. 
Newton, then of gravitational field developed in the 19th century under the influence of M. Faraday, 
are finally quite different notions from a hypothetical quantum gravitational interaction, which 
assumes the presence of mediating particles and the exchange of quantized quantities. 
 
Note 
The weak interaction and the strong interaction are not themselves forces, in the sense that they do not 
intervene in the fundamental principle of Newton's dynamics. Like electromagnetic interaction, they 
nevertheless have an interaction energy. For electromagnetic interaction, this interaction energy is 
precisely equal to a generalized potential energy, from which we can derive via the Euler Lagrange 
equation the electric and magnetic forces. 
 
 
X.1.2 The gravospin and the graviton 
If we generalize the Einstein effect and the Bohr parable to a quantum gravitational interaction, we 
have: 

- a quantum number that could be called gravos or gravospin, 
- mediating particles, gravitons that would carry this gravospin, 
- Fermion-type particles carrying a charge: in this case a mass, and a gravospin that can be 

reversed, 
- a reaction between particles that consists of an exchange of gravospins between a graviton and 

a fermion, 
- an inversion of the fermion gravospin causing a displacement of the fermion, this fermion 

keeping its mass constant during this displacement, 
- a mass current 𝑗 . 
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We would have an equivalent to the photoelectric effect of A. Einstein, it would be the graviton - mass 
current effect. 
 
Note 
Conversely, a mass current 𝑗 , that is, a moving mass, could generate a gravitational wave of 
gravitons carrying gravospins. 
 
 
In the next paragraphs, we will suggest that these hypothetical gravospins and gravitons do not exist, 
in the sense that we find the mass current 𝑗  of Bohr's parable, both in hyper interaction and in 
electromagnetic interaction. 
Indeed, in some cases, during a reversal of spin or isospin, we have a change of orbit, displacement of 
a particle, a mass that remains constant during the displacement, and therefore a mass current as 
desired. 
 
Note on a "photo-mass" effect 
We talk about photoelectric effect, as an effect of light and photons on the movement of electrons, of 
their electric charges, and appearance of an electric current. 
Since electrons have mass, we could just as easily speak of a "photo-mass" effect, as an effect of light 
and photons on the movement of electrons, their masses, and appearance of a mass current. 
 
This is also in line with what was proposed at the end of the 3rd Memoir, that is to say to interpret light 
as both an electromagnetic wave and a gravitational wave. 
With the photoelectric effect and the "photo-mass" effect, electromagnetic and gravitational waves can 
generate accelerated movements of electric charges and masses, i.e., electric currents and mass 
currents, in "antennas". 
 
 
X.2 Can we see electromagnetic interaction and hyper interaction as constituents of 

gravitational interaction? 
X.2.1 Analogies between electromagnetic, hyper and gravitational interactions 
We propose here a table of analogies, certainly to be completed, between the 3 electromagnetic, hyper 
and gravitational interactions. 
 
 Electromagnetic 

interaction 
Hyper interaction Gravitational interaction 

Mediating 
particles 
 

Photon 𝛾 (electrically 
neutral) 

Boson 𝐵 (neutral for 
weak hypercharge) 

 

Source field 
quantum 
number  

Spin 𝑆 ℏ2 = 12 𝑝𝐾 

Isospin 𝐼 ℏ2 = − 12 �̇�𝜕𝑥𝜕𝛺  

 

Charge carried 
by the particle 
subject to the 
interaction 

Electric charge 𝑄 
 

Weak hypercharge 𝑌  Mass 𝑚 or charge 𝑋(𝑚) 

Examples of 
reactions 
between 
particles 

Hyperfine transition, spin 
reversal 𝑆, displacement 
with conservation of 
electrical charge 𝑄 
 

Beta decay, transition 
from neutron to 
proton, isospin 
reversal 𝐼, 
Displacement with 
weak hypercharge 
conservation 𝑌  

Hyperfine transition and 
beta decay, displacement 
with mass conservation 
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Constant 1𝜀   −4𝜋𝐺 

Poisson 
relation 𝛥𝐴 = ∇ 𝐴 = − 𝜌 𝜀   𝛥𝑉 = ∇ 𝑉 = 4𝜋𝐺𝜌  

Potential 
energy 
 

𝐸𝑝 = 14𝜋𝜀 𝑞 𝑞𝑟   𝐸𝑝 = −𝐺 𝑚 𝑚𝑟  

Yukawa 
potential 𝜓(𝑟) = −𝑔 ( ℏ )

 with 
mass 𝑚  of the photon 
tending towards 0 

 𝜓(𝑟) = −𝑔 ( ℏ )
 with 

masse 𝑚 of the mediating 
particle tending towards 0 

Coupling 
constant in 
Yukawa 
potential 

𝑔 = −𝑒4𝜋𝜀  
 𝑔 = 𝐺𝑚 𝑚  

Coupling 
constant in the 
Electroweak 
Model 

𝛼 = 𝑒4𝜋𝜀 ℏ𝑐 ≈ 1137 𝛼 = 𝑔4𝜋𝜀 ℏ𝑐 ≈ 1100 
It is also sometimes used: 𝛼 ( ) = 𝐺𝑚 ℏ𝑐  
 

Non-
relativistic 
energy balance 

𝐸 = 𝐸 + 𝐸   𝐸 = 𝐸 + 𝐸  

Non-
relativistic 
model 

Planetary model of the 
electron of Rutherford-
Bohr-Broglie-
Schrödinger-Pauli 
The electron is 
"stabilized" by the 
electrostatic attractive 
force generated by the 
proton and by the 
centrifugal inertia force. 
 

 Planetary model of Kepler-
Newton 
La planète (ou le satellite) 
est « stabilisée » par la 
force attractive 
gravitationnelle générée par 
l’étoile et par la force 
d’inertie centrifuge. 

Non-
relativistic 
stationary 
wave equation 

Schrödinger wave 
equation 𝛥𝜓 + 2𝑚ℏ (𝐸− 𝐸 )𝜓= 0 
 𝛥𝜓 + 2𝑚ℏ (𝐸− 𝑞 𝐴 )𝜓 = 0 
 
Poisson: 𝛥𝐴 = − 𝑞 𝜀 |𝜓|  

 

 Schrödinger – Newton 
wave equation 𝛥𝜓 + 2𝑚ℏ (𝐸− 𝐸 )𝜓= 0 
 𝛥𝜓 + 2𝑚ℏ (𝐸− 𝑚 𝑉 )𝜓 = 0 
 
Poisson: 𝛥𝑉 = 4𝜋𝐺𝑚 |𝜓|  
 

 
X.2.2 Study of charges 
We recall the relations that we proposed, giving the 4 charges according to the 4 source field quantum 
numbers: 𝑄 = 𝑓 ((𝐼, 𝐼 ), 𝐵𝑎, 𝐺𝑒) 
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𝑌 = 𝑓 ((𝑆, 𝑆 ), 𝐵𝑎, 𝐺𝑒) (𝑇, 𝑇 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐵𝑎) (𝐶𝑜, 𝐶𝑜 ) = 𝑓 ((𝑆, 𝑆 ), (𝐼, 𝐼 ), 𝐺𝑒) 

 
We note that the charge 𝑄 and the weak hypercharge 𝑌  are the most mass charges, in the sense that 
they are both function of the 2 source field quantum numbers with mass energy 𝑚 𝑐 : 𝐵𝑎 and 𝐺𝑒. 
 
Currents 𝑗  and 𝑗  can both be interpreted as currents carrying mass energy, i.e., mass displacements 
under the effect of an electromagnetic field and a hyper field. 
These phenomena are reminiscent of the modification of the motion of a body of mass under the effect 
of a gravitational field, that is to say the gravitational force. 
 
X.2.3 Study of transitions 
In the case of electromagnetic interaction, during a spin reversal 𝑆 d’un proton ou d’un électron, for 
example, we have displacement of the proton or the electron (with conservation of the mass of the 
particle during displacement). 
We have displacement of an electric charge, but also of a mass because proton and electron are mass 
particles. 
 
In the case of hyper interaction, during decay 𝛽  from a neutron to proton with isospin inversion 𝐼 , 
we have displacement of the nucleon with a quasi-conservation of the mass (the neutron has a priori a 
mass very slightly higher than the proton). 
We have displacement of the weak hypercharge 𝑌 , but not of the electric charge 𝑄. For a global 
conservation of the electric charge, it is assumed that the boson 𝐵 is electrically charged. 
 
Note that for leptons, it works much less well. If we assume that the passage from a neutrino to an 
electron corresponds to an isospin inversion 𝐼 , we have a lepton displacement. However, the mass is 
not conserved, since the neutrino has a mass a priori much smaller than the electron. 
 
To see if we can find a conservation of the mass, if we are interested globally in the 3 different 
generations of lepton: electronic, muonic and tauic? 
To see also if we can find a conservation of the mass for baryons (or quarks), if we are globally 
interested in the 3 different generations of quarks? The concern of the slight difference in mass 
between proton and neutron could then be solved. 
 
X.2.4 Decay 𝜷 , case of left-handed particles of the nucleus of 1st generation (when 𝑻𝟑 = 𝑰𝟑) 
We recall the relation of S. Glashow given in the Electroweak Model: 𝑌2 = 𝑄 − 𝑇  

 
For left-handed particles of 1st generation, it is noted that the weak charge 𝑇  is equal to isospin 𝐼  By 
substituting 𝐼  at 𝑇 , we get: 𝑌2 = 𝑄 − 𝐼  

 
During the passage from a proton 𝑝  to a neutron 𝑛 , we can interpret the relationship = 𝑄 − 𝐼  
valid for both the proton 𝑝  and the neutron 𝑛 , as follows: 
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Quantum 
number 

𝑝 → 𝑛  Description 𝐼  (+ 12) → (− 12) The isospin 𝐼  reverses when switching from 𝑝  to 𝑛 , this generates the displacement of the nucleon and 
its weak hypercharge 𝑌 . 𝑌  (+1) → (+1) 

Conservation of Weak 
hypercharge. The hypercharge 𝑌  "sticks" to the nucleon. 

The weak hypercharge 𝑌  moves and stays constant 
as you go from 𝑝  to 𝑛  with similar mass (the 
gravitational force has the effect of moving a mass 
that remains constant. Match in this case 𝑌  and 
mass). 𝑄 (+1) → (0) The electrical charge does not move when passing 
from 𝑝  to 𝑛 . 

 
X.2.5 Hyperfine transition 
We have in the table above the analogue for the electromagnetic interaction and the passage from an 
electron 𝑒  ton an electron 𝑒  (we could also have taken: 𝑝 → 𝑝 ). 
 
Quantum 
number 

𝑒 → 𝑒  Description 𝑆  (− 12) → (+ 12) The spin reverses when we go from 𝑒  to 𝑒 , this 
generates a change in the orbit of the electron and the 
displacement of the electric charge 𝑄. 𝑄 (−1) → (−1) 

Conservation of electrical 
charge. charge 𝑄 "sticks" to 
the electron. 

The electric charge 𝑄 moves and stays constant as 
you go from 𝑒  to 𝑒  with identical mass (the 
electromagnetic force has the effect of displacing an 
electric charge and a mass that both remain constant). 𝑌  (−1) → (−2) Weak hypercharge 𝑌  does not move when moving 
from 𝑒  to 𝑒 . 

 
For the hyper interaction and for left-handed particles of the 1st generation nucleus, we have: 𝑌2 = 𝑄 − 𝐼  

The weak hypercharge is a function of the electric charge and the quantity transported by the boson 𝐵. 
 
For electromagnetic interaction and for electrons 𝑒  and 𝑒 , the analogous relationship is: 𝑄2 = 𝑌 + 1 + 𝑆  

The electric charge is a function of the weak hypercharge and the quantity carried by the photon 𝛾. 
 
X.2.6 What contribution to mass energy do quantum numbers 𝑸 and 𝒀𝑾 have? 
The electrons 𝑒  and 𝑒  have the same mass (or mass energy 𝑚 𝑐 ). The contribution to mass energy 
of 𝑒  and 𝑒  appears essentially due to the electric charge which remains constant when one passes 
from 𝑒  to 𝑒 . This is true when examining the neutrino 𝜈 , the analogue of the electron 𝑒  for weak 
hypercharge (𝑌 = −1), but for which the electric charge 𝑄 is zero. The mass of the neutrino 𝜈  is 
very small. 
 
On the other hand, for nucleons 𝑛  and 𝑝 , the situation is different. When examining the neutron 𝑛 , 
the analogue of the proton 𝑝  for weak hypercharge (𝑌 = 1), but for which the electric charge 𝑄 is 
zero, Its mass is slightly greater than that of the proton. The contribution to the mass energy of 𝑛  and 𝑝  appears mainly due to weak hypercharge 𝑌 , which remains constant when moving from 𝑛  to 𝑝 . 
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X.2.7 Case of strong and weak interactions 
During a strong interaction between a fermion and a gluon 𝐺, with exchange of 𝐵𝑎 and change of the 𝐵𝑎 of the fermion, there is no conservation of the mass of the fermion during its "displacement" from 
nucleon to quark. Quarks of 𝐵𝑎 =  have, for example, a much smaller mass than the corresponding 
nucleons of 𝐵𝑎 = 1. 
There is therefore no possible rapprochement with a gravitational interaction and a mass current that is 
preserved during the "displacement" of the fermion from nucleon to quark. 
 
The same is true for a weak interaction between a fermion and a boson 𝑊, with exchange of the 
number of generations 𝐺𝑒. There is no conservation of the mass of the quark when it passes from the 
1st generation to the 2nd generation. A 1st generation quark is much less mass than a 2nd generation 
quark. 
 
The contributions to the gravitational interaction therefore seem to come mainly from the 
electromagnetic interaction and the hyper interaction. 
 
X.2.8 On the charge of the gravitational interaction and the mass current 
If we accept that the gravitational interaction consists of electromagnetic and hyper interactions, the 
gravitational interaction must have as source field quantum numbers: the spin (𝑆, 𝑆 ) and the isospin (𝐼, 𝐼 ). 
 
Based on the above, the charge 𝑋 of the gravitational interaction should be a function of the 
complementary source field numbers, i.e., the baryonic number 𝐵𝑎 and the number of generations 𝐺𝑒. 
So, we have for the charge 𝑋 of the gravitational interaction a function 𝑓  of the type: 𝑋(𝑚) = 𝑓 (𝐵𝑎(𝑚), 𝐺𝑒(𝑚)) 
The baryonic number 𝐵𝑎(𝑚) and the number of generations 𝐺𝑒(𝑚) are both functions of mass 𝑚. We 
get as expected a charge 𝑋(𝑚) of gravitational interaction as a function of mass. 
 
We remind the Gell-Mann Nishijima relation, for an electric charge 𝑄 carried by a hadron: 𝑄(𝑚, 𝑝) = 𝐼 (𝑝) + 𝐵𝑎(𝑚)2 + 𝐺𝑒(𝑚)2  
 
To move from electromagnetic interaction to gravitational interaction, we eliminate in the electric 
charge 𝑄(𝑚, 𝑝) the term with momentum 𝑝, here isospin 𝐼 (𝑝). We can therefore expect, for a hadron, 
a relationship of the type: 𝑋(𝑚) = 𝐵𝑎(𝑚)2 + 𝐺𝑒(𝑚)2  
 
In the case of 1st generation hadrons, we have: 𝑋(𝑚) = 𝐵𝑎(𝑚)2  
and therefore, a charge 𝑋(𝑚) identical (if we add a factor of 1/2) to the baryonic number. 
 
For 1st generation leptons, we can expect: 𝑋(𝑚) = 𝐿 (𝑚)2  
 
In all cases, we would have a mass current carrying the conserved quantity 𝑋(𝑚). 
 
Note on 𝑋(𝑚) negative or positive 
The baryonic number 𝐵𝑎(𝑚), as well as the number of generations 𝐺𝑒(𝑚) can take positive or 
negative values. The same is therefore true for 𝑋(𝑚). To explain then why the mass m is always 
positive? 
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X.2.9 On the charge of nuclear interaction and a "momentum" current 
By analogous reasoning, we obtain a charge 𝑋(𝑝) of nuclear interaction union of strong and weak 
nuclear interactions, function of spin (𝑆, 𝑆 ) and isospin (𝐼, 𝐼 ). Both are functions of momentum 𝑝. 
We would therefore have for the charge 𝑋(𝑝) nuclear interaction, a function 𝑓  such as: 𝑋(𝑝) = 𝑓 ((𝑆, 𝑆 )(𝑝), (𝐼, 𝐼 )(𝑝)) 
 
We would also have a "momentum" current carrying the conserved quantity 𝑋(𝑝). 
 
X.2.10 Gravitational interaction and nuclear interaction, analogous to each other in Space and 

Time? 
In Memoir 2, it has been proposed that the mass 𝑚  is the analogue in Time, of the movement or speed 𝑣 , ,  in Space. 
According to the same proposal, the gravitational interaction which conserves mass 𝑚  and which 
varies the momentum 𝑝 , ,  would be the analogue in Space and Time of the nuclear interaction which 
varies the mass 𝑚  and which would maintain the momentum 𝑝 , , . 
The gravitational interaction would have an infinite range in Space and the nuclear interaction an 
infinite range in Time. 
 
 Retained quantity 

 
Variable quantity 

Gravitational 
interaction 

Mass 𝑚  
 

Momentum 𝑝 , ,  
Movement or speed 𝑣 , ,  

Nuclear 
interaction 

Momentum 𝑝 , ,  
Movement or speed 𝑣 , ,  

Mass 𝑚  

 
X.3 Finding the boson experimentally 𝑩? 
Following what has been explained above, it is proposed here to draw up a list of characteristics for 
the boson 𝐵, in order to find it experimentally. 
 
X.3.1 Characteristics according to the Electroweak Model 
The Electroweak Model defines a boson 𝐵 mediating particle of the hyper interaction. He does not 
attribute any mass to the boson 𝐵 from the BEH mechanism. The boson 𝐵 participates in decays 𝛽±. 
During a decay 𝛽 , It is very unstable, since it decays very quickly into an electron and an 
antineutrino. It has a priori a zero mass and the hyper interaction therefore has an infinite range. 
 
X.3.2 New features proposed in this Memoir 
In this Memoir, compared to the Electroweak Model, new characteristics for the boson 𝐵 are 
proposed. 
The boson 𝐵 carries an isospin 𝐼 . Like the photon, it has a momentum. During a decay 𝛽 , a boson 𝐵 
is emitted by a neutron when this neutron turns into a proton. We have the scattering reaction 
involving the hyper interaction, with inversion of 𝐼  and conservation of 𝑌 : 𝑛 (𝐼 = − 12 , 𝑌 = 1, 𝑄 = 0) → 𝑝 (𝐼 = 12 , 𝑌 = 1, 𝑄 = 1) + 𝐵(𝐼 = −1, 𝑌 = 0, 𝑄 = −1) 

 
The boson 𝐵 also interacts with the couple electron 𝑒 , antineutrino 𝜈 , with inversion of 𝐼  and 
conservation of 𝑌 . We have the reactions of scattering and creation: 𝜈 (𝐼 = 12 , 𝑌 = −1, 𝑄 = 0) + 𝐵(𝐼 = −1, 𝑌 = 0, 𝑄 = −1) → 𝑒 (𝐼 = − 12 , 𝑌 = −1, 𝑄 = −1) 
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𝐵(𝐼 = −1, 𝑌 = 0, 𝑄 = −1) → 𝜈 (𝐼 = − 12 , 𝑌 = 1, 𝑄 = 0) + 𝑒 (𝐼 = − 12 , 𝑌 = −1, 𝑄 = −1) 

 
Following the Gell-Mann Nishijima relation, the isospin 𝐼  is electrically charged. The boson 𝐵 that 
carries an isospin 𝐼 , is therefore electrically charged (this is what is indicated above with 𝑄 = −1). 
 
As already pointed out in this chapter, when reversing isospin 𝐼  and passage from the neutron to the 
proton, we have conservation of the mass and appearance of a conserved mass current, as one would 
have for a gravitational force. So, we have the hyper interaction and the boson 𝐵 that intervene in the 
gravitational interaction. Boson 𝐵 et photon 𝛾 are the two particle waves constituent of gravitational 
waves. 
 
Note 1 on gravitational waves 
If we assume that a mass current radiates a gravitational wave, and that the electromagnetic and hyper 
interactions are both contributions to the gravitational interaction and thus to the existence of a mass 
current, both electromagnetic and hyper waves must be contributions to gravitational waves. 
 
Nota 2 on mediating particles subject to other interactions? 
It is proposed in this Memoir that a mediating particle is charged for the 3 interactions, other than the 
one for which it is the mediator. In this case, to check experimentally if the particle mediating of an 
interaction is subject or not to the other 3 interactions? 
If this is the case, by interacting, a mediating particle must gain a source field quantum number and 
transform into a fermion. 
In this regard, let us note that a photon is sensitive to gravitation, since a light ray is deflected by a 
gravitational field. 
 
Note 3 on rest mass 
Note that what is zero, both for the photon 𝛾  and for the boson B, it is their rest mass 𝑚  with respect 
to the observer. When they have a speed c, we don't know. This explains in particular their sensitivity 
to gravitation or participation in the Compton scattering of the photon 𝛾. 
We will come back to this at the end of the next Memoir. 
 
 
In summary, here are the qualitative characteristics of the boson 𝐵 which would make it possible to 
find it experimentally. The boson 𝐵 has zero rest mass, a momentum, an isospin 𝐼 , an electric charge, 
a strong charge, and a weak charge. It is found in decays 𝛽±. It should contribute, like the photon 𝛾, to 
gravitational interaction. 
 
X.4 Charge of particles according to their participation in the interactions 
In the table below, we list the particles according to their participation in the interactions. 
 
 Gravitational interaction 

 
Nuclear interaction 

The particle 
does not 
participate in 
the interaction 
if its charge is 
zero 

Electromagnetic 
interaction 

Hyper 
interaction 

Weak 
interaction 

Strong 
interaction 
 

Cohesion of the 
atom 

Cohesion of the 
atom 

Cohesion of 
nucleus + 
cohesion of 
lepton 
 

Cohesion of 
nucleus  

Left-handed 
proton 

+X +X +X3 +X3 
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Left-handed 
neutron 

 +X -X3 -X3 

Right-handed 
proton 
 

+X +X  +X3 

Right-handed 
neutron 

 +X  -X3 

Left-handed 
electron 

-X -X -X3  

Left-handed 
neutrino 

 -X +X3  

Right-handed 
electron 

-X -X   

Right-handed 
or sterile 
neutrino (not 
observed) 

 -X?   

 
Note 1 on the sterile neutrino 
In 1967, B. Pontecorvo proposed the existence of a sterile neutrino, of the right-handed neutrino or 
left-handed antineutrino type, not subject to electromagnetic interactions, strong and weak. Indeed, its 
electric charge, strong charge and weak charge are zero. 
According to B. Pontecorvo, this sterile neutrino should take part in the phenomena of oscillation of 
neutrinos, it would have a mass and would therefore be subject to gravitational interaction. So, far, this 
sterile neutrino has never been detected. 
 
If we go back to Glashow's relationship 𝑄 = 𝑇 + , a right-handed neutrino has a zero weak 
hypercharge 𝑌 , is therefore not subject to hyper interaction. 
However, if we accept that neutrinos have mass and that the hyper interaction contributes to the 
gravitational interaction, a right-handed neutrino could still be subject to the hyper interaction and 
possess a non-zero weak hypercharge. Glashow's relationship would then have to be amended. 
 
To confirm or deny this by experiment, in order to better understand the gravitational interaction and 
this sterile neutrino. 
 
Note 2 on the characterization of particles from their participation or not in interactions 
Inspired by this table, it can be suggested that any particle is first characterized by the interactions in 
which it participates or not. 
Thus, according to this idea, a proton or an electron differ respectively from a neutron or a neutrino 
essentially because proton and electron are subject to electromagnetic interaction, whereas neutron and 
neutrinos are not. 
Similarly, particle hadrons in the nucleus differ from particle leptons outside the nucleus essentially 
because hadrons are subject to strong interaction, whereas leptons are not. 
Similarly, left-handed particles differ from right-handed particles essentially because the former are 
subject to the weak interaction, whereas the latter are not. 
 
What remains to be explained is why when we cancel the electric charge of a particle, that is to say 
when we make it insensitive to the electromagnetic interaction, for example by passing from a proton 
to a neutron, other characteristics of the particle change? Passing from proton to neutron, isospin, as 
well as strong and weak charges are reversed, the mass also varies very slightly... 
 
Similarly, when cancelling the strong charge of a particle, i.e., when making it insensitive to the strong 
interaction, for example by passing from a proton to an electron, why do other characteristics of the 
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particle change? By passing from the proton to the electron, the electric charge is reversed, the mass 
varies very strongly... 
Similarly, when cancelling the weak charge of a particle, for example by switching from a left-handed 
electron to a right-handed electron, why do other characteristics of the particle change? By switching 
from a left-handed electron to a right-handed electron, the weak hypercharge varies (but a priori not 
the mass). 
 
Note 3 on particles of zero hypercharge? 
The electromagnetic, strong and weak interactions each make it possible to distinguish two categories 
of particles (particles subject to interaction and those not subject because of zero charge). For hyper 
interaction, are there also two categories of particles: those subject to hyper interaction and non-
subjects because of zero weak hypercharge? 
 
Note 4 on the attractions of the different interactions 
It should be noted that electromagnetic and hyper interactions are attractive between hadrons (particles 
of the nucleus) and lepton (particles around the nucleus) and therefore ensure the cohesion of the 
atom. Protons and electrons have opposite electric charges and therefore attract each other. Hadrons 
and leptons have opposite weak hypercharges and therefore attract each other. 
The strong nuclear interaction is attractive between proton and neutrons and therefore ensures the 
cohesion of the nucleus. Protons and neutrons have opposite strong nuclear charges and therefore 
attract each other. 
The weak nuclear interaction ensures cohesion among the particles of the nucleus: hadrons and among 
the particles around the nucleus: leptons. 
 
 
X.5 Proposal of a synthesis in "Coriolis" format with "generalized" rotation 

cancelled when changing reference frames 
In the table below, following an approach in "Coriolis" format, we give the quantities of inertia to be 
added in the "laws of Nature", so that they remain invariant during a change of reference frames. 
 
 
Inertial 
acceleration or 
inertial 
interaction 

Range in 
Space 

Range 
in 
Time 

Quantity 
retained when 
changing 
reference frames 

"Generaliz
ed" 
rotation 
cancelled 
when 
changing 
reference 
frames 

Modified 
quantity 

"Coriolis" format Orientati
on 

Coriolis 
acceleration 
 

Infinite  �⃗� , ,  
speed 

2𝛺 /  �⃗�  �⃗�= −�⃗� ∧ 2𝛺 /  
 

Space 
 

Electromotor 
field 
 

Infinite  �⃗� , ,  
speed 

𝐵 /  �⃗�  �⃗�𝑚 = �⃗� ∧ 𝐵 /  Space 

“hypermotor" 
field 

Infinite  �⃗� , ,  
speed 

𝐵ℎ⃗ /  �⃗�  �⃗�𝑚 = �⃗� ∧ 𝐵ℎ⃗ /  Space 

Gravitation Infinite  �⃗�  
mass 

𝐾 /  �⃗� , ,  �⃗�= �⃗� ∧ 2𝑐 𝐾 /  
 

Space 

Electric Infinite  �⃗� (�⃗� ) 
 
electric charge 

�⃗�𝑙 /  𝑆 , , (�⃗� , , ) 
spin, 
angular 
momentum 

�⃗� = �⃗� ∧ �⃗�𝑙 /  Space 
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Hyper 
 

Infinite  𝑌 ⃗ (�⃗� ) 
hypercharge 

𝐵ℎ⃗ /  𝐼 , , (�⃗� , , ) 
isospin 

�⃗�= 𝑌𝑊 ∧ 𝐵ℎ⃗ /  

Space 

Nuclear  Infinite �⃗� , ,  
speed 

𝐾 /  �⃗�  𝐼𝑛= �⃗� ∧ 2𝑐 �⃗� /  

Time 

Strong nuclear  Infinite 𝐶�⃗� , , (�⃗� , , ) 
strong charge 

𝑆 /  𝐵𝑎 (�⃗� ) 𝐼𝑛 = 𝐶𝑜𝑥 ∧ 𝑆 /  Time 

Weak nuclear  Infinite 𝑇 , , (�⃗� , , ) 
weak faible 

�⃗� /  𝐺�⃗� (�⃗� ) 𝐼𝑛 = �⃗�𝑥 ∧ �⃗� /  Time 

 
Note that there are 3 types of inertial quantities to add: 
1. type of inertial accelerations, 
2. type of inertial forces or gravitational, electromagnetic and hyper interactions, 
3. type of strong and weak nuclear interactions. 
 
The 3 types of inertia quantities to be added are distinguished by the orientation, in Space or in Time, 
of the quantity conserved and the "generalized" rotation canceled when changing reference frames. 
 
We have 3 possible combinations: Space Time, Time Space, Space Space (with for the latter 
combination, 2 different dimensions of Space perpendicular to each other). The Time Time 
combination is impossible, because it would take 2 dimensions of Time perpendicular to each other. 
 
Inertial 
acceleration or 
inertial 
interaction 

Quantity retained 
when changing 
reference frames 

"Generalized" rotation 
cancelled when changing 
reference frames 

Orientation of 
inertial acceleration 
or inertial interaction 

Inertial 
accelerations 

Space-oriented type �⃗� , ,  
Rotation in a spatial plane, 
Time-oriented type 2𝛺 /  

Space-oriented type �⃗� , , ∧ 2𝛺 /  

Gravitational, 
electromagnetic, 
and hyper 
interactions  

Time-oriented type �⃗�  
Rotation in a spatiotemporal 
plane, Space-oriented type 2𝐾 /  

Space-oriented type �⃗� ∧ 2𝑐 �⃗� /  

Strong and weak 
nuclear 
interactions 

Space-oriented type �⃗� , ,  
Rotation in a spatiotemporal 
plane, Space-oriented type 2𝐾 /  

Time-oriented type �⃗� , , ∧ 2𝑐 𝐾 /  

 
Note 1 
It is explicitly assumed here: 

- that a local gauge transformation, 
- and that a change of reference frames where a "generalized" rotation is cancelled, 

are the same thing. 
 
Note 2 
To study forces and interactions, we must be able to restrict ourselves to "generalized" rotations in a 
spatiotemporal plane cancelled during a change of reference frames. Indeed, when we perform a 
change of reference frames where we cancel a rotation "generalized" in a spatial plane and the 
quantity conserved is a velocity, we obtain for example an acceleration or an electromotor field. If, in 
addition, we have as quantity conserved a mass or an electric charge when changing reference frames, 
we obtain a force. This can then always be obtained by cancelling a "generalized" rotation in a 
spatiotemporal plane. 
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In summary, forces and interactions are to be added in the Laws of Nature, when one cancels during a 
change of reference frames, a generalized rotation in a spatiotemporal plane and that the quantity 
conserved is of charge-type for the 4 fundamental interactions, of mass-type for the gravitational 
interaction and a priori of velocity-type for the nuclear interaction (to be confirmed for the latter). 
 
 
X.6 Conclusion of the chapter, on the contribution to gravitational interaction 
In conclusion of this chapter, Bohr's parable does not seem to apply to gravitational interaction. 
Indeed, there is no mediating particle, nor quantum number or gravospin-type for gravitation. On the 
other hand, understanding gravitational interaction as constituted by hyper interaction and 
electromagnetic interaction, seems a promising track. Indeed, under the effect of these 2 interactions, 
for example during spin reversals 𝑆  or isospin reversals 𝐼 , we observe the displacement of a fermion 
with conservation (or quasi-conservation) of its mass. This is the desired effect for gravitational 
interaction. 
 
As for the strong and weak interactions, they do not seem to contribute to the gravitational interaction, 
since during a change of 𝐵𝑎 or of 𝐺𝑒, the mass of the fermion is not conserved, with impossibility to 
obtain the desired mass current. 
 
X.7 Conclusion of the Memoir, from the infinitely small to the infinitely large, on 

dark matter and the hypothesis of a new interaction 
In physics, the 2 main fields of experimentation were on the one hand the observation of celestial 
bodies which tended little by little towards an infinitely large in Space and towards a distant past 
(study of phenomena of infinite scope in Space), on the other hand the observation of the "field", 
which tended little by little towards particle physics and an infinitely small in Space (study of 
phenomena of infinite scope in Time?). 
Naively, an observer of the past could have assumed that the observations and laws of the stars had 
nothing to do with the observations and laws of the "field". The scales are indeed so different that 
commonalities cannot exist. 
 
Yet if you look at the history of physics, it has been quite the opposite. These incessant back and forth 
between the observations of the stars and those of the field, these analogies, even these identities 
observed between the laws of the stars and the laws of the field, have often proved singularly fruitful 
in the understanding of the Universe. 
One can think of the famous parable of the apple of I. Newton, field observation, which combined 
with the observation of the stars, made it possible to state the law of universal gravitation. But there 
are many other cases. 
The enigma of dark matter, i.e., the non-respect of Newtonian gravitation at the scale of galaxies, is 
another good example to show the fruitful alliance of experiments conducted on the infinitely large 
and those conducted on the infinitely small, in the understanding of the Universe. 
 
To explain dark matter, we can currently distinguish 3 tracks, according to the proposed hypotheses. 
The first track is the proposal of additional matter, in this case dark matter itself. The second track is 
the modification of Newton's laws on a large scale. This is for example the path followed by Mordehai 
Milgrom, in the empirical model called Mond (Modified Newtonian dynamics). The third track is the 
hypothesis of a new long-range interaction that would compensate for certain aspects of gravitation. 
This is the path followed by Attila Krasznahorkay, in his research on particles, with a new interaction 
carried by the X17 boson. 
The tracks followed to understand dark matter, are therefore both towards the infinitely large and the 
infinitely small. No doubt this fruitful alliance will one day succeed in solving the enigma. 
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In Memoir 4, it was proposed to explain dark matter by an analogue in gravitation, induction 
phenomena in electromagnetism. In a way, a modification of Newton's "usual" gravitational laws, and 
a rapprochement with the track of Mr. Milgrom. 
In this Memoir, it is suggested that the gravitational interaction consists of 2 interactions, including a 
hyper interaction, which can be described as "new", even if it is explicitly present in the Electroweak 
Model. We would then join the track of A. Krasznahorkay. 
 
In the end, this Memoir had two objectives. First, to show that the 4 interactions present in the 
Standard Model were more similar than the latter presented, in particular by following Bohr's parable. 
Then, that of giving a reality to this hyper interaction, transforming it into an interaction comparable to 
the other 3, that it is not a simple "technical artifact" as it appears in Electroweak Model. 
The proposals made in this Memoir may not be accepted. In any case, the understanding of 
gravitation, dark matter, the quest for a new interaction, will certainly be part of the major challenges 
of Physics in the 21st century. 
 
According to the ideas proposed here, the analogies between the laws of the stars and the laws of the 
field, between the laws of the infinitely large and the laws of the particles have often proved singularly 
fruitful in the understanding of the Universe, precisely because of the analogies between Space and 
Time. 
Another major challenge will be a better understanding of what Time is. Since the beginning of this 
Memoir, a temporal dimension identical to the three spatial dimensions has been consistently used. 
This approach to Time is in fact constantly found in Quantum Physics and in the theory of Relativity. 
In the next Memoir, we will focus on the following question: why does the Time of Physics seem so 
different from our felt Time? 
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Memoir 6 Time felt and Time in Physics 
 
Summary of Memoir 
We wonder here about the differences between Felt Time (Time oriented like an arrow), which can 
also be described as Psychological Time, and Time used in physics (Time often described 
mathematically as a spatial dimension). 
 
 
To answer this question, we will study the most varied concepts. John Wheeler and Richard 
Feynman's idea of an electron that goes back in time (idea evoked in R. Feynman's Nobel Prize 
acceptance speech in 1965). Works by Rudolf Clausius on entropy (1865), Ludwig Boltzmann on 
statistical entropy (circa 1870), Claude Shannon on the entropy of information (1950s). Chien-Shiung 
Wu (1957) experiments on parity violation during cobalt-60 beta decay. General Relativity (A. 
Einstein around 1915). First models of Big-bang that result, models proposed by Willem de Sitter, 
Alexandre Friedmann and Georges Lemaître in the 1920s. Discoveries in 1920 by Edwin Hubble of an 
expanding Universe, then in 1965 by Arno Penzias and Robert Wilson of a cosmic microwave 
background, two discoveries that confirm the models of the Big Bang and make it a theory. Analogies 
in the 1970s between "classical" thermodynamics and that of black holes, by Jacob Bekenstein and 
Stephen Hawking. 
 
Finally, we will broaden our reflections to other fields than physics such as the phenomenologist 
approach of Edmund Husserl (early 20th century) or the Gaia hypothesis of James Lovelock (1979). 
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Chapter I  Why does Time used in Physics seem so different from Time 
felt? 

 
Purpose of the chapter 
We highlight the contradiction between Time frequently used in Physics: a Time with 2 senses, treated 
in equations as a spatial dimension, and Time felt by us human beings which is oriented towards the 
future. To highlight this contradiction, the physicist A. Eddington introduced in 1927 the concept of 
the arrow of Time. 
 
I.1 The Time of Physics, the Time Felt and the Arrow of Time 
In previous memoirs, the dimension of Time and the three dimensions of Space have been treated 
identically. For example, the notion of rotation vector in a spatiotemporal plane has been proposed on 
the model of a rotation vector in a spatial plane. To obtain the source field equations applied to 
gravitation, we used a Time with 2 senses, a Time similar to a spatial dimension. A Time finally very 
different from the Time felt, in which we live. 
 
In fact, this observation applies to many other physical models and theories, where the characteristics 
of the Time used often appear quite different from those of the Time felt. In particular, most of the 
fundamental equations of physics are invariant by reversing Time. 
 
By contrast, the Time felt, in which we live, is oriented and does not resemble a spatial dimension. It 
seems to flow roughly linearly (although we all perceive an acceleration of flow as we age). In 1927, 
to characterize this felt and oriented Time, the physicist A. Eddington introduced the notion of arrow 
of Time. A notion that insists on the observation that Time, our Time, always seems to flow in the 
same direction and in the same sense. The arrow of Time is frequently referred to as a psychological 
arrow because it refers to our mind. 
 
Thus, one of the fundamental questions of physics is this: why from mathematical equations most 
often reversible in Time, does our felt Time take a particular direction and a particular sens? 
 
Note on the concrete duration of Henri Bergson (1859 – 1942) 
Many scientists and philosophers have proposed to distinguish two forms of Time. Even if the terms 
used are often different from those of Felt Time and Physics Time, we can find similar or at least 
similar meanings. 
For example, in Essai sur les données immédiats de la conscience (1889), H. Bergson opposes two 
notions of Time. The first notion is the Time that our intelligence represents itself. This Time is 
similar to a geometric scheme, it is homogeneous and conceived as a one-dimensional continuous. 
The second notion is for H. Bergson the true nature of Time. It is real and has a concrete duration 
which is real progress, creation of new forms and continuous invention. 
In this memoir, unlike H. Bergson, it is not suggested that one of the two Times is real and the other a 
simple representation. By contrast, we emphasize this demarcation between a Time of Physics 
(according to H. Bergson, the one represented by our intelligence) and a felt Time (according to H. 
Bergson, the one that is real and in continuous invention mode). 
 
 
I.2 Time in the theory of Relativity, often presented as similar to a spatial dimension 
In the scientific writings of A. Einstein, an idea keeps coming back. It is the treatment of the Time 
dimension in the image of the three dimensions of Space. 
Despite the difficulty of intuitively accepting such a resemblance between Time and Space, A. 
Einstein and his successors found that the analogy between Time and Space is often fruitful in 
attempts to understand the Universe. 
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For example, in the theory of Relativity, we find an identical treatment between Time and Space in the 
proposal of a four-dimensional Space-Time continuum, with deformations of distances like those of 
durations, or in the local variable ct treated (nearly) as the local variables, x, y, z. 
 
It is also observed in the notion of quadrivector Space-Time. In geometry, in a three-dimensional 
space, we usually use the notion of vector. Mathematicians generalize this notion of vector in a space 
with n identical dimensions. 
We owe to H. Minkowski and A. Einstein the introduction of the Space-Time quadrivector in the 
theory of Relativity. Instead of working in a three-dimensional space, using vectors, or rather space tri-
vectors to use analogous terminology, we work in a four-dimensional space-time, using Space-Time 
quadrivectors. This implicitly assumes a temporal dimension of the same nature as the three spatial 
dimensions. 
 
The theory of Relativity and its extension to electromagnetism and quantum physics, relativistic 
Quantum Electrodynamics (QED), use much space-time quadrivectors: the quadrivector energy 
momentum (generalization of the tri-vector momentum), the quadrivector pulsation wave vector, the 
quadrivector electromagnetic potential vector, the quadrivector electric charge current densities, etc. 
All these quadrivectors manifest an identity of approach for Time and Space. 
 
I.3 Most physical theories are reversible over time 
Through a few examples, let us now emphasize that most physical theories, from Newtonian 
gravitation, through the theory of Relativity, to relativistic Quantum Electrodynamics are reversible in 
Time. 
 
I.3.1 Theory of Gravitation of I. Newton 
Let's start with the following thought experiment. Imagine a flying saucer A filmed by an 
experimenter E. The flying saucer has a muzzle velocity, then moves away from the Earth with 
engines off. 
 
During the (usual) passage of the film towards the future, the experimenter E visualizes a decelerated 
motion of the flying saucer A under the effect of the attractive gravitational force of the Earth, in 
accordance with the theory of gravitation of I. Newton. 
During the film's backward passage to the past, experimenter E visualizes an accelerated movement of 
flying saucer A approaching Earth. This flying saucer A undergoes an attractive gravitational force 
and accelerated motion, also in accordance with the theory of I. Newton. 
 
This thought experiment emphasizes the reversibility in Time of the Gravitational theory of I. Newton. 
Whether the film has moved to the future or to the past, the images visualized are in agreement with 
the theory. 
 
I.3.2   Theory of Relativity of A. Einstein and antimatter interpretation by P. A. Dirac 
Previously, it was pointed out that the theory of Relativity treats Time and Space as if they were 
similar in nature. However, initially, the theory of Relativity does not give Time 2 senses as it does for 
spatial dimensions. This appears in the choice of a positive energy for the solutions of the equation: 
 𝐸 = 𝑐 𝑝 + 𝑚 𝑐  

 
The question of a temporal reversibility of the theory of Relativity arises from 1928, with the 
introduction by P. A. Dirac of a wave equation requiring energy solutions both positive and negative, 
and therefore implicitly reversible in Time: 𝐸 = ± 𝑐 𝑝 + 𝑚 𝑐  
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P. A. Dirac proposes to interpret negative energy as antimatter, that is to say antiparticles of the same 
mass and electric charge opposite to the corresponding particle of matter. For example, the 
antielectron (also called the positron) is the antiparticle of the electron. 
 
At the time, the proposal of P. A. Dirac left most physicists incredulous. However, a few years later, in 
1932, Carl David Anderson discovered positively charged electrons in the cosmic rays of the sky. The 
hypothesis of an antimatter becomes widely accepted by the scientific community. 
 
Note 
This hypothesis of antimatter is all the more interesting because it suggests an energy conservation on 
the scale of the Universe. If matter and antimatter are in the same quantity, the total energy balance of 
the Universe is zero. 
 
 
I.3.3 The positron, the electron that goes back in Time and relativistic Quantum 

Electrodynamics   
In the 1950s, R. Feynman proposed the following idea: the positron (or antielectron) is similar to an 
electron going back in Time. R. Feynman associates the suffix anti with the property of going back in 
Time. 
 
This combination is called the prescription of E. Stueckelberg and R. Feynman, also referring to E. 
Stueckelberg who had a similar idea a few years earlier. 
 
R. Feynman introduces this association into the equations of relativistic Quantum Electrodynamics. It 
should be noted that it is already found in the equations of electromagnetism of the 19th century. 
 
Let be a particle of electric charge −𝑞 going back in Time in an electromagnetic field. Let us show 
that this particle undergoes the same effects as another particle of charge 𝑞, of identical mass 𝑚, 
advancing in Time in the same direction as us, that is to say towards the future. 
 
In an electromagnetic field, an electric charge responds to the equation of motion: 𝑚 𝑑 �⃗�𝑑 𝑡 = 𝑞�⃗�𝑙 + 𝑞 𝑑�⃗�𝑑𝑡 ∧ 𝐵 

The fields �⃗�𝑙 and 𝐵 derive from a potential quadrivector 𝐴. We obtain the equation of motion: 𝑚 𝑑 �⃗�𝑑 𝑡 = (𝑞) 𝜕𝐴𝜕𝑡 + (𝑞) 𝑑�⃗�𝑑𝑡 × (𝛻. 𝐴) 

equivalent to: 𝑚 𝑑 �⃗�𝑑(−𝑡) = (−𝑞) 𝜕𝐴𝜕(−𝑡) + (−𝑞) 𝑑�⃗�𝑑(−𝑡) × (𝛻. 𝐴) 

 
It can therefore be seen that a charge 𝑞, advancing in Time following moments 𝑡, presents an equation 
of motion equivalent to a charge −𝑞, with the same mass m, and going back in Time following 
instants −𝑡. 
 
During the acceptance speech of his Nobel Prize, R. Feynman explains how the idea of an electron 
going back in Time, germinated in his mind. He himself was inspired by an idea by his former 
professor J. A. Wheeler, seeking to understand why all electrons in the Universe have the same mass 
and electric charge. 
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"Feynman!" J. A. Wheeler once exclaimed over the phone, "I know why all electrons have the same 
mass and charge.” 
"Why?" asked R. Feynman. 
"Because they are all the same electrons!" 
J. A. Wheeler then explained that all electrons were the same particle that goes back and forth in Time. 
When going to the future, it is an electron and when returning a positron. 
"But, sir," said R. Feynman, "there are not so many positrons and electrons!" 
"Oh, maybe they're hidden in protons or something," he replied. 
 
R. Feynman retains only part of the original idea of his former teacher and applies it to the 
antielectron. 
 
The drawing below complements R. Feynman's Nobel speech. It represents an electron moving in 
Space and Time. At points A and C, electron and positron annihilate. This annihilation can be 
interpreted as a U-turn in the Time of the electron, then transforming into a positron. 
At the instant 𝑡 , We observe 3 electrons and 2 positrons. These back and forth in Time make it 
possible to generate matter and antimatter. 
 

 
Figure 1: drawing by R. Feynman, the Universe line of an electron capable of going back in Time 

 
Note, generate new chemical elements or isotopes by increasing the number of round trips in 
Time of a proton or nucleon? 
We can have fun using the idea of J. A. Wheeler, to explain the different atomic numbers of atoms. 
Each nucleus of an atom would be generated by a single proton (of electric charge 𝑄 = +1) going 
back and forth in Time and therefore appearing as multiplied to an observer according to the number 
of round trips made. Uranium 𝑈 would be different from hydrogen 𝐻 per 92 round trips of the 
proton instead of 1. Nevertheless, we would have the same question as R. Feynman, where the electric 
charges 𝑄 = −1 have gone? Can they be hidden in electrons like what J. A. Wheeler retorts? 
 
To try to explain neutrons, instead of seeing electric charges 𝑄 = +1 go into the future and electric 
charges 𝑄 = −1 return to the past, this would be the weak hypercharges 𝑌 = +1 that would go into 
the future and weak hypercharges 𝑌 = −1 who would return to the past. Each nucleus of an atom 
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would be generated by a single nucleon (of weak hypercharge 𝑌 = +1) going back and forth in Time 
and therefore appearing as multiplied to an observer according to the number of round trips made. 
Uranium isotope 𝑈 would be distinguished from uranium isotope 𝐻p by 235 back and forth of 
the nucleon instead of 232. However, we would have the same question again: where have the weak 
hypercharges gone? 𝑌 = −1? Can they be hidden in electrons and neutrinos both of 𝑌 = −1 and 
going into the past? 
 
 
I.3.4 Repulsion of opposite charges and attraction of identical charges 
From R. Feynman's idea of the electron that goes back in time, it is possible to understand in a very 
intuitive way why two opposite charges repel each other and why two identical charges attract. 
 
In Quantum Electrodynamics, the electromagnetic interaction manifests itself for example during a 
photon exchange between two electrons of identical electric charges (with as a consequence of this 
exchange, a variation in the motion of the 2 electrons). 
Intuitively, we can accept that two bodies that exchange a third, are pushed to move away according to 
the principle of conservation of momentum. Two electrons of the same electric charge, which 
exchange a photon, are thus pushed away (note that the 3 bodies have a momentum). 
This is described in the figure below: 
 

 
Figure 2: 2 bodies of the same electric charges repel each other2 

 
The electromagnetic interaction also manifests itself during a photon exchange between an electron 
that advances in time and an electron that goes back in time, that is to say a positron. 
As before, we can always accept that two bodies that exchange a third, are pushed to move away. 
Thus, in the sense of the past, electron and positron repel each other. And in the direction of the future, 
repulsion becomes attraction: electron and positron of opposite electric charges attract. 
This is described in the figure below: 
 

 
Figure 3: 2 bodies of opposite electric charges attract each other3 
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Following the model of the Bohr atom, a first excited electron emits a photon, it sees its mechanical 
energy decrease by 𝛥𝐸 , it changes circular orbit and approaches, for example, the nucleus of the 
atom. The emitted photon has energy 𝐸 = 𝛥𝐸 = ℎ𝜈 and a momentum 𝑝 = = = = . This 
photon is then absorbed by a second electron. This electron sees its mechanical energy increase by 𝛥𝐸 , it changes circular orbit and for example, moves away from the nucleus of the atom. 
We thus observe a repulsive electromagnetic interaction between the two electrons of the same electric 
charge, with the photon as an intermediate particle. 
 
I.4 2-sens Time and principle of least action 
I.4.1 Advantages and disadvantages of a 2-sens Time 
The 2-sens Time hypothesis, identical to the three spatial dimensions has an undeniable advantage. 
Indeed, the model proposed for Space-Time is not complexified. On the contrary, it is simplified. The 
introduction of Time into mathematical equations is even singularly trivial, since it is identical to the 3 
spatial dimensions. 
 
The hypothesis of a two-way Time nevertheless presents a major handicap. It is the loss in passing of a 
principle a priori fundamental: the principle of causality difficult to conceive with a reversible Time. 
 
To compensate for the loss of this principle of causality, the supporters of the reversibility of Time, in 
particular R. Feynman, insist on another principle frequently encountered in physics: the principle of 
least action. 
 
I.4.2 The principle of least action 
The first real physical approach to the principle of least action can be dated to the 17th century and to 
Louis Fermat, in the context of geometric optics and the study of light. L. Fermat insisted on 
minimizing the trajectory of light. 
A century later, in 1744, Pierre Louis Moreau de Maupertuis extended this principle to Newtonian 
mechanics and the study of forces. 
In 1756, Joseph-Louis Lagrange proposed a mathematical description of the principle and applied it to 
various phenomena in physics. For example, the trajectory of light in dispersive media, the classical 
laws of Newtonian dynamics. 
In his 1942 thesis, R. Feynman was interested in this principle, he studied its adaptation to quantum 
mechanics. 
 
To explain the principle of least action, let us take up the tasty parable of R. Feynman reported in his 
book The Nature of Physics. 
 
On a sunny beach in the ocean, a lifeguard runs to rescue a girl bather who is drowning about twenty 
meters from the shore. The lifeguard symbolizes light or any other system that seeks to minimize its 
efforts. Athletic, the lifeguard nevertheless remains an earthling, he runs much faster than he swims. 
To minimize his efforts and travel time, he makes a much longer journey on the sand than in the water. 
 
Let be 𝑣  the speed of the lifeguard on the beach, 𝑣  the speed of the lifeguard in the ocean 
and 𝑐 a reference speed. We have: 𝑐 > 𝑣 > 𝑣  

 
The indices are defined: 𝑛 = 𝑐𝑣  

𝑛 = 𝑐𝑣  
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𝑛 < 𝑛  

 
The lifeguard's trajectory forms an angle at the level of the ocean beach passage (sand water). We find 
the Snell-Descartes law for the refraction of light: 𝑛 𝑠𝑖𝑛( 𝜃 ) = 𝑛 𝑠𝑖𝑛( 𝜃 ) 

 

 
Figure 4: minimization of lifeguard action 

 
In classical analytic mechanics, we define the action 𝑆[𝑞 (𝑡 + 𝜀), 𝑞 (𝑡)] from the integral of the 
Lagrangian 𝐿(𝑞, �̇�, 𝑡) over a period of time 𝜀: 𝑆[𝑞 (𝑡 + 𝜀), 𝑞 (𝑡)] = 𝐿(𝑞, �̇�, 𝑡)𝑑𝑡 

 
According to the mathematical expression of the principle of least action, with the action considered as 
an extremum, we have: 𝛿𝑆[𝑞] = 0 

We deduce the Euler-Lagrange equation: 𝜕𝐿𝜕𝑞 − 𝑑𝑑𝑡 (𝜕𝐿𝜕�̇�) = 0 

 
Note 1 
In the hypothesis of a 2-sense Time, the principle of least action could favourably replace that of 
causality as the constitutive principle of the Universe. The debate obviously remains open. 
 
Note 2 
From the principle of least action, then from the Euler-Lagrange equation, it is possible to find the 
fundamental principle of Newton's dynamics. To see if it is also possible from this principle of least 
action to find other source field equations? 
 
 
I.4.3 Spin magnetic moment and path integrals of R. Feynman 
One of the great successes of relativistic quantum electrodynamics is to recover with great precision 
the experimental value of the spin magnetic moment 𝜇  of the electron. This magnetic moment is 
described using the Landé factor 𝑔 and the spin kinetic moment (or spin angular momentum) 𝑆: 𝜇 = 𝑔 −𝑒2𝑚 𝑆 

Lifeguard 

Girl bather 

2

1
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To recover this experimental value, we can use the path integrals of R. Feynman, built on the model of 
the action 𝑆. We introduce in relativistic quantum electrodynamics an analogous formulation of: 𝑆[𝑞 (𝑡 + 𝜀), 𝑞 (𝑡)] = 𝐿(𝑞, �̇�, 𝑡)𝑑𝑡 

 
The use of R. Feynman's path integrals requires considering the 2 senses of Time, in order to find the 
experimentally measured value of 𝜇 . Indeed, it is necessary to introduce both particles that advance in 
Time, and antiparticles that go back in Time. 
 
I.5 Conclusion of the chapter 
Most physical theories are reversible in time. In Newtonian mechanics, in the theory of Relativity or in 
relativistic quantum Electrodynamics, the analogies Time Space are often promising. Above all, the 
hypothesis of a 2-sens Time makes it possible to find experimental results whose obtaining would be 
impossible otherwise. 
This contradicts the felt Time in which we live, which presents an arrow frequently referred to as a 
psychological arrow, because it refers to our mind. 
This contradiction between Time used in Physics and Time felt, appears today as one of the great 
enigmas of Physics. 
 
In the next 3 chapters, we will nevertheless see that there are some cases in physics, theories or 
experimental facts, which do not seem reversible in Time. They are found, for example, in 
thermodynamics with the notion of entropy, in certain elementary particle experiments involving weak 
interactions, as well as in the cosmological theory of the Big Bang. For these three cases, we speak 
respectively of thermodynamic arrow, microscopic arrow, and cosmological arrow. It is these three 
arrows that we will now study. 



452    Invariances and transformations 

 

Chapter II Existence of a thermodynamic arrow? 
 
Objective of the chapter 
We are interested here in the existence of a thermodynamic arrow that manifests itself in the notion of 
entropy. 
 
II.1 Definitions of entropy 
II.1.1 Clausius entropy 
If most physical theories present a possible temporal reversibility, one of them, thermodynamics is an 
exception. Temporal irreversibility manifests itself in the notion of entropy, that evolves increasing in 
Time. 
 
We remind the formulas of entropy of a system introduced in 1865 by Rudolf Clausius as part of the 
2nd law of thermodynamics, according to the work of Sadi Carnot: 

- for a reversible transformation in Time, we have: 𝑑𝑆 = 𝛿𝑄𝑇  

- for an irreversible transformation over time, we have: 𝑑𝑆 > 𝛿𝑄𝑇  

 𝑄  is the amount of heat received by a thermodynamic system during a reversible reaction, 𝑄  is the amount of heat received by a thermodynamic system during an irreversible reaction, 𝑇 is the temperature of the thermodynamic system. 
 
It is noted that during an irreversible reaction in Time, entropy 𝑆  can only grow. 
 
II.1.2 Boltzmann statistical entropy, the measure of disorder 
In the 1870s, Ludwig Boltzmann developed statistical thermodynamics. He shed new light on the 
notion of entropy by proposing statistical entropy of a system: 𝑆 = 𝑘 𝑙𝑜𝑔 𝑤 

with 𝑘 ≈ 1,38064 × 10 𝑚 𝑘𝑔 × 𝑠 𝐾  the Boltzmann constant and 𝑤 the number of possible 
states of the system studied. 
 
Statistical entropy describes the probability of the existence of a system. It measures the degree of 
disorder of this system at the microscopic level. The higher the entropy of the system, the greater the 
number of possible states, the greater its probability of existence, the less its elements are ordered, 
related to each other. The share of energy that cannot be used to obtain a work is growing. According 
to statistical thermodynamics, if nothing is done, the system naturally tends towards disorder. 
 
II.2 Time oriented in thermodynamics, bringing together entropy and information? 
II.2.1 Maxwell's demon 
In parallel with L. Boltzmann, J. C. Maxwell is also interested in statistical thermodynamics. He seems 
to have been the first to have made an implicit link between entropy and information through a 
thought experiment called Maxwell's demon. 
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Maxwell's demon is a hypothetical being that processes information and memorizes it. The demon 
measures the speed of gas molecules that reach the entrance of two compartments. It opens or closes a 
valve between the two compartments depending on the speed of the molecules. If the molecules go 
fast, he sends them to the 1st compartment. If they are slow, he sends them to the 2nd. This action 
builds two different compartments, one hot and the other cold. 
Thus, the demon can reduce the entropy of a homogeneous gas at a given temperature. He reverses the 
course of thermodynamic Time, apparently acting against the second law of thermodynamics. 
 
II.2.2 Shannon entropy, the measure of missing information for a receptor 
Maxwell's demon has raised many studies and questions, in order to better understand how it can 
reverse the course of thermodynamic Time. 
In 1929, Leo Szilard argued that creating information requires energy to account for how Maxwell's 
demon acts. In the 1950s, John von Neumann and Claude Shannon explicitly linked information and 
entropy. 
 
Initially, C. Shannon did not know the work of L. Boltzmann on statistical entropy. He developed his 
own work on statistical information. We have for Shannon's formula on information: 𝐼 = 𝑘 𝑙𝑜𝑔( 1𝑝) 

with 𝐼 the amount of information contained in a source, missing information for a receiver and 
therefore to be acquired, 𝑝 the probability of an event, 𝑘 a constant. 
 
If all events, in number 𝑤, are also likely, the probability of each is: 𝑝 = 1𝑤 

We then obtain the formula of the missing information to be acquired for a receiver: 𝐼 = 𝑘 𝑙𝑜𝑔 𝑤 

 
In examining the work of C. Shannon, J. von Neumann made the connection with that of L. 
Boltzmann. He then brought together entropy and missing information. Thus, 𝐼 is now called Shannon 
entropy or information entropy. 
 
II.3 Conclusion of the chapter 
The temporal irreversibility of thermodynamics is manifested in the notion of entropy. Historically, 
this notion of entropy was introduced as a measure of disorder, which can only grow. At the end of the 
19th century, J. C. Maxwell is the first to make the link between entropy and information via his 
demon. In the 1950s, disorder, entropy, missing information and to be acquired was associated. It was 
then possible to connect the arrow of thermodynamics to an arrow of missing information, arrows 
against which Maxwell's demon can apparently oppose by processing and memorizing the 
information. 
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Chapter III Existence of a microscopic arrow of the particles? 
 
Objective of the chapter 
We are interested here in the hypothesis of an arrow of Time at the level of elementary particles. We 
will focus on some breakthroughs in physics from the 1950s and 1960s. This physics has particularly 
studied symmetries 𝑃, 𝐶 and 𝑇 through particle decays. 
 
III.1 Existence of a microscopic arrow of Time? 
In the1st chapter, it was pointed out that the laws of classical mechanics, as well as those of 
electromagnetism were possibly reversible in Time. Temporal reversibility even seems necessary for 
the relativistic quantum electrodynamics of the 1950s. 
However, during the 1950s and 1960s, by studying collisions between elementary particles in an 
increasingly detailed way, some physicists detected signs of temporal irreversibility. This is what we 
will now study starting with some reminders about operators 𝑃, 𝐶 and 𝑇. 
 
III.1.1 Reminders on operators 𝑷 and 𝑻 
The operator 𝑃 is a transformation that reverses the coordinates of Space (operation also called parity). 𝑥 → 𝑥′ = −𝑥 

 
Note 
The orbital angular momentum 𝐿 and the spin angular momentum 𝑆 are not affected by the Parity 
operation. The energy and momentum are reversed. By inverting the coordinates of Space, we have: 𝐿 → 𝐿′ = 𝐿 𝑆 → 𝑆′ = 𝑆 𝑝 → 𝑝′ = −𝑝 𝐸 → 𝐸′ = −𝐸 
 
 
The operator 𝑇 is a transformation that reverses the sense of Time. 𝑡 → 𝑡′ = −𝑡 

 
Note 
By reversing the coordinates of Time, we have: 𝐿 → 𝐿′ = −𝐿 𝑆 → 𝑆′ = −𝑆 𝑝 → 𝑝′ = −𝑝 𝐸 → 𝐸′ = −𝐸 
 
 
III.1.2 Reminders on electric charge conjugation 𝑪 
Conjugation of electric charge 𝐶 is a transformation that reverses the electric charge of a particle. It 
also changes quantum quantities related to electric charge. We find orbital and spin magnetic 
moments, isospin 𝐼, hypercharge 𝑌 (and related numbers: baryonic number 𝐵𝑎, strangeness 𝑆𝑡, lepton 
number 𝐿 , etc.). 
 
Charge conjugation 𝐶 does not affect a priori orbital and spin angular momentum, mass, momentum, 
average life of a particle. 
 
Note 1 
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The only particles that remain invariant by charge conjugation 𝐶 are the truly electrically neutral 
particles, i.e., those that have null their electric charge and bound quantum quantities (magnetic 
moment, isospin, hypercharge, etc.). 
 
We find the photon 𝛾, the boson 𝑍 , and states formed of a particle and its antiparticle: 𝑒 �̄� , the 
meson pion 𝜋  formed from a mixture of quark pairs 𝑢�̄� and 𝑑𝑑. 
 
Note that the neutron is not really electrically neutral since it has a positive hypercharge 𝑌 and a 
negative isospin 𝐼. There is therefore an electrically neutral antineutron of opposite hypercharge 
(negative) and opposite isospin (positive). 
 
Note 2 
The equations of electromagnetic interaction, as well as Maxwell's equations, are charge-conjugation 
invariant. 
 
 
III.1.3 Symmetry and violation reminders 
This is called symmetry of 𝑃, 𝐶 or 𝑇, a conservation of the laws of motion of a particle by 
transformation 𝑃, 𝐶 or 𝑇. 
This is called a violation of 𝑃, 𝐶 or 𝑇, a non-conservation of the laws of motion of a particle by 
transformation 𝑃, 𝐶 or 𝑇. 
 
III.1.4 Theorem 𝑪𝑷𝑻 
The theorem 𝐶𝑃𝑇 states that a transformation 𝑅 = 𝐶𝑃𝑇, i.e., a combined operation of 𝐶, 𝑃 and 𝑇 
leaves the laws of motion invariant for a particle. 
 
The theorem 𝐶𝑃𝑇 appeared for the first time in 1951, implicitly, in the work of J. Schwinger. J. 
Schwinger then sought to prove the correlation between spin and statistics. He tried to make the link 
between the statistics of Fermi-Dirac and Bose-Einstein. To understand why the electron has a half-
integer spin while the photon has an integer spin, he turned his attention to the theorem 𝐶𝑃𝑇. 
 
In 1954, G. Lüders and W. Pauli established a proof of the theorem 𝐶𝑃𝑇. Thus, this theorem is 
sometimes called the Lüders–Pauli theorem. At the same time and independently, the theorem is also 
proved by J. S. Bell. His proofs are based on the validity of the invariance of major physical laws vis-
à-vis the Lorentz transform and  the principle of locality in the interaction of quantum fields. 
 
These demonstrations are based on the premise that the world in which we live is quantum, relativistic 
and causal at the same time. The experimental proof or refutation of the theorem 𝐶𝑃𝑇 remains an open 
question today. 
 
Note 1 
If we accept the theorem 𝐶𝑃𝑇, a violation of 𝐶𝑃 involves a violation of T. 
 
Note 2 
Related to the theorem 𝐶𝑃𝑇, every particle has an antiparticle (which can sometimes be confused with 
itself, as in the case of the photon), of opposite or zero charge depending on the transformation C, of 
opposite momentum and helicity depending on the transformation 𝑃, which propagates by going back 
in Time depending on the transformation 𝑇. 
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III.2 Decay reactions 𝜷±, violation of 𝑷 and 𝑪, conservation of symmetry 𝑪𝑷 
III.2.1 Decay reaction 𝜷  of cobalt-60, violation of symmetry 𝑷 
In classical physics and relativistic quantum electrodynamics, the equations of motion are separately 
invariant by transformations 𝑃, 𝐶 and 𝑇. 
However, in the years 1956-57, it is surprising to note that the invariance by parity 𝑃 at the spin level 
is not a priori satisfied in reactions involving the weak interaction. 
 
Physicists Tsung-Dao Lee and Chen Ning Yang became interested in the conservation of parity in all 
fundamental interactions.. They propose to test their ideas to the experimental physicist C.-S. Wu 
Chien-Shiung Wu on decay reaction 𝛽  of cobalt-60. 
 
The decay reaction is shown schematically in the figure below. The momentums of the particles are in 
fine and black arrows, the spins of the particles are in fat and colored arrows. We deduce the helicities 
for electrons and antineutrinos products of decay 𝛽 . 
 

 
Figure 5: decay reaction 𝛽  from cobalt to nickel 

 
If parity 𝑃 is retained, one must obtain as a product of the reaction as many electrons of right helicity (𝑒 )  as of left helicity (𝑒 ) . However, C.-S. Wu only got left helicity electrons (𝑒 )  and right 
helicity antineutrinos (�̄� )  (the only ones that seem to exist). 
 
For the decay 𝛽  Cobalt-60, parity is therefore violated to the maximum, that is, no left helicity 
antineutrino is observed (�̄� ) . 
 
III.2.2 Reminders on the pions 
Following the Yang-Mills theory, the pions 𝜋 , 𝜋 and 𝜋  are the strong charged mediating particles 
of the strong interaction. They carry a strong charge and can change the strong charge of a nucleon. 
 
The pions 𝜋 , 𝜋  are of the scale operator type, they can increase or decrease by a 𝐼  the strong 
charge of a nucleon. 
According to the Quark Model, the pions 𝜋 , 𝜋  and 𝜋  are formed quarks 𝑢 and 𝑑 (and antiquarks �̄� 
and 𝑑) from 1st generation. All have an isospin 𝐼 = 1, a zero spin and a zero hypercharge. We have 
the following table where they are distinguished by the3rd component of their isospin 𝐼 . 
 𝜋  𝑢𝑑 𝜋  (𝑢�̄� − 𝑑𝑑)/√2 𝜋  �̄�𝑑 

Co60
27 Ni60

28

Re )(

Le )( 



Memoir 6: Time felt and Time in Physics   457 

 

(𝐼, 𝐼 ) = (1, +1) (𝐼, 𝐼 ) = (1,0) (𝐼, 𝐼 ) = (1, −1) 
 
III.2.3 Decay reaction 𝜷± of pions 𝝅  and 𝝅 , 1st generation particles, conservation of 

symmetry 𝑪𝑷 
The figure below shows the decays 𝛽± observed from charged pions 𝜋  and 𝜋  to anti-muon, muon 
neutrino, muon and muon antineutrino. 
 

 
Figure 6: decay reactions 𝛽  and 𝛽  of pions 𝜋  and 𝜋  

 
We start from decay reaction from 𝛽  from a pion 𝜋  to a left-handed muon neutrino (𝜈 )  and a left-
handed anti-muon (�̄� ) . It is noted that symmetry 𝑃 is violated to the maximum, that is, we do not 
observe any right-handed muon neutrino (𝜈 )  during decay reaction 𝛽 . Similarly, symmetry 𝐶 is 
violated to the maximum, that is, left-handed muon antineutrino (�̄� )  is not observed during decay 
reactions 𝛽  of a pion 𝜋 . 
 
By contrast, we are seeing a decay reaction 𝛽  from a pion 𝜋  to a right-handed muon anti-neutrino (�̄� )  and right-handed muon (𝜇 ) . The passage from a decay reaction 𝛽  of a pion 𝜋  to a decay 
reaction 𝛽  of a pion 𝜋  corresponds to a transformation 𝐶𝑃. 
 
Thus, the transformation 𝐶 only is impossible because left-handed muon anti-neutrinos do not exist. 
Similarly, the transformation 𝑃 only is impossible because right-handed muon neutrinos do not exist. 
Since symmetries 𝐶 and 𝑃 are both violated to the maximum, the symmetry 𝐶𝑃 is retained. We find 
the conservation of the laws of motion of a particle by transformation 𝐶𝑃. 
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In the case of pions, we stop at 1st generation quarks. We will now focus on 2nd generation quarks, 
that possess several non-zero strangeness 𝑆𝑡. We will study the physics of kaons and find in this case a 
violation of symmetry 𝐶𝑃. 
 
III.3 Physics of kaons, violation of symmetry 𝑪𝑷 
III.3.1 Reminders about kaons 
According to the Quark Model, kaon mesons belong to the mediating particles of the strong interaction 
(i.e., kaons carry a strong charge and can modify the strong charge of a baryon). 
Kaons are made up of quarks 𝑢, 𝑑 and 𝑠 (and their antiquarks). They are at the origin of the proposal 
of the number of strangeness 𝑆𝑡. 
 
For kaons 𝐾 , 𝐾 , 𝐾 , 𝐾 , we have the following decomposition into quarks: 𝐾  𝑢�̄� 𝐾  𝑑�̄� 𝐾  𝑑𝑠 𝐾  �̄�𝑠 
 
Let's take a closer look at neutral kaons and antikaons 𝐾  and 𝐾 . 
 
III.3.2 Decay reactions 𝜷± of neutral kaons 
The neutral kaons and antikaons 𝐾  and 𝐾  can disintegrate into pions 𝜋 , 𝜋 , 𝜋 . For example, we 
have decay reactions 𝛽± where the weak interaction comes in: 
 

 
 

 
Figure 7: decay reaction 𝛽  of 𝐾  and decay reaction 𝛽  of 𝐾  

 
Note 
Note that the number of strangeness 𝑆𝑡 is not preserved during these 2 disintegrations. 
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In 1964, J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay demonstrated the violation of 
symmetry in the weak interaction by studying the properties of neutral 𝐶𝑃kaons . Let us recall here 
their model. 
 
III.3.3 Symmetry violation 𝑪𝑷 in weak interaction, model of Christenson-Cronin-Fitch-Turlay 
Kaons are produced by strong interaction and decay by weak interaction. Just like pions, they have 
negative parity. We have the following transformations by the parity operator 𝑃: 𝑃|𝐾 ⟩ = −|𝐾 ⟩ 𝑃|𝐾 ⟩ = −|𝐾 ⟩ 
 
By charge conjugation 𝐶, we have: 𝐶|𝐾 ⟩ = |𝐾 ⟩ 𝐶|𝐾 ⟩ = |𝐾 ⟩ 
 
By combining the two transformations 𝐶𝑃, we get: 𝐶𝑃|𝐾 ⟩ = −|𝐾 ⟩ 𝐶𝑃|𝐾 ⟩ = −|𝐾 ⟩ 
 
Let be 𝜂 = 1 and 𝜂 = −1, the eigenvalues of the charge conjugation operator 𝐶 and parity 
operator 𝑃, associated with eigenstates 𝐾  and 𝐾 . We have the relationships: 𝐶𝑃 𝐾 = 𝐾  

with 𝜂 = 1 𝐶𝑃 𝐾 = − 𝐾  

with 𝜂 = −1 

 
We give the eigenstates of the transformation 𝐶𝑃 𝐾  and 𝐾  depending on the states produced by 
strong interaction |𝐾 ⟩ and |𝐾 ⟩: 𝐾 = 1√2 (|𝐾 ⟩ − |𝐾 ⟩) 

𝐾 = 1√2 (|𝐾 ⟩ + |𝐾 ⟩) 

 
If symmetry 𝐶𝑃 is conserved in the weak interaction, the states 𝐾  and 𝐾  must represent observed 
particles, i.e., the eigenstates of the weak interaction. These particles decay by the way 𝜂 = 1 for the 
state 𝐾  and by the way 𝜂 = −1 for the state 𝐾 , i.e., in two and three pions respectively. 
 
Note, brief explanation to understand the decays of kaons 𝑲𝟏𝟎 and 𝑲𝟐𝟎 in 2 and 3 pions 
respectively 
Let be a 2-pion system in a state of relative orbital angular momentum 𝐿, we have: 

 
L
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Figure 8: 2-pion system 

 
We have the proper value of the transformation 𝐶𝑃 given by the formula: 𝜂 = (𝜋𝜋) = (−1) (−1) = (−1)  
 
Analysis of angular distributions of pions reveals that 𝐿 = 0. 
So, we have: 𝜂 (𝜋𝜋) = 1 
 
For a three-pions system, with 𝑙 and 𝐿 the orbital angular momentum, we have: 

 
Figure 9: 3-pions system 

 
We have the proper value of the transformation 𝐶𝑃 given by the formula: 𝜂 (𝜋𝜋𝜋) = (−1)(−1) (−1)  
 
Analysis of angular distributions of pions reveals that 𝐿 = 𝑙. 
So, we have: 𝜂 (𝜋𝜋𝜋) = −1 
 
Since the 2-pion system corresponds to 𝜂 (𝜋𝜋) = 1, 𝐾  must disintegrate into 2 pions. Similarly, 
since the 3-pion system corresponds to 𝜂 (𝜋𝜋𝜋) = −1, 𝐾  must disintegrate into 3 pions. 
 
 
Experimentally, we distinguish a long neutral kaon 𝐾  with a long lifespan from a short neutral kaon 𝐾  with a short lifespan. The kaons observed 𝐾  and 𝐾  are both eigenstates of the weak interaction. 
 
If symmetry 𝐶𝑃 is conserved by weak interaction, we should observe a state 𝐾 = 𝐾  which decays 
only into 3 pions and a state 𝐾 = 𝐾  which decays only into two pions. We have the 2 decay 
reactions: 𝐾 → 𝜋 + 𝜋 + 𝜋  𝐾 → 𝜋 + 𝜋  

 
However, with a very low but not zero probability, there is a decay of 𝐾  in two pions. 
 
We have indeed the relations: |𝐾 ⟩ = 11 + |𝜀| ( 𝐾 − 𝜀 𝐾 ) 

|𝐾 ⟩ = 11 + |𝜀| (𝜀 𝐾 + 𝐾 ) 

l

L
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with 𝜀 = 2,284 ± 0,014 × 10  
 
Therefore, the 2 eigenstates of the weak interaction |𝐾 ⟩ and |𝐾 ⟩ are not exactly identical to the 2 
eigenstates of the transformation 𝐶𝑃 𝐾  and 𝐾 . This indicates that symmetry 𝐶𝑃 is violated by 
weak interaction. 
 
Note 1 on the CKM matrix 
To consider the violation of symmetry 𝐶𝑃 in weak interaction, Makato Kobayashi and Toshihide 
Maskawa proposed in 1973 a3rd generation of quarks. They introduced a complex phase 𝛿 in the CKM 
matrix, Cabibbo-Kobayashi-Maskawa matrix comprising 3 generations of quarks. The phase 𝛿 
introduces a term that violates the symmetry of the transformation 𝐶𝑃. 
 𝑀 = 𝑐 𝑐 𝑠 𝑠 𝑠−𝑐 𝑠 𝑐 𝑐 𝑐 − 𝑠 𝑠 𝑒 𝑐 𝑐 𝑠 + 𝑐 𝑠 𝑒𝑠 𝑠 −𝑐 𝑐 𝑠 − 𝑐 𝑠 𝑒 −𝑐 𝑠 𝑠 + 𝑐 𝑐 𝑒  

 
Note that with the Cabibbo matrix with two generations of quarks, the violation of symmetry 𝐶𝑃 is not 
considered. 
 
Note 2 on the theorem 𝐶𝑃𝑇 
If we accept the theorem 𝐶𝑃𝑇, a violation of symmetry 𝐶𝑃 involves an (indirect) violation of T-
symmetry. 
 
Note 3, direct violation of T-symmetry? 
There are experiments that suggest a direct violation of T-symmetry. This violation was observed in 
1998 during the CPLEAR experiment at CERN. It also covers neutral kaons. 
 
The CPLEAR experiment shows that the probability of oscillation of a neutral kaon in its antikaon is 
not strictly equal to its image by time reversal: the probability of oscillation of an anti-kaon in kaons. 
Schematically, we have: 𝐾 → 𝐾 ≠ 𝐾 → 𝐾  
 
Note 4, on the weak anti-charge 
In Memoir 5, it was pointed out that the passage from matter to antimatter, i.e., the operation 𝐶𝑃 is 
related to electromagnetic interaction. The analogue for the weak interaction would be the operation 
that reverses the weak charge 𝐶  (and perhaps also the operation 𝑃). 
 
As mentioned, the spin 𝑆 is retained when passing from matter to antimatter, whereas it should be 
changed when switching from weak charge to weak anti-charge. 
Similarly, the number of generations 𝐺𝑒 reverses when passing from matter to antimatter, whereas it 
should be retained when passing from weak charge to weak anti-charge. 
 
In this case, we can reasonably accept for the weak interaction, a conservation of symmetry 𝐶 𝑃, a 
violation of symmetry 𝐶𝑃, while refusing a violation of symmetry 𝑇. 
The theorem 𝐶𝑃𝑇 would then only apply to electromagnetic interaction. 
 
 
III.4 Conclusion of the chapter, existence or not of a microscopic arrow? 
In conclusion, the question of the existence or not of a microscopic arrow is still much debated. In this 
chapter, we have discussed the Christenson-Cronin-Fitch-Turlay model which highlights in neutral 
kaons a violation of symmetry 𝐶𝑃 in weak interaction. 
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Nevertheless, in this Memoir, we will lean towards the absence of violation of symmetry 𝑇 at the level 
of elementary particles. That is, we will apply the theorem 𝐶𝑃𝑇 only to electromagnetic interaction. 
Anyway, the question remains open, and no real new argument will be brought here. 
 
In the next chapter, we will focus on the cosmological arrow and the origins of the Big Bang theory. 
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Chapter IV Cosmological arrow and elements on the theories of General 
Relativity, the Big Bang, and black holes 

 
Purpose of the chapter 
We give some elements on the theories of General Relativity, the Big Bang and black holes, 
highlighting the temporal irreversibility encountered. 
The Big Bang theory is first evoked, from the beginnings in the 1910s with the theory of general 
relativity, until the discovery in the 1960s of fossil electromagnetic radiation. We conclude with some 
great ideas of the thermodynamics of black holes proposed in the 1970s. 
 
IV.1 Historical Reminders about the Theory of General Relativity 
IV.1.1 The General Relativity of A. Einstein (1910s) 
During the 1910s, A. Einstein developed the theory of General Relativity that applies to gravitation. 
His main objective was to respect the following principle: the laws of Nature remain the same during 
any change of reference frames (for example an accelerated movement, a rotational movement, etc.). 
 
To develop his theory of gravitation and find an equation comparable to Newton's universal law of 
gravitation �⃗� = −𝐺 𝑟 = 𝑚�⃗�𝑟, A. Einstein started from an analogy with the potential source 
equation of Poisson gravitation: 𝛻 𝑉 = 4𝜋𝐺𝜌 𝑉  is the Newtonian potential, 𝐺 the gravitational constant, 𝜌 the mass density. 
 
The idea of A. Einstein is to extend the Poisson gravitational equation to the 4 dimensions of Space-
Time. For this, in the theory of General Relativity, 𝛻 𝑉  is equated with the Ricci tensor 𝑅  (the 
terms of 𝛻 𝑉  and of 𝑅  both have second derivatives). The mass density 𝜌 is assimilated to the 
tensor 𝑇 , the energy-momentum tensor. 
 
A. Einstein proposed a first equation: 𝐺 = 𝑅 = 4𝜋𝐺𝑐 𝑇  𝐺  is called the Einstein tensor. 
 
The problem is that in analogy with 𝛻 𝑉  which has a zero derivative, Einstein's tensor 𝐺 = 𝑅  thus 
defined does not have a null covariant derivative. 
 
In order to obtain a zero covariant derivative, the Einstein tensor is then redefined with: 𝐺 = 𝑅 − 12 𝑔 𝑅 𝑅 is the scalar curvature. 𝑔  is the metric tensor. 
 
A. Einstein proposed a second equation: 𝐺 = 𝑅 − 12 𝑔 𝑅 = 8𝜋𝐺𝑐 𝑇  
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Note 1, Einstein's gravitation equation seen as a generalization of Gauss gravitational, from 
Space to Space-Time 
Einstein's gravitation equation is an equation between a source (Energy momentum tensor 𝑇 ) 
potential (𝐺 ) in a 4-dimensional Space-Time. It can be interpreted as a generalization of the 3 
dimensions of Space to the 4 dimensions of Space-Time of the source potential equation of Poisson 
gravitation: 𝛻 𝑉 = 4𝜋𝐺𝜌 or of the "usual" source field Gauss gravitational equation: �⃗�𝑟(𝑀). 𝑑 𝑆 = −4𝜋𝐺𝜌 𝑑𝑉 = −4𝜋𝐺𝑀  

𝑑𝑖𝑣�⃗�𝑟 = −4𝜋𝐺𝜌  

 
Note 2, differences with the source field equations proposed in this essay 
A first difference is at the level of the energy momentum tensor 𝑇 , for all that is momentum density 
or energy flow. In the source field equations proposed here, for momentum densities, we have 

replaced the constant 𝐺 by the constant ℏ  or ℏ (with 𝑙  the Planck length). 
Another difference is at the level of the Ricci tensor 𝑅 , Einstein's equation has no terms of the type −  present for example in the wave vector 𝐾 / . There is therefore no consideration of 

gravitational phenomena analogous to those of electromagnetic induction − . 
 
 
IV.1.2 The Minkowski metric 
We remind the metric 𝑔  given in its differential and general form: 𝑑𝑠 = 𝑔 𝑑𝑥 𝑑𝑥  

 
Following the ideas of A. Einstein, the space-time interval 𝑑𝑠  must be retained regardless of the 
change of reference frames. 
 
In the case of Special Relativity, we stop at the changes of Galilean (or inertial) reference frames. The 
space-time interval to be kept is: 𝑑𝑠 = −𝑐 𝑑𝑡 + 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧  

 
We have the so-called Minkowski metric: 

𝑔 = −1 0 0 00 1 0 00 0 1 00 0 0 1  

 
IV.1.3 The K. Schwarzschild metric (1915) 
In 1915, Karl Schwarzschild proposed a simple solution of Einstein's equation in the case of spherical 
symmetry.: gravitational field generated by a spherical mass, static (without rotation) not charged and 
surrounded by vacuum. 
 
This mass can be a star, a planet or a Schwarzschild black hole. The resolution is given in spherical 
coordinates (Schwarzschild metric in polar coordinates): 𝑑𝑠 = (1 − 𝑟𝑟 )𝑐 𝑑𝑡 − (1 − 𝑟𝑟 ) 𝑑𝑟 − 𝑟 (𝑑𝜃 + 𝑠𝑖𝑛 𝜃 𝑑𝜙 ) 
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𝑑𝑠 = (1 − 𝑟𝑟 )𝑐 𝑑𝑡 − (1 − 𝑟𝑟 ) 𝑑𝑟 − 𝑟 𝑑𝑆 

where: 
- 𝑑𝑠 is the space-time interval of an infinitesimal displacement 𝑑𝑡, 𝑑𝑟, 𝑑𝜃, 𝑑𝜙 from the point 𝑃 

center of spherical symmetry, 
- 𝑡, 𝑟, 𝜃, 𝜙 are the so-called Schwarzschild coordinates of the point 𝑃 in Space-Time, 
- 𝑡 is the Time coordinate at which we consider the point 𝑃 (measured by a clock located at an 

infinite distance from the massive object), 
- 𝑟 is the radial coordinate of the point 𝑃, 
- 𝜃 is the colatitude of the point 𝑃 in radians, 
- 𝜙 is the longitude of the point 𝑃 in radians, 
- 𝑑𝑆 = 𝑑𝛺 = 𝑑𝜃 + 𝑠𝑖𝑛 𝜃 𝑑𝜙  the space interval on the surface sphere 𝑆 can grow or 

decrease, 
- 𝑟 =  is the Schwarzschild radius of the massive object, with 𝐺 the gravitational constant, 𝑀 the mass of the object, and 𝑐 the speed of light. 

 
 
Note 1 on the Schwarzschild radius or radius of the horizon of a black hole 
We also often talk about 𝑟 =  of the horizon radius of a black hole. According to General 
Relativity, photons, within the radius of this black hole, cannot escape. 
 
Note 2 on the Schwarzschild radius, Planck mass and quantum micro black holes 
Planck mass is sometimes defined as the mass of a particle, whose reduced Compton wavelength 
would be equal to the Schwarzschild half-radius. 
 
The reduced Compton length is equal to: 𝜆2𝜋 = ℏ𝑚 𝑐 

 
and the Schwarzschild half-radius is equal to: 𝑟2 = 𝐺𝑚𝑐  
We have: 𝜆2𝜋 = 𝑟2  ℏ𝑚 𝑐 = 𝐺𝑚𝑐  

We obtain the Planck mass: 𝑚 = ℏ𝑐𝐺  

Note that the reduced Compton length and the Schwarzschild half-radius are then both equal to the 
Planck length: 𝜆2𝜋 = 𝑟2 = 𝐺 ℏ𝑐𝑐 𝐺 = 𝐺ℏ𝑐 = 𝑙  

For this type of particle, we speak of quantum micro black holes or Planck particles. 
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IV.2 Historical Reminders on the Big Bang Theory 
IV.2.1 Model of the Static Universe and Cosmological Constant (1917) 
Starting from Newtonian mechanics and the Poisson gravitational equation, there had already been 
attempts to describe the general state of the Universe. In 1917, in a famous article entitled 
Cosmological Considerations on the Theory of General Relativity, A. Einstein proposed a 
cosmological model of the Universe, based on the equation he had proposed a few years earlier. 
 
A. Einstein used what is now called the cosmological principle. This principle states that man does not 
occupy a privileged position in the Universe. This results in a homogeneous and isotropic Universe, 
that is to say similar to itself regardless of the place and direction of observation.  
 
To the cosmological principle, A. Einstein implicitly added another hypothesis, that the Universe is 
static, that is to say does not evolve with Time. He proposed to transform the Poisson equation 𝛻 𝑉 = 4𝜋𝐺𝜌, by adding what he called a Universal constant 𝛬 (called today cosmological constant). 
He obtained: 𝛻 𝑉 − 𝛬𝑉 = 4𝜋𝐺𝜌 

Note on the spring universe 
If we change the sign of 𝛬 and that the source be cancelled, with 𝛻 𝑉 + 𝛬𝑉 = 0, we can interpret 
the introduction of 𝛬, as if the Universe were likened to a big spring, making oscillations but not 
extending infinitely (i.e., contrary to the idea of an expanding Universe). 
 
For a spring: 𝑑 𝑥𝑑𝑡 + 𝜔 𝑥 = 0 

with 𝜔 =  

 
We have a solution like: 𝑥 = 𝐴 𝑐𝑜𝑠( 𝜔 𝑡) + 𝐵 𝑠𝑖𝑛( 𝜔 𝑡) 

 
A. Einstein made a similar approach for his equation 𝐺 = 𝑅 − 𝑔 𝑅 = 𝑇 . He transformed it 
by introducing a cosmological constant. 𝛬 and obtained: 𝐺 = 𝑅 − 12 𝑔 𝑅 − 𝑔 . 𝛬 = 8𝜋𝐺𝑐 𝑇  

 
Note 
The following form is also often found, with 𝛬 of contrary sign: 𝐺 = 𝑅 − 12 𝑔 𝑅 + 𝛬𝑔 = 8𝜋𝐺𝑐 𝑇  

 
IV.2.2 Expanding Universe model, Friedmann-Lemaître-Robertson-Walker metric (1920s) 
In the 1920s, Willem de Sitter, Alexandre Friedmann and Georges Lemaître used Einstein's equation 
(the one without cosmological constant) to develop a model of the universe that was no longer static, 
but expanding. It was the 1st model of Big Bang, even if at the time, this name was not yet attributed to 
it. 
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This model of an expanding universe is described by the so-called Friedmann-Lemaître-Robertson-
Walker metric, which partly uses the Schwarzschild metric (especially for space intervals): 𝑑𝑠 = 𝑐 𝑑𝑡 − 𝑅(𝑡) ( 11 − 𝑘𝑟 𝑑𝑟 + 𝑟 𝑑𝑆) 

where: 
- 𝑅(𝑡) is the radius of the Universe. The sign of �̇�(𝑡) provides information on the evolution of 

the Universe. �̇�(𝑡) > 0 for an expanding Universe, �̇�(𝑡) < 0 for a shrinking Universe and �̇�(𝑡) = 0 for a static Universe, all considered at the moments 𝑡. 
- 𝑘 is the curvature of Space, 𝑘 = {−1,0, +1}. If 𝑘 = 0 the model is said to be flat 

(corresponding to the Euclidean space of Special Relativity), if 𝑘 = −1 the model is said to be 
open (corresponding to hyperbolic geometry), and if 𝑘 = +1 the model is said to be closed 
(corresponding to a spherical geometry). 

- 𝑑𝑆 = 𝑑𝛺 = 𝑑𝜃 + 𝑠𝑖𝑛 𝜃 𝑑𝜙  the space interval on the surface sphere 𝑆 that can grow or 
decrease. 

- 𝑡 is Cosmic Time. 
 
Looking at this metric, we find that it contains a number of implicit assumptions: 

- that the Space interval varies in proportion to the factor 𝑅(𝑡) , which is a function of the 
moments, 

- finally, that Time is oriented from an origin. 
 
Unlike the majority of physical theories (including General Relativity) that are possibly reversible in 
Time, this 1st Big Bang model is postulated non-reversible in Time. 
The idea of a growth (or decrease) of the Universe from an initial moment is implicitly contained in 
the Friedmann-Lemaître-Robertson-Walker metric. This will be found in the other models of Big 
bang. 
 
IV.2.3 Redshift (1929) 
The ideas of W. de Sitter, A. Friedmann and G. Lemaître of an expanding Universe met above all 
skepticism, even indifference. In 1927, G. Lemaître published an article whose audience remained 
confined. He proposed the existence of a constant relationship between distance and speed of distance 
from certain nebulae (now called galaxies). 
 
In 1929, Edwin Hubble published a long and detailed article, this time managing to reach a wide 
scientific audience. He found a redshift in the discontinuous spectrum of light emitted by the chemical 
elements of galaxies. The redshift is proportional to the distance of galaxies from our Galaxy, the 
Milky Way. This shift is reminiscent of the Doppler-Fizeau effect of a light wave emitted by a source 
that moves away from the observer. 
E. Hubble then proposed that galaxies move away from the Milky Way, with a speed proportional to 
their distance from our Galaxy, this is Hubble's law. 
 
IV.2.4 The cosmic microwave background predicted in the 1940s and discovered in 1965 
In the 1950s, for the first time, the model was referred to as the ironic Big Bang by physicist Fred 
Hoyle, who himself defended static state models. 
 
In 1965, the Big Bang model received further experimental confirmation with the discovery of the 
cosmic microwave background. To fully understand, we must go back a few years earlier, to the Big 
Bang model proposed by George Gamow, Ralph Alpher and Robert Herman. 
 
The expansion of the Universe naturally induces a greater density in the past. Just as a gas heats up 
when compressed, the universe must also have been hotter in the past. 
In the 1940s, G. Gamow,  R. Alpher and R. Herman established that the Universe must be filled with 
electromagnetic radiation that loses energy due to expansion. This electromagnetic radiation must 
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have been all the more intense as the Universe was dense. It must still exist today, although 
considerably weakened. 
 
Since the work of Gustav Kirchhoff in 1862, Joseph Stefan in 1879, Ludwig Boltzmann in 1884,  
Wilhelm Wien in 1896, as well as Max Planck in 1900, we link electromagnetic radiation emitted by a 
source (called black body when considered an ideal object) and its temperature 𝑇. 
We recall below the law of radiation of Planck, correction of that of Wien for low frequencies, which 
is also valid for its historical interest because it introduces the Planck's constant ℎ: 𝐿 = 𝐶𝜆 1𝑒( ) − 1 

𝐿  monochromatic energy luminance, 𝜆 wavelength, 𝑇 temperature in kelvin, 𝐶 = 2𝜋ℎ𝑐  with 𝑐 the speed of light and ℎ the Planck's constant, 𝐶 =  with 𝑘  the Boltzmann's constant. 
 
In their work, G. Gamow, R. Alpher and R. Herman suggested that the current temperature of 
electromagnetic radiation in the Universe can be calculated from knowledge of the age of the Universe 
(about 13.8 billion years), the density of matter, and the abundance of helium.  . 
 
In 1964-1965, Arno Allan Penzias and Robert Wilson discovered electromagnetic radiation, now 
called the cosmic microwave background or fossil radiation. According to the predictions of G. 
Gamow, R. Alpher and R. Herman, the radiation corresponds to that of a black body at low  
temperature (2.7 kelvins) (the predicted temperature being however significantly different). 
 
IV.3 Issues raised by the Big Bang, sources of inspiration 
Following its experimental confirmations, the Big Bang model acquires the status of a theory. 
Nevertheless, like many fascinating theories, the Big Bang raises more questions than it solves. Here 
we cite the problem of the observer, we then address the sources of inspiration of the theory. 
 
IV.3.1 The observer's problem 
« The observer is as essential to the creation of the Universe as the Universe is to the creation of the 
observer. » 
J. A. Wheeler 
 
To continue with this sentence by J. A. Wheeler, one of the main questions raised by the Big Bang 
theory is this paradox of a relativistic theory, which is built without observers, and which is verified by 
observations (redshift, cosmic microwave background) that require an observer. 
 
An answer to this contradiction will be suggested in the following chapters. 
 
IV.3.2 Sources of inspiration 
There are two types of influence in the Big Bang theory, some of mystical inspiration, others of 
scientific inspiration. 
 
We first note the idea of an original design, with a moment of creation of the Universe (and therefore 
possibly a Creator), then a march of the Universe in perpetual growth towards a destiny traced, even 
mystical. 
 
We then note the influence of evolutionary theories of species (theories developed especially in the 
19th century by Jean-Baptiste de Lamarck, Charles Darwin, etc.). The universe is described as a huge 
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organism that would have been built little by little. In all these theories, we note the principle of a 
History and a Time oriented. 
 
IV.4 Thermodynamics of black holes 
We are mainly interested here in the simplest black holes: Schwarzschild black holes. They use the 
Schwarzschild metric seen earlier. They have a Schwarzschild radius 𝑟 = , a mass M, but no 
charge Q or angular momentum J like Kerr-Newman black holes. The Kerr-Newman black holes 
respond to a modified metric (relative to that of Schwarzschild) to solve the equation of A. Einstein. 
 
IV.4.1 Principles of black hole thermodynamics 
In the 1970s, Jacob Bekenstein  and Stephen Hawking clashed in a fruitful debate of ideas, involving 
analogies between "classical" thermodynamics and black holes, "cosmic objects" theorized in General 
Relativity. This debate and other work will give rise to the thermodynamics of black holes. This 
paragraph summarizes some of the main ideas of this debate. We will see that these analogies are 
based in particular on the identification between: 

- 2 intensive quantities: temperature T of a system and surface gravity κ of a black hole, 
- 2 extensive quantities: entropy S of a system and the surface A of a black hole. 

 
For a black hole at rest, according to A. Einstein, we ask an internal energy: 𝑈 =  𝑀𝑐  
with 𝑀 the mass of the black hole. 
 
Following the formula proposed in 1972 by L. Smarr, we calculate the surface variation A of a black 
hole, to which we inject a small amount of energy matter 𝑑𝑀𝑐  and a small amount of work 𝛿𝑊 : 𝑑𝑀𝑐 = 𝑐 𝜅8𝜋𝐺 𝑑𝐴 + 𝛿𝑊  
with 𝜅 the surface gravity of the black hole. 
 
In 1972, J. Bekenstein proposed the notion of black hole entropy 𝑆  (BH like black hole or 
Bekenstein Hawking), with entropy 𝑆  proportional to the surface A of the black hole. 
S. Hawking and J. Bekenstein found that when two black holes merged, the surface A of the resulting 
black hole is always greater than the sum of the surfaces of the two initial black holes. We therefore 
have, like entropy 𝑑𝑆 ≥ 0, 𝑑𝐴 ≥ 0. 
 
From 1973, J. Bekenstein, S. Hawking, James M. Bardeen and Brandon Carter developed analogies 
between the 4 principles of thermodynamics and principles applying to black holes. A table of these 
analogies is given below. 
 

 Thermodynamics Black holes 

Principle zero The temperature T of a system is 
the same everywhere when it is at 
thermal equilibrium 

Surface gravity κ is constant over 
the entire surface of the black hole 

First principle 𝑑𝑈 = 𝑇𝑑𝑆 + 𝛿𝑊 𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 
 

𝑑𝑀𝑐 = 𝑐 𝜅8𝜋𝐺 𝑑𝐴 + 𝛿𝑊  𝑑𝑀𝑐 = 𝑇𝑑𝑆 + 𝛿𝑊  𝑑𝑀𝑐 = 𝛿𝑄 + 𝛿𝑊  
 

Second principle The variation of entropy 𝑑𝑆 is 
positive (or zero) in any 
transformation involving a closed 
system 

Surface variation 𝑑𝐴 is positive (or 
zero) in any transformation 
involving black holes 
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Third principle Inability to obtain 𝑇 = 0 by a 
physical process 
 

Inability to obtain 𝜅 = 0 by a 
physical process 

 
Note on state functions 
We speak of state function of a system, when it does not depend on the different possible paths 
travelled by the system in the past: it depends only on the current state of the system. In other words, 
the history of a system does not affect the state functions that characterize it. 
In thermodynamics, internal energy U or entropy S are good examples of state functions. 
 
Mathematically, we represent their infinitesimal variations by an exact total differential: 𝑑𝑈 and 𝑑𝑆. 
Work W is not a state function, it depends on the path taken by the system. Mathematically, we 
represent its infinitesimal variations by a partial differential: 𝛿𝑈. 
If we strictly follow the analogy between thermodynamics and black holes, the surface A or entropy 𝑆  must be state functions. Their infinitesimal variations must be represented by exact total 
differentials: 𝑑𝐴 and 𝑑𝑆 . 
 
 
IV.4.2 Temperature and radiation of black holes 
In 1974, S. Hawking proposed that black holes radiate and inspired by Planck's radiation law, that they 
have a temperature 𝑇  proportional to κ: 𝑇 = ℏ𝜅𝑘 2𝜋𝑐 

with 𝑘  the Boltzmann's constant. 
This temperature 𝑇  proportional to κ, validates the identification of T to κ. 
 
Note, temperature of a Schwarzschild black hole 
In the case of a Schwarzschild black hole, we have: 𝑟 = 2𝐺𝑀𝑐  
According to Newton's universal law of gravitation, we have for the surface gravity of a spherical 
body: 𝜅 = 𝐺𝑀𝑟  

In the case of a Schwarzschild black hole, we have: 𝜅 = 𝑐4𝐺𝑀 
We obtain the temperature of a Schwarzschild black hole: 𝑇 = ℏ𝑐8𝜋𝑘 𝐺𝑀 

 
From the identification of 𝑑𝐴 to 𝛿𝑄 : 𝛿𝑄 = 𝑐 𝜅8𝜋𝐺 𝑑𝐴 
and the temperature of a black hole: 𝑇 = ℏ𝜅𝑘 2𝜋𝑐 

S. Hawking calculates the entropy of a black hole: 𝑑𝑆 = 𝛿𝑄𝑇  

By replacing with the appropriate terms: 



Memoir 6: Time felt and Time in Physics   471 

 

𝑑𝑆 = 𝛿𝑄𝑇 = 𝑐 𝑘𝑑𝐴8𝜋𝐺 𝑘 2𝜋𝑐ℏ𝑘 = 𝑘 𝑐 𝑑𝐴4𝐺ℏ  

he gets as a function of the surface A and Planck length 𝑙 : 𝑆 = 𝑘 𝐴𝑐4𝐺ℏ = 𝑘 𝐴4𝑙 = 𝑘 𝑙𝑛𝑤 

with 𝑤 = 𝑒𝑥𝑝( ) the number of possible states of the system studied (not to be confused here with 

work). 
 
Note, entropy of a Schwarzschild black hole 
In the case of a Schwarzschild black hole, we have: 𝑟 = 2𝐺𝑀𝑐    𝐴 = 4𝜋𝑟 = 16𝜋𝐺 𝑀𝑐  𝑆 = 𝑘 𝐴4𝑙 = 4𝜋𝑘 𝐺𝑀ℏ𝑐  

The term 𝑆 ≤ ℏ  corresponds to the Bekenstein limit. According to J. Bekenstein, if the entropy 
of a system exceeds this limit, the system becomes a black hole. 
 
IV.5 Conclusion of the chapter 
We have discussed in this chapter two "cosmic objects" directly derived from General Relativity and 
the ideas of A. Einstein. 
The first, the Big Bang is one of the few physical theories postulated irreversible in Time. The theory 
presents both astonishing predictions that have received confirmation and a conceptual problem with 
the absence of an observer. 
The second, the black hole is not postulated irreversible in Time. On the other hand, it has surfaces A 
and entropies 𝑆  which can only grow over time, and which also contain temporal irreversibilities. 
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Chapter V Demarcation between Life and non-Life, the phenomenological 
approach, the Gaia hypothesis 

 
Purpose of the chapter 
To answer the distinction between the Time of physics and the Time felt, it is proposed to characterize 
Life by an oriented Time. We will call this oriented Time, the biological Time. 
 
V.1 Demarcation between Life and non-Life 
V.1.1 A characterization of Life? 
According to biologist Ladislas Robert, a researcher specializing in immunology and aging, "Time has 
existed in biology since the appearance of Life on Earth." 
 
This relationship between Time and Life challenges us in our initial question posed in this Memoir: 
why does Time used in physical equations seem as different as Time felt or that used in Biology? 
This leads us to propose the following hypothesis: can the demarcation between temporal reversibility 
and temporal irreversibility be the same as that between non-living and living? 
 
This hypothesis has the advantage of proposing a simple answer to our initial question. What would 
characterize the non-living, would be a possible temporal reversibility. And as has been pointed out, 
most physical theories have such freedom. 
What would characterize the living, would be a temporal irreversibility, created from original 
conditions, with loss of freedoms such as that of temporal reversibility, but offering in return the 
principle of causality, the possibility of a History and that of a destiny. 
 
When we observe in the three dimensions of Space material bodies, they are rarely symmetrical in the 
three dimensions of Space like spheres. Spatial symmetry is simply possible, it is only very rarely 
required. By analogy between Time and Space, temporal symmetry is only possible. 
 
In summary, what would distinguish the non-living from the living is for the first a possible temporal 
symmetry and for the second, a characteristic temporal asymmetry, which is called the arrow of Time. 
 
Note on the film of a living being 
When we play the film of a living being upside down, we quickly notice the anomaly. On the contrary, 
when you play the film of a planet or asteroid in motion, it is almost impossible to distinguish right 
sense from bad sense. 
For some natural phenomena such as rain or snow, we also see if they have passed upside down or in 
the place. To see if these natural phenomena cannot actually be assimilated to Life? 
 
 
V.1.2 Characterization of life by L. Pasteur 
The demarcation between the non-living and the living is not easy, as the living has the same 
molecules, the same atoms as the non-living. In the second half of the 19th century, Louis Pasteur 
proposed the most famous, and probably the most enigmatic, characterization of the living. Taking up 
the work of E. Mitscherlich, he found that tartrate modifies the polarization of light, while a substance 
a priori identical: paratartrate does not modify this polarization. 
 
To understand this, remember that tartrate comes from living matter, while paratartrate comes from 
mineral matter. Tartrate and paratartrate are both so-called chiral substances, i.e., composed of non-
superposable molecules with their symmetric in a mirror. 
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Tartrate, capable of altering the polarization of light, is composed of a single chiral type of molecules. 
We speak of a substance of molecules, either dextrorotatory or levorotatory. The tartrate is for 
example dextrorotatory. 
Paratartrate, unable to change the polarization of light, is composed of both chiral types of molecules. 
We are talking about a substance of molecules that are both levorotatory and dextrorotatory. 
 
A precursor, L. Pasteur assumed that the ability to modify the polarization of light (i.e., being 
molecules of a single chiral type) is a characteristic of living (or formerly living) matter. He thus 
interpreted as living entities that were not previously considered in this way. These are yeasts, 
microorganisms, bacteria... Following this, L. Pasteur developed vaccination and experiments on the 
immune system. This will also pave the way for antibiotics. 
 
This characterization of Life (of a single chiral type) implies the existence of a spatial orientation 
specific to Life. To see if there is also a spatiotemporal orientation specific to Life and a link between 
a single chiral type of molecules of life and the arrow of biological Time? 
 
V.1.3 Dextrorotatory, levorotatory, series D and L 
A dextrorotatory molecule ("which turns right", from the Latin dexter, right) thus has the property of 
deflecting the polarization plan of polarized light, to the right of an observer receiving light. This 
observer sees the polarization plan rotates clockwise. 
 
A levorotatory molecule ("which turns left", from the Latin laevus, left) thus has the property of 
deflecting the polarization plan of polarized light, to the left of an observer receiving light. This 
observer sees the polarization plan rotates counterclockwise. 
 
In biochemistry, we speak of D or L series. The series D or L are differentiated, according to the 
Fisher representation, by the order of the groups carried by the asymmetric central carbon C: 

- Aldehyde group 𝐶𝑂𝐻 or carboxylic group 𝐶𝑂𝑂𝐻, upstairs, 
- hydroxyl group 𝑂𝐻 or amino acid group 𝑁𝐻 , right or left depending on whether the molecule 

is dextrorotatory or levorotatory. 
 
Carbohydrates are series D. We have for example for Glyceraldehyde, with the form encountered in 
the living circled in green: 
 

 
Figure 10: chiral forms of glyceraldehyde 
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Amino acids, constituting proteins, are L-series. We have for example for Alanine, with the form 
encountered in the living circled in green: 
 

 
Figure 11: chiral forms of Alanine 

 
Nevertheless, the D or L series do not always correspond to the dextrorotatory or levorotatory 
properties of the molecule. For example, the amino acid L-Serine is indeed levorotatory, but the amino 
acid L-Alanine is dextrorotatory! 
Let us remember that the living selects certain series: D for carbohydrates and L for amino acids, and 
that this remains for the moment unexplained. 
 
V.1.4 The illusion of the passage of Time? Is it Time passing or us passing? 
In most physical theories or models (except thermodynamics with entropy or the Big Bang), there is 
no need to introduce a flow of time. For this reason, some physicists, and philosophers, such as 
recently Carlo Rovelli or Thibault Damour, have spoken of the illusion of the passage of Time, partly 
joining Plato's idea of a "timeless reality". 
 
In current theories of physics, it has already been pointed out that the assumption of a Time similar to 
the three dimensions of Space works surprisingly well. This hypothesis makes it possible to obtain 
much better results than the hypothesis of a differentiated Time of Space. The hypothesis of a Time 
similar to the three dimensions of Space is also a strong argument in favor of the illusion of the flow of 
Time. 
 
Yet, in our daily lives, we have a strong feeling of the passage of Time. It is even according to Jean-
Paul Sartre, our existence (in a way our immersion in the flow of Time), which precedes our essence 
and thus defines us. 
It should also be noted that in life sciences such as biology, there is little or no reference to a Time 
similar to the three dimensions of Space. The hypothesis of a Time that passes, different from Space, 
is usually necessary and implicitly postulated. 
 
It is this contradiction, it must be admitted disturbing, between the hypothesis made by contemporary 
physics of a Time similar to the three dimensions of Space and the observation of the flow of Time in 
our daily life (joining the necessary hypothesis of a flow of Time in biology), that we try here to 
understand. 
It is suggested that the flow of Time in one direction, that is, the arrow of Time, is the first 
characteristic of Life. To paraphrase Irish author Ken Bruen (and many others before him). In reality, 
time does not pass. We are the ones who pass. 
 



Memoir 6: Time felt and Time in Physics   475 

 

V.2 The phenomenological approach 
V.2.1 Ontological knowledge 
The idea of bringing the arrow of Time closer to Life, and consequently to the subject, is part of a vast 
current of ideas, between science and philosophy, called phenomenology. The initiators of this current 
of ideas were at the beginning of the 20th century the philosophers Edmund Husserl, Martin Heidegger 
or in France Maurice Merleau-Ponty. The interest of phenomenology is the richness of the 
applications offered, to all possible fields. 
 
The basic idea of phenomenology is that the phenomenon, a priori external to the subject, actually 
contains the main information about him. 
 
The frequently cited example is that of musical notes. For a simple tape recorder, these notes are only 
a series of sound waves, but for a human subject, they express a melody, sensations, memories, 
beliefs, hopes. 
Phenomenological philosophers are wont to say that knowledge of a phenomenon is ontological (from 
ancient Greek, onto, what is). That is to say, the phenomenon teaches us more about the subject, the 
being who observes and thinks, than about the object that is observed. 
 
Phenomenological ideas developed from the 1910s. Originally, they were probably influenced by the 
physical ideas of the time, in particular by the principle of relativity, brought up to date by H. Poincaré 
and A. Einstein. 
For example, according to the principle of relativity, there is no absolute velocity, but a difference in 
velocity between an object and a subject. Velocity measurement learns as much about the measured 
object as it does about the measuring subject. 
 
In the years 1920-1930, phenomenological ideas in turn influenced the quantum physics of N. Bohr, 
W. Pauli or W. Heisenberg, for example on the dependence of the result of the experiment on the 
subject. 
At the time, thanks to the Schrödinger equation, physics and chemistry were unified. This provoked 
contagious optimism among scientists. On this impulse, W. Pauli predicted a unification of the study 
of the psyche and physis (i.e., psychology and physics) into a new and forthcoming science. 
 
V.2.2 The example of common sense 
In a short essay, entitled Invitations to Cognitive Science, biologist Francisco Valera focuses on 
cognitive science, artificial intelligence, and how the human mind works. He proposes answers that 
are part of the phenomenological approach, answers ultimately close to a subjective explanation of the 
arrow of Time. 
 
To introduce phenomenological ideas into cognitive science, F. Varela emphasizes the inadequacy of 
approaches containing a predefined Universe to subjects and their minds. He takes as an example and 
argument common sense, which he defines as an identical judgment, that we human beings bear in the 
face of an event (or more generally a phenomenon) experienced collectively. 
 
A part of achievements is detectable in the common sense: human beings with the same culture, the 
same history, are predisposed to make identical judgments in the face of an event. 
There is also a part of innate in common sense, a part of innate a priori enigmatic, which does not 
make it possible to understand why human beings make identical judgments in the face of an event. 
 
To explain this part of innate in common sense, F. Varela suggests that reality and the perception that 
we have of it, is due as much, if not more, to our nature as human beings, than to external Nature. 
 
Thus, since reality and the perception that we have of it, are mainly built through our nature as human 
beings, and since we human beings share an identical nature, this explains the existence of identical 
judgments carried by the common sense of human beings. 



476    Invariances and transformations 

 

 
V.2.3 Can the activity of Life create reality? 
In his essay, F. Varela extends his reasoning. His idea is not only that reality is partly defined mentally 
by the subject himself, but that it is also physically created by the subject. 
To explain this, F. Varela forges the concept of enaction. A concept that suggests that the activity of 
Life, during its History, physically transforms and creates reality. 
 
Indeed, on a daily basis, we see that our activities (artistic, sporting, scientific or other) modify the 
reality that surrounds us. Through our decisions and actions, we have the means to physically 
transform a part of our reality. 
 
V.3 One application, the Gaia hypothesis 
V.3.1 Life builds an environment conducive to its development 
In the 1970s, chemist James Lovelock proposed that the Earth's surface and the atmospheric layer 
around it form a hyper organism that he named Gaia. He then referred to an Earth goddess from Greek 
mythology. 
Following an analogy with each of our organisms, which are made up of multiple cells and 
microorganisms interacting with each other, Gaia would consist of all living things on Earth (as well 
as their production), interacting with each other. 
 
In his book The Earth is a Living Being, the Gaia Hypothesis, J. Lovelock reports that the source of 
inspiration for the Gaia hypothesis is its questions about how to detect the presence or absence of Life 
on Earth's sister planets: Mars and Venus. 
He answers his questions by suggesting to analyse the atmospheric composition of these two planets. 
Mars contains 96,0 % of 𝐶𝑂 , and Venus 96,5 % of 𝐶𝑂 , a composition a priori similar to the 
primitive Earth of about 4 billion years ago. In view of these compositions, J. Lovelock deduces that 
no action of Life intervenes in the atmospheric composition of the two planets. He retains that Life is 
certainly not present on Mars and Venus. 
 
Note 
Like L. Pasteur, J. Lovelock also seeks to characterize Life. The first does it by molecules of a single 
chiral type, the second does it by the action of Life on the atmospheric composition. 
 
 
Subsequently, J. Lovelock develops the idea that the atmosphere of the Earth has gradually 
differentiated from that of its two sister planets by the action of Life on Earth. As a result, he refutes 
the idea that the conditions of the early Earth were especially more advantageous than those of Venus 
or Mars. 
According to him, to explain the presence of Life on Earth, we cannot simply argue that our planet 
was well positioned, just at the right distance from the Sun, in order to benefit from temperatures 
conducive to Life. 
He maintains that Life has gradually built on Earth an environment favourable to its own development. 
As in a globally virtuous retroactive loop, the earth's environment has been transformed by the action 
of Life. This has favoured the appearance of living forms that are increasingly rich, more and more 
diversified, more and more complex. 
 
V.3.2 Major step in the transformation of the Earth's environment 
According to J. Lovelock, we can distinguish several major stages of transformation of the terrestrial 
environment. 
 
As a major step, J. Lovelock cites the appearance of photosynthesis with two important consequences 
for Gaia. On the one hand, photosynthesis used solar energy, 𝐶𝑂  and water to produce organic 
matter. Through this new mechanism, organic matter has grown much faster than in the past. 
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On the other hand, photosynthesis has greatly increased the level of dioxygen 𝑂  present in the 
atmosphere. 
 
Dioxygen 𝑂  has a great oxidation power, it caused the disappearance of many microorganisms that 
could not resist it. However, resistant microorganisms have been able to use this power to produce 
their own energy. It was the appearance of breathing. By "burning" glucose (and other organic 
substances) from 𝑂 , the cells produced energy much more easily and increased their ability to move. 
 
J. Lovelock compares the appearance of 𝑂  the in the atmosphere to high-voltage power lines. These 
high-voltage lines are much more dangerous than low-voltage, but they can transport larger amounts 
of energy, much further, without much energy loss by joule effect. 
 
Note 1 
Antioxidants are often presented as active agents against the aging of our cells. And it's probably true! 
The fact that our cells are still highly sensitive to oxidation and that this accelerates their aging, is the 
mark that the ancestors of our cells once developed in an atmosphere that contained little or no 𝑂 . 
 
Note 2 
In the Darwinian model of natural selection, individuals advantaged by environmental conditions have 
a reproductive advantage and are therefore more likely to have significant offspring. 
J. Lovelock complicates the Darwinian model by adding a feedback loop that gives individuals the 
ability to modify the environment. Environmental modification can take a direction that either 
disadvantages or disadvantages individuals. 
 
 
V.3.3 Many definitions and characterizations of Life 
There are many ways to define and characterize Life and its productions (e.g., termite mounds, coral 
reefs, megacities like Tokyo or New York, and if we accept the Gaia hypothesis, Gaia herself). 
 
For thermodynamic biologists, Life is characterized by its ability to generate negative entropy, that is, 
order. 
For molecular biologists who study DNA, RNA of our cells, Life is characterized by its ability to 
perform replication, transcription, and translation autonomously. Thus, according to them, a virus is 
not alive, in the sense that it needs the machinery of a host cell to perform replication, transcription or 
translation. 
 
For L. Pasteur, Life is characterized by molecules of a single chiral type. This enigmatic 
characterization is certainly the most fascinating. 
For his part, J. Lovelock seeks to characterize Life by the atmospheric derivatives it produces (such as 𝑂 ) and which would not be found in the same proportions in an environment without Life. 
 
In this chapter, we propose to characterize Life by an oriented Time. For example, when we film 
living beings or their productions, and we play this film backward or forward, the original sense of the 
film is easily identifiable, especially thanks to the chronological succession of causes and effects to be 
respected. 
 
V.4 Conclusion of the chapter 
In this chapter, it has been proposed to characterize Life by its ability to orient one of the four 
spatiotemporal dimensions, advancing continuously in one direction and creating what is called 
"biological" Time. This biological Time would contain the precious principle of causality and allowed 
the constitution of a History. That would have been to advantage of the Life. 
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A parallel was then drawn between this characterization of Life, phenomenological ideas and the Gaia 
hypothesis. According to this hypothesis, Life on Earth, during a virtuous circle, would have modified 
its environment to its advantage for billions of years. 
 
In the next chapter, we return to the Big Bang, a rare physical theory to postulate itself irreversible in 
Time. 
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Chapter VI  The origin of Life, the Big Bang a biological phenomenon? 
 
Purpose of the chapter 
We are interested in the origin of Life, we wonder if the Big Bang can be interpreted as a pure 
biological phenomenon. 
 
VI.1 Origin of Life according to biologists 
VI.1.1 Biological phenomenon and time-oriented phenomenon 
In the previous chapter, it was proposed that any time-oriented phenomenon is a characteristic of Life, 
that is, a biological phenomenon. 
Previously, we talked about 3 arrows in physics: the thermodynamic arrow, the microscopic arrow and 
the cosmological arrow. 
 
Regarding the thermodynamic arrow, like Maxwell's demon, Life is able to go against the growth of 
disorder, against the growth of entropy and against the growth of missing information. By acting 
against the second law of thermodynamics, Life can reverse the course of thermodynamic Time, and 
follow its own Time: biological Time. 
Regarding the microscopic arrow, we suppose in this Memoir for its absence at the level of elementary 
particles. The CPT theorem is a priori valid only for the electromagnetic interaction and not for the 
weak interaction. 
It now remains to try to understand the cosmological arrow, the Big Bang theory, and the entropy of 
black holes. This is what we will study in this chapter, first through the origin of Life. 
 
VI.1.2 Proteins and DNA, metabolism, and information 
Life is mainly made up of the symbiosis of two radically different entities. On the one hand, there are 
chains of amino acids more commonly known as proteins. Their main function is to catalyze chemical 
reactions in the body, i.e., the metabolism of this organism, and thus to ensure a certain 
thermodynamic stability. 
On the other hand, there are chains of nucleotides of which RNA and DNA are the most famous 
representatives. According to our current knowledge, these are the only carriers of genetic 
information. 
 
Models on the origin of Life can be divided into two broad categories. On the one hand, there are 
models that postulate the primacy of nucleotide, RNA or DNA chains. These models are related to 
information theories, since RNA and DNA are carriers of genetic information. 
On the other hand, there are models based on the self-regulating power of living entities, on chemical 
reactions and therefore more on proteins. This power of self-regulation can be interpreted as a 
restoration of order against disorder, that is to say a fight against the 2nd law of thermodynamics (the 
irreversible growth of entropy). These models are related to thermodynamic theories. They also have a 
link to information if we associate the growth of entropy with the growth of missing information. 
 
Today, RNA models are favoured by biologists. Indeed, in the 1980s, Tom Cech and Sidney Altman 
independently discovered that certain RNAs, then called ribozymes, have a catalytic role like proteins. 
Following this, the hypothesis of the RNA world developed, with RNA considered as the primordial 
entity of Life. 
 
VI.1.3 Prerequisites for the appearance of Life 
In his book The major transitions in Evolution, biologist and former aeronautical engineer John 
Maynard Smith defines in chronological order the major stages of Life: 

1. Replication (production of clones thanks to the RNA world hypothesis), 
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2. Catalysis (first RNA as both gene and enzymes, then DNA as a gene and proteins as 
enzymes), 

3. Symbiosis (for example, symbiotic union of prokaryotic cells without a nucleus, and 
appearance of eukaryotic cells with nucleus), 

4. Sexuality, gene exchange to train new individuals, 
5. Appearance of multicellular living beings, 
6. Emergence of societies of individuals, 
7. Emergence of human societies endowed with culture and language. 

 
We note that J. M. Smith places replication before catalysis. He also gives primacy to theories of 
information and RNA, over thermodynamic and protein theories. He also takes up the ideas of Lynn 
Margulis and gives importance to the symbiosis between living entities in the major transitions of 
Evolution. 
 
Note on the RNA World 
There are still many questions about the RNA world. For example, how did natural selection play out 
to create RNA? Were there several competing genetic codes? 
 
 
VI.1.4 Physical approach to a biological problem 
Biologists have stuck to the RNA world hypothesis, but RNA is already emerging as a formidable 
complexity for physicists studying the Quark Model. It seems that between quarks and RNA, there are 
many steps to take. We need other prerequisites for the appearance of Life, much further upstream. 
Without claiming to be exhaustive, we can mention: 

- the problem of Time, 
- the primacy of matter, in the face of antimatter, 
- the constitution of the atom, chemical elements, and molecules. 

 
VI.1.5 The evolving Universe, seen as an increasing complexity with Life gradually emerging 
Another way of approaching the problem of the origin of Life is not to pose a fundamental difference 
between the living and the non-living. The Universe appears as an evolving entity, with an increase in 
complexity over biological time. There is no discontinuity between a Universe that was once inert and 
without subjects, and a Universe endowed with Life and therefore subjects. 
 
Basically, Life differs from inert matter by an increasing complexity in its organization. In a way, we 
solve the problem of origin, since the origin of Life merges with the origin of the Universe as the 
initial instant point of the beginning of complexification. Life is not radically different from inert 
matter: it is already present during the Big Bang, or at least underlying. 
 
We can call this hypothesis animistic in the sense that everything in the Universe is alive, or is not 
radically different from it. While this approach shares similarities with the ideas presented here, it 
nevertheless presents a contradiction with what has been proposed previously. Indeed, in this case, 
Life would not be radically distinguished from matter by its orientation in Time. 
 
VI.2 The Big Bang, the origin of Life? 
« Some believe that from matter is born Life, but in 10,000 years of that, will not realize that from Life 
is born matter? » 
Louis Pasteur 
 
In this paragraph, inspired by this sentence of L. Pasteur, we will suggest that it is not from matter that 
Life is born, but on the contrary, that it is from Life that matter is born. 
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VI.2.1 Find a subject for the Big Bang theory 
We have already mentioned the discovery in 1965 by A. Penzias and R. Wilson of a cosmic 
microwave background, which spectacularly confirms the predictions of Gamow Alpher Herman's Big 
Bang model. 
 
However, according to phenomenological ideas, the Big Bang theory and its experimental 
confirmation pose a problem. Indeed, in the first, the subject is absent, only the object exists, or rather 
begins to exist, while in the second, subject and objects exist, highlighting an inconsistency between 
theoretical prediction and experimental confirmation. 
 
One can even wonder if the discovery of a cosmic microwave background, with subject, can be the 
confirmation of a theory with no subject. The disadvantage is that in some phenomenological 
approaches, the object without subject does not really make sense. It remains indefinable. 
 
However, since this cosmic microwave background must mean something, and it seems to confirm in 
an astonishing way the theory of the Big Bang, it is tempting to postulate for the era of the Big Bang 
the existence of a subject. This then makes its coherence between theoretical prediction and 
experimental verification, both including an object subject relationship. 
 
This subject is obviously not a human being, it could even be the very beginning of Life, this 
phenomenon then merging with the Big Bang. 
 
VI.2.2 A deep connection with our ancestors that allows us to perceive the cosmic microwave 

background? 
We are reminded of the ideas of the biologist Ernst Haeckel, a fervent admirer of C. Darwin and 
evolutionary ideas. 
 
At the end of the 19th century, E. Haeckel proposed a fascinating hypothesis: that ontogenesis 
summarizes phylogeny. That is to say, every living being summarizes during the first moments of its 
life, the evolution of species, or the long road that its ancestors once accomplished. Think, for 
example, of webbed fingers that appear in the human foetus and then disappear, each living being 
would trace an evolution in shorthand to that of its ancestors. 
 
Even though the hypothesis of E. Haeckel has sometimes been put in difficulty, it seems today rather 
confirmed by the results of molecular biology. 
 
For example, most animals can be classified as triploblastic, 3 germ layers in Greek (also called 
triploblastic or bilaterian). For triploblastics, all organs derive from one of these 3 germ layers, each 
formed by a single layer of cells. 
 
These 3 leaflets appear early during embryogenesis, during gastrulation. A hollow ball, called the 
blastula and formed by a single layer of cells, folds in on itself and gives the gastrula formed by 3 
layers of cells. 
These successive states, blastula, gastrula, neurula for vertebrates, are crossed by all living beings of 
tripoblastic type, and correspond according to the hypothesis of E. Haeckel, to ancestral beings, that is 
to say to the evolutionary stages of the species to which the living being belongs. 
 
According to this hypothesis, we human beings would still carry within us a part of the most primitive 
characteristics of Life. Characteristics that would connect us to the very first moments of Life, 
characteristics that would still allow us today to perceive the cosmic microwave background? 
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VI.2.3 Links between cosmological models (temporally irreversible) and biology? 
Like the postulate of a temporal irreversibility of the Big Bang, which introduces a link between 
cosmological models and biology, do black holes and their entropies with temporal irreversibility, also 
introduce a link between cosmological models, classical entropy, information, and biology? 
 
Big bang, cosmological black holes or quantum micro black holes, can also be grouped in what are 
called gravitational singularities, that is to say that they correspond to regions of Space-Time where 
according to Einstein's equation: 𝐺 = 𝑅 − 12 𝑔 𝑅 + 𝛬𝑔 = 8𝜋𝐺𝑐 𝑇  
the gravitational field diverges infinitely. 
 
Nevertheless, there are still many elements to be clarified, to understand the links between 
gravitational singularities, the origin of Life and that of each living being. The question remains open. 
 
VI.2.4 Life builds a Universe favourable to its flourishing 
Although it may only be beautiful fiction, let us now tell the following story that would have begun 
more than 13 billion years ago. 
 
From a very free Universe, with 4 identical dimensions and without stories, Life would have been 
constituted by building the conditions necessary for its existence. It would have had the desire to 
advance continuously in one direction, in one of the 4 existing dimensions. It would have created a 
Universe of Life adapted to its development. Time oriented and organized matter would have 
appeared. 
 
The so-called reasonable Universe of Life would also be very close to that imagined by G. Lemaître, 
G. Gamow, and many others, containing temporal irreversibility, the principle of causality, and 
singularities in Space-Time, such as these black holes or this Big Bang. 
We would have gone from physics with a 2-sense Time, based on the principle of least action, to 
History with an oriented Time, based on the principle of causality. 
 
The bang would be even more fascinating, it would have exploded not for the appearance of the 
Universe, but for that of Life. 
 
The arrows of Time, that of the living (often described as psychological) and that of the Big Bang 
(often described as cosmological) would have a single origin: the living. To these two arrows, we 
could add the cognitive arrow, that is to say the arrow of intelligence and knowledge, which would 
oppose the arrow of entropy and missing information. 
To generate this Universe of Life, living systems, to live together, would have advanced in the same 
way in Time, at every moment. They would have gradually shaped the Universe of Life as we know it 
today. 
 
According to this hypothesis, Gaia would not only be the surface of the Earth and its atmosphere, but 
the Universe of Life as a whole. 
 
Note 1 on cyclic systems in Time 
There are many cyclic systems in space. Examples include aromatic molecules (benzene, etc.), food 
chains or rings networks. Following an analogy between Space and Time, we can imagine cyclical 
systems in Time, with a possible return to the past. 
These cyclic systems in Time would not concern a priori living beings, except perhaps at the very 
beginning of Life. 
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Let us imagine that at the beginning of Life (actually just before the Big Bang and the Oriented Time), 
the precursors of living beings did not quite advance in one direction of Time, that this would have 
come later. These precursors could present cyclical systems in Time. 
This kind of (a little crazy) idea could solve the chicken and egg problem, or the RNA and protein 
problem. One does not have to generate the other, since these two entities could once be associated in 
a cyclical system in Time. 
 
In this case, the question is whether there are traces of these cyclical systems in Time, precursors of 
living beings. How could these cyclical systems in Time manifest themselves in what we see of the 
Universe today? 
 
Note 2 on the existence of other life forms 
Since the 1990s, many exoplanets have been discovered across our Galaxy. Some scientists assume 
the existence of life forms on these exoplanets. If so, do these life forms share a common origin with 
life on Earth or are they completely independent? 
 
The question is somewhat reminiscent of the debates conducted in the19th century on spontaneous 
generation. On the one hand, we have Félix Archimède Pouchet as a figurehead, who believes in the 
possible appearance of multiple forms of life. On the other, we have L. Pasteur, who believes in the 
uniqueness of the origin of Life. 
 
In this Memoir, we propose to link the Big Bang to our lineage of life. This implies a singularity of our 
lineage and the virtual impossibility of discovering other independent lineages. 
If we detect other living entities on other planets, then they will share with us a common origin, and 
they will have similarities. 
 
Nevertheless, after all, perhaps there are other forms of life? But their time is not ours, their Big Bang 
is not ours. For us, they simply live in other Universes. 
 
 
VI.3 My Big Bang 
VI.3.1 The feeling of biological time 
In the beautiful book Me and the Others: Introduction to Genetics, the geneticist and mathematician 
Albert Jacquard talks about my Big Bang, that is to say for everyone, of his original moment, to be 
interpreted differently according to the cultures. 
For some the moment when the father's sperm meets the mother's egg, for others the birth, for still 
others the baptism a week after birth (in the latter case, perhaps a remnant of tradition in what once 
allowed to eliminate the most serious pathological cases?). 
In a very accurate way, A. Jacquard compares the Big Bang of each, the beginning of an individual 
life, with the famous Big Bang of physicists, seen as the original moment of the Universe, and 
interpreted here as the beginning of Life. 
 
In his book, A. Jacquard emphasizes that the feeling of biological Time is measured as a logarithmic 
scale. In the figure below, we have, for example, the linear scale of measured durations (in years) on 
the y-axis, and the corresponding logarithmic scale of the durations felt on the x-axis. 
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Figure 12: logarithmic scale (source Wikipedia) 

 
As we get older, Time seems to pass faster and faster, the years go by. Similarly, the birth seems to 
date back an eternity, to come from an infinitely distant past. We don't even remember it anymore! 
 
For now 0 of each, we have according to the logarithmic function: 𝑙𝑜𝑔 0 = −∞. The −∞ of the birth 
of each individual seems to merge with the −∞ of the Big Bang or the appearance of Life. 
 
Again, this is reminiscent of the hypothesis of E. Haeckel, the recapitulation by ontogenesis of 
phylogeny. By reproducing the major stages of evolution, the living being traces the long path of Life, 
in a Time a priori accelerated according to a linear scale, but in fact with longer and longer durations 
when they tend towards the moment 0. This allows the living being to join the rest of the living, in a 
present where we all advance concomitantly at the same Time. 
 
Note on the absence of a logarithmic scale to describe Time in Physics, digression on cosmic 
inflation 
Let us observe that in no theory of current physics, a logarithmic scale is used to describe Time, even 
if the model of cosmic inflation developed in particular by Robert Brout, François Englert, Edgard 
Gunzig, Alexeï Starobinskia, Alan Guth, a model that fits into the Big Bang theory, can still strongly 
think about it.  
 
 
VI.4 Conclusion of the chapter 
In the previous chapter, it was proposed to characterize Life by its oriented Time. Thus, any physical 
phenomenon in Oriented Time would in fact be a biological phenomenon. 
In this chapter, it has been proposed to interpret the Big Bang as a biological phenomenon1. It would 
correspond to the beginning of Life, that is, to the moment when Life had the desire to advance 
continuously in the same direction and in one direction. Each of us would also come from an 
individual Big Bang. 
 
In the next chapter, we will focus on the processes implemented by living beings to keep into the same 
Time, and thus live together. 

 
1 Some may see it as an idea similar to those developed by Lee Smolin in his book Life of the Cosmos. L. Smolin proposes in 

particular to apply natural selection to the birth of universes. 
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Chapter VII How to live together at the same time? The Light Time 
Hypothesis 

 
Objective of the chapter 
In this chapter, we first return to the ideas developed by A. Einstein in the theory of Special Relativity 
on the deformations of distances and durations. Starting from the idea of a deformable Time, we then 
focus on the processes used by living beings to fit into the same moments, that is to say to live 
together. 
 
Idea 9. The speed of light in Space, always measured constant regardless of the movement of the 
observer, could be a characteristic of the advance in Time, identical and shared, of human beings 
living together. 
 
VII.1 The apparent incompatibility between the principle of relativity stated by G. 

Galileo and the propagation of light 
VII.1.1 Preamble 
In 1916, A. Einstein published a small popular work entitled Relativity where he recalled his vision of 
Special and General Relativity. For the writing of this book, he was inspired by a long review article 
also published in 1916 The foundations of the theory of General Relativity2 taking up many ideas 
developed since his first articles in 1905. 
 
In chapter 7 of Relativity, A.  Einstein returns to the apparent incompatibility between the principle of 
relativity stated by G. Galileo and the experiments carried out at the end of the 19th century by A. 
Michelson and E. Morley, on the propagation of light and the search for a lumiferous ether. According 
to these experiments, the speed of light is always measured constant, regardless of the motion of the 
observer, thus contradicting the principle of Galilean relativity. 
 
In chapters 8 to 13, one can only be won over by the solution proposed by A. Einstein to settle this 
apparent incompatibility. He first questions the notion of simultaneity, then proposes the notions of 
deformations of durations and distances (deformations of Space-Time), thus reconciling the principle 
of Relativity and the propagation of light. 
 
Note 
This translates mathematically into the replacement of the Galileo transform by the Lorentz transform 
seen in the 1st Memoir. 
 
 
In the following paragraphs, we will propose an alternative and intuitive approach to the notions of 
deformations of durations and distances, in order to find the main results of Special Relativity. The 
approach will also make it possible to better understand the notions of deformations of durations and 
distances, at least to explain them differently. 
 
Note, consider interstellar travel from one end of the Milky Way to the other? 
Related to the question of "why a speed limit c of light?", we have the question of "what is the 
profound difference between: 

- phenomena such as light or electromagnetic waves, which have a propagation speed limited 
by c in space, 

- and phenomena such as the gravitational force, the electromagnetic force, and apparently 
quantum entanglement, which have an a priori instantaneous effect from one point to another 
in space?» 

 
2 "Die Grundlage der allgemeinen Relativitätstheorie" Annalen der Physik, vol XLIX, 1916, pp. 769-882 



486    Invariances and transformations 

 

 
We will not venture here to answer this question, even if it seems to contain as some fundamental 
things. Its resolution would in any case make it possible to envisage interstellar travel, from one end of 
the Milky Way to the other. 
 
 
VII.1.2 Experience, light signal speeds 
Let be a mirror and an experimenter 𝐸1. Mirror and 𝐸1 are fixed relative to each other. The 
experimenter 𝐸1 sends a light signal to the mirror. 𝐸1 knows the distance separating him from the 
mirror and measures the time taken by the light signal to make the round trip. He deduces the speed of 
the light signal: 𝑐 = 𝑑𝑥𝑑𝑡  

 
Let be a motionless mirror and an experimenter 𝐸2, who according to 𝐸1 advances with speed 𝑣 along 
this mirror. 𝐸2 sends a light signal to the mirror. We are looking for the speed of light  measured by 𝐸2 according to 𝐸1? 
 
If we apply the principle of Galilean relativity, we have the velocity diagram: 

 
Figure 13: speed diagram 

 
According to Pythagoras' theorem, we have: 𝑐 = (𝑑𝑥𝑑𝑡) + 𝑣  

According to 𝐸1, 𝐸2 measures for light a speed lower than that measured by him: 𝑑𝑥𝑑𝑡 = 𝑐 − 𝑣  

Experimentally, 𝐸2 also measures a speed of light equal to: 𝑐 = 𝑑𝑥𝑑𝑡  

 
VII.1.3 Deformation of durations 
To resolve the apparent incompatibility between the Galilean principle of relativity and this 
experiment reminiscent of those of A. Michelson and E. Morley, A. Einstein imagines that the proper 
durations of 𝐸2 (who considers himself immobile): 𝑑𝑡 , are different from those of 𝐸1 (who considers 𝐸2 moving at a speed 𝑣): 𝑑𝑡. 
 
In the time of 𝐸1, 𝐸2 measures: = √𝑐 − 𝑣 , and in his own time, 𝐸2 measures: = 𝑐. 
We get a speed c measured by 𝐸2 and a Time that becomes deformable with the introduction of 𝑑𝑡 . 
Time is no longer an absolute. Its flow is related to the speed of the experimenter. 

c

dt
xd

v
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To find the relationship between the durations of 𝐸1 and those of 𝐸2, we start from 𝑑𝑥 which remains 
the same for 𝐸1 and 𝐸2: 𝑑𝑥 = 𝑐 − 𝑣 𝑑𝑡 = 𝑑𝑥 = 𝑐𝑑𝑡  

 
We obtain the relationship between the proper durations 𝑑𝑡  of 𝐸2 and durations 𝑑𝑡 of 𝐸1: 𝑑𝑡 = 11 − 𝑣𝑐 𝑑𝑡  

We generally ask: 𝛾 = 11 − 𝑣𝑐 > 1 

 
The durations of a body (here 𝐸2) who considers himself immobile are therefore always smaller than 
those of a body (here 𝐸1) who considers it in motion 𝑣 compared to him. 
 
The following notations are introduced: 

- the durations of 𝐸2 compared to 𝐸1 (durations of 𝐸2 in the reference frame of 𝐸1): 𝑑𝑡 =[𝑑𝑡 ] = 𝑑𝑡 / , 
- the durations of 𝐸2 compared to 𝐸2 (durations of 𝐸2 in the reference frame of 𝐸2): 𝑑𝑡 =[𝑑𝑡 ] = 𝑑𝑡 / . 

 
We have the relationship: 𝑑𝑡 / = 11 − 𝑣𝑐 𝑑𝑡 /  

 
Note: 
It is assumed that the proper durations are the same for everyone. So, we have for experimenters 𝐸1, 𝐸2 or for any body A: 𝑑𝑡 = 𝑑𝑡 / = 𝑑𝑡 / = 𝑑𝑡 /  

 
So, we also have: 𝑑𝑡 / = 11 − 𝑣𝑐 𝑑𝑡 /  

 
VII.1.4 Deformation of distances 
The same reasoning can be applied to distances. To resolve the apparent incompatibility between the 
Galilean principle of relativity and experiment, we imagine that the proper distances of 𝐸2 𝑑𝑥 , are 
different from those of 𝐸1 𝑑𝑥. 
 
In the space of 𝐸1, 𝐸2 measures: = √𝑐 − 𝑣 , and in his own space, 𝐸2 measures: = 𝑐. 
We obtain the same speed c measured by 𝐸2 and a Space that becomes deformable with the 
introduction of 𝑑𝑥 . 
 
To find the relationship between the distances of 𝐸1 and those of 𝐸2, we start from 𝑑𝑡 which remains 
the same here for 𝐸1 and 𝐸2: 
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𝑑𝑥√𝑐 − 𝑣 = 𝑑𝑡 = 𝑑𝑥𝑐 = 𝑑𝑡 𝑑𝑥𝑑𝑥 = √𝑐 − 𝑣𝑐  

We get: 𝑑𝑥 = 1 − 𝑣𝑐 𝑑𝑥  

with 1 − < 1 
 
The distances of a body (here 𝐸2) who considers himself motionless are therefore always larger than 
that of a body (here 𝐸1) who considers him in motion 𝑣 in relation to him. 
 
We introduce the following notations: 

- the distances of 𝐸2 compared to 𝐸1 (distances of 𝐸2 in the reference frame of 𝐸1): 𝑑𝑥 =[𝑑𝑥 ] = 𝑑𝑥 / , 
 

- the distances of 𝐸2 compared to 𝐸2 (distances of 𝐸2 in the reference frame of 𝐸2): 𝑑𝑥 =[𝑑𝑥 ] = 𝑑𝑥 / . 
 
We have the relationship: 

𝑑𝑥 / = 1 − 𝑣𝑐 𝑑𝑥 /  

 
Nota 
It is assumed that the proper distances are the same for everyone. So, we have for experimenters 𝐸1, 𝐸2 or for any body A: 𝑑𝑥 = 𝑑𝑥 / = 𝑑𝑥 / = 𝑑𝑥 /  

𝑑𝑥 / = 1 − 𝑣𝑐 𝑑𝑥 /  

 
VII.1.5 Deformation of distances and durations 
We can imagine having both deformations of distances and durations. 
 
The proper durations and proper distances must then verify the relationship: 𝑑𝑡𝑑𝑡 × 𝑑𝑥𝑑𝑥 = 1 − 𝑣𝑐  

𝑑𝑡 /𝑑𝑡 / × 𝑑𝑥 /𝑑𝑥 / = 1 − 𝑣𝑐  

 
VII.2 Concept of distance deformation or advance in Space 
VII.2.1 Definition 
We have the following relationship between two experimenters 𝐸1 and 𝐸2: 
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𝑑𝑥 / = 1 − 𝑣𝑐 𝑑𝑥 /  

We have a similar relationship for an experimenter E who studies a body A: 

𝑑𝑥 / = 1 − 𝑣𝑐 𝑑𝑥 /  

We define the deformation of distances, which can be interpreted as an advance in space: 

𝛼 / = 𝑑𝑥 /𝑑𝑥 / = 1 − 𝑣𝑐  

with 𝛼 / < 1 

 
VII.2.2 Study of the speed of a body A 
Let 𝑣 /  the speed of body A when E considers himself advancing at the speed of light. 
Let 𝑣 / = 𝑐 the speed of the body E when E is considered to be advancing at the speed of light. 
Let 𝑣 / ÷ = 𝑣 the speed of the body A when E considers himself motionless. 
 
We place ourselves in the case where only distances are deformed. By definition of speed, we have: 𝑣 / = 𝑑𝑥 /𝑑𝑡 /  

We get: 𝑣 / = 𝑑𝑥 /𝑑𝑡 / = 𝑑𝑥 /𝑑𝑥 / × 𝑑𝑥 /𝑑𝑡 / = 𝛼 / 𝑣 /  

 
We have the relationship between the deformation of distances and the velocity: 𝑣 / = 𝛼 / 𝑣 / = 1 − 𝑣𝑐 𝑐 = 1 − 𝑣 / ÷𝑣 / 𝑣 /  

with 𝛼 / < 1 
 
E observes for all bodies A a speed lower than his own 𝑣 / . 
 
VII.2.3 Multiplication of distance deformations, composition relation 
Let a body A advancing at initial velocity 𝑣 / = 𝛼 / × 𝑣 / , measured by the experimenter E, with 
an initial distance deformation equal to 𝛼 / . 
 
Body A enters a body B where the distances are contracted by 𝛼 / . 
 
The penetration of body A into body B is interpreted as follows: the deformation of the distances of 
body A, initially measured with respect to the experimenter E, is now measured with respect to body 
B, with a deformation of the distances of body A retaining the same value. 
The translation into equation is: 𝛼 / = 𝛼 /  
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We now want to calculate the new contraction of the distances of the body A with respect to the 
experimenter E. We have: 𝛼 / = 𝛼 / × 𝛼 / = 𝛼 / × 𝛼 /  

We ask: 𝛼 / = 𝛼 × /  𝛼 × / = 𝛼 / × 𝛼 /  

 
The velocity of body A in body B, measured according to the distances from the experimenter E is 
equal to: 𝑣 × / = 𝛼 / 𝑣 /  

We get: 𝑣 × / = 𝛼 / × 𝛼 / 𝑣 /  

 
VII.3 Notion of deformation of durations or advance in Time 
VII.3.1 Definition 
We have the following relationship between two experimenters 𝐸1 and 𝐸2: 𝑑𝑡 / = 11 − 𝑣𝑐 𝑑𝑡 /  

We have a similar relationship for an experimenter E who studies a body A: 𝑑𝑡 / = 11 − 𝑣𝑐 𝑑𝑡 /  

 
We define the deformation of durations, which can be interpreted as an advance in Time: 𝛼 = 𝑑𝑡𝑑𝑡 = 11 − 𝑣𝑐  

with 𝛼 / > 1 

 
VII.3.2 Study of the velocity of a body A 
We place ourselves in the case where only the durations are deformed. By definition of speed, we 
have: 𝑣 / = 𝑑𝑥 /𝑑𝑡 /  

We get: 𝑣 / = 𝑑𝑥 /𝑑𝑡 / = 𝑑𝑡 /𝑑𝑡 / × 𝑑𝑥 /𝑑𝑡 / = 1𝛼 / 𝑣 /  
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We have the relationship between the deformation of durations and the speed: 

𝑣 / = 1𝛼 / 𝑣 / = 1 − 𝑣𝑐 𝑐 = 1 − 𝑣 / ÷𝑣 / 𝑣 /  

with 𝛼 / > 1 
 
E therefore observes for all bodies A a speed lower than his own 𝑣 / . 
 
VII.3.3 Composition relationship 
We have the same composition relation for duration deformations as for distance deformations: 𝛼 × / = 𝛼 / × 𝛼 /  

We get: 𝑣 × / = 1𝛼 / × 𝛼 / 𝑣 /  

 
VII.4 Concomitant deformations of durations and distances 
By definition of speed, we have: 𝑣 / = 𝑑𝑥 /𝑑𝑡 /  

Placing ourselves in the case where distances and durations are deformed, we have: 𝑣 / = 𝑑𝑥 /𝑑𝑥 / × 𝑑𝑡 /𝑑𝑡 / × dx /dt /  𝑣 / = 𝛼 /𝛼 / 𝑣 /  

with 𝑣 / = 𝑐 et  // = 1 − = 1 − / ÷/ < 1 

 
We get: 𝑣 / = 𝑐 1 − 𝑣𝑐  

 
In Special Relativity, we use the notation: 𝛾 = 11 − 𝑣𝑐  

 
So, we have: 𝛾 / = 𝛼 /𝛼 /  

Or in more compact notation: 𝛾 = 𝛼𝛼  

 
Note 1, on the speed result of a geometric mean 
We have: 
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𝑣 / = 𝑐 1 − 𝑣𝑐 = 𝑐 − 𝑣 = (𝑐 − 𝑣)(𝑐 + 𝑣) 𝑣 / = (𝑐 − 𝑣)(𝑐 + 𝑣) 
 
Let us observe that 𝑐 − 𝑣 and 𝑐 + 𝑣 correspond to the two velocities of a body A, obtained according 
to the 2 Galileo transforms, that is to say to the 2 changes of reference frames: from a reference frame 
where the experimenter considers himself stationary to a reference frame where the experimenter 
considers himself advancing at speed c, taking into account the 2 possible directions of v with respect 
to E. 
To see why, to get the speed 𝑣 / , It is necessary to calculate the geometric mean of the 2 speeds of A: 𝑐 − 𝑣 and 𝑐 + 𝑣 obtained by these 2 transformed Galileo? 
 
Note 2, querying the meaning of the constant c in 𝑬𝒕 = 𝒎𝒕𝒄𝟐? 
Why in mass energy 𝐸 = 𝑚 𝑐 , measured for bodies at rest in Space in relation to an experimenter, 
we introduce a velocity equal to c? 
 
In Special Relativity, would not the reference speed of an experimenter, according to him at rest, be 
implicitly c, and in this case would the reference speed of light be implicitly zero? 
 
 
VII.5 Thinking on conventions for the description of motion and their study intervals 
VII.5.1 Choice of conventions for the description of movement 
To study the speed of light, an experimenter E can consider himself: 

- or as motionless and the light advancing at a speed c, 
- or as advancing at speed c and stationary light. 

 
The following table summarizes these two conventions, with the notations used in this Memoir: 
 
 Speed of light Speed of E Speed of A Study interval 

for speed of A 
 

First 
Convention: 
E motionless 
and light L 
advancing at 
speed c 

𝑣 / ÷ = 𝑐 𝑣 / ÷ = 0 𝑣 / ÷ = 𝑣 [0, 𝑐] 
Second 
Convention: 
E advancing at 
speed c and 
light L 
motionless 

𝑣 / = 0 𝑣 / = 𝑐 𝑣 / = 𝑐 − 𝑣  𝑣 / = 𝑐 1 − 𝑣𝑐  

If 𝑣 = 𝑐 then 𝑣 / = 0 
If 𝑣 = 0 then 𝑣 = 𝑐 

[0, 𝑐] 

 
VII.5.2 How to integrate into the second convention the speeds going in the opposite direction 

of Space? 
In the second convention, we have an experimenter E considering himself advancing at speed c, 
observed bodies that have a speed lower than his, and a minimum for light L which has zero velocity. 
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To integrate into this second convention, the speeds going in the opposite direction of Space, a first 
option is to have for these speeds, negative velocities and an experimenter, in this case, considering 
himself advancing at the speed –c. 
 
 Speed of light Speed of E Speed of A Full study 

interval for 
speed of A 
 

First 
Convention: 
E motionless 
and light L 
advancing at 
speed ±𝑐 

𝑣 / ÷ = ±𝑐 𝑣 / ÷ = 0 𝑣 / ÷ = 𝑣 [−𝑐, 0]U[0, +𝑐] 
Second 
Convention: 
E advancing at 
speed ±𝑐 and 
light L 
motionless 

𝑣 / = 0 𝑣 / = ±𝑐 𝑣 / = ± 𝑐 − 𝑣  𝑣 / = ±𝑐 1 − 𝑣𝑐  

If 𝑣 = 𝑐 then 𝑣 / = 0 
If 𝑣 = 0 then 𝑣 / =±𝑐 

[−𝑐, 0]U[0, +𝑐] 

 
This is a possible option, but not very satisfying for the mind. Indeed, the reference experimenter E at 
two possible speeds ±𝑐 according to the bodies studied. 
 
Let us look for another convention where the experimenter E would maintain, according to him, 
always the same reference speed c. 
 
In the second convention, in the case where a body A goes half as fast in space as an experimenter E, 
the latter measures a velocity 𝑣 / = 𝑐. The experimenter E advances with velocity c in one direction 

of Space, and body A advances with velocity 𝑣 / = 𝑐 in the same sense of Space. The body A 
advances a priori slower than the experimenter E and it appears between E and A, a distance gap that 
continues to grow. 
 
According to a third convention (in fact, an extension of the second convention to bodies going in the 
opposite direction of Space), if the distance gap between E and A keeps getting bigger, it is because A 
goes twice as fast as E, with 𝑣 / = 2𝑐, in the opposite direction of Space. 
 
In this third convention, E advances at speed c in Space. The bodies studied all have the same sense of 
velocity in Space (the same as E). For E, bodies whose velocity belongs to the interval [0, 𝑐], advance 
in Space slower than him. Bodies whose velocity belongs to the interval [𝑐, +∞[, advance in Space 
faster than him. The complete study interval is [0, 𝑐]U[𝑐, +∞[. 
 
The table above summarizes the values obtained, with the first and third conventions, always with the 
notations used in this Memoir: 
 
 Speed of 

light 
Speed of E Speed of A Study 

interval for 
speed of A 
 

Full study 
interval for 
speed of A 
 

First 
Convention: 
E immobile et 

𝑣 / ÷ = ±𝑐 𝑣 / ÷ = 0 𝑣 / ÷ = 𝑣 [−𝑐, 0]U[0, +𝑐] [−𝑐, 0]U[0, +𝑐] 
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Light L 
advancing at 
speed ±𝑐 
Third 
Convention: 
E advancing at 
speed c and 
light L 
motionless or 
advancing at 
speed +∞ 

𝑣 / = 0 𝑣 / = 𝑐 𝑣 / = 𝑐 1 − 𝑣𝑐  

If 𝑣 = 𝑐 then 𝑣 / = 0 
If 𝑣 = 0 then 𝑣 / = 𝑐 

[0, +𝑐] [0, 𝑐]U[𝑐, +∞[ 

𝑣 / = +∞ 𝑣 / = 𝑐 𝑣 / = 𝑐1 − 𝑣𝑐  

If 𝑣 = 𝑐 then 𝑣 / = +∞ 
If 𝑣 = 0 then 𝑣 / = 𝑐 

[𝑐, +∞[ 

 
Let us retain from these different conventions or points of view, that there is not really an 
unsurpassable speed c of light, but rather a bound c present in all study intervals. 
 
VII.6 Mass, a kind of "speed" in Time? 
VII.6.1 The relativistic mass 𝜸𝒎𝒕  
In the preceding paragraphs, we have taken up the idea of A. Einstein of a deformable Space and 
Time. An alternative and intuitive approach to the notions of distance and duration deformations has 
been proposed. 
In Memoir 2, we also suggested that mass 𝑚  could be interpreted as a kinf of "speed" in Time. 
 
In Special Relativity, the notion of relativistic mass is introduced. 𝛾𝑚 , with: 

- 𝑚  the resting mass of a body, 
- 𝛾𝑚  its mass when this body has a velocity v. 

 
Based on the above, we have: 𝛾𝑚 = 𝑚 = 𝑚  in the general case, 𝛾𝑚 = 𝛼 𝑚 = 𝑚  if absence of distance distortions. 

 
We can interpret: 

- the mass 𝑚  as "a speed" in Time for a body at rest in Space, relative to an observer, 
- the relativistic mass 𝛾𝑚 = 𝛼 𝑚  as a "speed" in Time for a moving body at the speed v in 

Space, relative to an observer. 
 
VII.6.2 The case of light and photons 
Recall that according to Special Relativity, a particle of momentum p, of speed v and of mass 𝑚  has 
a total energy: 𝐸 = 𝛾𝑚 𝑐 = 11 − 𝑣𝑐 𝑚 𝑐  

In the case of a photon, we have a velocity: 
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𝑣 → 𝑐 
So, we have: 11 − 𝑣𝑐 → +∞ 

We have for its mass at rest: 𝑚 → 0 
 
We obtain an indeterminate form for the total energy: 𝐸 = 𝛾𝑚 𝑐 = 0 × ∞ 
if it is calculated from its mass 𝑚 and from 𝛾. 
 
We also have for its relativistic mass an indeterminate form: 𝛾𝑚 = 0 × ∞ 
 
According to Special Relativity, a particle of momentum p and of mass 𝑚  has a total energy: (𝐸 ) = 𝑝 𝑐 + (𝑚 ) 𝑐  
In the case of a photon, we have: (𝐸 ) = 𝑝 𝑐 + 0 
 
We get its total energy from its momentum p and its frequency f: 𝐸 = 𝑝𝑐 = ℎ𝑓 
 
We therefore have for a photon: 

- if it is at rest in Space relative to us, a zero mass 𝑚 = 0, 
- a speed c in Space, 
- a total energy that is indeterminate, if calculated from its mass 𝑚  and from 𝛾, 
- a total energy that is determinate, if calculated from its momentum or its frequency: 𝐸 =𝑝𝑐 = ℎ𝑓 

 
In conclusion, it is often said that light and photons have zero mass. This is not entirely accurate. A 
photon has zero mass, if it were at rest relative to the observer. When it is at speed c, we do not know. 
But it can be assumed that its mass is not zero in relation to the observer. This explains in particular its 
sensitivity to gravitation or its participation in Compton scattering. 
 
VII.6.3 Why is there no "shock" when we superimpose 2 beams of light? 
Light is sometimes presented as wave, sometimes as corpuscular. In the second case, we can expect to 
observe "shocks" between two photons when we superimpose 2 beams of Light. This is not 
experimentally the case. 
 
We can intuit it by saying that two photons have a zero velocity for each other, and therefore for each 
other a zero mass. So, there is no "shock". 
It can be objected that two photons crossing in opposite directions, measure for each other a speed 2c. 
Let us then resume the results of the experiments of A. Michelson and E. Morley: Whatever the frame 
of reference, an experimenter measures for light a velocity c. Let's transpose this result to the photon: 
whatever the reference frames, one photon measures for another photon a zero velocity. 
 
On the other hand, a collision between a photon and an electron is observed experimentally, for 
example during Compton scattering. The photon therefore has, in a way, a mass for the electron. 
 
Note 
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To be complete, a theory proposed by W. Heisenberg in the 1930s provides for a possible interaction 
between two photons via the exchange of an electron. Extensive experiments are being conducted on 
the subject and could corroborate W. Heisenberg's hypothesis. 
 
 
VII.6.4 Why do we always measure a speed c for Light? 
Why for any phenomenon L having: 

- a "speed" in Time which is null: 𝑚 = 0, if this phenomenon was at rest in Space relative to 
an observer, 

- a speed in Space not equal to that of the observer, this observer considering himself 
motionless in Space, 

the observer necessarily measures a velocity in Space equal to c? 
 
According to Special Relativity, we have the total energy of a particle: 𝐸 = 𝛾𝑚 𝑐 = 11 − 𝑣𝑐 𝑚 𝑐  

 
It is noted that for any phenomenon L having a rest mass of zero limit 𝑚 → 0, it is possible to have a 
non-zero energy 𝐸 , on the necessary condition that the speed of the phenomenon L has the limit 𝑣 →𝑐 and therefore𝛾 → ∞. 
 
We have indeed: 

- 𝑣 → 𝑐 if the observer considers himself motionless in Space, 
- 𝑣 / = 𝛾𝑐 → ∞ if the observer considers himself to be advancing at speed c in Space. 

 
VII.7 The Light Time Hypothesis, Light Time is it also our Time? 
VII.7.1 Do we share the same Time with these phenomena or bodies of which we measure a 

zero mass (if they were at rest in Space) and a speed c? 
As mentioned in the previous paragraph, we measure for certain phenomena or bodies, such as light or 
photons: 

- if they were at rest in Space relative to us, a zero mass 𝑚 = 0, 
- a speed c in Space. 

 
Following a relativistic approach to movements, would these phenomena or bodies, if they were at rest 
in Space in relation to us, have a zero "speed" in Time in relation to us, that is to say a "speed" in Time 
identical to ours, and therefore would they share the same Time as us, human beings? 
 
We poetically baptize this question, the Light Time hypothesis, a Light Time that would be that of light 
(if it were at rest in Space in relation to us), and also our biological Time. In other words, the "speed" 
of Light in Time and the "speed" of living beings in Time would be the same. 
 
VII.7.2 How do living beings "settle" on the same moments? 
In the hypothesis of a deformable Time, where all bodies do not have the same "speed" 𝑚  in Time, 
the question is how do living beings "settle" on the same moments? In other words, how do living 
beings live together? 
 
VII.7.3 What is the point of an always constant speed c of light? 
Let us opt for a functionalist approach in this paragraph. That is to say, let's interpret the Universe as a 
big machine where all the elements would have a function (we can even talk about utility). Following 
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this approach, do we ask ourselves about the function of a constant speed c of light regardless of the 
reference frame? What is its interest? 
 
In the previous paragraphs, it has been pointed out that if Light had zero speed in Space relative to an 
observer, its mass 𝛾𝑚  would be zero and its "speed" in Time as well. The light would therefore have 
the same Time as the observer. 
 
Following a phenomenological approach, this finding implicitly introduces a link between all 
observers measuring the same speed c of light. 
 
Thus, would this constant c indicate the existence of an identical link shared by all observers living 
together? Would this link, loss of freedom, allow observers to live together, to advance concomitantly 
in Time? 
 
We began poetically this essay by imagining rotations in spatiotemporal planes. It ends just as 
poetically by imagining the constant c, as an identical characteristic shared by human beings living 
together, allowing them to position themselves on the same moments. This constant c is great, but it is 
true that life passes so quickly! 
 
Our initial concern was uselessness a priori of a constant and unsurpassable speed c of light, with the 
annoyance of not being able to exceed a certain value (moreover hardly compatible with the ideas of 
infinity and continuity). 
Our argument is the usefulness of a quantity shared and identical to all human beings, so that we can 
live together. 
 
Note 1 on memories and memory function 
Here we have suggested that human beings must move identically in Time to live together. 
Nevertheless, our being does not necessarily form a whole. We can imagine certain parts of our being 
that advance in Time identically to those facing us, and other parts that go back in Time or that remain 
frozen at a certain time (this is what suggests the measurement of a non-zero mass 𝑚  for our body 
and especially our brain). These parts relive moments, giving them a kind of eternity. They can also 
bring back forgotten memories. 
 
So, when we look back on our past life, are we entirely in the present moment, or are certain parts of 
ourselves in the moment that we remember? Does our memory store all the information or does it only 
point to moments, which we must return to, to find the information? 
 
Note 2 on a biological agent which makes identically advance in Time the beings living together 
A biological agent can be defined by the utility and functions it performs within an organism. For 
example, DNA is an agent for storing and transmitting genetic information. 
Similarly, what could be the biological agent (we can speak of a biological clock) that would allow 
beings living together to advance identically in Time? 
 
Perhaps this biological agent is not spatially localized like DNA and that it has to do with L. Pasteur's 
discovery for the characterization of Life: molecules of a single chiral type? 
 
Note 3 on Life and Death 
If Life is characterized by the measurement of a constant c and an identical "speed" in Time, death 
could be characterized by the end of this identical "speed" in Time. 
 
Following this hypothesis, and in the quest for a biological agent that advances living beings 
identically in Time, one track would be to study the functions that disappear during the passage from 
life to death. Could the biological agent be linked to one of these functions? 
 
Note 4, materialism or dualism? 
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In the traditional debate between materialist or monist philosophers (inseparable matter and spirit) and 
dualistic philosophers (dissociated matter and spirit), let us remember that the hypotheses proposed 
here do not allow a distinction. 
 
We can reconcile both materialism and dualism, with a matter interpreted as a "speed" in Time, a 
Light Time hypothesis and an arrow of Time which would be the first characteristic of Life. 
A form of life beyond would not be inherently impossible, except that it would no longer have Light 
Time. 
 
 
VII.8 Conclusion of the essay, the question of Time 
We began this essay by questioning the similarities between electromagnetism and gravitation. In the 
3rd Memoir, it was proposed to unify Newtonian gravitation with quantum physics (in a restricted 
sense, however, i.e., according to the equations 𝐸 = ℎ𝜈 and 𝑝 = ), as J. C. Maxwell did in the 19th 
century with the unification of electrostatics and magnetism. 
 
In the 5th Memoir, we were first interested in bringing electromagnetic, hyper, and nuclear interactions 
closer together, then in studying how gravitation could be integrated with these interactions. We 
simply proposed tracks. 
 
That is, the initial question of the similarities between electromagnetism and gravitation, as well as 
that of the unification of all these interactions, remained unresolved. It therefore remains to understand 
the main one, in particular the link between electric charge and mass. All electric charges also have a 
priori mass, but why, for example, proton and electron have identical electric charges in absolute 
value, and masses so different? 
 
For the last major unification project of current physics, that of General Relativity with Quantum 
Physics, only a few remarks have been outlined in the 6th Memoir. Rather, it was pointed out that 
General Relativity, and especially 2 of its cosmological developments: Big Bang and black holes, had 
similarities with biology. The idea is not that General Relativity and Quantum Physics will not one 
day be fused. The universe is only one and therefore all theories should be able to join together like the 
branches of a huge tree. The idea is that General Relativity and Quantum Physics will first have to 
merge with other models or theories before they come together. 
 
To conclude, if we had to propose a central theme to this essay, it would undoubtedly be the question 
of Time. The question of Time was mainly addressed from a physical point of view: trying to 
understand how it intervenes in the equations of gravitation, electromagnetism, and nuclear 
interactions? It was nevertheless surprising that the Time of Physics is so similar to a dimension of 
Space and does not require, in its equations, the notion of flow. 
 
Because what interests us all, more than the Time of physics, is the Time felt, our Time that takes us in 
a mad race. A race similar to a turbulent torrent made of currents, rapids and eddies. A race of which 
internally, we can go back the course, in order to relive once again some wonderful moments. A race 
that externally, is without possible return, with terminus stop at the ocean. 
 
To better understand something, it is sometimes relevant not to apprehend it directly, but to study 
similar things. As the systemic ones point out, we do not understand something in our own right, we 
understand it through its relationship with others, its differences, its flaws, its inconsistencies. 
Through this long journey dedicated to the study of Space and Time in physics, our goal was also to 
better understand our felt Time. What could characterize it and make it its singularity vis-à-vis the 
Time of Physics? 
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