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ABSTRACT. We consider nonparametric Bayesian inference in a multidimensional diffusion model
with reflecting boundary conditions based on discrete high-frequency observations. We prove a gen-
eral posterior contraction rate theorem in L

2-loss, which is applied to Gaussian priors. The resulting
posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax
optimal rate over Hölder smoothness classes in any dimension. Of independent interest and as part
of our proofs, we show that certain frequentist penalized least squares estimators are also minimax
optimal.

MSC2020 subject classifications: 62G20, 62F15, 60J60.
Keywords: Bayesian nonparametrics, multidimensional diffusions, high-frequency data, Gaussian

processes, penalized least squares estimator.

CONTENTS

1. Introduction 2
2. Main results 4
2.1. Preliminary setup for a reflected diffusion model in Rd 4
2.2. Gaussian process priors 6
3. A general contraction theorem 9
4. Proof of Theorem 8: expectation and variance of the integrated log-likelihood restricted

to CN 14
4.1. Proof of the variance bound of Theorem 8 14
4.2. Proof of the expectation bound of Theorem 8 17
5. Remaining proofs for Theorem 8 18
5.1. Preliminary estimates 18
5.2. Proofs of Propositions 14 and 16: approximating transition densities in small-time 19
5.3. Proofs of Propositions 15 and 17: expectation and variance of the log-likelihood with

proxy density 24
6. Proof of Theorem 9: an exponential inequality for a least squares type estimator 27
6.1. Risk decomposition 27
6.2. Bias term 29
6.3. Deviation of the remainder term 29
7. Proofs of posterior contraction results 34
7.1. Proof of Theorem 11: a general contraction theorem 34
7.2. Proof of Theorem 3: contraction rates for Gaussian priors 37
7.3. Proof of Corollaries 4 and 5: examples of Gaussian process priors 40
8. Heat kernel estimates in small time 41
8.1. Proof of Lemma 12 41

1

http://arxiv.org/abs/2211.12267v1


2 MARC HOFFMANN AND KOLYAN RAY

8.2. The behaviour of the transition density near the boundary 42
8.3. Proof of Lemma 13 43
8.4. Proof of Lemma 21: approximating transition densities for small-time 44
9. Appendix 48
9.1. Proof of Theorem 7: minimax lower bound 48
9.2. Proof of Theorem 10 50
9.3. Proof of Lemma 19 50
9.4. Proof of Lemma 20 51
9.5. A generic chaining inequality and the event BN 51
9.6. Proof of Lemma 22 53
References 53

1. INTRODUCTION

Let O ⊂ Rd be a bounded convex domain with smooth boundary ∂O and

f : O → [fmin,∞)

be a positive function with fmin > 0. Consider the multidimensional diffusion process (Xt)t≥0 on
O that is reflected upon hitting the boundary ∂O and arises as the solution to the SDE:

Xt = X0 +

∫ t

0

∇f(Xs)ds+

∫ t

0

√
2f(Xs)dBs + ℓt,

ℓt =

∫ t

0

n(Xs)d|ℓ|s, |ℓ|t =
∫ t

0

1{Xs∈∂O}d|ℓ|s,
(1)

where (Bt)t≥0 a standard d-dimensional Brownian motion, (ℓt)t≥0 a bounded variation process
with ℓ0 = 0 that accounts for the boundary reflection and n(x) denotes the unit inward normal
to the boundary ∂O at x. We take X0 to be uniformly distributed on O, which is the invariant
measure of the SDE (1), and hence X is started at stationarity. If ∂O and ∇f are continuously
differentiable, existence and uniqueness of the solution to (1) follows from [37]. These conditions,
together with the convexity of the domain O, can be relaxed, but will be sufficient for the level of
generality intended here.

Consider observations regularly collected at discrete time points, resulting in data of the form

(2) XN = (X0, XD, . . . , XND)

with sampling interval D > 0. We consider the high-frequency and long term sampling regime,
where D = DN → 0 such that the time-horizon NDN → ∞. We study nonparametric Bayesian
estimation of f in model (1) using Gaussian process priors. In particular, we establish minimax
optimal frequentist contraction rates for the posterior for f about the ‘ground truth’ f0 generating
the data, thereby establishing theoretical guarantees for this method.

Diffusion models are widely used in applications, including in the physical and biological sci-
ences, economics and finance, as well as for particle filters and emulators amongst many others
purposes. Regarding the physical model underlying (1), let u(t, x) denote the intensity of a quan-
tity that is diffusing, such as heat, in a closed system at time t > 0 and location x ∈ O. Fick’s laws
of diffusion state that this is governed by the evolution equation

(3)
∂u

∂t
= ∇ · (f∇u),
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where f > 0 is the diffusivity of the possibly inhomogeneous medium O, with appropriate bound-
ary conditions. This describes the macroscopic behaviour of many particles in O governed by
Brownian dynamics, whose individual behaviour can then be modelled by (1). The statistical
problem at hand is thus to make inference on the diffusivity f based on discrete observations of
the location of a single particle.

A challenging feature of model (1) is that its generator Lfφ = ∇·(f∇φ) is a divergence form op-
erator, which implies that the invariant measure µf is simply the uniform measure on the domain
O for all f :

(4) µf (A) = lim
T→∞

1

T

∫ T

0

1A(Xt)dt ∝ vol(A),

for any measurableA ⊂ O, so that the average asymptotic time spent by the processX in different
regions does not provide any information about f . In particular, this contrasts with several other
well-studied diffusion models where one can identify the relevant model parameters from the
invariant measure µf , and hence a natural statistical approach is for first estimate µf and then
derive plug-in estimates, see e.g. [18, 56, 30, 2]. In model (1), all information about f is thus
contained in the transitions X(i−1)D 7→ XiD, which motivates using a likelihood based approach,
such as the Bayesian one we pursue here.

To better understand our approach, it is helpful to consider the more general diffusion model,

(5) dX ′
t = b(X ′

t)dt+ σ(X ′
t)dWt,

where b : Rd → Rd is the drift and σ : Rd → Rd ⊗ Rd is the diffusion coefficient or matrix. In the
one-dimensional high frequency case where b and σ have the same smoothness, one can estimate
the diffusivity σ at a faster rate than the drift b [33]. In model (1), where these parameters are
coupled, the diffusivity term is similarly more informative about f than the drift, which must be
exploited to obtain minimax optimal rates. While the Bayesian methodology does not explicitly
make this distinction, simply placing a prior on f as usual, our proofs themselves heavily rely on
this idea. One can therefore view sharp estimation of f in model (1) as qualitatively analogous to
estimation of σ in model (5), with the added difficulty that the invariant measure is uninforma-
tive. Our work is thus relevant to the literature on estimating the diffusion coefficient [33, 15, 54]
under high-frequency sampling, which is closely linked to volatility estimation, see [66, 8, 3] in
econometrics or [4]. Our results indicate that Bayesian methods can correctly pick up this feature
of the data via the likelihood.

We prove a general contraction rate theorem for f under approximation-theoretic conditions on
the prior following the classic testing approach of Bayesian nonparametrics [26], which requires:

(i) the integrated log-likelihood process is not too small with high probability;
(ii) the existence of suitable tests with exponentially decaying type-II errors.

Since the present high-frequency setting involves increasingly correlated observations, establish-
ing (i) is much more involved than in the i.i.d. setting, where the log-likelihood tensorizes [25].
In particular, we must deal with the full dependent log-likelihood ratio process as a whole. Fol-
lowing the intuition from the continuous observation setting [63, 41, 30], we employ martingale
techniques to study an approximation of the log-likelihood which allows to deal with the depen-
dence structure of the Markov chain. Making this approximation both precise and uniform is a
key challenge, and the proof relies on refined small time expansions of the transition density or
heat kernel [6, 11, 13], which can also be viewed as quantitative LAN expansions. Turning to
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(ii), we construct suitable tests by establishing concentration inequalities for frequentist estima-
tors [27]. Given the above discussion regarding model (5), our estimators must draw information
from the diffusivity term to be minimax optimal. For this task, we follow the ideas of Comte et al.
[15] in the scalar case of using penalized least squares estimators. As a by-product, we obtain fre-
quentist estimators that we prove to be optimal in a minimax sense. To the best of our knowledge,
these are the first minimax results for estimating the diffusion coefficient in a multidimensional
setting. We finally apply our general contraction rate theorem to concrete Gaussian priors, such
as the Matérn process.

Regarding related works, theoretical properties of Bayesian nonparametric methods in the
scalar (d = 1) diffusion model (5) have been well-studied, see for instance [63, 46, 62, 65, 42, 1].
Much less is known is the multivariate setting, with contraction rates recently obtained under
continuous observations [41, 30] and only consistency for discrete observations [32, 40]. In partic-
ular, [40] extends the one-dimensional results of [31, 42] to establishes posterior consistency in the
same multidimensional model (1) in the low-frequency setting using completely different PDE
techniques, showing that Bayesian methods can in principle adapt to the sampling regime, see
[1] for further discussion. In the present high-frequency setup, we instead have access to refined
tools from stochastic analysis, which we leverage here to obtain minimax optimal contraction
rates in this regime.

Gaussian priors are widely used in practice [47] and have been applied in multiple ways to
diffusion models, see for instance [46, 52, 10]. While we do not discuss computational issues here,
note that posterior sampling based on discrete data is possible and is currently an active area of
research, see for example [12, 43, 14, 61, 53] and the references therein.

2. MAIN RESULTS

2.1. Preliminary setup for a reflected diffusion model in Rd. We now rigorously set up the sta-
tistical framework for our results in model (1). To account for the boundary behaviour, we assume
that f is known to be 1 in an open neighbourhood of ∂O. More precisely, for K ⊂ O a known com-
pact set with dist(K, ∂O) > 0, define the parameter space

(6) F0 = F0(K, d, fmin) =

{
f ∈ Cα(O) : inf

x∈O
f(x) ≥ fmin and f(x) = 1 for all x ∈ O \K

}
,

where 0 < fmin < 1 and the minimal smoothness equals

(7) α = αd = max (4, 2 ⌊d/4 + 1/2⌋) .

The minimal value αd scales like d/2 for large dimension d and is needed to employ suitable
bounds on the transition densities of the diffusion [17]. In particular, since α ≥ 4, this implies
existence and uniqueness of the solution to (1). We consider the statistical experiment generated
by the discrete observations XN = (X0, XD, . . . , XND) from (1) with sampling rate DN = D >
0. We work in the high-frequency and long-term sampling regime as stated in the following
assumption.

Assumption (Sampling regime). Suppose that D = DN → 0 such that ND → ∞, but ND2 → 0 as
N → ∞.

This is the minimal assumption for all our results and will be assumed throughout the paper
without further mention.
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Let Pf (simply P when no confusion may arise) denote the unique law of the Markov process
(Xt)t≥0 arising from (1). Consider the corresponding generator

(8) Lf (φ) = ∇ · (f∇φ) = ∇f · ∇φ+ f∆φ =

d∑

j=1

∂

∂xj

(
f
∂

∂xj
φ
)
,

densely defined by its action on smooth functions φ. For such a divergence form operator, the
unique invariant probability measure can be explicitly computed as the uniform measure on O as
in (4), see p. 46 of [7], so that the process (Xt)t≥0 in (1) is stationary. Without loss of generality, we
will assume that vol(O) = 1. Let (Pf,t)t≥0 denote the family of transition operators associated to
(Xt)t≥0, each of which admits a transition density pf,t(x, y) on O×O, so that for every real-valued
and bounded function φ : O → R,

Pf,tφ(x) = Ef
[
φ(Xt) |X0 = x

]
=

∫

O

φ(y)pf,t(x, y)dy.

In particular pf,t arises as the fundamental solution to the heat equation (3) with Neumann bound-
ary conditions. It can be shown that there exists λf > 0 such that ‖Pf,tφ‖2 ≤ e−λf t‖φ‖2 for every
φ : O → R such that

∫
O
φdµf =

∫
O
φdx = 0, where λf satisfies λf ≥ fmin/pO > 0 with pO > 0

the Poincaré constant for the domain O, see for example Section 3.1 of [40]. This implies that the
transition operator Pf,D of the discrete time Markov chain X0, XD, X2D, . . . has first non-trivial
eigenvalue

(9) 1− e−Dλf ≥ rD > 0,

for some r = r(fmin, pO) > 0, namely the Markov chain has a spectral gap decreasing linearly in
the step size D → 0.

From the above, we obtain likelihood

eℓN (f) = eℓ(f ;X0,...,XND) =

N∏

i=1

pf,D(X(i−1)D, XiD)

based on observationsXN = (X0, XD, . . . , XND). We consider a Bayesian approach by placing on

f a possibly N -dependent prior Π = ΠN , supported on some set F̃ ⊇ F0, leading to the posterior
distribution

Π(A|X0, XD, . . . , XND) =

∫
B

∏N
i=1 pf,D(X(i−1)D, XiD)dΠ(f)∫

F̃

∏N
i=1 pf,D(X(i−1)D, XiD)dΠ(f)

, A ⊆ F̃ measurable.

In the following, we will study frequentist contraction rates for the posterior for f about the
‘ground truth’ f0 assumed to generate the data XN in (1).

Additional notation and function spaces. Let | · | denote the usual Euclidean norm on Rd.
For a multi-index j = (j1, . . . , jd) ∈ Nd, set |j| = j1 + · · · + jd and consider the resulting partial

differential operator ∂j = ∂|j|

∂
j1
1 ...∂

jd
d

. For integer k ≥ 0, let Ck(O) denote the space of k-times

differentiable functions on O with uniformly continuous derivatives, while C(O) = C0(O) denotes
the space of continuous function equipped with the supremum norm ‖ · ‖∞. For non-integer
β > 0, set

C
β(O) =

{
f ∈ C⌊β⌋(O) : sup

x,y∈O:x 6=y

|∂jf(x)− ∂jf(y)|
|x− y|β−⌊β⌋ <∞ for all |j| = ⌊β⌋

}
,
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where ⌊β⌋ denotes the largest integer less than or equal to β. For β ≥ 0, Cβ(O) is equipped with
the usual norm

‖f‖Cβ = ‖f‖Cβ(O) =

⌊β⌋∑

|j|=0

sup
x∈O

|∂jf(x)| +
∑

|j|=⌊β⌋
sup

x,y∈O:x 6=y

|∂jf(x)− ∂jf(y)|
|x− y|β−⌊β⌋ ,

where the second sum is removed for integer β. In particular, ‖f‖∞ = ‖f‖C0 , and the norms ‖·‖Cβ

are non-decreasing in β.
Write 〈·, ·〉2 for the usual inner product for L2 = L2(O). For integer s ≥ 0, define the Sobolev

space on O by

Hs(O) =
{
f ∈ L2(O) : ∂jf exists and ∂jf ∈ L2(O) for all |j| ≤ s

}

equipped with the inner product

〈f, g〉Hs(O) =
∑

|j|≤s
〈∂jf, ∂jg〉2.

For non-integer s ≥ 0, one defines Hs(O) by interpolation [36, 59]. When no confusion may arise,
we will often drop the explicit reference to the domain O in the notation.

We will repeatedly use positive quantities that do depend on some parameters of the model,
and that we informally call constants, and that may vary from line to line. These never depend on
N , but do usually depend on the dimension d of the ambient space. Other relevant dependences
may be emphasised by a subscript, such as Cf , C‖f‖

Ck
or Cf,f0 . The notation AN . BN means

AN ≤ CBN for every N ≥ 1, where C is a “constant” according to our informal terminology. For
real numbers a, b, let a ∧ b and a ∨ b denote the minimum and maximum of a and b, respectively.
We also sometimes write P(A,B) = P(A ∩B) to shorten notation.

2.2. Gaussian process priors. Gaussian priors are widely used in diffusion models and we in-
vestigate here their theoretical frequentist convergence rates. We assign to f a prior based on a
Gaussian process, which must be modified to account for the constrained parameter space F0 in
(6), in particular that f ≥ fmin and f = 1 near the boundary. We therefore employ the common
approach of using a link function, which is standard for classification [47], density estimation
([26], Section 2.3.1) and inverse problems [57].

Definition 1 (Smooth link function). For a given lower bound fmin ∈ (0, 1), let Φ : R → (fmin,∞) be
an infinitely differentiable, strictly increasing bijective link function such that Φ(0) = 1, Φ′(w) > 0 for all

w ∈ R and ‖Φ(k)‖∞ <∞ for all k = 1, 2, . . . .

It is not hard to construct such a function. Our proofs in fact permit weaker conditions on
Φ, requiring only that Φ has ‘enough derivatives’ (roughly of the order of the prior), and that
these are bounded on any compact subset of R, for instance the exponential function t 7→ fmin +
(1− fmin)e

t. We refrain from these generalizations and consider smooth link functions for clarity
of exposition. We now detail our full prior construction, starting from an underlying Gaussian
process V . For definitions and background material on Gaussian processes and their associated
RKHS, see Chapter 11 of [26] or [47].

Condition 2. Let ΠV = ΠV,N be a mean-zero Gaussian Borel probability measure on the Banach space
C(O) that is supported on a separable measurable linear subspace of C4(O), and assume that its reproducing
kernel Hilbert space (RKHS) (HV , ‖ · ‖HV ) embeds continuously into the Sobolev space Hs(O) for some
s ≥ 4, i.e. Hv →֒ Hs(O).
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O

O0

K

Oδ
0

≥ δ

≥ δ

δ/2

FIGURE 1. A simple example of a suitable domain O (black), the region K (red)
where the ground truth f0 ∈ F0 is not equal to 1, and a set O0 (blue) that δ-
separates these sets as in (10). The δ/2-enlargement Oδ0 (dashed blue) of O0 given
in (19) is also plotted.

Recall that any f0 ∈ F0 satisfies {x ∈ O : f0(x) 6= 1} ⊆ K by (6), where K ⊂ O is a known
compact set with dist(K, ∂O) > 0. There thus exists δ > 0 and an open set O0 having smooth
C∞-boundary ∂O0 such that K ( O0 ( O and

(10) dist(K, ∂O0) ≥ δ and dist(O0, ∂O) ≥ δ,

see, e.g., the proof of Proposition 8.2.1 in [19]. A simple example showing the relationship be-
tween such sets is plotted in Figure 1.

Let χ ∈ C∞(O) be a smooth cutoff function such that χ ≡ 1 on K and χ ≡ 0 outside O0. We
take as prior distribution Π = ΠN for f the law of the random function

(11) f(x) = Φ(χ(x)W (x)), W (x) =
V (x)

Nd/(4s+2d)
.

It follows that W is again a mean-zero Gaussian process with the same support and RKHS as W ,
but with rescaled covariance function. The cutoff function χ ensures that f transitions smoothly
to take value 1 near the domain boundary. Since the sample paths of V are in C4(O) almost surely
under the prior by Condition 2, then Π(F) = 1 for

(12) F =
{
f ∈ C

4(O) : inf
x∈O

f(x) ≥ fmin and f(x) = 1 for all x ∈ O \ O0

}
.

Note that F0 ( F since K ( O0, so that the prior lives on a larger parameter space than F0, and
that for any f0 ∈ F0 ∩ Cs(O), the function w0 = Φ−1(f0) is also in Cs(O) with supp(w0) ⊆ K.

The following is the main result of our paper, establishing contraction rates for these rescaled
Gaussian priors.

Theorem 3. Consider the sampling intervalD = N−a for some a ∈ (1/2, 1) and suppose s > s∗d,a, where

(13) s∗d,a = max

(
4 +

d

2
,
2− ad

2a− 1
,
d(1 + a)

2(1− a)

)
.
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Let Π = ΠN denote the prior (11) with mean-zero Gaussian process V ∼ ΠV having RKHS HV and
satisfying Condition 2 for this s. Let f0 ∈ F0 ∩ Cs(O), set w0 = Φ−1(f0) and suppose that there exists a
sequence of functions v0,N ∈ HV in the RKHS of V such that

(i) ‖v0,N‖HV = O(1),
(ii) ‖χv0,N‖Cα = O(1) for α = max (4, 2 ⌊d/4 + 1/2⌋),

(iii) ‖w0 − χv0,N‖Ck = O(N− s−k
2s+d ) for k = 0, 1, 2, 3,

as N → ∞. Then for M > 0 large enough, as N → ∞,

Ef0Π(f : ‖f − f0‖2 ≥MN− s
2s+d |X0, XD, . . . , XND) → 0.

Since N− s
2s+d is the minimax estimation rate in the high-frequency sampling regime (see The-

orem 7 below for the corresponding lower bound), this result says that the posterior contracts
about the truth at the minimax-optimal rate in any dimension d. Given the invariant measure
is uninformative here, being the uniform distribution on O for all f ∈ F0, this confirms that the
Bayes method can indeed perform optimal inference by picking up sufficient information from
the transitions X(i−1)D 7→ XiD via the likelihood.

The minimal smoothness condition s∗d,a in (13) can be rewritten as

s∗d,a =





max
(
4 + d

2 ,
2−ad
2a−1 ,

d(1+a)
2(1−a)

)
if d = 1, 2 and a ∈ (1/2, 1), or d = 3 and a ∈ (1/2, 2/3),

max
(
4 + d

2 ,
d(1+a)
2(1−a)

)
if d = 3 and a ∈ [2/3, 1),

d(1+a)
2(1−a) if d ≥ 4 and a ∈ (1/2, 1).

This becomes more stringent as a → 1, namely the frequency D = N−a → N−1 increases, since

the time horizon ND = N1−a then grows more slowly. The term d(1+a)
2(1−a) should be thought of

as the main condition, with the extra terms for d = 1, 2, 3 coming from minimal smoothness
assumptions needed to use various expansions and bounds.

Theorem 3 requires that the true w0 = Φ−1(f0) can be very well approximated by elements
v0,N of the RKHS HV of V . Under Condition 2, an s-smooth truth almost lies in HV as needed,
but this in turn implies that the Gaussian process V will typically have (s − d/2)-smooth sample
paths (e.g. Proposition I.4 of [26] for the Matérn process), thereby undersmoothing the truth.
When the prior mismatches the true smoothness, suitably rescaling the prior as in (11) has been
shown to still yield optimal rates in several benchmark statistical models [64, 34]. This rescaling
has also recently been used in the Bayesian inverse problems literature, where it is typically used
to control stability estimates [29, 39].

We now consider two examples of Gaussian process priors satisfying the assumptions of The-
orem 3. Let V = {V (x) : x ∈ O} denote a Matérn process on O with regularity parameter
s− d/2 > 0, that is V is a mean-zero stationary Gaussian process with covariance function

K(x, y) = K(x− y) =

∫

Rd

e−i(x−y).ξ(1 + |ξ|2)−sdξ, x, y ∈ O.

The covariance function can alternatively be represented in terms of special functions, see e.g.
p.84 of [47]. While the Matérn process models (almost) (s − d/2)-smooth functions in a Hölder

sense, its rescaled version W = V/Nd/(4s+2d) in (11) concentrates on s-smooth functions.

Corollary 4. LetD = N−a for some a ∈ (1/2, 1), and let Π = ΠN denote the prior (11) with V a Matérn
process of regularity s − d/2 > 0 with s > s∗d,a for s∗d,a as in (13). If f0 ∈ F0 ∩ Cs(O), then for M > 0

large enough,

Ef0Π(f : ‖f − f0‖2 ≥MN− s
2s+d |X0, XD, . . . , XND) → 0 as N → ∞.
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As a second example, we consider a truncated Gaussian wavelet series prior. Let {ψlr : l ≥
J0, r ∈ Zd} denote an orthonormal basis of L2(Rd) composed of sufficiently regular, compactly
supported Daubechies wavelets, where J0 ∈ N is the base resolution level of the scaling functions,
which we also denote by {ψJ0,r} to simplify notation (see Chapter 4 of [28] for details). Let Rl
denote the set of indices r for which the support of ψlr intersects O0. For J0 large enough (see
Section 3), consider the Gaussian series expansion

(14) V (x) =
J∑

l=J0

∑

r∈Rl

2−lsglrψlr(x), glr ∼iid N(0, 1),

where 2J ≃ N
1

2s+d . Note we could extend the second index set from r ∈ Rl to r ∈ Zd to cover all
of Rd since wavelet functions ψlr supported outside O0 ultimately play no role in the prior (11)
due to the cuffoff function χ.

Corollary 5. Let D = N−a for some a ∈ (1/2, 1), and let Π = ΠN denote the prior (11) with V a
Gaussian wavelet series as in (14) with s > s∗d,a for s∗d,a as in (13). If f0 ∈ F0 ∩ Cs(O), then for M > 0

large enough,

Ef0Π(f : ‖f − f0‖2 ≥MN− s
2s+d |X0, XD, . . . , XND) → 0 as N → ∞.

Using a uniform integrability argument (e.g. Theorem 2.3.2 of [39]), this implies the same
convergence rate for the posterior mean.

Corollary 6. Let f̄N = EΠ[f |X0, XD, . . . , XND] denote the posterior mean based on the Matérn process
or Gaussian wavelet series prior. Under the conditions of Corollary 4 (Matérn) or Corollary 5 (Gaussian
wavelet series), there exists a constant M > 0 such that as N → ∞,

Pf0(‖f̄N − f0‖2 ≥MN− s
2s+d ) → 0.

We thus have two concrete examples of Gaussian priors for which the posterior (means) con-

verge to the true f0 ∈ F0∩Cs at rateN− s
2s+d . The following lower bound shows that this is indeed

the minimax rate of convergence.

Theorem 7 (Minimax lower bound). Let D = N−a for some a ∈ (1/2, 1). For any s > αd (the
minimal smoothness (7)) and M > 0, the following frequentist lower bound holds:

lim inf
N→∞

inf
f̂N

sup
f∈F0,‖f‖Cs≤M

N
2s

2s+dEf‖f̂N − f‖22 > 0,

where the infimum is taken among all estimators based on data (2).

In particular, we extend the univariate minimax lower bound of [33]. The proof is given in
Appendix 9.1.

3. A GENERAL CONTRACTION THEOREM

We now state and discuss the abstract contraction rate theorem used to derive the convergence
results for Gaussian process priors in Section 2.2 above. This is based on the general testing
approach of Bayesian nonparametrics [26], which requires (i) that the prior puts sufficient mass
on a neighbourhood of the truth and (ii) the existence of suitable tests with exponentially decaying
type-II errors.
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For 0 < εN ≤ ε1,N ≤ ε2,N ≤ ε3,N → 0 positive sequences, r > 0 and α = αd as in (7), define the
following neighbourhood of f0:

CN = CN (f0, εN , ε1,N , ε2,N , ε3,N , r)

=
{
f ∈ F : ‖f‖Cα ≤ r, ‖f − f0‖∞ ≤ εN , ‖f − f0‖Ck ≤ εk,N for k = 1, 2, 3

}
,(15)

which can be related to the information theoretic distance of the model induced by the log-
likelihood ratio process. Further define

EN := ε2N

(
1 + D

εN
+ D2

ε2N
+

ε1,N
ε2N

D +
ε2,N
ε2N

D +
ε3,N
ε2N

D3/2
)

VN := Nε2N +Nε4ND
−1 +N2ε21,ND

2 +N2ε22,ND
2 +N2ε23,ND

3 +N2D4.
(16)

The quantities NEN and VN control the expectation and variance, respectively, of the integrated
log-likelihood ratio process restricted to the small-ball CN , which is used to lower bound the
normalized denominator of the Bayes formula. This is the content of the next result, which is the
most technically involved part of our proof.

Theorem 8 (Evidence lower bound). Let f0 ∈ F0 and ν be a probability measure supported on CN as
in (15) with r > 0 and sequences 0 < εN ≤ ε1,N ≤ ε2,N ≤ ε3,N → 0 satisfying Nε2N → ∞ as N → ∞.
Then the integrated log-likelihood ratio process

ΛND =

∫

CN

log

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
ν(df).

satisfies

sup
f∈CN

Ef0

[
log

pf0,D(X0, XD)

pf,D(X0, XD)

]
. EN , Varf0(Λ

N
D) . VN ,

where EN , VN are defined in (16) and the constants depend only on f0, r, d,O, δ, fmin. This implies that
for every c > 0,

Pf0

(∫

CN

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
ν(df) ≤ e−cNε

2
N−C0NEN

)
≤ VN
c2N2ε4N

,(17)

where C0 > 0 is a fixed constant depending only on f0, r, d,O, δ, fmin.

Theorem 8 shows that the Bayesian evidence is at least e−CNε
2
N with Pf0 -probability tending to

one if

(18) EN . ε2N and VN/(N
2ε4N) → 0.

To help the reader understand the technical conditions, which are rather intricate in their full
generality, we introduce the following concrete example with the ‘usual’ nonparametric choices
of sequences for a Cs-smooth truth.

Assumption A. Let s ≥ 4, 1/2 < a < 1 and J ∈ N. Suppose that

D = N−a, εN = N− s
2s+d , εk,N = N− s−k

2s+d , k = 1, 2, 3, 2J ≃ N
1

2s+d .

Under Assumption A, all technical conditions reduce to conditions on a, s, d. In particular, (18)
is implied by

s >

{
2−ad
2a−1 if d = 1, 2, a ∈ (1/2, 1), or d = 3, a ∈ (1/2, 2/3],

0 if d = 3, a ∈ [2/3, 1), or d ≥ 4, a ∈ (1/2, 1).
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An overview of the proof of Theorem 8 is found in Section 4.
For comparison, consider the i.i.d model Y1, . . . , YN ∼iid P with P having density p, so that

(Y1, . . . , YN ) ∼ PN = ⊗Ni=1P . The corresponding neighbourhood can then be expressed in terms
of the Kullback-Leibler divergence and its 2nd-variation [25],

B2(p0, EN , VN ) =
{
p : PN0 log(pN0 /p

N) ≤ NEN , VarPN
0
(log(pN0 /p

N) ≤ VN

}

= {p : P0 log(p0/p) ≤ EN , VarP0(log(p0/p)) ≤ VN/N} ,
where the last equality follows from the densities tensorizing in the i.i.d. model. In this model,
one can take En ≃ ε2N and VN ≃ Nε2N ([26], Lemma 8.10 with k = 2), which gives some intuition
behind the roles of EN and VN . However, the present high-frequency diffusion model is far from
i.i.d., so that we must deal with the full dependent log-likelihood ratio process ΛND as a whole,
rendering this computation much more involved.

Our strategy is to use second-order small time expansions of the transition densities [6, 11, 13],
which heuristically corresponds to replacing pf,D in ΛND with the corresponding Euler scheme
without drift, that is a Nd(x, 2Df(x)Id) density. This reflects the property of model (1) that the
drift is of smaller order than the diffusivity, and hence does not affect the leading order terms in
ΛND as D → 0. Such expansions can also be viewed as a quantitative form of local asymptotic
normality (LAN) with uniform remainders over CN . We then further approximate the resulting
process by a martingale difference, which allows us to deal with the dependence of the process.
Note that we require control of the derivatives of f − f0 up to third order in CN in (15) to ensure
the higher order terms of these expansions are negligible, uniformly over CN .

Turning to the existence of tests with exponentially decreasing type-II errors, we employ plug-
in tests based on estimators satisfying suitable concentration inequalities as was done for i.i.d.
models in [27], see also [48, 42, 1, 38]. As estimators, we follow the ideas of Comte et al. [15] who
use penalized least squares estimators in the scalar case. We therefore extend the results of [15]
to the multidimensional setting with domain boundary, exploiting the structure of the L2-loss
function to obtain the required concentration inequalities.

Our proofs require certain wavelet-based approximations, which must be adapted to deal with
the boundary as we now make precise. Let

(19) Oδ0 = {x ∈ O, dist(x,O0) ≤ δ/2}
denote the δ/2-enlargement of O0, and note that Oδ0 ( O since dist(O0, ∂O) ≥ δ by assumption
(10), see Figure 1 for an example. As in Section 2.2, let {ψlr : l ≥ J0, r ∈ Zd} denote an orthonor-
mal basis of L2(Rd) composed of sufficiently regular, compactly supported Daubechies wavelets,
where J0 ∈ N is the base resolution level of the scaling functions, which we also denote by {ψJ0,r}
to simplify notation. Let Rl denote the set of indices r for which the support of ψlr intersects O0,
in which case |Rl| = O(2ld) since O0 is a bounded domain in Rd. Since dist(Oδ0, ∂O) ≥ δ/2 > 0
and diam(supp(ψlr)) = O(2−l), we may take J0 large enough such that no wavelet function ψlr ,
l ≥ J0, has support intersecting both O0 and (Oδ0)

c. Any function g ∈ L2(O) with supp(g) ⊆ O0

can then be uniquely represented as

(20) g =

∞∑

l=J0

∑

r∈Rl

〈g, ψlr〉2ψlr.

Even though the wavelets {ψlr : l ≥ J0, r ∈ Rl} do not form an orthonormal basis of L2(O) due to
their behaviour on O\O0, any g as above can be extended to a function on Rd (or any set containing
O0) by setting it to zero outside O0. In particular, the Sobolev and Holder norms on O and Rd
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coincide for such functions and we may therefore use all the usual wavelet characterizations and
embeddings for Sobolev and Hölder norms. This fact will be used without mention in the proofs.

For J ≥ J0, set

(21) VJ = VJ(O0) =

{
f =

J∑

l=J0

∑

r∈Rl

flrψlr

}
⊂ C(O)

to be the linear space of all functions in the wavelet projection space of resolution level J , re-
stricted to those wavelets with support intersecting O0 but not (Oδ0)

c. Note that

(22) g(x) = g(x)1x∈Oδ
0

for every g ∈ VJ

since supp(g) ⊆ Oδ0 for g ∈ VJ . We must slightly modify the usual notion of a wavelet projection to
account for the behaviour near the boundary in F in (12). To that end, note that supp(f − 1) ⊆ O0

for any f ∈ F and thus f − 1 has a wavelet expansion as in (20). Setting PJ : L2(O) → VJ to be

the L2-projection operator onto VJ , we define the projection operator PJ : F → F by

P J [f ](x) := 1 + PJ [f − 1](x) = 1 +

J∑

l=J0

∑

r∈Rl

〈f − 1, ψlr〉2ψlr(x), x ∈ O.(23)

Since supp(f − 1) ⊆ O0, PJ [f − 1](x) =
∑J
l=J0

∑
r∈Rl

〈f − 1, ψlr〉2ψlr(x) coincides with the usual

wavelet projection of f − 1 on all of Rd.
We are now ready to define our projection estimator following Comte et al. [15]. Let

(24) ĝN ∈ argmin
g∈VJ

N∑

i=1

(
(Yi,D − 1)1Ai,D − g(X(i−1)D)

)2
,

with Ai,D = {X(i−1)D ∈ Oδ0} and

Yi,D =
1

2dD
|XiD −X(i−1)D|2.

Note that by (22), the sum in (24) actually spans over i such that X(i−1)D lies in Oδ0. We then
consider the estimator

(25) f̂N (x) = 1 + ĝN (x), x ∈ O.

The idea behind (24) is that for small D > 0, by Itô’s formula, we have the signal plus noise
representation

Yi,D − 1 = f(X(i−1)D)− 1 + εi,D + ri,D,

where εi,D is a martingale error term with variance of order 1 and ri,D is a small remainder
term combining stochastic expansions and boundary effects, see (38) in the proofs for a precise
definition. Thus ĝN is an estimate of f − 1, which has support contained in O0 for all f ∈ F.
Indeed, one needs only estimate f on O0, since f ≡ 1 is already known on O\O0 for all f ∈ F.
This permits to separate estimation on the interior of O, where the function f is unknown, with
the behaviour near the boundary ∂O, where the reflecting boundary conditions alter the diffusion

dynamics. We next establish a concentration inequality for the estimator f̂N .

Theorem 9 (Exponential inequality). Let f̂N = f̂N (X0, X1, . . . , XND) be the estimator (25). Let
εN , ξN → 0, 2J = 2JN → ∞ and RJ,4, RJ,∞ be sequences such that Nε2N → ∞ as N → ∞. Define the
sets

F′
N =

{
f ∈ F : ‖f‖C1 ≤ r, ‖f − P Jf‖2 ≤ CξN , ‖f − P Jf‖4 ≤ RJ,4, ‖f − P Jf‖∞ ≤ RJ,∞

}
,
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where C, r > 0 and P Jf denotes the projection (23). Assume further that 2Jd = o(
√
ND),

R4
J,4ε

2
N +R2

J,∞ξ
2
Nε

2
N . Dξ4N , 23Jd/2N−1 + 2Jd/2N−1/2 + 2Jd/2ε2N + εN . ξN ,

as N → ∞. Then there exist events BN satisfying

sup
f∈F

Pf (B
c
N ) → 0

as N → ∞, such that for every L > 0,

sup
f∈F′

N

Pf
(
‖f̂N − P Jf‖2 ≥ KξN ,BN

)
≤ C′e−LNε

2
N ,

where K depends on L.

The proof can be found in Section 6. Theorem 9 says that if the underlying function f can be

well-enough approximated by its projection Pf as quantified by the conditions in F′
N , then the

estimator f̂N will concentrate about this projection with all but exponentially small Pf -probability.

As far as we are aware, this extension of [15] in Theorem 9 is the first frequentist estimator
of the diffusion function f in the multivariate setting and thus may be of independent interest.
Combined with the lower bound of Theorem 7, we obtain

Theorem 10. Let D = N−a for some a ∈ (1/2, 1), s > αd, and let M > 0. Define f̂⋆N = min(f̂N ,M)+,

where f̂N is as in (25) constructed with Daubechies wavelets with at least ⌊s⌋− 1 vanishing moments, and

2J ≃ N1/(2s+d). Then
sup

f∈F0,‖f‖Cs≤M
Ef‖f̂N − f‖22 . N−2s/(2s+d).

Combined with Theorem 7, we obtain that the (normalised) rate N−s/(2s+d) is asymptotically minimax for
estimating f over {f ∈ F0 : ‖f‖Cs ≤M}.

The proof of Theorem 10 is given in Appendix 9.2. We emphasize that while this estimator
plays a key role in our proof of minimax optimal posterior contraction rates using the Gaussian
prior (11), it is not actually involved in the prior construction or Bayesian method itself. Using
Theorems 8 and 9, we obtain the following general posterior contraction theorem for our setting.
The proof is found in Section 7.1.

Theorem 11 (General contraction theorem). Let Π = ΠN be a sequence of prior distributions supported
on F in (12), let r,K0 > 0 be fixed constants and 0 < εN ≤ ε1,N ≤ ε2,N ≤ ε3,N → 0, ξN → 0,

2J = 2Jn → ∞ and RJ,4, RJ,∞ be sequences satisfying Nε2N → ∞, 2Jd = o(
√
ND) and

(26) R4
J,4ε

2
N +R2

J,∞ξ
2
Nε

2
N . Dξ4N , 23Jd/2N−1 + 2Jd/2N−1/2 + 2Jd/2ε2N + εN . ξN ,

as N → ∞. Further suppose that EN and VN in (16) satisfy

EN ≤ K0ε
2
N , and VN/(N

2ε4N ) → 0.

Let

CN =
{
f ∈ F : ‖f‖Cα ≤ r, ‖f − f0‖∞ ≤ εN , ‖f − f0‖Ck ≤ εk,N for k = 1, 2, 3

}

be the set defined in (15),

FN ⊆
{
f ∈ F : ‖f‖C1 ≤ r, ‖f − P Jf‖2 . ξN , ‖f − P Jf‖4 ≤ RJ,4, ‖f − P Jf‖∞ ≤ RJ,∞

}
,

where P J denotes the projection (23), and C0 > 0 be the fixed constant in Theorem 8, which depends only

on f0, r, d,O, δ, fmin. Assume the true f0 ∈ F0 satisfies ‖f0 − PJf0‖2 . ξN and ‖f0 − P Jf0‖p . RJ,p
for p ∈ {4,∞}. Suppose that for some C,L > 0,
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(i) Π(FcN ) ≤ Le−(C+C0K0+2)Nε2N ,

(ii) Π(CN ) ≥ e−CNε
2
N .

Then for M > 0 large enough, as N → ∞,

Ef0Π(f : ‖f − f0‖2 ≥MξN |X0, XD, . . . , XND) → 0.

To summarize, in order to apply Theorem 11 in examples, we must verify that the prior places

most of its mass on functions f ∈ FN that are well-approximable by their projections P Jf , and
also that the prior places at least an exponentially small amount of mass in a neighbourhood of
the truth in the sense of CN , i.e. conditions (i) and (ii) of Theorem 11, respectively.

4. PROOF OF THEOREM 8: EXPECTATION AND VARIANCE OF THE INTEGRATED

LOG-LIKELIHOOD RESTRICTED TO CN

The proof of the variance and expectation of the log-likelihood is split into several approxima-
tion steps employing different techniques. We provide here an overview of the proof, deferring
the detailed technical arguments to later in the paper to aid readability. We first prove the more
difficult variance bound for ΛND in Theorem 8.

4.1. Proof of the variance bound of Theorem 8. For an integer m ≥ 1, real-valued random vari-
ables (Zf,k : f ∈ F, k ≥ 1) and a probability measure ν(df) with support A ⊂ F, we will repeat-
edly use the inequalities

Varf0

(∫

F

m∑

k=1

Zf,kν(df)
)
≤
∫

F

Varf0

( m∑

k=1

Zf,k
)
ν(df) ≤ m

m∑

k=1

sup
f∈A

Ef0 [Z
2
k,f ].(27)

Step 1: Restricting observations away from the boundary. We first decompose the log-likelihood ac-
cording to whether X(i−1)D ∈ O0 or not. On the event Ai,D = {X(i−1)D ∈ Oδ0}, where Oδ0 is
the δ/2-enlargement of O0 defined in (19) above, the process does not hit the boundary during
[(i − 1)D, iD] with overwhelming probability, and hence we may use analytic approximation
techniques that ignore the boundary reflection. Since f = f0 = 1 near the boundary for f, f0 ∈ F,
on (Ai,D)

c the likelihood ratio is already close to one and thus makes a negligible contribution.
We quantify this last observation in the following result.

Lemma 12. Let F′ = {f ∈ F : ‖f‖Cα ≤ r} for α = max(4, 2 ⌊d/4 + 1/2⌋). Then for k = 1, 2, any
f, f0 ∈ F′ and any γ > 0,

∫

x∈O\Oδ
0,y∈O

(
log

pf0,D(x, y)

pf,D(x, y)

)k
pf0(x, y)dx dy

≤ C1D
−d/2(1 + γ2k(logN)k)N−C2γ

2

+ C3N
C4γ

2

exp(−cD−1),

where the constants C1 − C4, c > 0 are uniform over (O, d, fmin, r, δ).

The proof is based on explicit bounds for the heat kernel in small time, for instance Theorem
3.2.9 in [20] for the upper bound and Theorem 3.1 in [17] for the lower bound. It is delayed until
Section 8.1. AbbreviatingXD

i = (X(i−1)D, XiD) and applying Lemma 12 with k = 2 together with
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(27) yields

Varf0

(∫

CN

N∑

i=1

log
pf,D
pf0,D

(XD
i )1(Ai,D)cν(df)

)

≤ N2

∫

x∈O\Oδ/2
0 ,y∈O

(
log

pf,D(x, y)

pf0,D(x, y)

)2
pf0,D(x, y)dxdy

. D−d/2(logN)2N−C2µ +NC4µ exp(−cD−1)

for large enough µ > 0 and constants uniform over CN . In view of the statement of Theorem 8, it

remains to consider the variance of
∫
CN

∑N
i=1 log

pf,D
pf0,D

(XD
i )1Ai,Dν(df), i.e. we may restrict to the

events Ai,D.

Step 2: Approximation by an unbounded diffusion model on Rd. We can smoothly extend any f ∈ F to

all of Rd by setting f = 1 outside O. Consider a diffusion process (X̃t)t≥0 taking values on all of
Rd arising as the solution to the stochastic differential equation

(28) X̃t = x+

∫ t

0

∇f(X̃s)ds+

∫ t

0

(
2f(X̃s)

)1/2
dBs,

defined on the same probability space with the same driving Brownian motion (Bt)t≥0 as (Xt)t≥0.
Thus in this section, Pf denotes a probability measure defined on a rich enough probability space
to accommodate a Brownian motion (Bt)t≥0 (and therefore the strong solutions (Xt)t≥0 of (1) and

(X̃)t≥0 of (28) driven by the parameter f ).

The process (X̃t)t≥0 in turn generates a family of transition densities p̃f,D : Rd × Rd → [0,∞).
We may pick a smooth version of p̃f,D so that in particular, for any x ∈ O,

(29) p̃f,D(x, y)dy = Pf(X̃D ∈ dy |X0 = x).

Consider the decomposition

∫

CN

N∑

i=1

log
pf,D
pf0,D

(XD
i )1Ai,Dν(df) =

∫

CN

N∑

i=1

log
p̃f,D
p̃f0,D

(XD
i )1Ai,Dν(df)

+

∫

CN

N∑

i=1

(
log

pf,D
p̃f,D

+ log
p̃f0,D
pf0,D

)
(XD

i )1Ai,Dν(df).(30)

We have an analogous result to Lemma 12 for controlling the expectation and variance of the
approximation of log pf,D by log p̃f,D starting from x ∈ Oδ0.

Lemma 13. Let F′ = {f ∈ F : ‖f‖Cα ≤ r} for α = max(4, 2 ⌊d/4 + 1/2⌋). Then for k = 1, 2, any
g = f, f0 ∈ F′ and any γ > 0,

∫

x∈Oδ
0,y∈O

(
log

pg,D(x, y)

p̃g,D(x, y)

)k
pf0(x, y)dx dy

≤ C1D
−d/2(1 + γ2k(logN)k)N−C2γ

2

+ C3N
C4γ

2

exp(−cD−1),

where the constants C1 − C4, c > 0 are uniform over (O, d, fmin, r, δ). The same estimate holds replacing

(log
pg,D(x,y)
p̃g,D(x,y))

k by (log
p̃g,D(x,y)
pg,D(x,y))

k.
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The proof uses similar tools as for Lemma 12 and is delayed until Section 8.3. Using (27) and
Lemma 13 with k = 2 and γ > 0 large enough, the Pf0 -variance of the second term in the RHS of
(30) is bounded above by

N2 sup
f∈CN

Ef0

[(
log

pf,D
p̃f,D

(XD
0 ) + log

p̃f0,D
pf0,D

(XD
0 )
)2

1Ai,D

]

. D−d/2(logN)2N−C2µ +NC4µ exp(−cD−1),

for large enough µ > 0 and constants uniform over CN . We have thus established that for any
large enough but fixed µ > 0,

Varf0
(
ΛND
)
. Varf0

( ∫

CN

N∑

i=1

log
p̃f,D
p̃f0,D

(XD
i )1Ai,Dν(df)

)

+D−d/2(logN)2N−C2µ +NC4µ exp(−cD−1).

Step 3: Approximating p̃f,D by a Gaussian transition density in small-time. We approximate p̃f,D by
the transition density of the corresponding Euler scheme Nd(x, 2Df(x)Id) without drift, namely

(31) qf,D(x, y) =
1

(4πDf(x))d/2
exp

(
− |y − x|2

4Df(x)

)
.

Note that while qf,D is defined on Rd × Rd, it will be evaluated at XD
i which lies in O × O, Pf0 -

almost surely. Define

ΛNq,D =

∫

CN

N∑

i=1

log
qf,D
qf0,D

(XD
i )1Ai,Dν(df),

again writing XD
i = (X(i−1)D, XiD). The key estimate to prove Theorem 8 is the following result,

which quantifies this approximation.

Proposition 14. For f0 ∈ F0 and any probability measure ν supported on CN as in (15), it holds that

Varf0

( ∫

CN

N∑

i=1

log
p̃f,D
p̃f0,D

(XD
i )1Ai,Dν(df)

)

. Varf0
(
ΛNq,D

)
+N2ε2ND

2 +Nε21,N(D +ND2) +N2ε22,ND
2 +N2ε23,ND

3 +N2D4

+N2ε21,ND exp(−cD−1),

where the constants are uniform over (O, d, fmin, r, δ).

The proof of Proposition 14 relies on second-order small time expansions of the heat-kernel
and is deferred to Section 5.2.

Step 4: Variance of the proxy log-likelihood. It remains to control the final variance term in the RHS
of the last estimate. It involves the proxy density qf,D but is evaluated at the points of the original
diffusion X given by (1) with reflection at the boundary.

Proposition 15. For f0 ∈ F and any probability measure ν supported on CN as in (15), it holds that

Varf0(Λ
N
q,D) . Nε2N

(
1 +D +ND2 +D−1ε2N +Ne−C

′
f0
D−1)

,

where the constants are uniform over (O, d, fmin, r, δ).
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The proof of Proposition 15 is given in Section 5.3 and relies on martingale arguments, which
are key to dealing with the dependence structure of the Markov chain. Combining the bounds
from Steps 1-4 and keeping track of the leading order terms establishes the desired variance
bound for ΛND in Theorem 8.

4.2. Proof of the expectation bound of Theorem 8. The proof follows along similar, though eas-
ier, lines as the variance bound. The expectation bounds will be proved uniformly over f ∈ CN ,
which will sometimes be implied without explicit reference.

Step 1: Restricting observations away from the boundary. Applying Lemma 12 above with k = 1 gives

Ef0

[
log

pf0,D
pf,D

(XD
0 )
]
≤ Ef0

[
log

pf0,D
pf,D

(XD
0 )1A1,D

]

+ C1D
−d/2(logN)N−C2µ + C3N

C4µ exp(−cD−1)

for large enough µ > 0, and where the constants C1 − C4, c > 0 are uniform over CN .

Step 2: Local approximation by an unbounded diffusion model on Rd. Let p̃f,D : Rd × Rd → [0,∞)
denote the transition density defined in (29) above, corresponding to the unbounded diffusion
model over the whole space Rd. Consider Ef0 -expectation of the integrands in (minus) the de-
composition (30). Using Lemma 13 above with k = 1 and large enough γ > 0, the Ef0 -expectation
of (minus) the integrand in the second term in (30) is bounded above by

sup
f∈CN

Ef0

[
log

p̃f,D
pf,D

(XD
0 )1A1,D

]
. D−d/2(logN)N−C2µ +NC4µ exp(−cD−1),

for large enough µ > 0. Arguing in the same way, an identical bound also holds for the Ef0 -
expectation of the integrand of minus the third term in (30). Therefore,

Ef0

[
log

pf0,D
pf,D

(XD
0 )1A1,D

]
. Ef0

[
log

p̃f0,D
p̃f,D

(XD
0 )1A1,D

]

+D−d/2(logN)N−C2µ +NC4µ exp(−cD−1).

Step 3: Approximating p̃f,D by a Gaussian transition density in small-time. Recalling the definition
(31) of the proxy density qf,D from above, we now approximate the expected log-likelihood. The
proof of the following proposition is deferred to Section 5.2.

Proposition 16. For f0 ∈ F0 and any probability measure ν supported on CN as in (15), it holds that

sup
f∈CN

Ef0

[
log

p̃f0,D
p̃f,D

(XD
0 )1A1,D

]

. sup
f∈CN

Ef0

[
log

qf0,D
qf,D

(XD
0 )1A1,D

]

+ ε2N

(
D
εN

+ D2

ε2N
+

ε1,N
ε2N

D +
ε2,N
ε2N

D +
ε3,N
ε2N

D3/2 +
ε1,N
ε2N

D1/2 exp(−cD−1)
)
,

where the constants are uniform over (O, d, fmin, r, δ).

Step 4: Expectation of the proxy log-likelihood. It finally remains to control the remaining expectation
in Proposition 16 involving the proxy density qf,D. The proof of the following estimate can be
found in Section 5.3.
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Proposition 17. For f0 ∈ F and any probability measure ν supported on CN as in (15), it holds that

sup
f∈CN

Ef0

[
log

qf0,D
qf,D

(XD
0 )1A1,D

]
. ε2N + εND + εND

1/2 exp(−cD−1),

where the constants are uniform over (O, d, fmin, r, δ)

Combining the bounds from Steps 1-4 and keeping track of the leading order terms establishes
the expectation bound for ΛND .

It remains to show the evidence lower bound (17). By Jensen’s inequality, the desired probabil-
ity in (17) is upper bounded by

Pf0

(∫

CN

N∑

i=1

log
pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
ν(df) ≤ −cNε2N −NEN

)
.

Using the expectation bound just derived, the Ef0 -expectation of the left-hand side is lower
bounded by −NEN . Using Chebychev’s inequality and the variance bound just derived, the
last probability is then bounded by

Pf0

(∫

CN

N∑

i=1

(
log

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
− Ef0

[
log

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)

])
ν(df) ≤ −cNε2N

)

≤ 1

c2N2ε4N
Varf0

(∫

CN

N∑

i=1

log
pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
ν(df)

)
≤ VN
c2N2ε4N

,

which completes the proof of Theorem 8.

5. REMAINING PROOFS FOR THEOREM 8

5.1. Preliminary estimates. We first gather some technical bounds. Although classical, the sto-
chastic expansions we need require extra care due to the presence of a boundary. We start with a
standard variance estimate.

Lemma 18. For any real-valued function ϕ,

Varf0

( N∑

i=1

ϕ(X(i−1)D)
)
≤ Cf0ND

−1Varf0(ϕ(X0)),

where Cf0 ≤ 2/r <∞ with r = r(fmin,O).

Proof. Since (X0, XD, . . . , XND) is a stationary reversible Markov chain whose spectral gap is
lower bounded by rD by (9), the result follows from Theorem 3.1 in [44]. �

We next need a moment bound for the increments of the diffusion.

Lemma 19. For every τ ≥ 0 and p ≥ 1, we have

(32) Ef

[
sup
s≤u≤t

|Xu −Xs|p
∣∣Fs
]
≤ 2p−1

(
‖f‖p

C1(t− s)p + c
p/2
⋆ dp/2pp/2‖f‖p∞(t− s)p/2

)
,

where c⋆ is a universal constant (arising in the Burkholder-Davis-Gundy inequality).

The proof is classical (see for instance Lions and Sznitman [37]) and is given in Appendix 9.3.
Let

(33) τi,D = inf{t ≥ 0, Xt+(i−1)D ∈ ∂O}
denote the hitting time of the boundary by the process X started at X(i−1)D .
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Lemma 20. Let f0 ∈ F′ = {f ∈ F : ‖f‖Cα ≤ r} for α = αd as in (7). Then

Pf0
(
τi,D ≥ D,Ai,D

)
. exp(−cD−1),

where the constants are uniform over (r, δ).

The proof is given in Appendix 9.4. We will repeatedly use the decomposition

(34) XiD −X(i−1)D = bi,D +Σi,D + Li,D,

with

bi,D =

∫ iD

(i−1)D

∇f0(Xs)ds, Σi,D =

∫ iD

(i−1)D

√
2f0(Xs)dBs, Li,D =

∫ iD

(i−1)D

n(Xs)d|ℓ|s,

together with the following bounds, for every p ≥ 1,

(35) |bi,D| . D, Ef0
[
|Σi,D|p|F(i−1)D

]
. Dp/2, Ef0

[
|Li,D|p1Ai,D

]
. Dp/2 exp(−cD−1),

which depend only on ‖f0‖C1 . The first bound is obvious, the second one stems from the Burckholder-
Davis-Gundy inequality. For the third one, we rely on the following facts: first, writing Li,D =
(XiD −X(i−1)D)− bi,D −Σi,D and using the first two bounds of (35) together with Lemma 19, we
have

Ef0
[
|Li,D|p

]
. Dp/2.

Second, on Ai,D ∩ {τi,D ≥ iD}, we have Li,D = 0. Thus, by Cauchy-Schwarz’s inequality,

Ef0
[
|Li,D|p1Ai,D

]
. Dp/2Pf0(τi,D ≥ D,Ai,D)

1/2

and the third estimate in (35) then follows from Lemma 20.

5.2. Proofs of Propositions 14 and 16: approximating transition densities in small-time. This
section is devoted to the approximation of small-time transition densities for diffusions in Rd. We
use some Riemannian geometry to derive second-order small-time expansions of the heat kernel,
following results that date back to Azencott [6]. Recall that

p̃f,D, qf,D : Rd × Rd → [0,∞)

denote, respectively, (a smooth version of) the transition density of (X̃t)t≥0 defined in (28), and
the proxy transition density of an Euler scheme without drift defined in (31). The next result gives
an expansion of the log-likelihood ratio of the transition densities, uniformly over the domain O.

Lemma 21. There exist smooth functions: γf,f0 : O → Rd with

supp(γf0,f ) ⊂ O0, ‖γf0,f‖∞ . ‖f − f0‖C1 ,

where the constants in the inequality depend only on an upper bound for ‖f‖C1 and ‖f0‖C1 , and such that
the following expansion holds:

log
p̃f0,D(x, y)

p̃f,D(x, y)
1{x∈Oδ

0} = log
qf0,D(x, y)

qf,D(x, y)
1{x∈Oδ

0}

+ γf0,f (x) · (y − x) +
1

8D
|y − x|2 ∇(f−1 − f−1

0 )(x) · (y − x)1{x∈Oδ
0}

+
(
‖f − f0‖∞D + ‖f − f0‖C1 |y − x|D + |y − x|2D + ‖f − f0‖C2 |y − x|2

+ ‖f − f0‖C3 |y − x|3 + |y − x|4
)
rf0,f (x, y),

for a remainder term rf0,f : Rd × Rd → R satisfying

(36) sup
‖f‖

C4+‖f0‖C4≤r
‖rf0,f‖∞ <∞
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for every r > 0.

While only local to (x, y) ∈ O × O, the stability property (36) is sufficient for our purpose:
the approximation is only needed for (x, y) = (X(i−1)D, XiD) ∈ O × O, a property that holds
Pf0 -almost surely. The proof of Lemma 21 is deferred to Appendix 8.4.

Proof of Proposition 14. We apply Lemma 21, establishing suitable bounds for the remainder terms.

Step 1: Consider first the term
∑N

i=1 γf0,f (X(i−1)D) · (XiD −X(i−1)D) in the remainder of Lemma
21. It splits into three parts thanks to the decomposition (34) and we bound each term separately.
The drift term involving bi,D is of order D by (35), hence the property ‖γf0,f‖∞ . ε1,N yields the
crude variance bound N2ε21,ND

2 for the first term. For the martingale term, we have

Varf0

( N∑

i=1

γf0,f (X(i−1)D) · Σi,D
)
≤

N∑

i=1

‖γf0,f‖2∞Ef0
[
|Σi,D|2

]
. Nε21,ND

by the second estimate in (35). For the third term involving Li,D, using that γf0,f (X(i−1)D) van-
ishes on (Ai,D)

c, we have

Varf0

( N∑

i=1

γf0,f(X(i−1)D) · Li,D
)
. N

N∑

i=1

‖γf0,f‖2∞Ef0
[
L2
i,D1Ai,D

]
. N2ε21,ND exp(−cD−1)

by the third estimate in (35). We have thus established

(37) Varf0

( N∑

i=1

γf0,f (X(i−1)D) · (XiD−X(i−1)D)
)
. Nε2N

( ε1,N
εN

)2
(D+ND2+ND exp(−cD−1)

)
.

Step 2: We next consider the term 1
8D

∑N
i=1 |XiD−X(i−1)D|2ζf0,f (X(i−1)D) · (XiD−X(i−1)D)1Ai,D ,

where ζf0,f = ∇(f−1 − f−1
0 ) satisfies ‖ζf0,f‖∞ . ε1,N for f, f0 ∈ F′. Using Itô’s formula, it splits

into four parts according to the decomposition

(38) |XiD −X(i−1)D|2 = 2d f0(X(i−1)D)D + b̃i,D + Σ̃i,D + L̃i,D,

with

b̃i,D = 2

∫ iD

(i−1)D

(
d(f0(Xs)− f0(X(i−1)D)) + (Xs −X(i−1)D) · ∇f0(Xs)

)
ds,

Σ̃i,D = 2

∫ iD

(i−1)D

√
2f0(Xs)(Xs −X(i−1)D) · dBs,

L̃i,D = 2

∫ iD

(i−1)D

(Xs −X(i−1)D) · n(Xs)d|ℓ|s,

(39)

appended with the moment estimates

(40) Ef0
[
|̃bi,D|p

]
. D3p/2, Ef0

[
|Σ̃i,D|p|F(i−1)D

]
. Dp, Ef0

[
|L̃i,D|p1Ai,D

]
. Dp exp(−cD−1),
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as for (35). More precisely,

Ef0
[
|̃bi,D|p

]
≤ Dp−1

∫ iD

(i−1)D

Ef0
[∣∣d(f0(Xs)− f0(X(i−1)D)) + (Xs −X(i−1)D) · ∇f0(Xs)

∣∣p]ds

≤ Dp(d+ 1)p‖f0‖pC1Ef0

[
sup

(i−1)D≤s≤iD
|Xs −X(i−1)D|p

]

≤ (d+ 1)p‖f0‖pC1Cp,d,f0D
3p/2

by Jensen’s inequality and Lemma 19, with Cp,f0 the constant in (32). For the martingale part, the
Burkholder-Davies-Gundy inequality with constant Cp yields

Ef0
[
|Σ̃i,D|p|F(i−1)D

]
≤ Cp2

3p/2Ef0

[( ∫ iD

(i−1)D

2f0(Xs)
3/2|Xs −X(i−1)D|2ds

)p/2∣∣F(i−1)D

]

≤ Cp2
2p‖f0‖3p/4∞ Ef0

[
sup

(i−1)D≤s≤iD
|Xs −X(i−1)D|p

]

≤ Cp2
2p‖f0‖3p/4∞ Cp,d,f0D

p,

where we last used Lemma 19. The last bound in (40) follows exactly the same lines as the last

estimate in (35), using now the bounds just established for b̃i,D and Σ̃i,D instead of those for bi,D
and Σi,D , respectively.

We are now ready to handle the term
∑N

i=1
d
4f0(X(i−1)D)1Ai,Dζf0,f (X(i−1)D) · (XiD−X(i−1)D),

exactly as in Step 1, substituting ζf0,f (X(i−1)D) by d
4f0(X(i−1)D)ζf0,f (X(i−1)D)1Ai,D . It has the

same variance order as in (37). For the term involving the drift part b̃i,D we have

Varf0

( 1

8D

N∑

i=1

b̃i,Dζf0,f (X(i−1)D) · (XiD −X(i−1)D)1Ai,D

)

. D−2N

N∑

i=1

‖ζf0,f‖2∞Ef0

[
b̃2i,D|XiD −X(i−1)D|2

]
.

and this yields the orderD−2N2ε21,ND
4 = Nε2N (

ε21,N
ε2N

ND2) by Cauchy-Schwarz’s inequality com-

bined with (40) and Lemma 19 for controlling the term within the expectation. For the third term,
we use the decomposition

Σ̃i,Dζf0,f (X(i−1)D) · (XiD −X(i−1)D)1Ai,D = I + II + III,

with

I = Σ̃i,Dζf0,f (X(i−1)D) · bi,D1Ai,D ,

II = Σ̃i,Dζf0,f (X(i−1)D) · Σi,D1Ai,D ,

III = Σ̃i,Dζf0,f (X(i−1)D) · Li,D1Ai,D .

For term I ,

Varf0

( 1

8D

N∑

i=1

Σ̃i,Dζf0,f (X(i−1)D) · bi,D1Ai,D

)
. D−2N

N∑

i=1

‖ζf0,f‖2∞Ef0
[
|Σ̃i,D|2|bi,D|2

]
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and this yields the orderD−2N2ε21,ND
4 by Cauchy-Schwarz’s inequality combined with (40) and

Lemma 19 again. For term II , by Itô’s formula,

Σ̃i,Dζf0,f (X(i−1)D) · Σi,D = ζf0,f (X(i−1)D) ·Mi,D

+ 2ζf0,f(X(i−1)D) ·
∫ iD

(i−1)D

(Xs −X(i−1)D)f0(Xs)ds,(41)

whereMi,D =
∫ iD
(i−1)D

√
2f0(Xs)

(
Ef0 [Σ̃i,D|Fs]+2Ef0 [Σi,D|Fs] ·(Xs−X(i−1)D)

)
dBs is a martingale

increment such that

Ef0
[
|ζf0,f (X(i−1)D) ·Mi,D|2

]
. ε21,ND

3,

by applying repeatedly Cauchy-Schwarz’s inequality together with (35), (40) and Lemma 19,
hence

Varf0

( 1

8D

N∑

i=1

ζf0,f (X(i−1)D) ·Mi,D1Ai,D

)
=

1

64D2

N∑

i=1

Ef0
[
|ζf0,f (X(i−1)D) ·Mi,D|21Ai,D

]

and this term is of order D−2Nε21,ND
3 = Nε2N (

ε1,N
εN

)2D. Let G(x, y) = ζf0,f(x) · (y − x)f0(y). For

the second term in (41), by Itô’s formula,
∫ iD

(i−1)D

ζf0,f(X(i−1)D) · (Xs −X(i−1)D)f0(Xs)ds = bi,D(G) + Σi,D(G) + Li,D(G),

with

bi,D(G) =

∫ iD

(i−1)D

∫ s

(i−1)D

Lf0G(X(i−1)D, Xu)duds,

Σi,D(G) =

∫ iD

(i−1)D

∫ s

(i−1)D

∇G(X(i−1)D, Xu)
√
2f0(Xu) · dBu ds,

Li,D(G) = 2

∫ iD

(i−1)D

∫ s

(i−1)D

∇G(X(i−1)D, Xu) · n(Xu)d|ℓ|uds.(42)

In notation, the differential operators act on y 7→ G(X(i−1)D, y) and Lf0 is the generator associated
to the diffusion defined in (8). The expansion is appended with the moment estimates

Ef0
[
|bi,D(G)|p

]
. εp1,ND

2p, Ef0
[
|Σi,D(G)|p|F(i−1)D

]
. εp1,ND

3p/2,

Ef0
[
|Li,D(G)|p1Ai,D

]
. εp1,ND

3p/2 exp(−cD−1),

in the same way as before. The variance of the term (4D)−1
∑N

i=1 bi,D(G)1Ai,D is of orderD−2N2ε21,ND
4.

Also, the Σi,D(G) are centred FiD-increments hence

Varf0

( 1

4D

N∑

i=1

Σi,D(G)1Ai,D

)
=

1

16D2

N∑

i=1

Ef0
[
(Σi,D(G))

2
1Ai,D

]
. D−2Nε21,ND

3

and this term is of order Nε2N(
ε1,N
εN

)2D. The variance of the term (4D)−1
∑N

i=1 Li,D(G)1Ai,D is

of order D−2N2ε21,ND
3 exp(−cD−1), and the term II is controlled. For the term III , we simply

have

Varf0

( 1

8D

N∑

i=1

Σ̃i,Dζf0,f (X(i−1)D) · Li,D1Ai,D

)
. D−2N

N∑

i=1

ε21,NEf0
[
|Σ̃i,D|2|Li,D|2 1Ai,D

]
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that yields the order N2ε21,ND
2 exp(−cD−1). Gathering all these estimates, we obtain that the

variance of 1
8D

∑N
i=1 |XiD −X(i−1)D|2ζf0,f(X(i−1)D) · (XiD −X(i−1)D)1Ai,D is no bigger than the

order established in (37).

Step 3: We finally control the remainder term in the expansion of Lemma 21. Define

RNf0,f =

N∑

i=1

(
‖f − f0‖∞D + ‖f − f0‖C1 |XiD −X(i−1)D|D + |XiD −X(i−1)D|2D

+ ‖f − f0‖C2 |XiD −X(i−1)D|2 + ‖f − f0‖C3 |XiD −X(i−1)D|3

+ |XiD −X(i−1)D|4
)
rf0,f (X(i−1)D, XiD).

By Lemma 19, the property f ∈ CN and the fact that ‖rf0,f‖∞ . 1, we readily have

Varf0(R
N
f0,f) . N2

(
ε2ND

2 + ε21,ND
3 +D4 + ε22,ND

2 + ε23,ND
3 +D4

)

. Nε2N
(
ND2 + (

ε1,N
εN

)2ND3 + (
ε2,N
εN

)2ND2 + (
ε3,N
εN

)2ND3 +Nε−2
N D4

)
.

Step 4: Putting together the estimates established in Steps 1-3, using Lemma 21 and (27), the
quantity in Proposition 14 is bounded by a multiple of

Varf0
(
ΛNq,D

)
+Varf0

(∫

CN

N∑

i=1

[
log

p̃f,D
p̃f0,D

(XD
i )− qf,D

qf0,D
(XD

i )
]
1Ai,Dν(df)

)

. Varf0
(
ΛNq,D

)
+ sup
f∈CN

Varf0

(
N∑

i=1

[
log

p̃f,D(X
D
i )

p̃f0,D(X
D
i )

− log
qf,D(X

D
i )

qf0,D(X
D
i )

])

. Varf0
(
ΛNq,D

)
+Nε2N

(
ND2 +

( ε1,N
εN

)2
(D +ND2) +

( ε2,N
εN

)2
ND2 +

( ε3,N
εN

)2
ND3

+Nε−2
N D4 +

( ε1,N
εN

)2
ND exp(−cD−1)

)
,

as required. �

Proof of Proposition 16. The proof follows similar, though easier, lines to that of Proposition 14. We
thus provide only a sketch of the main bounds, matching Steps 1-4 for convenience.

Step 1: Consider first the term γf0,f (X0) · (XD−X0) in the expansion provided by Lemma 21, and
where we can insert the term 1A1,D due to the support of γf0,f . In the decomposition (34), the
term γf0,f(X0)Σ0,D has Ef0 -expectation zero and so does not contribute. It follows that

Ef0
[
γf0,f(X0)·(XD−X0)

]
≤ ‖γf0,f‖∞(Ef0 [|b0,D|]+Ef0 [L0,D1A1,D ]) . ε1,N

(
D+D1/2 exp(−cD−1)

)
,

where we used the moment bounds (35).

Step 2: Write ζf0,f = ∇(f−1− f−1
0 ) as before. In a similar way to Step 2 of the proof of Proposition

14, we have the decompositions

1

8D
|XD −X0|21A1,D = d

4f0(X0) +
1
8D b̃1,D1A1,D + 1

8D Σ̃1,D1A1,D + 1
8D L̃1,D1A1,D

ζf0,f (X0) · (XD −X0) = ζf0,f(X0) · b1,D + ζf0,f (X0) · Σ1,D + ζf0,f (X0) · L1,D,

and note the term Ef0
[

1
8D |XD − X0|2ζf0,f(X0) · (XD − X0)

]
is the sum of all expectations of

cross terms in the two expansions above. Using the bounds (35) and (40) and the martingale
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property of Σ1,D that ensures Ef0
[
d
4f0(X0)ζf0,f (X0) · Σ1,D

]
= 0, we see by Cauchy-Schwarz’s

inequality for instance that all the expectations of the cross terms are of order at most (D +

D1/2 exp(cD−1))‖ζf0,f‖∞ = ε1,N (D +D1/2 exp(−cD−1)), except maybe for the term

1
8DEf0

[
Σ̃1,Dζf0,f (X0) · Σ1,D

]
.

By (41), this term exactly equals

1
4DEf0

[
ζf0,f (X0) ·

∫ D

0

(Xs −X0)f0(Xs)ds
]
= 1

4DEf0
[
b1,D(G) + L1,D(G)

]

according to (42) with G(x, y) = ζf0,f(x) · (y − x)f0(y), and this term finally has the right order

since Ef0
[
|b1,D(G)|

]
. ε1,ND

2 and Ef0
[
|L1,D(G)|1A1,D

]
. ε1,ND

3/2 exp(−cD−1).

Step 3: With the notation in the proof of Proposition 14, Step 3, it suffices to bound Ef0 [R
1
f0,f

]. By

Lemma 19, the property f ∈ CN and the fact that ‖rf0,f‖∞ . 1 again, we readily obtain

Ef0
[
R

1
f0,f

]
. εND + ε1,ND

3/2 +D2 + ε2,ND + ε3,ND
3/2 +D2.

Step 4: Putting together the above bounds and keeping track of the leading order terms gives

sup
f∈CN

Ef0

[
log

p̃f0,D(X
D
0 )

p̃f,D(XD
0 )

1A1,D

]

. sup
f∈CN

Ef0

[
log

qf0,D(X
D
0 )

qf,D(XD
0 )

1A1,D

]

+ ε2N

(
D
εN

+ D2

ε2N
+

ε1,N
ε2N

D1/2 +
ε2,N
ε2N

D +
ε3,N
ε2N

D3/2 +
ε1,N
ε2N

D1/2 exp(−cD−1)
)
,

which completes the proof of Proposition 16. �

5.3. Proofs of Propositions 15 and 17: expectation and variance of the log-likelihood with proxy
density. Recall that the proxy qf,D of the transition density p̃f,D is given by

qf,D(x, y) =
1

(4πDf(x))d/2
exp

(
− |y − x|2

4Df(x)

)
,

which is the density function of a Nd(x, 2Df(x)Id) distribution, formally obtained by taking an
Euler scheme without drift. Note that while qf,D is defined on Rd × Rd, it will be evaluated at
(X(i−1)D, XiD), which lies in O× O almost surely.

Proof of Proposition 15. Step 1: We look for a simple expansion of the approximate log-likelihood
with the proxy. Write

log
qf,D(x, y)

qf0,D(x, y)
=
d

2
log

f0(x)

f(x)
− 1

4D

( 1

f(x)
− 1

f0(x)

)
|y − x|2

=
d

2

(
log

f0(x)

f(x)
−
( 1

f0(x)
− 1

f(x)

) |y − x|2
2dD

)
.

Recall the expansion (38) in the proof of Proposition 14 that takes the form

|XiD −X(i−1)D|2 = 2d f0(X(i−1)D)D + b̃i,D + Σ̃i,D + L̃i,D
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for appropriate drift, diffusion and boundary remainder terms b̃i,D, Σ̃i,D and L̃i,D, respectively.
Therefore, setting ξf0,f = 1

f − 1
f0

, we obtain

2

d
log

qf,D(X
D
i )

qf0,D(X
D
i )

= log
f0(X(i−1)D)

f(X(i−1)D)
−
(f0(X(i−1)D)

f(X(i−1)D)
− 1
)

+
1

2dD
ξf0,f (X(i−1)D)

(
b̃i,D + Σ̃i,D + L̃i,D

)
.(43)

Since | log κ− (κ− 1)| ≤ C(κ− 1)2 in a neighbourhood of κ = 1, the property ‖f − f0‖∞ ≤ εN and
f ≥ fmin ensures

∥∥ log f0
f

−
(f0
f

− 1
)∥∥

∞ . ε2N .

By Lemma 18, this entails

Varf0

( N∑

i=1

(
log

f0(X(i−1)D)

f(X(i−1)D)
−
(f0(X(i−1)D)

f(X(i−1)D)
− 1
))

1Ai,D

)
. ND−1ε4N .

Step 2: We next consider the term
∑N
i=1

1
2dDξf0,f(X(i−1)D )̃bi,D1Ai,D and proceed similarly to Step

2 in the proof of Proposition 14 above. Define G̃i,D(x) = df0(x) +∇f0(X(i−1)D) · x and

b̃i,D =

∫ iD

(i−1)D

(
G̃i,D(Xs)− G̃i,D(X(i−1)D)

)
ds+ ri,D,

where the remainder term

ri,D =

∫ iD

(i−1)D

(Xs −X(i−1)D) · (∇f0(Xs)−∇f0(X(i−1)D))ds

satisfies Ef0 [|ri,D|p] . D2p by Jensen’s and Cauchy-Schwarz’s inequality together with Lemma
19, using that ‖f0‖C2 . 1. By Itô’s formula and (42), we obtain

∫ iD

(i−1)D

G̃i,D(Xs)ds = bi,D(G̃) + Σi,D(G̃) + Li,D(G̃),

where

Ef0
[
|bi,D(G̃)|p

]
. D2p, Ef0

[
|Σi,D(G̃)|p|F(i−1)D

]
. D3p/2,

Ef0
[
|Li,D(G̃)|p1Ai,D

]
. D3p/2 exp(−cD−1)

in the same way as before. Then, the variance of the term
∑N

i=1
1

2dD ξf0,f (X(i−1)D)(bi,D(G̃) +

ri,D)1Ai,D is of order D−2N2ε2ND
4. Also, the Σi,D(G̃) are centred FiD-increments hence

Varf0

( 1

2dD

N∑

i=1

ξf0,f (X(i−1)D)Σi,D(G̃)1Ai,D

)
=

1

4d2D2

N∑

i=1

Ef0
[
|ξf0,f (X(i−1)D)Σi,D|21Ai,D

]

. D−2Nε2ND
3

and this term is of orderNε2ND. The variance of (2dD)−1
∑N

i=1 ξf0,f (X(i−1)D) ·Li,D(G̃)1Ai,D is of

order D−2N2ε2ND
3 exp(−cD−1). Gathering all these estimates, we obtain

Varf0
( N∑

i=1

1

2dD
ξf0,f (X(i−1)D )̃bi,D1Ai,D

)
. Nε2N

(
ND2 +D +ND exp(−cD−1)

)
.
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Step 3: We now consider the martingale term
∑N

i=1
1

2dD ξf0,f (X(i−1)D)Σ̃i,D1Ai,D . We have

Varf0

( 1

2dD

N∑

i=1

ξf0,f (X(i−1)D)Σ̃i,D1Ai,D

)
=

1

4d2D2

N∑

i=1

Ef0
[(
ξf0,f (X(i−1)D)Σ̃i,D

)2
1Ai,D

]

. D−2Nε2ND
2

and this term has the right order Nε2N .

Step 4: We finally consider the remainder term
∑N

i=1
1

2dD ξf0,f (X(i−1)D)L̃i,D1Ai,D and conclude.
We have

Varf0

( 1

2dD

N∑

i=1

ξf0,f(X(i−1)D)L̃i,D1Ai,D

)
. D−2N

N∑

i=1

‖ξf0,f‖2∞Ef0
[
L̃2
i,D1Ai,D

]

. N2ε2N exp(−cD−1).

Gathering the estimates from Steps 1-4 completes the proof of Proposition 15. �

Proof of Proposition 17. The proof follows similar, though easier, lines to that of the proof of Propo-
sition 15. We thus provide only a sketch of the main bounds, matching Steps 1-4 for convenience.

Step 1: We again use the expansion (43) that yields

2

d
log

qf,D(X
D
i )

qf0,D(X
D
i )

= log
f0(X(i−1)D)

f(X(i−1)D)
−
(f0(X(i−1)D)

f(X(i−1)D)
− 1
)

+
1

2dD
ξf0,f (X(i−1)D)

(
b̃i,D + Σ̃i,D + L̃i,D

)
.

The main term is bounded above as before:
∥∥ log f0

f
−
(f0
f

− 1
)∥∥

∞ . ε2N ,

as follows from | log κ − (κ − 1)| ≤ C(κ − 1)2 in a neighbourhood of κ = 1, together with the
properties ‖f − f0‖∞ ≤ εN and f ≥ fmin.

Step 2: By using the refinement of Step 2 in the proof of Proposition 15, we have

b̃i,D = ri,D + bi,D(G̃) + Σi,D(G̃) + Li,D(G̃),

where

Ef0 [|ri,D + bi,D(G̃)|p] . D2p, Ef0
[
|Li,D(G̃)|p1Ai,D

]
. D3p/2 exp(−cD−1),

and Σi,D(G̃) is a FiD-martingale increment. Therefore,

Ef0

[ 1

2dD
ξf0,f (X(i−1)D )̃bi,D1Ai,D

]
. εN

(
D +D1/2 exp(−cD−1)

)
.

Step 3: Since Σ̃i,D is a FiD-increment, we simply have

Ef0
[ 1

2dD
ξf0,f (X(i−1)D)Σ̃i,D1Ai,D

]
= 0.

Step 4: We finally have

Ef0
[∣∣ 1

2dD
ξf0,f (X(i−1)D)L̃i,D1Ai,D

∣∣] . εND
1/2 exp(cD−1).
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Gathering the estimates from Steps 1-4 completes the proof of Proposition 17.
�

6. PROOF OF THEOREM 9: AN EXPONENTIAL INEQUALITY FOR A LEAST SQUARES TYPE

ESTIMATOR

6.1. Risk decomposition. Recall from (23) that P Jf = 1 + PJ [f − 1] for f ∈ F, where PJ is the
wavelet projection onto the space VJ in (21) used to reconstruct functions with support in O0, such

as f − 1 when f ∈ F. We will decompose ‖f̂N −PJf‖2 into martingale, bias and remainder terms
that we control on the event

(44) BN =
{
(1− κ)‖g‖22 ≤ |g|2N ≤ (1 + κ)‖g‖22 for all g ∈ VJ

}
,

for some fixed 0 < κ < 1, and where

|g|2N =
1

N

N∑

i=1

g(X(i−1)D)
2
1Ai,D , Ai,D = {X(i−1)D ∈ O

δ
0},

denotes a random empirical semi-norm for every continuous function on the δ/2-enlargement Oδ0
of O0. By classical concentration techniques, we prove in Appendix 9.6 the following result.

Lemma 22. Suppose that 2J → ∞ and 2Jd = o(
√
ND) as N → ∞. Then for every 0 < κ < 1, as

N → ∞,
sup
f∈F

Pf (B
c
N ) → 0.

By Lemma 22 we have supf∈F Pf(B
c
N ) → 0 as N → ∞ for every 0 < κ < 1 under the theorem

hypotheses, so that we may further restrict to working on BN . We have under Pf

(45) Yi,D = (2d)−1D−1|XiD −X(i−1)D|2 = f(X(i−1)D) + Ri,D,

with

(46) Ri,D = (2d)−1D−1
(
b̃i,D + Σ̃i,D + L̃i,D

)
,

where we recall the above decomposition from (38)-(39) but with f0 replaced by f . Let

ΓN (g) =
1

N

N∑

i=1

(
Yi,D − 1− g(X(i−1)D)

)2
1Ai,D

denote the normalized objective function defining our least squares estimator (24), using in par-
ticular that g(X(i−1)D) = 0 on (Ai,D)

c for all g ∈ VJ . By (45), for any function g,

ΓN (g)− ΓN(f − 1) = |1 + g − f |2N +
2

N

N∑

i=1

(f − 1− g)(X(i−1)D)Ri,D1Ai,D .(47)

Since ΓN (ĝN ) = infg∈VJ ΓN (g) by construction, we have ΓN (ĝN )− ΓN (f − 1) ≤ ΓN (PJ [f − 1])−
ΓN (f − 1). Substituting (47) into both sides of this inequality with g = ĝN and g = PJ [f − 1],

respectively, then yields (with f̂N = ĝN + 1)

|f̂N − f |2N + 2N−1
N∑

i=1

(f − f̂N )(X(i−1)D)Ri,D1Ai,D

≤ |1 + PJ [f − 1]− f |2N + 2N−1
N∑

i=1

(f − 1− PJ [f − 1])(X(i−1)D)Ri,D1Ai,D ,
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or equivalently

|f̂N − f |2N ≤ |PJ [f − 1]− (f − 1)|2N + 2N−1
N∑

i=1

(f̂N − 1− PJ [f − 1])(X(i−1)D)Ri,D1Ai,D .(48)

Using that f̂N − 1−PJ [f − 1] ∈ VJ and 2ab ≤ ρa2 + ρ−1b2 for any a, b, ρ > 0, on the event BN , the
second term in the last display equals

2

N

N∑

i=1

(ĝN − PJ [f − 1])(X(i−1)D)Ri,D1Ai,D

≤ 2‖ĝN − PJ [f − 1]‖2 sup
g∈VJ :‖g‖2=1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

≤ ρ‖ĝN − PJ [f − 1]‖22 + ρ−1
(

sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

)2

≤ (1− κ)−1ρ|ĝN − PJ [f − 1]|2N + ρ−1
(

sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

)2
.

Substituting this last display into (48) then gives

|f̂N − f |2N ≤ |PJ [f − 1]− (f − 1)|2N + (1 − κ)−1ρ|ĝN − PJ [f − 1]|2N

+ ρ−1
(

sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

)2
.

Using that
√
a+ b ≤ √

a+
√
b for a, b > 0, this implies

|f̂N − 1− PJ [f − 1]|N ≤ |f̂N − f |N + |f − 1− PJ [f − 1]|N
≤ 2|f − 1− PJ [f − 1]|N + (1− κ)−1/2ρ1/2|f̂N − 1− PJ [f − 1]|N

+ ρ−1/2
∣∣∣ sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

∣∣∣.

Collecting the |f̂N −1−PJ [f −1]|N terms on the left-hand side thus yields the risk decomposition

(
1−

√
ρ

1−κ

)
|f̂N − 1− PJ [f − 1]|N

≤ 2|f − 1− PJ [f − 1]|N + ρ−1/2
∣∣∣ sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

∣∣∣.

Taking ρ > 0 small enough that ρ/(1−κ) < 1 and using that |f̂N −1−PJ [f −1]|N ≥
√
1− κ‖f̂N −

1− PJ [f − 1]‖2 on BN , we then obtain that on BN ,

C−1‖f̂N − 1− PJ [f − 1]‖2 ≤ 2|f − 1− PJ [f − 1]|N + ρ−1/2
∣∣∣ sup
g∈VJ :‖g‖2≤1

1

N

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D

∣∣∣,



HIGH FREQUENCY MULTIDIMENSIONAL DIFFUSIONS 29

where C−1 =
√
1− κ(1 −

√
ρ/(1− κ)) =

√
1− κ − √

ρ > 0. Recalling that P Jf = 1 + PJ [f − 1],
we finally obtain the following risk decomposition:

Pf
(
‖f̂N − P Jf‖2 ≥ KξN ,BN

)
≤ Pf

(
|f − 1− PJ [f − 1]|N ≥ K1ξN ,BN

)

+ Pf

(
sup

g∈VJ :‖g‖2≤1

N∑

i=1

g(X(i−1)D)Ri,D1Ai,D ≥ K2NξN ,BN

)
(49)

where the constants Ki = CiK for constants Ci depending only on κ and ρ, which are henceforth
considered fixed. It therefore suffices to prove that each term on the right-hand side of (49) is

bounded by a multiple of e−LNε
2
N for arbitrary fixed L > 0 and large enough K = K(L).

6.2. Bias term. We consider here the first term in (49), which is a bias term with the randomness
only entering from the design in the random empirical semi-norm |·|N . Write gJ = f−1−PJ[f−1]
and

ZN (gJ) = |gJ |2N − ‖gJ‖22 =
1

N

N∑

i=1

(
gJ(X(i−1)D)

2 − Ef [gJ(X(i−1)D)
2]
)
,

since Ef [gJ(X(i−1)D)
2] = ‖gJ‖22. The variance satisfies

Varf (gJ(X(i−1)D)
2) ≤ Ef [gJ(X(i−1)D)

4] = ‖gJ‖4L4,

while |gJ(x)2 − Ef [gJ(X(i−1)D)
2]| ≤ 2‖gJ‖2∞. Since (X0, XD, . . . , XND) is a stationary reversible

Markov chain whose spectral gap is lower bounded by rD by (9), Theorem of 3.3 of [44] (cf. (3.21))
yields

Pf
(
N |ZN (gJ)| ≥ t

)
≤ 2 exp

(
− rDt2

4N‖gJ‖4L4 + 20‖gJ‖2∞t

)

for all t > 0. Setting t =MNξ2N then gives

Pf
(
|ZN (gJ)| ≥Mξ2N

)
≤ 2 exp

(
− rDM2Nξ4N
4‖gJ‖4L4 + 20M‖gJ‖2∞ξ2N

)
.

By rearranging, one gets that the right-hand side is smaller than 2e−LNε
2
N if and only if

4L‖gJ‖4L4ε2N + 20LM‖gJ‖2∞ξ2Nε2N ≤ rDM2ξ4N .

Since r = r(fmin,O) by (9), we have shown that for any L > 0, there exists M =M(L, r) > 0 large
enough such that

sup
f∈F:‖f−PJf‖∞≤RJ,∞,

‖f−PJf‖L4≤RJ,4

Pf (|f − 1− PJ [f − 1]|2N ≥ ‖f − 1− PJ [f − 1]‖22 +Mξ2N ) ≤ 2e−LNε
2
N

for any εN , ξN , RJ,4, RJ,∞ such that R4
J,4ε

2
N + R2

J,∞ξ
2
Nε

2
N . Dξ4N , as assumed by the theorem

hypotheses.

6.3. Deviation of the remainder term. We now consider the second term in (49) involving Ri,D .
By a union bound, up to a modification of the constants, it suffices to prove the deviation for each
term in the decomposition (46).
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Step 1: We postpone the term involving the drift b̃i,D to Step 3 and rather first control the term

involving Σ̃i,D in (46). We will prove

(50) Pf

(
sup

g∈VJ :‖g‖2≤1

|Z̃N(g)| ≥MNξN ,BN

)
≤ e−LNε

2
N ,

for sufficiently large M , where

Z̃N (g) = D−1
N∑

i=1

g(X(i−1)D)Σ̃i,D1Ai,D .

Define

PBN ,f = Pf (·|BN ) = Pf(BN )−1Pf (· ∩BN ).

Since Pf (BN ) → 1 uniformly in f ∈ F by Lemma 22, we have 1
2PBN ,f ≤ Pf (· ∩BN ) ≤ PBN ,f for

N large enough. It thus suffices to establish (50) with PBN ,f instead of Pf . We prove a Bernstein

inequality for the increments of the process (Z̃N (g) : g ∈ VJ ) and conclude using a chaining
argument under PBN ,f . To that end, we need the following result, see e.g. [45, 22].

Lemma 23. Let (Mn)n≥0 be a (Gn)n≥0-martingale with M0 = 0 and let 〈M〉n =
∑n
i=1 E[|Mi −

Mi−1|2 |Gi−1] denotes its predictable quadratic variation. If for some c > 0,

n∑

i=1

E[|Mi −Mi−1|p |Gi−1] ≤
cp−2p!

2
〈M〉n for every p ≥ 2,

then for every t, y > 0,

P
(
Mn ≥ t, 〈M〉n ≤ y

)
≤ exp

(
− t2

2(y + ct)

)
.

We will apply Lemma 23 to the Gn-martingale Mn = Z̃N (g) = D−1
∑n
i=1 g(X(i−1)D)Σ̃i,D1Ai,D ,

with Gn = σ(XiD : 0 ≤ i ≤ n). First, applying the Burkholder-Davis-Gundy inequality with best

constant c
p/2
⋆ pp/2 (see e.g. [9]), we have for all p ≥ 1:

Ef
[
|D−1Σ̃i,D1Ai,D |p |F(i−1)D]

= D−pEf
[∣∣
∫ iD

(i−1)D

√
2f(Xs)(Xs −X(i−1)D) · dBs

∣∣p ∣∣F(i−1)D

]
1Ai,D

≤ D−p(2‖f‖∞c⋆p)p/2Ef
[∣∣
∫ iD

(i−1)D

|Xs −X(i−1)D|2ds
∣∣p/2 ∣∣F(i−1)D

]

≤ (D−12‖f‖∞c⋆p)p/2 max
1≤j≤d

Ef

[
sup

(i−1)D≤s≤iD
|Xs −X(i−1)D|p |F(i−1)D

]

≤ (2‖f‖∞c⋆p)p/22p−1(‖f‖p
C1D

p/2 + (c⋆p)
p/2‖f‖p∞)

≤ (C‖f‖3/2
C1 )pp!,

for some C > 0 that only depends on d, since D → 0 and where we used Lemma 19 to obtain the
second last inequality together with pp ≤ (C′)pp! for some universal constant C′ ≥ 1. Next, we
claim that the following lower bound holds

(51) Ef
[
(D−1Σ̃i,D)

2
1Ai,D |F(i−1)D

]
≥ df2

min −O(D1/2).
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Assuming for now that (51) is true, for D → 0 small enough,

n∑

i=1

|g(X(i−1)D)|p ≤ ‖g‖p−2
∞

n∑

i=1

|g(X(i−1)D)|2 2
f2
mind

Ef
[
( 1
D Σ̃i,D)

2
1Ai,D |F(i−1)D

]

= 2
f2
mind

‖g‖p−2
∞ 〈M〉n.

It follows that
n∑

i=1

E
[
||Mi −Mi−1|p |F(i−1)D] =

n∑

i=1

|g(X(i−1)D)|pEf
[
|D−1Σ̃i,D1Ai,D |p |F(i−1)D]

≤ (C‖f‖3/2
C1 )pp!

n∑

i=1

|g(X(i−1)D)|p

≤ 2
f2
mind

(C‖f‖3/2
C1 )pp!‖g‖p−2

∞ 〈M〉n
for small enough D. The condition of Lemma 23 therefore holds with

c = Cfmin,‖f‖C1
= max

(
1, 4C2‖f‖2C1d−1f−2

min

)
C‖f‖3/2

C1 ‖g‖∞.
Moreover, recalling that g ∈ VJ in (49) and using the bound (40), on the event BN ,

〈M〉N =
1

D2

N∑

i=1

g(X(i−1)D)
2Ef [Σ̃

2
i,D|F(i−1)D]1Ai,D ≤ C‖f‖

C1
N |g|2N ≤ C‖f‖

C1
(1 + κ)N‖g‖22.

Applying Lemma 23 at n = N with y = C‖f‖
C1
(1 + κ)N‖g‖22, we finally obtain for all t > 0,

PBN ,f

(∣∣Z̃N (g)
∣∣ ≥ t

)
≤ 2Pf

(∣∣MN

∣∣ ≥ t,BN
)

≤ 2Pf
(∣∣MN

∣∣ ≥ t, 〈M〉N ≤ C‖f‖
C1
N‖g‖22

)

≤ 4 exp
(
− t2

2
(
C‖f‖

C1
N‖g‖22 + C‖f‖

C1 ,fmin
‖g‖∞t

)
)
.

Using that ‖g‖∞ ≤ C2Jd/2‖g‖2 for g ∈ VJ , we have that for all g, g′ ∈ VJ and t > 0,

PBN ,f

(
|Z̃N(g)− Z̃N (g′)| ≥ t

)
≤ 4 exp

(
− Ct2

N‖g − g′‖22 + 2Jd/2‖g − g′‖2t
)
.

We may therefore apply the generic chaining bound in Lemma 31 in Section 9.5 below with m =

dim(VJ ) = O(2Jd), ‖GJ‖2 = supg,h∈GJ
‖g− h‖2 ≤ 2, α2 = N , β = 2Jd/2 to obtain that for all u ≥ 1,

PBN ,f

(
sup

g∈VJ :‖g‖2≤1

|Z̃N (g)| ≥ C‖f‖C1 ,fmin

(
23Jd/2 + 2Jd/2N1/2 + 2Jd/2u+N1/2

√
u
))

≤ e−u.

Setting u = LNε2N with L > 0 then gives

PBN ,f

(
sup

g∈VJ :‖g‖2≤1

|Z̃N (g)| ≥MNξN

)
≤ e−LNε

2
N

for any εN , ξN , 2
J satisfying

(52) 23Jd/2N−1 + 2Jd/2N−1/2 + 2Jd/2ε2N + εN . ξN

upon taking M = M(L, ‖f‖C1, fmin) large enough. This establishes (50), so that we have the re-

quired exponential inequality in (49) for the term (dD)−1Σ̃i,D in Ri,D.
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It remains to prove (51). By Itô’s isometry,

Ef
[
(D−1Σ̃i,D)

2
1Ai,D |F(i−1)D

]
=

8

D2
Ef

[ ∫ iD

(i−1)D

|Xs −X(i−1)D|2f(Xs)ds |F(i−1)D

]
1Ai,D

≥ 8fmin

D2
Ef

[ ∫ (i−1)D+τi,D∧D

(i−1)D

|Xs −X(i−1)D|2ds |F(i−1)D

]
1Ai,D ,

where τi,D defined in (33) is the hitting time of the boundary ∂O by the process X started at time
(i− 1)D. Furthermore,

Ef

[ ∫ (i−1)D+τi,D∧D

(i−1)D

|Xs −X(i−1)D|2ds |F(i−1)D

]

= Ef

[ ∫ (i−1)D+τi,D∧D

(i−1)D

∫ s

(i−1)D

df(Xu)duds |F(i−1)D

]

+ 2Ef

[ ∫ (i−1)D+τi,D∧D

(i−1)D

∫ s

(i−1)D

(Xs −X(i−1)D) · ∇f(Xu)duds |F(i−1)D

]
.(53)

Lemma 19 applied to the second term of the right-hand side of (53) yields

∣∣2Ef
[ ∫ (i−1)D+τi,D∧D

(i−1)D

∫ s

(i−1)D

(Xs −X(i−1)D) · ∇f(Xu)duds |F(i−1)D

]∣∣ . D2+1/2

up to a (deterministic) constant that depends only on ‖f‖C1 , while the first term of the right-hand
side of (53) times 1Ai,D can bounded below by dfmin times

Ef
[(
τi,D ∧D

)2
1{τi,D≥D} |F(i−1)D

]
1Ai,D = D2Pf

(
τi,D ≥ D |F(i−1)D

)
1Ai,D

≥ D2(1− C exp(−cD−1))1Ai,D

thanks to Lemma 20. We thus have

Ef

[ ∫ (i−1)D+τi,D∧D

(i−1)D

|Xs −X(j−1)D|2ds |F(i−1)D

]
≥ dD2fmin −O(D5/2)

and (51) readily follows.

Step 2: We next turn to the boundary term in (46). Set L̃N (g) = D−1
∑N

i=1 g(X(i−1)D)L̃i,D1Ai,D .

Since supg∈VJ ,‖g‖2≤1 |g|2N ≤ (1 + κ) on BN , by Cauchy-Schwarz’s inequality,

Pf

(
sup

g∈VJ ,‖g‖2≤1

|L̃N(g)| ≥ CNξN ,BN

)
≤ Pf

(
(1 + κ)D−2N−1

N∑

i=1

L̃2
i,D1Ai,D ≥ Cξ2N

)

≤
N∑

i=1

Pf
(
τi,D ≥ D,Ai,D

)
. N exp(−cD−1)

using that L̃i,D vanishes on {τi,D < D} ∩Ai,D and Lemma 20.

Step 3: We finally consider the drift term in (46). Setting b̃N (g) = D−1
∑N

i=1 g(X(i−1)D )̃bi,D1Ai,D ,
we will prove

(54) Pf

(
sup

g∈VJ :‖g‖2≤1

|̃bN (g)| ≥MNξN ,BN

)
≤ C exp(−LNε2N)
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for arbitrary fixed L > 0 and M =M(L) large enough, under the assumption ND2 → 0. By Itô’s
formula, with H(x, y) = d(f(y)− f(x)) + (y− x) · ∇f(y), similarly to (42) in Step 2 of the proof of
Proposition 14, we can decompose

b̃i,D =

∫ iD

(i−1)D

H(X(i−1)D, Xs)ds = bi,D(H) + Σi,D(H) + Li,D(H),

with

bi,D(H) =

∫ iD

(i−1)D

∫ s

(i−1)D

LfH(X(i−1)D, Xu)du ds

Σi,D(H) =

∫ iD

(i−1)D

∫ s

(i−1)D

∇H(X(i−1)D, Xu)
√
2f(Xu) · dBuds

Li,D(H) =

∫ iD

(i−1)D

∫ s

(i−1)D

∇H(X(i−1)D, Xu) · n(Xu)d|ℓ|u.

We bound the deviation probability each contribution in the expansion of b̃N (g) via a union
bound. Using Cauchy-Schwarz’s inequality and the bound

∣∣
∫ iD

(i−1)D

∫ s

(i−1)D

LfH(X(i−1)D, Xu)duds
∣∣ ≤ 1

2D
2‖LfH‖∞ ≤ CO,‖f‖

C3
D2,

where the supremum is taken over (x, y) ∈ O× O, we derive

Pf

(
sup

g∈VJ ,‖g‖2≤1

D−1
∣∣
N∑

i=1

g(X(i−1)D)bi,D(H)1Ai,D

∣∣ ≥ CNξN ,BN

)

≤ Pf
(
N−1

N∑

i=1

(bi,D(H))2 ≥ C2D2ξ2N
)
≤ N1{

C2
O,‖f‖

C3
D2≥CξN

}

where we used that supg∈VJ ,‖g‖2≤1 |g|2N ≤ (1+κ) on BN . The assumptions ND2 → 0 andNξ2N →
∞ together imply that for sufficiently large N , we necessarily have C2

O,‖f‖
C3
D2 < Cξ2N and the

above probability is thus zero. For the martingale term associated to Σi,D(H), we proceed exactly
as in Step 1: define

Mn = D−1
n∑

i=1

g(X(i−1)D)Σi,D(H)1Ai,D .

By Fubini’s theorem and the Burkholder-Davis-Gundy inequality:

Ef
[
|D−1Σi,D(H)1Ai,D |p |F(i−1)D]

= D−pEf
[∣∣
∫ iD

(i−1)D

(u− (i− 1)D)∇H(X(i−1)D, Xu)
√

2f(Xu) · dBu
∣∣p ∣∣F(i−1)D

]
1Ai,Dds

≤ D−p(c⋆p)
p/2Ef

[∣∣
∫ iD

(i−1)D

(u− (i− 1)D)2|∇H(X(i−1)D, Xu)|22f(Xu)ds
∣∣p/2 ∣∣F(i−1)D

]
1Ai,Dds

≤ Dp/2−1(c⋆p)
p/2‖|∇H |22f‖p/2−1

∞ Ef
[
(D−1Σi,D(H)1Ai,D )

2 |F(i−1)D]

≤ (D1/2C‖f‖
C2
)p−2p!Ef

[
(D−1Σi,D(H)1Ai,D )

2 |F(i−1)D]
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with C‖f‖
C3

≥ C′ max(1, (2c⋆‖f‖∞)1/2‖∇H‖∞) and C′ a universal constant such that pp ≤ C′p!.
It follows that

n∑

i=1

E
[
||Mi −Mi−1|p |F(i−1)D] =

n∑

i=1

|g(X(i−1))|pEf
[
|D−1Σi,D(H)1Ai,D |p |F(i−1)D]

≤ (D1/2C‖f‖
C2
‖g‖∞)p−2p!〈M〉n,

so that the condition of Lemma 23 holds with c = D1/2C′
‖f‖

C2
‖g‖∞ for instance. Moreover,

〈M〉N =

N∑

i=1

g(X(i−1)D)
2Ef

[
(D−1Σi,D(H)1Ai,D )

2 |F(i−1)D] ≤ CN |g|2ND ≤ C(1 + κ)‖g‖22ND

on the event BN , so that applying Lemma 23 with n = N and y = C(1 + κ)‖g‖22ND yields

PBN ,f (D
−1

n∑

i=1

g(X(i−1)D)Σi,D(H)1Ai,D ≥ t) ≤ CPf
(
MN ≥ t, 〈M〉N ≤ C′ND‖g‖22

)

≤ 2C exp
(
− C

t2

ND‖g‖22 +D1/2‖g‖∞

)

for all t > 0. Setting ZN (g) = D−1
∑n
i=1 g(X(i−1)D)Σi,D(H)1Ai,D , the process ZN = (ZN(g) :

g ∈ {VJ : ‖g‖2 ≤ 1}) therefore satisfies the conditions of Lemma 31 with m = dim(VJ ) = O(2Jd),
‖G‖2 ≤ 2, α2 = ND, β = D1/22Jd/2, where we have also used the linearity of g 7→ ZN (g) and that

‖g‖∞ ≤ C2Jd/2‖g‖2 for g ∈ VJ . Lemma 31 thus implies that for all u ≥ 1,

PBN ,f

(
sup

g∈VJ ,‖g‖2≤1

|ZN (g)| ≥ CD1/2(23Jd/2 + 2Jd/2N1/2 +
√
uN1/2 + u2Jd/2)

)
≤ e−u.

Returning to (54), we want a bound of the form

PBN ,f

(
sup

g∈VJ ,‖g‖2≤1

|ZN (g)| ≥ CNξN

)
≤ e−LNε

2
N .

Setting u = LNε2N in the second last display, this follows as soon as

D1/2(23Jd/2N−1 + 2Jd/2N−1/2 + εN + 2Jd/2ε2N ) . ξN .

But this is exactly condition (52) above with the left-side multiplied by the superoptimal factor

D1/2, and hence this condition is implied by (52). For the boundary term associated to Li,D(H),

we proceed exactly as in Step 2, replacing L̃i,D by Li,D . The conclusion is the same.

7. PROOFS OF POSTERIOR CONTRACTION RESULTS

7.1. Proof of Theorem 11: a general contraction theorem. The proof follows the general testing
approach of [26] and the idea of using plug-in tests based on frequentist estimators satisfying
concentration inequalities [27], adapted to the present high-frequency multidimensional diffusion
setting. The next result follows by combining the proof of Theorem 8.9 in [26] for the i.i.d. case
with our evidence lower bound in Theorem 8.

Lemma 24. Suppose f0 ∈ F0 and let Π = ΠN be a sequence of prior distributions supported on F in (12).
Further let 0 < εN ≤ ε1,N ≤ ε2,N ≤ ε3,N → 0, ξN → 0 be positive sequences such that Nε2N → ∞, let
EN and VN be the corresponding quantities defined in (16), and let r > 0 be fixed. Set

CN =
{
f ∈ F : ‖f‖Cα ≤ r, ‖f − f0‖∞ ≤ εN , ‖f − f0‖Ck ≤ εk,N for k = 1, 2, 3

}
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to be the set defined in (15) and C0 > 0 to be the fixed constant in Theorem 8, which depends only on
f0, r, d,O, δ, fmin. Suppose that for some K0 > 0,

EN ≤ K0ε
2
N , VN/(N

2ε4N) → 0,

as N → ∞. Further suppose that for some C,L,M > 0, the prior Π satisfies Π(CN ) ≥ e−CNε
2
N , and

there exist sets FN ⊆ F satisfying Π(FcN ) ≤ Le−(C+C0K0+2)Nε2N , events BN satisfying Pf0(BN ) → 1
and a sequence of test functions ΨN = ΨN (X0, XD, . . . , XND) such that

Ef0 [ΨN1BN ] → 0, sup
f∈FN :‖f−f0‖2≥MξN

Ef [(1−ΨN )1BN ] ≤ Le−(C+C0K0+2)Nε2N .

Then as N → ∞,

Ef0Π(f : ‖f − f0‖2 ≥MξN |X0, XD, . . . , XND) → 0.

Proof. Writing AN = {f : ‖f − f0‖2 ≥Mξn} and XN = (X0, XD, . . . , XND), we have

Ef0Π(AN |XN) ≤ Ef0 [Π(AN |XN )(1−ΨN )1BN ] + Ef0 [ΨN1BN ] + Pf0(B
c
N ).

Since the last two terms tend to zero by assumption, it remains to control the first term. We thus
need only prove convergence in Pf0 -probability to zero of

Π(AN |XN)(1 −ΨN)1BN =

∫
AN

∏N
i=1

pf,D(X(i−1)D ,XiD)

pf0,D(X(i−1)D ,XiD)dΠ(f)
∫
F

∏N
i=1

pf,D(X(i−1)D ,XiD)

pf0,D(X(i−1)D ,XiD)dΠ(f)
(1− ΨN)1BN .

By Theorem 8, we have for any c > 0 and any probability measure ν supported on CN ,

Pf0

(∫

CN

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
ν(df) ≤ e−cNε

2
N−C0NEN

)
≤ VN
c2N2ε4N

.

Let ν = Π(·∩CN )/Π(CN ) be the prior distribution conditioned to the set CN , and define the events

ΩN =

{∫

CN

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
dΠ(f) ≥ Π(CN )e−(C0K0+1)Nε2N ≥ e−(C+C0K0+1)Nε2N

}
,

where we used Π(CN ) ≥ e−CNε
2
N in the last inequality. Setting c = 1 and since EN ≤ K0ε

2
N by

assumption, the second last display implies Pf0(Ω
c
N ) ≤ VN/(N

2ε4N) → 0 as N → ∞. Thus for any
η > 0,

Pf0
(
Π(AN |XN )(1−ΨN )1BN > η

)

≤ Pf0

(
e(C+C0K0+1)Nε2N

∫

AN

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
dΠ(f)(1 −ΨN )1BN > η

)
+ Pf0(Ω

c
N ).

By Fubini’s theorem and since 0 ≤ 1−ΨN ≤ 1,

Ef0

∫

AN

N∏

i=1

pf,D(X(i−1)D, XiD)

pf0,D(X(i−1)D, XiD)
dΠ(f)(1− ΨN)1BN

=

∫

An

Ef [(1−ΨN )1BN ]dΠ(f)

≤ Π(FcN ) + sup
f∈FN :‖f−f0‖2≥Mξn

Ef [(1 −ΨN)1BN ] ≤ 2Le−(C+C0K0+2)Nε2N
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using the assumptions on the tests ΨN and on FN . Combining the last two displays and using
Markov’s inequality gives for any η > 0,

Pf0
(
Π(AN |XN )(1−ΨN )1BN > η

)
≤ 2η−1Le−Nε

2
N + Pf0(Ω

c
N ) → 0

since Nε2N → ∞ as N → ∞. �

It therefore remains to show that the required tests in Lemma 24 exist under the conditions of

Theorem 11. Setting f̂N to be the projection estimator in (25), consider tests of the form

(55) ΨN = ΨN(X0, XD, . . . , XND) = {‖f̂N − f0‖2 ≥ M̃ξN},

where M̃ > 0 is a large enough constant. The required properties then follow from Theorem 9.

Lemma 25. Let εN , ξN → 0, 2J = 2JN → ∞ and RJ,4, RJ,∞ satisfy the conditions of of Theorem 9 and
define the sets

F′
N =

{
f ∈ F : ‖f‖C1 ≤ r, ‖f − P Jf‖2 ≤ CξN , ‖f − P Jf‖4 ≤ RJ,4, ‖f − P Jf‖∞ ≤ RJ,∞

}
,

where C, r > 0 and P J denotes the projection (23). Assume the true f0 ∈ F0 satisfies the same conditions
as F′

N , possibly up to different constants (e.g. ‖f0 − P Jf0‖2 ≤ M0ξN for some M0 > 0). Then for any

R > 0, one can take M, M̃ > 0 large enough (depending also on R) such that the tests ΨN in (55) satisfy

Ef0 [ΨN1BN ] → 0, sup
f∈F′

N :‖f−f0‖2≥MξN

Ef [(1−ΨN )1BN ] ≤ C′e−RNε
2
N ,

where the event BN satisfies supf∈F Pf (B
c
N ) → 0 as N → ∞.

Proof. Consider the eventBN in (44) and used in Theorem 9, which by Lemma 22 satisfies Pf0(BN) →
1 asN → ∞ since f0 ∈ F0 ⊂ F. Using the definition (55) of the test ΨN , that ‖f0−P Jf0‖2 ≤M0ξN
and the triangle inequality,

Ef0 [ΨN1BN ] ≤ Pf0(‖f̂N − P Jf0‖2 ≥ (M̃ −M0)ξN ,BN ).

Since the conditions of Theorem 9 are satisfied, applying that theorem with M̃ > 0 large enough

bounds the right-hand side by C′e−Nε
2
N → 0, giving the first part of the lemma.

For the type-II errors, let f ∈ F′
N satisfy ‖f − f0‖2 ≥ MξN for some M > 0 to be specified

below. Then, since ‖f − P Jf‖2 ≤ CξN ,

Ef [(1−ΨN )1BN ] = Pf (‖f̂N − f0‖2 ≤ M̃ξn,BN )

≤ Pf (‖f0 − f‖2 − ‖f̂N − P Jf‖2 − ‖f − P Jf‖2 ≤ M̃ξn,BN )

≤ Pf ((M − M̃ − C)ξN ≤ ‖f̂N − P Jf‖2,BN ) ≤ C′e−RNε
2
N ,

uniformly over such f , where the last inequality follows from Theorem 9 upon taking M =

M(R, M̃, C) > 0 large enough. �

Theorem 11 then follows from using the tests in Lemma 25 together with Lemma 24.
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7.2. Proof of Theorem 3: contraction rates for Gaussian priors. Let ‖ · ‖HW denote the RKHS
of W . Then χW in (11) is a mean-zero Gaussian process with RKHS HχW = {χw : w ∈ HW }
and whose RKHS norm satisfies that for every w ∈ HW , there exists some w∗ ∈ HW such that
χw = χw∗ and

‖χw‖HχW = ‖w∗‖HW

(Exercise 2.6.5 of [28]). Furthermore, we have that HW = HV with RKHS norm ‖ ·‖HW =
√
NεN‖ ·

‖HV .
We require the following lemma about the concentration of Gaussian measures on suitable

sieve sets. The proof is similar to Theorem 2.2.2 of [39] (see also Lemma 5.2(i) in [30]) and is hence
omitted.

Lemma 26. For s,M > 0 and the sequence εN = N− s
2s+d , define the sets

(56) WN = {W =W1 +W2 : ‖W1‖∞ ≤ εN , ‖W2‖Hs ≤M, ‖W‖C4 ≤M}.
Let W = V/(

√
NεN ) for V ∼ ΠV a mean-zero Gaussian process satisfying Condition 2. Then for every

K > 0, there exists M > 0 large enough such that ΠW (Wc
N ) ≤ e−KNε

2
N .

Proof of Theorem 3. We verify the assumptions of Theorem 11 with εN = N− s
2s+d , εk,N = N− s−k

2s+d ,

k = 1, 2, 3, and 2J ≃ N
1

2s+d as in Assumption A.
Small-ball probability: consider the “small-ball condition” (ii) in Theorem 11. Recall that under

the prior Π in (11), f = Φ(χW ) with W = V/(
√
NεN) for V a mean-zero Gaussian process and

a strictly increasing link function Φ satisfying ‖Φ(k)‖∞ < ∞ for k = 1, 2, . . . . We first state some
useful inequalities regarding the smoothness of compositions of functions. By Theorem 4.3(ii)(3)
in [21], for any r ≥ 1,

(57) ‖Φ(g)‖Cr ≤ Cr,d‖Φ‖Cr(1 + ‖g‖rCr).

Using the multivariate version of Faà di Bruno’s formula [16], one can show that for any g, g0 ∈ Ck

and integer k ≥ 1,

(58) ‖Φ(g)− Φ(g0)‖Ck ≤ Ck,d max
1≤j≤k+1

‖Φ(j)‖∞(1 + ‖g‖k
Ck + ‖g0‖kCk)‖g − g0‖Ck

(see e.g. Lemma 2 in [49] for the proof of a similar argument).
Since f0 ∈ Cs, we have w0 = Φ−1(f0) ∈ Cs by (57) [applied with Φ−1 instead of Φ]. Similarly,

since f0 ∈ F0 ⊆ Cα(O) for α = 4 ∨ (2 ⌊d/4 + 1/2⌋) in (7), we may find r > 0 large enough that
‖w0‖Cα ≤ r. Writing ΠW for the law of W under the prior, (57) and (58) together imply that

Π(CN ) = Π(f ∈ F : ‖f‖Cα ≤ r, ‖f − f0‖∞ ≤ εN , ‖f − f0‖Ck ≤ εk,N for k = 1, 2, 3)

≥ ΠW (W ∈ C4(O) : 1 + ‖χW‖αCα . r, ‖χW − w0‖∞ . εN ,

(1 + rk/α)‖χW − w0‖Ck . εk,N for k = 1, 2, 3),

where the . above depend only on Φ, d, α. Under the theorem hypotheses, the last probability is
lower bounded by

ΠW (W ∈ C4(O) :‖χW − χv0,N‖Cα . r1/α, ‖χW − χv0,N‖∞ . εN ,

‖χW − χv0,N‖Ck . r−k/αεk,N for k = 1, 2, 3),

possibly after replacing r > 0 by a larger constant and then εk,N by a multiple of itself. Since χW
is a mean-zero Gaussian process under the prior, and χv0,N ∈ HχW is in its RKHS, Lemma I.27 of
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[26] lower bounds the last display by

e
− 1

2‖χv0,N‖2
HχW ΠW (W ∈ C4(O) : ‖χW‖Cα . r1/α, ‖χW‖∞ . εN , ‖χW‖Ck . r−k/αεk,N for k = 1, 2, 3).

Note that ‖χv0,N‖2
HχW

≤ Nε2N‖v0,N‖2
HV

= O(Nε2N ) using Exercise 2.6.5 of [28] and the assump-

tion on v0,N . Using the last display, that χ ∈ C∞, W = V/
√
NεN and the Gaussian correlation

inequality [51] (see Lemma A.2 in [30] for the exact formulation we use), we have

Π(CN ) ≥ e−CNε
2
NΠV (V ∈ C

4(O) : ‖V ‖Cα . r1/α
√
NεN )

×
3∏

k=0

ΠV (V ∈ C4(O) : ‖V ‖Ck . r−k/α
√
NεNεk,N ),

(59)

for some C > 0 and where above we have written ε0,N = εN . It therefore suffices to lower bound
each of the prior probabilities in (59).

For HV,1 and Hs
1 the unit balls of the RKHS HV and Hs, respectively, we have under Condition

2 that for integer k ≥ 0,

logN(HV,1, ‖ · ‖Ck , τ) ≤ logN(cHs
1 , ‖ · ‖Ck , τ) . τ−

d
s−k .

where the last inequality follows by arguing as in the proof of Theorem 4.3.36 in [28] as soon as
s − k > d/2. Applying the small ball estimate in Theorem 1.2 of [35] (in particular, (1.3) in [35]
with exponents α = 2d

2(s−k)−d and β = 0), we have for s− k > d/2,

ΠV (‖V ‖Ck ≤ η) ≥ exp
(
−cη− 2d

2(s−k)−d

)
as η → 0.

Using the last display with ηN = 1/(logN) and k = α shows that the first prior probability in (59)

is greater than or equal to e−c(log)
κ ≥ e−CNε

2
N for s > α + d/2, any fixed r > 0 and some κ > 0.

In particular, it can be checked that the minimal smoothness s∗d,a in (13) assumed in the present

theorem satisfies s∗d,a ≥ α+d/2 for any dimension d ∈ N, and hence this last condition is satisfied.

For the choice εk,N = N− s−k
2s+d , we have

√
Nε0,Nεk,N = N− s−k−d/2

2s+d → 0 for s > k+ d/2. Using the

last display with η = ηk,N = cr−k/α
√
Nε0,Nεk,N then yields

3∏

k=0

ΠV (‖V ‖Ck . r−k/α
√
NεNεk,N ) ≥

3∏

k=0

exp

(
−cη−

2d
2(s−k)−d

k,N

)
≥ exp

(
−cr 6d

(2s−6−d)αNε2N

)

taking r > 1 and using that (
√
Nε0,Nεk,N )−

2d
2(s−k)−d = N

d
2s+d = Nε2N . In particular, taking εN

a large multiple of itself if necessary, the last display is lower bounded by e−CNε
2
N for any fixed

r > 1 and s > k + d/2. Together with (59), this gives the required lower bound Π(CN ) ≥ e−CNε
2
N ,

which verifies the small-ball condition (ii) in Theorem 11.
Sieve sets: consider the condition (i) in Theorem 11. For s as in this theorem and M > 0, let

WN be the set defined in (56). For any K > 0, we can find M = M(K) > 0 sufficiently large that

ΠW (Wc
N ) ≤ e−KNε

2
N by Lemma 26. In particular, let K > C + C0K0 + 2 for C the constant in

Theorem 11 coming from the small-ball condition (ii) just proved. Define

Fn = {f = Φ(χw) : w ∈ WN},
so that Π(FcN ) ≤ e−KNε

2
N as required. Since w ∈ WN satisfies ‖w‖C4 ≤M , we have ‖Φ(χw)‖C1 ≤

Cd‖Φ‖C1(1 + ‖χ‖C1‖w‖C1) ≤ Cd,Φ,χ(1 +M) using (57). To verify the bias conditions, we invoke
Lemma 27 below with p = 2, 4,∞ to get that for all f ∈ Fn,

‖f − P Jf‖p . εN + C2−J(s−d/2+d/p−η)(M +M s) . 2−J(s−d/2+d/p−η)
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for any η > 0 when p = 4 or ∞, and η = 0 when p = 2. Therefore, since 2−Js ≃ εN , FN satisfies

FN ⊆
{
f ∈ F : ‖f‖C1 . 1, ‖f − PJf‖2 . εN , ‖f − PJf‖4 . RJ,4, ‖f − P Jf‖∞ . RJ,∞

}

for RJ,4 ≃ 2−J(s−d/4−η) ≃ N− s−d/4−η
2s+d and RJ,∞ ≃ 2−J(s−d/2−η) ≃ N− s−d/2−η

2s+d , i.e. condition (i) in
Theorem 11.

We lastly verify the numeric constraints on the sequence choices with also D = N−a, a ∈
(1/2, 1). Since f0 ∈ F0∩Cs(O), we have by similar arguments to the above that ‖f0−PJf0‖2 . εN

and ‖f0 − P Jf0‖p . RJ,p for p ∈ {4,∞}. The condition 2Jd ≃ N
d

2s+d = o(
√
ND) = o(N (1−a)/2)

is equivalent to d(1+a)
2(1−a) < s. Turning to the quantitative conditions (26), for our sequence choices

these reduce to

R4
J,4ε

2
N . Dξ4N ⇐⇒ N

a
4 −

3s/2−d/4−η
2s+d . ξN

R2
J,∞ξ

2
Nε

2
N . Dξ4N ⇐⇒ N

a
2 −

2s−d/2−η
2s+d . ξN

23Jd/2N−1 + 2Jd/2N−1/2 + 2Jd/2ε2N + εN . ξN ⇐⇒ N− 2s−d/2
2s+d +N− s

2s+d . ξN

Since s > d/2 by assumption, we finally get rate

ξN ≃ N− s
2s+d +N

a
4 −

3s/2−d/4−η
2s+d +N

a
2 −

2s−d/2−η
2s+d ,

i.e. the largest of the three conditions above. One can check that N− s
2s+d is the largest term for

s > d(1+a)
2(1−a) , a ∈ (1/2, 1) and η > 0 small enough. �

Lemma 27. For s > d/2 ∨ 1 and M > 0, let WN be the set (56). Let Φ ∈ C∞(R) be a link function,
χ ∈ C∞(O) a smooth cutoff function such that χ ≡ 1 on K and χ ≡ 0 outside O0, w ∈ WN and P J be
the projection operator (23). Then for p ∈ [2,∞], any η > 0 and w ∈ WN ,

‖Φ ◦ (χw)− P J [Φ ◦ (χw)]‖p ≤ CεN + C2−J(s−d/2+d/p−η)(M +M s),

where C depends only on Φ, χ, p, s, d, vol(O), η and the wavelet basis. If p = 2, we may further take η = 0.

Proof. Let w ∈ WN and write w = w1 + w2 as in (56). Then for any x ∈ O,

|Φ ◦ (χw)(x) − 1− PJ [Φ ◦ (χw) − 1](x)| ≤ |Φ ◦ (χw1 + χw2)(x) − Φ ◦ (χw2)(x)|
+ |Φ ◦ (χw2)(x) − 1− PJ [Φ ◦ (χw2)− 1](x)|
+ |PJ [Φ ◦ (χw2)− 1](x)− PJ [Φ ◦ (χw1 + χw2)− 1](x)|.

(60)

By the mean-value theorem, the first term in (60) is bounded by ‖Φ′‖∞‖χ‖∞‖w1‖∞. LetKJ(x, y) =
2Jd

∑
k∈Z

φ(2Jx − k)φ(2Jy − k) denote the wavelet projection kernel on all of Rd, where φ is the
Daubechies father wavelet. By the localization property of wavelets,

∫
Rd |KJ(x, y)|dy . 1 for all

x ∈ Rd. Since the full L2-projection operator P̃J : L2(Rd) → L2(Rd) onto {ψl,r : l ≤ J, r ∈ Zd}
satisfies P̃J [g](x) =

∫
Rd KJ(x, y)g(y)dy, and PJ and P̃J coincide for functions whose support is

contained in O0, the third term in (60) can be expanded as

|PJ [Φ ◦ (χw2)− 1](x)− PJ [Φ ◦ (χw1 + χw2)− 1](x)|

=

∣∣∣∣
∫

Rd

KJ(x, y)
(
Φ(χ(y)w2(y))− Φ(χ(y)w1(y) + χ(y)w2(y))

)
dy

∣∣∣∣

. ‖Φ′‖∞‖χ‖∞‖w1‖∞
∫

Rd

|KJ(x, y)|dy . ‖w1‖∞.
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Combining the bounds for (60), taking pth-powers of everything and integrating over the bounded
domain O then yields

‖Φ ◦ (χw) − 1− PJ [Φ ◦ (χw) − 1]‖pp . ‖w1‖p∞ + ‖Φ ◦ (χw2)− 1− PJ [Φ ◦ (χw2)− 1]‖pp.

Note that (60) equals zero for x 6∈ O, and hence the Lp-norms in the last display can equivalently
be considered over either O or Rd. Consider the latter, and let Btpq denote the usual Besov spaces

over Rd. Using the wavelet characterization of Besov spaces ([28], Chapter 4.3), the embedding
B0
p1(R

d) →֒ Lp(Rd) ((4.93) in [28]) and the usual decay bounds for wavelet projections, the second
term in the last equation is bounded by a constant times

‖Φ ◦ (χw2)− 1− PJ [Φ ◦ (χw2)− 1]‖p
B0

p1
. 2−Jtp‖Φ ◦ (χw2)− 1‖p

Bt
p1

for t > 0, with the obvious modifications if p = ∞. Using the embedding Hs(Rd) = Bs22(R
d) →֒

B
s−d/2+d/p−η
p1 for any p > 2 and η > 0 ([28], Proposition 4.3.10), we may set t = s− d/2 + d/p− η

in the last display and replace the Btp1-norm by an Hs-norm. Since Φ ∈ C∞(R) and s > d/2 ∨ 1,
Theorem 4(i) of [55] yields ‖Φ ◦ (χw2) − 1‖Hs . ‖χw2‖Hs + ‖χw2‖sHs . ‖w2‖Hs + ‖w2‖sHs . In
summary, for p > 2 we have

‖Φ ◦ (χw)− 1− PJ [Φ ◦ (χw) − 1]‖p . ‖w1‖∞ + 2−J(s−d/2+d/p−η)(‖w2‖Hs + ‖w2‖sHs)

for any η > 0. The case p = 2 follows similarly, but more easily. In particular, since Ht = Bt22
for t ∈ R, we may avoid the use of embeddings and thus can obtain the same result with η = 0.
Substituting in the bounds for w1 and w2 coming from the definition (56) of WN then gives the
result. �

7.3. Proof of Corollaries 4 and 5: examples of Gaussian process priors.

Proof of Corollary 4. The Matérn process on all of Rd has RKHS norm equal to ‖ · ‖HV = ‖ · ‖Hs(Rd)

([26], Chapter 11), and hence its restriction to O has RKHS norm equal to Hs(O) by Exercise 2.6.5
of [28]. Moreover, by Proposition I.4 of [26], V has a version who sample paths are in Cr(O) Π-
almost surely for any r < s − d/2. In particular, Cr(O) is a separable linear subspace of C4(O)
for any r > 4, a suitable choice of which exists as soon as s > d/2 + 4. The Matérn process thus
satisfies Condition 2 for s > d/2 + 4 since its RKHS norm equals the Hs(O)-norm.

We may therefore apply Theorem 3 to the Matérn process when f0 ∈ Cs(O). Indeed, since
w0 = Φ−1(f0) ∈ Cs(O) by (57) (which applies also to Φ−1) and supp(w0) ⊆ K , we may take the
constant sequence v0,N = w0 ∈ Hs(O) = HV , which trivially satisfies the conditions (i)-(iii) in
Theorem 3. �

Proof of Corollary 5. The Gaussian wavelet series prior (14) has RKHS equal to

HV =

{
h =

J∑

l=J0

∑

r∈Rl

hlrψlr : ‖h‖2HV
=

J∑

l=J0

∑

r∈Rl

22lsh2lr <∞
}
,

with ‖h‖HV = ∞ if h is not a truncated sum up to level J . Hence HV →֒ Hs(O) by the wavelet
characterization of L2-Sobolev norms. Draws from the prior (14) are finite sums of wavelets (ψlr),
hence V will almost surely have the same Hölder smoothness as (ψlr). Thus taking a smooth
enough wavelet basis, we have that V is supported on a separable linear subspace of C4(O),
thereby satisfying Condition 2.
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We may therefore apply Theorem 3. For f0 ∈ Cs(O), w0 = Φ−1(f0) ∈ Cs(O) by (57) (which
applies also to Φ−1) and supp(w0) ⊆ K ⊆ O0. Set

v0,N (x) =

J∑

l=J0

∑

r∈Rl

〈w0, ψlr〉2ψlr(x),

the wavelet projection at resolution level J . In particular, ‖v0,N‖HV ≃ ‖v0,N‖Hs ≤ ‖w0‖Hs < ∞.
Moreover, using that w0 = χw0 and the standard Besov space embeddings Br∞∞ →֒ Cr →֒ Br∞1

for all r ≥ 0, we have

‖w0 − χv0,N‖Ck . ‖w0 − v0,N‖Ck .

∞∑

l=J+1

2l(k+d/2) max
r∈Rl

|〈w0, ψlr〉2|

. ‖w0‖Bs
∞∞

∞∑

j=J+1

2−l(s−k) . ‖w0‖Cs2−J(s−k) . N− s−k
2s+d

since 2J ≃ N
1

2s+d . Together these verify conditions (i)-(iii) of Theorem 3, thereby giving the
desired result. �

8. HEAT KERNEL ESTIMATES IN SMALL TIME

In this section, we use various estimates for the transition densities of diffusions to study the
expectation and variance of the integrated log-likelihood process ΛNp,D in Theorem 8. For terms

near the boundary (the events (Ai,D)
c), it suffices to use upper and lower bounds of the same or-

der. Combining the upper bound from Theorem 3.2.9 of [20] with the lower bound from Theorem
3.1 of [17], one has that for x, y ∈ O, the transition densities of (Xt) generated by (1) satisfy:

(61) c−f D
−d/2 exp

(
− C−

f

|y − x|2
D

)
≤ pf,D(x, y) ≤ c+f D

−d/2 exp
(
− C+

f

|y − x|2
D

)
,

where these estimates are uniform over f ∈ CN ⊂ {f : f ≥ fmin, ‖f‖Cα ≤ r} for any positive
even integer α > d/2 − 1, see also the proof of Proposition 4 of [40]. In particular, the smallest
such integer is 2 ⌊d/4 + 1/2⌋, which is exactly the minimal smoothness assumption used to define
α = αd in (7). For the main terms in the interior of O (the events Ai,D)), we will require more
precise estimates, which are developed in Section 8.4 below.

8.1. Proof of Lemma 12. Using (61), we have

log
c−f0
c+f

− (C−
f0

− C+
f )

|y − x|2
D

≤ log
pf0,D(x, y)

pf,D(x, y)
≤ log

c+f0
c−f

− (C+
f0

− C−
f )

|y − x|2
D

,

which implies for k = 1, 2,

(
log

pf0,D(x, y)

pf,D(x, y)

)k
pf0(x, y) ≤

(
cf0,f + Cf0,f

|y − x|2k
Dk

)
D−d/2 exp

(
− C+

f0

|y − x|2
D

)

for all x, y ∈ O. Since all constants above are uniform over F′ by (61), so too are all constants
below, which will not be explicitly mentioned. For γ > 0, the region of the integral such that
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|y − x| ≥ γ
√
D logN thus satisfies

∫

x∈O\Oδ/2
0 ,|y−x|≥γ

√
D logN

(
log

pf0,D(x, y)

pf,D(x, y)

)k
pf0,D(x, y)dx dy

≤ Cf,f0D
−d/2(1 + γ2k(logN)k)N−C+

f0
γ2

.(62)

Using that log(1 + z) ≤ |z| for z ≥ −1 and (61), for k = 1,

log
pf0,D(x, y)

pf,D(x, y)
pf0,D(x, y) ≤ |pf,D(x, y)− pf0,D(x, y)|

pf0,D(x, y)

pf,D(x, y)

≤
c+f0
c−f

|pf,D(x, y)− pf0,D(x, y)| exp
(
(C−

f − C+
f0
)
|y − x|2
D

)
.

Similarly for k = 2,
(
log

pf0,D(x, y)

pf,D(x, y)

)2

≤ (pf,D(x, y)− pf0,D(x, y)
)2

min
(
pf,D(x, y), pf0,D(x, y))

2

≤
(
pf,D(x, y)− pf0,D(x, y)

)2
min(c−f , c

−
f0
)−2Dd exp

(
2max(C+

f , C
+
f0
)
|y − x|2
D

)

≤ C′
f,f0

∣∣pf,D(x, y)− pf0,D(x, y)
∣∣Dd/2 exp

(
Cf,f0

|y − x|2
D

)

using the rough bound
(
pf,D(x, y)− pf0,D(x, y)

)2 ≤
∣∣pf,D(x, y)− pf0,D(x, y)

∣∣(pf,D(x, y) + pf0,D(x, y)
)

with (61). Therefore, for y such that |y − x| ≤ γ
√
D logN , we obtain

∫

x∈O\Oδ/2
0 ,|y−x|≤γ

√
D logN

(
log

pf0,D(x, y)

pf,D(x, y)

)k
pf0,D(x, y)dx dy

≤ Cf,f0N
C′

f,f0
γ2
∫

x∈O\Oδ/2
0

‖pf,D(x, ·)− pf0,D(x, ·)‖TV dx,
(63)

where ‖ · ‖ denote total variation norm and pf,D(x,A) =
∫
A
pf,D(x, y)dy for any Borel A ⊂ O with

a slight abuse of notation. Thanks to Lemma 28 right below, the last display is then bounded by

Cf,f0,δN
C′

f,f0
γ2

exp(−cδD−1), which completes the proof.

8.2. The behaviour of the transition density near the boundary. The following lemma shows
that the transition densities for different functions in F are similar for points near the boundary.

Lemma 28. For x ∈ O \ Oδ0 and f, f0 ∈ F, it holds that

‖pf,D(x, ·)− pf0,D(x, ·)‖TV ≤ 16√
πδ
e−δ

2/(16D).

Proof. Write Pfx for the law of the solution X to (1) with conductivity f conditional on X0 = x. Let
τ = inf{t ≥ 0, Xt ∈ ∂O0} denote the hitting time of the boundary of O0. For a Borel set A ⊂ O, by
the strong Markov property,

pf,D(x,A) = Efx[1{XD∈A}1{τ>D}
]
+ Efx[pf,D−τ (Xτ ,A)1{τ≤D}

]
.
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Since x ∈ O \ Oδ0, we have

Efx[1{XD∈A}1{τ>D}
]
= Ef0x [1{XD∈A}1{τ>D}

]

since the functions f and f0 coincide on O \ O0. It follows that

(64) ‖pf,D(x, ·)− pf0,D(x, ·)‖TV ≤ 2Px(τ ≤ D).

Here, for x ∈ O \ Oδ0, the hitting time τ of the boundary of O0 by the process (x +
√
2Bt + ℓt)t≥0

has law that does not depend on f nor f0. Introduce now the two stopping times 0 ≤ S ≤ T :

S = inf{t ≥ 0, Xt ∈ ∂Oδ0}, T = inf{t ≥ S, |Xt −XS | ≥ δ},

the first hitting time of the boundary ∂Oδ0 and the first exit time of the ball of centerXS and radius
δ/2, respectively. Necessarily,

{
τ ≤ D

}
⊂
{

sup
0≤t≤D

|X(t+S)∧T −XS | = δ/2

}
.

Moreover, the process (X(t+S)∧T −XS)t≥0 has the same law as (
√
2Bt∧T )t≥0. It follows that

Px(τ ≤ D) ≤ Px

(
sup

0≤t≤D
|Bt∧T | ≥ δ/23/2

)
≤ Px

(
sup

0≤t≤D
|Bt| ≥ δ/23/2

)

≤ 4Px

(
BD ≥ δ/23/2

)
≤ 4√

2π

23/2

δ
exp

(
− δ2

16D

)
,

where the third inequality follow from the reflection principle for Brownian motion and the last
inequality from the standard Gaussian tail bound. Combining (64) with the last display proves
the lemma. �

8.3. Proof of Lemma 13. Let g = f or f0 in the notation below. For p̃g,D(x, y), an estimate of the
kind (61) is classical (see e.g. [5, 24] for diffusion processes over the whole space Rd. Using the
analogous estimate to (61), one can then argue exactly as in the proof of Lemma 12, again splitting
the integral according to whether |y − x| ≤ γ

√
D logN or not. In particular, using the analogues

of (62) and (63), one gets for k = 1, 2 and any γ > 0,

∫

x∈Oδ
0,y∈O

(
log

pg,D(x, y)

p̃g,D(x, y)

)k
pf0,D(x, y)dx dy

≤ Cg,f0D
−d/2(1 + γ2k(logN)k)N

−C+
f0
γ2

+ Cg,f0N
C′

g,f0
γ2
∫

x∈Oδ
0

‖pg,D(x, ·)− p̃g,D(x, ·)‖TV dx,

where the constants are uniform over F′, ‖ · ‖TV denotes total variation distance on Rd, and we
implicitly extend pg,D(x, ·) into a probability measure on Rd by setting pg,D(x,A) = pg,D(x,A∩O)
for any Borel set A in Rd. We claim that

(65) ‖pg,D(x, ·) − p̃g,D(x, ·)‖TV ≤ 4d exp

(
− δ2

20d‖g‖∞D

)

for x ∈ Oδ0 and any g ∈ F with D < D0(δ, ‖g‖C1) small enough. By (65) the second last display is
then bounded by

Cg,f0D
−d/2(1 + γ2k(logN)k)N−C+

f0
γ2

+ Cg,f0N
C′

g,f0
γ2

exp
(
−c|g|∞,δD−1

)
,
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which completes the proof. It thus remains to prove (65). Let x ∈ Oδ0 and τ̃ = inf{t ≥ 0, X̃t ∈ ∂O}
be the hitting time of the boundary ∂O. For any Borel set A in Rd, by the strong Markov property,

pg,D(x,A) = Eg[1{XD∈A}1{τ̃>D} |X0 = x
]
+ Eg[pg,D−τ̃ (Xτ̃ ,A ∩ O)1{τ̃≤D} |X0 = x

]

= p̃g,D(x,A)− Eg[1{X̃D∈A}1{τ̃≤D} |X0 = x
]
+ Eg[pg,D−τ̃ (Xτ̃ ,A ∩ O)1{τ̃≤D} |X0 = x

]
,

since Xt and X̃t both started at x ∈ Oδ0 at t = 0 coincide until they hit the boundary ∂O. It follows
that

‖pg,D(x, ·) − p̃g,D(x, ·)‖TV ≤ 2Pg(τ̃ ≤ D |X0 = x).

We conclude thanks to Lemma 20.

8.4. Proof of Lemma 21: approximating transition densities for small-time. We rely on a key
second-order estimate of the heat kernel in small time, associated to the metric tensor gij(x) =
f(x)−1δij induced by the diffusion matrix f(x)−1Id on Rd, viewed as a Riemannian manifold.
For x, y ∈ Rd, let

ℓf(x, y) = inf

{∫ 1

0

|γ̇t|
f(γt)1/2

dt, γ0 = x, γ1 = y

}

denote the Riemannian geodesic distance between x and y, where the infimum is taken over all
smooth paths γ : [0, 1] → Rd connecting x and y at times 0 and 1, and γ̇t is the time derivative of
γt.

Lemma 29. The following small time expansion holds:

p̃f,D(x, y) =
1

(4πD)d/2
exp

(
− 1

4D
ℓf(x, y)

2
)(
αf (x, y) + βf (x, y)D +D2Γf,D(x, y)

)
,

where

(66) ‖αf‖∞ + ‖βf‖∞ + sup
D>0

‖Γf,D‖∞ . 1,

and the ‖ · ‖∞-norm is taken for (x, y) ∈ O and the estimates are uniform over f ∈ CN . Moreover, there
exist smooth functions

α, β : R → R, αi, βi : R2 → R, αij , βij : R3 → R, αijk , βijk : R4 → R,

for 1 ≤ i, j, k ≤ d, independent of f , such that

αf (x, y) = α(f(x)) +

d∑

i=1

αi
(
f(x), ∂if(x)

)
(xi − yi)

+

d∑

i,j=1

αij
(
f(x), ∂if(x), ∂

2
ijf(x)

)
(xi − yi)(xj − yj)

+

d∑

i,j,k=1

αijk
(
f(x), ∂if(x), ∂

2
ijf(x), ∂

3
ijkf(x)

)
(xi − yi)(xj − yj)(xk − yk)

+ |x− y|4rf (x, y),(67)

where x = (x1, . . . , xd), y = (y1, . . . , yd) and the remainder term satisfies ‖rf‖∞ . 1, uniformly in
f ∈ CN with the supremum taken over (x, y) ∈ O× O. Moreover,

(68) α(f(x)) = f(x)−d/2.
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The same expansion holds for βf (except for (68)) with functions β, βi, βij , βijk and a remainder term r̃f
satisfying the same property as rf .

The existence of a small time expansion of the heat kernel in the first part of the lemma is
classical, see e.g. [11]. The robust estimates (66) follows from the main result of Azencott [6]. The
second part uses the strategy of Bilal [13] in order to mix small time and space expansions, which
is the key idea to control the density near the diagonal in small time.

Proof. Consider the Fokker-Planck equation

∂tρt + div(bfρt) =
1
2

d∑

i,j=1

∂2ij((σfσ
⊤
f )ijρt)

with initial value ρ0(dy) as a probability distribution. In our case, bf = ∇f and (σfσ
⊤
f )ij = 2fδij ,

yielding

∂tρt = ∆(fρt)− div(∇fρt) =: Dfρt,

where

Dfφ = ∆(fφ)−
d∑

i=1

∂i(∂ifφ) = f∆φ+∇f.∇φ.

Whenever existence and uniqueness hold, the solution is given by ρt(y) =
∫
O
p̃f,t(x, y)ρ0(dx),

where p̃f,t(x, y) is the Markov transition density we are looking to expand. Rewriting p̃f,t(x, y) as

f(x)−d/2Kt(x, y), this satisfies the Fokker-Planck equation if

∂tKt(x, ·) = DfKt(x, ·)
with Kt(x, y) → f(x)d/2δx(dy) weakly as t → 0. Our ansatz for the heat kernel takes the form
Kt(x, y) ∼ K0

t (x, y)
∑∞

r=0 Fr(x, y)t
r, where

K0
t (x, y) =

1

(4πt)d/2
exp

(
− ℓf(x, y)

2

4t

)

and at ∼ ∑
r≥0 brt

r means at =
∑k
r=0 brt

r + O(tk+1) It remains to find a formula for the so-

called De Witt coefficients Fr(x, y) for r = 0, 1 that is compatible with the expansion (67) via

the representation αf (x, y) = f(x)−d/2F0(x, y) and βf (x, y) = f(x)−d/2F1(x, y), and we can then
conclude with Azencott’s result. Define now the operators

Afφ = (2f∇ℓ2f) · ∇φ+
(
f∆ℓ2f − 2d+∇f · ∇ℓ2f

)
φ,(69)

Bfφ = 4∆φ+ 2d∇f∇φ.(70)

Following Bilal [13], we have a recursion formula that gives F0 and F1 as solutions of the follow-
ing system of differential equations (in the y variable)

AfF0 = 0, (Af + 8)F1 = BfF0, F0(x, x) = 1.

We further expand Fr(x, y), r = 0, 1, via

Fr(x, y) = ar(x) +

d∑

i=1

bi,r(x)(x
i − yi) +

d∑

i,j=1

cij,r(x)(x
i − yi)(xj − yj)

+

d∑

i,j,k=1

dijk,r(x)(x
i − yi)(xj − yj)(xk − yk) +O(|x − y|4),
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for smooth functions ar, br, cr and dr. An inspection of (69) and (70) shows that after a suitable
asymptotic expansion of ∇ℓ2f and ∆ℓ2f around x in the y variable, the symbols of Af and Bf only

involve smooth local functions of f(x), ∂if(x), ∂
2
ijf(x) and ∂3ijkf(x) with increasing differentiation

order. This implies

ar(x) = ãr(f(x)), bi,r(x) = b̃i,r
(
f(x), ∂if(x)

)
,

cij,r(x) = c̃r
(
f(x), ∂if(x)), ∂

2
ijf(x)

)
, dijk,r(x) = d̃r,ijk

(
f(x), ∂if(x), ∂

2
ijf(x), ∂

3
ijkf(x)

)

for smooth functions ãr, b̃r, c̃r and d̃r and proves the lemma. �

Completion of the proof of Lemma 21. Using Lemma 29, and a first-order Taylor’s expansion, write

log
p̃f0,D(x, y)

p̃f,D(x, y)
= − 1

4D
(ℓf0(x, y)

2 − ℓf (x, y)
2) + log

αf0(x, y)

αf (x, y)

+
(βf0(x, y)
αf0(x, y)

− βf (x, y)

αf (x, y)

)
D +D2Γ′

f0,f,D(x, y),(71)

where supf∈CN
supD>0 ‖Γ′

f0,f,D
‖∞ . 1, thanks to (66), (68) and f(y) ≥ fmin > 0 on O. The linear

term in D can be rewritten as

βf0(x, y)

αf0(x, y)
− βf (x, y)

αf (x, y)
=
βf0(x, y)− βf (x, y)

αf0(x, y)
+ (αf (x, y)− αf0(x, y))

βf (x, y)

αf0 (x, y)αf (x, y)
.

Using (67),

αf (x, y)− αf0(x, y) = α(f(x)) − α(f0(x))

+

d∑

i=1

(
αi
(
f(x), ∂if(x)

)
− αi

(
f0(x), ∂if0(x)

))
(xi − yi)

+ |x− y|2r′f0,f (x, y),

with ‖r′f0,f‖∞ ≤ C(‖f‖C3 , ‖f0‖C3). Using the same inequality for βf (x, y) − βf0(x, y) and that

α, β, αi, βi and αij , βij are smooth,

|αf (x, y)− αf0(x, y)|+ |βf (x, y)− βf0(x, y)| . ‖f − f0‖∞ + ‖f − f0‖C1 |x− y|+ |x− y|2,

with the constant depending only on an upper bound for ‖f‖C3 and ‖f0‖C3 . Using the expan-
sion for αf (x, y) in Lemma 29, (68) and that f ≥ fmin, we have that αf (x, y), αf0(x, y) ≥ c > 0,
uniformly over CN . It follows that

(72)

∣∣∣∣
βf0(x, y)

αf0(x, y)
− βf (x, y)

αf (x, y)

∣∣∣∣ ≤
(
‖f − f0‖∞ + ‖f − f0‖C1 |x− y|+ |x− y|2

)
r′′f,f0 (x, y),

with supf∈CN
‖r′′f,f0‖∞ . 1.

Next, writing α̃f (x, y) = f(y)d/2αf (x, y) and α̃f0 (x, y) = f0(y)
d/2αf (x, y),

log
αf0(x, y)

αf (x, y)
=
d

2
log

f(x)

f0(x)
+ log α̃f0(x, y)− log α̃f (x, y).(73)
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Using the expansion (67),

α̃f (x, y) = 1 +

d∑

i=1

α̃i
(
f(x), ∂if(x)

)
(xi − yi)

+

d∑

i,j=1

α̃ij
(
f(x), ∂if(x), ∂

2
ijf(x)

)
(xi − yi)(xj − yj)

+

d∑

i,j,k=1

α̃ijk
(
f(x), ∂if(x), ∂

2
ijf(x), ∂

3
ijkf(x)

)
(xi − yi)(xj − yj)(xk − yk)

+ |x− y|4r′f (x, y)

where similarly α̃λf (y) = f(y)d/2αλ(y) for λ = i, ij, ijk and αλ(y) are the smooth functions given
in (67) that do not depend on f or f0. For notational simplicity, using only a subscript to indicate
the dependence on f and setting z = x− y, the above expansion can be concisely written as

α̃f = 1 +
∑

i

α̃ifz
i +
∑

ij

α̃ijf z
izj +

∑

ijk

α̃ijkf zizjzk +O(|z|4).

Expanding the logarithm around z = 0 to order 3,

log α̃f =
∑

i

α̃if z
i +
∑

ij

α̃ijf z
izj +

∑

ijk

α̃ijkf zizjzk +O(|z|4)

− 1

2

(∑

i

α̃ifz
i +
∑

ij

α̃ijf z
izj +

∑

ijk

α̃ijkf zizjzk +O(|z|4)
)2

+
1

3

(∑

i

α̃ifz
i +
∑

ij

α̃ijf z
izj +

∑

ijk

α̃ijkf zizjzk +O(|z|4)
)3

+O(|z|4)

Keeping track of only the leading order terms, the quadratic term in the last display equals

∑

ij

(α′
f )
ijzizj +

∑

ijk

(α′′
f )
ijkzizjzk +O(|z|4),

with (α′
f )
ij = α̃if α̃

j
f and (α′′

f )
ijk = α̃if α̃

jk
f . Likewise, the cubic term equals

∑
ijk(α

′′
f )
ijkzizjzk +

O(|z|4) with (α′′
f )
ijk = α̃if α̃

j
f α̃

k
f . Therefore,

log α̃f =
∑

i

ᾱifz
i +
∑

ij

ᾱijf z
izj +

∑

ijk

ᾱijkf zizjzk +O(|z|4),

with ᾱif = α̃if , ᾱijf = α̃ijf − 1
2 α̃

i
f α̃

j
f and ᾱijkf = α̃ijkf − 1

2 α̃
i
f α̃

jk
f + 1

3 α̃
i
f α̃

j
f α̃

k
f . Set now

γif0,f (x) = ᾱif
(
f(x), ∂if(x)

)
− ᾱif0

(
f0(x), ∂if0(x)

)
,

γijf0,f (x) = ᾱijf
(
f(x), ∂if(x), ∂

2
ijf(x)

)
− ᾱijf0

(
f0(x), ∂if0(x), ∂

2
ijf0(x)

)
,

γijkf0,f (x) = ᾱijkf
(
f(x), ∂if(x), ∂

2
ijf(x), ∂

3
ijkf(x)

)
− ᾱijkf0

(
f0(x), ∂if0(x), ∂

2
ijf0(x), ∂

3
ijkf(x)

)
,
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where we recall α̃λf (y) = f(y)d/2αλ(y). This gives the expansion

log
α̃f0(x, y)

α̃f (x, y)
=

d∑

i=1

γif0,f(x)(x
i − yi) +

d∑

i,j=1

γijf0,f (x)(x
i − yi)(xj − yj)

+

d∑

i,j,k=1

γijkf0,f (x)(x
i − yi)(xj − yj)(xk − yk) + |x− y|4r̃f0,f (x, y),(74)

where ‖r̃f0,f‖∞ . 1 is uniform over an upper bound for ‖f‖C4 and ‖f0‖C4 . By triangle inequality,

‖γif0,f‖∞ . ‖fd/2 − f
d/2
0 ‖∞ + ‖f − f0‖C1 . ‖f − f0‖C1 ,

since f, f0 ≥ fmin and where the constants in the inequality depend only on fmin and an upper

bound for ‖f‖C1 and ‖f0‖C1 . Using similar expressions for ‖γijf0,f‖∞ and ‖γijkf0,f‖∞, we infer

∣∣∣
d∑

i,j=1

γijf0,f(x)(x
i − yi)(xj − yj) +

d∑

i,j,k=1

γijkf0,f (x)(x
i − yi)(xj − yj)(xk − yk)

∣∣∣

. ‖f − f0‖C2 |x− y|2 + ‖f − f0‖C3 |x− y|3,(75)

again uniformly over |f |C4 and |f0|C4 . Hence, combining (71), (72), (73), (74) and (75), we obtain

log
p̃f0,D(x, y)

p̃f,D(x, y)
1{x∈Oδ

0}

=
(
− 1

4D
(ℓf0(x, y)

2 − ℓf (x, y)
2)− d

2
log

f0(x)

f(x)

)
1{x∈Oδ

0}

+ γf0,f (x) · (y − x)1{x∈O
δ/2
0 }

+
(
‖f − f0‖∞D + ‖f − f0‖C1 |y − x|D + |y − x|2D + ‖f − f0‖C2 |y − x|2

+ ‖f − f0‖C3 |y − x|3 + |y − x|4
)
rf0,f (x, y),

with supf∈CN
‖rf0,f‖∞ . 1. With a slight abuse of notation, we may incorporate the term 1{x∈Oδ

0}
into the definition of γf0,f (x). The final step is to expand the Riemannian metric ℓf .

Lemma 30. We have

ℓf (x, y)
2 =

|x− y|2
f(x)

+
1

2
|x− y|2∇f−1(x) · (x− y) + |x− y|4rf (x, y),

where supf∈CN
‖rf‖∞ . 1.

Proof. This is textbook Riemannian geometry, see for instance in Appendix B in Bilal [13], the
uniformity in f ∈ CN being straighforward. �

Combining Lemma 30 with the expansion just derived completes the proof of Lemma 21.

9. APPENDIX

9.1. Proof of Theorem 7: minimax lower bound. We go along a classical scheme via the usual
Assouad cube technique, see for instance Tsybakov [60].

Step 1: Pick a cube [c1, c2]
d ⊂ K and a smooth wavelet ψ with compact support on R. Set ψJ,k =

2J/2ψ(2J · −k) and denote by KJ ⊂ Z a maximal set of indices k such that supp(ψJk) ⊂ [c1, c2] for
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all k ∈ KJ , and supp(ψJk)∩ supp(ψJk′ ) = ∅ for every k, k′ ∈ KJ with k 6= k′. For ℓ = (ℓ1, . . . , ℓd) ∈
(KJ)

d, set

ψJ,(ℓ1,...,ℓd)(x) =

d∏

i=1

ψJℓi(x
i), x = (x1, . . . , xd) ∈ O,

so that supp(ψJ,(ℓ1,...,ℓd)) ⊂ [c1, c2]
d and supp(ψJ,(ℓ1,...,ℓd))∩ supp(ψJ,(ℓ′1,...,ℓ′d)) = ∅ for (ℓ1, . . . , ℓd) 6=

(ℓ′1, . . . , ℓ
′
d) in (KJ)

d. For ε = (ε(ℓ1,...,ℓd) : ℓ1, . . . , ℓd ∈ KJ) ∈ {−1, 1}|KJ|d , we set

fε(x) = 1 + γ
∑

(ℓ1,...,ℓd)∈(KJ )d

ε(ℓ1,...,ℓd)ψJ(ℓ1,...,ℓd)(x), ε(ℓ1,...,ℓd) ∈ {−1, 1}.

Taking γ ≃ N−1/2 and 2J ≃ N1/(2s+d), we have fε ∈ F0∩{f : ‖f‖Cs ≤M} by choosing prefactors
sufficiently small to accomodate constants.

Step 2: For an arbitrary estimator f̂N , we repeat the classical argument to bound the maximal L2

risk. We have

sup
f∈F0∩{f :‖f‖Cs≤M}

Ef‖f̂N − f‖22 ≥ max
ε∈{−1,1}|KJ |d

Efε‖f̂N − fε‖22

≥ 1

2|KJ |d
∑

(ℓ1,...,ℓd)∈(KJ )d

∑

ε∈{−1,1}|KJ |d

∫

supp(ψJ(ℓ1,...,ℓd))

Efε |f̂N (x)− fε(x)|2dx.

For a given configuration (ℓ1, . . . , ℓd), we write ε = (ε̌(ℓ1,...,ℓd), ε(ℓ1,...,ℓd)) ∈ {−1, 1}|KJ |d with

ε̌(ℓ1,...,ℓd) ∈ {−1, 1}|KJ|d−1 and ε(ℓ1,...,ℓd) ∈ {−1, 1}, possibly after reordering. It follows that

∑

ε∈{−1,1}|KJ |d

∫

supp(ψJ(ℓ1,...,ℓd))

Efε |f̂N (x)− fε(x)|2dx

=
∑

ε̌(ℓ1 ,...,ℓd)∈{−1,1}|KJ |d−1

∫

supp(ψJ(ℓ1,...,ℓd))

(
Ef(ε̌(ℓ1 ,...,ℓd),+1)

|f̂N (x)− f(ε̌(ℓ1,...,ℓd),+1)(x)|2

+ Ef(ε̌(ℓ1 ,...,ℓd),−1)
|f̂N (x)− f(ε̌(ℓ1,...,ℓd),−1)(x)|2

)
dx

≥ 1
2

∑

ε̌(ℓ1 ,...,ℓd)∈{−1,1}|KJ |d−1

∫

supp(ψJ(ℓ1,...,ℓd))

∣∣f(ε̌(ℓ1,...,ℓd),+1)(x) − f(ε̌(ℓ1,...,ℓd),−1)(x)
∣∣2dx

× e−ρ
(
1− (1 − e−ρ)−1‖Pf(ε̌(ℓ1,...,ℓd),1)

− Pf(ε̌(ℓ1,...,ℓd),−1)
‖TV

)

for any ρ > 0, as follows by triangle inequality and classical information bounds, see e.g. [31]
Section 5. From∫

supp(ψJ(ℓ1,...,ℓd))

∣∣f(ε̌(ℓ1,...,ℓd),+1)(x) − f(ε̌(ℓ1,...,ℓd),−1)(x)
∣∣2dx = 4γ2‖ψJ(ℓ1,...,ℓd)‖22 ≃ γ2,

we infer

sup
f∈F0∩{f :‖f‖Cs≤M}

Ef‖f̂N − f‖22 & 2Jdγ2 ≃ N−2s/(2s+d)

by taking ρ sufficiently large and using |KJ | & 2J , provided the total variation is bounded away
from 1 uniformly in ε.
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Step 3: Write gε = f(ε̌(ℓ1,...,ℓd),1) and hε = f(ε̌(ℓ1,...,ℓd),−1). It remains to bound

‖Pgε − Phε‖2TV ≤ 2Egε

[
log

dPgε
dPhε

]
= 2NEgε

[
log

pgε,D(X0, XD)

phε,D(X0, XD)

]

by Pinsker’s inequality and the fact that the diffusion is stationary for the last equality. We plan

to apply a slight modification of Theorem 8 having εN = N−1/2 for subsets CN of the form ‖f −
f0‖2 ≤ εN and ‖f − f0‖∞ → 0, the rest being unchanged. This is simply done by revisiting Step 1
in the proof of Proposition 17. Indeed, it suffices to notice that

Ef0

[
log

f0(X(i−1)D)

f(X(i−1)D)
−
(f0(X(i−1)D)

f(X(i−1)D)
− 1
)]

. ‖f0 − f‖22

for ‖f − f0‖∞ sufficiently small, using that X(i−1)D is uniformly distributed. This is the case for
f0 = gε and f = hε. In turn, we check that under the sampling assumption D = N−a with
1/2 < a < 1, we have EN . N−1. The result follows.

9.2. Proof of Theorem 10. If f ∈ F0 and ‖f‖Cs ≤ M , we have 0 ≤ f(x) ≤ M for every x ∈ O. By

construction, we also have 0 ≤ f̂⋆N(x) ≤M for every x ∈ O. It follows that

Ef‖f̂⋆N − f‖22 ≤ Ef [‖f̂⋆N − f‖221BN ] + 2M2Pf (B
c
N ),

where BN is the event in (44). A glance at the proof of Lemma 22 shows that we in fact have the
rate

sup
f∈F

Pf (B
c
N ) . e−2Jd

. N−1,

hence the second term has a negligible order. Next, |f̂⋆N (x)− f(x)| = |min(f̂N (x),M)+ − f(x)| ≤
|f̂N (x)− f(x)| since 0 ≤ f(x) ≤M . Therefore,

Ef [‖f̂⋆N − f‖221BN ] ≤ Ef [‖f̂N − f‖221BN ] . ‖f − P Jf‖2L2 + Ef [‖f̂N − P Jf‖2L21BN ],

where P Jf denotes the projection (23). The first term is of order 2−2Js ≃ N−2s/(2s+d) by wavelet
approximation since the Daubechies wavelet has at least ⌊s⌋−1 vanishing moments, and thus has
the right order. The second term also has the right order as a direct consequence of Theorem 9.

9.3. Proof of Lemma 19. Set

Yt = X0 +

∫ t

0

∇f(Xs)ds+

∫ t

0

√
2f(Xs)dBs.

Then (X, ℓ) is solution of the Skorokhod problem for (O, n, Y ) since

Xt = Yt +

∫ t

0

n(Xs)dℓs,

and the Skorokhod mapping: Γ : Y 7→ X = ΓY is uniquely defined see e.g. Lions and Sznitman
[37]. Moreover, we have Ωδ(ΓY ) ≤ Ωδ(Y ), where

Ωδ(ψ) = sup
0≤s,t≤T,|t−s|≤δ

|ψ(t)− ψ(s)|

denotes the modulus of continuity of ψ : [0, T ] → Rd, so that it suffices to prove (32) for Y instead
of X . We bound the first term by

sup
s≤u≤t

∣∣∣
∫ u

s

∇f(Xv)dv
∣∣∣
p

≤ ‖f‖p
C1(t− s)p.
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For the second term, we apply the Burkholder-Davis-Gundy inequality to obtain

Ef

[
sup
s≤u≤t

∣∣∣∣
∫ u

s

√
2f(Xv)dBv

∣∣∣∣
p ∣∣∣∣Fs

]
≤ Cpd

p/2Ef

[∣∣∣∣
∫ t

s

f(Xu)du

∣∣∣∣
p/2 ∣∣∣∣Fs

]

≤ Cp,d‖f‖p/2∞ (t− s)p/2.

9.4. Proof of Lemma 20. Consider the process (X̃t)t≥0 defined in (28). On Ai,D, the two paths

(Xt − X(i−1)D)t≥(i−1)D and (X̃t − X(i−1)D)t≥(i−1)D coincide for t − (i − 1)D ≤ τi,D . Using that

dist(Oδ0, ∂O) ≥ δ/2, it follows that

Pf0(τi,D ≥ D,Ai,D) ≤ Pf0

(
sup

0≤t≤D
|X̃(i−1)D+t −X(i−1)D|2 > δ

2 , X(i−1)D ∈ Oδ0

)

≤ sup
x∈Oδ

0

Pf0

(
sup

0≤t≤D
|X̃t − x|2 > δ

2 |X0 = x
)
,

by the Markov property. By Itô’s formula, we further have

sup
0≤t≤D

|X̃t − x|2 ≤ 2D2
d∑

i=1

‖f0‖2C1 + 2 sup
0≤t≤D

∣∣∣
∫ t

0

(
2f0(X̃s)

)1/2
dBs

∣∣∣
2

,

and hence

Pf0

(
sup

0≤t≤D
|X̃t − x|2 ≥ 1

4δ
2 |X0 = x

)
≤ Pf0

(
sup

0≤t≤D
|Mt(g)|2 ≥ 1

4δ
2 − CfD

2 |X0 = x
)

≤ Pf0

(
sup

0≤t≤D
|Mt(f0)|2 ≥ 1

5δ
2 |X0 = x

)

for small enough D, where Mt(f0) =
∫ t
0 (2f0(X̃s))

1/2dBs is a d-dimensional martingale with pre-

dictable bracket 〈Mif0,M
j(f0)〉t = 2

∫ t
0 f0(X̃s)dsδij ≤ 2‖f0‖∞t δij . It follows that for any x ∈ Oδ0:

Pf0

(
sup

0≤t≤D
|X̃t − x|2 ≥ 1

4δ
2 |X0 = x

)
≤

d∑

i=1

Pf0
(

sup
0≤t≤D

|Mi
t(f0)| ≥ 1√

5d
δ |X0 = x

)

≤ 2d exp
(
− δ2

20d‖f0‖∞D
)
,

where we have used Bernstein’s inequality for continuous local martingale (Mt)t≥0:

P
(

sup
0≤s≤t

Ms ≥ x, 〈M〉t ≤ y
)
≤ e−x

2/(2y)

(see e.g. [50] p.154).

9.5. A generic chaining inequality and the event BN . In several places, we require the following
concentration inequality, which is based on a chaining argument for stochastic processes with
mixed tails, see Theorem 2.2.28 in [58] or Theorem 3.5 in [23].

Lemma 31. Let S ⊂ L2(O) be a finite-dimensional linear space with dimension dim(S) = m < ∞. Let
Z = (Z(g) : g ∈ G) be a stochastic process with index set G ⊂ S satisfying ‖G‖2 = supg,h∈G ‖g − h‖2 <
∞. Suppose that Z satisfies for all g, h ∈ G and t ≥ 0,

P (|Z(g)− Z(h)| ≥ t) ≤ C exp

(
− ct2

α2‖g − h‖22 + β‖g − h‖2t

)
,
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where C, c, α, β > 0. Then for any g0 ∈ G and all u ≥ 1,

P

(
sup
g∈G

|Z(g)− Z(g0)| ≥ K
(
mβ +

√
mα+ βu+ α

√
u
)
‖G‖2

)
≤ e−u,

where K depends only on C and c.

Proof. Let (ek : 1 ≤ k ≤ m) be an L2-orthonormal basis for S. After rearranging, the Bernstein
inequality implies that for C1, C2 > 0 large enough, depending only on C and c,

P
(
|Z(g)− Z(h)| ≥ C1βu‖g − h‖2 + C2α

√
u‖g − h‖2

)
≤ 2e−u

holds for all u ≥ 0. The process Z therefore has a mixed tail as in (3.8) of Dirksen [23] with respect
to the metrics

d1(g, h) = C1β‖g − h‖2 = C1β|〈g − h, ek〉2|Rm ,

d2(g, h) = C2α‖g − h‖2 = C2α|〈g − h, ek〉2|Rm ,

where the last equalities follow from Parseval’s theorem and | · |Rm is the Euclidean norm on
Rm. The d1- and d2-diameters of G are therefore bounded by ∆d1(G) ≤ C1β‖G‖2 and ∆d2(G) ≤
C2α‖G‖2, respectively. Theorem 3.5 of [23] thus yields that for absolute constants C′, c′ > 0 and
any u ≥ 1,

P

(
sup
g∈G

|Z(g)− Z(g0)| ≥ C′γ1(G, d1) + C′γ2(G, d2) + c′C1β‖G‖2u+ c′C2α‖G‖2
√
u

)
≤ e−u,

where γ1, γ2 are the ‘generic chaining functionals’ defined in [23]. In particular, (2.3) of [23] gives

the estimate γα(G, di) ≤ C(α)
∫∞
0

(logN(G, di, ε))
1/αdε, where N(G, di, ε) denotes the covering

number of the set G, i.e. the smallest number of di-balls of radius ε needed to cover G. Since G ⊂ S
and S is a finite-dimensional linear space, the second-last display implies that

N(G, d1, ε) ≤ N({x ∈ Rm : |x|Rm ≤ ‖G‖2}, C1β| · |Rm , ε),

and likewise for d2. Using for instance Proposition 4.3.34 in the textbook [28] to bound the log-
covering number of a ball in finite-dimensional Euclidean space,

γ1(G, d1) .

∫ ∞

0

logN({x ∈ Rm : |x|Rm ≤ ‖G‖2}, C1β| · |Rm , ε)dε

≤
∫ ∆d1

(G)

0

m log

(
3∆d1(G)

ε

)
dε = m∆d1(G)

∫ 1

0

log(3/u)du . mC1β‖G‖2.

Similarly,

γ2(G, d2) .

∫ ∆d2
(G)

0

√
m log

(
3∆d2(G)

ε

)
dε =

√
m∆d2(G)

∫ 1

0

√
log(3/u)du .

√
mC2α‖G‖2.

Substituting these bounds into the exponential inequality derived above then gives the result. �
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9.6. Proof of Lemma 22. We have

Pf(B
c
N ) ≤ Pf

(
∃g ∈ VJ : (1− κ)‖g‖22 > |g|2N

)
+ Pf

(
∃g ∈ VJ : |g|2N > (1 + κ)‖g‖22

)

= Pf
(
∃g ∈ VJ : ‖g‖2 = 1, 1− κ > |g|2N

)
+ Pf

(
∃g ∈ VJ : ‖g‖2 = 1, |g|2N > 1 + κ

)

≤ 2Pf

(
sup

g∈VJ :‖g‖2=1

∣∣|g|2N − 1
∣∣ > κ

)

= 2Pf

(
sup

g∈VJ :‖g‖2=1

∣∣∣∣∣

N∑

i=1

(
g(XiD)

2 − Ef [g(XiD)
2]
)
∣∣∣∣∣ > κN

)
(76)

since Ef [g(XiD)
2] =

∫
O
g(x)2dx = 1 by stationarity. Write GJ = {g ∈ VJ : ‖g‖2 = 1} and define

the process ZN = (ZN (g) : g ∈ GJ ) by

ZN(g) =

N∑

i=1

(
g(XiD)

2 − Ef [g(XiD)
2]
)
.

For g, h ∈ GJ , we have Ef [g(XiD)
2 − h(XiD)

2] = 0 and Varf (g(XiD)
2 − h(XiD)

2) = ‖g2 − h2‖22.
Since (X0, XD, . . . , XND) is a stationary reversible Markov chain whose spectral gap is lower
bounded by rD by (9), Theorem 3.3 of [44] (cf. (3.21)) yields yields

Pf
(
|ZN(g)− ZN (h)| ≥ t

)
= Pf

(∣∣∣∣∣

N∑

i=1

g(XiD)
2 − h(XiD)

2

∣∣∣∣∣ ≥ t

)

≤ 2 exp

(
− λfDt

2

4N‖g2 − h2‖22 + 10‖g2 − h2‖∞t

)

≤ 2 exp

(
− λfDt

2

4N‖g + h‖2∞‖g − h‖22 + 10‖g + h‖∞‖g − h‖∞t

)

≤ 2 exp

(
− Ct2

N2JdD−1‖g − h‖22 + 2JdD−1‖g − h‖2t

)

using that ‖g‖∞ ≤ C2Jd/2‖g‖2 = C2Jd/2 for g ∈ GJ , and where C depends on r, and hence fmin

and O by (9). Applying Lemma 31 with m = dim(VJ ) = O(2Jd), ‖GJ‖2 = supg,h∈G ‖g − h‖2 ≤ 2,

α2 = N2JdD−1, β = 2JdD−1 and u = 2Jd thus gives

Pf

(
sup
g∈GJ

|ZN (g)| ≥ C
(
22JdD−1 + 2JdN1/2D−1/2

))
≤ e−2Jd → 0

since 2J → ∞ as N → ∞. Since 2Jd = by assumption, the right-hand side within the last proba-
bility is o(N) as N → ∞. Together with (76) this gives the result.
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cations. Trans. Amer. Math. Soc. 348, 2 (1996), 503–520.

[17] COULHON, T. Off-diagonal heat kernel lower bounds without Poincaré. J. London Math.
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