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SPECTRAL DECONVOLUTION OF MATRIX MODELS: THE ADDITIVE

CASE

PIERRE TARRAGO

Abstract. We implement a complex analytic method to build an estimator of the spectrum
of a matrix perturbed by the addition of a random matrix noise in the free probabilistic regime.
This method, which has been previously introduced by Arizmendi, Tarrago and Vargas, is done
in two steps: the first step consists in a fixed point method to compute the Stieltjes transform of
the desired distribution in a certain domain, and the second step is a classical deconvolution by
a Cauchy distribution, whose parameter depends on the intensity of the noise. We thus reduce
the spectral distribution problem to a classical one. We also provide explicit bounds for the
mean squared error of the first step under the assumption that the distribution of the noise is
unitary invariant. In the case where the unknown measure is sparse, we prove that the resulting
estimator converges to the desired measure at speed O(1/

√
N) in the 1-Wasserstein distance,

where N is the dimension of the matrix.

1. Introduction

Recovery of data from noisy signal is a recurrent problem in many areas of mathematics
(geology, wireless communication, finance, electroencephalography...). From a statistical point
of view, this can be seen as the recovery of a probability distribution from a sample of the
distribution perturbed by a noise. In the simplest case, the perturbation is the addition of a
random noise independent from the signal, and the process of recovering the original probability
distribution from a noisy one is called deconvolution. In [Fan91, Fan92], Fan presented a first
general approach to the deconvolution of probability distributions, which allowed to both recover
the original data and to get a bound on the accuracy of the recovery. Since this seminal paper,
several progresses have been made towards a better understanding of the classical deconvolution
of probability measures, see for example [Lac06] in the density case or [DP17] in the atomic
setting.

We are interested in the broader problem of the recovery of data in a non-commutative
setting. Generally speaking, we are given a matrix g(A,B), which is an algebraic combination
of a possibly random matrix B representing the data we want to recover and a random matrix
A representing the noise, and the goal is to recover the matrix B. Taking A and B diagonals
and independent with entries of each matrix iid and considering the case g(A,B) = A + B is
equivalent to the classical deconvolution problem. This non commutative generalization has
already seen many applications in the simplest cases of g being the addition or multiplication
of matrices, [BBP17, LW04, BABP16]. Yet, the recovery of B is a complicated process already
in those situations and we propose to address the additive case in the present manuscript: we
provide a method to recover the spectral distribution of B, and we give precise bounds on the
accuracy of the method in the case where this distribution is sparse.

Let us first discuss some important theoretical aspects of the non-commutative setting. A
first difference with the classical case is the notion of independence. In the classical case,
independence is a fundamental hypothesis in the success of the deconvolution, which allows to
translate sum of random variables into convolution of distributions. In the non-commutative
setting, one can generally consider two main hypotheses of independence: either the entries of A
and B are assumed to be independent and the entries of A are assumed iid (up to a symmetry
if A is self-adjoint), or the distribution of the noise matrix A is assumed to be invariant by
unitary conjugation. Both notions generally yield similar results but require different tools. In
this paper, we focus on the second hypothesis of a unitary invariant noise, which has already
been studied in [BABP16, BGEM19, LP11]. Note that in the case of Gaussian matrices with
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independent entries, the hypothesis of unitary invariance of the distribution is also satisfied, and
both notions of independence coincide. The results of the present paper extend of course to the
case of orthogonal invariant noises, up to numerical constants.

The second question is the scope of the deconvolution process: assuming B is self-adjoint,
a perfect recovery of B would mean the recovery of both its eigenvalues and its eigenbasis.
However, when the noise is unitary invariant, the recovery of the eigenbasis is almost impossible
due to the delocalization phenomenon [Kar15, BES17]. Indeed, in general all eigenvectors of the
received matrix A + B have all coordinates having a same order of magnitude in the basis of
eigenvectors of A, which prevents from guessing the latter. On the contrary, we will show that it
is always possible to recover, to some extent, the eigenvalues of B, with an accuracy improving
when the size of the matrices grows. In some cases, obtaining the spectrum of B is a first step
towards a better recovery of B. This is the main approach of [LP11] in the case of a multiplicative
noise to estimate large covariance matrices, which has led to the successful shrinkage method of
[LW04, LW15]. This method has been generalized in [BABP16, BGEM19] to provide a general
method to build estimators of the matrix B in the additive and multiplicative case when the
distribution of the noise matrix A is assumed unitary invariant: once again, this approach uses
the knowledge of the spectral distribution of B as an oracle, and the missing step of the latter
method is precisely a general way of estimating the spectral distribution of B.

In the classical deconvolution, the known fact that the Fourier transform of the convolution
of two probability measures is the product of the Fourier transform of both original measures
has been the starting point of the pioneering work of Fan [Fan91]. Indeed, apart from definition
issues, one can see the classical deconvolution as the division of the Fourier transform of the
received signal by the Fourier transform of the noise. In the non-commutative setting, there is
no close formula describing the spectrum of algebraic combination of finite size matrices, which
prevents any hope of concrete formulas in the finite case. However, as the size goes to infinity,
the spectral properties of algebraic combinations of independent random matrices is described
by the theory of free probability introduced by Voiculescu [Voi91]. In particular, the spectral
distribution of the sum of independent unitary invariant random matrices is closed to the so-
called free additive convolution of the spectral distributions of each original matrix. Based on
this theory and complex analysis, the subordination method (see [Bia98, Bel05, BB07, Voi00,
BMS17]) provides us tools to compute very good approximations of the spectrum of sums of
independent random matrices in the same flavor as the multiplication of the Fourier transforms
in the classical case.

In [ATV17], Arizmendi, Vargas and the author developed an approach to the spectral decon-
volution by inverting the subordination method. This approach showed promising results on
simulations, and the goal of this paper is to show theoretically that it successfully achieves the
spectral deconvolution of random matrix models in the additive case. We also provide first con-
centration bounds on the result of the deconvolution, in the vein of Fan’s results on the classical
deconvolution [Fan91]. A companion paper [Tar] proves similar result in the multiplicative case.
In his first two papers dealing with deconvolution, Fan already noted that the accuracy of the
deconvolution greatly worsens as the noise gets smoother, and improves with the smoothness
of the unknown distribution. This can be seen at the level of the Fourier transform approach.
Indeed, the Fourier transform of a smooth noise is rapidly decreasing to zero at infinity and
thus the convolution with a smooth noise sets the Fourier transform of the original distribution
exponentially close to zero for higher modes, acting as a low-pass filter. When the original
distribution has non-trivial higher modes, it is thus extremely difficult to recover those higher
frequencies in the deconvolution, which translates into a poor concentration bound on the ac-
curacy of the process. When the original distribution is also very smooth, those higher modes
do not contribute to the distribution and thus the recovery is still accurate. In the supersmooth
case where the Fourier transform of the noise is decreasing exponentially to zero at infinity,
the accuracy is logarithmically decreasing with the size of the sample, except when the original
distribution is also supersmooth [Lac06].

In [BB04], Belinschi and Bercovici proved that the free additive and multiplicative convolu-
tions of probability measures are always analytic, except at some exceptional points. As the
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spectral deconvolution is close to reversing a free convolution, we should expect the behavior of
the spectral convolution to be close to the ultrasmooth case of Fan. This phenomenon appears

in the method proposed in [ATV17], which first builds an estimator ĈB of the convolution CB of
the desired distribution with a certain Cauchy distribution, and then achieve the classical de-

convolution of ĈB by this Cauchy distribution, which is a supersmooth. Therefore, the accuracy
of the spectral deconvolution method should be approximately the one of a deconvolution by a
Cauchy transform. We propose then to measure the accuracy of the method by two main quan-
tities: the parameter of the Cauchy transform involved in the first step of the deconvolution,
and the size of the matrices. We show that the parameter of the Cauchy transform, which gives
the range of Fourier modes we can recover, depends mainly on the intensity of the noise, while
the precision of the recovery of CB depends on the size N of the matrices. This is similar to the
situation in the classical case [Fan91], where the size of the matrices is replaced by the size of the
samples. The concentration bounds we get for the estimator of CB in the additive case depend
on the first six moments of the spectral distribution of A and B. Parallel to our work, Mäıda
et al. [MNN+20] have successfully used the method from [ATV17] to study the backward free
Fokker-Planck equation. In the course of their study, they also managed to improve the method
of [ATV17] in the case of a semi-circular noise and to measure the accuracy of the method in
the case of a backward Dyson Brownian motion.

Let us describe the organization of the manuscript. In Section 2, we explain precisely the mod-
els, recall the deconvolution procedure implemented in [ATV17] and some methods to achieve
a classical deconvolution and state convergence in expectation of our estimator. This section is
self-contained for a reader only interested in an overview of the deconvolution and its practical
implementation and accuracy, and in particular the free probabilistic background is postponed
to next section. We also provide simulations to illustrate the deconvolution procedure and to
show how the concentration bounds compare to simulated errors. We aimed at providing explicit
constants for every probabilistic bounds. Expressions of these constants are given in Appendix
C. In Section 3, we introduce all necessary background to prove the concentration bounds, and
we prove the main theorem of the manuscript assuming several results whose proofs are post-
poned to next sections. In Section 4, we prove the concentration of the estimator assuming the
spectral measure of A+B is close to a free additive convolution in a precise sense (see Definition
3.4 for a formal definition). In Section 5, we prove concentration results regarding the classical
deconvolution to recover a sparse measure. In Section 6, we prove that in the case of a unitary
invariant noise, the almost free probabilistic behavior defined in Definition 3.4 is achieved with
some explicit bounds only depending on the first six moments of A and B: to this end, we
introduce matricial subordination functions of Pastur and Vasilchuk [PV00], which is the main
tool of the proof. The latter also heavily relies on integration formulas and concentration bounds
on the unitary groups, which are respectively described in Appendix A and B.

Acknowledgments. We would like to thank Emilien Joly for fruitful discussions. We also thank
Claire Boyer, Antoine Godichon-Baggioni and Viet Chi Tran for their knowledge on the classical
deconvolution and for giving us important references on the subject.

2. Description of the model and of the results

2.1. Notations. In the sequel, N is a positive number denoting the dimension of the matrices,
C denotes the field of complex numbers, and C+ denotes the half-space of complex numbers
with positive imaginary part. For K > 0, we denote by CK the half-space of complex numbers
with imaginary part larger than K.

We write HN (C) for the space of N -dimensional self-adjoint matrices. When X ∈ HN (C),
we denote by X = X+ + X− the unique decomposition of X such that X+ ≥ 0 and X− ≤ 0.
The matrix X+ is called the positive part of X and X− its negative part. We recall that the
normalized trace tr(X) of X is equal to 1

N

∑N
i=1Xii. The resolvent GX of G is defined on C+

by

GX(z) = (X − z)−1.
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When X ∈ HN (C), we denote by λX1 , . . . , λ
X
N its eigenvalues and by

µX =
1

N

N∑
i=1

δλXi

its spectral distribution. We use the convention to use capital letters to denotes matrices, and
corresponding small letter with index i ∈ N to denotes the i-th moment of the corresponding
spectral distribution. For example, if X is Hermitian and i ∈ N, then

xi = tr(Xi) =
1

N

N∑
i=1

λXi .

We also write x0
i for the i−th centered moment of X, namely

x0
i = tr((X − tr(X))i).

In particular, x0
1 = 0 and x0

2 = Var(µX), the variance of µX . Finally, we write σX =
√

Var(µX)

for the standard deviation of µX , θX =
x04
σ4
X

for the kurtosis of X and x∞ for the infinity norm

of X.
When µ is a probability distribution on R and f : R → R is a measurable function, we set

µ(f) =
∫
R f(t)dµ(t) and we write µ(k) for the k-th moment of µ, when it is well defined. When µ

admits moments of order 2, we denote by Var(µ) = µ(2)−µ(1)2 the variance of µ. The Stieltjes
transform of a probability measure µ is the analytic function defined on C+ by

mµ(z) =

∫
R

1

t− z
dµ(t).

In the special case where µ = µX for some Hermitian matrix X, we simply write mX instead of
mµX .

2.2. Unitary invariant model and reduction of the problem. The main topic of this
paper is the estimation of the spectral density of a matrix which is modified by an additive
matricial noise. Hence, we fix a Hermitian matrix B = B∗ ∈ MN (C), which is called the

signal matrix. We denote by λ1, . . . , λN its eigenvalues and by µB = 1
N

∑N
i=1 δλi its spectral

distribution. Additionally, we consider a random Hermitian matrix A ∈ MN (C), called the
noise matrix, whose spectral distribution µA is therefore random. We suppose that the random
distribution µA satisfies the following properties.

Condition 2.1. There exists a known probability measure µ1 with moments of order 6 and a
constant CA > 0 such that:

(1) µ1(1) = 0,
(2) there exists a constant κ > 0 such that

|ai| ≤
(

1 +
κ√
N

)i
|µ1(i)|,

for 1 ≤ i ≤ 6, where we recall that ai = µA(i) = tr(Ai), and
(3) there exists Cnoise > 0 such that for any C1 function f : R→ C,

E(|µA(f)− µ1(f)|2) ≤ C2
noiseE‖∇f‖22

N
,

where f is considered as a function from HN (C) → C with f(A) = 1
N

∑N
i=1 f(λAi ), and

E denotes the expectation with respect to the random matrix A.

The first assumption of Condition 2.1 is a simple scaling to simplify the formulas of the
manuscript. The second assumption is mostly technical, and can be relaxed at the cost of
coarsening the concentration bounds. Indeed, we use several constants involving moments of
the unknown distribution µA, and the bounding assumption of Condition 2.1 allows us to use
the moments of µ1 instead. This bound generally holds with probability 1−exp(−c′N) for some
c′ depending on the moment and on the class of matrix model. Finally, the last condition is
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usually also satisfied in most known cases. See [GZ00] for concentrations inequalities in the case
where A is either Wigner or Wishart (see also [AGZ10, Section 4.4.1]). Then, we consider the
following additive recovery problem

Problem 2.2 (Additive deconvolution). Given H = B+UAU∗ with U Haar unitary, µB(1) = 0
and µA satisfying Condition 2.1, reconstruct µB,

The assumption on the first moment of B is merely technical and can be relaxed without any
consequence on the results.

2.3. Deconvolution procedure. We now explain the deconvolution procedure leading to an
estimator µ̂B of µB. This deconvolution is done in two steps. The first step is to build an

estimator ĈB[η] of the classical convolution CB[η] := µB ∗ Cauchy[η] of µB with a Cauchy
distribution Cauchy[η] of parameter η. Let us recall that

dCauchy[η](t) =
1

π

η

t2 + η2
,

for t ∈ R. The estimator only exists for η larger than some threshold depending on the moments

of the noise. Then, the second step is to build an estimator µ̂B of µB from ĈB[η] by simply

doing the classical deconvolution of ĈB[η] by the noise Cauchy[η].

2.3.1. Obtaining the estimator ĈB. The first step is quite new [ATV17] and requires complex
analytic tools. Recall the Stieltjes inversion formula, saying that for t ∈ R we have

dCB[η](t) =
1

π
=mB(t+ iη),

where mB is the Stieltjes transform of µB introduced in Section 2.1. Using this formula, we

build ĈB[η] by first constructing an estimator of mB which exists on the upper half-plane Cη.
In our case, we can simply take η = 2

√
2σ1, where σ1 =

√
Var(µ1). We then have the following

convergence result from [ATV17].

Theorem 2.3. [ATV17] There exist two analytic functions ω1, ω3 : C2
√

2σ1
→ C+ such that for

all z ∈ C2
√

2σ1
,

• =ω1(z) ≥ =z2 ,=ω3(z) ≥ 3=z
4 ,

• ω1(z) + z = ω3(z)− 1
mµ1 (ω1(z)) = ω3(z)− 1

mH(ω3(z)) .

Moreover, setting hµ1(w) = −w− 1
mµ(w) , ω3(z) is the unique fixed point of the function Kz(w) =

z − hµ1(w − 1
mH(w) − z) in C3=(z)/4 and we have

ω3(z) = limK◦nz (w),

for all w ∈ C3/4=(z).

The functions ω1, ω3 are called subordination functions for the free deconvolution. The last
part of the latter theorem is important, since it yields a concrete method to build the function ω3

by iteration of the map Kz. This iteration converges quickly thanks to its contraction properties
with respect to the Schwartz distance. The constant 2

√
2 has been improved to 2 in [MNN+20]

in the case where µ1 is a semi-circular distribution. The above theorem leads then to the

construction of ĈB[η].

Definition 2.4. The additive Cauchy estimator of µB for η ≥ 2
√

2σ1 at t ∈ R is

ĈB[η](t) =
1

π
=
[
mH(ω3(t+ 2

√
2σ1i))

]
,

where ω3 is defined in Theorem 2.3.

Let us explain the free probabilistic intuition behind this definition (see Section 3.2 for more
background on free probability). In the ideal situation where µH = µ1 � µB, then mµB (z) =
mH(ω3(z)) = mµ1(ω1(z)) for all z ∈ C2

√
2σ1

. In general we never have the exact relation
µH = µ1 � µB, but by Theorem 3.3 µH ' µA � µB and by Condition 2.1, µA ' µ1; hence
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we have the approximate free convolution µH ' µ1 � µB, and thus mµB (z) ' mH(ω3(z))
on C2

√
2σ1

. Then, taking the imaginary part gives the approximated value of CB by Stieltjes
inversion formula.

2.3.2. Estimating the distribution µB. The last step is to recover µB from ĈB[η], which is a

classical deconvolution of ĈB[η] by the Cauchy distribution Cauchy[η] with η ≥ 2
√

2σ1 in our
setting. Deconvolving a positive measure is a classical problem in statistic which has been deeply
studied since the first results of Fan [Fan91]. The main feature of our situation is the supersmooth
aspect of the Cauchy distribution. In particular, the convergence of the deconvolution may be
very slow depending on the smoothness of the original measure. There are two main situations,
which are solved differently:

• the original µB is close to a probability distribution with a density in L2(R): in this case,
it is better to take a Fourier approach. This density case, which is tackled in a future
paper in collaboration with Emilien Joly [JT], requires an estimation of the L2-distance

between ĈB[η] and CB[η]. Such estimation is given in Theorem 2.6.
• the original measure µB is sparse, meaning that it consists of few atoms. We mainly focus

on the off-the-grid deconvolution, although an on-the-grid approach is also possible. In
this case, we reduce the problem to a L1-minimization procedure with respect to some
Fourier measurement. Namely, denote by F the Fourier transform en R, and fix some
t0 > 0, M ∈ N (see Section 5 for an appropriate choice of t0,M according to the error
the estimation of CB[η]). Then, set µ̂B = µ̂/µ̂(R), with

(1) µ̂ = arg minν∈M+([−t0/2,t0/2])
‖ν‖TV ≤1

‖F(ν)− exp(η ·)F(F )‖t0,M2 + λ‖ν‖TV ,

where F (t) = ĈB[η]|[−R0,R0](t),M+([−t0/2, t0/2]) denotes the space of positive measures

on [−t0/2, t0/2], ‖f‖t0,M2 =
√∑M

k=−M f(2πk/t0)2 and λ,R0 are parameters to tune de-

pending on the expected error between CB[η] and ĈB[η]. This minimization problem can
be solved by a constrained quadratic programming method (see [BV04]). The constraints
of the domain on which the minimization is achieved actually enforces the sparsity of
the solution. When the atoms of µ are well-separated, this deconvolution successfully
recovers µ. The accuracy of this method is proven in the present paper.

We focus here on the second situation of a sparse signal. As it is often required in the
deconvolution of low-pass filter, see [CFG14], we impose a minimal separation condition on the
support of the signal. Namely, there exists a constant d > 0 such that

(2) ∆(µ) := min
ti, tj∈Supp(µ)

ti 6=tj

|ti − tj | ≥ 5/2 · dη,

where η is the parameter of the Cauchy distribution involved in the deconvolution process. The
numerical constant 5/2 reflects the difficulty of recovering close spikes from a low-pass filter, and
several other numerical constants depend on this choice. The lower this constant is, the more
accurate is the deconvolution process. The choice 5/2 allowed us compute the corresponding
constants used in Section 5. In [CFG14], it is claimed that it can be lowered to 1.87.

Then, choosing an adequate sampling rate M and range t0, see (34), we have the following
convergence result with respect to the Wasserstein distance W1.

Proposition 2.5. Let p ∈ [2,∞], λ0 > 0 and let µ0 be a probability distribution on R having
a finite p-moment bounded by Mp > 0 and satisfying the condition (2), and suppose that F =

µ0 ∗Cauchy[η] +n with n being a noise such that ‖n‖L1(R) ≤ ε. Then, there exists t0 = O(λ
1/p
0 )

such that the solution µ̂ of (1) with λ = e
√
t0√

2πη
exp(2π/d)λ0 and M = t0/(dη) satisfies the

inequality

W1(µ, µ̂/µ̂(R)) ≤ a(t
−1/2
0 )t

3/2
0 exp(2π/d)(ε+ λ0) + bdη3/4t

1/4
0 exp(π/d)

√
ε+ λ0,
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with a(t) is an affine function given in (36) and b is a numerical constant given in (37). Moreover
for p ≥ 3, we have

W1(µ, µ̂/µ̂(R)) = O((ε+ λ0)1/2−1/(4p))

as ε goes to zero.

The expression of t0 in the above Proposition is given in (34). Remark in particular that for
p =∞ and λ0 = ε, we get

W1(µ, µ̂/µ̂(R)) = O(
√
ε).

In the case of a low-pass filter, more general results are available in case the unknown distribution
has atoms closer than the minimal separation distance, see [Ben17, DDP17, DP17]. The recovery
is still possible, but the error term grows exponentially with the number of atoms which are
closer that the threshold dη, and the known constants are quite large.

2.4. Mean-square bounds on the recovery of CB[η]. Recall that CB[η] = µB ∗ Cauchy(η).
We now state the concentration bounds for the estimators we constructed before, which involve
moments of A and B up to order 6. We chose to avoid any simplification which would hinder
the accuracy of the constants or restrict their domain of validity, since any numerical computing
environment can easily compute the expressions obtained. Despite some increased complexity,
the simulations in the next section show some promising result on the precision in known cases.
The reader should refer to Appendix C to get a full picture of the constants involved.

Theorem 2.6 (Mean L1 and L2 distance). Let η ≥ 2
√

2σ1. There exists Cthreshold[η] > 0 such
that for N ≥ Cthreshold[η], √

E
(∥∥∥ĈB[η]− CB[η]

∥∥∥2

L2

)
≤ CMSE(η,N)

N

and

E
[∥∥∥∥ĈB[η]

R0

− CB[η]

∥∥∥∥
L1

]
≤ CL1(η,N) logN

N
,

where ĈB
R0

= 1[−R0,R0]ĈB for some suitable R0 and CMSE(η,N), CL1(η,N) are decreasing in
N .

The constants Cthreshold[η], CMSE(η,N), CL1(η,N) and R0 are respectively given in (7), (17),
(21) and (23) .

2.5. Accuracy of the spectral deconvolution in the sparse case. We are only dealing
with the case of a sparse distribution in this paper, the case of distribution with a density being
tackled in the forthcoming paper [JT]. Combining Theorem 2.6 with Proposition 2.5, we get
the following Markov-type bound on the accuracy of the deconvolution.

Theorem 2.7. Suppose that N2 ≥ Cthreshold[2
√

2σ1] and p ∈ [6,+∞],Mp > 0 such that the
p-th moment of µB is smaller than Mp. Assume moreover that µB satisfies to (2) for some

d > 0. Then, the solution µ̂B of (1) with λ = Cλ
N where Cλ is given in (8) satisfies the mean

1-Wasserstein error

E(W1(µ̂B, µB)) ≤ Csparse(N)

(
logN

N

)1/2−1/(4p)

,

where W1 denotes the 1-Wasserstein distance and Csparse is decreasing in N and given in (10).

Remark that Csparse only depends on d, the p-th moment of µB and the six first moments
of µ1 and µB. In particular, if we assume µB as a support bounded by some constant B∞ and
satisfies (2) for some fixed d > 0, we have

E(W1(µ̂B, µB)) = O

(√
logN

N

)
.
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2.6. Simulations. We provide here some simulations to show the accuracy and limits of the
concentration bounds we found on the mean squared error in Section 2.4. We perform the first
step of the deconvolution as explained in Section 2.3 and compute the error with CB(η), and
then compare this error with the constant we computed according to the formulas in Theorem
2.6. We consider a data matrix B which is diagonal with iid entries following a real standard
Gaussian distribution, and a noise matrix A which follows a GUE distribution (namely, A =
(X +X∗)/

√
2, with the entries of X iid following a complex centered distribution with variance

1/N). Hence, µA is close to a standard semi-circular distribution µ1 in the sense of Condition
2.1. Then, we consider the additive model H = B + UAU∗ (even if the presence of U is
redundant, since the distribution of A is already unitary invariant). We performed the iteration
procedure explained in Theorem 2.3 at η = 2

√
2σ1 = 2

√
2. In Figure 1, we show an example

of the spectral distribution of H, the result of the first step of the deconvolution, and then the
result of the deconvolution after the classical deconvolution by a Cauchy distribution (we used
here a constrained Tychonov method see [Neu88]), and a comparison with µB.

Figure 1. Histogram of the eigenvalues of H, result of the first step of the
deconvolution, result of the second step of the deconvolution and comparison
with the histogram of µB (N = 500).

The result is very accurate, which is not surprising due to the analyticity property of the
Gaussian distribution (see the discussion in Section 2.5). Then, we simulate the standard error√
MSE with a sampling of deconvolutions with the size N going from 50 to 2000. The lower

bound on N for the validity of Theorem 2.6 is 4, which is directly satisfied. We can then compare
the simulated standard deviation to the square root of the bound given in Theorem 2.6. The
results are displayed in Figure 2. The first diagram is a graph of the estimated square root of
MSE and the second one is the graph of the theoretical constant we computed according to N .
The third graph is a ratio of both quantities according to N .

Figure 2. Simulation of
√
MSE in the additive case for N from 50 to 2000

(with a sampling of size 100 for each size) , theoretical bound on
√
MSE provided

in Theorem 2.6, and ratio of the theoretical bound on the simulated error.

We see that the error on the bound is better when N is larger. When N is small, the term
C1N

−1 is non negligible, and approximations in the concentration results of the subordination
function in Section 6 contribute to this higher ratio. When N gets larger, the term C1N

−1

vanishes and the ratio between the theoretical constant and the estimated error gets better.
There is certainly room for improvement: for example, we knows that the variance of the
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Cauchy transform of H converges to some explicit constant depending on A and B, see [PS11].
It would we interesting to provide a bound on this constant which would only depend on the
first moments of B.

3. Approximate subordination and proof of the main results

We introduce here the notion of approximate subordination and prove Theorem 2.6 and 2.7.
These proofs relies on several results which are proven in the different following sections.

3.1. Probability measures, cumulants and analytic transforms. Let µ be a probability
measure on R. Recall that µ(k) denotes the k-th moment of µ, when it is defined.

3.1.1. Free cumulants. Throughout this manuscript, free probability theory will be present with-
out being really mentioned. In particular, several quantities involve free cumulants of probability
measures and mixed moments of free random variables, which have been introduced by Speicher
in [Spe94]. Since we will only use moments of low orders, we won’t develop the general theory
of free cumulants and the interested reader should refer to [NS06] for more information on the
subject, in particular to learn about the non-crossing partitions picture explaining the formulas
below.

The free cumulant of order r of µ is denoted by kr(µ). In this paper, we use only the first
three free cumulants, which are the following:

k1(µ) = µ(1), k2(µ) = Var(µ) = µ(2)− µ(1)2, k3(µ) = µ(3)− 3µ(2)µ(1) + 2µ(1)3.

If µ, µ′ are two probability measures on R and ~k, ~k′ are words of integers of length r with r > 0

we denote by mµ,µ′(~k,~k
′) the mixed moments of µ1, µ2 when they are assumed in free position

(see [NS06] for more background on free random variables). Once again, we only need the

formulas of mµ,µ′(~k,~k
′) for few values of ~k, ~k′, which are as follow:

mµ,µ′(k, k
′) = µ(k)µ′(k′),

mµ,µ′(k1 · k2, k
′
1 · k′2) = µ(k1 + k2)µ′(k′1)µ′(k′2) + µ(k1)µ(k2)µ′(k′1 + k′2)

− µ(k1)µ(k2)µ′(k′1)µ′(k′2),

and, writing 13 for the word 1 · 1 · 1,

mµ,µ′(k1 · k2 · k3, 1
3) =µ′(1)3µ(k1 + k2 + k3)

+µ′(1) Var(µ′)
(
µ(k1 + k2)µ(k3) + µ(k2 + k3)µ(k1) + µ(k3 + k1)µ(k2)

)
+k3(µ′)µ(k1)µ(k2)µ(k3).

By abuse of notation, we simply write kr(X) for kr(µX) and mX,X′(~k,~k
′) for mµX ,µX′ (

~k,~k′),
when X,X ′ are self-adjoint matrices.

3.1.2. Analytic transforms of probability distributions. The Stieltjes transform of a probability
distribution µ is the analytic function mµ : C+ → C defined by the formula

mµ(z) =

∫
R

1

t− z
dµ(t), z ∈ C+.

We can recover a distribution from its Stieltjes transform through the Stieltjes Inversion formula,
which gives µ in terms of mµ as

dµ(t) =
1

π
lim
y→0
=mµ(t+ iy)

in a weak sense. We will mostly explore spectral distributions through their Stieltjes transforms,
since the latter have very good analytical properties. The first important property is that
mµ(C+) ⊂ C+. Actually, Nevanlinna’s theory provides a reciprocal result.
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Theorem 3.1. [MS17, Theorem 3.10] Suppose that m : C+ → C+ is such that

−iym(iy) −−−→
n→∞

1,

then there exists a probability measure ρ such that m = mρ.

We will use the following transforms of mµ, whose given properties are direct consequences

of Nevanlinna’s theorem and the expansion at infinity mµ(z) = −
∑r

k=0
µ(r)
zr+1 + o(z−(r+2)), when

µ admits moments of order up to r > 0.

• the reciprocal Cauchy transform of µ, Fµ : C+ → C+ with Fµ(z) = −1
mµ(z) . If µ admits

moments of order two, we have the following important formula [MS17, Lemma 3.20],
which will be used throughout the paper,

(3) Fµ(z) = z − µ(1) + Var(µ)mρ(z),

for some probability measure ρ. In particular,

(4) =[Fµ(z)] ≥ =z.
When µ admits a moment of order three, then ρ has a moment of order one which is
given by the formula

(5) ρ(1) =
µ(3)− 2µ(1)µ(2) + µ(1)3

Var(µ)
.

• the h-transform of µ, hµ = Fµ(z)−z. By (4), hµ : C+ → C+ and hµ(z) = Var(µ)mρ(z)−
µ(1) for z ∈ C+.

We write FX and hX instead of FµX and hµX for X ∈MN (C) self-adjoint.

3.2. Free convolution of measures. From the seminal work of Voiculescu [Voi91], it is known

that for N large, the spectral distribution of H = UAU∗+B (resp. M = A1/2UBU∗A1/2) with
U Haar unitary is close in probability to a deterministic measure called the free additive (resp.
multiplicative) convolution of µA and µB and denoted by µA � µB (resp. µA � µB), see below
for a more precise statement. For more background on free convolutions and their relation with
random matrices, see [MS17]. In this manuscript, we will only use the following characterization
of the free additive convolutions, called the subordination phenomenon. This characterization
has been fully developed by [BB07, Bel05], after having been introduced by [Bia98] and [Voi00].
For readers not familiar with free probabilistic concepts, the following can be understood as a
definition of the free additive convolution.

Theorem 3.2. [BB07] Suppose that µ1 � µ2 = µ3. Then, for z ∈ C+, we have mµ3(z) =
mµ2(ω2(z)) = mµ1(ω1(z)), where ω2(z) is the unique fixed point of the function Kz : C+ → C+

given by

Kz(w) = hµ1(hµ2(w) + z) + z,

and ω1 and ω2 satisfy the relation

(6) ω1(z) + ω2(z) = z − 1

mµ3(z)
.

Moreover, ω1, ω2 are analytic functions on C+ and we have

ω2(z) = lim
n→∞

K◦nz (w)

for all w ∈ C+. The functions ω1 and ω2 are called the subordination functions for the free
additive convolution.

These two iterative procedures should be understood as the main implementation scheme
for concrete applications, whereas the fixed point equations give the precise definition of both
convolutions. The fundamental result relating free probability to random matrices is the con-
vergence of the spectral distribution of sum of random matrices conjugated by Haar unitaries
towards the free additive convolution.
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Theorem 3.3. [Voi91, Spe93, PV00, Vas01] Suppose that (AN , BN )N≥0 are two sequences of
matrices, with AN , BN ∈ MN (C) self-adjoint, and let UN be a random unitary matrix dis-

tributed according to the Haar measure. Then, if µAN
a.s−−−−→

weakly
µ1 and µBN

a.s−−−−→
weakly

µ2 with

supN (max(µAN (2), µBN (2))) < +∞, then

µAN+UBNU∗
a.s−−−−→

weakly
µ1 � µ2.

Since those first results, several progresses have been made towards a better comprehension
of the above convergences. In particular, concentration inequalities for the convergence of the
spectral distribution are given in [BES17, Kar15, MM13] in the additive case, leading to the
so-called local laws of the spectral distribution up to an optimal scale (see also [EKN20] for
concentration inequalities for arbitrary polynomials of matrices). Let us mention also the recent
results of [BGH20], which establish a large deviation principle for the convergence of the spectral
distribution in the additive case.

3.3. Local laws and approximate free probabilities. As mentioned in the previous section,
as the dimension N goes to infinity the behavior of the spectral distribution of A + UBU∗ is
close to the free additive convolution of µA and µB. One way to quantify such convergence is
to show that the subordination phenomenon depicted in Theorem 3.2 holds approximately for
the Stieltjes transforms of µA and µB at some point z ∈ C+. The closer to the real axis one can
prove such behavior, the closer is the distribution µA+UBU∗ to µA � µB. We thus introduce the
following notion of approximate subordination.

Definition 3.4. Let A,B ∈ MN (C) be two (possibly random) self-adjoint matrices, for which
we assume for simplicity that E tr(A) = E tr(B) = 0, and let η, CA, CB, c > 0. We say that the
pair (A,B) satisfies an (c, CA, CB)-approximate additive subordination property (or simply AAS
property) at η with bound if for all z ∈ C with =z ≥ η, there exist ωA(z), ωB(z) ∈ C such that
aslmost-surely

• =ωA(z),=ωB(z) ≥
(
1− c

N2

)
=z

• |ωA(z)− z| ≤ σB
=z + c

N2=z and |ωB(z)− z| ≤ σA
=z + c

N2=z.

• ωA(z) + ωB(z) = z − 1
EUmA+B(z) ,

• |EUmA+B(z)−mA(ωA(z))| ≤ CA
|z|N2 ,

• |EUmA+B(z)−mB(ωB(z))| ≤ CB
|z|N2 .

Note that ωA(z) and ωB(z) can be random if A or B are random. If (A,B) would satisfy
a (0, 0, 0)-average approximate subordination at η, by Theorem 3.2 one would have EµA+B =
µA � µB. Hence, this notions quantifies how far the system is from an ideal system for which
the spectral distribution of the sum of A and B is actually the free additive definition. The first
rigorous result in this direction has been obtained by Kargin [Kar15], who proved that for U
Haar unitary, the pair (A,UBU∗) satisfies a (c, CA, CB)- AAS property with CA, CB � C ′η−6

and c � c′η−7 and with C ′, c′ depending on the operator norm of A and B. It has been a
challenging task to improve this bound, and the best (and optimal) result has been obtained
by Bao, Erdosz and Schnelli [BES17] who proved that (A,UBU∗) satisfies a (c, CA, CB)- AAS

property with CA, CB � C ′η−(2+ε) and c � c′η−(2+ε) with ε as small as wanted, and with C ′, c′

depending in a non-trivial way on the analytic properties of µA and µB. In our case, improving
the negative powers of η in the constants c, CA, CB is not so important, since we will use this
property away from the real axis. However, since the goal is to recover the unknown spectral
distribution µA, one needs to get constants depending on few properties of A and B. From those
perspectives, the optimal results from [BES17] are not suitable for our framework. Actually,
improving the method of Kargin with matrix Hölder inequalities allows us to get constants only
depending on the six first moments of A and B. This results is summarized in the following
proposition.

Proposition 3.5. Let A and B be two self-adjoint matrices, U a random Haar unitary element
and η = κσ1 with κ > 0. There exist constant c, CA, CB only depending on η and the first
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six moments of A and B such that for N >
√

3c, the pair (UAU∗, B) satisfies a (c, CA, CB)-
approximate additive subordination property.

The proof of this proposition and explicit descriptions of c, CA, CB are postponed to Section
6. See also directly Appendix C for a direct expression of the constants.

3.4. Proof of the main theorem. The proof of Theorem 2.6 is a straightforward deduction
of Proposition 3.5 and the results of the next sections.

Proof of Theorem 2.6. Let A be a self-adjoint noise matrix satisfying Condition 2.1 and B a
self-adjoint matrix. Then, by Proposition 3.5, for each realization of A the pair (UAU∗, B)

satisfies the AAS-property with C̃A, c̃ respectively given in (47) (46) and C̃B obtained from C̃A
by switching the role of A and B. Since these three constants are increasing in the moments of A,
by Condition 2.1, (UAU∗, B) satisfies the AAS-property with constants CA, CB, c obtained from

C̃A, C̃B, c̃ by replacing |ai| by
(

1 + κ√
N

)i
|µ1(i)| and σA by

(
1 + κ√

N

)
σ1. Hence, by Proposition

4.5 and Proposition 4.6, for N ≥ Cthreshold with

(7) Cthreshold =
√

3c.

we have √
E
(∥∥∥ĈB[η]− CB[η]

∥∥∥2

L2

)
≤ CMSE(η,N)

N

and

E
[∥∥∥∥ĈB[η]

R0

− CB[η]

∥∥∥∥
L1

]
≤ CL1(η,N)

N
,

with the constants given as in the statement of the theorem for CA, CB, c given above. �

Using the L1-estimate of the latter theorem, we can now prove our main result.

Proof of Theorem 2.7. Suppose that µB satisfies (2) for some d > 0 and that the p-th moment

of µB is smaller that Mp for some Mp > 0. Set η0 = 2
√

2σ1, λ0 =
CL1 (η0,N) logN

N , and

t0 = max

(
2πη0, 256dη0/5, 2 exp(−2π/(pd))

[
6Mp

√
1 + 4π/d/λ0

]1/p
)
.

Hence, by Proposition 5.2, for F ∈ L1(R), the solution µ̂ of (1) with λ = Cλ logN
N where

(8) Cλ =
e
√
t0√

2πη
exp(2π/d)(Nλ0/ logN) =

e
√
t0

25/4√πσ1
exp(2π/d)CL1(η0, N)

satisfies

W1(µB, µ̂/µ̂(R)) ≤ a(t
−1/2
0 )t

3/2
0 exp(2π/d)(ε+ λ0) + bdη

3/4
0 t

1/4
0 exp(π/d)

√
ε+ λ0,

where ε = ‖F − CB[η0]‖L1 . Hence, if F is a random function, taking the expectation and using
the concavity of the square root yield that

(9) EW1(µB, µ̂/µ̂(R)) ≤ a(t
−1/2
0 )t

3/2
0 exp(2π/d)(Eε+ λ0) + bdη

3/4
0 t

1/4
0 exp(π/d)

√
Eε+ λ0,

where ε is the random error term ‖F − CB[η0]‖L1 . Applying (9) to F = ĈB
R0

for R0 given in
(23) for η0 gives then by Theorem 2.6 for N ≥ Cthreshold[η0]

EW1(µB, µ̂/µ̂(R)) ≤ a(t
−1/2
0 )t

3/2
0 exp(2π/d)

(
CL1(η0, N) logN

N
+ λ0

)
+ bdη

3/4
0 t

1/4
0 exp(π/d)

√
CL1(η0, N) logN

N
+ λ0.
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By the choice of λ0 and by setting µ̂B = µ̂/µ̂(R), we finally have

EW1(µB, µ̂B) ≤ 2a(t
−1/2
0 )t

3/2
0 exp(2π/d)

CL1(η0, N) logN

N

+ 2bdη
3/4
0 t

1/4
0 exp(π/d)

√
CL1(η0, N) logN

N
.

Remark that

t0(logN/N)1/p

= max

(
max(2π, 256d/5)η0

(
logN

N

)1/p

, 2 exp(−2π/(pd))
[
6Mp

√
1 + 4π/d/CL1(η0, N)

]1/p
)

≤max

(
max(2π, 256d/5)η0

(
logN

N

)1/p

, 2 exp(−2π/(pd))
[
6Mp

√
1 + 4π/d/CL1(∞, η0)

]1/p
)

:=Ct(N),

where CL1(∞, η0) = limn→∞CL1(N, η0) = 2K
π with K given in (22) for η = η0. Hence, Ct(N) is

decreasing in N and

EW1(µB, µ̂B) ≤2a(t
−1/2
0 )Ct(N)3/2 exp(2π/d)CL1(N, η0)

(
logN

N

)1−3/(2p)

+ 2bdη
3/4
0 C

1/4
t exp(π/d)

√
CL1(N, η0)

(
logN

N

)1/2−1/(4p)

≤Csparse(N)

(
logN

N

)1/2−1/(4p)

with

Csparse(N) =2bdη
3/4
0 Ct(N)1/4 exp(π/d)

√
CL1(N, η0)(10)

+ 2a(t
−1/2
0 )Ct(N)3/2 exp(2π/d)CL1(N, η0)

(
logN

N

)1/2−5/(4p)

,

where b is the numerical constant given in (37) and a(t) is defined in (36) for η0. For p ≥ 3, we
indeed have that Csparse(N) is decreasing in N . �

4. Stability results for the deconvolution

In this section, we show that the AAS-property introduced in the Section 3.3 yields an es-

timation of the error of the estimator ĈB[η]. Throughout this section, η > 2
√

2σ1 is fixed and
we assume that A,B ∈ MN (C) satisfy the AAS-property at 3η/4 with constant (c, CA, CB)
and that µA satisfies Condition 2.1, and we set H = A + B. We need to take into account the
error term from the fluctuations of mH around their average and fluctuations from µA around
µ1 (recall the definition of µ1 from Condition 2.1).

Stability results are obtained using the coercive property of the reciprocal Cauchy transform,
which is summarized in the next lemma.

Lemma 4.1. Let µ be a probability measure with variance σ2. For all z, z′ ∈ C+,

Fµ(z)− Fµ(z′) = (z − z′)(1 + τµ(z, z′)),

with |τµ(z, z′)| ≤ σ2

=z=z′ .

Proof. By (3),

Fµ(z) = z − µ(1) + σ2mρ(z),

with ρ a probability measure on R. Then, for z, z′ ∈ Cσ,

Fµ(z)− Fµ(z′) = z − z′ + σ2(mρ(z)−mρ(z
′)).
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Moreover,

mρ(z)−mρ(z
′) =

∫
R

1

t− z
dρ(t)−

∫
R

1

t− z′
dρ(t) =(z − z′)

∫
R

1

(t− z)(t− z′)
dρ(t),

which implies the first statement of the lemma. The second statement is given by the inequality∣∣∣∫R 1
(t−z)(t−z′)dρ(t)

∣∣∣ ≤ 1
=z=z′ . �

Following a similar pattern as for previous notations, we simply write τX instead of τµX for
X self-adjoint in MN (C).

4.1. Pointwise estimate. Fix z ∈ C2
√

2σ1
and let (ω1, ω3) ∈ C+ × C+ be the solution of the

system

(11)

{
ω1 + z = ω3 + FH(ω3)
ω1 + z = ω3 + Fµ1(ω1)

,

which, by Theorem 2.3, exists and satisfies

=ω3 ≥
3=(z)

4
, =ω1 ≥

η

2
,

with η = =z. By the AAS-property on (A,B) for 3η/4 and the fact that =ω3 ≥ 3η/4, there
exist ωA(z), ωB(z) ∈ C satisfying the inequalities of Definition 3.4 at ω3(z). Introduce moreover
the (random) error terms

δH(z) = mH(ω3(z))− EmH(ω3(z)), δA(z) = mA(ωA ◦ ω3(z))−mµ1(ωA ◦ ω3(z)).

The dependence of the latter functions in z will often be dropped in the sequel.

Lemma 4.2. For N >
√

3c, ωA, ωB ∈ Cη/2 and

(mB(z)−mH(ω3)) =
LmB(z)

mµ1(ωA)
(mA(ωA)− EmH(ω3)) +mB(ωB)− EmH(ω3)

− LmB(z)

mµ1(ωA)
δA +

(
mB(z)

mH(ω3)
Lτµ1(ω1, ωA)− 1

)
δH ,

with

L =

(
1 +

mB(ωB)− EmH(ω3)

EmH(ω3)

)
1 + τB(ωB, z)

1 + τµ1(ω1, ωA)
.

Proof. Bye the AAS-property of (A,B) at 3η/4 and the fact that =ω3 ≥ 3η/4, we have for
N >

√
3c

=ωA ≥
(

1− c

3c

)
=ω3 > η/2,

and the same holds for ωB. Then, note that

mB(z)−mH(ω3) = mB(z)−mB(ωB) +mB(ωB)− EmH(ω3) + EmH(ω3)−mH(ω3).

First,

mB(z)−mB(ωB) = − 1

FB(z)
+

1

FB(ωB)
= (FB(z)− FB(ωB))mB(z)mB(ωB)

=(z − ωB)(1 + τB(ωB, z))mB(z)mB(ωB),(12)

where we used Lemma 4.1 in the last inequality. Then, using the relation satisfied by ωB and z
yields

ωB − z =ω3 + FH̄(ω3)− ωA − ω3 − FH(ω3) + ω1

=ω1 − ωA + FH̄(ω3)− FH(ω3),
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where FH̄ = −1
EmH . Then, by Lemma 4.1 and the relation Fµ1(ω1) = FH(ω3), with τ1 =

τµ1(ω1, ωA),

ωB − z =
Fµ1(ω1)− Fµ1(ωA)

1 + τµ1(ω1, ωA)
+ FH̄(ω3)− FH(ω3)

=
FH(ω3)− FH̄(ω3) + FH̄(ω3)− Fµ1(ωA)

1 + τ1
+ FH̄(ω3)− FH(ω3)

=(FH̄(ω3)− FH(ω3))
τ1

1 + τ1
+
FH̄(ω3)− Fµ1(ωA)

1 + τ1

=
FH̄(ω3)FH(ω3)τ1

1 + τ1
(EmH(ω3)−mH(ω3)) +

Fµ1(ωA)FH̄(ω3)

1 + τ1
(EmH(ω3)−mµ1(ωA)).

Write temporarily εB = mB(ωB)−EmH(ω3)
EmH(ω3) , εA =

mµ1 (ωA)−EmH(ω3)

mµ1 (ωA) . Hence, putting the latter

relation in (12) yields

mB(z)−mB(ωB) = mB(z)

(
Lτ1

δH(ω3)

mH(ω3)
+ LεA

)
,

with

(13) L =
mB(ωB)

EmH(ω3)

1 + τ2

1 + τ1
= (1 + εB)

1 + τ2

1 + τ1
,

where τ2 = τB(ωB, z). Hence, using the first relation of the proof gives then

(mB(z)−mH(ω3)) =
LmB(z)

mµ1(ωA)
(mµA(ωA)− EmH(ω3)) +mB(ωB)− EmH(ω3)

− LmB(z)

mµ1(ωA)
δA +

(
mB(z)

mH(ω3)
Lτ1 − 1

)
δH .

�

From the latter lemma we express the distance between mB(z) and mµH (ω3) in terms of the
fluctuations δH and δA.

Proposition 4.3. For N >
√

3c,

|mB(z)−mH(ω3)| ≤C1(η)

|z|N2
+
C2(η)

|z|
|ωAδA|+

C3(η)

|z|
|ω3δH |,

where C1(η), C2(η) and C3(η) are respectively given in (14), (15) and (16).

Proof. By the AAS-property of (A,B) at 3η/4 and the fact that =ω3 ≥ 3η/4,

|EmH(ω3)−mµ1(ωA(z))| ≤ CA
|ω3|N2

,

and

|EmH(ω3)−mB(ωB(z))| ≤ CB
|ω3|N2

,

with CA, CB > 0 independent of ω3 ∈ C3η/4. Hence, in particular, by the definition of L from
(13), we get

|L| ≤
(

1 +
CB

EmH(ω3)|ω3|(=ω3)2N2

) ∣∣∣∣ 1 + τB(ωB, z)

1 + τµ1(ω1, ωA)

∣∣∣∣ .
By Lemma 4.2, we have =ωA,=ωB ≥ η/2, and by Theorem 2.3 =ω1 ≥ η/2, thus

|τµ1(ω1, ωA)| =
∣∣∣∣∫

R

σ2
1dρ(t)

(ω1 − t)(ωA − t)

∣∣∣∣ ≤ 4σ2
1

η2
, |τB(ωB, z)| =

∣∣∣∣∫
R

σ2
Bdρ

′(t)

(ωB − t)(z − t)

∣∣∣∣ ≤ 2σ2
B

η2
.
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Hence, since by (43) we have
∣∣∣ 1
ω3EmH(ω3)

∣∣∣ ≤ 1 + a2+b2
=ω2

3
,

|L| ≤

1 +
CB

(
1 + a2+b2

(=ω3)2

)
N2

 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
≤

1 +
CB

(
1 + 16(a2+b2)

9η2

)
N2

 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
.

Therefore, by Lemma 4.2

|mB(z)−mH(ω3)| ≤C1(η)

|z|N2
+
C2(η)

|z|
|ωAδA|+

C3(η)

|z|
|ω3δH |,

with, recalling that =ωA ≥ η/2, using that |ωA − ω3| ≤
σ2
B
=ω3

+ =ω3/3 by the AAS-property of

(A,B) and the hypothesis N2 >
√

3c, and |z − ω3| ≤ 1 +
2σ2

1
η by Theorem 2.3,

C1(η) = |L| · |Fµ1(ωA)|
|ωA|

· |ωA|
|ω3|

· |ω3| · |mA(ωA)− EmH(ω3)| · |mB(z)z|

+

∣∣∣∣ zω3

∣∣∣∣ · |ω3| · |mB(ωB)− EmH(ω3)|

≤
(

1 +
2σ2

1

η2

)
CB +

1 +
CB

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
·
(

1 +
4σ2

1

η2

)

·
(

4

3
+

16σ2
B

9η2

)
CA

(
1 +

σB
η

)
,(14)

C2(η) =|L| |Fµ1(ωA)|
|ωA|

|zmB(z)|

≤

1 +
CB

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
·
(

1 +
4σ2

1

η2

)
·
(

1 +
σB
η

)
,(15)

and

C3(η) =

∣∣∣∣τµ1(ω1, ωA)
zmB(z)

ω3mH(ω3)
L − z

ω3

∣∣∣∣ .
Using z − ω3 = hµ1(ω1) to expand the right hand side of the latter equation gives then

τµ1(ω1, ωA)
zmB(z)

ω3mH(ω3)
L − z

ω3
= −1− hµ1(ω1)

ω3
+ Lτµ1(ω1, ωA)(1 + m̃B(z))

(
1 +

σ2
H

ω3
mρ(ω3)

)
,

and finally

C3(η) ≤1 +
8σ2

1

3η2

+

1 +
CB

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
· 4σ2

1

η2
·
(

1 +
σB
η

)
·
(

1 +
16σ2

H

9η2

)
.(16)

�

4.2. L2-estimates. Building on the previous stability results, we deduce an estimate of the

L2-distance between ĈB[η] and CB[η]. In this section, we fix a parameter η > 0 which denotes
the imaginary part of the line on which the fist part of the deconvolution process is achieved
(see Section 2.3 for an explanation of the method). Then, for each t ∈ R, the deconvolution

process associates to each sample of H an estimator ĈB[η](t) of CB[η](t) given by ĈB[η](t) =
1
πmH(ω3(t+ iη)), with ω3 the subordination function respectively given by Theorem 2.3. Let us
first bound the fluctuation term coming from the noise in Proposition 4.3.
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Lemma 4.4. Suppose that η ≥ 2
√

2σ1 and assume that for (A,B) has the AAS-property at
3η/4 with constants CA, CB, c > 0. Then for N ≥

√
3c

√
E|ωAδA|2 ≤

2Cnoise

(
1 +

2(1+c/N)
√
µ1(2)

η

)
ηN

,

where we recall that ωA = ωA(ω3(z) and δA = mA(ωA ◦ ω3(z))−mµ1(ωA ◦ ω3(z)).

Proof. Note first that the function fz : t → z
t−z is C1 for z ∈ C+, and, viewed as a function on

HN (C), we have for A ∈ HN (C)

∇fz(A)(X) = tr

(
z

1

A− z
X

1

A− z

)
= tr

(
z

(A− z)2
X

)
.

Hence, ‖∇fz(A)‖2 = 1
N

∥∥∥ z
(A−z)2

∥∥∥
2
≤ 1

N

(∥∥∥ 1
A−z

∥∥∥
2

+
∥∥∥ A

(A−z)2

∥∥∥
2

)
and thus, with the second hy-

pothesis of Condition 2.1, ‖∇fz(A)‖22 ≤ 1
N

(
1
η +

(1+c/N)
√
µ1(2)

η2

)2

, where η = =z. This implies

by the third hypothesis of Condition 2.1

√
E|ωAδA|2 ≤

Cnoise

(
1 +

(1+c/N)
√
µ1(2)

=ωA

)
=ωAN

.

By Lemma 4.2 we have =ωA ≥ η/2 for N >
√

3c, which gives the result. �

Using the latter inequality, we deduce the following estimate in the additive case.

Proposition 4.5. Suppose that η ≥ 2
√

2σ1 and assume that for (A,B) has the AAS-property
at 3η/4 with constants CA, CB, c > 0. Then for N ≥

√
3c,

E
(∥∥∥ĈB[η]− CB[η]

∥∥∥2

L2

)
≤ CMSE(N, η)2

N2

with

CMSE(η,N) =

√
π
√
η

(
2C2(η)Cnoise [1 + 2(1 + c/N)(σ1/η)]

η
(17)

+
8
√

2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2
+
C1(η)

N

)
,

where the functions C1, C2, C3 are respectively given in (14), (15) and (16).

Proof. By the AAS-property of (A,B) and Proposition 4.3, for z = t+ iη with η > 2
√

2σ1 and
N >

√
3c,

|mB(z)−mH(ω3(z))| ≤C1(η)

|z|N2
+
C2(η)

|z|
|ωAδA|+

C3(η)

|z|
|ω3(z)δH |,

with C1(η), C2(η), C3(η) given in Proposition 4.3 and where ωA := ωA(ω3(z)). Hence,

(18) E(|mB(z)−mH(ω3(z))|2) ≤ 1

|z|2

[
C1(η)

N2
+ C2(η)

√
E (|ωAδA|2) + C3(η)

√
E (|ω3δH |2)

]2

.

First, by Lemma 4.4, we have

√
E(|ωAδA(ωA)|)2 ≤

2CA

(
1 +

2(1+c/N)
√
µ1(2)

η

)
ηN

.
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Then, by Lemma B.4, the hypotheses tr(A) = 0 and tr(B) = 0 and the fact that =ω3(z) ≥ 3η/4
by Theorem 2.3,

(19) E
(
|ω3δH |2

)
≤ 8

N2(=ω3)2

(
σ2
A +

σ2
Aσ

2
B + a4

(=ω3)2

)
≤ 27

32N2η2

(
σ2
A + 42σ

2
Aσ

2
B + a4

32η2

)
.

Hence,[
C1(η)

N2
+ C2(η)

√
E (|ωAδA|2) + C3(η)

√
E (|ω3δH |2)

]2

≤

C1(η)

N2
+

2C2(η)Cnoise

(
1 +

2(1+c/N)
√
µ1(2)

η

)
ηN

+
8
√

2C3(η)

3ηN

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2


2

≤ 1

N2

2C2(η)Cnoise

(
1 +

2(1+c/N)
√
µ1(2)

η

)
η

+
8
√

2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2
+
C1(η)

N


2

.

(20)

Since,
∫
R

dt
|t+iη|2 = π

η , the latter inequality together with (18) and the Stieltjes inversion formula

yields

E
(∥∥∥ĈB[η]− CB[η]

∥∥∥2

L2

)
≤ CMSE(N, η)2

N2
≤ CMSE(η,N)2

N

with,

CMSE(η,N) =

√
π
√
η

(
2C2(η)Cnoise [1 + 2(1 + c/N)(σ1/η)]

η

+
8
√

2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2
+
C1(η)

N

)
.

�

4.3. L1-estimates. In view of applying Proposition 2.5, let us prove an L1-estimates for on grid
evaluation.

Proposition 4.6. Suppose that η ≥ 2
√

2σ1 and assume that for (A,B) has the AAS-property
at 3η/4 with constants CA, CB, c > 0. Then, for N > 3

√
c, we have

E
∥∥∥∥ĈB[η]

R0

− CB
∥∥∥∥
L1

≤ CL1(η,N) logN

N

with

(21) CL1(η,N) =
2K

π

[
1 +

1

logN

(
log

(
η + σ2

B/η

K

)
+ 1

)]
,

where K is given in (22).

Proof. Let R > 0 to be defined later, we are then interested in the error term

ΘR =

∫ R

−R

∣∣∣ĈB(t)− CB(t)
∣∣∣ dt+

∫
|t|>R

CB(t)dt.

and remark that for η ≥ 2
√

2σ1,

ΘR ≤
∫ R

−R

1

π
|mH(ω3(t+ iη)−mB(t+ iη)|+

∫
|t|>R

CB(t)dt

:=Θ
(1)
R + Θ

(2)
R .
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By the AAS-property of (A,B), Proposition 4.3 for N >
√

3c, Cauchy-Schwartz inequality and
Lemma 4.4 and (19) we get

E |mH(ω3(t+ iη)−mB(t+ iη)| ≤ K1

N |t+ iη|
≤ K

N
min

(
1

t
, η−1

)
with
(22)

K[η] =
C1(η)

N
+

2C2(η)Cnoise

(
1 +

2(1+c/N)
√
µ1(2)

η

)
η

+
27/2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2

 ,

where the functions C1, C2, C3 are respectively given in (14), (15) and (16). Hence, integrating
on |t| ≤ R yields a the first bound

EΘ
(1)
R ≤

2K

πN

∫ R

0
min(η−1, t−1) ≤ 2K

πN
(1 + logR),

which is valid for R > η. On the other hand, recall that

CB(t) = − 1

π
=mB(t+ iη),

For z ∈ C+ and µ a probability measure with second moment, we have

mµ(z) = −1

z
+

1

z2

(
−µ(1) +

∫
R

t2

t− z
dµ(t)

)
and thus

=mµ(z) ≤ =(z−1) +
µ(1) + µ(2)/(=z)

|z|2
≤ 1

|z|2

(
=z + µ(1) +

µ(2)

=z

)
.

Hence, using that µB(1) = 0 and µB(2) = σ2
B,

Θ
(2)
R ≤

∫
|t|>R

CB(t)dt ≤
2
(
η + σ2

B/η
)

π

∫
t≥R

1

t2
dt ≤

2
(
η + σ2

B/η
)

πR
.

Therefore,

EΘR ≤
2K

πN
(1 + logR) +

2
(
η + σ2

B/η
)

πR
.

Since for A,B > 0, the function t 7→ A log(t) + B
t reaches its minimum value A log(B/A) +A at

t = B/A, then for A = 2·K
πN , B =

2(η+σ2
B/η)
π and

(23) R0 =
B

A
=
N(η + σ2

B/η)

K
,

we get

E
∥∥∥∥ĈB[η]

R0

− CB
∥∥∥∥
L1

≤ 2 ·K logN

πN

(
1 +

(
log

(
(η + σ2

B/η)

K

)
+ 1

)
/ logN

)
.

�

5. Superresolution to the Cauchy deconvolution

We prove here Proposition 2.5, which is an adaptation of the method of [CFG14] for an ideal
low-pass filter to the deconvolution by a Cauchy distribution. Originally, supperresolution has
been applied to the deconvolution problem on a circle of a signal convoluted withe a sine kernel.
Recently, there have been some generalization to the real line with other deconvolution problems
[DP17], for example in the Gaussian setting. For the sake of brevity, we will simply reduce here
our problem to a deconvolution of low-pass filter. In this section, suppose that η > 0, µ is a
discrete distribution on the real line with p moment smaller than Mp, and that C : R → R is
such that

(24) ‖C(t)− µ ∗ Cauchy[η](t)‖L1 ≤ ε.



20 P. TARRAGO

We can translate this information into the Fourier transform of µ. Set F (t) = exp(η|t|)F [C](t),
and for c > 0,M ∈ N∗ and f : R→ R, write ‖f‖M,c

2 =
√∑M

k=−M f(2πk/c)2.

Lemma 5.1. For t0 > 0 such that µ|[−t0/2,t0/2] ≥ 1/2, set µ̃ = 1
µ([−t0/2,t0/2])µ|[−t0/2,t0/2]. Then,

‖F − F̃ [µ̃]‖t0,M2 ≤
√
t0√

2πη
exp(2πη(M + 1)/t0)ε+

√
2M + 1

3 · 2pMp

tp0
,

and

W1(µ̃, µ) ≤ 3 · 2p−1Mp

tp−1
0

,

where W1 denotes the 1-Wasserstein distance.

Proof. Let c > 0, and M ∈ N∗. For t ∈ R, (24) yields

|F [C](t)−F [µ ∗ Cauchy[η]](t)| ≤ ε.
Since F [µ ∗ Cauchy[η]](t) = exp(−η|t|)F [µ](t), we deduce that

(25) |F (t)−F [µ](t)|2 = | exp(2η|t|)F [C](t)−F [µ](t)|2 ≤ exp(2η|t|)ε2.
Hence, summing the latter inequality for t = k/c,−M ≤ k ≤M yields

M∑
k=−M

|F (t)−F [µ](t)|2 ≤ 2ε2
M∑
k=0

exp(4πηk/c) ≤2ε2
exp(4π(M + 1)η/c)− 1

exp(4πη/c)− 1

≤ ε2c

2πη
exp(4π(M + 1)η/c),

which gives

‖F −F [µ]‖c,M2 ≤
√
c√

2πη
exp(2πη(M + 1)/c)ε.

Let us then reduce the problem to a finite interval. Note first that by the Markov inequality
and the finiteness of the p-moment of µ, we have for t > 0

µ(]−∞, t] ∪ [t,+∞[) ≤ Mp

tp
.

For t0 > 0 and µ̃ = 1
µ([−t0/2,t0/2])µ|[−t0/2,t0/2], we then have

|F [µ̃](t)−F [µ](t)| ≤
(

1− 1

µ([−t0/2, t0/2])

)
+ µ(R \ [−t0/2, t0/2]) ≤ 3 · 2pMp

tp0
,

and thus for M ≥ 1 we have

‖F [µ̃]−F [µ]‖t0,M2 ≤
√

2M + 1
3 · 2pMp

tp0
.

Finally,

(26) ‖F −F [µ̃]‖t0,M2 ≤
√
t0√

2πη
exp(2πη(M + 1)/t0)ε+

√
2M + 1

3 · 2pMp

tp0
.

Finally, for f : R→ R 1-Lipschitz with f(0) = 0, we have∥∥∥∥∫
R
fdµ− dµ̃

∥∥∥∥ ≤
∥∥∥∥∥
∫ t0/2

−t0/2
f

(
1− 1

µ([−t0/2, t0/2])

)
dµ

∥∥∥∥∥+

∥∥∥∥∥
∫
R\[−t0/2,t0/2]

fdµ

∥∥∥∥∥
≤t0/2

1− µ([−t0/2, t0/2])

µ([−t0/2, t0/2])
+

∫
R\[−t0/2,t0/2]

|t|dµ,

where we used that |f(t)| ≤ t on the last inequality. By the Markov inequality, we thus have

W1(µ̃, µ) ≤ t0
2pMp

tp0
+

2p−1Mp

tp−1
0

≤ 3 · 2p−1Mp

tp−1
0

.

�
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For λ > 0 and F : R→ R, let µ̂ the minimizer of the minimization problem

(27) arg minν∈M+([−t0/2,t0/2])
‖ν‖TV ≤1

‖F [ν]− F‖t0,M2 + 2λ‖ν‖TV .

It can be shown by considering the subgradient of the constrained problem at the minimizer
that µ̂ is a purely atomic measure with a finite support. One can thus write µ̂ =

∑
t∈T̂ âtδt for

some subset T̂ of [−t0/2, t0/2].

Proposition 5.2. Suppose that µ is a purely atomic probability measure with a support T ⊂
[−t0/2, t0/2] satisfying a minimum separation distance given by

inf
t,t′∈T,t6=t′

|t− t′| ≥ 5t0
2M

,

with M ≥ 128. Then, if µ̂ is a solution to (27) with F such that ‖F −F [µ]‖t0,M2 ≤ τ , we have

W1(µ, µ̂/µ̂(R)) ≤ 3(K1M/5 + t0/K2)(τ + λ) + t0/M
√

2/K3

√
τ + λ

for some numerical constants K1,K2,K3 > 0.

The numerical constants K1,K2,K3 given in the latter Proposition can be explicitly deduced
from [CFG14, FG13]: namely, one can choose, K1 = 101.3, K2 = 0, 0157 and K3 = 0, 3353.

Proof. Set µ =
∑

t∈T atδt, and introduce the probability measures µ′ =
∑

t∈T atδt/t0 , µ̂′ =∑
t∈T̂ âtδt/t0 . Note first that for t ∈ R, F [µ′](t) = F [µ](t ∗ t0) and F [µ̂′](t) = F [µ̂](t ∗ t0), so that

with F̃ (t) = F (t/t0) we have by Lemma 5.1

‖F̃ −F [µ′]‖1,M2 ≤ τ.

By a rescaling of (27) by t0, we then have

(28) µ̂′ = arg minν∈M+([−1/2,1/2])
‖ν‖TV ≤1

‖F [ν]− F̃‖1,M2 + 2λ‖ν‖TV .

Moreover, since µ̂′ is the minimizer of (28), we have

(29) ‖µ̂′‖TV ≤ 1 = ‖µ′‖TV , ‖F [µ̂′]− F̃‖1,M2 ≤ ‖F [µ′]− F̃‖1,M2 + λ‖µ′‖TV ≤ τ + 2λ.

Set T ′ = T/t0 and T̂ ′ = T̂ /t0. We then have

inf
t,t′∈T ′,t6=t′

|t− t′| ≥ 5

2M
,

with M ≥ 128. Then, applying [FG13][Lem 2.1, Thm 1.2, i)] to (28) (the minimization problem
is a bit different, but the only required inequality are the ones in (29)), there exist numerical
constants K1,K2,K3, c > 0 such that for all t ∈ T ∩ [−1/2, 1/2],

(30)

∣∣∣∣∣∣at −
∑

t̂∈T̂ ′,|t̂−t|≤c/M

at̂

∣∣∣∣∣∣ ≤ K1(τ + λ),

and

(31)
∑
t̂∈T̂ ′
|at̂|min(K2,K3d(t̂, T ′)2M2) ≤ 2(τ + λ),

where d(t̂, T ′) = inft∈T ′ |t̂− t| and 0 < c2K3 < K2 < 1. In the sequel, set δ = τ + λ.
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Let f : R → R be a Lipschitz function with Lipschitz constant t0 and such that f(0) = 0.
Then, we have by (30) and (31)∣∣∣∣∫

R
fdµ′ −

∫
R
fdµ̂′

∣∣∣∣ =

∣∣∣∣∣∣
∑
t∈T ′

atf(t)−
∑
t̂∈T̂ ′

ât̂f(t̂)

∣∣∣∣∣∣
≤
∑
t∈T ′

∣∣∣∣∣∣∣∣∣

at − ∑
t̂∈T̂ ′

|t−t̂|<c/M

ât̂

 f(t)

∣∣∣∣∣∣∣∣∣+
∑
t∈T ′

∑
t̂∈T̂ ′

|t−t̂|<c/M

|ât̂||f(t)− f(t̂)|

+
∑
t̂∈T̂ ′

d(t̂,T ′)>c/M

|ât̂f(t̂)|

≤K1δ
∑
t∈T ′
|f(t)|+

∑
t∈T ′

∑
t̂∈T̂ ′

|t−t̂|<c/M

|ât̂| · t0 · d(t̂, T ′) + 2/K2‖f‖∞,[−1/2,1/2]δ

≤‖f‖∞,[−1/2,1/2](K1#T ′ + 2/K2)δ + t0
∑
t̂∈T̂ ′

d(t̂,T ′)<c/M

|ât̂| · d(t̂, T ′).

where we have used the t0-Lipschitz property of f in the second sum. Remark that since µ̂′ is
the minimizer of (28), we have ‖µ̂′‖TV ≤ ‖µ′‖TV = 1. Hence, by Cauchy-Schwartz inequality
on L2(µ̂′), we have∑

t̂∈T̂ ′
d(t̂,T ′)<c/M

|ât̂| · d(t̂, T ′) ≤
√√√√√

∑
t̂∈T̂ ′

d(t̂,T ′)<c/M

|ât̂| · d(t̂, T ′)2 ≤
√

2/K3/M
√
δ,

where we have used (31) on the last inequality. Since f is t0-Lipschitz and vanishes at 0,
‖f‖∞,[−1/2,1/2] ≤ t0/2, and by the minimal separation property of T , we have #T ≤ 2M/(5t0).
Hence,

(32)

∣∣∣∣∫
R
fdµ′ −

∫
R
fdµ̂′

∣∣∣∣ ≤ 2(K1M/5 + t0/K2)δ + t0/M
√

2/K3

√
δ.

Likewise, by (30) and (31),

(33) |µ̂(R)− µ(R)| =
∣∣µ̂′(R)− µ′(R)

∣∣ ≤ K1#Tδ + 2
δ

K2
≤ 2 (K1M/(5t0) + 1/K2) δ.

Hence, for f : R→ R which is 1-Lipschitz, we have, writing f0 = f − f(0),∣∣∣∣∫
R
fdµ−

∫
R
f

1

µ̂(R)
dµ̂

∣∣∣∣ =

∣∣∣∣∫
R
f0dµ−

∫
R
f0

1

µ̂(R)
dµ̂

∣∣∣∣
≤+

∣∣∣∣∣
∫

[−t0/2,t0/2]
f0 (dµ− dµ̂)

∣∣∣∣∣+

∣∣∣∣∣
∫

[−t0/2,t0/2]
f0

(
dµ̂− 1

µ̂(R)
dµ̂

)∣∣∣∣∣
≤

∣∣∣∣∣
∫

[−t0/2,t0/2]
f0 (dµ− dµ̂)

∣∣∣∣∣+ |µ̂(R)− 1|

∣∣∣∣∣
∫

[−t0/2,t0/2]
f0

1

µ̂(R)
dµ̂

∣∣∣∣∣ ,
where we used on the last inequality that the support of µ̂ is [−t0, t0]. Since f0 is 1-Lipschitz
and satisfies f0(0) = 0, we have by the bound on the p-moment of µ and (33)

(µ̂(R)− 1)

∣∣∣∣∣
∫

[−t0/2,t0/2]
f0

1

µ̂(R)
dµ̂

∣∣∣∣∣ ≤ t0/2|µ(R)− µ̂(R)| ≤ (K1M/5 + t0/K2) δ.
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Moreover, since f0 is 1-Lipschitz, then f̃0 : t 7→ f0(t0 · t) is t0-Lipschitz, and by (32) we have∣∣∣∣∣
∫

[−t0/2,t0/2]
f0 (dµ− dµ̂)

∣∣∣∣∣ =

∣∣∣∣∣
∫

[−1/2,1/2]
f̃0

(
dµ′ − dµ̂′

)∣∣∣∣∣ ≤ 2(K1M/5 + t0/K2)δ+ t0/M
√

2/K3

√
δ.

Hence, putting all the above bounds together yields∣∣∣∣∫
R
fdµ−

∫
R
f

1

µ̂(R)
dµ̂

∣∣∣∣ ≤ 3(K1M/5 + t0/K2)δ + t0/M
√

2/K3

√
δ.

Recalling that δ = λ+ τ , we thus have

W1(µ̂/µ̂(R), µ) ≤ 3(K1M/5 + t0/K2)(λ+ τ) + t0/M
√

2/K3

√
λ+ τ .

�

Aggregating the above estimates yields the proof of Proposition 2.5.

Proof of Proposition 2.5. Let λ0 > 0 and suppose that µ =
∑

t∈T atδt, with T = Supp(µ)
satisfies ∫

t,t′∈T,t6=t′
|t− t′| > 5/2 · dη,

for some d > 0, and set µ̃ = 1
µ([−t0/2,t0/2])µ|[−t0/2,t0/2] for some t0 > 0 to tune later. Then, for

t0 ≥ 128dη and M = t0/(dη), we get by Lemma 5.1

‖ exp(η| · |)F [C]−F [µ̃]‖t0,M2 ≤
√
t0√

2πη
exp(2πη(M + 1)/t0)ε+

√
2M + 1

3 · 2pMp

tp0
.

Choose

(34) t0 = max

(
2πη, 256dη/5, 2 exp(−2π/(pd))

[
6Mp

√
1 + 4π/d/λ0

]1/p
)
.

In particular, given that M = t0/(dη), we get

√
2M + 1

3 · 2pMp

tp0
≤
√
t0
√

2/(dη) + 1/t0 exp(2π/d)
3 · 2pMpλ0

6 · 2pMp

√
1 + 4π/d

≤
√
t0√

2πη

√
4π/d+ 2πη/t0√

4π/d+ 1
exp(2πη(M + 1)/t0)λ0/2

≤
√
t0√

2πη
exp(2πη(M + 1)/t0)λ0/2,

and thus

(35) ‖ exp(η| · |)F [C]−F [µ̃]‖t0,M2 ≤ e
√
t0√

2πη
exp(2π/d)(ε+ λ0/2) := δ0.

Let µ̂ be the minimizer of the problem

arg minν∈M+([−t0/2,t0/2])
‖ν‖TV ≤1

‖F [ν]− exp(η| · |)F [C]‖t0,M2 + λ‖ν‖TV ,

with λ = e
√
t0√

2πη
exp(2π/d)λ0. Then, since 5t0/(2M) = 5/2 · dη, we have∫

t,t′∈T,t6=t′
|t− t′| > 5t0/(2M),

and thus by Proposition 5.2 with (35) and Lemma 5.1 we have

W1(µ, µ̂/µ̂(R)) ≤W1(µ, µ̃) +W1(µ̃, µ̂/µ̂(R))

≤3 · 2p−1

tp−1
0

Mp + 3/2(K1M/2 + 2t0/K2)(δ0 + λ/2) + t0/M
√

2/K3

√
δ0 + λ/2

≤ t0

2
√

2M
(δ0 + λ/2) + 3(K1/(5dη) + 1/K2)t0(δ0 + λ/2) + dη

√
2/K3

√
δ0 + λ/2,
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where we used (34) and the relation t0/M = dη in the last inequality. Replacing δ0, λ by their
value and using again the relation between M and t0, we finally get

W1(µ, µ̂/µ̂(R)) ≤ a(t
−1/2
0 )t

3/2
0 exp(2π/d)(ε+ λ0) + bdη3/4t

1/4
0 exp(π/d)

√
ε+ λ0,

where

(36) a(t) =
3e(K1/(5dη) + 1/K2)√

2πη
+
e
√
d

4
√
π
t,

and

(37) b = (2/π)1/4
√
e/K3,

where we recall that K1,K2,K3 are numerical constants (see the discussion after the statement
of Proposition 5.2 for their exact value). This gives the first statement of the proposition.

As ε goes to zero, (34) yields that

t0 = O((Mp/λ0)1/p),

and a(t0) = O(1), b(t0) = O(1). Hence, choosing λ0 ∼ ε yields

W1(µ, µ̂/µ̂(R)) = O
(
‖µ‖3/2p ε1−3/(2p)

)
+O

(
‖µ‖1/4p ε1/2−1/(4p)

)
.

In particular, for fixed p with p ≥ 3, we have

W1(µ, µ̂/µ̂(R)) = O
(
ε1/2−1/(4p)

)
,

and for p =∞ we get

W1(µ, µ̂/µ̂(R)) = O(
√
ε).

�

6. Proof of the AAS-property in the unitary invariant case

The goal of this section is to prove Proposition 3.5: this amounts to prove that for A,B
self-adjoint matrices inMN (C) and U a Haar unitary and N large enough, the pair (UAU∗, B)
satisfies the AAS-property (see Definition 3.4) for some constants c, CA, CB > 0 which only
depend on the first six moments of A and B and on η. Such behavior has already been proven
for η close to the real axis by Kargin [Kar15] with constants depending on the bound of the
support of A and B (see also [BES17] for optimal result depending also on some analytical
properties of µA and µB). We must thus improve Kargin’s approach to obtain bounds which
only depend on the first moments of A and B. Let us first review the main tool used by Kargin.

6.1. Matrix subordination. In [PV00], Pastur and Vasilchuk noticed that, since the asymp-
totic spectral behavior of the addition of matrices is close to a free additive convolution, and since
the latter are described by subordination functions, there may exist subordination functions di-
rectly at the level of random matrices. They actually found such subordination functions and
used them to study the convergence of the spectral distribution of the matrix models towards
the free convolution. This approach is in particular fundamental to remove any boundedness
assumption on the support of µ1 and µ2 in Theorem 3.3. In [Kar12, Kar15], Kargin greatly
improved the subordination method of Pastur and Vasilchuk to provide concentration bounds
for the additive convolution, when the support of µA and µB remain bounded. We review here
the matricial subordination functions in the additive case. In this paragraph and in the following
sections, the symbol E generally refers to the expectation with respect to the Haar unitary U .

Since H = UAU∗+B with U Haar unitary, we can assume without loss of generalities that A
and B are diagonal for any result regarding the spectral distribution of H. Hence, the hypothesis
of A and B being diagonal will be kept throughout the rest of the section. Set

H ′ = U∗HU = A+ U∗BU,
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and remark that mH′ = mH . For z ∈ C+, set fA(z) = tr(AGH′(z)) and fB(z) = tr(BGH(z)).
Then, define

(38) ωA(z) = z − E(fB(z))

E(mH(z))
, ωB(z) = z − E(fA(z))

E(mH(z))
.

An important point [Kar15, Eq. 11] is that

(39) ωA(z) + ωB(z) = z − 1

EmH(z)
,

which is the same relation as the one satisfied by the subordination functions for the free additive
convolution in (6). After a small modification of Kargin’s formulation [Kar15], we get the
following approximate subordination relation.

Lemma 6.1. For z ∈ C+,

(40) EGH′(z) = GA(ωA(z)) +RA(z),

with RA(z) := 1
EmH(z)GA(ωA(z))E∆A(z), and

∆A = (mH − EmH)(U∗BUGH′ − E(U∗BUGH′))− (fB − E(fB))(GH′ − E(GH′)).

Moreover, E∆A is diagonal and trE∆A = 0.

Of course, the same result holds for the expression of EGH in terms of GB(ωB) after switching
A and B and H and H ′.

Proof. By [Kar15, Eqs. (12), (13)],

EGH′(z) = GA(ωA(z)) +RA(z),

with RA(z) := 1
EmH(z)GA(ωA(z))(A− z)E∆̃A(z), and

∆̃A = −(mH − EmH)GH′ − (fB − E(fB))GAGH′ .

Since (A− z) is deterministic, (A− z)E∆̃A(z) = E[(A− z)∆A(z)], and we have, forgetting the
dependence in z,

(A− z)E∆̃A =E(−(mH − EmH)(A− z)GH′ − (fB − E(fB))GH′)

=E(−(mH − EmH)(1− U∗BUGH′)− (fB − E(fB))GH′)

=E((mH − EmH)U∗BUGH′ − (fB − E(fB))GH′)

=E [(mH − EmH)(U∗BUGH′ − E(U∗BUGH′))− (fB − E(fB))(GH′ − E(GH′))]

:=E∆A.

where we have used on the penultimate step that E(X − E(X)) = 0 for any random variable
X. This proves the first part of the lemma. For the second part, note that if V is any diagonal
unitary matrix, noting that UV ∗ is again Haar distributed and using that V AV ∗ = A yields
that

V E((mH − EmH)GH′) =V E((tr((A+ U∗BU − z)−1)− EmH)(A+ U∗BU − z)−1)

=V E((tr(V ∗(V AV ∗ + V U∗BUV ∗ − z)−1V )− EmH)

V ∗(V AV ∗ + V U∗BUV ∗ − z)−1)V )

=E((tr((A+ V U∗BUV ∗ − z)−1)− EmH)(A+ V U∗BUV ∗ − z)−1))V

=E((tr((A+ U∗BU − z)−1)− EmH)(A+ UBU∗ − z)−1)V,

where we used the trace property on the third equality. Likewise,

V E((fB − E(fB))GAGH′) = E((fB − E(fB))GAGH′)V,
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and thus V commutes with E∆̃A. Since E∆̃A commutes with any diagonal unitary matrix, it is
also diagonal, and so is E∆A = (A− z)E∆̃A. Finally,

trE∆A =E [(mH − EmH) tr(U∗BUGH′ − E(U∗BUGH′))− (fB − E(fB)) tr(GH′ − E(GH′))]

=E((mH − EmH)(fB − E(fB))− (fB − E(fB))(mH − EmH)) = 0.

�

Moreover, an algebraic manipulation of (40) yields

(41) ωA = A− (EGH′)−1 + (−EGH′)−1 1

EmH
EU∆A,

Following [Kar15, Lemma 2.1] (see also Lemma 6.2), remark that we also have

(42) − (EUGH′)−1 +A− z ∈ H(MN (C)),

where H(Mn(C)) denotes the half-space {M ∈MN (C), 1
i (M −M

∗) ≥ 0}.

6.2. AAS-property of the matrix subordination functions. We have seen in the previous
section that matrix subordination functions already satisfy similar relations as the one fulfilled by
the subordination functions for the free convolutions. In this section we quantify this similarity
by estimating the error terms in (40). Namely we show that EmH (resp. Em̃M ) and mA(ωA) or
mB(ωB) (resp. m̃A or m̃B) are approximately the same in the additive case, which will give a
proof of Proposition 3.5. In the additive case, this has been already done in [Kar15]; hence the
goal of the study of the additive case is just to give precise estimates in the approach of Kargin,
without any assumption on the norm of A and B.

The proof of Proposition 3.5 is postponed to the end of the section, and we first prove some
intermediary results. Recall notations from Section 6.1, and recall also the notations from 2.1.
In particular, we write ai, bi for tr(Ai), tr(Bi) for i ≥ 1. First, remark that mH = mH′ , where
H ′ = A + U∗BU . Hence, we can apply (40) to either H or H ′ (switching A and B) to deduce
information on mH . Then, by Lemma A.3 and the hypothesis tr(A) = tr(B) = 0, we have

E tr((A+ U∗BU)2) = tr(A2) + tr(B2) + 2 tr(A) tr(B) = tr(A2) + tr(B2) = a2 + b2,

where we used notations from Section 2.1. Hence, by (3) and the fact that E tr(A+U∗BU) = 0,

(43)
∣∣E(mH(z))−1 + z

∣∣ ≤ tr((A+ U∗BU)2)

=(z)
≤ a2 + b2
=(z)

for all z ∈ C+. We can obtain a similar bound for (E(GH′))
−1, as next lemma shows.

Lemma 6.2. The matrix E(GH′)
−1 is diagonal with diagonal entries satisfying the bound∣∣[E(GH′)

−1]ii − λAi + z
∣∣ ≤ b2

η
.

Proof. We know by Lemma 6.1 that E(GH′) is diagonal. Define the map I : C+ 7→ C by
I(z) = −[E(GH′)

−1]ii = −[E(GH′)ii]
−1. By (42), I maps C+ to C+. Moreover, as z goes to

infinity, EGH′(z) = −z−1 − E(A + U∗BU)z−2 − E(A + U∗BU)2z−3 + o(z−3). By Lemma A.2,
E(U∗BU) = tr(B) = 0 and

E((A+ U∗BU)2) = A2 + E(U∗BU)A+AE(U∗BU) + E(UB2U∗) = A2 + b2.

Hence,
E(GH′)ii = −z−1 − λAi z−2 − ((λAi )2 + b2)z−3 + o(z−3).

Applying Theorem 3.1 to the map I and then using (3) yield the existence of a probability
measure ρ on R such that

(−E(GH′)ii)
−1 = z − λAi + b2mρ(t).

In particular, ∣∣[E(GH′)
−1]ii + z − λAi

∣∣ ≤ b2
η
.

�
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We now provide a bound on T∆A for T ∈MN (C), where ∆A is given in (40). In the following
lemma, the dependence in z of ∆A is omitted.

Lemma 6.3. For z ∈ C+ with =z = η and for T ∈MN (C),

E| tr(T∆A)| ≤ 4b
1/4
4

η4N2

[√
b2 tr(|TA|4)1/4 + b

1/4
4 a

1/4
4 tr(|T |4)1/4

]
,

and

E| tr(T∆A)| ≤ 8b
1/4
4

√
b2a

1/4
4 ‖T‖∞

η4N2
.

Proof. Using the definition of ∆A in (40), we get

tr(T∆A) = (mH−EmH) tr(TU∗BUGH′−E(TU∗BUGH′))−(fB−E(fB)) tr(TGH′−E(TGH′)).

Since U∗BUGH′ = 1− (A− z)GH′ and tr(T )− E tr(T ) = 0, we deduce

tr(T∆A) =− (mH − EmH) tr(T (A− z)GH′ − E(T (A− z)GH′))
− (fB − E(fB)) tr(TGH′ − E(TGH′))

=− (mH − EmH)(f ′TA − Ef ′TA) + z(mH − EmH)(f ′T − Ef ′T )− (fB − EfB)(f ′T − Ef ′T ),

with f ′X = tr(XGH′) forX ∈MN (C). Using the fact that zmH = tr(UAU∗GH)+tr(BGH)−1 =
f ′A + fB − 1 yields finally

(44) tr(T∆A) = −(mH − EmH)(f ′TA − Ef ′TA) + (f ′A − Ef ′A)(f ′T − Ef ′T ).

Then, on the first hand, Cauchy-Schwartz inequality and Lemma B.3 with A and B switched
give

E| tr(T∆A)| ≤
√

Var f ′TA VarmH +
√

Var f ′A Var f ′T

≤ 4

η4N2

[√
tr(B2)(tr(B4) tr(|TA|4))1/4 +

√
tr(B4)(tr(T 4) tr(A4))1/4

]
,

where in Lemma B.3 we chose α = β = 1
4 for f ′TA, f

′
A, f

′
T and α = 2, β =∞ for mH = fId. On

the second hand, choosing instead α = β = 1
4 for f ′TA, f

′
A and α = 2, β =∞ for mH = fId f

′
T in

Lemma B.3 gives

E| tr(T∆A)| ≤
√

Var f ′TA VarmH +
√

Var f ′A Var f ′T

≤ 4

η4N2

[√
tr(B2)(tr(B4) tr(|TA|4))1/4 +

√
tr(B2) tr(B4)1/4‖T‖∞ tr(A4)1/4

]
≤

8 tr(B4)1/4
√

tr(B2) tr(A4)1/4‖T‖∞
η4N2

.

�

We deduce the following bound on the subordination functions ωA.

Proposition 6.4. Let z ∈ C with =(z) := η. Then,

|ωA − z| ≤
σ2
B

η
+
Cthres,A
N2

η,

and

=ωA ≥ η −
Cthres,A
N2

η,



28 P. TARRAGO

with

Cthres,A(η) =

4σ2
BσA
η3

(
1 +

σ2
A + σ2

B

η2

)(√√√√2

(
1 +

σ2
A + σ2

BθB
η2

)
·

(
1 +

√
θAθB +

2
√
mA2∗B2(12, 12)θA

σ2
Bη

2

)

+

√√√√3

√
θBθAσ2

A

η2

(
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

σ2
Aσ

2
Bη

2

)
+ 2

θ
1/4
B σ3

Bθ
1/4
A

η3

)
.

Proof. We modify the original proof of Kargin to get the most explicit bound as possible. From
(41), we get

ωA = A− (EGH′)−1 + (−EGH′)−1 1

EmH
EU∆A

= A+ z −A+ ε1 +
1

EmH
(z −A+ ε1)EU∆A,

with ε1 ∈ H(MN (C)) by (42) and ε1 is diagonal with |(ε1)ii| ≤ b2
=(z) by Lemma 6.2. Hence,

taking the trace yields

(45) ωA = z + tr(ε1) + δ,

with δ = tr[(z−A+ε1) 1
EmHEU∆A] and tr(ε1) ∈ C+. By (43), 1

E(mH) = −z+ε2 with |ε2| ≤ a2+b2
=(z) .

Therefore, using tr(E∆A) = 0 from Lemma 6.1,

δ = tr ((A− z + ε1)(−z + ε2)EU (∆A))

= tr ((−z + ε2)(A+ ε1)EU (∆A)− z(−z + ε2)EU (∆A))

=(−1 + ε2/z)EU [tr ((A+ ε1)(z∆A))] .

First, by (40) we have

z tr (A∆A) =(zmH − zEmH) [tr(AUBU∗GH′)− E tr(AUBU∗GH′)]

− [(fB − EfB)(tr(zAGH′)− E tr(zAGH′)] .

Hence, by Cauchy-Schwartz inequality,

E|z tr (A∆A) | ≤
√

Var(f̃A) Var(zmH) +
√

Var(fB) Var(zf ′A),

with f̃A = tr(AU∗BUGH′), f
′
A = tr(AGH′). Then, using Lemma B.4 with A and B switched

gives

Var(zmH) ≤ 8

N2η2

(
b2 +

a2b2 + b4
η2

)
,

and using the same lemma with α1, β1 = 4 and α2 = 3, β2 = 6,

Var(zf ′A) ≤ 12

N2η2

(
a2b2 +

E(tr((AB̃2A)2))1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

)
≤ 12

N2η2

(
a2b2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

)
,

where we used Lemma A.3 on the last inequality. Then, by Lemma B.3,

Var(fB) ≤ 4
√
b4a4

η4N2
,

and by Lemma B.5 with A and B switched,

Var(f̃A) ≤ 4

N2η2

(
a2b2 +

√
a4b4 +

2
√
mA2∗B2(12, 12)a

1/2
4

η2

)
.
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Putting all previous bounds together gives then

E|z tr (A∆A) | ≤

√√√√ 8

N2η2

(
b2 +

a2b2 + b4
η2

)
· 4

N2η2

(
a2b2 +

√
a4b4 +

2
√
mA2∗B2(12, 12)a

1/2
4

η2

)

+

√
4
√
b4a4

η4N2
· 12

N2η2

(
a2b2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

)
≤ 4

N2η2

(√√√√2

(
b2 +

a2b2 + b4
η2

)
·

(
a2b2 +

√
a4b4 +

2
√
mA2∗B2(12, 12)a

1/2
4

η2

)

+

√√√√3

√
b4a4

η2

(
a2b2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

))
.

On the other hand, by Lemma 6.3

E| tr(ε1∆A)| ≤ 8b
1/4
4 b

1/2
2 a

1/4
4 ‖ε1‖∞

η4N2
≤ 8b

1/4
4 b

3/2
2 a

1/4
4

η5N2
,

where we used Lemma 6.2 on the last inequality. Therefore,

|zE tr ((A+ ε1)∆A) |

≤ 4

N2η2

(√√√√2

(
b2 +

a2b2 + b4
η2

)
·

(
a2b2 +

√
a4b4 +

2
√
mA2∗B2(12, 12)a

1/2
4

η2

)

+

√√√√3

√
b4a4

η2

(
a2b2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

)
+ 2

b
1/4
4 b

3/2
2 a

1/4
4

η3

)

≤
4b2
√
a2

N2η2

(√√√√2

(
1 +

a2 + b4/b2
η2

)
·

(
1 +

√
a4b4
a2b2

+
2
√
mA2∗B2(12, 12)a

1/2
4

a2b2η2

)

+

√√√√3

√
b4a4

b2η2

(
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

a2b2η2

)
+ 2

b
1/4
4 b

1/2
2 a

1/4
4

η3√a2

)
.

Since tr(B) = tr(A) = 0, b2 = σ2
B and a2 = σ2

A, yielding

|zE tr ((A+ ε1)∆A) |

≤
4σ2

BσA
N2η2

(√√√√2

(
1 +

σ2
A + σ2

BθB
η2

)
·

(
1 +

√
θAθB +

2
√
mA2∗B2(12, 12)θA

σ2
Bη

2

)

+

√√√√3

√
θBθAσ2

A

η2

(
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

σ2
Aσ

2
Bη

2

)
+ 2

θ
1/4
B σ3

Bθ
1/4
A

η3

)
,

where we recall that θX =
x04
σ4
X

is the kurtosis of µX for X self-adjoint. Finally, taking into

account the term (1 + ε2/|z|) ≤ (1 + a2+b2
η2

) (45) yields

|δ| ≤
Cthres,A
N2

η,
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with

Cthres,A =

4σ2
BσA
η3

(
1 +

σ2
A + σ2

B

η2

)(√√√√2

(
1 +

σ2
A + σ2

BθB
η2

)
·

(
1 +

√
θAθB +

2
√
mA2∗B2(12, 12)θA

σ2
Bη

2

)

+

√√√√3

√
θBθAσ2

A

η2

(
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

σ2
Aσ

2
Bη

2

)
+ 2

θ
1/4
B σ3

Bθ
1/4
A

η3

)
.

The two bounds of the statement are deduced from the latter expressions and (45) with the fact
that tr(ε1) ∈ C+. �

Proof of Proposition 3.5. We prove Proposition 3.5 with the matricial subordination functions
introduced in this section. Let η > 0 and z ∈ C such that =z = η. We already known from
(39) that ωA(z) + ωB(z) = z − 1

EmH(z) , with H = A+ UBU∗. By Proposition 6.4, we also have

=ωA(z) ≥
(

1− Cthres,A
N2

)
η, and the same holds for ωB(z) with a constant Cthres,B obtained by

switching A and B in the constant Cthres,A. Hence, by setting

(46) c = max(Cthres,A, Cthres,B),

we get =ωA(z),=ωB(z) ≥
(
1− c

N2

)
η. Similarly, by Proposition 6.4 we also have that |ωA(z)−

z| ≤ σB
=z + c

N2=z and |ωB(z)− z| ≤ σA
=z + c

N2=z.
It remains to find CA, CB such that for N >

√
3c,

|EmH(z)−mA(ωA(z))| ≤ CA
|z|N2

,

and

|EmH(z)−mB(ωB(z))| ≤ CA
|z|N2

.

By Lemma 6.1, we have to estimate tr(RA(z)) = 1
EmH tr(GA(ωA)EU∆A). By Proposition 6.4,

for N ≥
√

3c, =ωA ≥ 2η/3, which implies

‖GA(ωA)‖∞ ≤
3

2η
.

Hence, (44) and Cauchy-Schwartz inequality yield

| tr(RA(z))| =
∣∣∣∣ 1

EmH
tr(GA(ωA)EU∆A)

∣∣∣∣
≤ 1

|z2EmH(z)|
(
√

Var(zmH) Var(zf ′AGA(ωA)) +
√

Var(zf ′A) Var(zf ′GA(ωA))

≤ 2‖GA(ωA)‖∞
|z| · |zEmH(z)|

√
Var(zf ′A) Var(zmH)

≤ 3

η|z| · |zEmH(z)|

√
Var(zf ′A) Var(zmH).

By Lemma B.4 with A and B switched, we get

Var(zmH) ≤ 8

N2η2

(
b2 +

b2a2 + b4
η2

)
,

and

Var(zfA) ≤ 12

N2η2

(
a2b2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

η2

)
.
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Hence,

√
Var(zfA) Var(zmH) ≤4

√
6b2

N2η2

√
1 +

a2 + b4/b2
η2

√
a2 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

b2η2
.

Then, using (43) yields 1
|zEmH(z) ≤ 1 + a2+b2

η2
. Therefore, since a2 = σ2

A and b2 = σ2
B,

| tr(RA(z))| ≤ CA
|z|N2

,

with
(47)

CA =
12
√

6σ2
BσA

η3

(
1 +

σ2
A + σ2

B

η2

)√
1 +

σ2
A + θBσ2

B

η2

√
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

a2b2η2
.

The same holds for B with CB obtained from CA by switching the role of A and B. This
concludes the proof or Proposition 3.5. �
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Appendix A. Integration on the unitary group and Weingarten calculus

We prove here the integration formulas on the unitary group which are used in the manuscript.
The goal is to integrate polynomials in the entries of a random unitary matrix with respect to the
Haar measure. We only state the results for polynomials up to order six, which are the useful
ones for our problems, and the tedious computations of this section are done using the very
efficient software [FKN19]. The fundamental ingredient of the proofs is the Weingarten calculus
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developed by Collins and Sniady [Col03, CS06]. In the following theorem, U = (uij)1≤i,j≤N is a
Haar unitary matrix.

Theorem A.1 (Weingarten calculus, [Col03]). Let ~i,~i′,~j, ~j′ ∈ Nr with r ≥ 1. Then,∫
UN

ui1j1 . . . uirjr ūi′1j′1 . . . ūi′rj′r =
∑
σ,τ∈Sr

i◦σ=i′,j◦τ=τ ′

WN,r(στ
−1),

where Sr denotes the symmetric group of size r and WN,r : Sr → Q is the Weingarten function
whose values at σ only depends on the cycle structure of the permutation. Moreover,

WN,1(Id) =
1

N
,

WN,2(12) =
1

N2(1−N−2)
, WN,2(2) =

−1

N3(1−N−2)
.

where (11) denotes the permutation identity and (2) a transposition.

Using the latter theorem, we prove the following asymptotic formulas for products of matrices
A and UBU∗.

Lemma A.2. Let A,B ∈MN (C) and U ∈ Un Haar unitary, and suppose that A,B are diagonal.
Then, E[UBU∗A] = tr(B)A,

(1− 1/N2)E(UBU∗AUBU∗) =

(
tr(A) tr(B2)− tr(A) tr(B)2 +A

(
tr(B)2 − 1

N2
tr(B2)

))
.

Proof. We only explain the proof of the second equality, since the proofs of the first one uses
similar pattern. Note first that E(UBU∗AUBU∗) commutes with A, and thus is diagonal when
A has distinct diagonal entries. By a continuity argument, E(UBU∗AUBU∗) is thus diagonal.
Write U = (uij)1≤i,j≤N and expand E(UBU∗AUBU∗)ii as

E(UBU∗AUBU∗)ii =

N∑
k,j,s=1

E(uikBkkūjkAjjujsBssūis)

=
N∑

k,j,s=1

BkkAjjBssE(uikūjkujsūis).

Let 1 ≤ i, j ≤ N and 1 ≤ k, s ≤ N . Then, by Theorem A.1 and summing on permutations of
S2,

E(uikujsūisūjk) =


− 1
N(N2−1)

if i 6= j, k 6= s
1

N(N+1) if i = j, k 6= s or i 6= j, k = s
2

N(N+1) if i = j, k = s

Hence, using the latter formula yields

E(UBU∗AUBU∗)ii =
∑
j 6=i

Ajj

∑
k 6=s
− 1

N(N2 − 1)
BkkBss +

n∑
k=1

1

N(N + 1)
B2
kk


+Aii

∑
k 6=s

1

N(N + 1)
BkkBss +

n∑
k=1

2

N(N + 1)
B2
kk


=(tr(A)−Aii/N)

[
− 1

1− 1/N2
tr(B)2 + tr(B2)

(
1

1 + 1/N
+

1

N − 1/N

)]
+Aii

[
1

1 + 1/N
tr(B)2 +

1

N + 1
tr(B2)

]
=

1

1− 1/N2

[
tr(A) tr(B2)− tr(A) tr(B)2 +Aii

(
tr(B)2 − 1

N2
tr(B2)

)]
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A similar computation yields the third equality. We used [FKN19] to achieve the computation
in the latter case. �

Lemma A.2 directly yields formulas for expectation of trace of products. For two finite integer
sequences s, s′ of length r ≥ 1, set

mA∗B(s, s′) = E tr(As1UBs′1U∗ . . . AsrUBs′rU∗).

Lemma A.3. Suppose that A,B ∈MN (C). Then,

mA∗B(1, 1) = tr(A) tr(B),

mA∗B(12, 12) =
1

1−N−2

[
tr(A2) tr(B)2 + tr(A)2 tr(B2)− tr(A)2 tr(B)2 − 1

N2
tr(A2) tr(B2)

]
.

Appendix B. Analysis on the unitary group

We provide here concentration inequalities on the unitary group which imply all our concen-
tration results concerning the Stieltjes transform. Proofs are adapted from Kargin’s approach
in [Kar15] to get bounds only depending on first moments of the matrices involved.

B.1. Poincaré inequality and concentrations results. Several concentrations inequalities
exist on the unitary group [AGZ10, BE85]. In this paper, we only use Poincaré inequality, which
has the fundamental property of having an error term which is averaged on the unitary group.
Poincaré inequalities exist on every compact Riemaniann manifolds without boundary, for which
the Laplacian operator has a discrete spectrum.

Theorem B.1 (Poincaré inequality). Suppose that M is a compact manifold without boundary
and with volume form µ, and let λ1 > 0 be the first non-zero eigenvalue of the Laplacian on M .
Then, for all f ∈ C2(M) such that

∫
M fdµ = 0,∫

M
|f |2dµ ≤ 1

λ1

∫
M
‖∇f‖2dµ.

Proof of this theorem is a direct consequence of the integration by part formula on M . In the
case of the unitary group UN the spectrum of the Laplacian can be explicitly computed using
the representation theory of the group (see [Hum72]), and the first eigenvalue of the Laplacian
is simply equal to N . Hence, we deduce from Poincaré inequality the following concentration
inequality for the unitary group.

Corollary B.2 (Poincaré inequality on UN ). For all f ∈ C2(UN ) such that
∫
UN

fdµ = 0, where

µ denotes the Haar measure on UN ,∫
UN

|f |2dµ ≤ 1

N

∫
UN

‖∇f‖2dµ.

In the sequel, the functions f we will studied are traces of matrices involved the various
resolvents of the manuscript. We will use several times the generalized matrix Hölder inequality
for Schatten p-norms. Recall that the Schatten p-norm of a matrix X ∈MN (C) is defined by

‖X‖p = [N tr((X∗X)p/2)]1/p.

Then, if X1, . . . Xk ∈MN (C) and α1, . . . , αk ∈ [1,+∞], then

(48) ‖X1 . . . Xk‖r ≤
k∏
i=1

‖Xi‖αi ,

where 1
r =

∑k
i=1

1
αi

. Remark that the matrix Holder is not a trivial consequence of the usual

Hölder inequality, and its proof is quite involved (see [Ser10, 7.3]).
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B.2. Application to the additive convolutions. For H = UAU∗ + B, z ∈ C+ and T ∈
MN (C), set GH = (H − z)−1 and define the function fT (z) = tr(T (H − z)−1) = tr(TGH). In

the following lemmas, we use the convention tr(|T |∞)1/∞ = ‖T‖∞ for T ∈MN (C).

Lemma B.3. For z ∈ C+ with η = =(z) and for T ∈MN (C),

E
(
|fT (z)− E(fT (z))|2

)
≤ 4 tr(Aα)2/α tr(|T |β)2/β

η4N2
,

where 1
α + 1

β = 1
2 with α, β ∈ [2,∞].

Proof. By (B.2), for any function f with zero mean which is C2 on UN , E(|f |2) ≤ 1
NE(‖∇f‖2).

Let us apply this to the map fT . Since dX(X − z)−1 = (X − z)−1X(X − z)−1, applying the
chain rule for fT at U ∈ UN yields for X anti-Hermitian

∇UfT (X) = tr(TGH [X, Ã]GH) = tr([Ã, GHTGH ]X),

where Ã = UAU∗. Hence,

‖∇UfT ‖2 =
1

N
‖[Ã, GHTGH ]‖2 ≤

2

Nη2
‖A‖α‖T‖β

with 1
α + 1

β = 1
2 , where we applied matrix Hölder inequality in the last inequality . Therefore,

E‖∇UfT ‖22 ≤
4

N2η4
‖A‖2α‖T‖2β ≤

4 tr(Aα)2/α tr(|T |β)2/β

Nη4
,

so that (B.2) yields

Var(fT ) ≤ 4 tr(Aα)2/α tr(|T |β)2/β

N2η4
.

�

Lemma B.4. For z ∈ C+ with η = =(z) and tr(B) = 0,

Var(zmH) ≤ 8

N2η2

(
tr(A2) +

tr(B2) tr(A2) + tr(A4)

η2

)
,

and for T ∈MN (C),

Var(zfT )

≤ 12

N2η2

(
tr(|T |2) tr(A2) +

E
(

tr((BÃ2B)α1/2)
)2/α1

tr(|T |β1)2/β1 + tr(A2α2)2/α2 tr(|T |β2)2/β2)

η2

)
for any α1, β1, α2, β2 ∈ [2,∞] satisfying

1

α1
+

1

β1
=

1

α2
+

1

β2
=

1

2
.

Proof. Let us first prove the second statement. As in the latter lemma, taking the derivative of
zfT at U ∈ UN yields for X anti-Hermitian

∇U (zfT )(X) =z tr(TGH [X, Ã]GH)

= tr([Ã, zGHTGH ]X)

= tr
([
−ÃTGH +GHTÃ+ Ã(B + Ã)GHTGH −GHTGH(B + Ã)Ã

]
X
)
,

where Ã = UAU∗ and we used the equality zGH = −1 +HGH . Hence,

‖∇UzfT ‖2 ≤
1

N2

(
2‖TÃ‖2 + 2‖ÃBGHTGH‖2 + 2‖Ã2GHTGH‖2

)2

≤ 12

N2
(‖TÃ‖22 + ‖ÃBGHTGH‖22 + ‖Ã2GHTGH‖22).
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First, E(‖TÃ‖22) = NE(tr(TT ∗Ã2)) = N tr(TT ∗) tr(A2) by Lemma A.3. Then, we apply the
matrix Hölder inequality (48) and then the usual Hölder inequality to get

E(‖ÃBGHTGH‖2) ≤ 1

η4
E(‖ÃB‖2α1

‖T‖2β1) ≤ 1

η4
E(‖ÃB‖α1

α1
)

2
α1 ‖T‖2β1

≤N
η4

E
(

tr((BÃ2B)α1/2)
)2/α1

tr(|T |β1)2/β1 ,

and

E(‖Ã2GHTGH‖2) ≤
‖A2‖2α2

‖T‖2β2
η4

≤ N

η4
tr(A2α2)2/α2 tr(|T |β2)2/β2)

for any α1, β1, α2, β2 ∈ [2,∞] such that 1
α1

+ 1
β1

= 1
α2

+ 1
β2

= 1
2 . Hence, using Poincaré inequality

yields

Var(zfT )

≤ 12

N2η2

(
tr(|T |2) tr(A2) +

E
(

tr((BÃ2B)α1/2)
)2/α1

tr(|T |β1)2/β1 + tr(A2α2)2/α2 tr(|T |β2)2/β2)

η2

)
for such α1, β1, α2, β2. The proof of the first inequality is similar, since

∇U (zmH)(X) = z tr(GH [X, Ã]GH) =z tr([Ã, G2
H ]X)

=− tr([Ã, GH ]X) + tr((Ã(B + Ã)G2
H −G2

H(B + Ã)Ã)X),

which yields

E‖∇UzmH‖2 ≤
8

N2

(
E‖Ã‖22
η2

+
E‖(B + Ã)Ã‖22

η4

)
.

First ‖Ã‖22 = N tr(A2), and then

E‖(B + Ã)Ã‖22 = NE
[
tr
(

(B + Ã)Ã2(B + Ã)
)]

=NE
[
tr(B2Ã2) + tr(Ã4) + 2 tr(BÃ3)

]
=N

(
tr(A2) tr(B2) + tr(A4)

)
,

where we used Lemma A.3 and tr(B) = 0 on the last equality. The result is then deduced using
Poincaré inequality. �

We give a similar result when the matrix T of the latter lemma also depends on UAU∗.

Lemma B.5. Let z ∈ C+ and for T ∈MN (C) set f̃T = tr(TUAU∗GH). Then,

E
(
|f̃T (z)− E(f̃T (z))|2

)
≤ 4

N2η4

(
η2
(

tr(|T |2) tr(A2) +
√

tr(|T |4) tr(A4)
)

+ 2
√

tr(A4)m|T |2∗A2(12, 12)
)
,

with the formula for m|T |2∗A2(12, 12) given in Lemma A.3.

Proof. Consider the map f̃T : U 7→ tr(TUAU∗GH). Then, writing Ã = UAU∗,

∇U f̃T (X) = tr(T [X, Ã]GH + TÃGH [X, Ã]GH) = tr([Ã, GHT ]X) + tr([Ã, GHTÃGH ]X).

Hence, by Hölder inequality,

‖∇U f̃T ‖22 ≤
1

N2
(‖ÃGHT‖2 + ‖GHTÃ‖2 + ‖ÃGHTÃGH‖2 + ‖GHTÃGHÃ)‖2)2

≤ 4

η2N2
‖T‖24‖A‖24 +

4

η2N2
‖TÃ‖22 +

8

η4N2
‖TÃ‖24‖A‖24.

Integrating on the unitary group yields then

E‖∇U f̃T ‖22 ≤
4
√

tr(|T |4) tr(A4) + 4 tr(|T |2) tr(A2)

Nη2
+

8E
[
tr(|TÃ|4)

]1/2
tr(A4)1/2

Nη4
.
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Remark that E
[
tr(|TÃ|4)

]
= E

[
tr(TÃ2T ∗TÃ2T ∗)

]
= m|T |2∗A2(12, 12), whose formula is given

by Lemma A.3. The results then follows by Poincaré inequality. �

Appendix C. List of constants

We provide here a list of the constants involved in the main results together with their
expressions. Recall the notations from Section 2.1 and Appendix A for notations involving
moments of spectral distributions.

C.1. Constant involved in the estimation of ĈB[η]:

•Cthres,A(η) =

12σ2
BσA
η3

(
1 +

σ2
A + σ2

B

η2

)(√√√√2

(
1 +

σ2
A + σ2

BθB
η2

)
·

(
1 +

√
θAθB +

2
√
mA2∗B2(12, 12)θA

σ2
Bη

2

)

+

√√√√3

√
θBθAσ2

A

η2

(
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

σ2
Aσ

2
Bη

2

)
+ 2

θ
1/4
B σ3

Bθ
1/4
A

η3

)
,

•Cthres,B(η) =

12σ2
AσB
η3

(
1 +

σ2
B + σ2

A

η2

)(√√√√2

(
1 +

σ2
B + σ2

AθA
η2

)
·

(
1 +

√
θAθB +

2
√
mA2∗B2(12, 12)θB

σ2
Aη

2

)

+

√√√√3

√
θBθAσ2

B

η2

(
1 +

mA2∗B2(12, 12)1/2b
1/2
4 + a

2/3
6 b

1/3
6

σ2
Aσ

2
Bη

2

)
+ 2

θ
1/4
A σ3

Aθ
1/4
B

η3

)
,

•CA(η) =

12
√

6σ2
BσA

η3

(
1 +

σ2
A + σ2

B

η2

)√
1 +

σ2
A + θBσ2

B

η2

√
1 +

mA2∗B2(12, 12)1/2a
1/2
4 + b

2/3
6 a

1/3
6

a2b2η2
,

•CB(η) =

12
√

6σ2
AσB

η3

(
1 +

σ2
B + σ2

A

η2

)√
1 +

σ2
B + θAσ2

A

η2

√
1 +

mB2∗A2(12, 12)1/2b
1/2
4 + a

2/3
6 b

1/3
6

a2b2η2
,

• C1(η) =(
1 +

2

κ2

)
CB(3η/4) +

1 +
CB(3η/4)

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2)

1− 4σ2
1/η

2

·
(

1 +
4σ2

1

η2

)
·
(

4

3
+

16σ2
B

9η2

)
CA(3η/4)

(
1 +

σB
η

)
,

•C2(η) =

1 +
CB(3η/4)

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
·
(

1 +
4

η2

)
·
(

1 +
σB
η

)
,

•C3(η) = 1 +
8σ2

1

3η2
+

4σ2
1

η2
·

1 +
CB(η)

(
1 + 16(a2+b2)

9η2

)
N2

 · 1 + 2σ2
B/η

2

1− 4σ2
1/η

2
·
(

1 +
σB
η

)

·
(

1 +
16σ2

H

9η2

)
,



38 P. TARRAGO

•CMSE(η,N) =

√
π
√
η

(
2C2(η)Cnoise [1 + 2(1 + c/N)(σ1/η)]

η

+
8
√

2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2
+
C1(η)

N

)
,

•K[η] =
C1(η)

N
+

2C2(η)Cnoise

(
1 +

2(1+c/N)
√
µ1(2)

η

)
η

+
27/2C3(η)

3η

√
σ2
A + 42

σ2
Aσ

2
B + a4

32η2

 ,

•R0 =
N(η + σ2

B/η)

K[η]
,

•CL1(η,N) =
2K[η]

π

[
1 +

1

logN

(
log

(
η + σ2

B/η

K[η]

)
+ 1

)]
,

C.2. Constants regarding the classical deconvolution.

•η0 =2
√

2σ1,

•t0 = max

(
2πη0, 256dη0/5, 2 exp(−2π/(pd))

[
6Mp

√
1 + 4π/dN/(CL1(η0, N) logN)

]1/p
)
,

•M =t0/(dη0),

•Cλ =
e
√
t0

25/4√πσ1
exp(2π/d)CL1(η0, N),

•λ =
e
√
t0

25/4√πσ1
exp(2π/d)CL1(η0, N),

•Ct(N) = max

(
max(2π, 256d/5)η0

(
logN

N

)1/p

,

2 exp(−2π/(pd))
[
6Mp

√
1 + 4π/d/CL1(∞, η0)

]1/p
)
,

•λ =
e
√
t0

25/4√πσ1
exp(2π/d)CL1(η0, N),

•Csparse(N) =2bdη
3/4
0 Ct(N)1/4 exp(π/d)

√
CL1(N, η0)

+ 2a(t
−1/2
0 )Ct(N)3/2 exp(2π/d)CL1(N, η0)

(
logN

N

)1/2−5/(4p)

.
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