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SUBORDINATION METHODS FOR FREE DECONVOLUTION

OCTAVIO ARIZMENDI, PIERRE TARRAGO, AND CARLOS VARGAS

Abstract. We derive subordination functions for free additive and free multiplicative deconvolutions
under mild moment conditions. Our results include an algorithm to calculate these subordination
functions, and thus the associated Cauchy transforms, for complex numbers with imaginary
part greater than a parameter depending on the measure to deconvolve. The existence of these
subordination functions on such domains reduces the problem of free deconvolutions to the
problem of the classical additive deconvolution with a Cauchy distribution. Thus, our results,
combined with known methods for the deconvolution with a Cauchy distribution, allow us to
solve the free deconvolution problem. We also present extensions of these results to the case of
operator-valued deconvolutions.

RÉSUMÉ. Nous dérivons des fonctions de subordination pour la déconvolution libre additive
et multiplicative sous des conditions de moment faibles. Nos résultats incluent un algorithme
pour calculer ces fonctions de subordination, et donc les transformées de Cauchy associées,
pour les nombres complexes ayant une partie imaginaire supérieure à un paramètre dépendant
de la mesure à déconvoler. L’existence des fonctions de subordination sur de tels domaines
réduit le problème de la déconvolution libre au problème de la déconvolution additive classique
par une distribution de Cauchy. Ainsi, nos résultats, combinés à des méthodes connues de
déconvolution classique par une distribution de Cauchy, nous permettent de résoudre le problème
de déconvolution libre. Nous présentons également des extensions de ces résultats au cas des
déconvolutions à valeur opérateur.

Keywords–Deconvolution, Free Probability, Random Matrices, Subodination

1. Introduction

Voiculescu introduced free independence in [48] as a new special kind of non-commutative
relation between collections of operators, similar to the usual stochastic notion of independence,
but inspired by free products, rather than by tensor products. A few years later, in [51], he
observed that free independence occurs naturally as a fundamental conceptual relation describing
the collective behavior of large random matrices appearing in pioneering (and modern) works
on asymptotic random matrix theory.

The free additive convolution µ1 � µ2 and the free multiplicative convolution µ1 � µ2 are
binary operations of probability measures. They correspond to the distributions of the sum and
the product of free non-commutative random variables with distributions µ1 and µ2.

The approach for computing free convolutions using analytic subordination functions [7, 12,
52, 54], has shown to be very effective for concrete calculations.

In this work, we are concerned with the inverse problem known as free additive (resp.
multiplicative) deconvolution, which is just recovering µ2 from the knowledge of µ1 and µ1 � µ2
(resp. µ1 � µ2).

Our main contribution is to solve the problem of computing free deconvolutions of distributions
by means of analytic subordination[7]. We include an algorithm to compute free deconvolutions
numerically. Our methods cover free deconvolutions in the broader context of operator-valued
free independence.

1.1. Basic framework and motivation. We recall here basic models in asymptotic random
matrix theory. For each N ≥ 1, let XN be a self-adjoint N × N Wigner matrix1. In addition,

1XN = 2−1/2(ZN + Z∗N ), where ZN = 1√
N

(zij) is a Ginibre matrix (that is, the entries zij are centered i.i.d.

random variables).

1



2 O. ARIZMENDI, P. TARRAGO, AND C. VARGAS

let D
(N)
1 , D

(N)
2 be self-adjoint N × N deterministic matrices, such that their uniform spectral

probability distributions converge to fixed probability measures µ1, µ2.
Due to Wigner’s semicircle law [55], the eigenvalue distribution of XN converges to the

semicircle distribution. As further examples, consider the following three random matrix models:

PN = P (XN , D
(N)
1 ) := XN +D

(N)
1 ,(1)

QN = Q(XN , D
(N)
1 ) := XND

(N)
1 XN ,(2)

RN = R(XN , D
(N)
1 , D

(N)
2 ) = XND

(N)
1 XN +D

(N)
2 .(3)

Marčenko and Pastur described in [32] the asymptotic eigenvalue distributions of such combinations
of matrices. For example, they observed in particular, by studying the Stieltjes transform
z 7→ 1

NTr◦E((RN − zIN )−1), that in the limit (as the matrix size grows), the limiting transform

(and thus the limiting spectral distribution) depends on the deterministic matrices D
(N)
1 , D

(N)
2

only through their limiting distributions µ1, µ2.
The relation between free probability and large random matrix theory begins with Voiculescu’s

seminal paper [51], showing that the asymptotic collective behavior of the involved random

matrices XN , D
(N)
1 , D

(N)
2 , is exactly described by free independence, which he defined a few

years before [48].
More precisely, the limiting distributions of PN , QN , RN as N →∞, are those of the abstract

operators

P∞ = x+ d1 , Q∞ = xd1x, R∞ = xd1x+ d2,

where x, d1 and d2 are free random variables in a non-commutative probability space (A, τ), x
has semicircular distribution, and the distributions of (di)i are the (given) limiting distributions
(µi)i, i ∈ {1, 2}.

Thus, in terms of distributions

µP∞ = µs � µ1, µQ∞ = π1 � µ1, µR∞ = (π1 � µ1) � µ2,

where µs is the semicircle distribution and πλ is the Marčenko-Pastur distribution of parameter
λ.

In early works Voiculescu also derived analytic transforms to compute these free additive [49]
and multiplicative [50] convolutions, based on the Cauchy-Stieltjes2 transform Gµ : C+ → C−
and its reciprocal, the F-transfom,Fµ : C+ → C+ :

Gµ(z) =

∫
R

1

z − t
dµ(t), Fµ(z) =

1

Gµ(z)
, z ∈ C+

where C+ (and C−) denote the upper (resp. lower) complex half-plane. A few years later,
alternative combinatorial methods [44, 38] were derived to calculate free convolutions.

However, in order to obtain exact formulas for free convolutions, combinatorial methods
require us to recognize distributions from their moment sequences, and analytic methods require
solving equations involving compositional inverses of analytic maps. Thus, outside special
situations, explicit descriptions of free convolutions are rare.

The subordination approach of [7] (which is based on the works [12, 52, 54]) has been quite
successful. The idea is to approximate free convolutions numerically, by deriving fixed point
equations for analytic transforms of the convolutions, from which the Cauchy-Stieltjes transform
can be recovered with high precision. Thus, the associated probability measure can be efficiently
approximated using the Stieltjes inversion.

2The Stieltjes transform is just the negative of the Cauchy transform. The method of Stieltjes inversion to
recover distributions may of course be performed using the Cauchy transform, by simply adding a sign on the
Stieltjes-inversion formula (see Section 2). The analytic theory of non-commutative probability (free, boolean and
monotone) heavily relies on the fact that the reciprocal of the Cauchy transform Fµ(z) is an analytic self-map on
the upper complex half-plane. We use both names since we work directly with Cauchy transforms and reciprocals
but rely at the end on Stieltjes inversions.
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1.2. Statement of the results. We provide a similar subordination approach to the problem
of computing free deconvolutions. Our method is mainly based on the work of Belinschi and
Bercovici [7]. To illustrate it, let us recall their main theorem for the additive case.

Theorem 1.1. ([7], Theorem 3.2) Given probability measures µ1, µ2 on R, there exist unique
functions ω1, ω2 : C+ → C+ such that

(1) =ωj(z) ≥ =z for z ∈ C+ and

lim
y→∞

ωj(iy)

iy
= 1, j = 1, 2.

(2) Fµ1�µ2(z) = Fµ1(ω1(z)) = Fµ2(ω2(z)).
(3) ω1(z) + ω2(z) = z + Fµ1�µ2(z) for all z ∈ C+ .
(4) Denote by h1(w) = w − Fµ1(w), h2(w) = w − Fµ2(w) and Tz(w) = z − h1(z − h2(w)).

Then for any w ∈ C+, the iterated function T ◦nz (w) converges to w2(z).

The functions ω1 and ω2 are known as subordination functions. It is worth mentioning that
because of their analytical properties ω1 and ω2 correspond to F -transforms (reciprocal Cauchy-
Stieltjes transforms) of certain measures, sometimes denoted by µ1 ` µ2 and µ2 ` µ1.

Apart from its theoretical importance, the above theorem allows to estimate the density of
free convolutions: We may implement numerical approximations for ω1 (similarly for ω2) by
application of (4), and then use (2) to calculate the F -transform of µ1 � µ2.

In this paper, we consider the inverse problem of recovering one of the factors of the free
convolution, known as free deconvolution (�). A first motivation is given by the following
problem in random matrix theory. Suppose that we have a large random matrix BN , perturbed
by some additive noise which one knows statistically, say XN , and one is given the information
of the matrix

AN = BN +XN .

In view of Voiculescu’s results on asymptotic freeness, if we want to recover the eigenvalue
distribution of Bn in terms of the eigenvalue distributions of AN and of XN , we may replace
the triplet (AN , BN , XN ) by the system of operators (a, b, x) in an abstract non-commutative
probability space (A, τ), where a = b+ x and b, x are free.

The distribution of µb of b in terms of the distribution of a, µa, and the distribution of x,
µx, is known as deconvolving x from a, and the distribution of b is called the free additive
deconvolution [42, 43]. The probability measure µb can be used as an approximation to the
desired empirical distribution µBN .

Our results deal only with the limiting distributions as the dimension of the matrices tends to
infinity. However, the convergence of spectral distributions (empirical or averaged) of random
matrices to their limit is very strong, see [22]. For example, models involving Gaussian or Unitary
matrices are considered large enough already for N ≥ 10, in the sense that the distribution of
the desired operator is well-approximated by the distribution of the limit operator.

A combinatorial approach to free deconvolution has been considered in [4] and amounts to
calculate the moments of µa and µx up to a certain order, then calculating their free cumulants
and substracting them. One finally chooses a (non-unique) distribution with these free cumulants
as a candidate for an approximation of b. The method has obvious limitations such as moment
conditions or non-uniqueness. In [17, ch. 17], the authors propose an analytic approach to
free deconvolution. Their method, albeit very efficient in certain situations, relies on a specific
functional equation which has strong practical limitations and holds only when µx is a Marčenko-
Pastur distribution.

Our main results give general solutions to free additive and free multiplicative deconvolutions
following the lines of Theorem 1.1. For deconvolutions, we cannot get subordination functions
in the whole upper half-plane C+. Indeed, if µ1�µ2 = µ3, then Gµ3(C+) ⊂ Gµ1(C+)∩Gµ2(C+),
which yields directly (at least at a set-theoretical level) the existence of a subordination function
w2 : C+ → C+ such that Gµ3 = Gµ2 ◦ w2. However, the same inequality Gµ3(C+) ⊂ Gµ2(C+)
prevents us from finding a subordination function w3 defined on C+ such that Gµ2 = Gµ3 ◦
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w3. Therefore, the purpose of our result is to build subordination functions in controlled sub-
domains, wide enough to ultimately allow the recovery of µ2 by classical deconvolution (see the
discussion after Theorem 1.2).

For α > 0, let Cα = {z : =z > α}. Our main result for free additive deconvolutions reads as
follows:

Theorem 1.2. Let µ1 and µ3 be probability measures on R such that µ1 has finite variance σ21.
There exist unique functions ω1, ω3 : C2

√
2σ1
→ C+, such that

(1) =ωj(z) ≥ 1
2=z for z ∈ C2

√
2σ1

and

lim
y→∞

ωj(iy)

iy
= 1, j = 1, 3.

(2) If µ2 is such that µ1 � µ2 = µ3, then

Fµ2(z) = Fµ3 [w3(z)] = Fµ1 [w1(z)]

for z ∈ C2
√
2σ1

.

(3) ω1(z)− ω3(z) = Fµ3 [w3(z)]− z for all z ∈ C2
√
2σ1

.

(4) Denote by h1(w) = w − Fµ1(w), h̃3(w) = Fµ3(w) + w and Tz(w) = h1(h̃3(w) − z) + z.
Then for any w with =w > (3=z)/4, the iterated function T ◦nz (w) converges to w3(z) ∈ C+

independent of w.

Remark that the parameter 2
√

2σ1 only depends on the intensity of the noise, and this
dependence is linear in the standard deviation σ1. This parameter is not optimal for many
cases, but there is also no hope to give subordination functions for much lower imaginary parts
(see Remark 3.2 more details). Thus, if asked to recover µ2 from the knowledge of µ1 and µ3,
Theorem 1.2 only recovers Fµ2(z + i2

√
2σ1), which is actually the F -transform of the classical

convolution µ2 ∗ C of our desired distribution µ2 and a centered Cauchy distribution C with
parameter 2

√
2σ1.

Hence, the problem of calculating free additive deconvolutions is reduced to the one of
classically deconvolving a Cauchy distribution, which amounts to solve a Fredholm equation
of the first kind (see [21]) in our case. This can be achieved using a regularization technique
with convex optimization, as explained in Section 4. The simulations provided in that section
also show the efficiency of the method.

On the other hand, we notice that in Theorem 1.2 we only assumed the fact that µ1�µ2 = µ3
in part (2), but (3) is satisfied as long as we are 2

√
2σ1 above the real line. This has a nontrivial

consequence in the arithmetic of free probability; adding a large enough Cauchy distribution to
any measure with finite variance automatically ensures the existence of a free deconvolution.
More precisely, we have the following result.

Theorem 1.3. The function F̃2(z) = Fµ3 ◦ w3(z + 2
√

2σ1i) is analytic on C+ and there exists

a probability measure µ̃2 ∈ P(R) such that F̃2 = Fµ̃2. Moreover, µ̃2 satisfies that

µ1 � µ̃2 = µ3 � C2√2σ1 ,

where C2√2σ1 denotes the Cauchy distribution with parameter 2
√

2σ1.

We derive a similar theorem for free multiplicative deconvolutions, motivated by the analog
problem in random matrix theory, of reconstructing the distribution of BN from the distributions

of ANBN (or B
1/2
N ANB

1/2
N ) and AN . In the limit, this operation is exactly the free multiplicative

deconvolution ( r ).
Our approach to the free multiplicative deconvolution follows the same ideas as in the additive

case. At the end of the process, we must perform a classical additive deconvolution with a
Cauchy distribution. For the first step of the deconvolution, instead of using Th. 1.2, we use
the following result (which also follows ideas of the multiplicative case in [7, Th. 3.3]).

Theorem 1.4. Let µ1, µ3 ∈ P(R) be such that µ1 has non-negative support and admits moments
of order 4, and such that µ3 admits moments of order 2 with non-zero first moment. Without
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loss of generality, suppose that the first moments of µ1 and µ3 are equal to one. Then, there
exists K > 0 and unique functions ω1, ω3 : CK → C+ such that:

(1). The constant K depends only on the respective variances σ21 and σ23 of µ1 and µ3 and on
the Jacobi coefficients β1, γ1 of µ1, and we can choose

K ≤
[
R+

√
5/4R2 + 5Rσ23

]
,

with R =
(

2
√
γ1 ∨ β1 ∨

20σ2
1√
3

)
(2). If µ2 is such that µ1 � µ2 = µ3, then

Fµ2(z) = Fµ3 [w3(z)]zw3(z)
−1.

(3). Denote by h1(w) = w−Fµ1(w), h̃3(w) = w−2[w−Fµ3(w)] and Tz(w) = zh1

(
h̃3(w)−1z−1

)
.

Then for z ∈ CK and any w in D(z, =z5 ), the iterated function T ◦nz (w) converges to ω3.

(4). ω1(z) = 1
zh̃3(w3(z))

for all z ∈ CK .

The parameter K in the latter theorem can be numerically computed by solving a system
of two polynomial equations. In the multiplicative case, this parameter is not optimal, and it
would be very interesting to have further improvements of its value. Indeed, the lower it is, the
better is the precision of the recovery of the desired distribution.

Using our results for obtaining subordination functions, we implement in Section 4 an algorithm
to compute free deconvolutions, including the last step, which requires a classical deconvolution
with a Cauchy distribution. We test our method for both discrete and continuous distributions
and compare it with random matrix simulations.

1.3. Applications and related works. Recovering the spectral distribution of a matrix from
a noisy version is of central importance in the estimation of the covariance matrix of a large
random vector when the sampling is large. In general, one wants to estimate a positive semi-
definite matrix Σ ∈ Rp×p from the observation of M = XΣX∗, where X ∈ Rn×p is a random
matrix with i.i.d entries. When n and p go to infinity with n ≈ p, the estimation of Σ turns into
a difficult problem. The shrinkage is a way to solve this question by constructing an estimator Σ̂
by keeping the eigenvectors of M unchanged while changing the corresponding eigenvalues (see
[14] for an overview of the method). In its simplest form this procedure is a linear shift of all
the eigenvalues by a constant (see [27] for a study of this estimator). In [26], Ledoit and Péché
provided an optimal shrinkage based on the knowledge of the spectral distribution of the original
covariance matrix Σ. The main lacking step is thus the estimation of this spectral distribution.

Several methods have been proposed to recover the spectral distribution of the covariance
matrix Σ when n and p are large. They are either based on a moment approach [41, 2, 23], the use
of the Marchenko-Pastur equation [33, 19] or a mix of both [30]. Ledoit and Wolf [28] successfully
used these estimations to implement the shrinkage procedure of Ledoit and Péché. Although
the goal of the present paper is to provide a general formalism for the spectral deconvolution,
it would be interesting to apply our method to the shrinkage estimation of covariance matrices.

Our analytic deconvolution may also be used for finding outliers of large matrices from
randomly perturbated versions. In random matrix theory, an outlier is a large eigenvalue
which is outside of the bulk of the spectral distribution. They are of special importance in
high-dimensional data analysis since they capture the typical dominant behavior of a linear
system : for example they are used in PCA of large random vectors. It is therefore important
to estimate the exact value of the outliers of a large matrix from the data of the matrix
perturbated by a matricial noise. The first important result in this direction is the seminal
paper of Baik, Ben Arous and Péché [3] which gives the distribution of an outlier in M from the
value of the corresponding outlier in Σ. The law of large numbers of [3] has been generalized
to arbitrary models in [8] by showing that one can determine the positions of outliers in free
convolutions of spiked models in terms of the subordination functions. This result together with
our deconvolution procedure easily yields an estimator for the outlier, as we show in Section 4.
Our simulations show agreement between the outlier and our estimator.
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The problem of efficiently computing free deconvolutions is also relevant in view of practical
problems in random matrix theory and wireless communications, as in [43]. In a more indirect
way, free deconvolutions are also important whenever free additive or multiplicative convolutions
(or the relevant transforms) are main objects of study. For example, the free multiplicative
convolution and the S-transforms play important roles in applied works on quantum information
theory [1] and neural networks [39, 47]. In those situations we are interested in certain features
of the distribution of the convolutions (e.g. weight of a certain atom, symmetry, positivity,
concentration around a certain point, etc.). Consequently, a better understanding of how free
deconvolutions map classes of probability measures may help in those situations.

1.4. Generalization to operator-valued case. Voiculescu’s operator-valued free probability
theory (or B-valued free probability) has greatly extended the applicability of free probability.
In particular, operator-valued independence (or B-independence) is a much broader relation
which may be observed more frequently between models in random matrices or operator theory.
Thus, it has become relevant to derive new tools to compute B-free convolutions.

In the B-valued case, explicit expressions for convolutions are hard to obtain (even harder
than in the scalar situation), and thus the approach using analytic subordination functions [6, 5]
is very important. It has led to a robust toolbox for computing asymptotic distributions of
random matrices [1, 5, 10, 15, 45], including a remarkable algorithm for computing distributions
of arbitrary, self-adjoint, non-commutative polynomials evaluated in free self-adjoint random
variables [6].

Therefore, in the last section, we include extensions of our analytic subordinations methods
to compute B-free deconvolutions (for the case of bounded operators) on certain regions of the
B-valued upper half-plane.

1.5. Organization of the article. Apart from this introduction, the paper is organized in four
more sections.

Section 2 includes preliminaries on transforms, free convolutions and fixed-point theorems
required for proofs of our main results. In Section 3 we deal with the case of scalar-valued free
deconvolution (that is, we prove Theorems 1.2, 1.3 and 1.4). Section 4 gives concrete examples
of the deconvolution procedure. We explain how to implement the algorithms of Theorem 1.2,
and 1.4, we show two applications to random matrices: first by considering the problem of
recovering a random matrix from its deformed version by adding noise, and second, we see how
to approximate the outlier of a matrix from the spike of the deformed model. The simulations
show the efficiency of our algorithms. Finally, in Section 5 we treat the operator valued case.
First we give basic elements for operator-valued free probability, including some technical lemmas
used afterwards and finally we prove our theorems for computing B-valued Cauchy transforms
of B-valued free deconvolutions.

2. Preliminaries

2.1. Transforms. We denote by P2(R) the set of probability measures on R having a finite
second moment (

∫
t2dµ(t) < ∞) and by P∞ the set of probability measures with bounded

support. For σ ∈ R, denote by Cσ the upper half-plane Cσ := {z ∈ C,=z > σ}.
For µ ∈ P2(R), let Gµ : C+ → C− denote its Cauchy transform, defined by

Gµ(z) =

∫
R

1

z − t
dµ(t).

The Stieltjes inversion formula recovers a measure from its Cauchy transform as follows:

(4) µ(]a, b[) = − 1

π
lim
y↓0

∫ b

a
= [Gµ(x+ iy)] dx.

The reciprocal Cauchy transform Fµ : C+ → C+ is defined by Fµ(z) = 1
Gµ(z)

. It satisfies the

important relation

(5) =(Fµ(z)) ≥ =z, z ∈ C+.
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Let µ be a probability measure with 2n+ 2-moments, that is
∫
R x

2n+2µ(dx) <∞. Then the
Cauchy transform can be expressed in the form

(6) Gµ(z) =
1

z − β0 −
γ0

z − β1 −
γ1
. . .

z − βn − γnGν(z)

where ν is a probability measure. The sequences βm = βm(µ) ∈ R, γm = γm(µ) ≥ 0 are
respectively called the Jacobi parameters of µ of first and second order. If µ ∈ P2(R), then β0
and γ0 are respectively the expected value and the variance of µ. Notice that (6) at n = 0 gives
Fµ(z) = z − β0 − γ0Gν for some probability measure ν, so that applying (5) to Gν yields

(7) |hµ(z)− β0| ≤ γ0/=z,

where hµ(z) = z − Fµ(z). The latter inequality plays an important role in our proof. In
particular, if β0 = 0 then |hµ(z)| ≤ γ0/=z.

Moreover, as a consequence of the analyticity of Gµ outside of the support of µ, Hasebe [24,
Lemma 4.1] proved that if µ has a positive support and admits enough moments to get the
expansion (6), then ν has also a positive support and each coefficient βm is non-negative.

2.2. Free convolutions. Free additive convolution was defined by Voiculescu in [48] for probability
measures with compact support and later generalized by Maassen [31] for measures in P2(R)
and in [11] for general probability measures. Here we will use the analytic definition from [31]
via Voiculescu’s transform φµ. For this we need the following lemma.

Lemma 2.1. [31, Lemma 2.4] Let µ be a probability measure on R with mean 0, variance σ2,
and reciprocal Cauchy transform F . Then the restriction of F to Cσ takes every value in C2σ,
precisely once. The inverse function F<−1> : C2σ → Cσ thus defined satisfies

|F<−1>(u)− u| < 2σ2

=u
.

The Voiculescu’s transfom, φµ : C2σ → Cσ, is defined by the formula φµ(z) = F<−1>µ (z)− z.
The free additive convolution of two probability measures µ1, µ2 ∈ P2(R) with variance σ21 and
σ22 is the unique probability measure µ3 = µ1�µ2 on R such that φµ3 = φµ1 +φµ2 on C2σ3 with

σ3 =
√
σ21 + σ22 and it is denoted by µ1 � µ2.

For the multiplicative version of free convolution, let ηµ : C+ → C+ denotes the η-transform
of a distribution µ, which is defined by the formula ηµ(w) = [1 − wFµ(w−1)]. The inverse of
ηµ is well defined in a neighborhood of 0 as long as the first moment of µ does not vanish.
Define Σµ : Ω+

µ → C by Σµ(z) = η<−1>µ (z)/z, where Ω+
µ is a neighborhood of 0 in C+. Then,

for µ1, µ2 ∈ P2(R) such that µ1 is supported on the positive real line and µ2 has non-zero first
moment, the free multiplicative convolution of µ1 and µ2 is the unique probability measure µ3
such that Σµ1Σµ2 = Σµ3 on Ω+

µ1 ∩ Ω+
µ2 . In this case we write µ3 as µ1 � µ2.

2.3. Fixed point theorems. In the proof of the main theorems we will use the following two
theorems on convergence to fixed points of a function. The first one, proved independently by
Denjoy [18] and Wolff [57], considers holomorphic maps from the unit disc, D = {z : |z| < 1},
to itself. Let f : D→ D be an analytic function. A point w ∈ D is called a Denjoy–Wolff point
for f if either

(1) w ∈ D and f(ω) = ω; or

(2) |w| = 1 , limr↑1f(rω) = ω and limr↑1
ω−f(rω)
(1−r)ω ≤ 1.

Except for the identity map of D every function f has a unique Denjoy-Wolff point. The
theorem of Denjoy and Wolff shows that for generic maps this point is the limit of the iterates
of f .
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Theorem 2.2. [18, 57] Assume that f : D → D is not a conformal automorphism of D and
denote by ω its Denjoy–Wolff point. Let f◦n donote the n-fold composition of f . Then, for any
z ∈ D the sequence (f◦n(z))∞n=0 converges to ω.

The above theorem is obviously still valid for any open set comformally equivalent to the unit
disc. For the operator valued case we use a similar result for Banach spaces due to Earl and
Hamilton [20]. In this case we need that f maps D strictly inside D.

Theorem 2.3. [20] Let D be a connected open subset of a complex Banach space X and let f
be a holomorphic mapping of D into itself such that:

(1) the image f(D) is bounded in norm;
(2) the distance between points f(D) and points in the exterior of D is bounded from below

by a positive constant.

Then the mapping f has a unique fixed point w in D and for any point z ∈ D, the sequence
(f◦n(z))∞n=0 converges to w.

3. Free deconvolutions

In this section we prove the main theorems, by first considering the free additive deconvolution
and then the free multiplicative deconvolution. Our aim is to find suitable sets and suitable
transforms so that we obtain a fixed point equation. For this we will need to give some estimates
of the image of these sets under the different transforms in order to be able to use the above
fixed point theorem.

3.1. Additive deconvolution. Let µ1, µ3 ∈ P2(R), and suppose without loss of generality
that µ1 is centered. We are looking to solve the equation µ1 � µ2 = µ3. For this we will find
subordinations function ω1, ω3 such that

Fµ2(z) = Fµ3 [w3(z)] = Fµ1 [w1(z)].

As described above we will use an iterative procedure. So, let us recall two particular functions
used in in the statement of Theorem 1.2:

• The h-transform of µ1 is the function h1 : C+ → C− defined by

h1(w) = w − Fµ1(w).

• The h̃-transform of µ3 is the function h̃3 : C+ → C+ defined by

h̃3(w) = Fµ3(w) + w.

We denote by σ21 the variance of µ1. For z ∈ C2
√
2σ1

, set α(z) = 3=(z)
4 .

Proposition 3.1. For z ∈ C2
√
2σ1

, the function Tz(w) = h1(h̃3(w)− z) + z is well defined and
analytic on Cα(z).

For any w ∈ Cα(z), the iterated function T ◦nz (w) converges to w3(z) ∈ Cα(z) which is the
unique fixed point of Tz.

Proof. Let z ∈ C2
√
2σ1

and simply write α instead of α(z). Let us prove first that Tz is well

defined on Cα. Since h1 is defined on C+, we just have to check that h̃3(w)−z ∈ C+ for w ∈ Cα.

Let w ∈ Cα. By the definition of α, =(w) > 3=(z)
4 and thus

(8) =(h̃3(w)− z) = =(Fµ3(w) + w − z) ≥ 2
3=(z)

4
−=(z) >

=(z)

2
,

where we have used (5) in the second inequality.
In view of applying Denjoy-Wolff theorem, we prove now that Tz(Cα) ⊂ Cα. Let w ∈

Cα. Then, since Fµ1 is the F -transform of a centered probability measure having variance σ21,
applying (7) yields

|Fµ1(x)− x| ≤ σ21
=(x)

,
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for x ∈ C+, which implies

(9) =[Fµ1(x)] ≤ =(x) +
σ21
=(x)

.

Applying (8) and (9) to x = h̃3(w)− z we obtain

=[Fµ1(h̃3(w)− z)] ≤ =[h̃3(w)− z] +
σ21

=[h̃3(w)− z]
< =[h̃3(w)]−=(z) +

2σ21
=(z)

.

Hence, for z ∈ C2
√
2σ1
,

=[Tz(w)] ==[h1(h̃3(w)− z) + z]

==[h̃3(w)− Fµ1(h̃3(w)− z)]

>=(z)− 2σ21
=(z)

≥ 3=(z)

4
,

where we used the inequality t − 2σ2
1
t ≥

3t
4 , valid for t ≥ 2

√
2σ1. Thus we have proved that

Tz(w) ∈ Cα, as desired.
Since Tz(Cα) ⊂ Cα, we just have to prove that Tz is not an automorphism of Cα in order to

apply Denjoy-Wolff Theorem. But, if w ∈ Cα,

|Tz(w)− z| = |h1(h̃3(w)− z) + z − z| = |Fµ1(h̃3(w)− z)− (h̃3(w)− z)| ≤ σ21
=(h̃3(w)− z)

.

Hence, by (8), |Tz(w)− z| < 2σ2
1

=(z) and

(10) Tz(Cα) ⊂ D
(
z,

2σ21
=(z)

)
,

where the latter is the disk with center z and radius
2σ2

1
=(z) . Therefore, Tz is not surjective and

hence is not an automorphism of Cα. By Denjoy-Wolff Theorem, there exists w3(z) ∈ Cα∪{∞}
such that T ◦nz (w) converges to w3(z) for all w ∈ Cα. By (10), w3(z) ∈ D(z,

2σ2
1

=(z)) ⊂ Cα and thus

w3(z) is a fixed point of Tz. �

Remark 3.2. (1) Without any additional property on µ1 and µ3, the constant 2
√

2σ is sharp.
Indeed, if we only assume the inequality

|Fµ(z)− z| ≤ σ2

=(z)

for distribution µ with finite variance σ, a computation yields that the stability condition Tz(Cα) ⊂
Cα implies that α satisifies the inequality

(2α−=(z))(=(z)− α)− σ21 > 0,

which is possible if and only if =(z)2 > 8σ21.

(2) Notice that if we consider z ∈ Cβ, for some β = c2
√

2σ1 and c > 1, then the function Tz,
satisfies

(11) T (D(z,
1

4
=(ζ) ⊂ T (Cα(z)) ⊂ D

(
z,

2σ21
=(ζ)

)
⊂ 1/c2T (D(z,

1

4
=(ζ))),

Thus, for z ∈ Cβ, Tz : D(z, 1/4=(ζ))→ C is a contraction with Lipschitz constant smaller than
1/c2. In particular, if we β = 3, then c2 = 9/8.

Proposition 3.3. The function w3 is analytic on C2
√
2σ1

and lim
n→∞

w3(iy)
iy = 1. Moreover, we

have

φµ3
[
Fµ3
(
w3(z)

)]
− φµ1

[
Fµ3
(
w3(z)

)]
= z − Fµ3(w3(z))

for z large enough.
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Proof. The analiticity of w3 follows from Theorem 2.3 in [7]. Now, for z ∈ C2
√
2σ2

1
, the fact that

w3(z) is a fixed point of Tz implies that it is in Cα(z) which yields that =[w3(z)] > 3/4=(z).
Therefore, (8) yields that

=[h̃3(w3(yi))− yi] ≥ 3y/4

for y > 0. Hence, since w3(yi)) = Tyi(w3(yi)),

|w3(yi)− yi| = |Tyi(w3(yi))− yi| = |h1(h̃3(w3(yi))− yi)| ≤
σ21

3y/4
,

and

lim
n→∞

w3(iy)

iy
= 1.

By Section 2.2, φµ1 , φµ2 and φµ3 are well-defined on C2σ3 . Let z ∈ C4σ3 , so that =[w3(z)] >
2σ3. Since =[Fµ3(w)] ≥ =(w) for w ∈ C+, we thus also have

=[Fµ3(w3(z))] ≥ w3(z) > 2σ3

for z ∈ C4σ3 , so that φµ1 and φµ3 are well-defined on Fµ3(w3(z)) for z ∈ C4σ3 . For z ∈ C4σ3 , set

(12) w1(z) = h̃3
(
w3(z)

)
− z = Fµ3

(
w3(z)

)
+ w3(z)− z.

Since w3(z) is a fixed point of Tz, we have

Fµ1(w1(z)) =− h1(w1(z)) + w1(z)

=− h1
(
h̃3
(
w3(z)

)
− z
)

+ h̃3
(
w3(z)

)
− z

=− Tz
(
w3(z)

)
+ z + h̃3

(
w3(z)

)
− z

=− w3(z) + Fµ3
(
w3(z)

)
+ w3(z) = Fµ3

(
w3(z)

)
,

so that[
w1(z)− Fµ1

(
w1(z)

)]
+
[
z − Fµ3

(
w3(z)

)]
=h̃3(w3(z))− z + z − 2Fµ3

(
w3(z + iσ1)

)
=w3(z)− Fµ3

(
w3(z)

)
.(13)

Hence w3(z) ∈ C2σ3 , and by [34, Lemma 24] F<−1>µ3 [Fµ3(w3(z))] = w3(z). Therefore,

w3(z)− Fµ3
(
w3(z)

)
=F<−1>µ3

[
Fµ3
(
w3(z)

)]
− Fµ3

(
w3(z)

)
=φµ3

[
Fµ3
(
w3(z)

)]
.

Likewise, since w1(z) ∈ C2σ3 ⊂ C2σ1 ,

w1(z)− Fµ1
(
w1(z)

)
=F<−1>µ1

[
Fµ1
(
w1(z)

)]
− Fµ1

(
w1(z)

)
=φµ1

[
Fµ1
(
w1(z)

)]
= φµ1

[
Fµ3
(
w3(z)

)]
.

Therefore,

φµ3
[
Fµ3
(
w3(z)

)]
− φµ1

[
Fµ3
(
w3(z)

)]
= z − Fµ3

(
w3(z)

)
.

�

We can now turn to the proof of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. By Proposition 3.1, =ω3(z) ≥ 3=z/4. By (12), ω1(z) is defined as

ω1(z) = Fµ3(ω3(z)) + ω3(z)− z.

Hence, the fact that =Fµ3(w) ≥ =w for w ∈ C+ yields that =ω1(z) ≥ =z/2. The last part
of statement (1) is given by Proposition 3.3 for ω3, and is deduced by (12) and the fact that

lim
y→∞

Fµ3 (yi)
yi = 1 for ω1.

For the second statement, suppose that there exists µ2 ∈ P2(R) such that µ1 � µ2 = µ3.
Then, by the first statement, Fµ3

(
w3(z)

)
goes to infinity when z goes to infinity along iR≥0.
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Hence, φµ2(Fµ3
(
w3(z)

)
is well-defined for z ∈ iR≥0 large enough. Moreover, by the equality

µ1 � µ2 = µ3 and by Proposition 3.3,

φµ2(Fµ3
(
w3(z)

)
= φµ3(Fµ3

(
w3(z)

)
− φµ1(Fµ3

(
w3(z)

)
= z − Fµ3(w3(z)).

Since φµ2(w) = F<−1>µ2 (w)− w on its domain of definition, the above equality yields

F<−1>µ2 (Fµ3
(
w3(z)

)
) = z,

and thus Fµ2(z) = Fµ3
(
w3(z)

)
for z ∈ iR≥0 large enough. By Proposition 3.3, Fµ3 ◦w3 is analytic

on its domain of definition. Since Fµ2 is also analytic and coincides with Fµ3 ◦w3 in a set which
is not discrete, the two functions are equal on the intersection of their domains of definition,
which is C2

√
2σ1

. Statement (3) is the definition of ω1 in (12), and statement (4) is the content
of Proposition 3.1. �

Proof of Theorem 1.3. Set F̃2(z) = Fµ3(w3(z+ 2
√

2σ1i)). Since w3 is defined on C2
√
2σ1

, F̃2 is a

well-defined function from C+ to C+. Moreover, by Proposition 3.3,

lim
n→∞

w3(iy)

iy
= 1,

which implies

lim
n→∞

w3(iy + 2
√

2σ1i)

iy
= 1.

Since Fµ3 satisfies also the asymptotic behavior lim
y→∞

Fµ3 (yi)
yi = 1, we finally get

lim
n→∞

F̃2(iy)

iy
= 1,

so that by Nevanlinna representation theorem, there exists a probability measure µ̃ ∈ P(R) such

that F̃2 = Fµ̃. By definition of F̃ , for z large enough,

F<−1>µ̃ (Fµ3(w3(z))) = z − 2
√

2σ1i.

Hence, by Proposition 3.3, for z large enough we have

φµ3(Fµ3
(
w3(z)

)
)− φµ1(Fµ3

(
w3(z)

)
= z − Fµ3(w3(z)) = φµ̃(Fµ3

(
w3(z)

)
) + 2

√
2σ1i.

Since FC2√2σ1
(z) = z + 2

√
2σ1, we have φC2√2σ1

= −2
√

2σ1i, so that

φµ3(Fµ3
(
w3(z)

)
) + φC2√2σ1

(Fµ3
(
w3(z)

)
) = φµ1(Fµ3

(
w3(z)

)
+ φµ̃(Fµ3

(
w3(z)

)
)

for z large enough. We deduce that

µ1 � µ̃ = µ3 + C2√2σ1 .
�

3.2. Multiplicative deconvolution. Let µ1, µ2, µ3 ∈ P2(R) be such that µ1 admits moments
of order four and has support on [0,+∞[ (with µ1 6= δ0), and such that µ3 admits moments of
order two and has non-zero first moment.

This subsection is dedicated to the free multiplicative convolution

(14) µ1 � µ2 = µ3,

and the objective is to recover the Cauchy transform of µ2 from the ones of µ1 and µ3. Up
to a rescaling of µ1 and µ3, we can assume that the first moment of µ1 and µ3 are equal to 1.
Following (6), we denote by β1, γ1 the second Jacobi parameters of µ1 of respectively first and

second order, and we set R =
(

2
√
γ1 ∨ β1 ∨

20σ2
1√
3

)
. Set

K = [R+
√

5/4R2 + 5Rσ23].

For z ∈ CK , set rz = =(z)
5|z| , and define the function

Tz(w) = h1
(
z(1 + w)2h3[z(1 + w)]−1

)
− 1
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on ∆z := D(0, rz).

Proposition 3.4. The map Tz is well-defined on ∆z, and for all w ∈ ∆z we have

lim
n→∞

T ◦nz (w) = w̃3(z)

for some w̃3(z) independent of the original choice of w and such that Tz(w̃3(z)) = w̃3(z).
Moreover, w̃3(z) goes to zero as =(z) goes to infinity.

Proof. Let us write rz = t=(z)
|z| with t < 1 varying for now; we will show below that the result

holds for t = 1
5 .

Let us first prove that Tz is well-defined. Set I = =(z). Since the support of µ1 is included
in [0,∞[, h1 can be analytically extended to C \ [0,∞[. On the one hand, for w ∈ ∆z

=([z(1 + w)]) = I + =(zw) > I(1− t),

where we have used the fact that |w| ≤ tI
|z| in the last inequality. By the definition of h3 and (7),

the latter inequality with t < 1 yields that h3[z(1 + w)] ∈ C− and |h3[z(1 + w)] − 1| ≤ σ2
3

(1−t)I .

Hence, we have

(15) h3[z(1 + w)]−1 =
1

1 + u
with u ∈ C−, |u| ≤ σ23

(1− t)I
.

On the other hand, for w ∈ ∆z, we have z(1 + w)2 = z + ũ with

|ũ| ≤ 2z|w|+ |z| · |w|2 ≤ 2tI +
t2I2

|z|
≤ (2t+ t2)I.

Hence, we have

|z(1 + w)2| ≥ (1− 2t− t2)|z|
and

=(z(1 + w)2) ≥ (1− 2t− t2)I.
In particular, z(1 +w)2 ∈ C+ for t small enough (smaller than 1/3 for example). Since h3[z(1 +
w)]−1 ∈ C+ by (15), we finally get that

z(1 + w)2h3[z(1 + w)]−1 ∈ C \ [0,∞[,

and Tz is well defined on ∆z.
Set δ = z(1+w)2h3[z(1+w)]−1. If <(δ) ≥ 0, d(δ, [0,+∞[) = |=(δ)|. Since h3[z(1+w)]−1 ∈ C+,

arg(δ) ≥ arg(z(1 + w)2)) and by (15),

|=(δ)| ≥ |h3[z(1 + w)]−1|=(z(1 + w)2)) ≥ (1− 2t− t2)I
1 + σ23/[(1− t)I]

,

which yields

d(δ, [0,+∞[) ≥ I2(1− t)(1− 2t− t2)
(1− t)I + σ23

:= F (t, I).

If <(δ) ≤ 0, d(δ,∞) = |δ|. Moreover, using again (15) yields

(16) |δ| ≥ |z|I(1− t)(1− 2t− t2)
(1− t)I + σ23

=
|z|
I
F (t, I)

and, since |z| ≥ I, we get also d(δ, [0,+∞[) ≥ F (t, I). Remark that (16) is also valid when
<(δ) ≥ 0. We suppose now that t, I are such that

(17) F (t, I) ≥
(

2
√
γ1 ∨ β1 ∨

4σ21√
3rt

)
for some 0 < r < 1. By Section 2.1,

|h1(δ)− 1| =
∣∣∣∣ σ21
δ − β1 − γ1Gν(δ)

∣∣∣∣ ≤ ∣∣∣∣ σ21
|δ − β1| − |γ1Gν(δ)|

∣∣∣∣ ,
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with ν a probability measure supported on [0,∞[. On the one hand, since β1 ≥ 0 by [24, Lemma
4.1], |δ − β1| ≥ d(δ, [0,+∞[). On the other hand, since ν is supported on [0,∞[ (see Section
2.1), |γ1Gν(δ)| ≤ γ1

d(δ,[0,+∞[) . By (17), d(δ, [0,+∞[) ≥ 2
√
γ1, and thus

|γ1Gν(δ)| ≤ d(δ, [0,+∞[)

4
≤ |δ − β1|

4
.

Hence,

|h1(δ)− 1| ≤ 4σ21
3|δ − β1|

=
4σ21
3|z|
|z|
|δ|

|δ|
|δ − β1|

.

Since d(δ, [0,+∞[) ≥ β1 by the first inequality of (17), a geometric argument yields that |δ|
|δ−β1| <√

3. Hence, the second inequality of (17) yields

|h1(δ)− 1| < 4σ21√
3|z|
|z|
|δ|
≤ rtF (t, I)

|z|
|z|
|δ|
≤ r tI
|z|
,

so that Tz(w) ∈ r∆z for some 0 < r < 1. Hence, conditioned on the fact that t, I satisfy (17),
Tz is an analytic map which is a strict contraction of ∆z, and Denjoy-Wolff theorem yields that
for all w ∈ ∆z, T

◦n
z (z) converges to the unique fixed point of Tz in ∆z. Let t = 1

5 . Then, I
satisfies (17) if

I2(
4

5
.
14

25
)−

(
4

5
I + σ3

)
R ≥ 0

with R = (2
√
γ1 ∨ β1 ∨

20σ2
1√
3

). The two roots of the above second degree polynomials are

x± =
25

28
R± 125

112

√
(4/5)R2 + 4

112

125
Rσ23.

Since K ≥ [R +
√

5/4R2 + 5Rσ23], for I ≥ K we have I ≥ x+ and the inequality of (17) is
satisfied.

Finally, for any 0 < t < 1 fixed, for I large enough (t, I) satisfies (17). Hence, for all small
0 < t < 1 and =(z) large enough,

|w̃3(z)| ≤
t=(z)

|z|
≤ t,

and w̃3(z) goes to zero as =(z) goes to infinity. �

Remark 3.5. The choice the constant K could be certainly improved, depending on the value
of σ1, σ2, β1 and γ1. One of the way to improve K is to find the set K of values I in the above
proof such that the inequalities in (17) is satisfied for some 0 < t <

√
2 − 1 (the restriction on

t is given by the condition 1− 2t− t2 ≥ 0). This involves a polynomial in R[t, I] of degree 4 in
t and 2 in I, and it can be easily seen that K is an interval [K0,∞[. The constant K0, which
can be obtained numerically, is a better constant than K. We chose to give the above explicit
constant K, since our simulations showed that K does not differ much from K0.

Set w3(z) = (1 + w̃3(z))z, and for z ∈ CK , set

F (z) = Fµ3(w3(z))zw3(z)
−1.

Proposition 3.6. The function F is analytic on CK and coincides with Fµ2 on its domain of
definition.

In the following proof, recall that the η-transform of a distribution µ is defined by ηµ(w) =
w[w−1 − Fµ(w−1)]. We have in particular ηµ(w) = whµ(w−1) on C+.

Proof. By Denjoy-Wolff Theorem,
∣∣Tz[w̃3(z)

]∣∣ < 1, thus the implicit function theorem applied
to the analytic function g(w, z) = Tz(w)−w on {(w, z)|z ∈ CK , w ∈ ∆z} yields the analyticity of

w̃3 and w3. For all z ∈ CK , w̃3(z) ≤ =(z)5|z| , thus w3(z) = z(1+ w̃3(z)) ∈ C+, and F is well-defined

and analytic on CK .
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Set w1(z) = w3(z)2z−1

h3(w3(z))
. Since w̃3(z) = Tz(w̃3(z)) = h1(z(1 + w̃3(z))

2h3[z(1 + w̃3(z))]
−1)− 1,

w3(z) = z(1 + w̃3(z)) = zh1
(
w3(z)

2z−1h3[w3(z)]
−1) = zh1(w1(z)).

Hence,

ηµ3(w3(z)
−1) = w3(z)

−1h3(w3(z)) = w1(z)
−1w3(z)z

−1 = w1(z)
−1h1(w1(z)) = ηµ1(w1(z)

−1).

Set η2(w) = 1− wF (w−1) for z ∈ CK . Then, for w such that w−1 ∈ CK ,

η2(w) = 1− wF (w−1) = 1− w3(w
−1)−1Fµ3(w3(w

−1)) = ηµ3(w3(w
−1)−1) = ηµ1(w1(w

−1)−1).

Since w3(z) = z(1 + w̃3(z)) with |w̃3(z)| ≤ =(z)
5|z| , =(w3(z)) ≥ 4/5=(z) and =[w3(z)] goes to

infinity when =(z) goes to infinity. Hence, by (7), h3(w3(z)) converges to 1 as =(z) goes to

infinity, so that |w1(z)| =
∣∣∣w3(z)2z−1

h3(w3(z))

∣∣∣ goes to infinity when =(z) goes to infinity. For i ∈ {1, 3},
ηi(z) ∼ z for z going to zero; hence, for =(z) large enough, w3(z)

−1, w1(z)
−1 are respectively

in the image of η<−1>µ3 , η<−1>µ1 , and η2(z
−1) = ηµ3(w3(z)

−1) is in the domain of η<−1>µ2 . This
implies in particular that

η<−1>µ3 (ηµ3(w3(z)
−1)) = w3(z)

−1, η<−1>µ1 (ηµ1(w1(z)
−1)) = w1(z)

−1.

Therefore, since ηµ1(w1(z)
−1) = ηµ3(w3(z)

−1) = η2(z
−1), for =(z) large enough we have

Σ3(η2(z
−1))

Σ1(η2(z−1))
=
η<−1>µ3 (ηµ3(w3(z)

−1)ηµ1(w1(z)
−1)

ηµ3(w3(z)−1)η
<−1>
µ1 (ηµ1(w1(z)−1))

=
w3(z)

−1ηµ1(w1(z)
−1)

ηµ3(w3(z)−1)w1(z)−1
=
w1(z)

w3(z)

=
w3(z)

zh3(w3(z))
=

z−1

η2(z−1)
.

On the other hand, by the relation µ1 � µ2 = µ3, for =(z) large enough we have

Σ3(η2(z
−1))

Σ1(η2(z−1))
= Σ2(η2(z

−1)) =
η<−1>µ2 (η2(z

−1))

η2(z−1)
.

Hence, η<−1>µ2 (η2(z
−1)) = z−1, which yields, after applying ηµ2 on both sides,

ηµ2(z−1) = η2(z
−1).

Therefore, η2 and ηµ2 coincide in a neighborhood of zero. Since both maps are analytic,
ηµ2(z−1) = η2(z

−1) for z ∈ CK , which yields

F = Fµ2

on CK . �

The proof of Theorem 1.4 is given by Proposition 3.4 and Proposition 3.6.

4. Implementation of free deconvolution

As explained in the introduction, the subordination techniques developed in Theorem 1.2 and
Theorem 1.4 provide a first step towards recovering the unknown distribution µ2, by obtaining
the distribution of µ2 ∗ Cλ, where Cλ is a Cauchy distribution with a parameter λ depending
on the first moments of µ1 and µ3. Thus, we need to solve the classical deconvolution by the
Cauchy distribution in order to complete the algorithm for free deconvolution. In this section
we describe how to implement both steps.
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4.1. Free subordination functions. One very useful consequence about Theorem 1.2 and
Theorem 1.4 is that they provide a very direct method to calculate the subordination functions.
We describe briefly this method for the additive convolution; the multiplicative case is identical,
by choosing the correct function Tz to iterate.

First we choose a small ε > 0 which will be our level of approximation. Given Gµ1 and Gµ3 ,
we can easily calculate the functions Tz from part (4) of Theorem 1.2.

Let z ∈ CK for K given by Theorem 1.2. We start with an arbitrary point w0(z) in

some proper domain D = D
(
z,

2σ2
1

=(z)

)
(for example take w0(z) = z) and define w(n+1)(z) =

Tz(w
(n)(z)). Theorem 1.2 ensures the existence of N > 0 such that w(N+1)(z)−w(N)(z) < ε and

we call w(N+1)(z) = w∞(z). Our approximation for Fµ2(z) is given by F3(w∞(z)). Here we note

that (10) implies that for D = D
(
z,

2σ2
1

=(z)

)
, Tz : D → D has a fixed point inside D. Moreover,

the speed of convergence to the fixed point is exponential because Tz is a contractive map with
respect to the Schwartz distance in D. For specific Lipschitz constats see Remark 3.2.

Let us choose a discretization (x(i))1≤i≤n of an interval I ⊂ R large enough. We are given
the functions F1 and F3, and we start with a vector [z(1), z(2), ....., z(n)] ∈ Cn

2
√
2σ1

where

z(i) = x(i) + 2
√

2σ1. We obtain a vector [F2(z(1)), ......F2(z(n))] as follows.

I. 1. Set an approximation threshold ε > 0.
2. Define the functions h1(w) := w − F1(w), and h3(w) := w + F3(w).

II. For (i = 1 to n)
1. Set wnow := z(i).
2. Set wpast := wnow.
3. Set wnow := h1(h3(wpast − z)) + z.
4. If (|wpast(z(i))− wnow| > ε), go to 2.

else set w∞ := wnow.
5. Set F2(z(i)) := F3(w∞).
Applying the latter procedure and then Stieltjes inversion formula yields an approximation

V ∈ Rn of the density f̃ of µ2 ∗ C2√2σ1 on I.

4.2. Classical deconvolution with the Cauchy distribution. In order to recover µ2, one
needs to perform afterwards the classical deconvolution of f̃ by the Cauchy distribution of
paramter 2

√
2σ1. Deconvolving with a Cauchy kernel amounts to solve the Fredholm equation

of the first kind (see [21] for more details on this class of equations)∫
R
K(x, y)d2µ(y) = f̃(x), x ∈ R,

with K(x, y) = 1
π

λ
(x−y)2+λ2 , f̃ given by the previous step and µ2 unknown. The latter is known

to be a severely ill-posed problem and thus requires regularization. The natural procedure is
given by a Tychonov regularization using jointly quadratic programming, which we now explain
briefly.

After having discretized the problem and done the first step of the deconvolution, we end up
with the linear equation

(18) KU = V,

with K ∈ Mn×m(R), V ∈ Rn and U ∈ Rn are respectively a discrete version of the Cauchy

kernel, the discrete approximation of f̃ we obtained in the first step, and a discrete version of the
unknown density dµ2. The ill-possedness of the problem comes from the fact that K is singular
(or has very small non-zero eigenvalues), which makes the solution U unstable with respect
to small perturbations of V . The goal of Tychonov regularization is to replace the negligible
eigenvalues of K by small ones in order to make the linear problem stable. Namely, instead of
solving (18), we will look for a solution which minimizes the convex function ‖KU−V ‖2+α2‖U‖2,
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where α > 0 is a parameter to be chosen. Moreover, we want to ensure that the solution is a
probability distribution, which results in the minimization problem

(19) U = argmin
Ui≥0∑
Ui∗δ=1

(‖KU − V ‖2 + α2‖V ‖2),

where δ is the step of the discretization. In general, the choice of the parameter α is crucial
in the success of the Tychonov regularization, and we refer to [21, Section 3.3] for a possible
strategy for the choice of such a parameter. In our case of study, we noticed that in all case we
get good approximation of µ in Levy distance by simply setting α = 0 in (19). This means that
regularization could be avoided when we are only interested in approximation of µ2 in the Levy
distance : this important simplification should be the subject of further investigation. In order
to achieve the minimization of (19), we used the quadratic programming package CVXOPT [16]
with Python (see also [13] for theoretical background on the subject). For all examples listed
below, the result is obtained in few seconds.

Application: recovering spikes in deformed model. As we mentioned in the introduction,
a possible interesting application of free deconvolutions is the recovery of outliers from a deformed
matrix model. Namely, assume that A ∈ Mn(R) is a Hermitian matrix with an outlier λ, and

suppose that we know the deformed matrix M = A + X or M = X1/2AX1/2, where X is a
noise matrix whose spectral distribution µ1 is known. We denote as usual by µ2 (resp. µ3) the
spectral distribution of A (resp. M). Let us assume that λ is the unique outlier of A, and that
this outlier yields an outlier λM on the deformed matrix M . The first hypothesis is only given
to simplify the results, and the same results hold for several outliers. The main result of [8]
relates the value of λ to the one of λM as follows :

• Additive case : Let w̃2 be the subordination function from the additive convolution of
µ1 with µ2, then

(20) λ = w̃2(λM ).

• Multiplicative case : Let w̃2 be the subordination function from the multiplicative
convolution of µ1 with µ2, then

(21) λ = w̃2(λ
−1
M )−1.

These results together with our method for free deconvolution provide a way to recover spikes
of deformed models, as follows:

(1) Compute the distribution µ2 using the given subordination methods.
(2) Compute the subordination w̃2 of the additive (resp. multiplicative) convolution of µ1

and µ2.
(3) Apply the relation (20) (resp. (21)) to recover the original spike λ.

Two examples showing the efficiency of such procedure are displayed in Example 4.5 and
Example 4.6.

4.3. Simulations. We include simulations for additive and multiplicative deconvolutions of two
situations: one example where the unknown distribution is atomic and one example where the
unknown distribution has a density.

We compare our results with actual simulations of large (however finite dimensional and thus
only approximately free) random matrices. The distributions obtained by our free deconvolution
method are close to the true distributions. All simulations are done with Python.

Additive case. Let us consider a (possibly random) matrix A ∈ Mn(R) with limiting spectral
distribution µA and a Wigner matrix W ∈ Mn(R), whose spectral distribution is known to
converge to a semicircular distribution s.

We simulate A + W and want to recover an approximation for µA. Free probability theory
states that the distribution of A+W should be close to the free convolution s� µA.

Example 4.1. [Discrete distribution] A is a diagonal matrix of size 1200 with eigenvalues −1, 0
and 1 with respective weights 1/2, 1/6 and 1/3. Figure 1 shows the results of our method.
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Figure 1. Histogram of the spectral distribution of A+W (left), result after first
step of the deconvolution (center), and the final result compared with the original
atomic distribution in orange (right). We did not use Tychonov regularization in
this example.

Example 4.2. [Marchenko-Pastur] A = XX∗, where X is a random rectangular matrix of size
800× 1600 with independent Gaussian entries of variance 1/n (with n = 800). Figure 2 shows
the results of our method.

Figure 2. Histogram of the spectral distribution of A+W (left) , result of the
first step of the deconvolution (center), and result after Tychonov regularization
compared with the histogram of eigenvalues of the original Wishart matrix.

Multiplicative case. Consider now a matrix A ∈Mn(R) and a Ginibre matrix W ∈Mn(R). Let
us recover the spectral distribution A from the distribution of WAW ∗, as follows.

Since WW ∗ is a Wishart matrix whose spectral distribution approximates the Marchenko-
Pastur distribution m1 (or free Poisson) of parameter 1, the spectral distribution of WAW ∗ is
approximately the free multiplicative convolution m1 � µA.

To approximate the original spectral distribution of the matrix A, we must calculate the
multiplicative free deconvolution of the spectral distribution of WAW ∗ with the Marchenko-
Pastur distribution m1. In the first step of the deconvolution, we found in these examples that
we were able to use a lower parameter K than the one theoretically given by our theorem. This
improved the precision of the realization of the second step.

Example 4.3. [Discrete distribution] A is a diagonal matrix with eigenvalues −3, 1/2, 4 and 1
with respective weights 1/2, 1/6 and 1/3.

Figure 3. Histogram of the spectral distribution of WAW ∗ of size n = 1200
(left), result of the first step of the deconvolution (center) and result after the
second step compared with the original distribution in orange (right) . We did
not use Tychonov regularization in this example.

Example 4.4. [Modification of Marchenko-Pastur] A = 1/2(X2+(X∗)2), where X is a random
square matrix of size n = 800 with independent Gaussian entries with variance 1/n.
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Figure 4. Histogram of the spectral distribution of WAW ∗ (left), result of the
first step of the deconvolution (center), result after Tychonov regularization and
quadratic programming (with n = 800) and comparison with the histogram of
eigenvalues of the original random matrix (right).

Recovery of spikes. We consider again Example 4.2 and Example 4.4, but we add this time a
shift δ > 0 to the largest eigenvalue of A, in order to get an outlier λ. The shift δ must be large
enough to ensure that the outlier still exists after adding the matricial noise, resulting in an
outlier λM (see [3] for more details on this phenomenon). The minimal value of the shift can be
computed from the spectral distribution of A and the one of the matricial noise. We then apply
the procedure given in Section 4.2 to recover λ from λM and the estimated spectral distribution
µA of A.

Example 4.5. In the additive case, A = (XX∗), where X is a random square matrix of size
800×1600 with independent Gaussian entries with variance 1/800; then we added 5 to the largest
eigenvalue (outlier at 10.75). The noise is a Wigner additive noise as in Example 4.2.

Figure 5. Spectral distribution of A + W , computation of the spectral
distribution µA by the subordination technique, histogram of the measured value
of the outlier λM of A+W and of the value after deconvolution (50 trials). The
true value λ is in orange.

Example 4.6. In the multiplicative case, A = (XX∗)2, X is random square matrix of size
n = 800 with independent Gaussian entries with variance 1/n; then we added 4 to the largest
eigenvalue (outlier at 6.9). The noise is a Marchenko-Pastur distributed, as in Example 4.4.

4.3.1. Comparison with previous methods. We now compare our results with the methods of
Ledoit and Wolf [27, 28, 29] . For this, we consider the matrix ZZ∗ with Z = Y T , where Y is
a Wishart matrix of size (2p, p) and T is a diagonal matrix that we want to recover. Following
the example of the QuEST method (see [29] for details) the spectral distribution of T is given
by discretization of the distribution function

H4(x) =

{
1
2(1− [1− (2x)3]1/3), x ∈ [0, 1/2],
1
2(1 + [1− (2− 2x)3]1/3), x ∈ [1/2, 1].
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Figure 6. Spectral distribution of WAW ∗, computation of the spectral
distribution µA by the subordination technique, histogram of the measured value
of the outlier λM of WAW ∗ and of the value after deconvolution (50 trials of the
noise W ). The true value λ is in orange.

For each p between 30 and 500 we made 100 simulations of the deconvolution both with the
proposed method and with the method of Ledoit and Wolf, and then calculated the mean square
error 1

p

∑
i((λ̂i − λi)2)). Since we were interested in the population of eigenvalues rather than

the density of the spectral distribution, we chose to modify the second step of our algorithm
described in Section 4.2 : instead of minimizing the regularized distance (19) over all possible
probability distributions, we are only minimizing it on the set of probability distributions with p
atoms of mass 1/p, and we set the regularizing parameter α to zero. Then we took the average
over the 100 simulations for each value of p. The result is shown in Fig. 7.

Figure 7. Accuracy in terms of mean squared error in the subordination method
compared to Ledoit-Wolf method

Similary, for each p as above between 30 and 500 we calculated the running time for calculating
the deconvolution and took the average over the 100 simulations for each value of p. The result
is shown in Fig. 8. Both methods seem to have running times of similar order.

We see that both methods seem to provide the same accuracy; this should not be a surprise,
since both methods rely on the relation between the spectral distribution of the average matrix
E(ZZ∗) and the one of T (although concrete implementions differ from one method to the other).
Our method should therefore be seen as a generalization of Ledoit-Wolf’s viewpoint to the case
of arbitrary multiplicative noise.
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Figure 8. Speed of the subordination method compared to the speed in the
Ledoit-Wolf method

5. Operator-valued free deconvolutions

In [53], Voiculescu provided generalizations of most concepts and tools from free probability
theory to a broader theory of operator-valued (or B-valued) free probability. The fundamental
concept of a non-commutative probability space (A, τ), consisting of a ∗-algebra with unit and a
state τ : A→ C, is replaced by a triple (A,B,E), where E : A→ B is a conditional expectation
onto a smaller algebra B ⊆ A (to be thought as the algebra of constants).

These theoretical generalizations found immediate applications to the description of more
general models in random matrix theory. For example Shlyaktenko [45] used this framework
to study band random matrices and block-random matrices, and provided at the same time
a general pipeline for applications of B-free probability. In particular, these works showed the
need to study how B-distributions of operators behave as we consider different choices of algebra
B [36].

Indeed, in order to compute or approximate a desired B0-valued distribution of a certain
operator x, it has been often useful to rephrase the problem in terms of a B1-distribution of an
auxiliary operator y, where B1 is an auxiliary algebra usually larger than B0, in such a way that y
is built-up by B1-free pieces that we understand. As the algebra B1 becomes larger, the notion of
B1-freeness becomes less meaningful or practical, up-to the extreme situation where B contains
the relevant operators, and their B-freeness thus follows tautologically, as the corresponding
conditional expectation restricted to the relevant operator algebras is the identity.

For non-trivial scenarios where B1 is minimal, the machinery of B1-free probability theory
is used to compute the B1-distribution or B1-Cauchy transform of y, from which x is then
extracted, typically by simple means. For example, if B0 ⊆ B1 are compatible expectations (i.e.
the corresponding conditional expectations E0, E1 satisfy E0 ◦ E1 = E0), then the B0-Cauchy
transform is just the projected, restricted B1-transform,

GB0
x (b0) = E0(G

B1
x (b0)), b0 ∈ B0.

Along with the theoretical developments in B-valued free probability theory, the notion of
B-free independence has been more frequently observed in applied models. Thus, the problems
of computing B-free additive and multiplicative convolutions gained more interest, and the
methods via analytic subordination have been particularly useful and effective.

In this section, we find the B-Cauchy-Stieltjes transform GBx of the B-free deconvolutions
through subordination functions in a certain region of the B-upper half-plane. For simplicity,
we only consider the case of B-independent bounded operators.

Unlike the scalar-valued case, in the B-valued case is not obvious what should be used in the
second step of the algorithm for replacement of the Cauchy distribution, which allowed us to
transfer the analytic distributions (with some small error), from a region away from the real
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line to a close neighborhoods of the real line in the upper half-plane, from which we obtain the
deconvolved distribution (with a small error). Thus, for the moment, our algorithm deals only
with the first part of the deconvolution process, which computes the B-Cauchy transform in a
region away from the self-adjoint space Bsa.

We should warn the reader that, for our method to be useful for practical situations, we should
find operator models where the desired B0 distribution and the auxiliary B1 distributions either
coincide or are not too distant. For example, in the context of the block-modified random
matrices studied in [1], the authors give a general numerical method, using a certain auxiliary
algebra B1 and a more restrictive but more explicit method, using a simpler algebra B′1.

Before stating our results on B-free deconvolutions, let us recall some basic elements of B-
valued probability.

5.1. Elements of operator-valued free probability. We refer to [46] for a basic introduction
to operator-valued non-commutative spaces. In this section, we consider unital inclusions B ⊂ A
of C∗-algebras, and we denote by E : A → B a unit-preserving conditional expectation.
Moreover, we denote by B(X ) the ∗-algebra of non-commutative polynomials in a self-adjoint
variable X with coefficients in B. Following [40], we define a B-valued non-commutative
distribution as a unital B-module map µ : B(X )→ B such that

[µ(fi(X )∗fj(X ))]1≤i,j≤n ≥ 0 in Mn(B)

for all subsets {fi(x)}1≤i≤n of B(X ). The distribution µ is said bounded by M > 0 if

µ(X b1X . . .X bnX ) < Mn+1‖b1‖ . . . ‖bn‖

for b1, . . . , bn ∈ B.
Note that for a ∈ A self-adjoint, the map φa : B(X ) → B defined by φa(P ) = E(P (a)) is

a non-commutative distribution. For any non-commutative distribution µ, there exists a unital
inclusion of C∗-algebras B ⊂ A, a conditional expectation E : A → B and an element a ∈ A
such that µ = φa (see [40, Proposition 1.2] and [56, Theorem 2.8]).

In this section, every non-commutative distribution is assumed to be B-valued.

5.2. Statement of new results. Let us introduce first several operator-valued versions of the
transforms considered in Section 2.1. Let us denote by B+ the subset of B consisting of elements
with positive imaginary part. Namely, b ∈ B+ if b is written b = b1 + ib2 with b1 self-adjoint
and b2 > 0. Likewise, we define B− as the set of elements of B with negative imaginary part.
Given a bounded non-commutative distribution µ, we introduce the following maps:

• Gµ : B+ → B− its Cauchy transform, defined by

Gµ(b) = µ[(b−X )−1].

In the case that µ = φa, the Cauchy transform of µ can also be written as Gµ =
E[(b− a)−1].
• Fµ : B+ → B+ its reciprocal Cauchy transform Fµ = G−1µ .

• ηµ : B+ → B its η-transform defined by ηµ(b) = b[b−1 − Fµ(b−1)].
• φµ : B+ → B+, the operator-valued Voiculescu trasform φµ(b) = F<−1>(b)− b.
• Σµ(b) = b−1η<−1>µ (b), defined on B+ in a neighborhood of 0.

As in the scalar case, additive and multiplicative B-free convolutions may be defined at the
level of the transforms on suitable domains: φµ1�µ2(b) = φµ1(b) + φµ2(b) and Σµ1�µ2(b) =
Σµ1(b)Σµ2((Σµ1(b))−1bΣµ1(b)).

Although these definitions imply considering non-commutative series in X instead of polynomials,
we can show that all these maps are well-defined and analytic by a limit argument (see [53] for
a rigorous proof). Finally, we denote by σ2 := ‖µ(X 2)− µ(X )2‖ the norm of the variance of µ,
and as in the scalar case we set hµ(b) = b− Fµ(b) for b ∈ B+.

Our method for computing additive B-free deconvolutions reads as follows:
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Theorem 5.1. Suppose that µ1 � µ2 = µ3, with µ1, µ2 and µ3 bounded B-valued distributions,
and let σ21 = ‖E(X 2

1 ) − E(X1)
2‖ be the variance of µ1. For b ∈ B such that =b > 4

√
2σ1, set

∆b = {r ∈ B+,=r > 3=b/4} and define Tb : ∆b → B to be

Tb(w) = hBµ1
(
hBµ3(w) + 2w − b

)
+ b,

Then, Tb is well-defined and for any w ∈ ∆b, the sequence T ◦nb (w) converges to an element w3(b)
independent of the initial choice of w. Moreover,

FBµ2(b) = FBµ3(w3(b)).

For the multiplicative case, let us first introduce some notations. Given µ1, µ3 two bounded
B-valued distributions,

• Ri is the bound of the distribution µi,
• αi := ‖E(Xi)‖ is the norm of the first moment of µi, and
• α∗i := inf SpecE(Xi) is the minimum of the spectrum of E(Xi).

Then the result is the following.

Theorem 5.2. Suppose that µ1 � µ2 = µ3, with µ1 ≥ 0. Set

• K := 2
α∗µ1

max

(
2
α∗µ1

(σ3 + αµ3)

(
‖µ1‖+ 2

σ2
µ1
α∗µ1

)
, ‖µ3‖+ σµ3

)
,

• for b invertible such that ‖b‖ ≤ K−1, set ∆b = bD(0, 2
α∗µ1

) and define Tb : ∆b → B by

Tb(w) = bHµ1

(
b−1wHµ3(w)w

)−1
,

where Hµ(b) = hµ(b−1).

Then, for any b such that ‖b−1‖ ≤ K, Tb−1 is well-defined, and for any w ∈ ∆b−1 the sequence
T ◦nb−1(w) converges to an element w3(b) ∈ B independent of the initial choice of w. Moreover,

Fµ2(b) = bw3(b)Fµ3(w3(b)
−1).

5.3. Auxiliary lemmas. We give three lemmas of independent interest that will be used in
the proofs of Theorems 5.1 and 5.2.

Let us first slightly improve a bound of [40, Proposition 1.2] for later purposes.

Lemma 5.3. Let P ∈ B(X ). Then,

µ(P ∗b∗bP ) ≤ ‖b∗b‖µ(P ∗P ) and µ(P ∗X 2P ) ≤M2µ(P ∗P ),

where M is any constant bounding µ.

Proof. The first inequality is already proven in the proof of [40, Proposition 1.2]. In the same
paragraph, the authors have also proven that

µ(P ∗X 2P ) ≤ 4M2µ(P ∗P ).

We will adapt their proof to give our result: define for each monomial f = b0X b1 . . .X bn ∈ B(X )

the quantity p(f) = Mn‖b0‖ . . . ‖bn‖, and denote by B̂(X ) the ∗-algebra

B̂(X ) =

{ ∞∑
n=0

fn | fn monomial in B(X ) such that

∞∑
n=0

p(fn) <∞

}
.

Let µ̃ be the positive B-valued linear map extending µ from B(X ) to B̂(X ) with the formula

µ̃(

∞∑
n=0

fn) =

∞∑
n=0

µ(fn).

For T > M and n ≥ 0, let gn,T = (2n)![(1 − 2n)(n!)2T 2n4n]−1X 2n. Then, gn,T = g∗n,T and

p(gn,T ) ≤ (M/T )n. Thus, gT =
∑∞

n=0 gn,T ∈ B̂(X ). Since g2T = 1− [X/T ]2, we have

0 ≤ µ̃(P ∗g2TP ) = µ̃(P ∗(1− [X/T ]2)P ) = µ(P ∗P )− T−2µ(P ∗X 2P ).
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Hence, µ(P ∗X 2P ) ≤ T 2µ(P ∗P ). Since this holds for all T > M , we finally get

µ(P ∗X 2P ) ≤M2µ(P ∗P ).

�

We give then in the operator valued context an estimate of hµ similar to (7).

Lemma 5.4. Denote by σinf(v) the minimum of the spectrum of a self-adjoint operator v ∈ B.
For b ∈ B+, we have

‖hµ(b)− µ(X )‖ ≤ 4‖µ(X 2)− µ(X )2)‖
σinf=(b)

.

Proof. The proof follows the method of [9, Remark 2.5] and [6, Lemma 2.3]. Let b = u + iv,
with v > 0 and let φ ∈ B∗ be a positive functional. Set

fφ(z) = φ(hµ(u+ zv)− µ(X ))

for z ∈ C+. By [9, Remark 2.5], fφ : C+ → C+, and by [6, Lemma 2.3] we have asymptotically

lim
z→∞

fφ(z) = 0, lim
z→∞

zfφ(z) = φ(µ(X )v−1µ(X )− µ(X v−1X )).

Thus, by the Nevanlinna representation, there exists a probability measure ρ on R such that

fφ(z) = φ(µ(X v−1X )− µ(X )v−1µ(X ))

∫
R

1

t− z
dρ(t),

and then, by (5), |fφ(z)| ≤ φ(µ(X v−1X )− µ(X )v−1µ(X ))/=z.
Now, note that Φ(b) := µ(X bX )−µ(X )bµ(X ) = µ([X −µ(X )]b[X −µ(X )]) is a positive map,

so that

Φ(v−1) ≤ Φ(‖v−1‖) = ‖v−1‖(µ(X 2)− µ(X )2).

Therefore,

φ(µ(X v−1X )− µ(X )v−1µ(X )) ≤ ‖v−1‖φ(µ(X 2)− µ(X )2) ≤ ‖v−1‖‖µ(X 2)− µ(X )2‖.

In particular,

φ(hµ(b)− µ(X )) = fφ(i) ≤ ‖v−1‖‖µ(X 2)− µ(X )2‖.
Hence, since any functional onB is the sum of four positive functionals and sinceB is isometrically
embedded in its bidual,

‖hµ(b)− µ(X )‖ ≤ 4‖v−1‖‖µ(X 2)− µ(X )2‖ = 4
‖µ(X 2)− µ(X )2‖

σinf(v)
.

�

We give now a strengthened inequality when µ is bounded. Let µ be a realizable non-
commutative distribution, and define Hµ : B+ → B by

Hµ(b) = hµ(b−1) = b−1 − F (b−1).

Lemma 5.5. If µ is bounded by M , then the map Hµ can be extended to an analytic function
on the open disk DM−1 := {b ∈ B, ‖b‖ < (M)−1}. Moreover, Hµ satisfies the inequality

‖Hµ(b)− µ(X )‖ ≤ ‖µ(X 2)− µ(X )2)‖ 1

‖b‖−1 −M
.

Proof. By [40], the Boolean cumulant transform of µ is defined by Bµ(b) = 1 − Fµ(b−1)b for
b ∈ B+. Therefore, Hµ(b) = Bµ(b)b−1 for b ∈ B+. The series expansion of Bµ holds for every b
in DM−1 , and we have

Bµ(b) =
∑
n≥1

Bµ,n(b, . . . , b),
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where Bµ,n : Bn → B are the non-commutative Boolean cumulants of µ, which satisfy the right
B-module property Bµ(b1, . . . , bn) = Bµ(b1, . . . , bn−1, 1)b. Since Bµ,1(b) = µ(X )b, we have

Hµ(b) =

∑
n≥1

Bµ,n(b, . . . , b)

 b−1 =

∑
n≥1

Bµ,n(b, . . . , 1)b

 b−1 = µ(X ) +
∑
n≥2

Bµ,n(b, . . . , b, 1),

on B+∩DM−1 , and by analytic continuation this equality holds on DM−1 . Following [40, Lemma
2.9], we introduce on B(X ) the B-valued sesquilinear inner-product 〈P,Q〉 = µ(Q∗P ). Note that
〈., .〉 satisfies the B-module condition 〈Pb,Q〉 = 〈P,Q〉b for b ∈ B. We equip B(X ) with the
semi-norm ‖.‖ coming from this B-valued inner product and from the norm of B: namely,

‖P‖ = ‖〈P, P 〉‖1/2B .

We recall the B-valued Cauchy-Schwartz inequality [25, p. 3] for B-valued sesquilinear inner-
product,

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖B〈x, x〉,
which yields the norm inequality

‖〈x, y〉‖2B ≤ ‖〈y, y〉‖B‖〈x, x〉‖B.
Denote by B(X )0 the complement of 1 in B(X ): remark that when P ∈ B(X )0, then 〈1, P 〉 = 0
and by the B-module structure of the inner product, 〈b, P 〉 = 0 for all b ∈ B. By [40, Proof of
Theorem 2.5], for n ≥ 2 we have

Bµ,n(b, . . . , b, 1) = 〈b(Tb)n−2ξ, ξ〉,
where ξ = X − µ(X ) and T : B(X ) → B(X ) is defined by T (b) = 0 for b ∈ B and T (P ) =
XP − µ(XP ) for P ∈ B(X )0. By Lemma 5.3, we have

(22) 〈bP, bP 〉 ≤ ‖b‖2〈P, P 〉 and 〈XP,XP 〉 ≤M2〈P, P 〉,
for all b ∈ B and P ∈ B(X ), and where the inequality is understood in the lattice of selfadjoint
elements of B. Let P ∈ B(X ).

Hence, the left multiplication by b is a bounded linear map with bound ‖b‖. Likewise, by the
second inequality of (22), the left multiplication by X is a bounded linear map on B(X ) with
bound M . Let P ∈ B(X ) and write P = b+ P ′ with b ∈ B and P ′ ∈ B(X )0. Then,

〈TP, TP 〉 = 〈XP ′ − µ(XP ′),XP ′ − µ(XP ′)〉 = 〈XP ′,XP ′〉 − µ(XP ′)∗µ(XP ′) ≤ 〈XP ′,XP ′〉.
Thus,

‖〈TP, TP 〉‖B ≤ ‖〈XP ′,XP ′)〉‖B ≤M2‖〈P ′, P ′〉‖B ≤M2‖〈P, P 〉‖B.
Therefore, T is also bounded by M . By the B-valued Cauchy-Schwartz inequality and by the
above bounds,

‖Bµ,n(b, . . . , b, 1)‖ = ‖〈b(Tb)n−2ξ, ξ〉‖ ≤ ‖b(Tb)n−2ξ‖‖ξ‖ ≤ ‖b‖n−1(M)n−2‖ξ‖2.

Since ‖〈ξ, ξ〉‖ = ‖µ(X 2)− µ(X )2‖, we conclude that for ‖b‖ < M−1,

‖Hµ(b)− µ(X )‖ ≤
∑
n≥2
‖b‖n−1Mn−2‖µ(X 2)− µ(X )2‖ ≤ ‖b‖

1−M‖b‖
‖µ(X 2)− µ(X )2‖.

�

5.4. Proof of the additive case. In this subsection, we are given three B-valued distributions
µ1, µ2 and µ3 such that

µ1 � µ2 = µ3,

and we want to recover the distribution of µ2. We suppose without loss of generality that
µ1(X ) = 0, and that all distributions are bounded. Note that the latter condition could be
weakened to unbounded distributions admitting moments of order 2 without changing the proof.
Since we did not want to introduce affiliated operators, we only are considering the bounded
case.
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This section is very similar to the scalar case, only the constant K differs. We set K = 4
√

2σ1,
and we define

BK := {b ∈ B|=b > K}.
Define moreover the function h̃3(b) = Fµ3(b) + b on B, which is the operator valued version of

h̃3. Recall that for a, b ∈ B self-adjoint, we write b > a when b− a > 0.

Proposition 5.6. For b ∈ BK , the function Tb(w) = h1(h̃3(r) − b) + b is well defined and
analytic on ∆b = {r ∈ B+,=r > 3=b/4}.

For any r ∈ ∆b, the iterated function T ◦nb (r) converges to the unique fixed point w3(b) of ∆b.

Proof. Let b ∈ BK . Let r ∈ ∆b. Then, =(r) > 3=(b)
4 , which yields

(23) =(h̃3(r)− b) = =(Fµ3(r) + r − b) > 2
3=b

4
−=b > =(b)

2
,

where we have used in the first inequality that =[Fµ3(r)] ≥ =(r) for r ∈ B+ (see [9]). Since h1
is defined on B+, Tb is in particular well-defined.

Since µ1(X ) = 0 by hypothesis, Lemma 5.4 together with 23 yield

(24) ‖hµ1(h̃3(r)− b)‖ ≤
4σ21

σinf=(h̃3(r)− b)
≤ 8σ21
σinf=(b)

for r ∈ ∆b. Hence,

=[Tb(r)] ==[hµ1(h̃3(r)− b) + b]

≥=b− 8σ21
σinf=(b)

.

Since σinf=(b) > 4
√

2σ1,

=[Tb(r)]− 3=(b)/4 ≥ =b/4− 8σ21
σinf=(b)

≥ σinf=(b)/4− 8σ21
σinf=(b)

> ε

for some constant ε > 0. Hence, Tb(∆b) ⊂ ∆b. Moreover, if s 6∈ ∆b, then =s 6≥ 3=b/4. Hence,
there exists a positive functional φ with ‖φ‖ = 1 such that φ(=s) ≤ 3φ(=b)/4, which yields

φ(=[Tb(r)])− φ(=s) > ε

for r ∈ ∆b, and

|φ(Tb(r)− s)| ≥ |=φ(Tb(r)− s)| = |φ(=Tb(r))− φ(=s)| > ε.

Hence, by the isometric embedding of B in the bidual B∗,

‖Tb(r)]− s‖ = sup
φ∈B′
‖φ‖B′=1

|φ(Tb(r)− s)| > ε.

Therefore, d(∂∆b, Tb(∆b)) > 0, and we can apply Earl-Hamilton theorem to the map Tb : ∆b →
∆b. This implies that for all r ∈ ∆b, T

◦n
b (r) converges to the unique fixed point w3(b) of Tb in

∆b. �

Proposition 5.7. The function w3 is Gateaux analytic on BK and we have

Fµ2(b) = Fµ3(w3(b))

for z ∈ BK .

Proof. Let a ∈ Bk and b ∈ B. Since BK is open, there exists a bounded open set U ⊂ B such
that 0 ∈ U and a + rb ∈ BK for r ∈ U . We denote by M the bound on U . For φ ∈ B′, define
the function f(r) = φ(w3(a + rb)) for r ∈ U . By Proposition 5.7, f is the pointwise limit of
fn(r) = φ

(
T ◦na+rb(a+ rb)

)
. By the definition of Tb, Tb(b) is analytic, which yields that fn is

analytic on U . Moreover, by (24), ‖Tb(w)− b‖ ⊂ 8σ2
1

K for b ∈ Bk, w ∈ ∆b, which implies that

‖T ◦na+rb(a+ rb)‖ ≤ ‖a‖+M‖b‖+
8σ21
K

.
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Hence, (fn)n≥1 a family of uniformly bounded analytic functions which converges pointwise to
f , and Montel’s theorem implies that f = φ ◦ w3 is analytic. Since this holds for all φ ∈ B′, w3

is Gateaux analytic.
Since (24) implies that

‖w3(b)− b‖ = ‖Tb(w3(b)− b‖ ≤
8σ21
K

,

for b large enough, Fµ3(w3(b)) is in the domain of definition of φµ1 and φµ3 . The same reasoning
as in the proof of Proposition 3.1 yields that for b large enough,

φµ3(Fµ3(w3(b)))− φµ1(Fµ3(w3(b))) = b− Fµ3(w3(b)).

On the other hand, since µ1 � µ2 = µ3, φµ1 + φµ2 = φµ3 on the intersection of their domain of
definition. Therefore, for b large enough,

φµ2(Fµ3(w3(b))) = b− Fµ3(w3(b)),

which yields

Fµ2(b) = Fµ3(w3(b)).

�

5.5. Proof of the multiplicative case. Given two realizable bounded non-commutative distributions
µ1 and µ3 we are interested in finding a realizable distribution µ2 such that

(25) µ1 � µ2 = µ3.

We first recall some notations of Theorem 5.2:

• Ri is the bound of the distribution µi,
• αi := ‖µi(X )‖ is the norm of the first moment of µi, and
• α∗i := inf Specµi(X ) is the minimum of the spectrum of µi(X ).
• σ2i := ‖µ(X 2)− µ(X )2‖ is the variance of µi.

Since we assumed µ1(X ) > 0, we have α∗1 > 0. We introduce the constants

• K1 := (R1 + 2
σ2
1
α∗1

),

• K3 := sup( 2
α∗1

(σ3 + α3)K1, R3 + σ3), and

• K := 2
α∗1
K3.

Lemma 5.8. Let κ < 1. For all w ∈ DκK−1
1

, H1(w) is well-defined, invertible and

‖H1(w)−1‖ ≤ 2

(2− κ)α∗1
.

Proof. Since κK−11 ≤ R−11 , H1 is well-defined on DκK−1
1

by Lemma 5.5. Let w ∈ DκK−1
1

. Then,

Lemma 5.5 yields that

‖H1(w)− µ(X )‖ ≤ σ21
‖w‖−1 −R1

.

Since ‖w‖−1 ≥ κ−1K1 and K1 = R1 + 2
σ2
1
α∗1

,

‖H1(w)− µ(X )‖ ≤ σ21
2κ−1σ21/α

∗
1

≤ κα∗1
2
.

Thus, there exists d ∈ B such that ‖d‖ ≤ κα∗1
2 and H1(w) = µ(X ) + d = µ(X )(1 +µ(X )−1d). By

definition of α∗1, we have ‖µ(X )−1‖ = (α∗1)
−1, and thus ‖dµ(X )−1‖ ≤ ‖d‖(α∗1)−1 ≤ κ/2. Hence,

(1 + µ(X )−1d) is invertible and

‖(1 + dµ(X )−1)−1‖ ≤ 1

1− κ/2
≤ 2/(2− κ).
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Therefore, H1(w) is also invertible and

‖H1(w)−1‖ ≤ ‖µ(X )−1‖‖(1 + dµ(X )−1)−1‖ ≤ 2

(2− κ)α∗1
.

�

We denote by Ω the open set {b ∈ DK−1 , b invertible}. For b ∈ Ω, we denote by ∆b the open set
bD2(α∗1)

−1 . Remark that ∆b always contains the point bµ1(X )−1, because ‖µ1(X )−1‖ = (α∗1)
−1 <

2(α∗1)
−1.

For b ∈ Ω, let Tb : ∆b → B be the function

Tb(w) = bH1

(
b−1H̃3(w)

)−1
,

where we recall that H̃3(w) = wH3(w)w for ‖z‖ ≤ R−13 .

Lemma 5.9. The map Tb is well-defined on ∆b, and there is a unique fixed point w3(b) of Tb
in ∆b. Moreover, for all w ∈ ∆b, T

◦n
b (w) converges to w3(b) as n goes to infinity.

Proof. Let b ∈ Ω, so that there exists κ < 1 such that ‖b‖ = κK−1. Let w ∈ ∆b. Then, w = bw′

with w′ ∈ D2(α∗1)
−1 , and thus

‖w‖ ≤ ‖b‖‖w′‖ < K−12(α∗1)
−1 ≤ κK−13 .

Since K3 = sup( 2
α∗1

(σ3 + α3)K1, R3 + σ3) > R3, H3(w) is well-defined and by Lemma 5.5,

‖H3(w)− µ3(X )‖ ≤ σ23
K3 −R3

≤ σ3.

Hence, ‖H3(w)‖ ≤ α3 + σ3 and thus

‖b−1wH3(w)w‖ ≤ ‖w′‖‖H3(w)‖‖w‖ ≤ 2

α∗1
(α3 + σ3)κK

−1
3 .

Since K3 ≥ 2
α∗1

(σ3 + α3)K1,

‖b−1wH3(w)w‖ ≤ κK−11 ,

Hence, by Lemma 5.8, H1(b
−1wH3(w)w) is invertible and ‖H1(b

−1wH3(w)w)−1‖ ≤ 2
(2−κ)α∗1

,

which implies that Tb(w) ∈ ∆̃b := bD2((2−κ)α∗1)−1 . Remark that ∆̃b ⊂ ∆b. In order to apply

Earle-Hamilton’s theorem it remains to show that d(∆̃b, ∂∆b) > 0. Let u 6∈ ∆b and v ∈ ∆̃b, and
set u′ = b−1u and v′ = b−1v. Then, ‖u′‖ ≥ 2

α∗1
because bu′ 6∈ bD2(α∗1)

−1 and ‖v′‖ < 2
(
(2−κ)α∗1)

−1.

Thus,

‖u′ − v′‖ ≥ |‖u′‖ − ‖v′‖| ≥ 2

α∗1
− 2

(2− κ)α∗1
=

2(1− κ)

(2− κ)α∗1
.

Since
‖u′ − v′‖ = ‖b−1(u− v)‖ ≤ ‖b−1‖‖u− v‖,

we deduce that

‖u− v‖ ≥ 2(1− κ)

α∗1‖b−1‖
,

which yields

d(∆̃b, ∂∆b) ≥
2(2− 1− κ)

α∗1‖b−1‖
> 0.

Hence, d(Tb(∆b),∆
c
b) > 0 and Tb satisfies the hypothesis of Earl-Hamilton theorem. There exists

thus a unique fixed point w3(b) of Tb in ∆b, and for all w ∈ ∆b, K
◦n(w) converges to w3(b) when

n goes to infinity. �

We can now turn to the actual computation of the Cauchy transform of Fµ2 .

Proposition 5.10. If (25) has a solution, then Fµ2 is defined by

Fµ2(b) = bw3(b
−1)Fµ3(w3(b

−1)−1),

for b ∈ B such that inf Spec b > K.
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Proof. Let us show first that w3 : Ω → B is Gateaux holomorphic and invertible. Let φ ∈ B∗
and let a ∈ Ω and c ∈ B. Since Ω is open, there exist U ⊂ C such that for z ∈ U , a + zc ∈ Ω.
Define fn : U → C by fn(z) = φ(T ◦na+zc(0)). Since 0 ∈ ∆b for all b ∈ Ω, fn is well-defined on U .

Moreover, H1 and H̃3 are analytic, thus b 7→ T ◦nb (0) is analytic on Ω for all n ≥ 1. Therefore,
each map fn is analytic on U . Since Tnb (w) ∈ ∆b for all n ≥ 1,

‖T ◦nb (w)‖ ≤ 2‖b‖/α∗1 ≤
2K−1

α∗1
,

for all b ∈ Ω, w ∈ ∆b and n ≥ 1. Hence, the family (fn)n≥1 is uniformly bounded and converges
pointwise, which yields by Montel’s theorem that (fn)n≥1 converges uniformly to a holomorphic
function f . By Lemma 5.9, we already now that f(z) = φ(w3(a+ zb)) which yields the Gateaux
holomorphicity of w3.

For b small enough, set w(b) = η<−1>µ3 ηµ2(b) = w<−1>2 (b), where w2(b) is the function
introduced in [5, Theorem 2.2]. By Lemma 5.5 and the definition of ηµ, we have ηµ(b) ∼ bµ(X )
as b goes to zero. Therefore, w(b) ∼ bµ2(X )µ3(X )−1 as b goes to zero. Moreover, by [5, Theorem
2.2 (3)],

(26) w2(b) = bH1(Hµ2(w2(b))b),

and by definition of w2, ηµ3(b) = ηµ2(w2(b)). Hence, since we have also ηµ2(b) = ηµ3(w(b)),
evaluating (26) on w(b) yields

b = w(b)H1(Hµ2(b)w(b)).

By Lemma 5.5, Hµ2(b) converges to µ2(X ) as b goes to zero; hence, by Lemma 5.8, for b small
enough H1(Hµ2(b)w(b)) is invertible with ‖H1(Hµ2(b)w(b))−1‖ < α∗1/2, which yields

w(b) = bH1(Hµ2(b)w(b))−1 ∈ ∆b.

Since Hµ2(b) = b−1ηµ2(b) = b−1ηµ3(w(b)), the latter equation yields

(27) w(b) = bH1(b
−1ηµ3(w(b))w(b))−1 = bH1(b

−1H̃3(w(b)))−1 = Tb(w(b)).

Therefore, w(b) is a fixed point of Tb. Since w(b) ∈ ∆b, we must have w(b) = w3(b) by Lemma
5.9. Since ηµ2(b) = ηµ3(w(b)), this yields ηµ2(b) = ηµ3(w3(b)) for b small enough. The functions
ηµ2 and ηµ3 ◦ w3 are two Gateaux holomorphic maps defined on the connected domain Ω and
they coincide on an open subset of Ω, thus they are equal on Ω, and we have

ηµ2(b) = ηµ3(w3(b))

for b ∈ Ω. Let b ∈ B be such that inf Spec b > K. Then, b is invertible and b−1 ∈ Ω. Therefore,

Fµ2(b) =b(1− ηµ2(b−1))

=b(1− ηµ3(w3(b
−1))

=bw3(b
−1)Fµ3(w3(b

−1)−1).

�
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