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Summary

Finite elements of class C1 are suitable for the computation of magnetohydrodynamics

instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a

precise alignment of the mesh with the magnetic �eld line. Mesh alignment is crucial to

achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy

nature of magnetized plasma �ows. In this numerical framework, several practical simula-

tions are now available. They help to understand better the operation of existing devices

and predict the optimal strategies for using the international ITER tokamak under con-

struction. However, a mesh-aligned isoparametric representation su�ers from the presence

of critical points of the magnetic �eld (magnetic axis, X-point). We here explore a strategy

that combines aligned mesh out of the critical points with non-aligned unstructured mesh

in a region containing these points. By this strategy, we can avoid highly stretched ele-

ments and the numerical di�culties that come with them. The mesh-aligned interpolation

uses bi-cubic Hemite-Bézier polynomials on a structured mesh of curved quadrangular el-

ements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher �nite elements

on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation

is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm.

In this paper, we will focus on the Poisson problem on a two-dimensional bounded reg-

ular domain. This elliptic equation is a simpli�ed version of the axisymmetric tokamak

equilibrium one at the asymptotic limit of in�nite major radius (large aspect ratio).

KEYWORDS:

Composite meshes, isoparametric �nite elements, reduced Hsieh-Clough-Tocher �nite

elements, Hermite-Bézier �nite elements, alternating Schwarz method.
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1 INTRODUCTION

Magnetohydrodynamics instabilities play a critical role in magnetic con�nement fusion power plants. Therefore, accurate numerical

simulations are essential to investigate, avoid or mitigate the undesired consequences of destabilizing plasma equilibrium. For example,

in tokamak devices, the balanced status of the Lorentz force and the pressure gradient is often axisymmetric and described by the

Grad-Shafranov equation1. It is a highly nonlinear elliptic equation for the evolution of the poloidal magnetic �ux in a two-dimensional

cross-section of the tokamak2. Therefore, for simulating magnetohydrodynamics instabilities, it is desirable to have a strategy that

preserves the equilibrium states without perturbations (the so-called well-balanced schemes)3. Furthermore, the evolution of strongly

magnetized plasmas contains highly anisotropic patterns. Therefore, meshes aligned on the equilibrium magnetic �ux lines, associated

with an isoparametric �nite element formulation, o�er decisive advantages. The bi-cubic Hermite-Bézier4 elements make for an accurate

description of the magnetic topology using �ux-aligned grids. In addition, the use of this kind of grid is particularly important to control

arti�cial di�usion perpendicular to the �ux surfaces. In this numerical framework, several practical simulations are now available. They

help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamaks

under construction5,6.

However, at the critical points of the magnetic �eld (extrema or saddle points), �nite element interpolation for aligned meshes has some

drawbacks. Indeed, closed concentric �ux lines at the plasma core make the aligned grid isomorphic to a polar grid. Hence, the geometric

singularity at the symmetry center gives rise to several stretched elements7. Recently, in curved bi-cubic Hermite-Bézier interpolation,

we have overcome the singularity at the magnetic axis (polar axis) by a proper linear combination of basis functions8. Nevertheless, this

solution does not cure the presence of stretched elements and the method su�ers from a loss of accuracy. Therefore, it seems reasonable

to use a non-aligned unstructured grid associated with a C1 �nite element locally near the magnetic axis. Unstructured grids fail for

mesh alignment with the magnetic �ux but avoid geometrical singularities and o�er more �exibility in meshing complex geometries, local

re�nement, etc., while preserving accuracy.

Composite grid techniques are generally used by computational engineers in many large-scale simulations as a way to reduce the cost of

grid generation (see, for example,9). Here, we will explore the possibility of combining two overlapping meshes, one of curved quadrangular

pieces and the other of straight triangular elements, to tackle with the magnetic �eld critical points. Isoparametric bi-cubic Hermite-Bézier

�nite elements are adopted on the curved mesh and piece-wise cubic reduced Hsieh-Clough-Tocher ones are involved on the latter. As a

�rst investigation, we consider the Laplace problem on a bounded domain D with regular boundary ∂D and Dirichlet type conditions on

it. The continuity of the numerical solution in the region of overlap is enforced by interpolation. A one-level Schwarz algorithm is used to

solve the coupled problem resulting from having adopted di�erent spaces of �nite elements in the subdomains.
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The rest of the paper is organized as follows1. We start by stating in Section 2 the problem and its domain decomposition formulation in

the continuous setting. In Section 3, we brie�y recall the reduced Hsieh-Clough-Tocher element10 on triangles and, taking the cue from4,

we present in detail the main steps for the isoparametric bi-cubic Hermite-Bézier one. We are then able to state the discrete coupled

problem in Section 4 together with the one-level Schwartz algorithm for its solution. After the analysis of the algorithm convergence, we

conclude in Section 5 with some numerical results.

2 SETTING UP THE MODEL PROBLEM.

In an open bounded domain D ⊂ R2 with boundary ∂D, we consider the elliptic problem

Lu = f in D,

u = g on ∂D,

(1)

for given functions f , g. For simplicity, the operator L is (minus) the Laplacian, −∆. The right-hand side f ∈ L2(D) with L2(D) the

functional space of measurable functions on D that are square integrable in D, with norm ‖.‖2D associated with the scalar product

(v, w)D =
∫
D v w . Let H1(D) = {u ∈ L2(D), ∇u ∈ L2(D)2} be the Hilbert space endowed with the semi-norm |u|H1(D) = ‖∇u‖D and

norm ‖u‖2
H1(D)

= ‖u‖2D + |u|2
H1(D)

. We assume that ∂D is piece-wise C1, so that the trace operator u 7→ u|∂D is continuous from H1(D)

to L2(∂D). We can hence take the boundary data g in L2(∂D). To apply a Galerkin approach to problem (1) with L = −∆, we consider

its weak form: given ũ ∈ H1(D) with ũ|∂D = g, �nd u ∈ H1(D) such that u− ũ ∈ H1
0 (Ω) and

aD(u, v) :=

∫
D

∇u · ∇ v =

∫
D

f v =: (f, v)D ∀ v ∈ H1
0 (D), (2)

where H1
0 (D) = {v ∈ H1(D), v|∂D = 0 }.

We now introduce the domain decomposition framework. Let ω ⊂ D be a sub-domain of D with boundary γ = ∂ω and such that

ω ∩ ∂D = ∅ (as in Fig. 1, left-side). We denote by Ω the complement of ω in D, that is Ω = D \ ω̄. Note that the function ũ ∈ H1(D) is

then selected to take zero value in ω. To formulate (2) in a domain decomposition framework, let us introduce the functional space

V = {(v, w) ∈ H1(Ω)×H1(ω), v|γ = w|γ}.

The weak form (2) becomes: �nd (uΩ, uω) ∈ V such that uΩ − ũ ∈ H1
0 (Ω) and

a((uΩ, v), (uω , w)) := aΩ(uΩ, v) + aω(uω , w) = `((v, w)), ∀ (v, w) ∈ V0, (3)

with `((v, w)) = (f|Ω, v)Ω + (f|ω , w)ω . The bilinear form aD(., .) is continuous and elliptic on V0. In fact, the continuity of aD(., .) on the

space V0 results straightforwardly from the Cauchy-Schwarz inequality and its ellipticity is a direct consequence of the Poincaré inequality.

1Abbreviations: Degrees of freedom (dofs), Hermite-Bézier (HB), reduced Hsieh-Clough-Tocher (rHCT), Finite elements (FEs).
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Thus problem (3) has a unique solution in V with u|∂D = g, by the Lax-Milgram lemma. In the continuous setting, problem (3) yields

(uD)|Ω = uΩ and (uD)|ω = uω but when we discretize (3), the situation is rather di�erent.

Ω

ω

c

Figure 1 The domain D = Ω ∪ ω with Ω ∩ ω = ∅ (left-side). The domain D = ΩH ∪ ωh with ΩH ∩ ωh 6= ∅. In particular, γ = ∂ωh is the

green polygonal and Γ = ∂ΩH \ ∂D is the red line (center-left). An example of mesh with curved quadrilaterals in ΩH (center-right) and

with straight triangles in ωh (right-side).

We wish to introduce di�erent types of meshes τH and τh in two sub-domains ΩH , ωh, of D, with ΩH ∪ ωh = D (as in Fig. 1, center-

left). Let τH be a mesh of curved quadrangles over ΩH with Ω ⊂ ΩH , and τh a mesh of straight triangles over ωh with ω ⊂ ωh. The two

meshes τH , τh are shape regular and quasi-uniform, with maximal diameters H, h, respectively. In the general case, we have ΩH ∩ωh 6= ∅

and we denote by Γ the smooth curve ∂ΩH ∩ ω̊h (the red line in Fig. 1) and we keep on denoting by γ the polygonal curve ∂ωh ∩ Ω̊H

(the green polygonal in Fig. 1). These overlapping triangulations can be completely independent to each other. Hence, a priori, they do

not match on ΩH ∩ ωh and, neither the edges of τH on the curve γ coincide with edges of τh, nor the edges of τh on the curve Γ coincide

with edges of τH (as in Fig. 1, right-center and right-side).

3 INTERPOLATION SPACES : TWO FINITE ELEMENTS OF CLASS C1

We use the reduced or minimal Hsieh-Clough-Tocher (rHCT) �nite element space on τh (see10) and Hermite-Bézier (HB) �nite elements

on τH (see11) within a isoparametric approach.

3.1 The space of reduced Hsieh-Clough-Tocher �nite elements

Locally, the rHCT �nite element is the triple (T,Ploc(T ),Σ(T )) where T denotes a triangle of the mesh τh, Ploc(T ) the local space of

functions de�ned on that triangle and Σ(T ) a set of unisolvent dofs for the functions in the local space (see11). The indices i, i+ 1, i+ 2,

in De�nition 1 below, take values 1, 2, 3. When i+ 1 > 3 (resp. i+ 2 > 3), we replace it by [(i+ 1) mod 3] + 1 (resp. [(i+ 2) mod 3] + 1).

De�nition 1. Let T = [V1, V2, V3] be the triangle of vertices V1, V2, V3. The triangle T is divided into three sub-triangles Bi = [G,Vi+1, Vi+2]

where G is the barycenter of T (see Figure 2). The rHCT �nite element associated with T is the triple (T,Ploc(T ),Σ(T )), where Ploc(T )

is the polynomial space of functions w ∈ C1(T ) such that w|Bi ∈ P3(Bi) and (∂nw)|bi ∈ P1(bi) for any edge bi ∈ ∂Bi ∩ ∂T. Here above,



A. Bhole et al 5

B
B

BV

V

V

1

2

3

2
1

3

Figure 2 Any triangle T = [V1, V2, V3] of the mesh τh is cut into three triangles Bi: each Bi = [G,Vm, V`] having vertices in Vm, V` with

m, ` ∈ {1, 2, 3} \ {i} and at the barycenter G (denoted by the small circle at the interior) of the triangle T . We can thus reconstruct the

height uh(Vi) of the function uh at the three vertices Vi of T and the tangent plane to the surface uh at the vertices Vi, as generated by

∂xuh(Vi), ∂yuh(Vi).

n is the outward normal vector to ∂T , bi the edge on ∂T that does not insist in the vertex Vi and (∂nw)|bi the normal derivative of w at

bi, and Σ(T ) is the set de�ned by the following functionals:

(j = 0) w 7→ w(Vi) , (j = 1) w 7→ (gradw)(Vi) · (Vi+1 − Vi) , (j = 2) w 7→ (gradw)(Vi) · (Vi+2 − Vi),

where (gradw)(Vi) · (Vi+1 − Vi) is the directional derivative of w on [Vi, Vi+1] and j denotes the degree of freedom type. Note that

(gradw)(Vi) · (Vi+1 − Vi) = (∂nw)|bi+1
(Vi)− (∂nw)|bi (Vi).

We thus have on the polygonal domain ωh the discrete space

Vh = {v ∈ C1(ωh), v|T ∈ Ploc(T ), ∀T ∈ τh },

with Ploc(T ) given in De�nition 1. We denote by {φi}i=1,3Nh
the basis of Vh in duality with the dofs of De�nition 1 associated with the

Nh nodes of τh and we refer to12 for its detailed construction. See13 for application of these FEs in the context of plasma equilibrium

simulations.

3.2 The space of isoparametric Hermite-Bézier �nite elements

Let be τH a mesh of curved quadrangles over ΩH where we consider isoparametric bi-cubic Hermite-Bézier (HB) �nite elements11, in the

physical space, following the idea described in4. We go into the details of this delicate construction: (i) we start with the approximation of

a curve, (ii) then of a domain, (iii) and �nally of a �eld w on that domain. This approach generalizes the one proposed in14 on Cartesian

meshes in the context of plasma equilibrium simulations. For any S ⊂ Rd, d = 1, 2, we denote by Q3(S), the space of bi-cubic polynomials

on S, namely polynomials de�ned in S, of degree at most 3 with respect to each of the d real variables. Note that Q3(S) = P3(S) for d = 1.

3.2.1 In one parametric dimension

We start by de�ning the HB FE on the reference interval ê = [0, 1] and by presenting the construction of ΓH , a C1 approximation of a

curve Γ ⊂ R2 by these FEs.



6 A. Bhole et al

De�nition 2. The Hermite-Bézier �nite element on ê = [0, 1] is the triple (ê, Ploc(ê),Σ(ê)) where Ploc(ê) = Q3(ê) and Σ(ê) is the set of

functionals

(j = 0) v 7→ v(�), v 7→ ∂sv(�) (j = 1)

acting on v ∈ Ploc(ê). Here, s ∈ ê is the polynomial variable, j denotes the degree of freedom type and (�) varies between the two vertices

(0), (1) of ê.

In De�nition 2, the space Ploc(ê) = P3(ê) and card Σ(ê) = 4. It is well-known that we can set Ploc(ê) = span {Hj
i (s), j = 0, 1, i = 1, 2}

being H`
i the cubic polynomials de�ned on ê as

H0
1 (s) = (1 + 2 s) (1− s)2, H1

1 (s) = s (1− s)2,

H0
2 (s) = (3− 2 s) s2 (= H0

1 (1− s)), H1
2 (s) = (1− s) s2 (= H1

1 (1− s)).

These polynomials Hj
i verify

H0
1 (0) = 1, (H0

1 )′(0) = 0, H0
1 (1) = 0, (H0

1 )′(1) = 0,

H1
1 (0) = 0, (H1

1 )′(0) = 1, H1
1 (1) = 0, (H1

1 )′(1) = 0,

H0
2 (0) = 0, (H0

2 )′(0) = 0, H0
2 (1) = 1, (H0

2 )′(1) = 0,

H1
2 (0) = 0, (H1

2 )′(0) = 0, H1
2 (1) = 0, (H1

2 )′(1) = 1 .

Suppose that we have a parametric representation of Γ as

Γ =

X =

 x

y

 , x = t, y = y(t), t ∈ [a, b]

 ,

with t acting as global parameter. Note that Γ is the graph of the function y = y(x) for x ∈ [a, b]. The curve Γ is regular if X is component-

wise C1([a, b]). The tangent vector to Γ at a point X(t) is dX
d t

(t) = (1, y′(t))>. The curve Γ is thus regular if dX
d t

is component-wise

C0(]a, b[). For a regular curve Γ, the arc-length parameter along the curve is the function

ξ(t) =

t∫
a

‖
dX

d t
(σ)‖ dσ, with ‖

dX

d t
(.)‖ =

√
1 + (y′(.))2.

We have that ξ is C1([a, b]) and ξ′(t) = ‖ dX
d t

(t)‖ > 0, thus ξ : [a, b] → [0, l(Γ)] is a di�eomorphism, with ξ(b) = l(Γ) the length of Γ. If

t(ξ) is the inverse of ξ(t), we have that the same curve Γ can be de�ned equivalently as

Γ =

X =

 ξ

p(ξ)

 , p(ξ) = y(t(ξ)), ξ ∈ [0, l(Γ) ]


and it holds

dX

d ξ
=
dX

d t

d t

d ξ
.
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When we represent X(ξ) by a piece-wise combination XH(ξ) of Hermite-Bézier polynomials, to obtain a C1 curve ΓH , we have to

adjust the coe�cients of this combination in order to restore the continuity of the arc-length derivative dXH
dξ

at the points on ΓH shared

by adjacent curved segments.

X
1

4
X 5

X

3
X

2
X

X
1

5
X

0 1s

3
X

2
X

4
X

 

 

 
 

Figure 3 The oriented curve Γ (solid line) is divided into 4 curved segments e. The internal point X3 is the extremity of two adjacent

segments, e− (resp., e+) insisting in X3 from the left (resp., right), according to the orientation of Γ. The tangent vector at X3 ∈ ΓH

has to be continuous thus the red and green vectors have to belong to the same straight line (tangent to Γ at X3) and to be of the

same length. The polygonal (dashed line) has straight sides with extremities ξ(ζek), where ζe : [0, 1]→ e (bottom arrows) associated with

e = [tk, tk+1], for each value of k = 1, ..., 4.

Let us consider a uniform grid of N + 1 points Xk ∈ Γ, k = 1, ..., N + 1 (see Fig. 3 for an example with 5 points). We can write either

Xk = (tk, y(tk)), with tk = a + k δ t and δt = (b − a)/N or, equivalently, Xk = (ξk, g(ξk)), with ξk = ξ(tk). Then, by introducing the

variable ζe(s) = s tk+1 + (1− s) tk , with s ∈ [0, 1], any point X belonging to the curved interval e ⊂ Γ, of extremities Xk and Xk+1, can

be written with

X̂(s) := X(ξ) = X(ξ(ζe(s))),
d X̂

d s
:=

dX

d ξ

d ξ

d ζe
d ζe

d s
,

and

ξ(ζe(s)) = ξk +

t(s)∫
tk

‖
dX

d t
(ζe)‖ dζe = ξk +

1∫
0

‖
dX

d t
(ζe(s))‖

d ζe

d s
d s .

We wish to represent Γ by a curve ΓH = ∪Nk=1 ek with

ek =

XH|ek
=

 ξ

pH(ξ)

 , ξ = ξ(t), t ∈ [tk, tk+1 ]

 ,

with pH(ξ) ≈ p(ξ). To have ΓH reconstructed by HB cubic polynomials means that, for each ek,

ξ ∈ [ξk, ξk+1 ], (XH(ξ))|ek = X̂(s) =

2∑
i=1

1∑
j=0

Xj,e
i βj,ei Hj

i (s), s ∈ [0, 1].

In order to ensure that the reconstructed curve ΓH is C1, the coe�cients Xj,e
i βj,ei have to be such that dXH

d ξ
is continuous passing from

one curved edge to the adjacent one. High-order continuity in the physical space is achieved if the arc-length derivative is continuous at
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the internal grid points ξk, namely

d X̂

d s
(0) = +

(
dξ

dζ

dζe

ds

)
dXH

dξ
(ξk),

d X̂

d s
(1) = −

(
dξ

dζ

dζe

ds

)
dXH

dξ
(ξk).

Therefore,

X0,e
1 = Xk, β0,e

1 = 1,

X1,e
1 =

(
dX

d ξ

)
(ξk), β1,e

1 = +

(
dξ

dζ

dζe

ds

)
(0)

X0,e
2 = Xk+1, β0,e

2 = 1,

X1,e
2 =

(
dX

d ξ

)
(ξk+1), β1,e

2 = −
(
dξ

dζ

dζe

ds

)
(1).

If Γ is not known analytically but provided by a �nite set of points Xk, we replace derivatives by suitable �nite di�erence schemes.

3.2.2 In two parametric dimensions

Let us de�ne the HB FE on the reference square Q̂ = [0, 1]2 and go through the steps of the construction, by these FEs, of a C1

representation ΩH of a domain Ω ⊂ R2, with
◦
Ω6= ∅.

De�nition 3. The Hermite-Bézier �nite element on Q̂ = [0, 1]2 is the triple (Q̂, Ploc(Q̂),Σ(Q̂)) where Ploc(Q̂) = span {Hj
i (s, t), i =

1, ..., 4, j = 0, ..., 3} and Σ(Q̂) is the set de�ned by functionals

(j = 0) v 7→ v(�, �), v 7→ ∂sv(�, �) (j = 1)

(j = 2) v 7→ ∂tv(�, �) v 7→ ∂2
stv(�, �) (j = 3)

with j denoting the degree of freedom type and (�, �) varying among the four vertices (0, 0), (1, 0), (0, 1), (1, 1) of Q̂.

In De�nition 3, the space Ploc(Q̂) = Q3(Q̂) and card Σ(Q̂) = 16. It is well-known that we can set Ploc(Q̂) = span {Hj
i (s, t), j = 0, ..., 3, i =

1, ..., 4} being Hj
i the bi-cubic Hermite-Bézier basis function associated with the ith vertex of Q̂ for the jth degree of freedom stated in

De�nition 3. For i = 1 we have for example

H0
1 (s, t) = H0

1 (s)H0
1 (t), H1

1 (s, t) = H1
1 (s)H0

1 (t),

H2
1 (s, t) = H0

1 (s)H1
1 (t), H3

1 (s, t) = H1
1 (s)H1

1 (t).

(4)

The basis functions for the vertices i = 2, 3, 4 can be de�ned as

Hj
2(s, t) = Hj

1(1− s, t), Hj
3(s, t) = Hj

1(1− s, 1− t), Hj
4(s, t) = Hj

1(s, 1− t),

for any j = 0, ..., 3.

Let us suppose to be given with a parametric representation of Ω as

Ω =

X =

 x

y

 , x = x(z, w), y = y(z, w), z ∈ [az , bz ], w ∈ [aw, bw]


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Figure 4 Annular mesh in the parametric (left) and in the physical (right) spaces. Color scaling in both cases is set on the small radius

(r) of each layer.

with z, w acting as global parameters. The domain Ω is regular if X is component-wise C1(K), with K = [az , bz ]× [aw, bw]. The tangent

plane to Ω at a point X∗ is generated by the two vectors

∂zX(z∗, w∗) =

 ∂zx(z∗, w∗)

∂zy(z∗, w∗)

 , ∂wX(z∗, w∗) =

 ∂wx(z∗, w∗)

∂wy(z∗, w∗)

 ,

which are assumed to be linearly independent, namely, det J(z∗, w∗) 6= 0 with J(., .) the 2 × 2 Jacobian matrix (∂zX(., .) , ∂wX(., .)).

We assume that Ω is an oriented surface and that it exists a di�eomorphism π : K → C with C = [0, Lz ] × [0, Lw], Lz , Lw ∈ R+,

and (ξz , ξw) := π(z, w), such that �the diagram commutes�, namely (x(z, w), y(z, w)) = (X(π(z, w)), Y (π(z, w)) ) . The domain Ω can be

equivalently de�ned as

Ω =

X =

X(ξz , ξw)

Y (ξz , ξw)

 , ξz ∈ [0, Lz ], ξw ∈ [0, Lw]

 .

We keep on considering (ξz , ξw) as arc-length like coordinates.

Let us consider a uniform grid of Np = (Nx + 1)× (Ny + 1) points Xk ∈ Ω, k = 1, ..., Np We can write Xk = (xk, yk) with

xk = x(zi, wj), yk = y(zi, wj), k = (j − 1)Nx + i,

zi = az + i δz, wj = aw + j δw, i = 1, ..., Nx,

δz =
(bz−az)
Nx

, δw =
(bw−aw)

Ny
, j = 1, ..., Ny .

We wish to represent Ω by a surface ΩH = ∪Nel
e=1Qe with Nel = Nx ×Ny curved elements

Qe =

XH =

XH(ξz , ξw)

YH(ξz , ξw)

 , (ξz , ξw) ∈ Ce = π(Ke)


with Ke domain for (z, w) to have XH ∈ Qe, and XH(., .) ≈ X(., .), YH(., .) ≈ Y (., .). From now on, we work with arc-length like variables

ξz and ξw for which we change the notation into ξs and ξt, respectively, as we are going to link the global construction of ΩH to HB
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functions Hj
i locally de�ned on [0, 1]2 in terms of s and t. To have ΩH piece-wisely reconstructed by HB cubic polynomials means that,

for each Qe,

(ξz , ξw) ∈ Ce, XH(ξz , ξw) = X̂(s, t) =

4∑
i=1

3∑
j=0

Xj,e
i βj,ei Hj

i (s, t). (5)

To describe curved domain, we need to consider three levels of variables : the reference space (s, t), the parametric space (ζs, ζt) and

the arc-length space (ξs, ξt). In the physical space, the element Qe has curved edges in the variables ξs and ξt. In the parametric space

(ζs, ζt), curved lines become straight and Qe looks like a quadrilateral (see Fig. 4). For the application we will consider here, we suppose

that variables ξs and ξt act separately, that is the mapping between the (ξs, ξt) and (s, t) coordinate systems reads

X(ξs, ξt) = X(ξs(ζs(s)), ξt(ζt(t)) = X̂(s, t) (6)

with the functions (ζs, ζt) suitably de�ned as follows. Let Qe be a curved element with vertices Xg(i), being g(i) the global number of

the ith local vertex, i = 1, ..., 4, then its curved sides Si are

S1 = {X(ξs(ζs(s)), ξt(ζt(0))) = X̂(s, 0)}, Xg(1) → Xg(2),

S2 = {X(ξs(ζs(1)), ξt(ζt(t))) = X̂(1, t)}, Xg(2) → Xg(3),

S3 = {X(ξs(ζs(s)), ξt(ζt(1))) = X̂(s, 1)}, Xg(4) → Xg(3),

S4 = {X(ξs(ζs(0)), ξt(ζt(t))) = X̂(0, t)}, Xg(1) → Xg(4),

with s, t ∈ [0, 1] and, respectively,

ζs(s) = s zi+1 + (1− s) zi, ζt(t) = t wj+1 + (1− t)wj .

Examples 1 and 2 illustrate the three levels of variables. Note that the mapping between s, t and ζs, ζt is linear and that between ζs, ζt

and ξs, ξt is cubic. By the chain rule, we obtain:

∂X̂

∂s
=
dξs

dζs

dζs

ds

∂X

∂ξs
,

∂X̂

∂t
=
dξt

dζt

dζt

dt

∂X

∂ξt
,

∂2X̂

∂s∂t
=
dξs

dζs

dζs

ds

dξt

dζt

dζt

dt

∂2X

∂ξs∂ξt
.

The βj,ei are speci�c scale factors that arrange the C1 inter-element continuity and theXj,e
i are speci�c functions of the physical coordinates

at the element vertices g(i). Since metric tensor and Jacobian di�er between elements, each element Qe has speci�c coe�cients βj,ei , for

each node i and degree of freedom j to guarantee the C1 inter-element continuity. We want to enforce continuity in the physical space4.

Therefore, we need to share the derivatives along arc length coordinates ξs and ξt, the integrated curves length in the physical space,
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respectively associated with the parameters coordinates s and t. The coe�cients and the scale factors in the equation (5) are:

X0,e
i = Xg(i) β0,e

i = 1

X1,e
i =

(
∂X

∂ξs

)
g(i)

β1,e
i = ±

(
dξs

dζs

dζes
ds

)
g(i)

X2,e
i =

(
∂X

∂ξt

)
g(i)

β2,e
i = ±

(
dξt

dζt

dζet
dt

)
g(i)

X3,e
i =

(
∂2X

∂ξs∂ξt

)
g(i)

β3,e
i = β1,e

i β2,e
i .

The Xj,e
i are related to the bi-cubic Hermite coe�cients in the arc-physical space and are shared at each node g(i) while the scale

factors βj,ei are di�erent in each element e that shares the node g(i). The sign of β2,e
i and β3,e

i is plus or minus, depending on the vertex

position in Qe (see Fig. 5). The scale factors generalizes the bi-cubic Hermite FEs without compromising the accuracy and allowing the

implementation of the adaptive mesh re�nement4.

k l(x ,y ) k l(x ,y )
k

l

x

y

e

rα

eyδ

xδ

δ
δrk

α
l

Figure 5 A cell e for a quadrangular mesh with straight edges (left) or curved edges (right).

Example 1. Let us consider a square domain

ΩH =

X =

 x

y

 , x0 ≤ x ≤ x?, y0 ≤ y ≤ y?


where 0 and ? stand respectively for minimal and maximal values. Let us consider a mesh of straight rectangles over ΩH . Then

ξs = x, ξt = y, ζs = x, ζt = y, ζes = xk + sδxk, ζet = yl + tδyl

where Qe = [xk, xk + δxk]× [y`, y` + δy`] is the rectangle with the left bottom corner in (xk, y`) and sizes δxk, δy`, in the x, y directions,

respectively. We thus have

∂X

∂ξs
=

 1

0

 ,
∂X

∂ξt
=

 0

1

 ,
∂2X

∂ξs∂ξt
=

 0

0


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and the scales have a sign which depends on the vertex position in Qe (see Fig. 5):

β1,e
k,l = δxk, β1,e

k+1,l = −δxk, β2,e
k,l = δyl β2,e

k,l+1 = −δyl .

Example 2. Let us consider an annular domain

ΩH =

X = X0 +

 r cosα

r sinα

 , r0 ≤ r ≤ r?, α0 ≤ α ≤ α?


where 0 and ? stand respectively for minimal and maximal values. Then,

ξs = r, ξt = rα, ζs = r, ζt = α, ζes = rk + sδrk, ζet = αl + tδαl

∂X

∂ξs
=

 cosα

sinα

 ,
∂X

∂ξt
=

 − sinα

cosα

 ,
∂2X

∂ξs∂ξt
=

1

r

 − sinα

cosα


The scales have a sign which depends on the vertex position (see Fig. 5):

β1,e
k,l = δrk, β1,e

k+1,l = −δrk, β2,e
k,l = rkδαl β2,e

k,l+1 = −rkδαl .

3.2.3 Field interpolation

For any given quadrangular element Qe of the mesh τH , a physical variable, such as the scalar �eld w, is expanded in the C1 continuous

basis as follows

w(x, y) = ŵ(s, t) =

4∑
i=1

3∑
j=0

wj
g(i)

βe,ji Hj
i (s, t) , Fe(s, t) = (x, y) ∈ Qe. (7)

The coe�cients wj
g(i)

are the dofs of w at node Xg(i) shared by all elements Qe insisting into Xg(i). These dofs are the value, the s-

derivative, the t-derivative, and the s, t cross-derivative of the physical scalar �eld w at the location of the grid node. The scale factors are

a geometric grid property and therefore time independent and identical for each physical quantity. We thus consider the discrete space

VH = {z ∈ C1(ΩH), z|Qe
◦ F−1

e ∈ Ploc(Q̂), ∀Qe ∈ τH}

with Ploc(Q̂) de�ned in De�nition 3. We denote by {ψk}k=1,4Nh
the basis of VH in duality with the dofs of De�nition 3 associated with

vertices Vi ∈ τH .

3.3 From local to global coordinates and return

On the rHCT side, we have the value, the x-derivative and the y-derivative of the �eld uh in the physical space whereas, on the HB side,

we have the value, the s-derivative, the t-derivative, and the s, t cross-derivative of the �eld uH expressed in the local variables. We go

back and forth from reference to physical coordinates as follows. For the values, we know that for a point (x, y), if we think to uG (resp.,
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uL) as the discrete �eld, either uH or uh, in the physical global (resp., reference local) variables, then

uG(x, y) = uL(s, t) η1(s, t) if (x, y) = x(s, t) , (8)

where η1(s, t) is the scalar length unit change at the point (s, t). But for derivatives, the rule is di�erent, more precisely let us introduce

Jh(s, t)>, the transpose of the 2× 2 Jacobian matrix J(s, t) for the mapping de�ned in (5), that is

J(s, t) =

 ∂s x(s, t) ∂t x(s, t)

∂s y(s, t) ∂t y(s, t)

 = (η2(s, t) , η3(s, t) ).

Lemma 1. The �rst order derivatives of uL with respect to the local variables s, t, evaluated at (s, t), are given by

∂s u
L(s, t) = ∇x,yuG(x, y) · η2(s, t), ∂t u

L(s, t) = ∇x,yuG(x, y) · η3(s, t), (9)

where the vector η2(s, t) stands for (∂sx, ∂sy)>, the vector η3(s, t) stands for (∂ty, ∂ty)>, both evaluated at the point (s, t), and

∇x,yuG(x, y) is the gradient vector of uG with respect to the global physical variables x, y, evaluated at (x, y).

Proof. We have for example

∂s u
L(s, t) = ∂x u

G(x, y) ∂s x(s, t) + ∂y u
G(x, y) ∂s y(s, t)

and similarly

∂t u
L(s, t) = ∂x u

G(x, y) ∂t x(s, t) + ∂y u
G(x, y) ∂t y(s, t).

thus the result, by relying on the expression of η2(s, t) and η3(s, t).

Lemma 1 yields ∇s,t uL(s, t) = J(s, t)>∇x,y uG(x, y) and conversely

∇x,y uG(x, y) = (J(s, t)>)−1∇s,t uL(s, t). (10)

We rely on a classical formalism to write the second cross-derivatives of the discrete function uH or uh. The �rst notation involves two

matrices A,B ∈ R2×2 to give the scalar quantity A : B ∈ R as follows

A = (Ai,j), B = (Bi,j), A : B =
∑
i,j

Ai,j Bi,j

and the second, two vectors v,w ∈ R2 to de�ne the matrix v ⊗w ∈ R2×2 with

v = (vi), w = (wj), (v ⊗w)i,j = vi wj .
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Lemma 2. The second order derivatives of uL with respect to the local variables s, t, evaluated at (s, t), are given by

∂2
stu

L(s, t) = η4(s, t) · ∇x,yuG(x, y) + η2(s, t)⊗ η3(s, t) : Hessx,yuG(x, y),

∂2
ssu

L(s, t) = η5(s, t) · ∇x,yuG(x, y) + η2(s, t)⊗ η2(s, t) : Hessx,yuG(x, y),

∂2
ttu

L(s, t) = η6(s, t) · ∇x,yuG(x, y) + η3(s, t)⊗ η3(s, t) : Hessx,yuG(x, y),

where the vector η4(s, t) (resp., η5(s, t), η6(s, t)) stands for (∂2
stx, ∂

2
sty)> (resp., (∂2

ssx, ∂
2
ssy)>, (∂2

ttx, ∂
2
tty)>) evaluated at the point

(s, t), and Hessx,yuG(x, y) is the 2× 2 Hessian matrix of uG with respect to the global physical variables x, y, evaluated at (x, y).

Proof. Indeed, we have

∂2
st u

L = ∂s [ ∂x uG ∂t x + ∂y uG ∂t y ]

= ∂s(∂x uG) ∂t x+ ∂x uG ∂2
st x + ∂s(∂y uG) ∂t y + ∂y uG ∂2

st y

with

∂s(∂x uG) = ∂2
xx u

G ∂s x + ∂2
xy u

G ∂s y,

∂s(∂y uG) = ∂2
xy u

G ∂s x + ∂2
yy u

G ∂s y.

Similarly, for ∂2
ssu

L(s, t) and ∂2
ttu

L(s, t) we obtain, respectively,

∂2
ss u

L = ∂s [ ∂x uG ∂s x + ∂y uG ∂s y ]

= ∂s(∂x uG) ∂s x+ ∂x uG ∂2
ss x + ∂s(∂y uG) ∂s y + ∂y uG ∂2

ss y

∂2
tt u

L = ∂t [ ∂x uG ∂t x + ∂y uG ∂t y ]

= ∂t(∂x uG) ∂t x+ ∂x uG ∂2
tt x + ∂t(∂y uG) ∂t y + ∂y uG ∂2

tt y,

with

∂t(∂x uG) = ∂2
xx u

G ∂t x + ∂2
xy u

G ∂t y,

∂t(∂y uG) = ∂2
xy u

G ∂t x + ∂2
yy u

G ∂t y,

thus the result, by relying on the expressions of η5(s, t) and η6(s, t).

To �nd the expression of the second order derivatives of uG with respect to the local variables x, y, we may consider the mathematical

expressions in Lemma 2 as three equations of a algebraic linear systemMz = b. The vector of unknowns z has components ∂2
xyu

G, ∂2
xxu

G,

∂2
yyu

G, hidden in the Hessian matrix Hessx,yuG(x, y), and the matrix M has entries which depend on the products η2(s, t) ⊗ η2(s, t),

η2(s, t)⊗ η3(s, t) and η3(s, t)⊗ η3(s, t). Finally, the right-hand side b is the vector with components given by the di�erence between the

entries ∂2
stu

L, ∂2
ssu

L, ∂2
ttu

L, and the corresponding terms containing η4(s, t), η5(s, t), η6(s, t), respectively.

4 COUPLED DISCRETE PROBLEM AND RESOLUTION.

The meshes τH in ΩH and τh in ωh do not match neither at Γ nor at γ. The associated discrete spaces with no boundary conditions

are denoted by VH , Vh, respectively, and we set V0,H = VH ∩H1
0 (ΩH) and V0,h = Vh ∩H1

0 (ωh) those taking into account homogeneous
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boundary Dirichlet conditions on ∂ΩH and ∂ωh, respectively. The trace space of VH on Γ (resp., of Vh on γ) is called WH(Γ) (resp.,

Wh(γ)). We note that neither the restriction of a function vH ∈ VH onto the interface γ is, in general, an element of Wh(γ), nor the

restriction of wh ∈ Vh onto Γ, is in WH(Γ). Hence, the Dirichlet problems on VH and Vh, respectively, cannot be solved directly, and two

suitable operators

Πh : H1(ΩH) −→Wh(γ) , ΠH : H1(ωh) −→WH(Γ),

are required, that we de�ne later.

a

Figure 6 Curved quadrilaterals in ΩH and straight triangles in ωh. The mesh of triangles can be built in such a way that either the vertices

on γ coincide with quadrilateral vertices on Γ (left) or not (center and right). The size δ = dist(Γ, γ) of the overlap between ΩH and ωh

is either large when δ ≥ min(h,H) (left and center) or small when δ ≤ max(h,H) (right).

We can now formulate the discrete version of problem (2) as follows. Find (uH , uh) ∈ XH ×Xh with (uH)|∂D = gH , such that, for all

(v, w) ∈ X0,H ×X0,h, we have

aΩH
(uH , v) + aωh (uh, w) = (f|ΩH

, v)ΩH
+ (f|ωh

, w)ωh , (11)

with XH = {v ∈ VH , v|Γ = ΠHuh} and Xh = {w ∈ Vh, w|γ = ΠhuH} (the functions in the spaces X0,H and X0,h take zero boundary

values). The �nite element solution u∗ is de�ned by

u∗ =


uH in ΩH ,

uh in ωh.

In general u∗ /∈ H1(D). The error e = u−u∗ measured in the broken H1-norm ||.||2∗ = ||.||21,ΩH
+ ||.||21,ωh

is thus ||e||2∗ = ||u−uH ||21,ΩH
+

||u − uh||21,ωh
. We expect to have ||e||1,ΩH∪ωh

globally behaving as O(h2) since cubic or bi-cubic C1-FEs are used in the subdomains.

In this work, we will compute the solution of (11) iteratively, by a one-level alternating Schwarz method15. This choice is dictated by

simplicity in future applications to plasma simulations.

Let k be the iteration index. Given a guess for u
(k)
h in ωh (actually, we only need values along γ at the initial iteration k = 0), solve,

for k ≥ 0, the boundary value problems

aΩH
(u

(k+1)
H , v) = (f|ΩH

, v) ∀ v ∈ V0,H ,

u
(k+1)
H = g on ∂ΩH \ Γ,

u
(k+1)
H = ΠH u

(k)
h on Γ,

(12)
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for u
(k+1)
H ∈ VH and this other problem

aωh (u
(k+1)
h , w) = (f|ωh

, w) ∀w ∈ V0,h,

u
(k+1)
h = g on ∂ωh \ γ,

u
(k+1)
h = Πh u

(k+1)
H on γ,

(13)

for u
(k+1)
h ∈ Vh (if ωh ⊂ ΩH , then ∂ωh \ γ = ∅). The two discrete boundary value problems (12), (13), have a unique solution u

(k+1)
H ,

u
(k+1)
h , respectively, for each k ≥ 0. At each step k, u

(k+1)
H is the approximated discrete solution in ΩH and u

(k+1)
h is the approximated

discrete solution for ωh. In the overlapping region, one is free to use either of the two solutions, since both solutions will converge to the

same value in the shared region, as the mesh is re�ne. In16,17, a mortar �nite element method on overlapping subdomains for solving

two-dimensional elliptic problems discretized on composite grids is presented and analyzed. For classical FEs, they prove an optimal error

bound and estimate the condition numbers of certain overlapping Schwarz preconditioned systems for the two-subdomain case. In18,

we can �nd an approach similar to algorithm (12)-(13), involving again C0 low-order piece-wise (linear or bilinear) FEs in ΩH and ωh,

coupled by mortar like projections on Γ, γ. The proof of convergence relies on a discrete maximum principle (DMP), appeared in19, and

on the fact that local approximations are piece-wise linear polynomials. For C0 Lagrange FEs of polynomial degree r ≥ 2, the DMP does

not hold, see19, and much less is known for C1 non-Lagrange FEs as the ones used here. We thus work on the numerical side. In the

next section, we state the matrix form of (12)-(13), by replacing v in (12) (resp. w in (13)) with the basis functions {ψs} (resp. {φp})

for the corresponding discrete space V0,H (resp. V0,h). The coupling conditions on Γ and γ are realized by interpolation. To perform the

convergence analysis of the adopted algorithm we see it as a block Gauss-Seidel method for a linear system that contains the discretization

of both subdomains and the coupling along Γ and γ. The convergence of u
(k)
H yields that of u

(k)
h .

4.1 Matrix form

Let u4 (resp., u� ) the vector gathering all dofs of uh (resp., of uH) at the mesh nodes in τh (resp., in τH). We can separate u4 , and

analogously u� , into three blocks, as follows

u4 =



u4◦

u4∂

u4Γ



←− dofs at x ∈ Ω̊H thus x /∈ ∂ΩH ,

←− dofs at x ∈ ∂ΩH but x /∈ Γ,

←− dofs at x ∈ Γ.

The block u�

∂ is actually known since it is given by the Dirichlet boundary condition, but it is kept as unknown in order to simplify the

presentation. Similarly, the block u4∂ may be not necessary if ωh ⊂ ΩH . Note that with the functions f and g are associated the vectors

f� , f4 , g� , g4 , with structure similar to that of u� and u4 . Here, we have (g�
◦ ,g

�

Γ) = (0,0) and (g4◦ ,g
4
γ ) = (0,0). Let A� (resp., A4 )

be the matrix associated with the operator L restricted to τH (resp., τh) and

u�

Γ = PΓ◦u
4
◦ + PΓγu

4
γ , u4γ = P̂γ◦u�

◦ + P̂γΓu
�

Γ ,
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are, respectively, those of the operators ΠH (the �rst relation) and Πh (the second relation). To indicate that the interior block, denoted

by ◦, which appears in P̂γ◦ is di�erent from the one in PΓ◦, we have introduced a wide hat. Numerical experiments in14 hint that the

direct coupled problem solution u∗ becomes unstable due to over-imposing continuity at the interfaces when the overlap, δ = dist(Γ, γ),

is small (namely, δ ≤ min(h,H), as for example in Fig. 6 right). In the following, we thus work under Assumption 1.

Assumption 1. The size δ of the overlapping region, ΩH ∩ ωh, is large, that means, P�

Γγ = 0 and P̂γΓ = 0.

We detail the construction of the blocks P̂γ◦ and PΓ◦.

4.1.1 The coupling operator Πh

We proceed by interpolation. The construction of Πh relies on the identities (8) (with η1 = 1) and (10), to pass the information, on

the �eld value and derivatives, respectively, from an element Qe ∈ τH to its internal node X∗ ∈ γ. This operation needs to determine

(s∗, t∗) ∈ Q̂ such that (s∗, t∗) = F−1
e (X∗) with Fe the bi-cubic transformation (5) associated with Qe. Note that Fe can be inverted, for

example, by a Newton iterative algorithm. However, in this work, we assume for simplicity that the nodes on γ belong also to τH (see

Fig. 6, left). In other words, each node X∗ ∈ γ has a global number `∗ in τh and i∗ in τH . When X∗ is a vertex of an element Qe ∈ τH ,

we have that (s∗, t∗) is either (0, 0), or (1, 0), (1, 1), (0, 1). Each node in τh (τH) is associated with 3 (4) types j of dofs. If we detail the

matrix expression of Πh interpolating uh at X∗ starting from uH , we have

(u4γ )`∗ = (P̂γ◦)`∗i∗ (u�
◦ )i∗

with the 3× 4 matrix

(P̂γ◦)`∗i∗ =


1 0 0 0

0 (∂ty)/|J | −(∂sy)/|J | 0

0 −(∂tx)/|J | (∂tx)/|J | 0


evaluated at (s∗, t∗), where |J | = det J(s∗, t∗). The entries of row/column 1 of (Pγ◦)`∗i∗ come from (8) and those of the row/column 2

and 3 are the entries of matrix (J(s∗, t∗)>)−1, according to (10). Finally

(u4γ )`∗ = (v , ∂xv , ∂yv)> (X∗), (u�
◦ )i∗ =

(
ẑ , ∂sẑ , ∂tẑ , ∂

2
stẑ
)>

(s∗, t∗),

with v ∈ Vh, ẑ(.) = z(F−1
e (.)) for z ∈ VH . Note that the same values in the vector (u�

◦ )i∗ can be computed starting from (s∗, t∗) =

F−1
e (X∗) with Fe associated with any Qe among the 4 elements with a vertex in X∗, since the HB FE is of class C1.

4.1.2 The coupling operator ΠH

We proceed again by interpolation. The construction of ΠH uses the identities (8) (with η1 = 1) and (9) to transfer the information, on

the �eld value and derivatives, respectively, from an element Te ∈ τh to a node X? ∈ Γ. To �nd which Te ∈ τh contains X?, we compute
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the barycentric coordinates λv(X?) with respect to the vertices of Te and verify that 0 ≤ λp(X?) ≤ 1 for all p = 1, 2, 3. If we detail the

matrix expression of ΠH interpolating uH at X? starting from uh, we have

(u�

Γ)i? = (PΓ◦)i?`? (u4◦ )`?

with the 4× 3 matrix

(PΓ◦)i?`? =



1 0 0

0 ∂sx ∂sy

0 ∂tx ∂ty

0 0 0


evaluated at (s?, t?). Note that (s?, t?) coincides with either (0, 0), or (1, 0), (1, 1), (0, 1) depending on the local coordinates of X? in the

elements Qe with a vertex in X? and an edge on Γ. The entries of row/column 1 of (PΓ◦)i?`?p come from (8) and those of the row/column

2 and 3 are the entries of matrix J(s?, t?), according to (9). Finally

(u�

Γ)i? =
(
ẑ , ∂sẑ , ∂tẑ , ∂

2
stẑ
)>

(s?, t?), (u4◦ )`? = (v , ∂xv , ∂yv)> (X?),

with ẑ ∈ Ploc(Q̂) and v, ∂xv, ∂yv computed at X? from the rHCT dofs associated with the vertices of the triangle Te containing X?.

Remark 1. If the coupling operators ΠH : H1(ωh)→WH(Γ) and Πh : H1(ΩH)→Wh(γ) are L2 projections on the trace spaces WH(Γ),

Wh(γ), respectively, we have

PΓ◦ = (M�

ΓΓ)−1 CΓ◦, P̂γ◦ = (M4γγ)−1 Ĉγ◦

where M�

ΓΓ (resp., M4γγ) is a square matrix in ΩH (resp. in ωh) computed by involving basis functions associated with unknowns on Γ

(resp., on γ), whereas Ĉγ◦ (resp. CΓ◦) is a rectangular of size N4γ ×N�
◦ (resp. N�

Γ ×N
4
◦ ). In detail,

(M�

ΓΓ)pq =
∫
Γ ϕ

�
p ϕ

�
q , (CΓ◦)p` =

∫
Γ ϕ

�
p ψ
4
` ,

(M4γγ)p̂q̂ =
∫
γ ψ
4
p̂ ψ4q̂ , (Ĉγ◦)p̂k =

∫
γ ψ
4
p̂ ϕ�

k ,

with p, q global numbers of dofs associated with nodes on Γ; p̂, q̂ global numbers of dofs associated with nodes on γ; ` in the block of

N4◦ dofs associated with points in ωh, but not on γ, and k in the block of N�
◦ dofs associated with points in ΩH , but not on Γ. The

integrals above are computed by means of quadrature rules. As already remarked and illustrated in Figure 7, the operation of localizing

the (quadrature) points of γ at the interior of the curved elements in τH is not easy (we have to invert a bi-cubic mapping, for each

of the quadrature points). Such a type of projections is well-known from the mortar �nite element context (see,20). The convergence of

multidomain approximations with overlap of arbitrary �nite element meshes in the case of the mortar element method is �rstly analyzed

in16,21.
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Figure 7 Curved quadrilaterals in ΩH and straight triangles in ωh, in a simpli�ed situation. On the left, each quadrature node (indicated

by a �) on Γ (thick solid line) can be localized in a triangles T ∈ τh by relying on the values of the barycentric coordinates λv(�), being

v the vertices of T (indicated by •). On the right, we need to use a Newton algorithm to localize each quadrature node (�) on γ (thick

solid line) inside a curved quadrangle Q ∈ τH .

4.2 Convergence analysis

For each problem matrix, we need to build the three blocks A◦◦, A◦∂ and A◦I where: A◦◦ represents the coupling between dofs associated

with nodes at the interior of the mesh, A◦∂ represents the coupling between dofs associated with nodes at the interior of the mesh and

dofs at nodes on Dirichlet-type boundaries, and A◦I represents the coupling between dofs associated with nodes at the interior of the

mesh and dofs at nodes lying on the coupling interface (I stands for either γ or Γ). Under Assumption 1, the matrix form of problem

(12)-(13) reads: starting from u4,(k), we can �rst compute u�,(k+1) and then u4,(k+1) by solving successively

A�
◦◦ u

�,(k+1)
◦ +A�

◦Γ PΓ◦ u
4,(k)
◦ = f̃�

◦ ,

A4◦◦ u
4,(k+1)
◦ +A4◦γ P̂γ◦ u

�,(k+1)
◦ = f̃4◦

(14)

where f̃�
◦ = f�

◦ −A�

◦∂ g�

∂ and f̃4◦ = f4◦ −A4◦∂ g4∂ , respectively. Algorithm (14) is a block Gauss-Seidel method to �nd vectors u� and u4

solution of the linear system  A�
◦◦ A�

◦Γ PΓ◦

A4◦γ P̂γ◦ A4◦◦


 u�

◦

u4◦

 =

 f̃�
◦

f̃4◦

 . (15)

The other way around, being system (15) equivalent to A4◦◦ A4◦γ P̂γ◦

A�

◦Γ PΓ◦ A�
◦◦


 u4◦

u�
◦

 =

 f̃4◦

f̃�
◦

 , (16)

we can start from u�,(k), compute u4,(k+1) and then u�,(k+1), by solving successively

A4◦◦ u
4,(k+1)
◦ +A4◦γ P̂γ◦ u

�,(k)
◦ = f̃4◦ ,

A�
◦◦ u

�,(k+1)
◦ +A�

◦Γ PΓ◦ u
4,(k+1)
◦ = f̃�

◦ .

(17)

Note that even if the matrix of the linear system (15) has symmetric diagonal blocks it is globally non-symmetric since A4◦γ P̂γ◦ 6=

(A�

◦Γ PΓ◦)
t. When dealing with such general matrices, no a priori conclusions on the convergence properties of the Gauss-Seidel method
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can be drawn. We address the problem of estimating the error introduced by the iterative method and on the reduction factor of the error

at each iteration. The diagonal blocks A4◦◦, A
�
◦◦, can be inverted since the subdomain discrete problems, (12) in VH and (13) in Vh, have

a unique solution, separately, by treating Γ and γ as Dirichlet boundaries.

Lemma 3. Algorithm (14) with u4
,(0)
◦ = (A4◦◦)

−1 f̃4◦ yields the following recursive de�nition of u4
,(k+1)
◦ , for k ≥ 1:

(u4
,(k+1)
◦ − u4

,(k)
◦ ) = (A4◦◦)

−1A4◦γ P̂γ◦ (A�
◦◦)
−1A�

◦Γ PΓ◦ (u4
,(k)
◦ − u4

,(k−1)
◦ ). (18)

Proof. We start from the �rst line of (14) and compute u�,(k+1)
◦ , namely

u�,(k+1)
◦ = (A�

◦◦)
−1[f̃�

◦ −A�

◦Γ PΓ◦ u
4,(k)
◦ ]

= (A�
◦◦)
−1[f̃�

◦ −A�

◦Γ PΓ◦ u
4,(k−1)
◦ +A�

◦Γ PΓ◦ u
4,(k−1)
◦ −A�

◦Γ PΓ◦ u
4,(k)
◦ ]

= (A�
◦◦)
−1[f̃�

◦ −A�

◦Γ PΓ◦ u
4,(k−1)
◦ ]− (A�

◦◦)
−1A�

◦Γ PΓ◦ (u4
,(k)
◦ − u4

,(k−1)
◦ )

= u�,(k)
◦ − (A�

◦◦)
−1A�

◦Γ PΓ◦ (u4
,(k)
◦ − u4

,(k−1)
◦ ) ,

where we set u4
,(−1)
◦ = 0. We thus use u�,(k+1)

◦ in the second line of (14),

u4
,(k+1)
◦ = (A4◦◦)

−1
[
f̃4◦ −A4◦γ P̂γ◦ u�,(k+1)

◦

]
= (A4◦◦)

−1
[
f̃4◦ −A4◦γ P̂γ◦ [u�,(k)

◦ − (A�
◦◦)
−1 A�

◦Γ PΓ◦ (u4
,(k)
◦ − u4

,(k−1)
◦ )]

]
= u4

,(k)
◦ + (A4◦◦)

−1A4◦γ P̂γ◦ (A�
◦◦)
−1 A�

◦Γ PΓ◦ (u4
,(k)
◦ − u4

,(k−1)
◦ ) ,

which is the desired recursion (18).

Lemma 4. Algorithm (17) with u�,(0)
◦ = (A�

◦◦)
−1 f̃�
◦ yields the following recursive de�nition of u�,(k+1)

◦ , for k ≥ 1:

(u�,(k+1)
◦ − u�,(k)

◦ ) = (A�
◦◦)
−1A�

◦Γ PΓ◦ (A4◦◦)
−1A4◦γ P̂γ◦ (u�,(k)

◦ − u�,(k−1)
◦ ). (19)

Proof. Similarly to the proof of Lemma 3, we start from the �rst line of (17) and compute u4
,(k+1)
◦ . We thus use u4

,(k+1)
◦ in the second

line of (17).

Let us introduce the matrix A = (A�
◦◦)
−1A�

◦Γ PΓ◦, of size N
�
◦ × N4◦ , and the matrix B = (A4◦◦)

−1A4◦γ P̂γ◦, of size N
4
◦ × N�

◦ ,

respectively. We see that (18) and (19) can be written, respectively, as follows

(u4
,(k+1)
◦ − u4

,(k)
◦ ) = BA (u4

,(k)
◦ − u4

,(k−1)
◦ ),

(u�,(k+1)
◦ − u�,(k)

◦ ) = AB (u�,(k)
◦ − u�,(k−1)

◦ ).

The matrices A and B are, in general, rectangular. However, the non-zero eigenvalues of AB are the same as those of BA. Indeed, let

µ 6= 0 be an eigenvalue of AB. Then, it exists a non-zero vector w ∈ Rm with m = N�
◦ , such that ABw = µw. Hence,

B (ABw) = B (µw) =⇒ (BA) (Bw) = µ (Bw)
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that is µ is also eigenvalue of BA with associated eigenvector Bw. Note that Bw 6= 0 otherwise we would have ABw = µw = 0 which

yields µ = 0. Algorithm (14) (and (17)) converges if ρ < 1, being ρ the spectral radius of the square matrix AB (or, equivalently, BA, as

stated before).

Lemma 5. System (16) has a unique solution i� (I −AB) is nonsingular.

Proof. Let us write the matrix G of the linear system (16) as G =M+N , with

M =

 A4◦◦ 0

A�

◦ΓPΓ◦ A�
◦◦

 , N =

 0 A4◦γ P̂γ◦

0 0

 .

Being A�
◦◦, A

4
◦◦ nonsingular,M can be inverted and the block structure of its inverse reads

M−1 =

 (A4◦◦)
−1 0

−A(A4◦◦)
−1 (A�

◦◦)
−1

 .

We thus getM−1G = I +M−1N , that is

M−1G =

 I4◦◦ (A4◦◦)
−1A4◦γ P̂γ◦

−A+A I�
◦◦ −AB

 =

 I4◦◦ B

0 I�
◦◦ −AB

 ,

and the statement holds true.

Similarly, we can prove that the linear system (15) has a unique solution i� the matrix (I − BA) is nonsingular.

Proposition 1. If (I −AB) is nonsingular, algorithm (17) converges.

Proof. Algorithm (17) reads: �nd u�,(k+1)
◦ ∈ Rm solution of the linear system

u�,(k+1)
◦ = ABu�,(k)

◦ + c� , k ≥ 0,

with u�,(0)
◦ = (A�

◦◦)
−1 f̃�
◦ and c� = (A�

◦◦)
−1 f̃�
◦ −A (A4◦◦)

−1 f̃4◦ . By construction, we have that u�
◦ = ABu�

◦+c� . Let e�,(k)
◦ = u�

◦−u�,(k)
◦

be the error vector at the iteration k. By subtracting the iterate u�,(k+1)
◦ from u�

◦ , we get

e�,(k+1)
◦ = AB e�,(k)

◦ .

The matrix (I −AB) is nonsingular, thus ρ(AB) 6= 1. To conclude about convergence, it must be ρ(AB) < 1. Let us prove that

||e�,(k)
◦ ||2 ≤

σ

1− σ
||u�,(k)
◦ − u�,(k−1)

◦ ||2 (20)

with σ the largest singular value of the matrix AB. Indeed, by using (matrix and vector) norm 2 properties, we get

||e�,(k+1)
◦ ||2 ≤ σ|| e�,(k)

◦ ||2 σ = ||AB ||2 = σmax(AB).
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Table 1 L2, H1 and H2 errors and numerical convergence orders for rHCT FEs on [0, 1]2.

nr L2 norm p• H1 semi-norm p• H2 semi-norm p•

3 9.9885 ×10−6 1.5106 ×10−3 3.3870 ×10−1

6 1.2031 ×10−6 3.05 3.7244 ×10−4 2.02 1.6758 ×10−1 1.01

12 1.4814 ×10−7 3.02 9.2608 ×10−5 2.01 8.3401 ×10−2 1.00

24 1.8396 ×10−8 3.01 2.3099 ×10−5 2.00 4.1611 ×10−2 1.00

We can also write

||e�,(k)
◦ ||2 = ||u�

◦ − u�,(k)
◦ ||2

= ||u�
◦ − u�,(k+1)

◦ + u�,(k+1)
◦ − u�,(k)

◦ ||2

≤ ||e�,(k+1)
◦ ||2 + ||u�,(k+1)

◦ − u�,(k)
◦ ||2

≤ σ|| e�,(k)
◦ ||2 + σ ||u�,(k)

◦ − u�,(k−1)
◦ ||2.

Moving, to the left-side of the inequality, the term σ ||e�,(k)
◦ ||2, we obtain (20). Inequality (20) yields σ/(1 − σ) ≥ 0 which can be true

only when 0 ≤ σ < 1. This yields ρ(AB) < 1, since ρ ≤ σ. Algorithm (17) hence converges.

5 NUMERICAL RESULTS

The proposed approach aims at combining HB FEs on a curved and structured quadrilateral mesh in ΩH and rHCT FEs in ωh on a straight

and unstructured triangular mesh, to treat the singularity at the center of the curved domain ΩH . We start by checking, separately, the

accuracy of the rHCT and HB FEs when adopted to approximate the solution of problem (1) with L = −∆. The L2 norm (resp., the H1,

H2 semi-norms) of the approximation error is computed by using the expression of uG (resp., ∇x,yuG and the entries of Hessx,yuG(x, y))

given in (7) (resp., after the proofs of Lemmas 1 and 2). We then show an example of coupled approximation on composite meshes. For

the considered cases, the matrix G is nonsingular.

For the rHCT side, we consider the domain Q̂ = [0, 1]2. Dirichlet boundary function g and right-hand side f are compatible with

u(x, y) = x4(y− 1)2 + y4(x− 1)2 solution of the PDE. In Table 1, we report the numerical errors in the L2 norm and H1, H2 semi-norms

together with the convergence orders p• computed with the rule

pi = log(erri/erri−1) / log(hi/hi−1) i = 2, 3, 4.

We have used di�erent meshes τ with triangles T of size hi =
√

2/(nr)i. The theoretical error with rHCT FEs in the L2 norm (resp.,

the H1, H2 semi-norms) behaves as O(hp), with p = 3 (resp., p = 2, p = 1) with h = maxT∈τ diam (T ) (see Chapter 4 in22), being

τ the triangular mesh covering the computational domain, here Q̂. We can see that the computed values p• in Table 1 are close to the

corresponding theoretical ones.
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Table 2 Error L2 norm and H1, H2 semi-norms (and orders) for HB FEs on R.

nr L2 norm p• H1 semi-norm p• H2 semi-norm p•

6 4.1936 ×10−5 1.0064 ×10−3 3.8111 ×10−2

12 1.8652 ×10−6 4.49 9.9291 ×10−5 3.34 7.6234 ×10−3 2.32

24 9.9445 ×10−8 4.23 1.1107 ×10−5 3.16 1.7170 ×10−3 2.15

48 5.7550 ×10−9 4.11 1.3155 ×10−6 3.08 4.0801 ×10−4 2.07

Table 3 Error L2 norm and H1, H2 semi-norms (and orders) for HB FEs on D.

nr L2 norm p• H1 semi-norm p• H2 semi-norm p•

12 2.9130 ×10−2 5.1670 ×10−2 1.7790 ×10−0

24 1.9345 ×10−3 3.91 5.2603 ×10−3 3.30 4.5075 ×10−1 1.98

48 1.3023 ×10−4 3.89 6.2050 ×10−4 3.08 1.1470 ×10−1 1.97

60 5.5449 ×10−5 3.83 3.1540 ×10−4 3.03 7.3701 ×10−2 1.98

For the HB side, we consider either the domain R = [0.2, 2] × [0, 1] or the curved one D = {(r cos (2π θ) , r sin (2π θ)), (r, θ) ∈ R }.

Dirichlet boundary function g and right-hand side f are compatible with u(x, y) = x4 + y3 + x2y2 solution of the PDE. In Tables 2 and

3, we report the numerical errors for HB FEs in the L2 norm and H1, H2 semi-norms together with the convergence orders p• estimated

by the same rule as before. Over the rectangle K, we have used di�erent meshes τ with elements Q of size hi ≈ 2/(nr)i. Over the curved

domain D, we have used di�erent curved meshes τ with quadrangles Q of size hi ≈ 2π/(nr)i. The theoretical error with HB FEs in the

L2 norm (resp., H1, H2 semi-norms) behaves as O(hp), with p = 4 (resp., p = 3 and p = 2) with h = maxQ∈τ diam (Q), being τ the mesh

covering either R or D (see Chapter 4 in22). In the HB case over the curved domain D, we have used �ner meshes and iso-parametric �nite

elements (see, for example, Section 5.2 in23). We can see that, the computed values p• in Tables 2 and 3 agree with the corresponding

theoretical ones.

We �nally consider a coupled test case. Let ΩH be the annular domain centered at xc = (0, 0) and rmin = 1.0625, rmax = 2.375. Let

ωh be the polygon approximating the disk centered at xc and radius R = 1.375. Dirichlet boundary function g and right-hand side f are

compatible with u(x, y) = sin(2.5π x) sin(1.5π y) solution of the PDE. Adopted meshes and computed solution are shown in Figures 8,

9, respectively.

On the same composite meshes for ΩH ∪ ωh, we consider the model PDE with Dirichlet boundary function g and right-hand side f

compatible with u(x, y) = sin(Lx π x) sin(Ly π y) as solution. We change Lx and Ly as

Lx ∈ {0.17 0.35, 0.70, 1.25, 2.50 }

Ly ∈ {0.10 0.20, 0.40, 0.80, 1.50 },

respectively, in order to have di�erent values of the sampling ratio κx = 38/Lx and κy = 38/Ly , being 38 the number of mesh sides on

[0, rmax] for θ = 0 in the considered mesh. The average mesh sizeH = h = rmax/38 ≈ 0.0625. Convergence threshold on ‖u−u∗,(k)‖2 is set
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Figure 8 In ΩH , a polar structured mesh of 21×64 curved elements (left) and in ωh, an unstructured mesh of 1664 straight triangles (right).

Figure 9 Computed rHCT-HB FE coupled solution in the whole domain ΩH ∪ ωh (right). A zoom (left) of the computed solution in a

neighborhood of the overlapping area (delimited by the black box).

to 10−10 and the algorithm (17) converges in 21 iterations for all values of (Lx, Ly). Indeed, the overlap δ between ΩH and ωh is constant

and equal to 5×h. In Figure 10 (left), we report the logarithms of the norms ‖u�,(k)−u�,(k−1)‖2 (line with +) and ‖u4,(k)−u4,(k−1)‖2

(points x), for the last 12 (out of 21) iterations k of algorithm (17), of the coupled solution, for three values of Lx, respectively, 0.17 (the

lowest lines/dots), 0.35 (the middle lines/dots), 1.25 (the highest lines/dots). The lines which �t the iteration residual norms have slopes

-0.70, -0.94, -0.98, in ΩH (and close values in ωh), respectively, thus the convergence factor of the method is − ln(ρ(AB)) ≈ 1.

In Figure 10 (right) we report the in�nite norm of the global errors (u− u∗) and ∂x(u− u∗) for the coupled problem as a function of

the inverse of κx. They both behave as the rHCT FE ones. We remark that when Lx = 2.5 (that means κx ≈ 15), the error is important,

whereas for Lx = 0.35 (that means κx ≈ 108), we have many points per wavelength, thus a good precision on the solution.
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Figure 10 Log-norm of the residual vector along the iterations of the algorithm 17 to compute the rHCT-HB FE coupled solution shown

in Fig. 9 (left). The line �tting the residuals in the HB domain. Global error as a function of the mesh size h in log scale (right).

6 CONCLUSIONS

We have proposed and analyzed a non-conforming domain decomposition method which allows to couple two di�erent FEs of class C1

on composite meshes. In plasma simulations, the C1 continuity is not enforced at particular points (such as the X-point or the plasma

axis in a �ux aligned grid) shared by more than four elements, making impossible to impose enough conditions that assure it. A special

treatment in the neighborhood of these points is necessary (see an example8). In this work, we have relied on composite meshes to bypass

this problem, namely, we stop the mesh of quadrangles before it becomes unstructured, and cover this small neighborhood of critical

points by a mesh τh of triangles over which rHCT FEs are adopted. The two meshes τH , τh are then coupled by suitable operators, here

based on interpolation. The global discrete problem is then solved iteratively, by an algorithm which can be straightforwardly introduced

in already existing MHD codes, such as JOREK3. The possibility of using mortar like projections at the coupling interfaces Gamma, γ and

isoparametric FEs also on the triangular mesh is left to further application as well as the simulation of a plasma equilibrium with this

coupled approach.
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