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Finite elements of class C 1 are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic eld line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma ows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh-aligned isoparametric representation suers from the presence of critical points of the magnetic eld (magnetic axis, X-point). We here explore a strategy that combines aligned mesh out of the critical points with non-aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical diculties that come with them. The mesh-aligned interpolation uses bi-cubic Hemite-Bézier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher nite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm.

In this paper, we will focus on the Poisson problem on a two-dimensional bounded regular domain. This elliptic equation is a simplied version of the axisymmetric tokamak equilibrium one at the asymptotic limit of innite major radius (large aspect ratio).

INTRODUCTION

Magnetohydrodynamics instabilities play a critical role in magnetic connement fusion power plants. Therefore, accurate numerical simulations are essential to investigate, avoid or mitigate the undesired consequences of destabilizing plasma equilibrium. For example, in tokamak devices, the balanced status of the Lorentz force and the pressure gradient is often axisymmetric and described by the Grad-Shafranov equation [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks[END_REF] . It is a highly nonlinear elliptic equation for the evolution of the poloidal magnetic ux in a two-dimensional cross-section of the tokamak [START_REF] Faugeras | An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code[END_REF] . Therefore, for simulating magnetohydrodynamics instabilities, it is desirable to have a strategy that preserves the equilibrium states without perturbations (the so-called well-balanced schemes) 3 . Furthermore, the evolution of strongly magnetized plasmas contains highly anisotropic patterns. Therefore, meshes aligned on the equilibrium magnetic ux lines, associated with an isoparametric nite element formulation, oer decisive advantages. The bi-cubic Hermite-Bézier [START_REF] Czarny | Bézier surfaces and nite elements for MHD simulations[END_REF] elements make for an accurate description of the magnetic topology using ux-aligned grids. In addition, the use of this kind of grid is particularly important to control articial diusion perpendicular to the ux surfaces. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamaks under construction [START_REF] Hoelzl | The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically conned fusion plasmas[END_REF]6 . However, at the critical points of the magnetic eld (extrema or saddle points), nite element interpolation for aligned meshes has some drawbacks. Indeed, closed concentric ux lines at the plasma core make the aligned grid isomorphic to a polar grid. Hence, the geometric singularity at the symmetry center gives rise to several stretched elements [START_REF] Guillard | Tokamesh : A software for mesh generation in tokamaks[END_REF] . Recently, in curved bi-cubic Hermite-Bézier interpolation, we have overcome the singularity at the magnetic axis (polar axis) by a proper linear combination of basis functions [START_REF] Bhole | Treatment of polar grid singularities in the bi-cubic Hermite-Bézier approximations: isoparametric nite element framework[END_REF] . Nevertheless, this solution does not cure the presence of stretched elements and the method suers from a loss of accuracy. Therefore, it seems reasonable to use a non-aligned unstructured grid associated with a C 1 nite element locally near the magnetic axis. Unstructured grids fail for mesh alignment with the magnetic ux but avoid geometrical singularities and oer more exibility in meshing complex geometries, local renement, etc., while preserving accuracy.

Composite grid techniques are generally used by computational engineers in many large-scale simulations as a way to reduce the cost of grid generation (see, for example, [START_REF] Henshaw | An object-oriented framework for solving PDEs on overlapping grids[END_REF] ). Here, we will explore the possibility of combining two overlapping meshes, one of curved quadrangular pieces and the other of straight triangular elements, to tackle with the magnetic eld critical points. Isoparametric bi-cubic Hermite-Bézier nite elements are adopted on the curved mesh and piece-wise cubic reduced Hsieh-Clough-Tocher ones are involved on the latter. As a rst investigation, we consider the Laplace problem on a bounded domain D with regular boundary ∂D and Dirichlet type conditions on it. The continuity of the numerical solution in the region of overlap is enforced by interpolation. A one-level Schwarz algorithm is used to solve the coupled problem resulting from having adopted dierent spaces of nite elements in the subdomains.

The rest of the paper is organized as follows [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks[END_REF] . We start by stating in Section 2 the problem and its domain decomposition formulation in the continuous setting. In Section 3, we briey recall the reduced Hsieh-Clough-Tocher element [START_REF] Clough | Finite element stiness matrices for analysis of plates in bending[END_REF] on triangles and, taking the cue from [START_REF] Czarny | Bézier surfaces and nite elements for MHD simulations[END_REF] , we present in detail the main steps for the isoparametric bi-cubic Hermite-Bézier one. We are then able to state the discrete coupled problem in Section 4 together with the one-level Schwartz algorithm for its solution. After the analysis of the algorithm convergence, we conclude in Section 5 with some numerical results.

SETTING UP THE MODEL PROBLEM.

In an open bounded domain D ⊂ R 2 with boundary ∂D, we consider the elliptic problem

L u = f in D, u = g on ∂D, (1) 
for given functions f , g. For simplicity, the operator L is (minus) the Laplacian, -∆. The right-hand side f ∈ L 2 (D) with L 2 (D) the functional space of measurable functions on D that are square integrable in D, with norm . 2 D associated with the scalar product [START_REF] Faugeras | An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code[END_REF] } be the Hilbert space endowed with the semi-norm |u| H 1 (D) = ∇u D and

(v, w) D = D v w . Let H 1 (D) = {u ∈ L 2 (D), ∇u ∈ L 2 (D)
norm u 2 H 1 (D) = u 2 D + |u| 2 H 1 (D)
. We assume that ∂D is piece-wise C 1 , so that the trace operator u → u |∂D is continuous from H 1 (D)

to L 2 (∂D). We can hence take the boundary data g in L 2 (∂D). To apply a Galerkin approach to problem (1) with L = -∆, we consider its weak form:

given ũ ∈ H 1 (D) with ũ|∂D = g, nd u ∈ H 1 (D) such that u -ũ ∈ H 1 0 (Ω) and a D (u, v) := D ∇ u • ∇ v = D f v =: (f, v) D ∀ v ∈ H 1 0 (D), (2) 
where

H 1 0 (D) = {v ∈ H 1 (D), v |∂D = 0 }.
We now introduce the domain decomposition framework. Let ω ⊂ D be a sub-domain of D with boundary γ = ∂ω and such that ω ∩ ∂D = ∅ (as in Fig. 1, left-side). We denote by Ω the complement of ω in D, that is Ω = D \ ω. Note that the function ũ ∈ H 1 (D) is then selected to take zero value in ω. To formulate (2) in a domain decomposition framework, let us introduce the functional space

V = {(v, w) ∈ H 1 (Ω) × H 1 (ω), v |γ = w |γ }.
The weak form (2) becomes: nd

(u Ω , uω) ∈ V such that u Ω -ũ ∈ H 1 0 (Ω) and a((u Ω , v), (uω, w)) := a Ω (u Ω , v) + aω(uω, w) = ((v, w)), ∀ (v, w) ∈ V 0 , (3) 
with

((v, w)) = (f |Ω , v) Ω + (f |ω , w)ω.
The bilinear form a D (., .) is continuous and elliptic on V 0 . In fact, the continuity of a D (., .) on the space V 0 results straightforwardly from the Cauchy-Schwarz inequality and its ellipticity is a direct consequence of the Poincaré inequality.

1 Abbreviations: Degrees of freedom (dofs), Hermite-Bézier (HB), reduced Hsieh-Clough-Tocher (rHCT), Finite elements (FEs).

Thus problem (3) has a unique solution in V with u |∂D = g, by the Lax-Milgram lemma. In the continuous setting, problem (3) yields (u D ) |Ω = u Ω and (u D ) |ω = uω but when we discretize (3), the situation is rather dierent.
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Figure 1 The domain

D = Ω ∪ ω with Ω ∩ ω = ∅ (left-side). The domain D = Ω H ∪ ω h with Ω H ∩ ω h = ∅.
In particular, γ = ∂ω h is the green polygonal and Γ = ∂Ω H \ ∂D is the red line (center-left). An example of mesh with curved quadrilaterals in Ω H (center-right) and with straight triangles in ω h (right-side).

We wish to introduce dierent types of meshes τ H and τ h in two sub-domains Ω H , ω h , of D, with Ω H ∪ ω h = D (as in Fig. 1, centerleft). Let τ H be a mesh of curved quadrangles over Ω H with Ω ⊂ Ω H , and τ h a mesh of straight triangles over ω h with ω ⊂ ω h . The two meshes τ H , τ h are shape regular and quasi-uniform, with maximal diameters H, h, respectively. In the general case, we have Ω H ∩ ω h = ∅ and we denote by Γ the smooth curve ∂Ω H ∩ ωh (the red line in Fig. 1) and we keep on denoting by γ the polygonal curve ∂ω h ∩ ΩH (the green polygonal in Fig. 1). These overlapping triangulations can be completely independent to each other. Hence, a priori, they do not match on Ω H ∩ ω h and, neither the edges of τ H on the curve γ coincide with edges of τ h , nor the edges of τ h on the curve Γ coincide with edges of τ H (as in Fig. 1, right-center and right-side).

INTERPOLATION SPACES : TWO FINITE ELEMENTS OF CLASS C 1

We use the reduced or minimal Hsieh-Clough-Tocher (rHCT) nite element space on τ h (see [START_REF] Clough | Finite element stiness matrices for analysis of plates in bending[END_REF] ) and Hermite-Bézier (HB) nite elements on τ H (see [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] ) within a isoparametric approach.

3.1

The space of reduced Hsieh-Clough-Tocher nite elements

Locally, the rHCT nite element is the triple (T, P loc (T ), Σ(T )) where T denotes a triangle of the mesh τ h , P loc (T ) the local space of functions dened on that triangle and Σ(T ) a set of unisolvent dofs for the functions in the local space (see [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] ). The indices i, i + 1, i + 2, in Denition 1 below, take values 1, 2, 3. When i + 1 > 3 (resp. i + 2 > 3), we replace it by [(i + 1) mod 3] + 1 (resp. [(i + 2) mod 3] + 1).

Denition 1. Let T = [V 1 , V 2 , V 3 ] be the triangle of vertices V 1 , V 2 , V 3 . The triangle T is divided into three sub-triangles B i = [G, V i+1 , V i+2 ]
where G is the barycenter of T (see Figure 2). The rHCT nite element associated with T is the triple (T, P loc (T ), Σ(T )), where P loc (T )

is the polynomial space of functions w ∈ C 1 (T ) such that w |B i ∈ P 3 (B i ) and (∂nw)

|b i ∈ P 1 (b i ) for any edge b i ∈ ∂B i ∩ ∂T. Here above, B B B V V V 1 2 3 2 1 3 Figure 2 Any triangle T = [V 1 , V 2 , V 3 ] of the mesh τ h is cut into three triangles B i : each B i = [G, Vm, V ] having vertices in Vm, V with m, ∈ {1, 2, 3}
\ {i} and at the barycenter G (denoted by the small circle at the interior) of the triangle T . We can thus reconstruct the height u h (V i ) of the function u h at the three vertices V i of T and the tangent plane to the surface u h at the vertices V i , as generated by

∂xu h (V i ), ∂yu h (V i ).
n is the outward normal vector to ∂T , b i the edge on ∂T that does not insist in the vertex V i and (∂nw) |b i the normal derivative of w at b i , and Σ(T ) is the set dened by the following functionals:

(j = 0) w → w(V i ) , (j = 1) w → (grad w)(V i ) • (V i+1 -V i ) , (j = 2) w → (grad w)(V i ) • (V i+2 -V i ),
where (gradw

)(V i ) • (V i+1 -V i ) is the directional derivative of w on [V i , V i+1
] and j denotes the degree of freedom type. Note that

(grad w)(V i ) • (V i+1 -V i ) = (∂nw) |b i+1 (V i ) -(∂nw) |b i (V i ).
We thus have on the polygonal domain ω h the discrete space

V h = {v ∈ C 1 (ω h ), v |T ∈ P loc (T ), ∀ T ∈ τ h },
with P loc (T ) given in Denition 1. We denote by {φ i } i=1,3N h the basis of V h in duality with the dofs of Denition 1 associated with the N h nodes of τ h and we refer to [START_REF] Bernardou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF] for its detailed construction. See [START_REF] Elarif | Tokamak free-boundary plasma equilibrium computation using nite elements of class C0 and C1 within a mortar element approach[END_REF] for application of these FEs in the context of plasma equilibrium simulations.

3.2

The space of isoparametric Hermite-Bézier nite elements

Let be τ H a mesh of curved quadrangles over Ω H where we consider isoparametric bi-cubic Hermite-Bézier (HB) nite elements [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] , in the physical space, following the idea described in [START_REF] Czarny | Bézier surfaces and nite elements for MHD simulations[END_REF] . We go into the details of this delicate construction: (i) we start with the approximation of a curve, (ii) then of a domain, (iii) and nally of a eld w on that domain. This approach generalizes the one proposed in [START_REF] Heumann | A nite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries[END_REF] on Cartesian meshes in the context of plasma equilibrium simulations. For any S ⊂ R d , d = 1, 2, we denote by Q 3 (S), the space of bi-cubic polynomials on S, namely polynomials dened in S, of degree at most 3 with respect to each of the d real variables. Note that Q 3 (S) = P 3 (S) for d = 1.

In one parametric dimension

We start by dening the HB FE on the reference interval ê = [0, 1] and by presenting the construction of Γ H , a C 1 approximation of a curve Γ ⊂ R 2 by these FEs.

Denition 2. The Hermite-Bézier nite element on ê = [0, 1] is the triple (ê, P loc (ê), Σ(ê)) where P loc (ê) = Q 3 (ê) and Σ(ê) is the set of functionals

(j = 0) v → v( ), v → ∂sv( ) (j = 1)
acting on v ∈ P loc (ê). Here, s ∈ ê is the polynomial variable, j denotes the degree of freedom type and ( ) varies between the two vertices (0), (1) of ê.

In Denition 2, the space P loc (ê) = P 3 (ê) and card Σ(ê) = 4. It is well-known that we can set P loc (ê) = span {H j i (s), j = 0, 1, i = 1, 2}

being H i the cubic polynomials dened on ê as

H 0 1 (s) = (1 + 2 s) (1 -s) 2 , H 1 1 (s) = s (1 -s) 2 , H 0 2 (s) = (3 -2 s) s 2 (= H 0 1 (1 -s)), H 1 2 (s) = (1 -s) s 2 (= H 1 1 (1 -s)).
These polynomials H j i verify

H 0 1 (0) = 1, (H 0 1 ) (0) = 0, H 0 1 (1) = 0, (H 0 1 ) (1) = 0, H 1 1 (0) = 0, (H 1 1 ) (0) = 1, H 1 1 (1) = 0, (H 1 1 ) (1) = 0, H 0 2 (0) = 0, (H 0 2 ) (0) = 0, H 0 2 (1) = 1, (H 0 2 ) (1) = 0, H 1 2 (0) = 0, (H 1 2 ) (0) = 0, H 1 2 (1) = 0, (H 1 2 ) (1) = 1 .
Suppose that we have a parametric representation of Γ as

Γ =          X =      x y      , x = t, y = y(t), t ∈ [a, b]         
, with t acting as global parameter. Note that Γ is the graph of the function y = y(x)

for x ∈ [a, b]. The curve Γ is regular if X is component- wise C 1 ([a, b]). The tangent vector to Γ at a point X(t) is d X d t (t) = (1, y (t)) . The curve Γ is thus regular if d X d t is component-wise C 0 (]a, b[).
For a regular curve Γ, the arc-length parameter along the curve is the function

ξ(t) = t a d X d t (σ) dσ, with d X d t (.) = 1 + (y (.)) 2 .
We have that

ξ is C 1 ([a, b]) and ξ (t) = d X d t (t) > 0, thus ξ : [a, b] → [0, l(Γ)] is a dieomorphism, with ξ(b) = l(Γ) the length of Γ. If t(ξ)
is the inverse of ξ(t), we have that the same curve Γ can be dened equivalently as

Γ =          X =      ξ p(ξ)      , p(ξ) = y(t(ξ)), ξ ∈ [0, l(Γ) ]          and it holds d X d ξ = d X d t d t d ξ .
When we represent X(ξ) by a piece-wise combination X H (ξ) of Hermite-Bézier polynomials, to obtain a C 1 curve Γ H , we have to adjust the coecients of this combination in order to restore the continuity of the arc-length derivative dX H dξ at the points on Γ H shared by adjacent curved segments.
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Figure 3 The oriented curve Γ (solid line) is divided into 4 curved segments e. The internal point X 3 is the extremity of two adjacent segments, e -(resp., e + ) insisting in X 3 from the left (resp., right), according to the orientation of Γ. The tangent vector at X 3 ∈ Γ H has to be continuous thus the red and green vectors have to belong to the same straight line (tangent to Γ at X 3 ) and to be of the same length. The polygonal (dashed line) has straight sides with extremities ξ(ζ e k ), where ζ e : [0, 1] → e (bottom arrows) associated with e = [t k , t k+1 ], for each value of k = 1, ..., 4.

Let us consider a uniform grid of N + 1 points X k ∈ Γ, k = 1, ..., N + 1 (see Fig. 3 for an example with 5 points). We can write either

X k = (t k , y(t k )), with t k = a + k δ t and δt = (b -a)/N or, equivalently, X k = (ξ k , g(ξ k )), with ξ k = ξ(t k ).
Then, by introducing the variable ζ e (s) = s t k+1 + (1 -s) t k , with s ∈ [0, 1], any point X belonging to the curved interval e ⊂ Γ, of extremities X k and X k+1 , can be written with

X(s) := X(ξ) = X(ξ(ζ e (s))), d X d s := d X d ξ d ξ d ζ e d ζ e d s ,
and

ξ(ζ e (s)) = ξ k + t(s) t k d X d t (ζ e ) dζ e = ξ k + 1 0 d X d t (ζ e (s)) d ζ e d s d s .
We wish to represent Γ by a curve

Γ H = ∪ N k=1 e k with e k =          X H |e k =      ξ p H (ξ)      , ξ = ξ(t), t ∈ [t k , t k+1 ]          , with p H (ξ) ≈ p(ξ). To have Γ H reconstructed by HB cubic polynomials means that, for each e k , ξ ∈ [ξ k , ξ k+1 ], (X H (ξ)) |e k = X(s) = 2 i=1 1 j=0 X j,e i β j,e i H j i (s), s ∈ [0, 1].
In order to ensure that the reconstructed curve Γ H is C 1 , the coecients X j,e i β j,e i have to be such that

d X H d ξ
is continuous passing from one curved edge to the adjacent one. High-order continuity in the physical space is achieved if the arc-length derivative is continuous at the internal grid points ξ k , namely

d X d s (0) = + dξ dζ dζ e ds dX H dξ (ξ k ), d X d s (1) = - dξ dζ dζ e ds dX H dξ (ξ k ).
Therefore,

X 0,e 1 = X k , β 0,e 1 = 1, X 1,e 1 = dX d ξ (ξ k ), β 1,e 1 = + dξ dζ dζ e ds (0) X 0,e 2 = X k+1 , β 0,e 2 = 1, X 1,e 2 = dX d ξ (ξ k+1 ), β 1,e 2 = - dξ dζ dζ e ds (1) 
.

If Γ is not known analytically but provided by a nite set of points X k , we replace derivatives by suitable nite dierence schemes.

In two parametric dimensions

Let us dene the HB FE on the reference square Q = [0, 1] 2 and go through the steps of the construction, by these FEs, of a C

1 representation Ω H of a domain Ω ⊂ R 2 , with • Ω = ∅. Denition 3. The Hermite-Bézier nite element on Q = [0, 1] 2 is the triple ( Q, P loc ( Q), Σ( Q)) where P loc ( Q) = span {H j i (s, t), i = 1, ..., 4, j = 0, ..., 3} and Σ( Q) is the set dened by functionals (j = 0) v → v( , ), v → ∂sv( , ) (j = 1) (j = 2) v → ∂tv( , ) v → ∂ 2 st v( , ) (j = 3)
with j denoting the degree of freedom type and ( , ) varying among the four vertices (0, 0), (1, 0), (0, 1), (1, 1) of Q.

In Denition 3, the space P loc ( Q) = Q 3 ( Q) and card Σ( Q) = 16. It is well-known that we can set P loc ( Q) = span {H j i (s, t), j = 0, ..., 3, i = 1, ..., 4} being H j i the bi-cubic Hermite-Bézier basis function associated with the ith vertex of Q for the jth degree of freedom stated in Denition 3. For i = 1 we have for example

H 0 1 (s, t) = H 0 1 (s) H 0 1 (t), H 1 1 (s, t) = H 1 1 (s) H 0 1 (t), H 2 1 (s, t) = H 0 1 (s) H 1 1 (t), H 3 1 (s, t) = H 1 1 (s) H 1 1 (t). (4) 
The basis functions for the vertices i = 2, 3, 4 can be dened as

H j 2 (s, t) = H j 1 (1 -s, t), H j 3 (s, t) = H j 1 (1 -s, 1 -t), H j 4 (s, t) = H j 1 (s, 1 -t),
for any j = 0, ..., 3.

Let us suppose to be given with a parametric representation of Ω as with z, w acting as global parameters. The domain

Ω =          X =      x y      , x = x(z, w), y = y(z, w), z ∈ [az, bz], w ∈ [aw, bw]     
Ω is regular if X is component-wise C 1 (K), with K = [az, bz] × [aw, bw]. The tangent plane to Ω at a point X * is generated by the two vectors ∂z X(z * , w * ) =      ∂zx(z * , w * ) ∂zy(z * , w * )      , ∂w X(z * , w * ) =      ∂wx(z * , w * ) ∂wy(z * , w * )     
, which are assumed to be linearly independent, namely, det J(z * , w * ) = 0 with J(., .) the 2 × 2 Jacobian matrix (∂zX(., .) , ∂wX(., .)).

We assume that Ω is an oriented surface and that it exists a dieomorphism π :

K → C with C = [0, Lz] × [0, Lw], Lz, Lw ∈ R + ,
and (ξz, ξw) := π(z, w), such that the diagram commutes, namely (x(z, w), y(z, w)) = ( X(π(z, w)), Y (π(z, w)) ) . The domain Ω can be equivalently dened as

Ω =          X =      X(ξz, ξw) Y (ξz, ξw)      , ξz ∈ [0, Lz], ξw ∈ [0, Lw]         
.

We keep on considering (ξz, ξw) as arc-length like coordinates.

Let us consider a uniform grid of Np = (Nx + 1)

× (Ny + 1) points X k ∈ Ω, k = 1, ..., Np We can write X k = (x k , y k ) with x k = x(z i , w j ), y k = y(z i , w j ), k = (j -1) Nx + i, z i = az + i δz, w j = aw + j δw, i = 1, ..., Nx, δz = (bz -az ) Nx , δw = (bw -aw ) Ny , j = 1, ..., Ny.
We wish to represent Ω by a surface

Ω H = ∪ N el e=1 Qe with N el = Nx × Ny curved elements Qe =          X H =      X H (ξz, ξw) Y H (ξz, ξw)      , (ξz, ξw) ∈ Ce = π(Ke)         
with Ke domain for (z, w) to have X H ∈ Qe, and X H (., .) ≈ X(., .), Y H (., .) ≈ Y (., .). 

(ξz, ξw) ∈ Ce, X H (ξz, ξw) = X(s, t) = 4 i=1 3 j=0
X j,e i β j,e i H j i (s, t).

(

To describe curved domain, we need to consider three levels of variables : the reference space (s, t), the parametric space (ζs, ζt) and the arc-length space (ξs, ξt). In the physical space, the element Qe has curved edges in the variables ξs and ξt. In the parametric space (ζs, ζt), curved lines become straight and Qe looks like a quadrilateral (see Fig. 4). For the application we will consider here, we suppose that variables ξs and ξt act separately, that is the mapping between the (ξs, ξt) and (s, t) coordinate systems reads

X(ξs, ξt) = X(ξs(ζs(s)), ξt(ζt(t)) = X(s, t) (6) 
with the functions (ζs, ζt) suitably dened as follows. Let Qe be a curved element with vertices X g(i) , being g(i) the global number of the ith local vertex, i = 1, ..., 4, then its curved sides S i are

S 1 = {X(ξs(ζs(s)), ξt(ζt(0))) = X(s, 0)}, X g(1) → X g(2)
,

S 2 = {X(ξs(ζs(1)), ξt(ζt(t))) = X(1, t)}, X g(2) → X g(3) , S 3 = {X(ξs(ζs(s)), ξt(ζt(1))) = X(s, 1)}, X g(4) → X g(3) , S 4 = {X(ξs(ζs(0)), ξt(ζt(t))) = X(0, t)}, X g(1) → X g(4) ,
with s, t ∈ [0, 1] and, respectively,

ζs(s) = s z i+1 + (1 -s) z i , ζt(t) = t w j+1 + (1 -t) w j .
Examples 1 and 2 illustrate the three levels of variables. Note that the mapping between s, t and ζs, ζt is linear and that between ζs, ζt and ξs, ξt is cubic. By the chain rule, we obtain:

∂ X ∂s = dξs dζs dζs ds ∂X ∂ξs , ∂ X ∂t = dξt dζt dζt dt ∂X ∂ξt , ∂ 2 X ∂s∂t = dξs dζs dζs ds dξt dζt dζt dt ∂ 2 X ∂ξs∂ξt .
The β j,e i are specic scale factors that arrange the C 1 inter-element continuity and the X j,e i are specic functions of the physical coordinates at the element vertices g(i). Since metric tensor and Jacobian dier between elements, each element Qe has specic coecients β j,e i , for each node i and degree of freedom j to guarantee the C 1 inter-element continuity. We want to enforce continuity in the physical space [START_REF] Czarny | Bézier surfaces and nite elements for MHD simulations[END_REF] .

Therefore, we need to share the derivatives along arc length coordinates ξs and ξt, the integrated curves length in the physical space, respectively associated with the parameters coordinates s and t. The coecients and the scale factors in the equation ( 5) are:

X 0,e i = X g(i) β 0,e i = 1 X 1,e i = ∂X ∂ξs g(i) β 1,e i = ± dξs dζs dζ e s ds g(i) X 2,e i = ∂X ∂ξt g(i) β 2,e i = ± dξt dζt dζ e t dt g(i) X 3,e i = ∂ 2 X ∂ξs∂ξt g(i) β 3,e i = β 1,e i β 2,e i .
The X j,e i are related to the bi-cubic Hermite coecients in the arc-physical space and are shared at each node g(i) while the scale factors β j,e i are dierent in each element e that shares the node g(i). The sign of β 2,e 

Ω H =          X =      x y      , x 0 ≤ x ≤ x , y 0 ≤ y ≤ y         
∂X ∂ξs =      1 0      , ∂X ∂ξt =      0 1      , ∂ 2 X ∂ξs∂ξt =      0 0     
and the scales have a sign which depends on the vertex position in Qe (see Fig. 5):

β 1,e k,l = δx k , β 1,e k+1,l = -δx k , β 2,e k,l = δy l β 2,e k,l+1 = -δy l .

Example 2. Let us consider an annular domain

Ω H =          X = X 0 +      r cos α r sin α      , r 0 ≤ r ≤ r , α 0 ≤ α ≤ α         
where 0 and stand respectively for minimal and maximal values. Then,

ξs = r, ξt = rα, ζs = r, ζt = α, ζ e s = r k + sδr k , ζ e t = α l + tδα l ∂X ∂ξs =      cos α sin α      , ∂X ∂ξt =      -sin α cos α      , ∂ 2 X ∂ξs∂ξt = 1 r      -sin α cos α     
The scales have a sign which depends on the vertex position (see Fig. 5):

β 1,e k,l = δr k , β 1,e k+1,l = -δr k , β 2,e k,l = r k δα l β 2,e k,l+1 = -r k δα l .

Field interpolation

For any given quadrangular element Qe of the mesh τ H , a physical variable, such as the scalar eld w, is expanded in the C 1 continuous basis as follows w(x, y) = ŵ(s, t) = 4 i=1 3 j=0 w j g(i) β e,j i H j i (s, t) , Fe(s, t) = (x, y) ∈ Qe.

(
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The coecients w j g(i)

are the dofs of w at node Xg(i) shared by all elements Qe insisting into X g(i) . These dofs are the value, the sderivative, the t-derivative, and the s, t cross-derivative of the physical scalar eld w at the location of the grid node. The scale factors are a geometric grid property and therefore time independent and identical for each physical quantity. We thus consider the discrete space

V H = {z ∈ C 1 (Ω H ), z |Qe • F -1 e ∈ P loc ( Q), ∀ Qe ∈ τ H }
with P loc ( Q) dened in Denition 3. We denote by {ψ k } k=1,4N h the basis of V H in duality with the dofs of Denition 3 associated with vertices V i ∈ τ H .

From local to global coordinates and return

On the rHCT side, we have the value, the x-derivative and the y-derivative of the eld u h in the physical space whereas, on the HB side, we have the value, the s-derivative, the t-derivative, and the s, t cross-derivative of the eld u H expressed in the local variables. We go back and forth from reference to physical coordinates as follows. For the values, we know that for a point (x, y), if we think to u G (resp., u L ) as the discrete eld, either u H or u h , in the physical global (resp., reference local) variables, then

u G (x, y) = u L (s, t) η 1 (s, t) if (x, y) = x(s, t) , (8) 
where η 1 (s, t) is the scalar length unit change at the point (s, t). But for derivatives, the rule is dierent, more precisely let us introduce J h (s, t) , the transpose of the 2 × 2 Jacobian matrix J(s, t) for the mapping dened in (5), that is

J(s, t) =      ∂s x(s, t) ∂t x(s, t) ∂s y(s, t) ∂t y(s, t)      = ( η 2 (s, t) , η 3 (s, t) ).
Lemma 1. The rst order derivatives of u L with respect to the local variables s, t, evaluated at (s, t), are given by

∂s u L (s, t) = ∇x,yu G (x, y) • η 2 (s, t), ∂t u L (s, t) = ∇x,yu G (x, y) • η 3 (s, t), (9) 
where the vector η 2 (s, t) stands for (∂sx, ∂sy) , the vector η 3 (s, t) stands for (∂ty, ∂ty) , both evaluated at the point (s, t), and ∇x,yu G (x, y) is the gradient vector of u G with respect to the global physical variables x, y, evaluated at (x, y).

Proof. We have for example ∂s u L (s, t) = ∂x u G (x, y) ∂s x(s, t) + ∂y u G (x, y) ∂s y(s, t)

and similarly ∂t u L (s, t) = ∂x u G (x, y) ∂t x(s, t) + ∂y u G (x, y) ∂t y(s, t).

thus the result, by relying on the expression of η 2 (s, t) and η 3 (s, t).

Lemma 1 yields ∇s,t u L (s, t) = J(s, t) ∇x,y u G (x, y) and conversely ∇x,y u G (x, y) = (J(s, t) ) -1 ∇s,t u L (s, t).

(
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We rely on a classical formalism to write the second cross-derivatives of the discrete function u H or u h . The rst notation involves two matrices A, B ∈ R 2×2 to give the scalar quantity A : B ∈ R as follows

A = (A i,j ), B = (B i,j ), A : B = i,j A i,j B i,j
and the second, two vectors v, w ∈ R 2 to dene the matrix v

⊗ w ∈ R 2×2 with v = (v i ), w = (w j ), (v ⊗ w) i,j = v i w j .
Lemma 2. The second order derivatives of u L with respect to the local variables s, t, evaluated at (s, t), are given by

∂ 2 st u L (s, t) = η 4 (s, t) • ∇x,yu G (x, y) + η 2 (s, t) ⊗ η 3 (s, t) : Hessx,yu G (x, y), ∂ 2 ss u L (s, t) = η 5 (s, t) • ∇x,yu G (x, y) + η 2 (s, t) ⊗ η 2 (s, t) : Hessx,yu G (x, y), ∂ 2 tt u L (s, t) = η 6 (s, t) • ∇x,yu G (x, y) + η 3 (s, t) ⊗ η 3 (s, t) : Hessx,yu G (x, y),
where the vector η 4 (s, t) (resp., η 5 (s, t), η 6 (s, t)) stands for (∂ 2 st x, ∂ 2 st y) (resp., (∂ 2 ss x, ∂ 2 ss y) , (∂ 2 tt x, ∂ 2 tt y) ) evaluated at the point (s, t), and Hessx,yu G (x, y) is the 2 × 2 Hessian matrix of u G with respect to the global physical variables x, y, evaluated at (x, y).

Proof. Indeed, we have

∂ 2 st u L = ∂s [ ∂x u G ∂t x + ∂y u G ∂t y ] = ∂s(∂x u G ) ∂t x + ∂x u G ∂ 2 st x + ∂s(∂y u G ) ∂t y + ∂y u G ∂ 2 st y with ∂s(∂x u G ) = ∂ 2 xx u G ∂s x + ∂ 2 xy u G ∂s y, ∂s(∂y u G ) = ∂ 2 xy u G ∂s x + ∂ 2 yy u G ∂s y.
Similarly, for ∂ 2 ss u L (s, t) and ∂ 2 tt u L (s, t) we obtain, respectively,

∂ 2 ss u L = ∂s [ ∂x u G ∂s x + ∂y u G ∂s y ] = ∂s(∂x u G ) ∂s x + ∂x u G ∂ 2 ss x + ∂s(∂y u G ) ∂s y + ∂y u G ∂ 2 ss y ∂ 2 tt u L = ∂t [ ∂x u G ∂t x + ∂y u G ∂t y ] = ∂t(∂x u G ) ∂t x + ∂x u G ∂ 2 tt x + ∂t(∂y u G ) ∂t y + ∂y u G ∂ 2 tt y, with ∂t(∂x u G ) = ∂ 2 xx u G ∂t x + ∂ 2 xy u G ∂t y, ∂t(∂y u G ) = ∂ 2 xy u G ∂t x + ∂ 2 yy u G ∂t y,
thus the result, by relying on the expressions of η 5 (s, t) and η 6 (s, t).

To nd the expression of the second order derivatives of u G with respect to the local variables x, y, we may consider the mathematical expressions in Lemma 2 as three equations of a algebraic linear system M z = b. The vector of unknowns z has components

∂ 2 xy u G , ∂ 2 xx u G , ∂ 2 
yy u G , hidden in the Hessian matrix Hessx,yu G (x, y), and the matrix M has entries which depend on the products η 2 (s, t) ⊗ η 2 (s, t), η 2 (s, t) ⊗ η 3 (s, t) and η 3 (s, t) ⊗ η 3 (s, t). Finally, the right-hand side b is the vector with components given by the dierence between the entries ∂ 2 st u L , ∂ 2 ss u L , ∂ 2 tt u L , and the corresponding terms containing η 4 (s, t), η 5 (s, t), η 6 (s, t), respectively.

COUPLED DISCRETE PROBLEM AND RESOLUTION.

The meshes τ H in Ω H and τ h in ω h do not match neither at Γ nor at γ. The associated discrete spaces with no boundary conditions are denoted by V H , V h , respectively, and we set V 0,H = V H ∩ H 1 0 (Ω H ) and V 0,h = V h ∩ H 1 0 (ω h ) those taking into account homogeneous boundary Dirichlet conditions on ∂Ω H and ∂ω h , respectively. The trace space of V H on Γ (resp., of V h on γ) is called W H (Γ) (resp., W h (γ)). We note that neither the restriction of a function v H ∈ V H onto the interface γ is, in general, an element of W h (γ), nor the restriction of w h ∈ V h onto Γ, is in W H (Γ). Hence, the Dirichlet problems on V H and V h , respectively, cannot be solved directly, and two suitable operators

Π h : H 1 (Ω H ) -→ W h (γ) , Π H : H 1 (ω h ) -→ W H (Γ),
are required, that we dene later.

a

Figure 6 Curved quadrilaterals in Ω H and straight triangles in ω h . The mesh of triangles can be built in such a way that either the vertices on γ coincide with quadrilateral vertices on Γ (left) or not (center and right). The size δ = dist(Γ, γ) of the overlap between Ω H and ω h is either large when δ ≥ min(h, H) (left and center) or small when δ ≤ max(h, H) (right).

We can now formulate the discrete version of problem (2) as follows. Find (u H , u h ) ∈ X H × X h with (u H ) |∂D = g H , such that, for all (v, w) ∈ X 0,H × X 0,h , we have

a Ω H (u H , v) + aω h (u h , w) = (f |Ω H , v) Ω H + (f |ω h , w)ω h , (11) 
with X H = {v ∈ V H , v |Γ = Π H u h } and X h = {w ∈ V h , w |γ = Π h u H } (the functions in the spaces X 0,H and X 0,h take zero boundary values). The nite element solution u * is dened by

u * =          u H in Ω H , u h in ω h . In general u * / ∈ H 1 (D). The error e = u -u * measured in the broken H 1 -norm ||.|| 2 * = ||.|| 2 1,Ω H + ||.|| 2 1,ω h is thus ||e|| 2 * = ||u -u H || 2 1,Ω H + ||u -u h || 2 1
,ω h . We expect to have ||e|| 1,Ω H ∪ω h globally behaving as O(h 2 ) since cubic or bi-cubic C 1 -FEs are used in the subdomains.

In this work, we will compute the solution of (11) iteratively, by a one-level alternating Schwarz method [START_REF] Smith | Domain Decomposition[END_REF] . This choice is dictated by simplicity in future applications to plasma simulations.

Let k be the iteration index. Given a guess for u

(k)
h in ω h (actually, we only need values along γ at the initial iteration k = 0), solve, for k ≥ 0, the boundary value problems

a Ω H (u

(k+1) H , v) = (f |Ω H , v) ∀ v ∈ V 0,H , u (k+1) H = g on ∂Ω H \ Γ, u (k+1) H = Π H u (k) h on Γ, (12) 
for u (k+1) H

∈ V H and this other problem aω h (u

(k+1) h , w) = (f |ω h , w) ∀ w ∈ V 0,h , u (k+1) h = g on ∂ω h \ γ, u (k+1) h = Π h u (k+1) H on γ, (13) 
for u

(k+1) h ∈ V h (if ω h ⊂ Ω H , then ∂ω h \ γ = ∅).
The two discrete boundary value problems ( 12), ( 13), have a unique solution u

(k+1) H , u (k+1) h 
, respectively, for each k ≥ 0. At each step k, u

(k+1) H
is the approximated discrete solution in Ω H and u (k+1) h is the approximated discrete solution for ω h . In the overlapping region, one is free to use either of the two solutions, since both solutions will converge to the same value in the shared region, as the mesh is rene. In [START_REF] Achdou | Iterative Substructuring Preconditioners for Mortar Element Methods in Two Dimensions[END_REF][START_REF] Cai | Overlapping nonmatching grid mortar element methods for elliptic problems[END_REF] , a mortar nite element method on overlapping subdomains for solving two-dimensional elliptic problems discretized on composite grids is presented and analyzed. For classical FEs, they prove an optimal error bound and estimate the condition numbers of certain overlapping Schwarz preconditioned systems for the two-subdomain case. In [START_REF] Hecht | Numerical Zoom and the Schwarz Algorithm[END_REF] , we can nd an approach similar to algorithm ( 12)-( 13), involving again C 0 low-order piece-wise (linear or bilinear) FEs in Ω H and ω h , coupled by mortar like projections on Γ, γ. The proof of convergence relies on a discrete maximum principle (DMP), appeared in [START_REF] Ciarlet | Discrete Maximum Principle for Finite-Dierence Operators[END_REF] , and on the fact that local approximations are piece-wise linear polynomials. For C 0 Lagrange FEs of polynomial degree r ≥ 2, the DMP does not hold, see [START_REF] Ciarlet | Discrete Maximum Principle for Finite-Dierence Operators[END_REF] , and much less is known for C 1 non-Lagrange FEs as the ones used here. We thus work on the numerical side. In the next section, we state the matrix form of ( 12)-( 13), by replacing v in (12) (resp. w in ( 13)) with the basis functions {ψs} (resp. {φp})

for the corresponding discrete space V 0,H (resp. V 0,h ). The coupling conditions on Γ and γ are realized by interpolation. To perform the convergence analysis of the adopted algorithm we see it as a block Gauss-Seidel method for a linear system that contains the discretization of both subdomains and the coupling along Γ and γ. The convergence of u

(k)
H yields that of u (k) h .

Matrix form

Let u (resp., u ) the vector gathering all dofs of u h (resp., of u H ) at the mesh nodes in τ h (resp., in τ H ). We can separate u , and analogously u , into three blocks, as follows

u =           u • u ∂ u Γ           ←-dofs at x ∈ ΩH thus x / ∈ ∂Ω H , ←-dofs at x ∈ ∂Ω H but x / ∈ Γ, ←-dofs at x ∈ Γ.
The block u ∂ is actually known since it is given by the Dirichlet boundary condition, but it is kept as unknown in order to simplify the presentation. Similarly, the block u ∂ may be not necessary if ω h ⊂ Ω H . Note that with the functions f and g are associated the vectors f , f , g , g , with structure similar to that of u and u . Here, we have (g • , g Γ ) = (0, 0) and (g • , g γ ) = (0, 0). Let A (resp., A ) be the matrix associated with the operator L restricted to τ H (resp., τ h ) and

u Γ = P Γ• u • + P Γγ u γ , u γ = Pγ•u • + P γΓ u Γ ,
are, respectively, those of the operators Π H (the rst relation) and Π h (the second relation). To indicate that the interior block, denoted by •, which appears in Pγ• is dierent from the one in P Γ• , we have introduced a wide hat. Numerical experiments in [START_REF] Heumann | A nite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries[END_REF] hint that the direct coupled problem solution u * becomes unstable due to over-imposing continuity at the interfaces when the overlap, δ = dist(Γ, γ), is small (namely, δ ≤ min(h, H), as for example in Fig. 6 right). In the following, we thus work under Assumption 1.

Assumption 1. The size δ of the overlapping region, Ω H ∩ ω h , is large, that means, P Γγ = 0 and P γΓ = 0.

We detail the construction of the blocks Pγ• and P Γ• .

4.1.1

The coupling operator Π h

We proceed by interpolation. The construction of Π h relies on the identities (8) (with η 1 = 1) and ( 10), to pass the information, on the eld value and derivatives, respectively, from an element Qe ∈ τ H to its internal node X * ∈ γ. This operation needs to determine

(s * , t * ) ∈ Q such that (s * , t * ) = F -1 e (X *
) with Fe the bi-cubic transformation ( 5) associated with Qe. Note that Fe can be inverted, for example, by a Newton iterative algorithm. However, in this work, we assume for simplicity that the nodes on γ belong also to τ H (see Fig. 6, left). In other words, each node X * ∈ γ has a global number * in τ h and i * in τ H . When X * is a vertex of an element Q e ∈ τ H , we have that (s * , t * ) is either (0, 0), or (1, 0), (1, 1), (0, 1). Each node in τ h (τ H ) is associated with 3 (4) types j of dofs. If we detail the matrix expression of Π h interpolating u h at X * starting from u H , we have

(u γ ) * = ( Pγ•) * i * (u • ) i * with the 3 × 4 matrix ( Pγ•) * i * =          1 0 0 0 0 (∂ty)/|J| -(∂sy)/|J| 0 0 -(∂tx)/|J| (∂tx)/|J| 0          evaluated at (s * , t * )
, where |J| = det J(s * , t * ). The entries of row/column 1 of (Pγ•) * i * come from (8) and those of the row/column 2 and 3 are the entries of matrix (J(s * , t * ) ) -1 , according to (10). Finally

(u γ ) * = (v , ∂xv , ∂yv) (X * ), (u • ) i * = ẑ , ∂s ẑ , ∂t ẑ , ∂ 2 st ẑ (s * , t * ), with v ∈ V h , ẑ(.) = z(F -1 e (.
)) for z ∈ V H . Note that the same values in the vector (u • ) i * can be computed starting from (s * , t * ) = F -1 e (X * ) with Fe associated with any Qe among the 4 elements with a vertex in X * , since the HB FE is of class C 1 .

4.1.2

The coupling operator ΠH

We proceed again by interpolation. The construction of Π H uses the identities (8) (with η 1 = 1) and ( 9) to transfer the information, on the eld value and derivatives, respectively, from an element Te ∈ τ h to a node X ∈ Γ. To nd which Te ∈ τ h contains X , we compute the barycentric coordinates λv(X ) with respect to the vertices of Te and verify that 0 ≤ λp(X ) ≤ 1 for all p = 1, 2, 3. If we detail the matrix expression of Π H interpolating u H at X starting from u h , we have

(u Γ ) i = (P Γ• ) i (u • )
with the 4 × 3 matrix

(P Γ• ) i =               1 0 0 0 ∂sx ∂sy 0 ∂tx ∂ty 0 0 0               evaluated at (s , t
). Note that (s , t ) coincides with either (0, 0), or (1, 0), (1, 1), (0, 1) depending on the local coordinates of X in the elements Qe with a vertex in X and an edge on Γ. The entries of row/column 1 of (P Γ• ) i p come from ( 8) and those of the row/column 2 and 3 are the entries of matrix J(s , t ), according to (9). Finally

(u Γ ) i = ẑ , ∂s ẑ , ∂t ẑ , ∂ 2 st ẑ (s , t ), (u • ) = (v , ∂xv , ∂yv) (X ),
with ẑ ∈ P loc ( Q) and v, ∂xv, ∂yv computed at X from the rHCT dofs associated with the vertices of the triangle Te containing X .

Remark 1. If the coupling operators Π H :

H 1 (ω h ) → W H (Γ) and Π h : H 1 (Ω H ) → W h (γ) are L 2 projections on the trace spaces W H (Γ),
W h (γ), respectively, we have

P Γ• = (M ΓΓ ) -1 C Γ• , Pγ• = (M γγ ) -1 Cγ•
where M ΓΓ (resp., M γγ ) is a square matrix in Ω H (resp. in ω h ) computed by involving basis functions associated with unknowns on Γ (resp., on γ), whereas Cγ

• (resp. C Γ• ) is a rectangular of size N γ × N • (resp. N Γ × N • ). In detail, (M ΓΓ )pq = Γ ϕ p ϕ q , (C Γ• ) p = Γ ϕ p ψ , (M γγ ) pq = γ ψ p ψ q , ( Cγ•) pk = γ ψ p ϕ k ,
with p, q global numbers of dofs associated with nodes on Γ; p, q global numbers of dofs associated with nodes on γ; in the block of N • dofs associated with points in ω h , but not on γ, and k in the block of N • dofs associated with points in Ω H , but not on Γ. The integrals above are computed by means of quadrature rules. As already remarked and illustrated in Figure 7, the operation of localizing the (quadrature) points of γ at the interior of the curved elements in τ H is not easy (we have to invert a bi-cubic mapping, for each of the quadrature points). Such a type of projections is well-known from the mortar nite element context (see, [START_REF] Bernardi | A new nonconforming approach to domain decomposition: the Mortar element method[END_REF] ). The convergence of multidomain approximations with overlap of arbitrary nite element meshes in the case of the mortar element method is rstly analyzed in [START_REF] Achdou | Iterative Substructuring Preconditioners for Mortar Element Methods in Two Dimensions[END_REF][START_REF] Achdou | The mortar element method with overlapping subdomains[END_REF] . 

Convergence analysis

For each problem matrix, we need to build the three blocks A••, A •∂ and A •I where: A•• represents the coupling between dofs associated with nodes at the interior of the mesh, A •∂ represents the coupling between dofs associated with nodes at the interior of the mesh and dofs at nodes on Dirichlet-type boundaries, and A •I represents the coupling between dofs associated with nodes at the interior of the mesh and dofs at nodes lying on the coupling interface (I stands for either γ or Γ). Under Assumption 1, the matrix form of problem ( 12)-( 13) reads: starting from u ,(k) , we can rst compute u ,(k+1) and then u ,(k+1) by solving successively 14) is a block Gauss-Seidel method to nd vectors u and u solution of the linear system

A •• u ,(k+1) • + A •Γ P Γ• u ,(k) • = f • , A •• u ,(k+1) • + A •γ Pγ• u ,(k+1) • = f • (14) where f • = f • -A •∂ g ∂ and f • = f • -A •∂ g ∂ , respectively. Algorithm (
     A •• A •Γ P Γ• A •γ Pγ• A ••           u • u •      =      f • f •      . ( 15 
)
The other way around, being system (15) equivalent to

     A •• A •γ Pγ• A •Γ P Γ• A ••           u • u •      =      f • f •      , (16) 
we can start from u ,(k) , compute u ,(k+1) and then u ,(k+1) , by solving successively

A •• u ,(k+1) • + A •γ Pγ• u ,(k) • = f • , A •• u ,(k+1) • + A •Γ P Γ• u ,(k+1) • = f • . ( 17 
)
Note that even if the matrix of the linear system (15) has symmetric diagonal blocks it is globally non-symmetric since A •γ Pγ• = (A •Γ P Γ• ) t . When dealing with such general matrices, no a priori conclusions on the convergence properties of the Gauss-Seidel method can be drawn. We address the problem of estimating the error introduced by the iterative method and on the reduction factor of the error at each iteration. The diagonal blocks A •• , A •• , can be inverted since the subdomain discrete problems, (12) in V H and (13) in V h , have a unique solution, separately, by treating Γ and γ as Dirichlet boundaries. Lemma 3. Algorithm (14) with u ,(0)

• = (A •• ) -1f
• yields the following recursive denition of u ,(k+1)

• , for k ≥ 1: (u ,(k+1) • -u ,(k) • ) = (A •• ) -1 A •γ Pγ• (A •• ) -1 A •Γ P Γ• (u ,(k) • -u ,(k-1) •
). (18) Proof. We start from the rst line of ( 14) and compute u ,(k+1)

• , namely u ,(k+1) • = (A •• ) -1 [ f • -A •Γ P Γ• u ,(k) • ] = (A •• ) -1 [ f • -A •Γ P Γ• u ,(k-1) • + A •Γ P Γ• u ,(k-1) • -A •Γ P Γ• u ,(k) • ] = (A •• ) -1 [ f • -A •Γ P Γ• u ,(k-1) • ] -(A •• ) -1 A •Γ P Γ• (u ,(k) • -u ,(k-1) • ) = u ,(k) • -(A •• ) -1 A •Γ P Γ• (u ,(k) • -u ,(k-1) • ) ,
where we set u ,(-1) • = 0. We thus use u ,(k+1) • in the second line of ( 14), u ,(k+1)

• = (A •• ) -1 f • -A •γ Pγ• u ,(k+1) • = (A •• ) -1 f • -A •γ Pγ• [u ,(k) • -(A •• ) -1 A •Γ P Γ• (u ,(k) • -u ,(k-1) • )] = u ,(k) • + (A •• ) -1 A •γ Pγ• (A •• ) -1 A •Γ P Γ• (u ,(k) • -u ,(k-1) • ) ,
which is the desired recursion (18). (u

,(k+1) • -u ,(k) • ) = (A •• ) -1 A •Γ P Γ• (A •• ) -1 A •γ Pγ• (u ,(k) • -u ,(k-1) • ). (19) 
Proof. Similarly to the proof of Lemma 3, we start from the rst line of (17) and compute u ,(k+1) • . We thus use u ,(k+1) • in the second line of (17).

Let us introduce the matrix

A = (A •• ) -1 A •Γ P Γ• , of size N • × N • , and the matrix B = (A •• ) -1 A •γ Pγ•, of size N • × N • ,
respectively. We see that ( 18) and ( 19) can be written, respectively, as follows (u

,(k+1) • -u ,(k) • ) = B A (u ,(k) • -u ,(k-1) • ), (u ,(k+1) • -u ,(k) • ) = A B (u ,(k) • -u ,(k-1) •
).

The matrices A and B are, in general, rectangular. However, the non-zero eigenvalues of A B are the same as those of B A. Indeed, let µ = 0 be an eigenvalue of A B. Then, it exists a non-zero vector w ∈ R m with m = N • , such that A B w = µ w. Hence,

B (A B w) = B (µ w) =⇒ (B A) (B w) = µ (B w)
that is µ is also eigenvalue of B A with associated eigenvector B w. Note that B w = 0 otherwise we would have A B w = µ w = 0 which yields µ = 0. Algorithm (14) (and ( 17)) converges if ρ < 1, being ρ the spectral radius of the square matrix A B (or, equivalently, B A, as stated before). Lemma 5. System (16) has a unique solution i (I -A B) is nonsingular.

Proof. Let us write the matrix G of the linear system (16) as G = M + N , with

M =      A •• 0 A •Γ P Γ• A ••      , N =      0 A •γ Pγ• 0 0      . Being A •• , A •• nonsingular,
M can be inverted and the block structure of its inverse reads

M -1 =      (A •• ) -1 0 -A(A •• ) -1 (A •• ) -1      . We thus get M -1 G = I + M -1 N , that is M -1 G =      I •• (A •• ) -1 A •γ Pγ• -A + A I •• -AB      =      I •• B 0 I •• -AB     
, and the statement holds true.

Similarly, we can prove that the linear system (15) has a unique solution i the matrix (I -BA) is nonsingular. 

= A B u ,(k) • + c , k ≥ 0, with u ,(0) • = (A •• ) -1 f • and c = (A •• ) -1 f • -A (A •• ) -1 f • . By construction, we have that u • = A B u • +c . Let e ,(k) • = u • -u ,(k) •
|| 2 ≤ σ 1 -σ ||u ,(k) • -u ,(k-1) • || 2 (20)
with σ the largest singular value of the matrix A B. Indeed, by using (matrix and vector) norm 2 properties, we get ||e ,(k+1) 

• || 2 ≤ σ|| e ,(k) • || 2 σ = ||A B || 2 = σmax(A B).
|| 2 = ||u • -u ,(k) • || 2 = ||u • -u ,(k+1) • + u ,(k+1) • -u ,(k) • || 2 ≤ ||e ,(k+1) • || 2 + ||u ,(k+1) • -u ,(k) • || 2 ≤ σ|| e ,(k) • || 2 + σ ||u ,(k) • -u ,(k-1) • || 2 .
Moving, to the left-side of the inequality, the term σ ||e ,(k) • || 2 , we obtain (20). Inequality (20) yields σ/(1 -σ) ≥ 0 which can be true only when 0 ≤ σ < 1. This yields ρ(A B) < 1, since ρ ≤ σ. Algorithm (17) hence converges.

NUMERICAL RESULTS

The proposed approach aims at combining HB FEs on a curved and structured quadrilateral mesh in Ω H and rHCT FEs in ω h on a straight and unstructured triangular mesh, to treat the singularity at the center of the curved domain Ω H . We start by checking, separately, the accuracy of the rHCT and HB FEs when adopted to approximate the solution of problem (1) with L = -∆. The L 2 norm (resp., the H 1 , H 2 semi-norms) of the approximation error is computed by using the expression of u G (resp., ∇x,yu G and the entries of Hessx,yu G (x, y))

given in (7) (resp., after the proofs of Lemmas 1 and 2). We then show an example of coupled approximation on composite meshes. For the considered cases, the matrix G is nonsingular.

For the rHCT side, we consider the domain Q = [0, 1] [START_REF] Marcinkowski | Mortar methods for some second and fourth order elliptic equations[END_REF] ). In the HB case over the curved domain D, we have used ner meshes and iso-parametric nite elements (see, for example, Section 5.2 in [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF] ). We can see that, the computed values p• in Tables 2 and3 agree with the corresponding theoretical ones.

We nally consider a coupled test case. Let Ω H be the annular domain centered at xc = (0, 0) and r min = 1.0625, rmax = 2.375. Let to 10 -10 and the algorithm (17) converges in 21 iterations for all values of (Lx, Ly). Indeed, the overlap δ between Ω H and ω h is constant and equal to 5 × h. In Figure 10 (left), we report the logarithms of the norms u ,(k) -u ,(k-1) 2 (line with +) and u ,(k) -u ,(k-1)

2

(points x), for the last 12 (out of 21) iterations k of algorithm (17), of the coupled solution, for three values of Lx, respectively, 0.17 (the lowest lines/dots), 0.35 (the middle lines/dots), 1.25 (the highest lines/dots). The lines which t the iteration residual norms have slopes -0.70, -0.94, -0.98, in Ω H (and close values in ω h ), respectively, thus the convergence factor of the method is -ln(ρ(AB)) ≈ 1.

In Figure 10 (right) we report the innite norm of the global errors (u -u * ) and ∂x(u -u * ) for the coupled problem as a function of the inverse of κx. They both behave as the rHCT FE ones. We remark that when Lx = 2.5 (that means κx ≈ 15), the error is important, whereas for Lx = 0.35 (that means κx ≈ 108), we have many points per wavelength, thus a good precision on the solution.
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CONCLUSIONS

We have proposed and analyzed a non-conforming domain decomposition method which allows to couple two dierent FEs of class C 1 on composite meshes. In plasma simulations, the C 1 continuity is not enforced at particular points (such as the X-point or the plasma axis in a ux aligned grid) shared by more than four elements, making impossible to impose enough conditions that assure it. A special treatment in the neighborhood of these points is necessary (see an example [START_REF] Bhole | Treatment of polar grid singularities in the bi-cubic Hermite-Bézier approximations: isoparametric nite element framework[END_REF] ). In this work, we have relied on composite meshes to bypass this problem, namely, we stop the mesh of quadrangles before it becomes unstructured, and cover this small neighborhood of critical points by a mesh τ h of triangles over which rHCT FEs are adopted. The two meshes τ H , τ h are then coupled by suitable operators, here based on interpolation. The global discrete problem is then solved iteratively, by an algorithm which can be straightforwardly introduced in already existing MHD codes, such as JOREK 3 . The possibility of using mortar like projections at the coupling interfaces Gamma, γ and isoparametric FEs also on the triangular mesh is left to further application as well as the simulation of a plasma equilibrium with this coupled approach.

Figure 4

 4 Figure 4 Annular mesh in the parametric (left) and in the physical (right) spaces. Color scaling in both cases is set on the small radius (r) of each layer.

iFigure 5 A

 5 Figure5A cell e for a quadrangular mesh with straight edges (left) or curved edges (right).

  where 0 and stand respectively for minimal and maximal values. Let us consider a mesh of straight rectangles over Ω H . Then ξs = x, ξt = y, ζs = x, ζt = y, ζ e s = x k + sδx k , ζ e t = y l + tδy l where Qe = [x k , x k + δx k ] × [y , y + δy ] is the rectangle with the left bottom corner in (x k , y ) and sizes δx k , δy , in the x, y directions, respectively. We thus have

Figure 7

 7 Figure 7 Curved quadrilaterals in Ω H and straight triangles in ω h , in a simplied situation. On the left, each quadrature node (indicated by a ) on Γ (thick solid line) can be localized in a triangles T ∈ τ h by relying on the values of the barycentric coordinates λv( ), being v the vertices of T (indicated by •). On the right, we need to use a Newton algorithm to localize each quadrature node ( ) on γ (thick solid line) inside a curved quadrangle Q ∈ τ H .

Lemma 4 .

 4 Algorithm (17) with u,(0) • = (A •• ) -1f• yields the following recursive denition of u ,(k+1) • , for k ≥ 1:

Proposition 1 .

 1 If (I -A B) is nonsingular, algorithm (17) converges. Proof. Algorithm (17) reads: nd u ,(k+1) • ∈ R m solution of the linear system u ,(k+1) •

,.

  be the error vector at the iteration k. By subtracting the iterate u ,(k+1) • from u • , we get e The matrix (I -A B) is nonsingular, thus ρ(A B) = 1. To conclude about convergence, it must be ρ(A B) < 1. Let us prove that ||e ,(k) •

ωFigure 8

 8 Figure 8 In Ω H , a polar structured mesh of 21×64 curved elements (left) and in ω h , an unstructured mesh of 1664 straight triangles (right).

Figure 9

 9 Figure 9 Computed rHCT-HB FE coupled solution in the whole domain Ω H ∪ ω h (right). A zoom (left) of the computed solution in a neighborhood of the overlapping area (delimited by the black box).

Figure 10

 10 Figure 10 Log-norm of the residual vector along the iterations of the algorithm 17 to compute the rHCT-HB FE coupled solution shown in Fig. 9 (left). The line tting the residuals in the HB domain. Global error as a function of the mesh size h in log scale (right).

Table 1 L

 1 2 , H 1 and H 2 errors and numerical convergence orders for rHCT FEs on [0, 1] 2 .

	nr	L 2 norm	p•	H 1 semi-norm	p•	H 2 semi-norm	p•
	3	9.9885 ×10 -6		1.5106 ×10 -3		3.3870 ×10 -1
	6	1.2031 ×10 -6	3.05	3.7244 ×10 -4	2.02	1.6758 ×10 -1	1.01
	12	1.4814 ×10 -7	3.02	9.2608 ×10 -5	2.01	8.3401 ×10 -2	1.00
	24	1.8396 ×10 -8	3.01	2.3099 ×10 -5	2.00	4.1611 ×10 -2	1.00
	We can also write						
		||e •	,(k)				

  [START_REF] Faugeras | An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code[END_REF] . Dirichlet boundary function g and right-hand side f are compatible with u(x, y) = x 4 (y -1) 2 + y 4 (x -1) 2 solution of the PDE. In Table1, we report the numerical errors in the L 2 norm and H 1 , H 2 semi-norms together with the convergence orders p• computed with the rulep i = log(err i /err i-1 ) / log(h i /h i-1 ) i = 2,3, 4. have used dierent meshes τ with triangles T of size h i = √ 2/(nr) i . The theoretical error with rHCT FEs in the L 2 norm (resp., the H 1 , H 2 semi-norms) behaves as O(h p ), with p = 3 (resp., p = 2, p = 1) with h = max T ∈τ diam (T ) (see Chapter 4 in 22 ), being

	We

τ the triangular mesh covering the computational domain, here Q. We can see that the computed values p• in Table

1

are close to the corresponding theoretical ones.

Table 2

 2 Error L 2 norm and H 1 , H 2 semi-norms (and orders) for HB FEs on R.

	nr	L 2 norm	p•	H 1 semi-norm	p•	H 2 semi-norm	p•
	6	4.1936 ×10 -5		1.0064 ×10 -3		3.8111 ×10 -2	
	12	1.8652 ×10 -6	4.49	9.9291 ×10 -5	3.34	7.6234 ×10 -3	2.32
	24	9.9445 ×10 -8	4.23	1.1107 ×10 -5	3.16	1.7170 ×10 -3	2.15
	48	5.7550 ×10 -9	4.11	1.3155 ×10 -6	3.08	4.0801 ×10 -4	2.07

Table 3 Error

 3 L 2 norm and H 1 , H 2 semi-norms (and orders) for HB FEs on D.Dirichlet boundary function g and right-hand side f are compatible with u(x, y) = x 4 + y 3 + x 2 y 2 solution of the PDE. In Tables2 and 3, we report the numerical errors for HB FEs in the L 2 norm and H 1 , H 2 semi-norms together with the convergence orders p• estimated by the same rule as before. Over the rectangle K, we have used dierent meshes τ with elements Q of size h i ≈ 2/(nr) i . Over the curved domain D, we have used dierent curved meshes τ with quadrangles Q of size h i ≈ 2 π/(nr) i . The theoretical error with HB FEs in the L 2 norm (resp., H 1 , H 2 semi-norms) behaves as O(h p ), with p = 4 (resp., p = 3 and p = 2) with h = max Q∈τ diam (Q), being τ the mesh covering either R or D (seeChapter 4 in 

	nr	L 2 norm	p•	H 1 semi-norm	p•	H 2 semi-norm	p•
	12	2.9130 ×10 -2		5.1670 ×10 -2		1.7790 ×10 -0	
	24	1.9345 ×10 -3	3.91	5.2603 ×10 -3	3.30	4.5075 ×10 -1	1.98
	48	1.3023 ×10 -4	3.89	6.2050 ×10 -4	3.08	1.1470 ×10 -1	1.97
	60	5.5449 ×10 -5	3.83	3.1540 ×10 -4	3.03	7.3701 ×10 -2	1.98

For the HB side, we consider either the domain R = [0.2, 2] × [0, 1] or the curved one D = {(r cos (2 π θ) , r sin (2 π θ)), (r, θ) ∈ R }.
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