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Abstract. We shall address from a conceptual perspective the duality between al-

gebra and geometry in the framework of the refoundation of algebraic geometry

associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme

theory from the standpoint provided by the problem of recovering a mathemati-

cal structure A from its representations A → B into other similar structures B.

This vantage point will allow us to analyze the relationship between the algebra-

geometry duality and (what we shall call) the structure-semiotics duality (of which

the syntax-semantics duality for propositional and predicate logic are particular

cases). Whereas in classical algebraic geometry a certain kind of rings can be re-

covered by considering their representations with respect to a unique codomain

B, Grothendieck’s theory of schemes permits to reconstruct general (commutative)

rings by considering representations with respect to a category of codomains. The

strategy to reconstruct the object from its representations remains the same in both

frameworks: the elements of the ring A can be realized—by means of what we shall

generally call Gelfand transform—as quantities on a topological space that param-

eterizes the relevant representations of A. As we shall argue, important dualities

in different areas of mathematics (e.g. Stone duality, Gelfand duality, Pontryagin

duality, Galois-Grothendieck duality, etc.) can be understood as particular cases of

this general pattern. In the wake of Majid’s analysis of the Pontryagin duality, we

shall propose a Kantian-oriented interpretation of this pattern. We shall use this

conceptual framework to argue that Grothendieck’s notion of functor of points can

be understood as a “relativization of the a priori” (Friedman) that generalizes the

relativization already conveyed by the notion of domain extension to more general

variations of the corresponding (co)domains.
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I. Introduction

In the XVIIth century, Fermat and Descartes independently invented analytic geome-

try, that is, the study of the correspondence between algebraic expressions and geometric

figures by means of coordinate systems (for a history of analytic and algebraic geometry

see Refs.[35, 36, 62]). This interplay between algebra and geometry is based on the fact

that the solution set of an equation in the variables (x1, . . . , xn) defines a subset of the

space spanned by these variables, i.e. the subset of points—the “figure”—whose coordi-

nates solve the equation. Now, this correspondence between algebra and geometry was

unsettled by the fact that it is not possible to associate a figure to certain equations,

such as for instance the equation x2 + y2 + 1 = 0 (when we search for solutions (x, y)

in R2). This problem was bypassed by acknowledging that some equations might have

solutions that do not belong to the “field of definition” of the equation, i.e. to the field of

numbers in which the equation is formulated. The important fact in the present context

is that the geometric “figure” that “schematizes” a given algebraic expression, far from

being absolutely defined, depends on the field of numbers in which one searches for the

solutions of the corresponding equation (see for instance Ref.[91, 385-386]). In this way,

the relativity of the geometric figures with respect to the codomains in which one searches

for the solutions obstructs the possibility of establishing a duality between algebra and

geometry: a single algebraic expression can induce several figures, one for each possible

codomain. This situation was described by Barr, McLarty, and Wells in the following

terms:

“[...] the unit circle is the set of all solutions in the x-y plane to the

equation

x2 + y2 = 1

The set of solutions of this equation depends on the type of number that

one understands x and y to refer to. [...] There are many more abstract

types of numbers [than the integers, the rationals, the real, and the

complex numbers] and each gives rise to its own circle. In the classical

set theoretic framework, there is thus an integer circle, a rational circle,

a real circle, a complex circle and myriads of others [...] [14]

The theory of schemes has completely refounded the field of algebraic geometry. This

theory mainly emerged from the work of A. Weil, C. Chevalley, P. Cartier, M. Nagata, J.-

P. Serre, and A. Grothendieck and it was mainly developed by the latter.1 As we shall see,

the theory of affine schemes permits to cope with the aforementioned relativity in a man-

ner that allows to recover an algebra-geometry duality for general (commutative) rings.

Grothendieck’s theory accomplishes this task by means of a two-step procedure. Rather

than fixing a single codomain, Grothendieck fully embraces the relativity of the figures

associated to a family of polynomial equations with respect to the codomains in which

one searches for their common solutions. By introducing the category theoretic notion of

functor of solutions (or, in the dual geometric version, functor of points), Grothendieck

takes into account the whole family of “figures” at once (Section V). Second, Grothendieck

synthesizes the resulting “fan” of figures into a single geometric entity, namely the unique

affine scheme associated to the original ring. This two-step description of the construction

of an affine scheme articulates the two alternative standpoints from which scheme theory

can be approached (for a formal demonstration of their equivalence see Ref.[32]). Accord-

ing to the category theoretic description, a scheme is a functor that encodes the solutions

to a system of polynomial equations in every possible codomain (or more generally the

1 According to J.-P. Serre, “[t] his first approximation to the theory of affine schemes was ‘in the
air’ in 1954-1955, at least with some restrictions on the rings in question. One of Grothendieck’s
contributions was to remove these restrictions: the best category of commutative rings is the category
of all commutative rings!” [51, 256]. For a discussion of the genesis of the notion of scheme see
Refs.[36, 35, 92].
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representations A→ B of a ring A for every B in the category). From a geometric stand-

point, schemes are ringed spaces. According to this description, a scheme is constructed

by adding structure to an underlying set of points. More precisely, one starts with a set of

points, then introduces a notion of locality by means of a topology, enriches this topolog-

ical space by adding local information (local rings of regular functions) in order to finally

glue these local pieces together into a global object (structure sheaf).2

The notion of duality is a central concept in both mathematics and physics (see Ref.[8]

for a general survey on the notion of duality, Refs.[65, Chapt.6, Sect.4, 253-266] and [105]

for a mathematical approach, Refs.[9, 27, 30, 53, 69, 71, 83, 98] for philosophical-oriented

analyses of this notion in modern mathematics).3 Among the different instantiations of

the mathematical notion of duality, the duality between algebra and geometry occupies a

privileged place. Now, there are two alternative approaches for understanding the duality

between algebra and geometry. In S. Germain’s terms, we can either consider that “algebra

is but written geometry” or that “geometry is but figured algebra” [43, 223]. According to

the first description (that we shall call geometric approach), geometry provides the starting

point. This means that we start with some kind of space X and use algebraic devices—

such as for instance functions or sections of a fiber bundle on X—to “observe” the space

and try to separate its points by means of the properties defined by these “quantities”. In

this conceptual framework, a ring is an algebraic structure intended to be thought of as a

ring of functions on a space. In Nestruev’s terms, “smooth manifolds are ‘worlds’ whose

observation can be carried out by means of smooth algebras” [99, ix].4

According to the second description (that we shall call spectral approach), algebra pro-

vides the starting point. This means that we start with an algebraic structure A (e.g.

a Boolean algebra, a group, a ring, a C∗-algebra, etc.) and we consider the conditions

under which A can be faithfully realized (by means of what we shall generally call Gelfand

transform) as an algebra of quantities (such as functions or sections) on a suitable space

(the spectrum of A).5 As we shall see, the remarkable fact is that the spectrum of the

algebra A is a space that parameterizes a suitable collection of representations A→ B of

A. Hence, the spectral approach establishes a bridge between the algebra-geometry duality

and what we shall call structure-semiotics duality, that is the duality between a structure

A and the representations A → B of A in B. It is a striking fact that reconstruction

theorems based on the same kind of algebra/structure-geometry/semiotics duality can be

found in several areas of mathematics such as Boolean algebras (Stone duality), group

representation theory (Pontryagin duality), algebraic geometry, Galois-Grothendieck the-

ory, and C∗-algebra theory. As we shall explain in Section N◦III, all these dualities can

be subsumed under the same general pattern: that of an algebraic structure A that is

isomorphic to an algebra of quantities over a space that parameterizes a certain class of

2 In both descriptions, the notion of sheaf (introduced by J. Leray in the field of algebraic topology
during the second World War [63]) plays a central role, albeit in a different manner: whereas in the
case of ringed spaces, a sheaf encodes the global organization of local pieces of information defined on
the space (typically functions locally defined), in the functorial approach a sheaf defines a generalized
space by specifying how this space is “probed” by test objects in a given category ([100, The basic idea
of sheaves]; for an introduction to sheaf theory see Ref.[124]).
3 It is worth noting that the common use of the term duality in physics and mathematics does not
necessarily mean that the corresponding formal concepts are the same or even that the term is used in
an homogeneous manner within each discipline. Whereas in mathematics a duality usually takes the form
of an equivalence of categories [71], in physics the term duality is also used to denote a correspondence
between different theories encoding some form of “physical equivalence” between them (e.g. between
quantum field theories and string theories in the gauge/gravity dualities). In some cases, the use of
the term in physics coincides with the mathematical notion. For instance, the wave-particle duality
in quantum mechanics relies on the theory of Fourier transform, that is on the Pontryagin duality for
abelian locally compact groups. For philosophical discussions of the notion of duality in physics see the
different contributions to Ref.[26].
4 By following the physics-oriented description proposed in Ref.[99], we can understand the space X as
a set of physical states, the “observables” f as measuring devices and the result f(x) of the evaluation
as the outcome of the “observation” of the state x by means of f .
5 For an analysis of both the “geometric” and the “spectral” approaches to the algebra-geometry duality
see Ref.[99].
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representations of A. As we shall see, the main innovation introduced by Grothendieck’s

theory of affine schemes is that the spectrum of the algebra A (in this case a ring) pa-

rameterizes representations of A defined with respect to different codomains B. This

extension of the semiotics of an algebraic structure justifies the distinction that we shall

introduce between restricted reconstruction theorems (where the representations A → B

defined with respect to a single codomain B are enough to recover the structure A) and

general reconstruction theorems (where the structure A can be recovered by considering

representations defined with respect to different codomains B).

Grothendieck’s refoundation of algebraic geometry and the panoply of new notions

that he introduced (such as schemes, topoi, motives, and stacks) constitute one of the

most important paradigm shifts that occurred in mathematics during the XXth century.

Moreover, Grothendieck’s approach is strongly based on—and significantly contributed

to develop—category theory and groupoid theory, thereby having a seminal impact on

the “foundations of mathematics”. In spite of its importance—and probably due to its

technical complexity—the revolution launched by Grothendieck has not really entered as

a proper subject into the realm of philosophy of mathematics (a philosophical-oriented

introduction to scheme theory can be found in Ref.[91] and references to scheme theory

in philosophy of mathematics can be found in Refs.[103, 119, 133]). This paper is—in the

wake of the aforementioned references—an attempt to contribute to fill this gap. To do so,

we shall provide a conceptual analysis of some aspects of Grothendieck’s theory of affine

schemes by mainly following the path described in the introduction to the treatise Éléments

de Géométrie Algébrique by Grothendieck and Dieudonné [49] (see also Ref.[48]).6 The

analysis of scheme theory that we shall propose is certainly partial and many important

aspects of the subject will not be addressed here (like for instance the role played by

scheme theory in bridging the gap between geometry and number theory—which gave rise

to the field of arithmetic geometry—and the definition of general non-affine schemes). We

shall mainly focus on the aspects of scheme theory that are relevant with respect to what

we could generally call philosophy of (mathematical) dualities. To do so, we shall proceed

as follows:

(1) We shall analyze the relation between the spectral approach (where we start with

an algebraic structure) and the geometric approach (where we start with a geo-

metric object) to the algebra-geometry duality (Section N◦III).

(2) We shall analyze the relation between the algebra-geometry dualities and (what

we shall call) the structure-semiotics dualities (of which the syntax-semantics du-

alities provide particular cases) between an algebraic structure A and a collection

of its representations A→ B (Section N◦II).

(3) We shall characterize the twofold relevance of scheme theory with respect to the

debate between syntactic and semantic conceptions of “scientific theories”, namely

(a) that it provides the guiding example for the generalization of the Stone du-

ality (encoding the representation theory of propositional logic) to predicate

logic (Section N◦II),

(b) that it entails an extended notion of the “semantics” of a “syntactic” struc-

ture A that includes “models” A → B defined with respect to different

codomains B (Section N◦V).

(4) We shall analyze the general pattern underlying several representation theorems

in different areas of mathematics (Boolean algebra theory, algebraic geometry,

6 Other introductions to the theory of schemes may be found in Refs.[37, 38, 40, 57, 88, 97, 114]. See also
Ref.[90] for a very short introduction to scheme theory and Ref.[132] for an encyclopedic description
of Grothendieck’s work (and in particular Chapter N◦7 for scheme theory). Ref.[91] provides a nice
introduction to the twofold nature of schemes, namely as functors (that encode solutions to families of
polynomial equations in different codomains) and as ringed spaces (topological spaces equipped with
sheaves of rings).
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group representation theory, C∗-algebras, Galois-Grothendieck theory, etc.) (Sec-

tion N◦III).

(5) We shall establish a distinction between restricted reconstruction theorems (like

the representation theorem associated to algebraic varieties, Section N◦IV) and

general reconstruction theorems (like the representation theorem associated to

affine schemes, Section N◦VI).

(6) We shall analyze the main formal tool that encodes Grothendieck’s functorial ex-

tension of the semiotics of a mathematical structure, namely the Yoneda lemma.

We shall describe the two-fold conceptual importance of the Yoneda lemma (Sec-

tion N◦V), namely that it encodes

(a) a transition from a substantivalist conception of mathematical objects to a

relational one,

(b) a domain extension from objects in a category (described by representable

functors) to general functors (representable or not).

(7) We shall stress the innovative aspect of the duality between rings and affine

schemes with respect to previous instantiations of the algebra-geometry duality

(Section N◦VI), namely

(a) the presence of points corresponding to extended and unextended irreducible

subsets (see also Section N◦VII),

(b) the fact that the corresponding quantities on the spectrum of a ring have

values in point-dependent codomains,

(c) the original treatment of differential structures.

(d) We shall extend Majid’s Kantian-oriented analysis of the Pontryagin dual-

ity [85] to the duality between rings and affine schemes and use the result-

ing conceptual framework to address the difference between the notion of a

(co)domain extension [15, 20, 87] and the more general variations encoded

in Grothendieck’s notion of functor of points (Sections N◦VII and VIII).

In order to make this article readable by the wider possible audience, we have tried to

avoid as much technical details as possible by addressing the reader to the corresponding

references. In several occasions, we have included some relevant technical precisions in

footnotes. We assume a basic knowledge of algebraic notions (e.g. rings, ideals, etc.), the

rudiments of algebraic geometry, and an elementary acquaintance with category theory.

This material can be found in Ref.[6], Ref.[57, Chap. I] and Refs.[10, 82] respectively. All

throughout the article, the term ring means commutative ring with unity.

II. The Structure-Semiotics Duality

The so-called syntax-semantics debate refers to the tension between the understanding

of a scientific theory either in terms of syntactic structures or in terms of classes of models

(see Refs.[54, 81, 131] and references therein). The syntactic approach (also known as the

Received View) was born in the framework of logical positivism and developed, mainly

by Carnap and Hempel, as an attempt to formalize scientific theories in predicate (higher

order) logic in a language-independent (or presentation-independent) manner [21, 58]. On

the other side, the semantic approach started with the work of Tarski on formal semantics

(model theory) and was notably developed from the 60’s out of the criticism addressed to

the syntactic view of theories by scholars like Putnam [107], Suppe [117], Suppes [118],

and Van Fraassen [121, 122].

In Ref.[56, §17.1.3], Halvorson and Tsementzis argued that rather than trying to privi-

lege the syntactic side or the semantic side of the debate, one can focus on the conditions

under which the dilemma can be sublated in the form of a syntax-semantics duality. This

“dualization” of the syntax-semantics dilemma amounts to claim that neither the syn-

tactic side not the semantic side have any privilege whatsoever over the other side, but

that the two sides are related by adjoint functors that we shall call semantic functor and
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syntactic functor. Whereas the semantic functor sends a syntax to a suitable collection of

models (i.e. to a collection containing “enough models”), the syntactic functor extracts

the common syntactic structure from each collection of models. Like the case of the Stone

duality for Boolean algebras shows (syntax-semantics duality for propositional theories7),

a pre-duality given by adjoint functors yields a proper duality when the adjunction defines

an equivalence of categories between certain subcategories (see Ref.[65, §4, 253-269] and

Ref.[105]).8 This means that the the two possible compositions of the syntactic and the

semantic functors yield the identity on objects modulo isomorphisms. This category the-

oretic description of the notion of duality can be summarized by means of the description

according to which a duality is given by the fixed points of an adjunction [100, fixed point

of an adjunction].9

As Halvorson and Tsementzis have stressed, the example provided by the Stone du-

ality for Boolean algebras shows that the corresponding collections of models have to be

endowed with a suitable geometric structure encoding the “topological relations between

models” [56, 411]. In this framework, as Lawvere writes, “models are points” in a topolog-

ical space [77, 137]. The conceptual importance of this geometrization of the semantics is

that it establishes a bridge between the syntax-semantics duality and the algebra-geometry

duality, where the algebra is on the syntactic side and the geometry on the geometric side.

Of course, we could legitimately question the generality of this relation between these two

kinds of duality. As Halvorson and Tsementzis write, “we do not want to fall into the

trap—all too common in twentieth-century philosophy—of being blinded by the glow of a

shiny new piece of formal apparatus” [56, 412]. In order to counterbalance this healthy

skepticism, we can propose two pieces of evidence that suggest that this relation between

the syntax-semantics duality and the algebra-geometry duality encodes some kind of fun-

damental meta-mathematical pattern or—in Lawvere’s terms—“a kind of philosophical

theorem in a soft mathematical guise.” [79, 16] (see also [79, Th.2, 78]).

First, the attempts to extend the Stone duality to predicate logic by using topos theory

also rely on a geometrization of the semantics [9, 11, 12, 13, 19, 72]. Second, if we extend

the logical meaning of the terms syntax and semantics to any morphism p : A → B in a

category (where p might be looosely understood as a “model” in B of the “syntax” A),

then we find similar reconstruction theorems entangling both dualities in several areas

of mathematics like algebraic geometry, group-representation theory, C∗-algebras theory,

and Galois-Grothendieck theory. In order to introduce some terminological precision, we

shall avoid using the logical terms syntax and semantics for the general case of an al-

gebraic structure A and its representations A → B respectively. Instead, we shall use

the term structure to denote any object A in a category C and the term semiotics to

denote the representations of A with respect to other objects in C. Whereas the logical

term semantics denotes the truth valuations of the corresponding propositional constants,

the more general term semiotics denotes the representation of a structure A by means

of morphisms into another structure B of the same kind. This means that the “values”

that define each representation of A are not necessarily truth values, but rather values

in more general mathematical structures (e.g. fields, rings, groups, etc.; see the column

Representations in Table N◦1). In this sense, truth values provide a particular instantia-

tion of the more general notion of quantity. It follows that the notion of syntax-semantics

7 A Boolean algebra A can always be understood as the Lindenbaum-Tarski algebra of a propositional
theory T . In this case, the {0, 1}-models of T are the truth valuations of A.
8 Regarding this category theoretic understanding of the notion of duality, Lambek and Scott summarize
(what they call in the wake of Lawvere) “‘the unity of opposites’ principle’ by means of the following
‘slogan’: “Many equivalence and duality theorems in mathematics arise as an equivalence of fixed
subcategories induced by a pair of adjoint functors” [73, 18] (see also Ref.[71]). Regarding the syntactic-
semantics adjunction (sometimes called structure-semantics adjunction) see Ref.[78].
9 As we shall see at the end of Section N◦III, it might be the case that only the unit or the counit of
the adjunction is a natural isomorphism. In such an intermediate case, the pre-duality is not strictly
speaking a duality even if one of the two possible compositions of the adjoint functors does yield the
identity modulo isomorphisms.
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duality in the strict logical sense of the term can be understood as a particular case of the

structure-semiotics duality. In particular, the Stone representation theorem for Boolean

algebras that encodes the duality between syntax and semantics for propositional theo-

ries (as well as its generalizations to predicate logic) can be understood as a particular

case of what we could generally call representation theory (this point has been stressed

by Halvorson in Ref.[53, 165]). In Fig. N◦II.1, we have schematized the general duality

between algebraic structures and their geometric semiotics, where the two adjoint functors

are called structure functor and semiotic functor.

Algebraic Structures Geometric Semiotics

Structure Functor

Semiotic Functor (II.1)

In what follows, we shall consider the relevance of Grothendieck’s theory of affine

schemes with respect to this entanglement between the structure-semiotics duality and

the algebra-geometry duality. First, the theory of schemes provided the guiding example

for the generalization of the Stone duality for propositional logic to predicate logic [9, 11,

12, 13, 19, 72]. Whereas Grothendieck’s representation theorem states (as we shall see)

“that every ring is isomorphic to the ring of global sections of a sheaf of local rings,” the

sheaf representation theorem for toposes—in the version demonstrated by Lambek and

Moerdijk [72]—states that “every topos is isomorphic to the topos of global sections of a

sheaf of local toposes” [9, 42 & 44]. In this sense, an understanding of Grothendieck’s

representation theorem for rings seems to be a necessary intermediate step to address

the syntax-semantics duality for predicate logic. It is also worth noting—as Awodey and

Forsell have stressed—that the relation between the syntax-semantics duality and the

algebra-geometry duality provided the “leading idea” to extend the Stone duality from

propositional to predicate logic.10

Second, the duality between rings and affine schemes encodes an important enrichement

in the notion of semiotics. Stone representation theorem shows that it is possible to recover

a Boolean algebra A from a semantics containing models defined with respect to a unique

codomain, namely the set {0, 1} endowed with the discrete topology [65]. By contrast, the

reconstruction of a ring A requires to consider representations A → B of A defined with

respect to different codomains B. As we shall see, the definition of a scheme as a functor

of solutions (of a family of polynomial equations) explicitly formalizes this extension in

the definition of the semiotics of a mathematical structure. The remarkable fact is that

the resulting semiotics can still be described by a unique geometric object, namely the

corresponding affine scheme qua ringed space. In this sense, the equivalence between the

definition of a scheme as a functor and its definition as a ringed space [32] shows that the

entanglement between the algebra-geometry duality and the structure-semiotics duality is

still valid in the framework of Grothendieck’s extended definition of the semiotic side.

It is also worth noting that in the geometric approach to the algebra-geometry duality,

this functorial extension of the semiotics takes the form of a generalization of the notion

of quantity on the space. Whereas in a restricted semiotics (defined by representations

into a unique codomain) the quantities on the space takes theirs values in a structure that

is constant all over the space, in the extended semiotic the quantities take theirs values in

10 In Awodey and Forsell’s own terms: “In broad strokes, the leading idea [to obtain an extension
of Stone duality for Boolean algebras (Stone duality) from classical propositional logic to classical
first-order logic] is to take the traditional logical distinction between syntax and semantics and ana-
lyze it in terms of the classical mathematical distinction between algebra and geometry, with syntax
corresponding to algebra and semantics to geometry” [13].
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structures that continuously vary over the space. This means that it is not only the value

of a quantity that might change from point to point, but also the very structure to which

these values belong. In other terms, the notion of continuous variation of a quantity on

a space is enhanced to the notion of a continuously varying quantity valued in varying

structures (we shall come back to this point in Section N◦VI).

III. On Restricted and General Reconstruction Theorems

In philosophical terms, we can define the problem of representation as the problem of

reconstructing a given structure from a multiplicity of representations, interpretations, or

“models” of the structure. In figurative terms, we could say that the different represen-

tations provide different partial “perspectives” on the corresponding structure and that

the latter can be faithfully recovered only when one considers a sufficient number of such

perspectival representations. In order to cover the variety of mathematical examples we

are interested in, we shall use a sufficiently general notion of representation, namely we

shall understand any morphism p : A → B in a category C as a B-representation of the

structure A.11 By means of such maps the elements and operations of A are “represented”

so to speak as elements and operations in B. By using Lawvere’s terminology, we shall

call the object B dualizing object of the set of representations A → B.12 In turn, the

set of B-representations of A defines what we shall call the B-spectrum of A (denoted

SpecB(A)). The fact that all the elements of SpecB(A) are morphisms A → B allows us

to introduce what we shall call Gelfand transform. The Gelfand transform is a map that

associates to each element a ∈ A a B-valued function aB (a quantity in Lawvere’s terms)

on SpecB(A) defined by the Gelfand inversion formula

aB(p) = p(a), (III.1)

for every (p : A → B) ∈ SpecB(A). The Gelfand transform allows us to present the

elements a of the mathematical structure A as quantities aB on the space SpecB(A) that

parameterizes its B-representations p : A → B. In conceptual terms, the quantity aB
encodes the different representations of a in all the B-representations of A. This means

that the evaluation of a quantity aB on an element p : A→ B of the spectrum SpecB(A)

yields the representation of a in the B-representation p.

For the moment, the B-spectrum SpecB(A) of A is a set containing the different repre-

sentations p : A→ B of A in B. As it was stressed by Halvorson and Tsementzis for the

propositional case given by the Stone duality (as well as its generalizations to predicate

logic [9, 86]), the formulation of a duality between a mathematical structure and its rep-

resentations might require to equip the set of representations with some extra structure

encoding the relations between the latter, typically the structure of a geometric object

(see Refs.[56, §17.1.3], [55, §7]).13 By doing so, the spectrum SpecB(A) containing the

B-representations of A becomes a space. This geometrization of (what we could call) the

B-semiotics of the structure A relies on the identification of the maps A→ B (in the case

of affine schemes, modulo an equivalence relation) to points of a space. By means of this

identification between the semiotic notion of representation and the geometric notion of

11 In Cartier’s terms, “[c]ategory theory is the mathematical expression of the idea of representation
[...]” [23, 398].
12 Lawvere and Rosebrugh called formal dualization the involution operation (−)op : Cat→ Cat that
consists in reversing the arrows of a category in a merely formal manner (which means that it might
not be always possible to understand the reversed arrows in terms of specific mappings). By fixing a

dualizing object C, it is possible to define a “concrete duality” that assigns a reversed arrow CB → CA

to each arrow A→ B [80, 121-122].
13 In Halvorson’s terms: “[...] the semantic view was not wrong to treat theories as collections of
models; rather, it was wrong to treat theories as nothing more than collections of models. Beginning
with a syntactically formulated theory T , we can construct its class Mod(T ) of models. But we
have more information than just the collection of models: in particular, we have information about
relations between these models. [...] [as the case of the Stone’s duality theorem for Boolean algebras
shows] we could rehabilitate the semantic view of theories by taking a theory to be a structured set of
models, namely, a topological space of models” [55, 204-205].
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point, the algebra-geometry dualities and the structure-semiotics dualities (of which the

syntax-semantics dualities provide particular cases) get entangled. While the algebra is

on the “syntactic” side of the duality, the geometry is on the “semantic” side.

Let’s consider now the following reconstruction problem: is it possible to recover

an algebraic structure A from its representations defined with respect to other (one or

many) algebraic structures? Conceptually, a structure A can be reconstructed from its

B-representations if the B-spectrum has enough points (or representations), i.e. if for

any two elements a, a′ ∈ A there is at least a representation p in SpecB(A) such that

aB(p) 6= a′B(p).14 The reconstruction theorems according to which a structure A can be

reconstructed from the representations defined with respect to a unique dualizing object

B will be called restricted reconstruction theorems. Examples of such restricted recon-

struction theorems are provided by:

• the algebra-geometry duality for algebraic varieties [57, Th.3.2 (a), 17],15

• the Stone duality for Boolean algebras [65],16

• the Gelfand duality for commutative C∗-algebras [39, 74],17

• the Pontryagin duality for abelian locally-compact groups and the associated the-

ory of Fourier transform [104] (see also [29]),18

• the Galois-Grothendieck duality ([18, Th.2.4.3, 28], see also [27] for a conceptual-

oriented analysis of this result).19

In all these examples, the structures at stake are reconstructed by just considering their

representations with respect to a unique dualizing object.20 Now, it is not always possi-

ble to reconstruct an algebraic structure from its representations into a fixed codomain.

Grothendieck’s fundamental insight is that this problem can be bypassed by considering

representations of A with respect to a whole category of dualizing objects B. Examples

of such general reconstruction theorems are provided by:

• the algebra-geometry duality for affine schemes (that we shall analyze in Section

N◦IV),21

• the sheaf representation theorems for toposes [9, 12, 13, 19, 70, 72].

In all these examples the codomain of the representations parameterized by the corre-

sponding spectra might be different for different points. Whereas in the case of restricted

reconstruction theorems (e.g. Stone duality or Gelfand duality) the quantities defined by

the elements of the algebra have their values in a constant algebraic structure (e.g. {0, 1}
for the Stone duality and R for the Gelfand duality), in the theory of affine schemes the

quantities have values in local rings that vary continuously on the spectrum.

14 From a logical standpoint, the property of having enough points is related to semantic completeness
(i.e. that tautologies � φ are theorems ` φ) [9]. See in particular the relation between Deligne’s theorem
and Godel’s completeness theorem for first-order logic [84, 523].
15 That is, the isomorphism between a reduced and finitely generated commutative algebra A over an
algebraically closed field K and the affine ring of K-valued regular functions on the algebraic variety
defined by the K-algebra homomorphisms A→ K [57, Th.3.2 (a), 17].
16 That is, the isomorphism between a Boolean algebra B and the algebra of {0, 1}-valued functions
on a (compact, totally disconnected, and Hausdorff) space S(B) called Stone space. The Stone space
parameterizes the Boolean algebra morphisms B → {0, 1} (that we can understand as models or truth-
valuations of the theory B) [65].
17 That is, the isomorphism between a (resp. unital) commutative C∗-algebra A and the algebra of
C-valued functions on a locally compact (resp. compact) and Hausdorff space Sp(A) called Gelfand
spectrum. The Gelfand spectrum parameterizes the non-zero homomorphisms A → C (or characters)
[39, 74].
18 That is, the isomorphism between a locally-compact abelian group G and the algebra of U(1)-valued

functions on the space Ĝ that parameterizes the characters G→ U(1) [29].
19 That is, the isomorphism between a finite dimensional k-algebra A split by an algebraically closed field
L (where L : k is a finite dimensional Galois extension of fields) and the algebra of L-valued functions
on the Gal(L : k)-space that parameterizes the k-algebra homomorphisms A → L ([18, Th.2.4.3, 28],
[27, Sec.6]).
20 The dualizing objects that allows us to formulate the corresponding isomorphisms are K, {0, 1}, C,
U(1), and L respectively.
21 That is, the isomorphism between a general ring A and the ring of global sections of the structure
sheaf of local rings over the prime spectrum Spec(A) of A.
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Table 1.

Object Representations
Duality

(algebraic structure) (geometric semiotics)

Stone Bool. Alg. A Bool. alg. morph.
(syntax-semantics duality A→ {0, 1}

for propositional logic)

Classical Ring k[x1, . . . , xn]/t k-alg. homo.
Algebraic (reduced and finitely generated

Restricted Geometry over an alg. closed field K) k[x1, . . . , xn]/t→ K

Reconstruction
Gelfand duality Commutative Characters

Theorems (observables-states duality) C∗-algebra A A→ C

Pontryagin duality Locally Compact Characters
(Fourier theory, Abelian G→ U(1)

position-momentum duality Group G
in quantum mechanics)

Galois-Grothendieck k-alg. A split by K k-alg. homo.
A→ K

Affine Schemes Ring A A→ Ap

General (with no restrictions) (Ap local ring)

Reconstruction
Sheaf representations

Theorems for toposes Topos E Functor E → Ep
(syntax-semantics dualities

for predicate logic) (Ep local topos)

In the Table N◦1 we include all the dualities mentioned thus far and specify both the

mathematical structure that is being represented and the kind of representations used to

recover it (see also Refs.[9] and [5, Table 4.3, 160])22. It is a remarkable fact that all these

important mathematical results are instances—up to contextual differences depending on

each particular mathematical framework—of a common reconstruction protocol. In Figure

N◦III.2, we have summarized the general meta-mathematical pattern instantiated by these

different algebra/structure-geometry/semiotics dualities. Given an algebraic structure A

we can consider a certain class of representations of A, that is morphisms of the form

A→ B (for a fixed or a variable codomain B). In order to obtain a restricted (respectively,

general) reconstruction theorem, the corresponding set (respectively, structured set) of

representations has to be endowed with extra geometric structure. In general, there is a

22 For a unified discussion of some of these dualities see Ref.[125, §5.8, 171-184].
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“semiotic” functor—that we have noted Spec(−)23—from the (opposite of the) category of

algebraic structures to the corresponding category of geometric objects. Since any point

in Spec(A) is a map of the form p : A → B, each element a in the algebraic structure

A defines a quantity â on Spec(A) given by the Gelfand inversion formula â(p) = p(a).

The quantity â encodes the representations of the element a ∈ A in all the representations

parameterized by Spec(A). The reconstruction theorem takes the form of an isomorphism

between the original algebraic structure A and an algebra of quantities on Spec(A) defined

by means of a structure functor Γ(−). We could say that the elements of the structure

A to be reconstructed are realized—by means of a Gelfand transform–as quantities on

the “semiotic” space Spec(A) that parameterizes certain representations of A. The fact

that this general pattern is at the basis of important reconstruction theorems in different

areas of mathematics gives support to the thesis according to which this algebra/structure-

geometry/semiotics duality is (as Lawvere states) “fundamental to mathematics” [75, 17]

[79, 16].24

Algebraic Structure A

Algebra of Quantities Γ(Spec(A))

Semiotic Space Spec(A)

Γ(−)

Spec(−)

Gelfand Transform (')

Spectral Duality

Geometric Duality

(III.2)

In order to conclude this section, let’s revisit the relation between the two approaches

to the algebra-geometry duality, namely the spectral approach (in which one starts with

an algebra) and the geometric approach (in which one starts with a geometric object).

In Manin’s terms, the “fundamental [algebra-geometry] duality that increasingly mani-

fests itself in modern mathematics” assumes the following two symmetric forms (“with a

different emphasis”) [88, 12]:

“The space the ring of functions on the space” (geometric approach)

“The ring the spectrum of its ideals of certain type” (spectral approach)

(III.3)

We could say that these two descriptions of the algebra-geometry duality differ in

the characterization of which structure is being represented or “observed”. In the spectral

approach, the algebra A plays the role of the represented object and each point of the space

Spec(A) defines a particular representation of A. In the geometric approach, the points

23 Since we are also considering here the general case in which the codomain B can vary, we omit the
subscript indicating the codomain of the representations.
24 In the article Adjointness in foundations, Lawvere states that the duality between commutative
rings and the corresponding geometric entities is a particular case of a more general duality between
what he calls the “Formal” (the side of the duality corresponding to the algebraic structure) and the
“Conceptual” (the semiotic side of the duality) [78, Sect.4] (see the discussions of this distinction in
Refs.[111, Sect.5.7] and [94, Sect.2.4]. In Lawvere’s terms: “That pursuit of exact knowledge which we
call mathematics seems to involve in an essential way two dual aspects, which we may call the Formal
and the Conceptual. For example, we manipulate algebraically a polynomial equation and visualize
geometrically the corresponding curve. [...] any attempt to formalize Foundations [‘the study of what
is universal in mathematics’] would be a description of this claimed ‘duality’ between the Formal and
the Conceptual” [78, 3-4].
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of the space Spec(A) are the “states” being “observed” by the “observables” (functions

or sections) in the corresponding algebra of quantities. We could say that the Gelfand

transform transforms each represented element a in A into an “observable” â on the

corresponding space.25 Now, the apparent symmetry between the two descriptions should

not lead us to believe that they are strictly equivalent. Briefly, there exist geometric

objects that cannot be constructed as the spectrum of an algebra. Let’s consider this

point in some detail.

A reconstruction theorem encodes the fact that the corresponding moduli space of rep-

resentations contains “enough points/representations” to recover the represented algebraic

structure. Technically, this means that the composition structure functor Γ(−) ◦ semiotic

functor Spec(−) in Figure N◦II.1 yields the identity on the algebraic structures modulo

isomorphisms (i.e. Γ(Spec(A)) ' A). But we could start with a geometric object X that

is not in the image of the semiotic functor Spec(−) and consider the effect of the other

possible composition of the two functors—i.e. the composition semiotic functor Spec(−)

◦ structure functor Γ(−)—acting on this gometric object. So, we start with the geometric

object X, we extract an algebraic structure Γ(X) out of it and then consider the space

Spec(Γ(X)) that parameterizes the corresponding representations of Γ(X). Now, even if

we have a representation theorem of the form Γ(Spec(A)) ' A, it might not be necessar-

ily the case that Spec(Γ(X)) ' X. In other terms, we can always use the functor Γ(−)

to extract an algebraic structure Γ(X) out of the geometric object X, but X might not

coincide with the moduli space Spec(Γ(X)) ' X that parameterizes the representations

of Γ(X). In that case, the pre-duality given by the adjunction between the structure

functor and the semiotic functor is not strictly speaking a duality (i.e. an equivalence

of categories), even if we have a reconstruction theorem of the form Γ(Spec(A)) ' A.26

Hence, the spectral approach (that starts with an algebra) and the geometric approach

(that starts with a geometric object) are equivalent only when the pre-duality between

algebra and geometry is a duality. An instance of this scenario is provided by the notion

of general (i.e. not necessarily affine) scheme (e.g. the scheme associated to a projective

variety). Roughly speaking a scheme X is a locally ringed space such such each point has

an open neighborhood where the scheme looks like an affine scheme (that is, like a scheme

obtained as the spectrum of a ring) [57, 74]. The composition Spec(Γ(X)) is related to

the original scheme X by a unique morphism ψ : X → Spec(Γ(X)) that is an isomorphism

only when X is affine [32, 4 & 7]. We could say that in this case there exists a pre-duality

between the (opposite of the) category of rings and the category of schemes that restricts

to a duality on affine schemes.

IV. Restricted Reconstruction Theorem in Algebraic Geometry

We shall now consider in more detail the restricted reconstruction theorem in classi-

cal algebraic geometry. This theorem only allows to recover certain kind of rings from

a collections of their representations, namely reduced and finitely generated rings over

algebraically closed fields (for the discussion proposed in this section we recommend the

reader the introduction to Ref.[37] and Ref.[88]). A polynomial ring P
.
= k[x1, . . . , xn] in

n variables over a field k can be understood as a sort of “linguistic universe” in which it

is possible to define predicates of the form

∃ n-tuples (a1, . . . , an) such that p(a1, . . . , an) = 0 (IV.1)

25 Majid describes this transformation from an element being “observed” into an “observable” in the
following terms: “This map [the Gelfand transform] literally turns the tables and says that the object
a being seen by p can instead be viewed as an observer â (corresponding directly to a) seeing p with
the same value p(a) = â(p)” [85, 397].
26 In mathematical terms, both the unit and the counit of an adjunction are natural isomorphisms when
the adjunction defines an equivalence of categories [82, 93]. But we can have an intermediate situation
in which only the unit or the counit of the adjunction is a natural isomorphism.
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with p ∈ P .27 The field k plays here the role of what we could call in the wake of Kronecker

domain of rationality [Rationalitätsbereich] (also called coefficient domain or domain of

definition).

We shall now consider the truthmakers of such predicates, i.e. the values of the xi’s

that make the predicates true. In a first approach, it is natural to look for the truthmakers

of a predicate in the domain of definition of the latter. However, there is no reason for

such a restriction: the fact that a predicate is defined over a domain k does not mean

that its truthmakers only exist in k. This distinction between the domain of rationality k

in which a problem is formulated and the possible codomains of rationality wherein one

can look for its solutions made possible the successive extensions of the number systems

(from N to Z to Q to R to C) (see Refs.[15, 20, 87] for a conceptual analysis of the notion

of domain extension).28

The minimal condition imposed on the possible codomains of definition is that they

must be k-algebras, i.e. that their elements can be multiplied, added, and multiplied by

scalars in k (otherwise, the polynomial expressions in the corresponding variables could not

even be defined). In what follows, we shall restrict the possible codomains to k-algebras

k′ that are fields. If T is a subset of P (i.e. a particular family of predicates defined

over k), the n-tuples (a1, . . . , an) with ai ∈ k′ such that p(a1, . . . , an) = 0 for all p ∈ T
will be called k′-truthmakers of the family T . By using Grothendieck and Dieudonné’s

terminology, we shall also say that the solutions in k′ are k′-valued points of the variety

over k defined by the family T [49, 7]. The set of k′-truthmakers of the family T defines

a subset (called an algebraic affine variety) of the affine n-space An
k′ over k′ (i.e. of the

set of n-tuples of elements in k′). Now, the points in the variety also satisfies equations

of the form
∑

i hipi = 0, where pi ∈ T and hi are polynomials in P . In order to get rid of

this ambiguity regarding the polynomials that define the variety, we have to substitute the

family T by the ideal t generated by T . The affine variety in An
k′ defined by an ideal t will

be denoted Vt(k
′). Now, an ideal t does not define an algebraic variety as such but rather

an algebraic variety immersed in An
k′ (see for instance the example in Ref.[37, 236]). It is

possible to “factor out” this immersion and pass to an intrinsic description by considering

the quotient rings P/t.29 Indeed, the quotient rings defined by different immersions of the

same abstract variety are isomorphic. Passing from P to P/t amounts to identify different

polynomials in P that coincide when evaluated on the variety, i.e. polynomials that differ

in a function vanishing on the variety. In other terms, we are making abstraction from

the fact that these polynomials might differ elsewhere.30

Given an ideal t in P and a k-algebra k′ there is a natural bijection between the

algebraic variety Vt(k
′) and the k-algebras morphisms P/t → k′ defined by evaluating

the polynomials in P/t on the corresponding point of the variety [49, 8]. This means that

each point of the variety Vt(k
′) can be interpreted as a k′-representation of P/t. We could

say that the variety Vt(k
′) encodes the k′-representation theory of the algebraic structure

P/t. We can now pose the following reconstruction problem: is it possible to recover the

quotient ring P/t from its k′-representations? As we have explained in Section N◦III, the

reconstruction of an algebraic structure from a collection of representations requires to

27More precisely, a polynomial p ∈ P can be written in the form p(x1, . . . , xn) =
∑

i cix
i, where ci ∈ k

and xi are monomials of the form xi = x
i1
1 x

i2
2 . . . xin

n with i = (i1, . . . , in) an n-tuple of non-negative
integers.
28 By working with polynomial equations in one variable (which is a particular case of 0-dimensional
algebraic geometry), Galois theory is essentially based on the distinction between the domain of defi-
nition (or coefficient domain) of the polynomial in question (i.e. a field containing the coefficients of
the polynomial) and the possible codomains in which one can search for its solutions [27]. According
to Cartier, “Galois was certainly the first person to notice the polarity between equations and their
solutions” [22, 290].
29 For a discussion of the difference between extrinsic and intrinsic descriptions in terms of the functorial
approach to algebraic geometry that we shall introduce below see Ref.[48, 29–37].
30 For instance, the polynomials x+y and x+x2 coincide on the variety defined by the equation y = x2.
In other terms, their difference is “invisible” on the parabola.
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introduce a Gelfand transform between the algebraic structure at stake (in this case the

ring P/t) and an algebra of quantities on a moduli space of representations. In this case,

the Gelfand transform assigns to every element [p] of the ring P/t a k′-valued quantity pk′

on the variety Vt(k
′) defined by the expression pk′(α) = p(α) for α ∈ Vt(k

′). The quantity

pk′ encodes all the k′-representations p(α) of [p] ∈ P/t. We could say that the Gelfand

transform acts as a sort of prism, in the sense that it permits to associate to each element

[p] ∈ P/t its k′-spectrum, i.e. the set of k′-representations of [p].

The ring P/t can be reconstructed from its k′-representations if the Gelfand transform

is injective. Now, it might be the case that the codomain k′ is such that the variety

Vt(k
′) does not have “enough points” (i.e. enough k′-representations of P/t) to faithfully

reconstruct P/t. For instance, if the field k′ does not contain all the roots of a polynomial

p ∈ k[x], the algebra k[x]/(p) may not be faithfully represented as an algebra of quantities

on the space Vt(k
′). This means that different elements [f ] and [g] in P/t might define the

same quantity on the space Vt(k
′), thereby having the same k′-spectrum. In such a case,

the variety Vt(k
′) does not “separate” [f ] and [g]. In the extreme case, there might be

no k′-representations of P/t.31 In order to guarantee that the codomain provides enough

representations of P/t so that this ring can be faithfully reconstructed, the codomain must

be an algebraically closed field extension K of k.32 If in addition we restrict the ideals

under consideration to radical ideals (i.e. to ideals t such that t =
√
t)33, then we obtain

a bijective correspondence between algebraic objects (radical ideals of polynomials) and

geometric objects (algebraic varieties) [57, Cor.1.4, 4].

A restricted reconstruction theorem can now be obtained by comparing two algebraic

objects, namely the quotient ring P/t and a ring of quantities on the variety Vt(K) defined

by means of the Gelfand transform. The corresponding reconstruction theorem states that

the Gelfand transform establishes an isomorphism

P/t ' O(Vt(K)) (IV.2)

between the ring P/t that one wants to reconstruct and the ring O(Vt(K)) of regular

functions34 on the variety Vt(K) [57, Th.3.2 (a), 17]. Since P/t is reconstructed from

the representations of P/t into a unique codomain (the algebraically closed field K), this

isomorphism provides an example of a restricted reconstruction theorem. We could say

that the algebraically closed field K provides enough representations of the ring P/t (i.e.

enough common roots of the polynomials in t) so that P/t can be faithfully reconstructed

from the collection of its K-representations.

It is worth noting that this algebra-geometry (or structure-semiotics) duality encodes

a sort of “indeterminacy principle” that presents an analogy with the indeterminacy prin-

ciple in quantum mechanics. Indeed, there is an inverse correlation between the unam-

biguous (or sharp) determination of an element in P/t and the unambiguous determina-

tion of a particular K-representation in the variety Vt(K). If one just considers a single

K-representation of P/t—i.e. a single point in Vt(K)—, then the elements in the ring

P/t remain maximally undetermined. Indeed, different elements [f ], [g] ∈ P/t might be

31 For example, there are no R-representations of the ring R[x]/(x2 + 1), which means that there are no

R-truthmakers of the predicate x2 + 1 = 0. Of course, this does not mean that this predicate is false,
but rather that the its truthmakers have to be searched in an algebraic extension of the codomain R.
32 The Hilbert Weak Nullstellensatz (weak theorem of zeros) states that if the codomain K is alge-
braically closed, then the only ideal t such that Vt(K) = ∅ is t = P . This theorem may be understood as
the fundamental theorem of algebra for polynomials in several variables in the sense that it states that
every family of polynomials generating an ideal smaller than the whole ring has at least one common
zero in Kn, i.e. it does not define the empty variety.
33 Let’s recall that the radical

√
t of an ideal t is the set of elements f ∈ P such that fn ∈ t for some

natural number n. The Hilbert Nullstellensatz states that two ideals t1 and t2 define the same K-variety

(being K an algebraically closed field) if and only if
√
t1 =

√
t2. Therefore, ideals t1 and t2 with the

same radical cannot be distinguished by just considering theirs K-representations. This explains why
we have to restrict the algebraic side to radical ideals in order to obtain a reconstruction theorem.
34A function f : X → K is regular at a point p ∈ X if f can be expressed as a rational function g/h on
a neighborhood of p such that h is nowhere zero in U . A function f is regular on X if it is regular at
every p ∈ X [57, 15].
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represented by the same “image” in a K-representation x ∈ Vt(K). Conversely, if the

K-representation is completely “undetermined” (i.e. if one considers all the possible K-

representations of the elements in P/t at once), then the elements in the ring may be

faithfully determined. This remark permits to understand why each single [f ] ∈ P/t is in

correspondence—via the Gelfand transform—with a quantity fK on the set of all possible

K-representations of P/t. This leads to what we could call the “indeterminacy principle”

associated to the algebra-geometry duality: whereas the sharp determination of a point

in the space requires to consider a whole family of quantities, the sharp determination of

a quantity requires to consider the values that it takes on all the points of the space. This

“indeterminacy principle” could be understood as the mathematical incarnation of the

phenomenological fact that an empirical object cannot be faithfully reconstructed from

one of its profiles, i.e. from the single aspect that it offers to a subject placed in a par-

ticular position. Roughly speaking, a faithful determination of an object requires to turn

around the object, i.e. to “undetermine” the viewpoint of observation.35

V. From Sets of Points to Functors of Points

As we have explained before, the distinction between the domain of definition con-

taining the coefficients of a family of polynomial predicates and the different possible

codomains that might contain truthmakers of the former elicits a sort of relativity in alge-

braic geometry: we can associate to a quotient ring P/t different algebraic varieties, namely

one algebraic variety Vt(k
′) for each k-algebra k′. As we have seen in the previous Section,

it is possible to reconstruct certain rings from the algebra of regular functions on the

corresponding varieties by choosing a suitable codomain, namely a k-algebra given by an

algebraically closed field K. The decision to privilege a (well-chosen) particular codomain

was notably fostered by A. Weil in his treatise Foundations of Algebraic Geometry in the

form of what he called “universal domains” (algebraically closed fields of infinite tran-

scendence degree) [128] (regarding Weil’s treatise see also Ref.[108]).36 Roughly speaking,

the idea is to work within a codomain that is big enough so that it contains all that one

might need for the purposes at stake.

The problem is that the reconstruction protocol used in classical (i.e. before Gro-

thendieck) algebraic geometry only works for certain rings, namely reduced and finitely

generated rings over algebraically closed fields. Now, in the framework of the refoundation

of algebraic geometry associated to scheme theory, Grothendieck proposed a more general

reconstruction protocol that works for general rings. The key point of Grothendieck’s

innovative strategy is that it does not “break” the aforementioned relativity by privileging

a particular codomain, but rather fully embraces it by considering all the codomains at

once [48].37 According to Grothendieck’s philosophy, a family of polynomial equations

over k does not have a solution set defined in a privileged codomain, but rather (what we

could call in the wake of Ref.[97, p.113]) a solution structured set composed of the sets of

solutions in each k-algebra B for every B (also called variable set of solutions in Ref.[91,

35 This heuristic relation between the algebra-geometry duality and the indeterminacy principle in
quantum mechanics has been explored in the series of papers [27, 101, 102]. In order to argue that this
might be more than a mere analogy, it is worth noting that the position-momentum duality in quantum
physics is provided by Fourier theory, that is—in group-theoretic terms—by the Pontryagin duality for
locally-compact abelian groups [29, 104]. Moreover, the symplectic structure of the corresponding phase
space encodes the “internal” self-dual structure associated to the “external” duality between the position
and the momentum representations (see Refs.[85, 102, 101] for further discussions of this point).
36 Grothendieck and Dieudonné describe Weil’s approach in the following terms: “C’est seulement à
partir de 1940, avec la Géométrie algébrique ‘abstraite’ (c’est-à-dire sur un corps de base k quel-
conque, pouvant être de caractéristique 6= 0) développée surtout par Weil, Chevalley et Zariski, que
l’idée du changement de base prend de l’importance dans un contexte plus général [...] Toutefois [...]
chez Weil [la généralité de cette opération] est quelque peu masquée par le parti pris de se restreindre
une fois pour toutes à n’envisager que des sous-corps d’un corps algébriquement clos ‘assez grand’
(le ‘corps universel’), restant donc en apparence assez proche du point de vue classique où le corps
C tenait ce role” [49, 6].
37 See Ref.[109, Sec.5.4] for a comparison between Weil’s universal domains and Grothendieck’s functorial
approach.
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14.3.2]).38 More formally, the “solution” to a family of polynomial equations over k will

be defined as the “application” that sends any k-algebra B to the solution set in B in a

functorial manner.

The central mathematical object in Grothendieck’s approach is given by the so-called

functor of solutions [48] or (in the dual geometric version) functor of points. So, let us

consider this notion with some detail (see also Refs.[27, 40, 124]). To do so, let’s consider a

general ring A. The idea is to assign to each possible codomain given by a ring B a “space”

SpecB(A) whose underlying set will be given by HomRing(A,B). More precisely, we can

formalize the fact that a ring A defines a different space SpecB(A) of B-representations

A→ B for each possible codomain B by associating to A a covariant functor

Spec(−)(A) : Ring → Set (V.1)

sending each ring B to the B-spectrum SpecB(A) = HomRing(A,B) of A.39

By definition, the functor of solutions Spec(−)(A) of A is an object in the category

[Ring, Set ] of all functors from Ring to Set (where the morphisms are given by the natural

transformations of functors). The Yoneda embedding associates to any ring A the functor

(V.1) “represented” by A (regarding the Yoneda embedding and the Yoneda lemma, see

for instance Ref.[10, §8.2 & 8.3, 160-166]). This means that the functor (V.1) can also be

described as the covariant representable functor represented by the ring A (see for instance

the discussion of representable functors proposed in Ref.[93, Sect.3.2.2]). In particular,

the ring P/t is the object that represents the “functor of solutions” Spec(−)(P/t), that is,

the object that “classifies” the solutions of the equations defined by the ideal t in all the

k-algebras k′. The Yoneda lemma states that the set F (B) is in bijective correspondence

with the set of natural transformations F (−) → Spec(−)(B), where F (−) is any (i.e.

not necessarily representable) Set-valued functor on Ring. It follows from the Yoneda

lemma that the Yoneda embedding is fully faithful, i.e. that this embedding defines a full

subcategory of the category of Set-valued functors on Ring.

The conceptual importance of the Yoneda lemma is (at least) twofold. Firstly, the

Yoneda lemma entails a shift of perspective from a substantivalist conception according

to which the fundamental mathematical entities (of algebraic geometry in this case) are

given by the objects of the corresponding category to a structuralist, relational, behavioral,

or (in Manin’s words [89]) sociological perspective according to which the fundamental

entities are functors. As Mazur puts it, “[t]he lights are dimmed on mathematical objects

and beamed rather on the corresponding functors; that is, on the networks of relationships

entailed by the objects” [95]. The main conceptual point here is that the functor Spec(−)(A)

provides a good ‘semiotic’ substitute for the ring A. This means that Spec(−)(A) describes

A in terms of the representations A→ B of A defined with respect to all the other objects

B of the category. If two objects have equal (i.e. isomorphic) functors encoding their

representations, then the two objects are also equal (i.e. isomorphic).

The second important conceptual consequence of the Yoneda lemma is that it intro-

duces an ontological extension of the domain of entities at stake, namely an extension

from the objects of the initial category to any functor in [Ring , Set], be it representable

or not. Indeed, the Yoneda embedding is not essentially surjective, i.e. not every functor

38 In Grothendieck and Dieudonné’s own terms: “[o]n y fait abstraction des propriétés spéciales aux
solutions du système [p(x1, ..., xn) = 0 for all p ∈ T ] dans l’espace particulier kn d’oú l’on est parti, pour
considérer, pour chaque k-algébre k′, l’ensemble des solutions de [ce système] dans k′n, et la façon dont
cet ensemble varie avec k′ [...] L’idée de ‘variation’ de l’anneau de base que nous venons d’introduire
s’exprime mathématiquement sans peine grâce au langage fonctoriel [...]” [49, 6].
39 On morphisms, the functor Spec(−)(A) sends each morphism B

f−→ C to the morphism Specf (A) :

SpecB(A) → SpecC(A) given by (A
g−→ B) 7→ (A

f◦g−−−→ C). In particular, when the ring A is the
k-algebra P/t defined by an ideal t of polynomials, the functor (V.1) sends each k-algebra B to the
solution set in B of the corresponding polynomials (i.e. B 7→ Vt(B)) and each morphism h : B → B′ is
sent into Vt(h) : Vt(B)→ Vt(B′) where Vt(h)(a1, . . . , an) = (h(a1), . . . , h(an)).
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in [Ring , Set] is representable.40 Now, the Yoneda lemma guarantees that even non-

representable functors F (−) can be interpreted as functors of points, i.e. in terms of

morphisms to other objects. More precisely, the Yoneda lemma states that the elements

in the set F (B) are in bijection with the natural transformations F (−) → Spec(−)(B),

i.e. with (what we could call) the Spec(−)(B)-representations of F (−). Even if the el-

ements in F (B) for F a non-representable functor cannot be interpreted in terms of

morphisms in Ring, the Yoneda lemma guarantees that these elements can still be inter-

preted as representations of F (−) in the functor category [Ring , Set]. The trick to do so,

is to substitute B by its functor of points Spec(−)(B). It is also worth noting that the

description of the functor F in terms of its representations only uses morphisms to rep-

resentable functors. Roughly speaking, the representable functors “generate” the whole

functor category [Ring , Set].41 In the terms used by Schreiber, the representable functors

Spec(−)(B) can be understood as “test objects” out of which “generalized objects” can

be constructed. A “generalized object” F (−) is a non-representable element of the func-

tor category [Ring , Set] that is completely defined by its “representations” into the test

objects, i.e. by the sets Hom
[Ring, Set ](F (−), Spec(−)(B)) of Spec(−)(B)-representations

of F (−) for every Spec(−)(B) (see for instance Refs.[112, 61] and [75, 17]).

VI. General Reconstruction Theorem in Algebraic Geometry

As discussed in the previous section, the functor of points Spec(−)(A) on the category

of rings is a fully faithful substitute for the ring A. Since each set SpecB(A) may be

thought of as a space, the functor of points establishes a correspondence between rings

and a whole family of spaces. In Grothendieck and Dieudonné’s terms, “[...] on n’a

plus affaire à un ‘objet’ bien déterminé comme dans la Géométrie algébrique classique,

mais à une ‘famille d’objets’ variable avec [B]” [49, 12]. Now, is it possible to recover

an algebra-geometry duality between the ring A and a single space? Is it possible to

establish an isomorphism between A and a ring of quantities on a single “moduli space”

parameterizing representations of A? To do so, one should be able to unify the family

of B-spectra SpecB(A) for all B into a single topological space (that we shall denote)

Spec(A). Then, and in order to obtain an algebra-geometry duality, we have to introduce

quantities on this space. As we shall see, these quantities are given by sections of a

sheaf on Spec(A) endowed with a suitable topology (called structure sheaf and denoted

OSpec(A)). The geometric object (Spec(A),OSpec(A)) resulting from this construction is

called affine scheme.42 Briefly, an affine scheme associated to a ring A is an underlying

set Spec(A) endowed with a topology and a sheaf of quantities OSpec(A) on it. As we

shall see, the stalks of the sheaf are local rings. Hence, an affine scheme is a locally ringed

space.43 We shall now briefly describe the salient features of this construction.

First, the underlying set of points of an affine scheme is defined by the field-valued

representations of the ring, i.e. by representations of the form A → k for k a field. Now,

40 The utilization of the Yoneda embedding sometimes requires to study the conditions under which a
given functor is representable [46]. One important feature of representable functors is that they have
the sheaf property with respect to certain Grothendieck topologies (the subcanonical topologies) on
the corresponding category. These ideas were used by Grothendieck in Ref.[46] for the construction
of various important spaces, like for instance the Hilbert and Picard schemes. The strategy used by
Grothendieck was to first study the relevant functor, and to prove then that the functor is representable.
41 This characterization of the functor category [Ring, Set] as “generated” by the representable functors
is formalized by the result according to which any non-representable functor F is a colimit (i.e., roughly
speaking, the result of a pasting) of representable functors (see for instance Ref.[84, 41]). The category
[Ring, Set] can then be understood as the free co-completion of the category of rings. We could also
say that the representable functors are “dense” so to speak in [Ring, Set].
42 In Refs.[40, 57], the term spectrum is used to denote affine schemes (Spec(A),OSpec(A)), that is

topological spaces of the form Spec(A) endowed with sheaves of quantities OSpec(A). Here we prefer to

use the term spectrum only for the underlying set Spec(A) and called the corresponding ringed space
affine scheme (like Dieudonné does in Ref.[35]).
43 More generally, a scheme (not necessarily affine) is a ringed space (X,OX) that is locally isomorphic
to an affine scheme.
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the field-valued representations of a ring are in a certain sense redundant since for instance

t : A→ k and t′ : A
t−→ k ↪→ K (where K is a field extension of k) would count as different

points. This redundancy can be removed by introducing an equivalence relation for k-

valued representations A → k for variable k, namely that two such representations are

equivalent if they have the same kernel [49, 12-13]. Since a field is an integral domain, the

kernel p = ker(t) of a k-representation t : A → k is a prime ideal of A and the integral

domain A/p is isomorphic to a subring of k. All in all, the underlying set of the affine

scheme associated to a ring A will be given by the set of prime ideals of A, where the latter

encode the field-valued representations of A modulo the aforementioned redundancy.

This definition of the underlying set of points of an affine scheme constitutes a first

surprising feature of Grothendieck’s construction. In the classical theory of algebraic va-

rieties, the underlying set of points of an algebraic variety is in bijective correspondence

with the maximal ideals of the coordinate ring [57, Th.3.2(b), 17]. In turn, prime ideals

are in bijective correspondence with the irreducible closed subsets of the algebraic variety.

Therefore, the underlying set Spec(A) of an affine scheme includes not only the standard

points corresponding to maximal ideals but also the so-called generic points (introduced

by the Italian algebraic geometers at the beginning of the XXth century) that correspond

to irreducible closed subsets (see for instance [57, 75]).44 In a certain sense, Grothendieck’s

theory of schemes bridges the gap between what De Risi calls the classical (Greek) ge-

ometry of figures on the one hand and the modern geometry of space on the other [33].

According to De Risi, Greek geometry deals with individual figures that “are not embedded

in any spatial background” since “the concept of space itself is altogether missing from the

cultural background of Antiquity” [33, 3-4]).45 In this context, no figure plays a privileged

role to the detriment of the others. In Cartier’s terms,

“For Euclid there are geometric figures, and a point is merely one element

of a figure, the most elementary, perhaps, since it is assumed to have no

dimension: neither length, nor breadth, nor thickness. Figures generate

one another. A given lineD is defined by the property of passing through

two given points P and Q, but a point P is defined as the intersection

of two lines D and ∆. [...] it is not in the spirit of Euclid to regard a

line as a set of points. A figure in the sense of Euclid is more than a

simple set of points.” [23]

By contrast—and according to the modern conception that began with Leibniz’s anal-

ysis situs [34] and became the common definition by the dawn of the XIXth century—,

modern geometry is the science of space.46 In this last framework, a space is understood

as a set of points equipped with additional geometric structures (e.g. a topology, a con-

nection, a metric, etc.) and the geometric figures are now understood as subsets of such

space. In this framework, a particular kind of irreducible figure plays a privileged role to

the detriment of the other irreducible figures, namely the unextended points that belong

to the underlying set of the space. In a certain sense, the notion of affine scheme is diag-

onal to De Risi’s distinction. On the one hand, an affine scheme is a set equipped with

44 A standard argument to justify the identification between the points of an affine scheme and the prime
ideals of the corresponding ring (rather than just the maximal ideals) is that a ring homomorphism

ϕ : A → B does not induce a well-define map Specm(B) → Specm(A) since ϕ−1(b) is not necessarily
a maximal ideal in A (where Specm(B) denotes the set of maximal ideals of B). However, the inverse
image of a prime ideal under a ring homomorphism ϕ : A→ B is a prime ideal of A.
45 According to Grant, “[t]here is nothing in Euclid’s geometry to suggest that he assumed an inde-
pendent, infinite, three-dimensional, homogeneous space in which the figures of his geometry were
located. In a purely geometric sense, such a space would have been superfluous because every geomet-
ric figure has its own internal space” [45, 16]. In Space-Time-Matter, also Weyl establishes a contrast
between “a true geometry, [understood as] a doctrine of space itself” and “almost everything else
that has been done under the name of geometry, a doctrine of the configurations that are possible in
space” [130, 102].
46 Regarding the difference—for instance—between Euclid’s Elements and Hilbert’s Grundlagen der
Geometrie see Ref.[96, 14-15].
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additional structure (namely, a topology and a sheaf of quantities), thereby providing an

example of the modern understanding of the notion of space. However, the underlying set

of “points” does not only include the standard unextended points associated to maximal

ideals, but also one generic point for each irreducible closed subset. Hence, the underlying

set of the space is a set of both extended and unextended irreducible figures. An affine

scheme can therefore be understood as an underlying set of irreducible figures endowed

with an additional geometric structure. The irreducible figures—rather than being under-

stood as subsets of a preexisting space qua set of unextended points—form the “skeleton”

of the space.47

In order to obtain a reconstruction theorem for a ring A we need to define a Gelfand

transform sending each element in A to a quantity on Spec(A). As we have explained in

Section N◦III, the Gelfand transform is defined by an inversion formula (III.1) that defines

the value of a quantity â associated to a ring element a ∈ A at a point p by using the

fact that this point is itself a representation of A. So, we shall define a Gelfand transform

that sends each element a ∈ A to the quantity â on Spec(A) given by â(p) = tp(a) where

tp : A → A/p is the quotient map associated to the point p. As we said before, the map

tp can be redundantly understood as a field-valued representation of A with respect to

different fields. Here we shall consider tp as a field-valued representation of A with values

in the smallest field in which A/p can be embedded, namely the fraction field κp (also

called residue field) of the integral domain A/p. Since the A/p → κp is an inclusion,

we shall consider that the quantity â is a κp-valued quantity on Spec(A). The fact that

the fields κp depend on the points p in Spec(A) on which we evaluate the quantity â

encodes the fact that the space Spec(A) parameterizes representations of A into different

codomains.48

According to the general pattern schematized in Figure III.2, we want to use this

Gelfand transform to define an isomorphism between the ring A and an algebra of quanti-

ties on Spec(A). The main obstruction is that the Gelfand transform a 7→ â that we have

just defined is not injective if A has nilpotent elements (i.e. elements a such that an = 0

for some n). Since a nilpotent element a is contained in every prime ideal [7, Prop.1.8, 5],

it defines a constant zero function on Spec(A), i.e. â(p) = tp(a) = 0 for every p ∈ Spec(A).

This means that all the nilpotent elements are in the kernel of the Gelfand transform. It

follows that the quantities â only allows us to recover the reduced ring A/N associated to

A, namely A quotiened by the ideal N of nilpotent elements (called nilradical).

In standard differential calculus, a function f(x) on a space M is completely determined

by the values it takes at every x ∈ M . This means that the information encoded in its

derivatives is (as the name indicates) “derived” from the functional expression that defines

its values at every point. Now, the obstruction to the injectivity to the Gelfand transform

given by the nilpotent elements in A can be bypassed by providing an enhanced definition

of the quantities on Spec(A). In scheme theory, this is done by defining a quantity not

only by means of its punctual values, but also by specifying from scratch (rather than

“deriving” it) the differential behavior of the “quantity” around each point. This can be

formally done by introducing quantities on Spec(A) with values in germs of sections of a

sheaf.

In order to define such a sheaf, we have to introduce a topology on the set Spec(A).

The coarsest topology that does the job is the so-called Zariski topology.49 The open sets

47 It is worth noting that the set of ideals of a ring has the structure of a lattice (where the order relation
is given by the inclusion), i.e. of an ordered set with finite join (or operation or sum) and meet (and
operation or intersection). This lattice yields the “skeleton” of the variety in the sense that it encodes
the relations of incidence and specialization between the different subvarieties.
48 Let’s consider for instance Spec(Z) and let’s denote Zp a prime ideal of Z. Any integer n ∈ Z
defines a quantity n̂ on Spec(Z) such that n̂(Zp) = class of n modulo p, which is an element of the field
Fp = Z/Zp. Hence, the function n̂ takes values in a different field Fp for each prime p (see for instance
Ref.[88, Fig.1.4, 12]).
49 For certain purposes it is necessary to refine the topology by passing for instance to the étale topology
or the fppf (fidélement plat de présentation finie) topology, which are Grothendieck topologies. This
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of this topology are given by the complement of algebraic sets.50 The so-called principal

open sets Uf = Spec(A)− V (f) obtained by removing the biggest possible algebraic sets

(i.e. the algebraic sets V (f) defined by the zeros of a single function f /∈ p) are the smallest

neighborhoods of the point p and form a basis of the Zariski topology. Now that the set

Spec(A) was endowed with a topology, the next step is to define a sheaf of quantities on

Spec(A). The corresponding sheaf is called structure sheaf and denoted OSpec(A).
51 It

can be shown that the stalk OSpec(A)(p) of the structure sheaf at p (i.e. the set of germs

of sections of the sheaf at p) is given by the local ring Ap [57, Prop.2.2, 71] (regarding

the notion of germ see for instance Ref.[84, Sect.II.5, 83-85]).52 An affine scheme is a

locally ringed space (Spec(A),OSpec(A)), i.e. a topological space Spec(A) endowed with a

structure sheaf of rings OSpec(A) such that the stalk at each point p is the local ring Ap.

It is worth unpacking here the geometric meaning of the algebraic notion of local

ring. The spectrum of the local ring Ap is given by Spec(Ap) = {q ∈ Spec(A)/q ⊆ p}
[44, 45]. This means that the localization from Spec(A) to Spec(Ap)

(1) makes abstraction of the inner structure of the irreducible variety p, i.e. it con-

siders p as if it were just an unextended point lacking any internal structure,53

(2) and only focus on the subvarieties of Spec(A) containing p (i.e. it only keeps the

ideals contained in p).

In Mumford’s terms, the localization A → Ap allows us to focus on the directions

“normal” to Vp [97, 107]. Since we have only kept the prime ideals contained in p, the ideal

p is the unique maximal ideal of Ap (this explains why Ap is called a local ring). Roughly

speaking, Spec(Ap) contains one unextended point (the maximal ideal p) and all the

extended subschemes containing it.54

We shall now define an enhanced Gelfand transform G̃ that is injective, i.e. that

distinguishes the different nilpotent elements. To do so, let’s note that the field-valued

representations A → A/p ↪→ κp associated to each point p ∈ Spec(A) coincides with

the map A → Ap → Ap/pAp = κp (i.e., that the operations of localization and passing

to the quotient commute [44, Rem.2.13, 45]). We shall now define an enhanced Gelfand

transform that only retains the localization map λp : A→ Ap in the last composition. In

other terms, the enhanced Gelfand transform sends each a ∈ A to an enhanced quantity

ã on Spec(A) given by ã(p) = λp(a). Since the local ring Ap is the stalk of the structure

sheaf at p, the enhanced Gelfand transform G̃ sends each element a ∈ A to a quantity on

means that the construction of a space associated to a given ring is not canonical, since requires to
choose a particular topology on the set of points.
50 The closed set V (S) of the Zariski topology defined by a subset S ⊂ A is given by the algebraic

“figure” defined by S (i.e. by the points p ∈ Spec(A) such that f̂(p) = 0 for all f ∈ S).
51 For each open set U ⊂ Spec(A), we take OSpec(A)(U) as the set of regular sections s : U →

∐
p∈U Ap,

where s(p) ∈ Ap for all p ∈ U and s is locally induced by fractions a/b with a, b ∈ A and b 6= 0 on
the corresponding open sets [57, 70]. Formally, a regular section is given by pairs (U, x/y) modulo the
equivalence relation (U, x/y) ∼ (V, z/h) if x/y = z/h on U ∩ V . In order to understand the restriction
to regular sections, it might be useful to remember that not every possible family of germs defines a
section of a sheaf. The extra needed condition that a family of germs {ux ∈ Ox}x∈U has to satisfy is
that for all x ∈ U there exists a neighborhood W ⊂ U containing x and a section t ∈ O(W ) such that
the germs defined by the section t on every y ∈ W are the elements uy in the family [114, 24]. It is
worth noting that this is also the extra condition used to define the sheaf associated to a given pre-sheaf
[57, 64].
52 The local ring Ap is the ring obtained by adding inverses to all the ring elements f ∈ A that are not

in p, i.e. the ring Ap =
{

a
f , f /∈ p

}
of rational functions well-defined on p. Conceptually, the algebraic

localization A → Ap entails a geometric localization, namely a localization to the locus in which it is
not possible to divide by elements in p.
53 This results from the fact that the localization removes the prime ideals containing p, i.e. defining
subvarieties of p.
54 It is worth noting that the notion of local ring is “orthogonal” to the notion of coordinate ring: “[...]
for a prime ideal p ⊂ A the passage from A to Ap cuts out all prime ideals except those contained in p.
The passage from A to A/p cuts out all prime ideals except those containing p” [44, 45]. Conceptually,
whereas the notion of local ring makes abstraction of the inner structure of Vp and only focuses on
its immersion in the ambient variety (the “normal” directions), the notion of coordinate ring makes
abstraction of the immersion and only focuses on the regular functions on the resulting “abstract”
variety Vp (the “internal” directions).
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Spec(A) whose possible values at p are given by the germs of the sections of the structure

sheaf. The specification of a germ of a section at a point p contains much more infor-

mation than the mere value of the section at p since two sections having the same germ

at a point p necessarily coincide on an open neighborhood of p (which is not necessarily

true if the two sections only have the same value at p). The important point is that the

enhanced Gelfand transform G̃ is injective.55 This means that the enhanced quantities ã

distinguish the nilpotent elements in the ring A. This construction shows that the nilpo-

tent elements encode differential (would could also say “germinal”) structures around the

points in Spec(A). Conceptually, the fact that the enhanced Gelfand transform keeps the

localization operation A→ Ap and discards the quotient by the prime ideal p means that

one is making abstraction from the internal structure of the corresponding irreducible set

but not of its immersion in the ambient space (see footnote N◦54). The idea of infinitesi-

mal structures corresponding to non-reduced rings (i.e. rings with nilpotent elements) is

central in scheme theory and was used by Grothendieck to develop deformation theory

and infinitesimal calculus on schemes (see Refs.[46] and [50, Exp.14]).56 In particular, the

consideration of non-reduced rings provided the formal tools required to deal with impor-

tant geometric notions such as tangency, multiplicity of an intersection, and infinitesimal

deformations [88, 13-15].

The construction of an affine scheme (Spec(A),OSpec(A)) associated to a ring A allows

to prove a reconstruction theorem for general rings. It can be shown that the restriction

of the structure sheaf to a distinguished open set Uf is OSpec(A)(Uf ) = Af [57, Prop.2.2,

71].57 If in particular we consider the element f = 1, then Uf = Spec(A)−V (1) = Spec(A)

and A1 = A. It follows that OSpec(A)(Spec(A)) ' A, i.e. that A is isomorphic to the ring of

global sections of the structure sheaf. The central difference with respect to the restricted

reconstruction theorem of classical algebraic geometry (for reduced and finitely generated

rings over algebraically closed fields) is that the reconstruction of a general ring A requires

to consider representations of A into different codomains Ap.

The algebra-geometry duality for general rings takes the form of an equivalence of cat-

egories between the opposite of the category of rings and the category of affine schemes58:

Ringop Aff

Γ(−)

Sch(−) (VI.1)

This equivalence of categories is defined by the functor Sch(−) that sends a ring A to

the affine scheme (Spec(A),OSpec(A)) and by the global section functor Γ(−) that sends

an affine scheme (Spec(A),OSpec(A)) to the ring OSpec(A)(Spec(A)) of global sections of

its structure sheaf. In the terms introduce in Section N◦II (see Fig. N◦II.1), the functor

Sch(−) is the semiotic functor that sends a ring to the locally ringed space that encodes

its general representation theory. In turn, the global section functor Γ(−) is the structure

55 If G̃(a) = 0 then a/1 = 0 ∈ Ap for every prime p. This means that for each p there exists bp ∈ A− p
such that a bp = 0. It follows that a = 0 since the ideal of all b ∈ A such that a b = 0 is not contained
in any prime ideal and hence has to contain 1 ∈ A.
56 From a historical standpoint, it is worth noting that an important antecedent of Grothendieck’s work
on infinitesimal structures was provided by Weil’s article Théorie des points proches sur les variétés
differentiables [129].
57 This means that the notion of locality encoded by the notion of local ring Af obtained by localizing A
at f ∈ A is the algebraic counterpart of the topological notion of locality encoded by the distinguished
open sets Uf of the Zariski topology. It is worth noting that the notations Af and Ap are somehow
confusing since Af localizes to the open set Uf where we can divide by f and Ap localizes to the point
p where we cannot divide by the elements f in p.
58 A morphism of affine schemes (X,OX) → (Y,OY ) is given by (i) a map of topological spaces

π : X → Y and (ii) a morphism of sheaves π] : OY → π∗OX , where the pushforward π∗OX is given by

π∗OX(U) = OX(π−1(U)) for U an open set of Y .
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functor that extracts the algebraic structure (the ring) whose representation theory is

encoded by the corresponding locally ringed space. As we have briefly explained in this

section, this algebraic structure-geometric semiotics duality relies on a precise dictionary

between algebraic and geometric notions (see Table N◦2).

Table 2.

Algebra Geometry

Ring A Affine scheme (Spec(A),OSpec(A))

Point in Spec(A) corresponding

Prime ideal p to an irreducible subscheme

(generic points)

Point in Spec(A) corresponding

Maximal ideal m to an irreducible unextended subscheme

(standard points)

Local ring Ap Stalk OSpec(A)(p) of germs of sections on p

Global section ã of the sheaf OSpec(A)

Ring element a ∈ A
with values in point-dependent codomains Ap

VII. The Magic Fan

In the last section, we have obtained an algebra-geometry duality given by an equiv-

alence of categories between a category of algebraic objects—rings A—and a category of

geometric objects—affine schemes (Spec(A),OSpec(A))—. Equipped as we are with these

conceptual and formal tools, let’s come back now to the starting point of the whole dis-

cussion, namely to the fact that a system of polynomial equations over a field of definition

k defines different figures depending on the codomain in which one searches for their

solutions (see also the discussion in Ref.[22, 290-292] and Ref.[31, 13-14]).

As we have shown in Section N◦V, an ideal t of polynomial equations in P
.
= k[x1, . . . , xn]

defines a functor of solutions Spec(−)(P/t) that sends each k-algebra B to the set of solu-

tions of the corresponding equations in B. As we have seen in Section N◦IV, each solution

defines a morphism P/t→ B, which means that the functor of solutions Spec(−)(P/t) is a

representable functor. In other terms, the quotient ring P/t is the object that classifies the

solutions of the equations in the ideal t (see Section N◦V). Now, the algebra-geometry du-

ality between rings and affine schemes—i.e. the equivalence of categories (VI.1)—implies

that HomRing(P/t, B) ' HomAff (Sch(B), Sch(P/t)). In other terms, there is a bijec-

tive correspondence between each B-solution of the corresponding equations and each

morphism of schemes ϕ : Sch(B)→ Sch(P/t). As Cartier writes:
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“A solution of the ‘system of equations’ [t], with the ‘domain of con-

stants’ [k], with values in the ‘universal domain’ [B] corresponds to a

morphism ϕ from [Sch(B)] to [Sch(P/t)]. [...] Admirable simplicity—

and a very fruitful point of view—but a complete change of paradigm!”

[22, 291]

Hence, the existence of an algebra-geometry duality between rings and affine schemes

means that the functor of solutions that encodes the solutions of an ideal of polynomial

equations in the different possible codomains B can be dually understood as a functor

of points that sends each affine scheme Sch(B) to the set HomAff (Sch(B), Sch(P/t))

of (what we shall call) Sch(B)-shaped generalized points of Sch(P/t). A morphism of

affine schemes ϕ : Sch(B) → Sch(P/t) can be understood as a generalization of the

characteristic functions χa : {∗} → X defined by each element a in a set X given by

∗ 7→ a, that is of the functions that “point” to the different elements or “points” of

X (or, in figurative terms, the functions that present each “point” of the set X as a

concrete incarnation of the “universal set-theoretic point” given by the singleton {∗}).
When the codomain B is a field extension k′ of k, the space Spec(k′) contains a single

point and the maps Sch(k′)→ Sch(P/t) are indeed similar to the characteristic functions

χa : {∗} → X. The difference with respect to the set-theoretic situation is that now we

have different “punctual” schemes of the form Sch(k) corresponding to different fields k.59

More generally, a B-representation of P/t (where the k-algebra B is not necessarily a field)

can be geometrically “schematized” as a morphism Sch(B)→ Sch(P/t) that “points” to

a Sch(B)-shaped generalized point of Sch(P/t).

We could say that in the theory of schemes the notion of point is subjected to two gen-

eralizations. Firstly, the notion of point is generalized from unextended irreducible subsets

(maximal ideals) to general irreducible subsets (prime ideals). As we have explained in

Section N◦VI, the underlying set of an affine scheme Sch(A) contains all the prime ideals

of A, be them maximal (unextended points) or not (generic points). Now, both kinds

of points (unextended and generic) describe representations of the original ring A into

fields. The second generalization in the definition of a point amounts to pass from points

associated to such field-valued representations to generalized points associated to more

general (k-algebra)-valued representations. This means that the generalized points of a

scheme Sch(P/t) are not only given by morphisms Sch(k′)→ Sch(P/t) from “punctual”

schemes of the form Sch(k′), but also by more general Sch(B)-shaped generalized points

Sch(B)→ Sch(P/t) where B is not necessarily a field. It is worth noting that whereas a

general scheme Sch(A) is not defined by the underlying set of points of the corresponding

topological space (e.g. the different schemes Sch(k) and Sch(k′) have the same underlying

set of points), a scheme is defined by its functor of points, i.e. by the structured set of its

Sch(B)-shaped generalized points for every ring B.

The scheme Sch(P/t) over the field of definition k encodes (what Grothendieck calls)

a “fan” of schemes over field extensions k′ of k. Let’s note first that Sch(P/t) is endowed

with a morphism to the scheme Sch(k) dual to the inclusion k ↪→ P/t. Schemes X

equipped with a morphism to another scheme S are called S-schemes or relative schemes

over S (and the morphism X → S is called structure morphism) [49, 226]. Given another

morphism S′ → S over S, we can pullback a relative scheme X over S to a relative

scheme X ×S S
′ over S′. This fundamental operation of the theory of schemes is called

base change. In particular, one can pullback Sch(P/t) along the morphism Sch(k′) →
Sch(k) dual to the inclusion k ↪→ k′, thereby obtaining a scheme over Sch(k′). In this

description, the Sch(k′)-points of Sch(P/t) can be identified with the sections of the

projection Sch(P/t) ×Sch(k) Spec(k
′) → Sch(k′) [31, 13]. All in all, a scheme Sch(P/t)

59 Even if the underlying sets of such schemes contain all a single point, the structure sheaf on the point
is different for different k. In Ref.[49, 12], the points associated to field-valued representations are called
geometric points.
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over Sch(k) (or, equivalently, a scheme associated to a ring that is a k-algebra) can be

understood as a “fan” of schemes, one for each field extension k′ of k. In this way, the

scheme Sch(P/t) defined by a system of polynomial equations over k unifies the different

“figures” associated to the solutions of these equations in the different field extensions k′

of k into a single geometric object.

As it is noted in Ref.[49, §17, 17-18], the scheme Sch(P/t) only depends on the ring

structure of the k-algebra P/t. The fact that P/t is also a k algebra translates geometrically

into the fact that the scheme Sch(P/t) is endowed with an additional structure, namely

the structure morphism to Sch(k). Hence, we can associate an affine scheme Sch(A) to

any ring A, be it a k-algebra or not (as we have done in Section N◦VI). Now, for any

ring A there is a canonical morphism Z → A given by n 7→ 1 + 1 + ... + 1 where the

unity 1 ∈ A is added n times (which means that Z is an initial object in the category of

rings). Therefore, every scheme Sch(A) is canonically endowed with a structure morphism

Sch(A) → Sch(Z) dual to Z → A. An absolute scheme is a Sch(Z)-scheme, that is

a scheme over (what Grothendieck calls) the absolute base Sch(Z) [47]. In turn, the

morphism of rings Z → Z/pZ (with p a prime number) induces a morphism of affine

schemes Sch(Z/pZ) → Sch(Z). If we take the pullback of Sch(A) → Sch(Z) along this

last map we obtain a scheme over Sch(Z/pZ), that is a scheme of characteristic p [44, 89].

In this was, an absolute scheme Sch(A) can be understood—in Grothendieck’s terms—as

a “magic fan” that “gives birth” to a scheme of characteristic p for each prime number p.

It is worth quoting here Grothendieck’s own description of this “magic fan”:

“La notion de schéma est la plus naturelle, la plus ‘évidente’ imaginable,

pour englober en une notion unique la série infinie de notions de ‘variété’

(algébrique) qu’on maniait précédemment (une telle notion pour chaque

nombre premier). [...] De plus, un seul et même ‘schéma’ (ou ‘variété’

nouveau style) donne naissance, pour chaque nombre premier p, à une

‘variété (algébrique) de caractéristique p’ bien déterminée. La collec-

tion de ces différentes variétés des différentes caractéristiques peut alors

être visualisée comme une sorte d’‘éventail (infini) de variétés’ (une pour

chaque caractéristique). Le ‘schéma’ est cet éventail magique, qui relie

entre eux, comme autant de ‘branches’ différentes, ses ‘avatars’ ou ‘incar-

nations’ de toutes les caractéristiques possibles. Par là-même, il fournit

un efficace ‘principe de passage’ pour relier entre elles des ‘variétés’,

ressortissant de géométries qui jusque là étaient apparues comme plus

ou moins isolées, coupées les unes des autres. A présent, elles se trouvent

englobées dans une ‘géométrie’ commune et reliées par elle” [47].

Regarding the distinguished role played by the ring Z in the category of rings, let us

conclude this section with an important remark (see for instance Ref.[124, 445] and Ref.[32,

6]). As we have argued all throughout this article, the reconstruction of a ring A from

its representations A → B requires to consider representations with respect to a varying

codomain B. This “generalized semiotics” of the ring A can still be encoded in a single

geometric object, namely the affine scheme (Spec(A),OSpec(A)). As we have explained,

the fact that the codomain of the representations can vary translates geometrically into

the fact that the elements in A define global sections of the structure sheaf with values

in point-dependent codomains. Now, once we have the geometric notion of affine scheme

at our disposal, it is possible to define a unique codomain given by an affine scheme—

namely, the so-called affine line A1 := Sch(Z[x])—such that the elements in A are in

bijective correspondence with the A1-valued functions on Spec(A).60 In this way, we have

described a sort of dialectical process that moves back and forward from the presupposition

60 To see that this is indeed the case, let’s note that the ring Z[x] of polynomials in one variable
with entire coefficients is such that A ' HomRing(Z[x], A), where each a ∈ A defines a morphism
φa : Z[x] → A given by φa(p) = p(a). The duality between rings an affine schemes—i.e. the fact
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of a unique codomain (like the algebraically closed fields in the algebraic geometry of affine

varieties; see Section N◦IV) to the consideration of a whole category of codomains, and

then back to the realization that in the end any ring A is in bijective correspondence with

the A1-valued functions on its prime spectrum Spec(A). As we have stressed above, this

last step can be accomplished only when we already have at our disposal the notion of

affine scheme.

VIII. A Kantian Interpretation of the Reconstruction Theorems

In the wake of the Kantian analysis of the Pontryagin duality for locally-compact

abelian groups proposed by the mathematician Majid [85], we shall now consider the math-

ematical problem of representation from a perspective inspired by Kant’s phenomenon-

noumenon distinction.61 The interpretation of this distinction is a central topic in Kant’s

scholarship (see for instance Refs.[2, 17, 52, 106, 116]). In what follows we do not intend

to take a stand in these debates. We shall rather use the interpretation of Kant’s distinc-

tion that is best adapted to the conceptual analysis of the problem at stake, that is the

problem of reconstructing a mathematical structure A from its representations A→ B.

In The Critique of Pure Reason [66, B295/A236—B315/A260], Kant introduced the

central difference between the things in themselves or noumena and the phenomena of

human experience. According to the reading of Kant’s distinction that we shall endorse

here (which follows to a certain extent the so called two-aspect interpretation defended by

Allison [2], Bird [17], and Prauss [106] among others62), the noumena and the phenomena

do not refer to two kinds of entities but rather to the same entity considered from two

different standpoints, namely the entity as it appears to subjects equipped with a particu-

lar cognitive (perceptual and conceptual) apparatus and the entity “considered as it is in

itself” [Ding an sich selbst betrachten], that is, independently of any subjective cognitive

framing. Whereas a thing in itself is independent of any subject, its phenomenalisation

(i.e. the way according to which it appears for a subject) depends on the particular cog-

nitive apparatus of the subject, that is, on what we could call its transcendental type. We

could then say that subjects of different transcendental types B and B′ (e.g. a human

being and a tick) constitute different phenoumena AB and AB′ out of the same thing in

itself A.

In order to adapt this conceptual framework to the subject of this article, we shall

endorse the readings of Kant’s terminology (mainly associated to the two aspect inter-

pretations) that enrich the phenomenon-noumenon distinction with a further distinction,

namely the distinction between the phenomena of experience and the subjective represen-

tions [Vorstellungen] of these phenomena (regarding this distinction see Ref.[115, Sect.3.1]

and references therein). We could say, in Husserl’s terms (see for instance Ref.[64, §41,

74; §44, 82]), that the phenomena of experience are not given to a subject all at once, but

rather “onesidedly”, that is through a multiplicity of perspectival profiles, aspects or “ad-

umbrations” [Abschaltungen]. According to these definitions, the subjective experience

of a phenomenon is given by one-sided representations of the phenomenon’s adumbra-

tions. By changing the relative position between the phenomenon and the subject, the

latter can gain access to the different adumbrations of the phenomenon. All in all (and

according to the particular interpretative framework endorsed here) the Kantian analysis

of experience gives rise to a threefold structure composed of:

that HomRing(Z[x], A) ' HomAff (Spec(A),A1)—allows us to translate this bijection into a bijection

between A and the A1-valued functions on Spec(A).
61 In Ref.[76, Sect.1], Lawvere provided a related Hegelian-oriented attempt to provide a philosophical
interpretation of the duality between “space” and “quantity”.
62 The two-aspect interpretation arised as an alternative with respect to the so-called two-world
interpretation mainly defended by Strawson [116] (see also related stances in Ref.[52, V.15, 333]
and Ref.[123]). Regarding the tension between these two interpretational frameworks see notably
Refs.[1, 3, 110, 127].
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(1) the things in themselves (i.e. considered independently of the subjective condi-

tions under which they appear),

(2) the phenomena or the things as they appear to subjects of a given transcendental

type,

(3) the sets of perspectival representations that a subject can have of the correspond-

ing phenomenon.

In order to apply this Kantian-oriented conceptual framework to the problem of re-

constructing a mathematical structure from its representations, let’s establish a precise

dictionary between philosophical concepts and mathematical notions (see Table N◦VIII).

Each map A → B will be understood—in agreement with the terminology that we have

used thus far—as a “representation” of the “thing in itself” A defined with respect to

the “transcendental” codomain B. In this sense, the codomains B provide what we could

metaphorically call the “subjective” side of the representations. In order to avoid any

subjectivist overtones, we shall refer to B by means of the term (inspired by both Kant

and Kronecker) transcendental codomain of rationality. We could say that each map

A → B represents A by means of a particular “image” in B, namely the image (in

the mathematical sense of the term) of the map. For each codomain B, there is a set

SpecB(A) = HomC(A,B) of B-representations of A. By taking into account that the

term spectrum comes for the Latin for revelation, apparition, or manifestation, we could

say that SpecB(A) encodes all the ways according to which A can “appear” (i.e. it can

be re-presented or modeled) in the transcendental codomain of rationality B. Accord-

ing to this description, each thing in itself A defines a multiplicity of spectra SpecB(A),

SpecB′(A), SpecB′′(A)... (one for each transcendental codomain B, B′, B′′...). We could

then say that each thing in itself A defines a structured set of representations or a variable

set (where we are here borrowing the mathematical terminology used in Refs.[97, 113],

[91, 386], and [14]). This means that the set of representations induced by a given thing in

itself A is a collection of sets of the form SpecB(A) parameterized by the objects B in the

category C, where each set SpecB(A) in the collection includes all the B-representations

A → B of A. As we have seen in Section N◦V, this assignation of a set SpecB(A) to

each B in the category C is functorial. This means that morphisms B → C between tran-

scendental codomains of rationality in C translate into morphisms SpecB(A)→ SpecC(A)

between the corresponding sets of representations.

Here we have two possible scenarios corresponding to what we have called restricted and

general reconstruction theorems. First, it might be possible to faithfully reconstruct A—

i.e. to reconstruct A as “it is in itself”—by only considering representations of A defined

with respect to a single transcendental codomain of rationality B (restricted reconstruction

theorem). In philosophical terms, this means that nothing is lost when passing from the

thing in itself A to its B-phenomenalisation, i.e. to the phenomenalization of A with

respect to the transcendental codomain of rationality B.

Now, representations defined with respect to a single transcendental codomain might

not be enough to reconstruct A as “it is in itself”. If the space SpecB(A) does not have

“enough points”, it might be the case that different elements a, a′ ∈ A define—via the

Gelfand transform—the same quantity on SpecB(A). In that case, the representations

parameterized by the space SpecB(A) cannot “separate” the elements a and a′. Since—as

we have seen—the obstruction to such a reconstruction is given by the kernel of the Gelfand

transform, the quotient AB = A/ker(GA,B) could be called B-phenomenalization of A.

Conceptually, the B-phenomenonalization of A encodes what can be reconstructed from A

when one only considers representations of A with respect to the transcendental domain of

rationality B. In classical algebraic geometry, the lack of “enough points” can be bypassed

by adding more points, that is by considering representations into an algebraically closed

extensionK of the domain of definition k of the corresponding system of equations (Section
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Table 3.

Kantian Concepts Mathematical Notions

Thing in Itself A

Transcendental Codomain of Rationality B

B-Representations of A A→ B

SpecB(A) = HomC(A,B)
Space of B-Representations

endowed with a topology

B-Phenomenalization of A AB = A/ker(GA,B)

N◦IV). In the terms of model theory, this algebraically closed extension of the domain of

definition k can be understood as an existential closure of k [61, 362] (see also Refs.[15, 87]).

The extension of a given (co)domain of rationality by the adjunction of new “ideal

elements” provides an important mechanism in the development of mathematics. We could

say that these adjunctions elicit an expansion of the different transcendental regimes of

“pure intuition”63, like for instance the regime provided by the understanding of numbers

as formal entities intended to count an aggregate of things—or, as Kant writes in the

Prolegomena, as concepts formed “through successive additions of units in time” [67, 4:283,

§10, 35].64 According to Hilbert, “[t]his procedure of introducing ideal elements is one of

the most important mathematical methods, the application of which is always repeated

up to the highest parts of mathematics” [60, 90]. The possibility of extending a given

domain of rationality and enriching the corresponding forms of “pure intuition” entails

a particular form of (what Friedman calls in his reading of Carnap, Reichenbach, and

Schlick) “relativization of the a priori” [42, I.3]. In the particular case treated here, this

means that the arithmetic and geometric forms of “pure intuition” (e.g. natural numbers,

Euclidean space), far from being fixed once and for all (i.e. far from being endowed with

a perennial form of aprioricity as it seems to be the case in Kant65), are subjected to

changes elicited by the very evolution of mathematics. The fact that domain extensions

force to modify what in a given historical context takes the form of an a priori form

of “pure intuition” explains the difficulties encountered in performing such extensions.66

These difficulties left theirs traces in the denominations chosen to design the new elements

63 Regarding the Kantian notion of pure intuition see Ref.[41].
64 Regarding the concept of domain extension, see the corresponding texts by Hilbert [59, 60], the
discussion of “ideal elements” proposed by Cassirer [24, III.4.4], and the discussion of this topic in
contemporary philosophy of mathematics [15, 20, 87].
65 For instance, Kant expresses in a letter to A.W. Rehberg the “puzzlement” he feels about an irrational

number like
√

2: “The understanding is not even in a position to assume the possibility of an object√
2, since it cannot adequately present the concept of such a quantity in an intuition of number, and

would even less anticipate that such a quantity could be given a priori.” [68, 168-169].
66 As Cassirer writes in Substance and Function: “The difficulties encountered in the introduction
of every new type of number—of the negatives and the irrationals as well as the imaginaries,—
are easily explained if we consider that, in all these transformations, the real basis of numerical
assertions seems more and more to disappear. Enumeration, in its most fundamental sense, could
be immediately shown to be ‘real’ by means of sensible objects and therefore valid” [25, 55].
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(e.g. irrational numbers, imaginary numbers, ideal elements). Now—in Hilbert’s terms—,

“[t]he expression ‘ideal elements’ is only justified from the point of view of the original

system. In the new system, we no longer distinguish between real [wirklichen] and ideal

[idealen] elements” [60, 91]. It follows—as Bernays states with respect to “the problem of

infinity”—that “the sharp distinction between the intuitive [Anschaulichen] and the non-

intuitive [Nicht-Anschaulichen] [...] can apparently not be drawn so strictly [...]” [16, 61].

In particular, the extensions of the successive number systems and the projectivization of

Euclidean space by adding new points at infinity constitute two paradigmatic examples

of domain extensions that entail new forms of (arithmetic and geometric) intuition.

Now, Grothendieck’s groundbreaking insight is that the reconstruction of a general

ring A might require to consider a notion of variation of the codomain of the represen-

tations of A more general than the notion of field extension. The “relativization of the

a priori” encoded in the notion of domain extension remains limited and the reconstruc-

tion of a general ring from its representations makes necessary to perfom a more general

relativization of the a priori. We could say in Kantian terms that the reconstruction of

a thing A as “it is in itself” might require not only to consider representations defined

with respect to a single transcendental codomain of rationality (or with respect to a suit-

able extension of it), but also to consider representations defined with respect to a whole

category of codomains. As Grothendieck and Dieudonné write in the introduction to the

Éléments de Géométrie Algébrique I, the strategy that consists in considering solutions in

an extension of the field of definition of the system of equations worked “too well” since

it caused mathematicians to lose sight of the fundamental idea of a “change of the base

field” in all its generality.67 Grothendieck’s notion of a functor of solutions associated to

a ring P/t—or the dual notion of a functor of points represented by the affine scheme

Sch(P/t)—introduced for the first time an extended kind of variations that includes a

“fan” of transcendental codomains of rationality not necessarily related by domain ex-

tensions. Whereas the relativity associated to domain extensions ultimately leads to the

consideration of a single domain that is “big enough” (like Weil’s universal domains), the

functorial relativity envelops domains that cannot be nested into one another.

Galois theory can be understood as a sort of intra-mathematical reflection on the

“relativization of the a priori” encoded in the notion of domain extension for the particular

case given by sequences of (normal and separable) field extensions k ↪→ k′ of a field k

defined by the adjunctions of new “ideal elements” (e.g., the extension C = R[i]) [18, 27].

As we have just argued, Grothendieck’s “relative point of view” pushes even further the

Galoisian “relativization of the a priori”. In this sense, we could say that Grothendieck

can indeed be considered (as he claims) as a legitimate heir of “Galois’ heritage” (regarding

the influence of Galois on Grothendieck see Ref.[28]).68

67 In Grothendieck and Dieudonné’s own terms, “[...] dès le début du XVIIIe siècle, et
systématiquement à partir de Monge et de Poncelet, on associe à un système [d’équations poly-
nomiales] à coefficients réels le même système dont on ne cherche plus seulement les solutions dans

RI , mais bien dans l’espace complexe correspondant CI , utilisant le fait que R est un sous-corps
de C. Cette idée se montra très féconde, du fait que les propriétés des êtres algébriques étudiés se
simplifiaient considérablement par cette ‘extension’ du corps de base; en fait on peut même dire que
cette ‘extension’ réussit en un certain sense trop bien, car l’avantage additionnel de disposer, sur
le corps C, de la puissante théorie des fonctions analytiques fut cause que pendant tout le XIXe

siècle on cessa pratiquement de considérer d’autres systèmes [d’équations polynomiales] que ceux à
coefficients complexes (ou dans des sous-corps de C tels que les corps de nombres algébriques); ce
qui conduisit à perdre de vue l’idée fondamentale du ‘changement du corps de base’ sous sa forme
générale [...]” [49, 5-6].
68 In Recoltes et Semailles, Grothendieck writes: “[...] le premier dans la lignée de mes ‘frères
de tempérament’ [...] c’est Evariste Galois. Dans sa courte et fulgurante vie, je crois discerner
l’amorce d’une grande vision—celle justement des ‘épousailles du nombre et de la grandeur’, dans
une vision géométrique nouvelle. J’évoque ailleurs dans Récoltes et Semailles comment, il y a deux
ans, est apparu en moi cette intuition soudaine: que dans le travail mathématique qui à ce moment
exerçait sur moi la fascination la plus puissante, j’étais en train de ‘reprendre l’héritage de Galois’.
Cette intuition, rarement évoquée depuis, a pourtant eu le temps de mûrir en silence. La réflexion
rétrospective sur mon œuvre que je poursuis depuis trois semaines y aura sûrement encore contribué.
La filiation la plus directe que je crois reconnâıtre à présent avec un mathématicien du passé, est
bien celle qui me relie à Evariste Galois” [47].
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IX. Conclusion

In this article we have tried to contribute to what we could call the “philosophy of

(mathematical) duality” [27, 30, 53, 69, 71] by analyzing a major event in the history of

this notion, namely the construction of a geometric object (an affine scheme) associated

to any (commutative) ring. Let’s stress the main argumentative thread of the proposed

analysis:

(1) In Section N◦III, we have described a general meta-mathematical pattern that

reappears in different algebra-geometry dualities in many areas of mathematics

(e.g. mathematical logic, algebraic geometry, group representation theory, C∗-

algebra theory, Galois-Grothendieck theory). In all these results, a mathematical

structure A (e.g. a Boolean algebra, a ring, a group, a C∗-algebra, etc.) is recon-

structed from its representations A→ B with respect to other similar structures

B. The underlying reconstruction protocol (schematized in Figure III.2) is al-

ways the same: the mathematical structure A is recovered as (i.e. is isomorphic

to) an algebra of quantities Γ(Spec(A)) defined by means of a Gelfand trans-

form A→ Γ(Spec(A)) on a moduli space Spec(A) that parameterizes some of its

representations.

(2) We have argued that this general meta-mathematical pattern exhibits an entangle-

ment between an algebra-geometry duality and (what we have called) a structure-

semiotics duality (of which the syntax-semantics dualities for propositional and

predicate logic are particular cases) (Section N◦II). This entanglement between

these two kinds of duality results from the fact (already stressed by Halvorson and

Tsementzis for the case of the Stone duality [55, 56]) that the formulation of a du-

ality between a “theory” and its “models” requires to endow the set of “models”

with an extra geometric structure encoding theirs relations (which means that the

geometry is on the semiotic side of the duality).

(3) In Section N◦IV, we have reviewed a particular case of the algebra/structure-

geometry/semiotics duality, namely the (restricted) reconstruction theorem of

classical algebraic geometry. This result states that certain kind of rings (reduced

and finitely generated rings over algebraically closed fields) can be reconstructed

from its representations into a unique codomain.

(4) In Section N◦V, we have introduced Grothendieck’s theory of affine schemes as an

attempt to obtain a reconstruction theorem in algebraic geometry that works for

general commutative rings. This can be done by extending the semiotic side of

the structure-semiotics duality to representations defined with respect to a whole

family of codomains (general reconstruction theorems). This extension of the

semiotic side of the duality is encoded in the category theoretic notion of functor

of points.

(5) As we have explained in Section N◦VI, Grothendieck’s functorial extension of

the structure-semiotics duality threatens the possibility of casting this duality

into the form of an algebra-geometry duality since we have now a different space

SpecB(A) for each codomain of rationality B. Now, Grothendieck showed that

it is still possible to construct a single geometric object encoding the generalized

semiotics of the original ring A, namely the affine scheme (Spec(A),OSpec(A)).

(6) In Section N◦VI, we have proposed a conceptual-oriented introduction to the con-

struction of the affine scheme (Spec(A),OSpec(A)) associated to a ring A. The pro-

posed presentation stresses the salient features that differentiates Grothendieck’s

construction from previous forms of the algebra-geometry duality, namely:

• that the “points” of the underlying space Spec(A) encode all the irreducible

sub-schemes (and not just the irreducible sub-schemes given by the unex-

tended points),
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• that the quantities ã on the space Spec(A) defined by the ring elements a ∈ A
have values in point-dependent codomains,

• that these values are given by germs of sections that encode differential

structures around the points.

(7) We have finally proposed a Kantian-oriented interpretation of both the restricted

and the general reconstruction theorems. According to this interpretation, Gro-

thendieck’s construction can be understood as a further generalization of the

“relativization of the a priori” encoded in the notion of domain extension to

more general variations of the “transcendental codomains of rationality”.

In order to conclude, let us note that this transition from a restricted set of representa-

tions to a general sheaf of representations defined on a whole category of transcendental

codomains is just the first step in a series of far-reaching generalizations. These general-

izations proceed by modifying the domain category and/or the codomain category of the

functor of points. First, we can pass from functors of points with values in the category

of sets, i.e. from functors of the form

Spec(−)(A) : Ring → Set,

to functors with values in the category of groupoids (stacks) or in the category of simplicial

sets (higher stacks). The next generalization—which is the grounding idea of the field of

derived geometry—amounts to pass from functors over the category of rings to functors

over the category of differential graded algebras, thereby giving rise to the theory of derived

stacks (see for instance Refs.[4, 120, 126]). This final note suggests a possible direction for

the continuation of the research project started in this article, namely that of upgrading

the proposed analysis of the philosophical (and in particular mathematical) problem of

reconstructing a structure from its representations to the formal framework defined by the

two aforementioned generalizations.
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[62] Houzel, C. [2003], La géométrie algébrique. Recherches historiques, Albert Blanchard.

[63] Houzel, C. [1994], A Short History: Les debuts de la théorie des faisceaux, in M. Kashiwara and
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[113] Serre, J.-P. [1955], Faisceaux Algébriques Coherents, The Annals of Mathematics, 2nd Ser., 61(2),

197-278.

[114] Shafarevich, I.R. [1996], Basic Algebraic Geometry 2, Second Revised and Expanded Edition,

Berlin Heidelberg: Springer-Verlag.

[115] Stang, N.F. [2021], Kant’s Transcendental Idealism, The Stanford Encyclopedia of Philosophy

(Spring 2021 Edition), Edward N. Zalta (ed.).

[116] Strawson, P.F. [1966], The Bounds of Sense, London: Methuen.

[117] Suppe, F. [2000], Understanding Scientific Theories: An Assessment of Developments, 1969-1998.

Supplement. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association.

Part II: Symposia Papers, Philosophy of Science, Vol. 67, S102-S115.



34 GABRIEL CATREN AND FERNANDO CUKIERMAN

[118] Suppes, P. [2002], Representation and Invariance of Scientific Structures. Stanford, CA: CSLI

Publications.

[119] Szczeciniarz, J.-J. [2018], For a Continued Revival of the Philosophy of Mathematics, in H. Tahiri

(ed.), The Philosophers and Mathematics Festschrift for Roshdi Rashed, Switzerland, Springer,

263-295.

[120] Toen, B. [2014], Derived Algebraic Geometry, arXiv:1401.1044 [math.AG].

[121] van Fraassen, B.C. [1987], The Semantic Approach to Scientific Theories, in N.J. Nersessian

(ed.),The Process of Science. Contemporary Philosophical Approaches to Understanding Scien-

tific Practice, Science and Philosophy, Dordrecht, The Netherlands: Martinus Nijhoff Publishers,

105-124.

[122] van Fraassen, B.C. [1970], On the Extension of Beth’s Semantics of Physical Theories, Philosophy

of Science, 37(3), 325-339.

[123] Van Cleve, J. [1999], Problems from Kant, New York: Oxford University Press.
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