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Abstract: In this paper, we deal with output tracking control problems for input-affine
nonlinear systems. We propose a deep learning-based solution whose foundations lay in control
theory. We design a two-step state-feedback controller: a contraction-based feedback stabilizer
and a feedforward action. The first component guarantees convergence to the steady-state
trajectory on which the tracking error is zero. The second one is inherited from output regulation
theory and provides forward invariantness of such a trajectory along the solutions of the system.
To alleviate the need for heavy analytical computations or online optimization, we rely on deep
neural networks and link their approximation error to the tracking one. Mimicking the analytical
control structure, we split the learning task into two separate modules. For the stabilizer module,
we propose a switching objective function balancing feasibility of the solution and performance
improvement. We test our solution in a challenging environment to validate the proposed design.
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1. INTRODUCTION

Output tracking is arguably among the most versatile
applications of control theory, ranging from vertical take-
off in aerospace (Martin et al., 1996) and naval ships tra-
jectories (Wondergem et al., 2010) to electronics (Wu and
Zou, 2009) and mechanics (Xie and Duan, 2010). The task
consists in designing a control action leading the output of
a dynamical system to track an arbitrary reference signal.
Such a trajectory may be generated from manual design or
any external source, depending on the control task. While
being fairly simple to address on linear systems (Francis
and Wonham, 1976), output tracking remains an open
problem for most general nonlinear dynamical systems. In
this case, existing approaches either rely on heavy online
computation or demand dynamical model knowledge.

Existing solutions canonically address the output tracking
problem by exploiting one of the following tools: (i) model
inversion, (ii) regulation theory or (iii) optimization. (i)
The first method looks for an inverse model mapping
the current state-target couple to the input transporting
the former to the latter. As an example, we point the
reader to solutions based on feedback linearization (Isidori,
1995, Chapter 5.2) or (Devasia et al., 1996) and refer-
ences therein. (ii) The second design generalizes the linear
method: the controller is divided in a dynamical part (the
internal model) and a stabilizer (Isidori and Byrnes, 1990).
The internal model component includes a generator of the
steady-state solution where the tracking error is zero. The
stabilizer provides convergence to such a solution (see e.g.
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Giaccagli et al. (2022a) for the case of constant references).
The overall control law guarantees stability, attractivity
and forward-invariantness of a manifold where tracking
is achieved. As for (i), the approach is strongly model-
dependent. Related issues can be alleviated with possi-
ble countermeasures such as adaptive techniques (Serrani
et al., 2001). Unfortunately, these tricks often leverage
challenging analytical considerations, as they usually re-
quire a well-defined change of coordinates to bring the
system in normal form and, in most cases, a minimum-
phase assumption. (iii) Finally, the third method considers
output tracking as an optimization problem, which moti-
vates the use of the corresponding tools.

The latter is promising in many ways: it can cope with
(small) model errors and it requires moderate theoretical
analysis to be deployed, such as Model Predictive Con-
trol (MPC) (Limon and Alamo, 2021). The main draw-
back is the computational effort. MPC usually requires
solving an online optimization problem for any point in
the trajectory. The complexity of such a task drastically
increases for systems presenting significant nonlinearities.
To avoid the need of online computation, another class of
optimization tools have emerged from the use of convex
programming (Tsukamoto and Chung, 2020). Here, an
offline optimization problem is solved on isolated points
to produce a dataset. The solution is then interpolated by
means of a Deep Neural Network (DNN). Deep learning-
based controllers are fast, versatile, and very efficient in
most situations, but are very data intensive, and often
requires a preexisting expert agent to build a sufficiently
informative dataset. A different option is to rely on the re-
inforcement learning philosophy (Bertsekas, 2019), which



leverages exploration guided by a weak reward signal.
However, theoretical guarantees such as stability are chal-
lenging to obtain. Hence, existing results are frequently
restricted to simpler classes of systems, e.g., linear ones
(Chen et al., 2022).

In this work, we develop a solution to the output tracking
problem which intertwines techniques from machine learn-
ing and control theory. To do so, we propose a DNN-based
algorithm whose backbone comes from output-regulation
theory. Formally, we propose a two-step controller. First,
we estimate the solution of the regulator equations for a
given reference signal, resulting in steady-state trajectory
π(t) and control action ψ(t) minimizing the tracking error.
Then, we design a stabilizer making trajectories asymp-
totically converge to the reference. To this aim, we rely
on the concept of contractive dynamics. Hence, our sta-
bilizer makes the closed-loop a contraction via the results
presented in (Giaccagli et al., 2022b) and approximates its
analytical solutions with another DNN.

Mixing contraction and DNNs has been recently stud-
ied, for instance in (Zhao et al., 2022; Wei et al., 2022;
Tsukamoto et al., 2021; Janny et al., 2021; Sun et al.,
2021; Dawson et al., 2023). However, our work differs
in two main aspects. (i) In the proposed approach, we
take advantage of results coming from output regulation
theory. The regulator equations are solved thanks to an
end-to-end weakly supervised DNN that directly estimates
steady-state variables from the reference. We show that
our model performs well even on challenging references. (ii)
In the former results, the stabilizer is usually implemented
by means of Control Contraction Metrics (Manchester
and Slotine, 2017). Existing methods require solving an
online optimization problem in each point to compute the
geodesic (i.e. the shortest path between the system and the
trajectory to be tracked). This is usually a computation-
ally demanding task, whose exact solution is not always
guaranteed to be found since the optimization task is per-
formed only in compact sets. Conversely, in our design, the
structure of the control action is derived analytically, and
only its implementation is obtained through the solution
of an offline optimization problem. Experiments show that
such approximation does not hinder the performances of
our method.

Notation: |·| denotes the Euclidean norm. Bε ⊂ Rn denotes
the closed ball of radius ε > 0, i.e. Bε := {x ∈ Rn : |x| ≤
ε}. We say that ζ : [0,+∞) → R is a class-K function if
ζ(0) = 0 and ζ is strictly increasing. Given a C1 vector field
f : Rn × R → Rn and a C1 2-tensor P : Rn × R → Rn×n,
the Lie derivative of the 2-tensor P along the vector
field f , denoted as LfP (x, t), is defined as LfP (x, t) :=

Ṗ (x, t) + P (x, t)∂f∂x (x, t)+
∂f
∂x

⊤
(x, t)P (x, t) with elements

(LfP (x, t))i,j =
∑

k

[
2Pik

∂fk
∂xj

(x, t) +
∂Pij

∂xk
(x, t)fk(x, t) +

∂Pij

∂t (x, t)
]
. We say that a C1 vector field g : Rn×R 7→ Rn

(resp., a C1 matrix function g : Rn × R → Rn×m)
is a Killing vector field (or that it satisfies the Killing
vector property) with respect to P if LgP (x, t) = 0 (resp.
LgiP (x, t) = 0 for all i = 1, . . . ,m, with gi denoting the
i-th column of g) ∀(x, t). We say that a function ω ∈ L2 if

it is measurable and
∫ +∞
0

|w(s)|2ds < +∞.

2. PRELIMINARIES

2.1 Problem statement

In this paper we consider a system of the form

ẋ = f(x) + g(x)u (1a)

e = h(x)− r(t) (1b)

where x ∈ Rnx is the state, u ∈ Rnu is a control action,
f, g, h are sufficiently smooth functions and e ∈ Rne is
the error between an output y = h(x) and a known
smooth time-varying reference r(t) taking values on a
compact set R ⊂ Rne . In order to simplify the analysis,
we assume forward completeness of the trajectories for all
times t ≥ t0, t0 ∈ R inside a forward invariant compact
set F ⊂ Rnx and we define g := supx∈F |g(x)|. Our goal is
to design a feedback control action u such that the error
e asymptotically goes to zero. We formalize our problem
as follows. Let c ≥ 0. Assume to know a smooth function
γ : Rnx × R → Rnu such that the system (1) in closed-
loop with the feedback control u = γ(x, t) has bounded
trajectories and such that limt→+∞|e(t)| ≤ c.

Then:

• if c = 0, we say that the asymptotic output tracking
control problem is solved;

• if c > 0, we say that the approximate output tracking
control problem is solved.

2.2 Proposed approach

From a regulation theory viewpoint, asymptotic output
tracking can be achieved if and only if there exist two
sufficiently smooth mappings π : Rne → Rnx and ψ :
Rne → Rnu solution of the so-called regulator equations
(see for instance (Isidori and Byrnes, 1990; Byrnes and
Isidori, 2003))

π̇(r(t)) = f(π(r(t))) + g(π(r(t)))ψ(r(t))

0 = h(π(r(t)))− r(t) .
(2)

Here, the mapping π represents the steady-state manifold
on which the tracking error is zero. Hence, the state x
must converge asymptotically to it. Similarly, the mapping
ψ represents the steady-state control action making such
a manifold forward invariant along the trajectories of the
system. In order to have a well-posed problem, we assume
that if r(t) ∈ R for all t ≥ t0, then π(t) solving (2) is
bounded and satisfies π(t) ∈ F for all t ≥ t0. Under perfect
knowledge of the model and of the solution of the regulator
equations, we look for a controller solving the asymptotic
regulation problem and taking the form

u = γ(x, t) = ψ(t) + α(x, π(t), t), (3)

where ψ solves (2) and α is any function that forces the
dynamics of x to converge to the steady-state π(t) and
that is asymptotically vanishing. In other words, α is
any function such that the trajectories of the closed-loop
(1), (3) satisfy limt→+∞|x(t) − π(t)| = 0 and such that
α(x, x, t) = 0 for all (x, t) ∈ Rnx × R. Following these
lines, we design α according to a leader-follower multi-
agent synchronization strategy. As such, we consider a
trivial directed graph whose network is composed of only
two agents. In particular, the leader is the (steady-state)
dynamics in (2) and the follower is the closed-loop system



(1), (3). With this approach, the problem of designing the
function α in (3) can be seen as designing a control action
achieving synchronization between two nonlinear systems
whose open-loop dynamics is defined by

ẋ = φ(x, t) := f(x) + g(x)ψ(t) . (4)

For the design, we take inspiration from (Giaccagli et al.,
2022b). There, the synchronization problem is cast into the
contraction framework. The authors provide a constructive
design achieving multi-agent synchronization for a network
of input-affine time-varying nonlinear systems.

Contribution – The general control structure (3) is
inspired by the results in (Pavlov et al., 2006, Section 5.4).
Recall in this sense the strong link between contractive
and convergent systems. However, we highlight four main
differences in our approach. (i) In (Pavlov et al., 2006,
Section 5.4) the authors propose the design α = K(x−π),
with K being a constant matrix. In our design, through
the notion of “Killing vector field”, we provide a more
general structure for the controller α. (ii) We show that
approximate, rather than asymptotic, tracking can be
achieved under a non-perfect knowledge of the mappings
(π, ψ). (iii) We provide a DNNs-based algorithm for the
estimation of (π, ψ) (and of the control action α) that
generalizes over references. (iv) We link the performances
of the DNNs to the tracking error.

3. MAIN RESULTS

In order to solve the output tracking problem, we propose
a controller of the form (3) where (π(t), ψ(t)) solve (2) and
the function α is computed using results of contraction
theory applied to a multiagent framework. However, for
systems presenting significant nonlinearities, it is often
hard to analytically solve the regulator equations and to
compute contractive stabilizers. Hence, our approach relies
on expressive function approximators, i.e., DNNs. In what
follows, we present the practical algorithm to implement
the proposed method alongside theoretical results guaran-
teeing stability of the solution.

3.1 Approximate output tracking: the analytic solution

In order to justify the use of function approximators,
we first highlight the robustness properties of the closed-
loop system under the controller (3). The goal is to show
that (i) under perfect knowledge of the system, of the
regulation equations and of the control structure, the
asymptotic output tracking problem is solved; (ii) it is
still possible to achieve approximate output tracking by
means of a approached solution. Then, we show that
the tracking error can be straightforwardly linked to the
approximation errors of the estimated quantities, and we
provide bounds guaranteeing approximate tracking up to
arbitrary precision.
We start by assuming the following.

Assumption 1. Consider system (1), (2) and let φ(x, t) =
f(x) + g(x)ψ(t). There exist a C1 matrix function P :
Rnx × R → Rnx×nx taking symmetric positive definite
values, a C2 function β : Rnx × R → Rnu , positive real
numbers p, p̄, ε, ρ > 0 such that, for all (x, t) ∈ Rnx × R,
the following holds:

(i) The matrix function P satisfies

LφP (x, t)− ρP (x, t)g(x)g⊤(x)P (x, t) ⪯ −εP (x, t) ,
pI ⪯ P (x, t) ⪯ pI .

(5)
(ii) The function β satisfies the integrability condition

∂β⊤

∂x
(x, t) = P (x, t)g(x) . (6)

(iii) The Killing vector property 1 holds, namely

LgP (x, t) = 0. (7)

Let us briefly give some insight on Assumption 1. Equation
(5) can be seen as a nonlinear Riccati-like inequality, where
the matrix function P represents a (Riemannian) metric,
see (Lohmiller and Slotine, 1998). The uniform bounds on
P are required in order to ensure that x⊤P (x, t)x can be
taken as radially unbounded Lyapunov function and to
show that |x(t) − π(t)| → 0 as t → +∞. Condition (6)
is related to the contraction analysis of the closed-loop.
Indeed, the evolution of the distance between x and π is
studied by looking at the Jacobian of the system. Equality
(7) characterizes the domain of the synchronizing control
law α. In particular, it ensures the regulation manifold
is globally exponentially stable. Under these conditions, g
is said to be a “Killing vector” field for P (or to satisfy
the Killing vector property), see e.g. (Manchester and
Slotine, 2017, Section III.A) or (Giaccagli et al., 2022a,
Section II.B). This implies distances between trajectories
of the system are invariant with respect to signals entering
along the directions of g. For a detailed explanation, see
Giaccagli et al. (2022b).

Remark 1. For linear systems ẋ = Ax + Bu, the condi-
tion (5) rewrites as the Riccati equation PA + A⊤P −
ρPBB⊤P ≤ −εP where P is a constant positive definite
matrix. In other words, the metric is Euclidean. The in-
tegrability constraint (6) is always satisfied by linearity
and (7) always holds. In such a case, the conditions of As-
sumption 1 boil down only to a stabilizability assumption
on (A,B).

We are now ready to present our first result.

Proposition 1. Consider system (1), (2) and let φ(x, t) =
f(x) + g(x)ψ(t). Let Assumption 1 hold and let ω : R →
Rnu be in L2. Then, for any κ > ρ

2 , the trajectories of
system (1) in closed-loop with

u = ψ(t) + α(x, π(t), t) + ω(t) (8a)

where

α(x, π(t), t) = −κ(β(x, t)− β(π, t)) (8b)

satisfy

|X (x0, t0, t)−Π(π0, t, t0)|
≤ k|x0 − π0| exp(−λ(t− t0)) + ζ(|ω(t)|) (9)

for all (x0, π0, t, t0) ∈ Rnx × Rnx × [t0,∞) × R, for some
k, λ > 0 and for some class-K function ζ, with X (·) being
the trajectory of (1) in closed-loop and Π(·) the trajectory
of (2).

Proof: See Appendix A.1. □

1 See Notation section.



Remark 2. For systems with significant nonlinearities, the
Killing vector condition (7) may be hard to verify. How-
ever, it can be relaxed by losing the global characterization
of the results in Proposition 1. Indeed, by following the
same lines, it is possible to show that for any fixed κ > ρ

2
and any compact set E ⊂ Rnx , there exists ϵE > 0 such
that if |LgP (x, t)| ≤ ϵE ,∀E ⊂ Rnx , then the results in
Proposition 1 still hold for |ω(t)| sufficiently small and
for all time-existence of solutions (X (·),Π(·)) in E2 (see
Giaccagli et al. (2022b) for more details).

The result of Proposition 1 shows that the control law (8)
guarantees that trajectories of (1) in closed-loop remain
close to the solution of (2). In particular, the error between
the two depends on the component ω(t) in (8). Our
objective is to approximate the control action with DNNs.
Then, in our case ω(t) represents an approximation error.
Without full knowledge of the model and of (π(t), ψ(t))
solution of (2), we end up using a control law of the form

u = ψ̂(t)− κ(β̂(x, t)− β̂(π̂, t)) , (10)

where ψ̂, π̂, β̂ represent suitable approximations of the
functions ψ, π, β in (8). In what follows, we link the error
in the control action to the approximation capabilities
of our DNN structure. More specifically, we show that if

the functions ψ̂, π̂, β̂ are sufficiently close to ψ, π, β, then
approximate regulation is still achieved. This lays strong
foundations for the following section, as we exploit DNNs
to learn an approximate version of the exact functions,
which are not explicitly computable in general. Hence, via
Proposition 1 and the following result, we highlight the
link between the approximation and the tracking error.

Proposition 2. Consider system (1) in closed-loop with the
control law (10). Let (π, ψ) be a solution of (2) and let
φ(x, t) := f(x) + g(x)ψ(t). Let (κ, β) be chosen as in
Proposition 1. Then, for any compact sets Wx̃ ⊂ Rnx ,
R ⊂ Rne such that r(t) ∈ R for all t ≥ t0 and for any
δ ≥ 0, there exist a compact set Wx and a scalar µδ ≥ 0
such that, if the following holds for all (x, t) ∈ Wx×[t0,∞)

|β̂(x, t)− β(x, t)| ≤ µδ ,

|ψ̂(t)− ψ(t)| ≤ µδ ,
|π̂(t)− π(t)| ≤ µδ ,

(11)

then
lim

t→+∞
|X (x0, t, t0)−Π(π0, t, t0)| < δ.

for any (x0, π0) satisfying (x0 − π0) ∈ Wx̃.

Proof: See Appendix A.2. □

3.2 DNN-based output tracking controller

Our ansatz is to rely on DNNs to find approximate
solutions for the output tracking problem. We split our
controller into two parts: a steady-state component from
solving the regulator equations and a stabilizing part based
on Proposition 1. DNNs are typically continuous functions
by construction. Hence, if the approximation error over
the training dataset is bounded, the error over a compact
set including the dataset is also bounded by continuity.
This allows the application of Proposition 2. Instead of
solving a time-consuming online optimization problem,
the steady-state trajectory π(t) is generated on the fly

by our neural state reference generator. Such a generator
is trained offline to solve the regulator equations. The
stabilizer is derived from property (6) by modeling β(x, t)
as a DNN.

In what follows, since time-dependency of φ is due only
to the reference r(t) (because of the tracking task), we
consider t0 = 0. Thus, we discretize the problem using
Euler scheme with a small timestep τ , yielding x(kτ) = xk.
We refer to f(·) as multi-layer perceptron (MLP) and
υk+1 = g(·, υk) is a gated recurrent unit (GRU) with
hidden state υ (Cho et al., 2014) where we omitted gating
functions from the notation 2 .

The state reference generator – estimates state and
command trajectories (π, ψ) verifying the dynamics (4)
such that the observed part h(π) remains as close as possi-
ble to the reference r. Coherence with the dynamics can be
ensured by forecasting solely the initial state π(t=0) = π0
and the set of steady-state inputs {ψk}k∈[0,K]. The entire

state trajectory can then be inferred readily from the dy-
namical model. Since the plant may not be fully observable
from a single point, estimating the initial state can take
advantage of longer reference signal r= {rk}k∈[0,K]. We

thus propose the following structure:{
qk+1 = g1 (rk, qk)
π0 = f1(qK)

,

{
zk+1 = g2(πk, rk+1, zk)
ψk = f2(zk)

(12)

We have two components: one dedicated to the estimation
of the initial state π0 and another to the estimation of
a one-step input. In the first one, the recurrent unit g1
gathers temporal information from the reference into a
single vector qK , which is then decoded to the initial state
π0 through f1. In the second component, the control signal
ψk is inferred from the current state of the agent πk, the
target reference observation rk+1 and a latent memory
vector zk. The two parts combine as in the yellow box
in Figure 1. The first component estimates π0 given the
current reference. Then, the second component is invoked
recursively to estimate a sequence of inputs {ψk}k∈[0,K].

For each loop, successive states πk are computed via the
system dynamics φ with the estimated input ψk. As such,
the first component is used only once in the interval
[0,K]. Note that the reference signal may change during
the interval [0,K]. In that case, a new estimate of π0 is
obtained by running through the state reference generator
again. The model is trained to minimize the following
objective:

min

K∑
k=0

|rk − h(πk)|2 s.t. π̇ = φ(π, ψ) . (13)

Remark 3. The state reference generator is trained in an
unsupervised manner, in the sense that no ground truth
states and controls are needed for training. The references
can be chosen arbitrarily insofar as these remain admis-
sible by the dynamics. Nevertheless, the training requires
prior knowledge of a model of the system (f, g, h). Since in
many practical cases a good model may not be available,
we robustify the state reference generator by training it
with uniform noise on the dynamics. This exploits the
generalization capabilities of DNNs by enriching the train-
ing set. Then, even if the model is faulty, the DNNs have
2 Our code can be found at: https://github.com/SteevenJanny/
OutputTracking_contraction.git

https://github.com/SteevenJanny/OutputTracking_contraction.git
https://github.com/SteevenJanny/OutputTracking_contraction.git


State Reference Generator

DNN
Model⇡0

<latexit sha1_base64="bytqeMOWKdjZA9Vtwi5dtK/zCUs="></latexit>

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg="></latexit>

⇡(t)
<latexit sha1_base64="fvIq3JqsnzLCbs9JhWBKzfD6/hQ="></latexit>

Stabilizer

β

β

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg="></latexit>

x(t)
<latexit sha1_base64="VCjM/KuIL14gNSnu7YZq40dRqHo=">AAACx3icjVHLSsNAFD3GV62vqks3wSLUTUmqoMuiG91VsA+oRZJ02g7Ni2RSWooLf8Ct/pn4B/oX3hmnoBbRCUnOnHvPmbn3urHPU2FZrwvG4tLyympuLb++sbm1XdjZbaRRlnis7kV+lLRcJ2U+D1ldcOGzVpwwJ3B91nSHFzLeHLEk5VF4IyYx6wROP+Q97jlCUuOSOLorFK2ypZY5D2wNitCrFhVecIsuInjIEIAhhCDsw0FKTxs2LMTEdTAlLiHEVZzhHnnSZpTFKMMhdkjfPu3amg1pLz1TpfboFJ/ehJQmDkkTUV5CWJ5mqnimnCX7m/dUecq7Tejvaq+AWIEBsX/pZpn/1claBHo4UzVwqilWjKzO0y6Z6oq8ufmlKkEOMXESdymeEPaUctZnU2lSVbvsraPibypTsnLv6dwM7/KWNGD75zjnQaNSto/LleuTYvVcjzqHfRygRPM8RRWXqKFO3gM84gnPxpURGSNj/JlqLGjNHr4t4+EDs9qQZA==</latexit>

⇡(t)
<latexit sha1_base64="fvIq3JqsnzLCbs9JhWBKzfD6/hQ="></latexit>

r(t)
<latexit sha1_base64="YHW4sC8LH2Id1ydjq4fDO9ykObM="></latexit>

Dynamical 
System

x(t)
<latexit sha1_base64="VCjM/KuIL14gNSnu7YZq40dRqHo="></latexit>+

<latexit sha1_base64="YfivQ4SStgbFIW4W6El8PPAYUcA="></latexit>

 (t)
<latexit sha1_base64="7kpkXAWjvaKOhnSrjBFESu933Mg="></latexit>

u(t)
<latexit sha1_base64="QDDSIILN4KAzZ4E48OdtfQ7nVT4="></latexit>

Arbitrary reference 
signal


<latexit sha1_base64="dRZGmjOpMFnFa6Qu/x4OJcGdCb8=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6LLoRnBTwT6gLTKZTmtsXiYTsRZX/oBb/THxD/QvvDOmoBbRCUnOnHvPmbn3OpHnJtKyXnPGzOzc/EJ+sbC0vLK6VlzfaCRhGnNR56EXxi2HJcJzA1GXrvREK4oF8x1PNJ3hsYo3b0ScuGFwLkeR6PpsELh9lzNJVKMzZFHELoolq2zpZU4DOwMlZKsWFl/QQQ8hOFL4EAggCXtgSOhpw4aFiLguxsTFhFwdF7hHgbQpZQnKYMQO6TugXTtjA9orz0SrOZ3i0RuT0sQOaULKiwmr00wdT7WzYn/zHmtPdbcR/Z3MyydW4pLYv3STzP/qVC0SfRzqGlyqKdKMqo5nLqnuirq5+aUqSQ4RcQr3KB4T5lo56bOpNYmuXfWW6fibzlSs2vMsN8W7uiUN2P45zmnQqJTtvXLlbL9UPcpGnccWtrFL8zxAFSeooU7eV3jEE56NU+PauDXuPlONXKbZxLdlPHwAy9SRpA==</latexit>+

<latexit sha1_base64="YfivQ4SStgbFIW4W6El8PPAYUcA="></latexit>

Fig. 1. We address the output tracking problem with a twofold approach: the state reference generator approximates
the solution of the regulator equations and computes states and commands given an arbitrary reference signal. The
stabilizer leverages a learned contractive function to force the dynamical system to track the reference.

more chances of producing suitable trajectories. Note that
the bounds on the noise can be directly related to the
confidence in the model.

Stabilizer – relies on the function β̂(·, t) modeled as an
MLP. To include time dependence, the network inputs
are both the system state and the steady-state input

ψ(t), namely β̂(x, t) = f3(x, ψ(t)). Inspired by (Giaccagli
et al., 2022b), this module is trained by following a two-
step procedure. First, we look for a symmetric metric
P ≻ 0 satisfying the synchronisation constraint (5) and
the Killing vector property (7). This metric is also modeled
as an MLP P (x, t) ≈ f4(x, ψ(t)) with parameters θ4. We
enforce symmetry by solely learning the upper triangular
part of P (x, t). Synchronization, Killing vector and posi-
tive definiteness hard constraints are relaxed as training
objectives by minimizing the following loss:

JP,1(x, ψ,p) =

4∑
i=1

wiJi(x, ψ,p),

where p = (ρ, ε, ϵ, p) is a set of learned parameters control-
ling constraints in equations (14), wP,1 := (w1, . . . , w4) is
a vector of (positive) scalar weights and

Ji(x, ψ,p) = ln

(
max

(
ℜ
{
λM (Mi)

}
, 0

)
+ 1

)
,

with i = 1, . . . , 4, λM being the maximum eigenvalue,
ℜ{λ} the real part of λ and Mi defined as

M1 = Lf f4(x, ψ)− ρf4(x, ψ)g(x)g
⊤(x)f4(x, ψ) + εI,

M2 = Lgf4(x, ψ)− ϵI,
M3 = −Lgf4(x, ψ)− ϵI,
M4 = −f4(x, ψ) + pI.

(14)
For a discussion about this objective, see (Giaccagli et al.,
2022b). An important property of this loss is that terms
vanish when the respective constraints are satisfied.

The parameter vector p controls the synchronization con-
straint (through (ρ, ε)), the Killing vector approximation
(ϵ) and the positive definiteness margin (p). We propose
a modified objective for training the metric function f4
and estimating the vector of positive scalar parameters p.
This objective is modelled as a switching loss function,
composed by two interacting elements

JP (x, ψ,p) = JP,1(x, ψ,p) + σJP,2(p) , (15)

with switch variable σ = 0 if JP,1(x, ψ,p) > 0 and σ = 1
otherwise. The second component activates once a suitable
metric is found (i.e., once JP,1=0). Its aim is to improve the
estimation of p, while looking for a better metric. Formally,
it is defined as

Fig. 2. Block-scheme of the ball and beam system

JP,2(p) = w5 ln(ϵ
2 + 1) + w6 ln(ρ

2 + 1)

−w7 ln(ε
2 + 1)− w8 ln(p

2 + 1),
(16)

being wP,2:=(w5, . . . , w8) a vector of (positive) scalar
weights. The sub-objective (16) aims at minimizing ϵ and
ρ, i.e., at getting close to perfect Killing conditions and
at reducing the controller dependence of the Riccati-like
inequality (5). At the same time, it aims at maximizing ε
and p, i.e., at increasing the contraction rate and the posi-
tivity of P . The composite objective (15) switches between
metric search and contraction parameters optimization.
First, it looks for a suitable metric along with set of param-
eters p. Then, it freezes the metric estimator parameters
θ4 and tries improving the contraction parameters p. If the
metric still satisfies JP,1(x, ψ,p)=0, another step is taken
in the direction of p improvement. If not, it unfreezes θ4
and the loop starts again. Note that, by using JP,1 as a
discriminant, we can set the trained network to be the last
one verifying the contraction condition JP,1(x, ψ,p)=0.

There are multiple advantages in using the switching ob-
jective (15). First, it achieves better estimation of param-
eters p. Second, it improves controller robustness, e.g.,
smaller ε implies faster contraction, that is, better stability
margins (Sontag, 2010). Third, it weakens the dependence
of p from the initial condition. As a matter of fact, p can
be initialized to looser bounds, which ease training. The
second objective will then try to tighten the conditions
(14) progressively. Finally, it can escape from local minima
as the shape of the loss function drastically changes on
switches.

Once a suitable P metric is found, β̂ can be learned. That
is, once f4 has been trained, f3 is optimized relatively to
the following cost:

Jβ(x, ψ) =

∣∣∣∣∂f3∂x (x, ψ)− g(x)⊤f4(x, ψ)

∣∣∣∣2 .
Each model is trained with Adam optimizer until conver-
gence on a training set composed of states and commands
(x, ψ) from pre-trained state reference generator. Inter-



− 2 0 2

0

100

200

300

400

500

600

Ti
m
es
te
p
(#
)

Model noise: +/-0.000

− 2 0 2

Model noise: +/-0.001

− 2 0 2

Model noise: +/-0.010

− 2 0 2

Model noise: +/-0.050

Reference
Generator

(a)

10−3 10−2 10−1

Model noise (±σ)

−10

0

10

20

30

P
S

N
R

on
re

fe
re

n
ce

tr
ac

ki
n

g
(6

00
st

ep
s)

(b)

Fig. 3. State reference generator (a) We show four estimations from the state reference generator in different regimes
where uniform noise is added to the model. (b) We measure peak signal to noise ratio (PSNR, dB) between the
reference and the output for different noise range. We show that our approach is robust up to a sensible amount of
noise.

mediate derivatives in (14) are obtained via automatic
differentiation.

Remark 4. The state reference generator and the stabilizer
can be trained separately, as long as the training samples
ψi for the stabilizer come from a similar distribution
to the one of the output ψ(t) of the state reference
generator. Training f3, f4 on the outputs of the state
reference generator is a way to ensure this.

4. SIMULATIONS

We test our solution on the well-known ball and beam
setup, represented in Fig. 2 . The plant can be described
by a system of the form (1) (Hauser et al., 1992) where
x ∈ R4, u ∈ R and

f(x)=

 x2
B(x1x

2
4 − ga sin(x3))
x4
0

 , g(x)=

0
0
0
1

 , h(x)=x1 .

From a physics viewpoint, x=(r, ṙ, ϕ, ϕ̇)⊤ with r, ϕ the
ball position and beam angle respectively, B a constant
depending on system parameters and ga the gravitational
acceleration. The interest of this setup lies in the fact
that the relative degree 3 is not well-defined when the
beam angular velocity and the ball position are zero.
Therefore, input-output linearization and normal forms-
based approaches fail to give a suitable controller. To
make the problem harder, we sample the reference signal
using the trajectory of the first component z1 of a Lorenz
oscillator whose dynamics is described by

ż1 = 10(z2 − z1)

ż2 = z1(28− z3)− z2
ż3 = z1z2 − 8

3z3 ,

(17)

with random initial conditions. As (17) is a chaotic os-
cillator, it is exponentially sensitive to initial conditions,
making it hard to find analytical solutions to the regulator
equations. Then, approaches as in (Pavlov et al., 2006)
become unfeasible in practice. Here, fi are four layers, 64
hidden units and tanh-activated MLPs. f1 and f2 use layer
normalization on intermediate layers.

State reference generator objective – is to estimate
a trajectory in the state space as well as the commands
allowing to follow it from a reference signal, which can
3 see (Isidori, 1995, Chapter IV)

potentially concern solely a part of the state. The sought
solution is thus not necessarily unique. Nevertheless, our
approach can exploit the long-range information of a ref-
erence sequence to estimate an adequate initial condition.
We show examples of predictions from the state reference
generator in Figure 3a. In a second time, we predict an
input leading the system to follow the reference. This is
a challenging task, especially since it is learned without
direct supervision, that is, without knowledge of the opti-
mal command for data in the training set. Our approach
performs well, even in a very noisy environment. Figure 3b
shows the evolution of the error when the dynamical model
of the state reference generator is disturbed by a uniform
noise whose amplitude is varied. The results are obtained
on a set of new references absent from the training dataset.
The standard deviation σ (represented by vertical bars)
is obtained by averaging the results over five iterations.
We find that the state reference generator is consistently
robust to model errors up to a significant intensity.

Behavior of the stabilizer – is illustrated in Figure 4.
For a given new reference, the state reference generator
estimates the solutions of the regulator equations (π, ψ).
We then simulate the stabilizer starting from six random
initial conditions x0. Experimentally, we find that the sys-
tem quickly converges towards the trajectory of the state
reference generator. This is in accordance with the previ-
ous theoretical results. At timestep k=300, we drastically
change the reference signal. The generator reacts rapidly
to such a change and estimates a new (π(t), ψ(t)). Thanks
to the stabilizer, the system converges quickly to the new
reference. Once finished, the trajectory remains close to
the state reference without deviating from it. As men-
tioned above, the analytical solution to the output tracking
problem is difficult to obtain with such a nonlinear system
under chaotic references. Our approach, although it is an
approximation of the analytical solution, experimentally
demonstrates very satisfactory performances. We report
quantitative results in Table 6, in particular in the con-
text of a system perturbed by Gaussian noise modeling
measurement errors. We observe that the learned stabi-
lizer β̂ is robust even in noisy scenario. We also evaluate
the advantages given by our switching objective, which
reaches more stringent parameters p. Table 6 compares
noise robustness of our approach to the one without the
fine-tuning component. We observe experimentally that
our improved loss function leads to more robust control
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Parameter
Finetuning

Noise StDev
0 0.01 0.05 0.1

With
0.343 0.323 0.361 0.385
± 0.015 ± 0.015 ± 0.011 ± 0.014

Without
0.385 0.366 0.408 0.439
± 0.015 ± 0.016 ± 0.012 ± 0.016

Fig. 6. Noise robustness is improved when using β̂
trained with the parameter fine-tuning step. We mea-
sure RMSE from reference for different gaussian noise
StDev. on state measurements. Our model can still
performs correctly with uncertain observations.

laws. Moreover, we also observe that fine-tuning allows for
lower control gain κ, (Figure 5). This is linked to the size of
the domain of attraction when the Killing vector property
holds only approximately (Giaccagli et al., 2022b).

5. CONCLUSIONS

In this paper, we provided a deep-learning based solution
to the output tracking problem for input-affine nonlinear
systems. Through results coming from regulation theory,
we relied on a state-feedback controller composed of two
terms. The first one is the steady-state control action.
The second term guarantees convergence to the reference
trajectory on which the tracking task is achieved. This has
been addressed through contraction tools, specialized to a
multi-agent synchronization setting. To face the difficulties
of providing the analytical form of our solution, we relied
on DNNs to approximate the controller, and we linked the
approximation precision to the tracking error. We split

the learning task in two separate modules. We leveraged
long-term memory and multilayer perceptron networks
to approximately solve the regulator equations. Classical
multilayer perceptrons were also used to approximate the
synchronizing component. We show that the approach
does not hinder tracking guarantees for sufficiently precise
networks. We train our models in a weakly supervised
setup, that does not require ground truth solutions to the
regulator equations nor very accurate dynamical model.
To validate the proposed result, we test our controller
on the ball and beam example. Future studies will focus
on the generalization of the proposed design to non-input
affine systems and by taking into consideration possible
saturations on the input.
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D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In EMNLP.

Dawson, C., Gao, S., and Fan, C. (2023). Safe control
with learned certificates: A survey of neural lyapunov,
barrier, and contraction methods for robotics and con-
trol. IEEE Transactions on Robotics.

Devasia, S., Chen, D., and Paden, B. (1996). Nonlinear
inversion-based output tracking. IEEE Trans. on Auto-
matic Control.

Francis, B. and Wonham, W. (1976). The internal model
principle of control theory. Automatica.

Giaccagli, M., Astolfi, D., Andrieu, V., and Marconi, L.
(2022a). Sufficient conditions for global integral action
via incremental forwarding for input-affine nonlinear
systems. IEEE Transactions on Automatic Control,
67(12), 6537–6551.

Giaccagli, M., Zoboli, S., Astolfi, D., Andrieu, V., and
Casadei, G. (2022b). Synchronization in networks
of nonlinear systems: Contraction metric analysis and
deep-learning for feedback estimation. Submitted to
IEEE Trans. on Automatic Control.

Hauser, J., Sastry, S., and Kokotovic, P. (1992). Nonlinear
control via approximate input-output linearization: The
ball and beam example. IEEE Trans. on Automatic
Control.

Isidori, A. (1995). Nonlinear Control Systems. Springer.
Isidori, A. and Byrnes, C.I. (1990). Output regulation of

nonlinear systems. IEEE Trans. on Automatic Control.
Janny, S., Andrieu, V., Nadri, M., and Wolf, C. (2021).

Deep KKL: Data-driven output prediction for non-linear
systems. In 2021 60th IEEE Conference on Decision and
Control (CDC), 4376–4381. IEEE.

Limon, D. and Alamo, T. (2021). Tracking model predic-
tive control. In Encyclopedia of Systems and Control.
Springer.



Lohmiller, W. and Slotine, J.E. (1998). On contraction
analysis for non-linear systems. Automatica.

Manchester, I. and Slotine, J. (2017). Control contrac-
tion metrics: Convex and intrinsic criteria for nonlinear
feedback design. IEEE Trans. on Automatic Control.

Martin, P., Devasia, S., and Paden, B. (1996). A different
look at output tracking: Control of a VTOL aircraft.
Automatica.

Pavlov, A., Van De Wouw, N., and Nijmeijer, H. (2006).
Uniform output regulation of nonlinear systems: a con-
vergent dynamics approach. Springer.

Serrani, A., Isidori, A., and Marconi, L. (2001). Semi-
global nonlinear output regulation with adaptive inter-
nal model. IEEE Trans. on Automatic Control.

Sontag, E.D. (2010). Contractive systems with inputs. In
Perspectives in mathematical system theory, control, and
signal processing. Springer.

Sontag, E. and Wang, Y. (1995). On characterizations of
the input-to-state stability property.

Sun, D., Jha, S., and Fan, C. (2021). Learning certified
control using contraction metric. In Conference on
Robot Learning.

Tsukamoto, H. and Chung, S. (2020). Neural contraction
metrics for robust estimation and control: A convex
optimization approach. IEEE Control Systems Letters.

Tsukamoto, H., Chung, S., and Slotine, J. (2021). Contrac-
tion theory for nonlinear stability analysis and learning-
based control: A tutorial overview. Annual Reviews in
Control.

Wei, L., McCloy, R., and Bao, J. (2022). Discrete-
time contraction-based control of nonlinear systems
with parametric uncertainties using neural networks.
Computers & Chemical Engineering.

Wondergem, M., Lefeber, E., Pettersen, K., and Nijmeijer,
H. (2010). Output feedback tracking of ships. IEEE
Trans. on Control Systems Technology.

Wu, Y. and Zou, Q. (2009). Robust inversion-based 2-
DOF control design for output tracking: Piezoelectric-
actuator example. IEEE Trans. on Control Systems
Technology.

Xie, X. and Duan, N. (2010). Output tracking of high-
order stochastic nonlinear systems with application to
benchmark mechanical system. IEEE Trans. on Auto-
matic Control.

Zhao, P., Lakshmanan, A., Ackerman, K., Gahlawat, A.,
Pavone, M., and Hovakimyan, N. (2022). Tube-certified
trajectory tracking for nonlinear systems with robust
control contraction metrics. IEEE Robotics and Au-
tomation Letters.

Appendix A.

A.1 Proof of Proposition 1

The proof follows the line of results in Giaccagli et al.
(2022b) and combines them with ISS-like arguments. For
space reasons, we only highlight the main parts. Define the
state-error x̃ := x− π. Its dynamics read as

˙̃x = φ(π + x̃, t)− φ(π, t)− κg(π + x̃)

× (β(π + x̃, t)− β(π, t)) + g(π + x̃)ω(t) . (A.1)

Let X̃ (x̃0, t, t0) be a solution defined for all t ≥ t0 and
consider the function Γ : [0, 1] × R × R → Rnx satisfying

Γ(1, t0, t0) = X̃ (x̃0, t0, t0), Γ(0, t0, t0) = 0 and Γ(s, t0, t0) =
γ(s), where γ : [0, 1] → Rnx is any C1 curve and solution
to

∂Γ

∂t
(s, t, t0) = φ(Γ + Π, t)− φ(Π, t)

− κg(Γ + Π)(β(Γ + Π, t)− β(Π, t)) + g(Γ + Π)w(s)

with Π = Π(π0, t, t0) being the trajectory of (2) (argu-
ments are dropped for space reasons) and w(s) = sω. Take
the candidate Lyapunov function

V (t) =

∫ 1

0

∂Γ⊤

∂s
(s, t, t0)P (Γ + Π, t)

∂Γ

∂s
(s, t, t0) ds (A.2)

with P solving (5). Taking its time-derivative and through
the Killing vector assumption and the integrability condi-
tion (6), we get

V̇ (t)≤
∫ 1

0

∂Γ⊤

∂s
(s, t, t0)[T1(s, t0, t)

+ T2(s, t0, t)]
∂Γ

∂s
(s, t, t0) + T3(s, t0, t) ds ,

with

T1(s, t0, t) = LφP (Γ + Π, t)

T2(s, t0, t) = −2κP (Γ+Π, t)g(Γ+Π)g⊤(Γ+Π)P (Γ+Π, t)

T3(s, t0, t) =
∂Γ⊤

∂s
(s, t, t0)P (Γ + Π, t)g(Γ + Π, t)ω(t)

+ ω⊤(t)g⊤(Γ + Π, t)P (Γ + Π, t)
∂Γ⊤

∂s
(s, t, t0) .

From the (generalized) inequality of Young 4 with a =
∂Γ⊤

∂s (s, t, t0)
√
P (Γ + Π, t), b =

√
P (Γ + Π, t)g(Γ + Π)ω(t)

and c = λ
2 it follows that

T3(s, t, t0) ≤
λ

2

∂Γ⊤

∂s
(s, t, t0)P (Γ + Π, t)

∂Γ

∂s
(s, t, t0)

+
2

λ
ω⊤(t)g⊤(Γ + Π)P (Γ + Π, t)g(Γ + Π)ω(t)

Taking κ ≥ ρ
2 and employing (5) we get

V̇ (t) ≤ −λ
2V (t) + 2

λp g
2|ω(t)|2 .

From (5) and since X̃ (x̃, t, t) = x̃(t)∀ t, it follows that, for
any t ≥ t0

p |x̃(t)|2 ≤ V (t) ≤ p |x̃(t)|2 . (A.3)

Hence, the proof concludes by Gronwall lemma and by
following standard ISS-like arguments Sontag and Wang
(1995).

A.2 Proof of Proposition 2

By adding and subtracting ψ(t), β(x, t), β(π(t), t) and
β(π̂(t), t), we rewrite the control (10) as u(t) = u⋆(t)+ũ(t)
with u⋆ := ψ(t)− κ(β(x, t)− β(π(t), t)) and ũ defined as

ũ(t) := ψ̂(t)− ψ(t)− κ[(β̂(x, t)− β(x, t))+

(β(π̂(t), t)− β̂(π̂(t), t)) + (β(π(t), t)− β(π̂(t), t)).
(A.4)

Consider the Lyapunov function (A.2) with x̃ = x − π.
Following the same lines as in the proof of Proposition 1,
it follows that

V̇ (t) ≤ −λ
2V (t) + 2

λp g
2|ũ(t)|2 .

4 Generalized inequality of Young: 2ab ≤ ca2 + b2

c
for any c > 0



Consider now the reference r. Since r(t) ∈ R for all t ≥ t0,
there exist a compact set Wπ such that π(t) ∈ Wπ for all
t ≥ t0. Now, define

η1 := sup
x∈Wπ

|x| , η2 := sup
x∈Wx̃

|x| , η3 := max{η2, δ} .

Then, Wx̃ ⊆ Bη3 . Define V :=
{
x̃0 ∈ Rn : V (t0) ≤ p̄η23

}
,

and note that x̃0 ∈ Bη3
implies x̃0 ∈ V due to (A.3).

Differently put, Bη3
⊆ V. Pick Wx = Bη4

, where

η4 = η1 + sup
x∈V

|x| .

Then, V ⊆ Wx. Moreover, if x̃0 ∈ V, then x0 ∈ Wx. Pick

µδ =
λδp

2
√
2 p g(1 + 2κ+ κp g)

.

From (11), (A.4) and the relation (6), it follows that, for
all times t ≥ t0 such that x(t) ∈ Wx

|ũ(t)| ≤ µδ + 2κµδ + κp g |π(t)− π̂(t)|
≤ µδ(1 + 2κ+ κp g) ≤ λδp

2
√
2 p g

.

Consider now the set V := {x̃0 ∈ Rnx : V (t0) < pδ2}
and suppose x̃0 ∈ V. By (A.3), if p |x̃0|2 < pδ2 then

|x0 − π0| < δ . Now, note that V ⫋ Bη3 ⊆ V and suppose

x̃0 ∈ V\V. This implies |x̃0|2 ≥ p

pδ
2. However, since x̃0 ∈ V

implies x0 ∈ Wx, we have

V̇ (t0) ≤ −λV (t0) +
2
λp g

2|ũ(t0)|2

≤ λ
2 (

p2

2pδ
2 − V (t0)) ≤ pλ

2 (
1
2

p

pδ
2 − |x̃0|2) < 0 .

Hence, the level set V is forward invariant. Moreover, in
view of the above results, the set V is attractive and
forward invariant, with domain of attraction including V.
Recall that Wx̃ ⊆ Bη3

⊆ V. Hence, for all x̃0 ∈ Wx̃, it
holds limt→+∞|X (x0, t, t0)−Π(π0, t, t0)| ≤ δ .
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