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Large deviations for out of equilibrium correlations in the
symmetric simple exclusion process

Thierry Bodineau* Benoit Dagallier’

Abstract

For finite size Markov chains, the Donsker-Varadhan theory fully describes the large de-
viations of the time averaged empirical measure. We are interested in the extension of the
Donsker-Varadhan theory for a large size non-equilibrium system: the one-dimensional sym-
metric simple exclusion process connected with reservoirs at different densities. The Donsker-
Varadhan functional encodes a variety of scales depending on the observable of interest. In
this paper, we focus on the time-averaged two point correlations and investigate the large
deviations from the steady state behaviour. To control two point correlations out of equilib-
rium, the key input is the construction of a simple approximation to the invariant measure.
This approximation is quantitative in time and space as estimated through relative entropy
bounds building on the work of Jara and Menezes [32].

1 Introduction

For a fluid in thermal equilibrium, spatial correlations are expected to have fast decay, in such a
way that, roughly speaking, each macroscopic portion of the fluid is basically independent from the
rest. For fluids driven out of equilibrium, e.g. by contact with reservoirs at two different tempera-
tures, the picture is quite different: the fluid settles in a steady state where heat and/or matter are
transported at a macroscopic level. The transport induces long-range correlations, which can be
modelled by a variety of approaches and that have been observed experimentally, see [40, 25] and
references therein. These general predictions are part of the results of the Macroscopic Fluctuation
Theory (see the review [7]), which proposes a framework to study out of equilibrium fluids at a
macroscopic level.

The derivation, from a microscopic model, of the steady state correlations, which are of a gen-
uinely dynamical nature, is usually a difficult problem. Rigorous results are mostly obtained for
certain simple interacting particle systems on a lattice. The Symmetric Simple Exclusion Process
connected with reservoirs (henceforth open SSEP) is a paradigmatic example for which this corre-
lation structure can be analysed [I5, 37]. In the open SSEP, defined in Section [2| particles follow
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symmetric random walks interacting by an exclusion rule on a finite subdomain of Z. Reservoirs
pump particles in and out of the system, fixing a certain density of particles in their vicinity. When
reservoirs are at the same density, the open SSEP dynamics is reversible. However, when connected
with reservoirs which enforce a different density of particles, this dynamics settles in long time in a
non-equilibrium steady state, characterised by a macroscopic current of particles. The strength of
this current is proportional to the density difference between the reservoirs [40, 23] 24]. Two-point
correlations in the steady state are known exactly [40], as well as all higher cumulants [17, 19, 18]
in dimension one. The correlation structure of the steady state of the open SSEP is conjectured
to be representative of a large class of out of equilibrium systems [40} [7]. However, much less is
known rigorously about steady state correlations for general lattice gases.

Our goal is to estimate the asymptotic probability of observing a correlation structure that
is different from the one of the steady state, thereby also gaining information on this invariant
measure. When the value N of the scaling parameter is fixed, this question has already received
a comprehensive answer by Donsker and Varadhan [22]. For a general, irreducible Markovian
dynamics on a finite state space 2y, they study the time empirical measure 77, defined for each
T > 0 as a probability measure on the configuration space Qy by:

1 T
Vn € Qy, 7l = f/ S, dt. (1.1)
0

The quantity 77 (n) then corresponds to the proportion of time spent at a configuration n € Q.
A full large deviation principle with speed T' and rate function I3, is then provided in [22] for the
time empirical measure 77, in the sense that, if 4"V is a probability measure on Q0 and P denotes
the probability associated with the dynamics:

.1 -
lim flog]P’(ﬂT ~ ') = =I5, (U, (1.2)

T—o0

where =~ means proximity in the weak topology of probability measures on Q5. The rate func-

N

tion I%, vanishes only at the invariant measure 72 of the dynamics, and is defined through a

complicated variational problem involving the generator L of the Markov chain:

()= s (eM(=Lye"), (1.3)

We are interested in the macroscopic behaviour of the system, i.e. the large N limit of the
probability in (1.2). To obtain these asymptotics, one possibility is to study the limit of when
N — oco. When the underlying dynamics is reversible, this can be carried out: the variational
problem (1.3)) can be solved, and I3, is expressed in terms of the Dirichlet form of the dynamics
(see Section below). Such computations are carried out in Section , in the case of the open
SSEP with reversible dynamics (where the scaling parameter N is roughly the number of sites in
the model). These computations highlight an important fact: one cannot naively take the large N
limit in without losing information, because not all the information contained in a measure
u? is stored at the same scale in N. By this we mean e.g. that observing a macroscopic density
different from that of the steady state, or observing different two point-correlation but with the
same density, are not events that have the same scaling in terms of N. Informally, it is shown



in Section that observing a macroscopic density profile different from the one of the invariant
measure in the reversible open SSEP has a probability that scales like e~V "N in the large T', then
large N limit, up to sub-exponential corrections. In contrast, changing the two-point correlation
structure only requires a cost of order e=7N"". To study the scaling limit of (T.2), one therefore
has to choose a scale. Out of equilibrium, the rate function I5;, is not known explicitly, and the
equilibrium heuristics cannot be used, but we prove in Theorem below that scales are still
separated in the same way.

In this article, we focus on the scale corresponding to two-point correlations, and quantify
the probability of observing anomalous two-point correlations in the one dimensional, out of
equilibrium open SSEP in the large T, N limits. We establish a large deviation principle for
the time-averaged two-point correlation field, in Theorem below. We do not start from the
Donsker-Varadhan asymptotics, but instead provide quantitative estimates on the dynamics, as a
function of time and the system size. Note that density large deviations are well understood since
the seminal paper [34] (see also Chapter 10 of [35] for a review and [6] with reservoirs). The main
difficulty of the article is to generalise these ideas to the estimate of two-point correlations, that are
objects living on a much finer scale than the density. To illustrate this, recall that the two-point
correlations in the steady state of the open SSEP are long range, and scale like O(N~!), compared
to On(1) for the density of particle at a given site. For this reason, and while model-dependent
estimates on correlations have been obtained e.g. in [40] 15, 37, 27], to our knowledge there is no
general method to study the out of equilibrium behaviour of the two-point correlation field in the
long-time, large N limits.

The proof of our result on two-point correlations, Theorem [2.3] builds upon a refinement of the
relative entropy method obtained by Jara and Menezes [32],33]. This method, originally introduced
by Yau [41], consists in quantifying, at each time and in terms of the relative entropy, the proximity
of the law of the Markovian dynamics in an interacting particle system with a known reference
measure. The idea behind the method is that, locally, the dynamics in large microscopic boxes
equilibrates much faster than the typical time-scale at which the system evolves macroscopically.
If one has an ansatz for the evolution of macroscopic variables of interest, say, henceforth, the
density in a lattice gas; one then expects that the corresponding microscopic variables, when
averaged over a sufficiently large microscopic box, are close to their macroscopic counterpart. This
property, known as local equilibrium, has recently been shown quantitatively even for mesoscopic
boxes, see [26].

From the local equilibrium heuristics, one can build a reference measure in terms of the evolution
of the macroscopic density only. If one is interested in the evolution of the macroscopic density
or its fluctuations, it can be shown that local equilibrium holds and this reference measure is
indeed a good enough approximation of the law of the dynamics, see Chapter 6 in [35], [32] and
references therein. In particular, the reference measure does not need to contain any information
on correlations.

To study two point correlations, however, the reference measure has to also contain information
on the dynamical correlations. Adding such a correlation term in the reference measure is our key
input. In the case of the open SSEP, since density fluctuations around the typical density profile
at each time (and in the steady state [37]) are known to be Gaussian [32], our candidates for
reference measures are discrete Gaussian measures, see (2.58). One expects that a good choice of
discrete Gaussian measure will contain all leading order information about two point correlations.



A similar observation was already present in [14]. It is made precise in Theorem where we
obtain, for a family of exclusion dynamics that occur in the proof of the large deviation result
of Theorem [2.3] a characterisation of long time, large N correlations as the solution of a certain
partial differential equation.

The approach used in this paper is not restricted to the symmetric simple exclusion process.

Much like the usual relative entropy method, it can be used for a large class of one-dimensional
diffusive interacting particle systems satisfying the so-called gradient condition (see Section 8
in [32]). In particular, very special features of symmetric simple exclusion such as the fact that
correlations in the steady state are known are not used in the proof, see Section for more
details. There are however some technical difficulties to be expected when generalising the present
approach. All these points are discussed further in Section [2.6]
Let us however mention that, at equilibrium, the behaviour of various n-point correlation fields has
come under much scrutiny in the past few years. In [2], a two-point correlation field is studied in
the SSEP on Z. It is not the same object as in [28], where two point correlations are studied on the
one-dimensional torus as a means to defining squares of distributions arising in certain ill-posed
stochastic partial differential equations. In [3] and [12], interacting particle systems enjoying a
self-duality property are investigated in all dimensions. In that context, equilibrium fluctuation
fields involving n-point functions are investigated for any n.

In the same direction but using different techniques, long time large deviations for the density
and the current have recently been considered in [8]. Both the long diffusive time limit start-
ing from the dynamical large deviation functional, and the long time, then large N limits using
Donsker and Varadhan’s formula are investigated. This last limit is the same as the one studied
in the present article at the level of two point correlations. The approach is however different:
here, we provide a quantitative (i.e. non asymptotic) control on the dynamics at the microscopic
level. On the other hand, in the case of the density and the current, the microscopic model con-
sidered in [8] may have dynamical phase transitions. To capture this very subtle phenomenon,
the Donsker-Varadhan variational principle in [8] is solved indirectly in the large N limit, by
looking at large deviations at process level (so-called level 3 large deviations), then using a con-
traction argument. A related paper by the same authors [9] uses a similar approach in the settings
of diffusions with small noise. Note that different kind of asymptotics for the Donsker-Varadhan
functional have been considered, e.g. to study metastability [5] 36].

The rest of the article is structured as follows. In Section [2| we present the model and results.
Section |3| gives the main microscopic tool for the study of two-point correlations: the relative
entropy estimate when the reference measure is a certain discrete Gaussian measure. Proper-
ties of these measures are established in Appendix [A] The relative entropy bounds allow for the
computation of the Radon-Nikodym derivative between the open SSEP and the tilted processes
introduced to estimate rare events. This requires sharp estimates collected in the appendices. The
large deviations are then established, in Section [4| for the upper bound, and [5| for the lower bound.
For the lower bound, control of the open SSEP dynamics in long-time is obtained via the study of
certain Poisson equations. Well-posedness of these equations is investigated in Appendix [F] while
Appendix |E| gathers useful topological facts.
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2 Notations and results

2.1 Notations and definition of the microscopic model

2.1.1 The microscopic model

For N € N*, let Ay := {—N +1,..,N — 1} and Qy = {0,1}* -1, Elements of Qy, denoted by
the letter n, will be called configurations. We say that there is a particle at site i € Ay if n; = 1,
and no particle if 7; = 0. The variable 7; is called the occupation number (of site 7). On Qy, we
consider the dynamics given by the Symmetric Simple Exclusion Process connected to reservoirs
at position =N (henceforth open SSEP), which we now describe. For a survey of particle systems
in contact with reservoirs, we refer to [19, [7].

Let p_ < py € (0,1) be the densities of the left (for p_) and the right (p, ) reservoirs. The
open SSEP is defined through its generator N?L := N?(Ly+ L_+ L, ). It is made up of two parts,
the bulk and boundary dynamics, corresponding to Ly and L4 respectively. The operators Ly and
Ly act on f:Qy — R as follows:

VneQy,  NLof(n) = = Z c(n,i,i+ ) [f (") = f(m)], (2.1)
N*Lyf(n) = N2L+f(77) + N2L_f(n),
NL.f(n) = NTC(W(N — D)) [fr™") = f()],  ee{-.+} (2.2)

Above, the jump rates c are defined, for each n € Qy, by:

0(777%@"'1) :771‘+1(1—77z‘)+7h(1—77z‘+1)7 1< N_la
c(n,£(N —1)) = (1 = p£)nev-1) + p£(1 = newv-1), (2.3)

and for 7,7 € Ay and 1 € Qu, the configurations n and 7%’ read:

n' =qm ifl=i (2.4)

i_{m if 0,

LI FE )

We write P, E" for the probability /expectation under this dynamics starting from n € Q.



2.1.2 The invariant measure and the correlation field

For each N € N*, let n)¥, denote the unique invariant measure of the open SSEP. If p, = p_ =p €
(0,1), 7 is snnply the Bernoulli product measure on Ay with parameter p. If p_ < p, however,
the measure 72 is not product. The average occupation number at each site was computed in [40]:

mv

it is given in terms of an affine function p, with:

. /. N 1\ p— 1\ P+
Vie Ay,  p(i/N) :=E"w[n] = (1 - N>7 + (1 + N)? (2.5)
Note that, as p is affine, p’ = (p; —p_)/2is a constant. As 7)Y isinvariant, one has, for ' : Qy — R
and each t > 0:
Vi 0, wp(F) = Em [Fip)] = Y () F (). (2.6)
neQN

In the following, the expectation E,[F] with respect to a measure y is written p(F).

The measure 7" exhibits long-range correlations. To make this statement precise, let us first

define the main object of interest in this article, the correlation field TIV. It is a distribution,
acting on test functions ¢ : (=1,1)> - R according to:

e Qy,  IY(9) =TN(e)(n) = . Y me(i/N.j/N), n=n.—p(/N).  (27)
l#JGAN

Note the scaling of with N: the sum contains order N? terms, and the normalisation is
only proportional to N~1 as I1V(¢) measures fluctuations of a central limit order. Indeed the
correlation field IIV is strongly related to the fluctuation field YV defined for any bounded test
function ¢ : [-1,1] — R by:

vneQy, YN \/_ > mib(i/N). (2.8)
1€EAN

Restricting to product test functions ¢(z,y) = 11 (2)12(y), we note that:

1 1

IV (@)(n) = YV @YY (v2) = = Y () (i/N)hali/N). (29)

ZEAN

The fluctuation field has been extensively studied in the hydrodynamic scaling and at each time t,
the fluctuation field Y,V (¢)) can be proven to converge to a Gaussian random variable (see Chapter
11 in [35] in the equilibrium case, or [15, 37, B2] when p_ # p,). The two-point correlations
Yi(11)Yi(12) are thus also of order 1 in N (see e.g. [28] for the reversible SSEP on the torus).

As mentioned in the introduction, the correlation field IIV is a natural quantity to study non
equilibrium properties. For SSEP, the average value of the correlation field under the invariant
measure was obtained in |40} 16] in the large N limit :

lim WZnU(HN(¢)) _ 1/( . o(x,y)ko(z,y) dz dy, (2.10)

N—oo 4

where the kernel kg is a symmetric continuous function on [—1,1]? given by :

(')

Viwy) € (LI Tu(y) = — S5 [+ 21— g leg + ()1 - )l | (21)

6



Thus when p' = (p+ —p_)/2 # 0, the system is driven out of equilibrium by the reservoirs and long
range correlations arise. These correlations come from the diffusive transport of particles and, as a
consequence, ky is obtained as the solution of the Laplace equation restricted to the triangle > =
{(z,y) € [-1,1]* : z < y} with fixed normal derivative on the diagonal D = {(x,z) : xz € (—1,1)}:

V(z,y) € >, Ako(z,y) =0, with (01 — D)ko(zs,2) = £(7)?, w € (—1,1), (2.12)

with 0 Dirichlet boundary conditions on {z = —1} and {y = 1}. Above, we used the notation
T4 = limhu)(l' + h)

In the next section, we provide further insight on the correlation field and explain how ITV is
related to the Donsker-Varadhan functional.

Notation. Throughout this paper, we write p; := p(i/N) for i € Ay. More generally, for a
function ¢ - [-1,1]P — R, p € N*, we write ¢;,,..;, for ¢(i1/N,...i,/N), (ir,....7p) € A. The
letters i, j, (..., when used as indices, index elements of An; while x,y,z are used for continuous
variables.

More generally, when we speak of n-point correlations (n € N*), it will always mean products of
centred variables, the 1’s, of the form u;,...7;, for some (iy,...,i,) € A%. When considering a
trajectory n; € Qn,t > 0, we write TN for TIV(+)(n;).

2.2 Heuristic scaling of the Donsker-Varadhan functional

In this section, we consider the SSEP dynamics at equilibrium as given in ([2.1)-(2.2), i.e. with
two reservoirs at equal densities p_ = py = p € (0,1). The dynamics is reversible with respect to
the Bernoulli product measure V[])V with parameter p. In this setting, the Donsker-Varadhan rate
function is explicit and is given by the Dirichlet form of the dynamics [22]: if 4% is a probability
measure on the state space {2y, then one has for each fixed V:

Tlgrolo—logPN / O dt = p™ ) = =I5y (™)
duN
= (VINLVE), F=E5 (21)

where the = sign denotes proximity in the weak topology of measures on ).

In the next two sections, we use the explicit form of the Donsker-Varadhan functional to
derive its asymptotics as N — oo. We will show that the scalings in IV are different for the cost of
observing an anomalous macroscopic density (in Section or the cost of observing anomalous
macroscopic two-point correlations (in Section . Thus different types of information are in-
tertwined in the Donsker Varadhan functional and one has to zoom at the correct scaling to extract
the relevant physical information on a given observable. The exact computation of Section [2.2.2]
justifies our choice of focusing on the non-equilibrium large deviations of the two-point correlation
field ITV (see Section [2.4)).

2.2.1 Changing the macroscopic density

Counsider a smooth density profile p : [—1,1] — (0, 1). For simplicity, assume that the density close
to the boundaries is unchanged, i.e. that p(x) = p for x in an open neighbourhood of +1. Define



then:
A @ Ber(p(i/N)). (2.14)

For a function ¢ : (—1,1) — R, write for short ¢; :== ¢(i/N) for i € Ay. Introduce the chemical
potential \ and its discrete derivative O™V )\;, defined by:

Vo € (—1,1), Az) = log <15(—sz>) NN = N{Aix1 — A, i< N—1. (2.15)

Recall that V[ (or uV(+)) denotes expectation under the measure ;. Elementary computations
using ([2.13)) then give, for each N € N*:

¥ () = N;ALN { D clnivit 1)<eXp [— W@%} - 1)2] (2.16)

Note that there is no contribution from the boundary dynamics, since p is constant and equals to
p close to +1 by assumption. Expanding the right-hand side of (2.16)), one finds, with the notation
o(r)=r(1—r)forrel0,1]:

; 1 (1 g ~  NY _ I N . Ny 12
Jim - log P, (f/o O, dt ~ 1 )——1—6u [ﬂgv:_ldnmwrl)[a il ] +On(1)
N
=—% o(p(2))|VA(z)[dz + On(1), (2.17)
(7171)

where we used the smoothness of p, and ™ (c(n,i,i+ 1)) = 20(p;) + O(N7!) for each i < N — 1,
with the O(N ') uniform on 4. It follows that a macroscopic change of density is observed with
probability of order e=7¥ in the large T, then large N limit.

As a remark, notice that, up to factors of N, T, the right-hand side of is the same as the
one given by the dynamical rate functional obtained in diffusive time in [6]. To see it, recall that
the rate functional Igspp evaluated at the constant profile p on the time interval [0, 7] for T > 0
is given by:

R 1 [ R
Isser((pa)daier)) =5 [ [ 1Vh(t0)Po(pla) e, (2.18)
0 J(-11)
where h is the bias such that h(t,£1) = 0 for each ¢t € [0, 77, and:
1
Op=0= §A,6 — V- (a(p)Vh). (2.19)

In particular, integrating the divergence operator, there is a divergence-free function j on (—1,1)
(the current), i.e. a constant in our one-dimensional setting, such that:

(1/2)Vf3+j

Vi="00)

x. (2.20)

= JSSEp(m(x)dx)tg)):g /() ((1/522257) p



In the present case, h(-,£1) = 0 and VA = Vp/o(p) implies that 7 = 0, with A defined in ({2.15)).
As a result:
Vi >0,z € (—1,1), Vh(t,x) = VA(z)/2. (2.21)

Thus replacing h by VA/2 in (2.18)), the functional (2.17) is recovered. In other words, the long
time, large N limit and the long diffusive time limits coincide :

T e N
i i o lon B} (7 [ e =)

— lim Jim % log P ((mfv Vear A (ﬁ(x)dx)tST). (2.22)

It is not difficult to adapt the proof of [6], derived in the hydrodynamic regime, to recover
(2.22)), i.e. to take the long time limit first before taking N large. Indeed the large deviation
functional of the SSEP is convex, so that the optimal way to observe an averaged density profile in
the long diffusive time limit is obtained by a time-independent tilt : there is no dynamical phase
transitions. The exchange of limits then remains valid in non equilibrium in the absence of
a dynamical phase transition. The much more delicate proof that the two limits coincide even in
the presence of a dynamical phase transition is carried out in [8], where the joint deviations of the
current and density are investigated.

2.2.2 Changing the macroscopic correlations

Consider again the open SSEP at equilibrium at density p € (0,1). Our aim is to consider the
large size asymptotics for a measure with the equilibrium density, but different correlations. Recall
the definition of the (off diagonal) correlation field IV, acting on a bounded test function
¢ : [—1,1]> — R according to:

1 o T g
i#j€hn

In view of the above discussion, to find a measure that is close to Vév but with a different correlation
structure, it is reasonable to look at:
N N L onw (¢), N N
: Z

pt =y = Z_N¢ e A8 ¢ @ normalisation factor. (2.24)
s

Assume ||¢|| is sufficiently small and ¢ is smooth, symmetric, i.e.:

V(z,y) € [-1,1]%,  o(z,y) = 6(y, 2). (2.25)

Assume also that ¢(z, ) = 0 for x in an open neighbourhood of £1. Then the macroscopic density
is still given by p, but the measure u’¥ now features long-range correlations. Indeed, using the
same kind of arguments as in Appendix (see also [13]), one can show that there is a limiting
kernel k£ : 1 — R such that:

sup |p™ (7:7;) — k(i/N,j/N)| = o(NTH),  sup | (7:75:) — o (p)] = on(1). (2.26)

i#£jEAN iEAN



The limiting covariance can therefore be described by an operator C' acting on ¥, 1y € L2((—1,1))
according to (recall the definition (2.8) of the fluctuation field Y):

T (VY ()Y N (1) = /() 1 (2) (C) () o (2.27)
with:
Vee(—L1),  Cin(e) = o(p)bsle) + /( ) dy (2.28)

The operator C' is obtained from ¢ as the inverse of the operator Uy, defined for ¢ € L*((—1,1))
by:

e (LD, Uabl) = o) e — [ s v (2.29)
Intuitively, this relation means that for large N, the density under the measure pv in ([2.24)
behaves as a Gaussian field of covariance C'. A similar structure will be derived out of equilibrium
and the proofs will be given then, see for instance Theorem where it is stated that the out
of equilibrium SSEP dynamics stays very close to a measure of the form ' at each time, in the
sense that it has the same two-point correlation structure. To summarise, the macroscopic density
is still given by p, but the measure ;' has now long-range correlations parametrised by ¢. Let us
again compute the Donsker-Varadhan rate functional for the measure p”¥ with large N.

Lemma 2.1. For ¢ and p as in (2.24), one has with the notation ([2.28):

lim L1 P(l U dra N)
Tooo T 00 TS ™ s
1

- /(_1’1)a<p><81¢< ), CO(z,)) dz + ox(L), (2.30)

where (-,-) is the scalar product in L*((—1,1)).

Proof. Plugging the expression (2.24) of the measure p”¥ in the Donsker-Varadhan functional
(2.13)), we obtain a formula similar to (2.16) where the variation of the chemical potential is now
replaced by the non local expression

i Ni+1 — T)i _
1 (0) ()~ (o)) = - S v, (2.31)
e {ii+1}
with 0N ¢; j = N[pi11; — ¢ ;] bounded uniformly in 7, j, N. Expanding the exponential, we get as
in (2.17)

lim —logIP’N / Oy, dt =~

T—oo 1’

[ Z e, + Vigin O 61,08 6uc] +on(1). (2:32)
li|l<N—-1
j,@%{i,i—i—l}

16N2”

The limit (2.30) can be easily guessed from the above formula, as 20(p) arises from c(n,i,i +
1) and the correlations 7;7, are approximated by the limiting covariance (2.26)) of p. Similar
computations will be carried out numerous times in Section [3.2] so we give no details here. []

10



Compared with the asymptotics of the density large deviations (2.17), the cost of mod-
ifying only the correlations has a different scaling in N. Our aim is to derive similar results for
systems driven out of equilibrium by reservoirs when the Donsker-Varadhan rate function is no
longer given by the explicit formula but by the variational principle (1.3). The computations
in the reversible case highlight the fact that:

e the whole correlation structure of the invariant measure is not contained at the same scale
in N, and therefore:

e one has to focus on observables at a specific scale to get a non trivial limit when N is large.

In the following, we focus on the large deviations of the correlation field IT" introduced in ([2.7)),
and generalise formula (2.30)) to a non-equilibrium situation in Theorem

2.3 The topology for correlations

Motivated by the heuristics of Section we focus in this article on the next scale after the density
and consider the two point correlation field IT"V, defined in . Zooming at the level of correla-
tions amounts to rewriting the asymptotics of Lemma [2.1] as follows: compute the asymptotics of
observing a given correlation field 11

1 T weak™*
P(T/ Y at < H) when T and then N are large. (2.33)
0

In (2.33)), v means proximity in the weak* topology. In this section, we start by defining the
functional space to which IIV belongs and the associated weak* topology.

Let us start with a few observations. By definition , IV can be seen as a linear form on
several function spaces. Let (J = (—1,1)? and notice that [TV is symmetric in the following sense:

Vo:O—=R,  OV(¢) =11"(¢s), ¢s(z,y) =o(x.y)/2+¢(y.x)/2, (z,y) €. (2.34)

In other words, ITV could really be defined on the triangle {z,y € (—1,1) : # < y}, but we work
on the square for symmetry reasons. Note also that any symmetric function ¢, i.e. ¢ = ¢,, that is
C'! on the whole of [, satisfies:

\V/(l‘,y) € Da algb(x)y) = 82¢(y7‘r)
= Ve (-1,1), (01 — ) (z,z) = 0. (2.35)

In view of (2.11), the two-point correlations are symmetric functions with singularities on the
diagonal D of [J, defined by:
D:={(z,z): 2z € (-1,1)}. (2.36)

We therefore cannot only consider symmetric ¢ that are smooth on the whole of (1. Finally, to
account for the reservoirs, we require ¢ to be continuous on 9L as well, and set ¢joq = 0.
Let us now define the test functions IV will act on. Split [J as follows (see Figure [1]) :

O=pbUDU«, b>:={(r,y)el:z<y}, <={(zr,y)eO:z>y}, B:=>uUq. (237

11



-1p| 7 <

Figure 1: The domain 0 = (—1,1)? and the diagonal D (in dashed lines) are depicted, with [1:= O\ D.
According to notation (2.37)), the lower part is < and the upper part >. The extremities of the diagonal
1p and —1p are defined in (2.43)).

For n € N and p > 1, let W*P(2) := W™P(>) N W"P(<) be the Sobolev space of functions
with distributional derivatives up to order n in L2(0). Properties of these spaces are recalled in
Appendix [E] Note that LP(0) = LP(I2) since the diagonal has vanishing two-dimensional Lebesgue
measure. The difference between functions on [J and 1 arises in the integration by parts formula
defining their weak derivatives. If p = 2, we simply write H"(>) := W™2(1>). Define then the set
T of test functions:

T = (D) = H*(>) N H?(<). (2.38)

The set 7 is a separable Hilbert space, and 7 C C°(>) N C°(<) by Sobolev embedding, see
Appendix [E] where >, < respectively denote the closure of >, <. Denote then by 77 the set
of bounded linear forms on 7, and by 7] C 7' the subset of those forms that are symmetric

(recall (2.34)):
T.={leT :VoeT, ML) =I(p)} (2.39)

To keep topology-related issues as simple as possible, we equip 7. with the weak* topology, i.e.
(I,), C T] converges to II € T/ if and only if lim, ,. II,(¢) = II(¢) for each ¢ € T (or,
equivalently, each ¢ € T.). To avoid ambiguities, we write (7., %) when we explicitly refer to the
weak* topology.

As a bounded linear form on (a closed subset of) the Hilbert space H?(l7), the Riesz representation
theorem allows each IT € 7, to be written as:

() := i(k‘n,@, peT. (2.40)

Above, <-, > denotes the standard scalar product on L?(J) and duality pairing between elements
of H*() and (H*(1))’, n € N. The norm on L?(0J) = L?(9) is denoted by || - [[o. We use both II
and krr indifferently in the following.

2.4 Large deviations for time-averaged correlations

Our main result concerns the large deviation behaviour of the probability in the large T,
then large N limits. To state it, we need more notations.

Compared with the techniques used for the large deviations of the density (see e.g. Chapter
10 in [35]), producing atypical correlations requires modifying the jump rates of the dynamics by
adding a long range interaction. Thus we consider the generator L, parametrised by a function

12



h: [—1,1]* — R which is a non-local bias, with the corresponding modified jump rates given for
nely,i€{X(N—-1)}and j < N —1 by:

cn(n, 1) = c(n, i) exp [N (h)(n") — IV (h) (n)],
cw(n,j, i+ 1) =c(n, j,j+ 1) exp [IIV(R) (7 *1) — IV (h) (n)]. (2.41)

We write P, E;, for the probability /expectation under this dynamics, and IPZN, EZN when starting
from the measure uV on Q. The strategy is to find the correct bias h so that the rare event of
observing the correlation IT in (2.33]) becomes typical :

1 T weak™*
IP’ZN (— Y dt < H) =1 when T and then N are large. (2.42)
T Jo

Before stating our main Theorem [2.3] we have to introduce some restrictions, in particular on the
size of the bias h.

Main assumption and characterisation of the biases. In theory, one could define the open
SSEP dynamics with any value of the reservoir densities p_, p, and consider any sufficiently regular
h €T and any II € 7] in (2.42)). In practice, to focus on the key ideas and avoid many technical
issues, we will restrict the range of p_, p, as well as the size of the biases h, see Theorems
below. This restriction is discussed in Section Let us now define the set of biases.

Let £1p denote the two corners of the triangle > (see Figure [1)) corresponding to extremities of

the diagonal D, defined in ([2.36)):
1p=(1,1), —1p=(-1,-1). (2.43)
For € > 0, define:

S(e) = {h €T :h € W (>) for some p > 2, h is symmetric,

[Flloc, 10uhlloc <&, lim (04— )h(r,y) =0} (2.44)

The condition on (0; — d9)h at +1p is purely technical. Introduce also the set S(oo) of biases
without size constraints:

S(o0) == JS(e). (2.45)

e>0
The rate function. Introduce the bilinear mapping M from LL?(I0)? to L?(I1), defined for (u,v) €
L2(1)? by:
o) €8 Muoey) = [ uzoeu (2.46)
(7171)
where ¢ is defined as
Vo e (—1,1), o(z) :=o(p(x)) with o(r)=r(1—r), rel0,1]. (2.47)

13



For £ > 0, let h belong to the set S(g) defined in (2.44)). Introduce the functional Jy,, defined
for IT € 7] N H' (V) by:

Ju(IT) = ~LTI(Ah + M(@:h, 0,1) + 1 /(1 | 2pn)(0)(22 = ), )
(7’ L[ 2
+ 1 /(171) h(z,z)dx — 3 /Za(x)a(y) [O1h(z,y)]” dz dy, (2.48)
and:
Jo() = +oo  if I ¢ T NH' (). (2.49)

In (2.48), trp(kn) is the trace of kny on the diagonal D (defined in ({2.36))), with kp related to II
via ([2.40). Tt is well defined for IT in H' (7)), see Theorem 1.5.1.3 in [31]. Moreover, II € 7/ NH'(2)
implies that kp is symmetric, thus its trace on either side of the diagonal is the same and the
notation trp(ky) is not ambiguous.

Define then the functionals Z., Z. : (T/,*) — R, (¢ > 0) as follows:

Z. = sup Jy, Zo= sup Jy, (2.50)
heS(e) heS(o0)

where € > 0 stands for the restriction on the size of the biases. To demystify the expression ([2.48|)
of Jp, let II = i<k, > € T. with k € C3(>) a regular kernel. The associated correlation operator
Ci, = 0 + k is defined for any test function ¢ € L?((—1,1)?) by:

Cro(a) = o(2)6(x) + / Eon)o)dy,  xe[-11], (2.51)

(7171)
where the diagonal part a(x) corresponds to the variance at a single site, and k encodes the long
range correlations. In comparison, in the steady state (corresponding to h = 0), the correlation
operator in the large size limit is Cy, = ¢ + ko, with the kernel £ introduced in (2.10]).

The following proposition connects the bias h and the correlation kernel k. Tt is a classical
result, proven in Appendix

Proposition 2.2 (Euler-Lagrange equation). Assume that the supremum in the definition (2.50)
is reached at some h € S(00). Then k satisfies the Euler-Lagrange equation: for each ¢ € T,

%/ZV(/@ ko) y) - Volz,y) dr dy + % /(_171) () (Onh(z, ), Codrnd(z,)) dz = 0. (2.52)

The expression (2.50) of the rate function L, then simplifies for 11 = i<k, >

1

o ((1/4)(k ) = § /(1 TR, CLon, ) (2.53)

This generalises the asymptotics of the Donsker-Varadhan functional of Lemma in the
reversible case. In addition, the expression (2.53) has the familiar form of an .2 norm of the gradi-
ent of the bias in a suitable weighted space in terms of the target distribution (see [35, Chapter 10]).

The next theorem gives a large deviation result for the law of % fOT IV dt. A more general
claim is discussed in Section 2.6

14



Theorem 2.3. Let p_ € (0,1). There is then eg = eg(p_), defined in Theorem below, such
that, if o' < ep, then the following holds. Let O,C C (T],*) respectively be an open, closed set.
Then:

. . 1 vl [T .

lim sup lim sup — log P™inv <— I, dt C) < —infZ., (2.54)

Nooo Tooo 1 T Jo c
The rate function correctly captures the behaviour of the correlation field for kernels close to the
kernel ko of the steady state, in the following sense. Let Cg C T be the set of correlation kernels
associated with a regular bias h € S(eg):

Cp = {k‘ € T] : k solves the Euler-Lagrange
equation (2.52) for some h € 8(53)}. (2.55)

Then, for k € Cg, one has Ioo(i<k:, >) =7, (%<k3, >)7 and:

1 N2 N .
e e > _ ‘ '
11NIILIOI<13f hTIIi)lOIOlf T log P <T/o I1," dt € (9) > (91%153 7., (91%%}3 T (2.56)

The statement of Theorem and extensions (in particular a lower bound for non-regular
kernels) are discussed in Section The fact that, for k& € Cp, the associated h is a global
optimiser and thus Z,,,7Z., agree at %‘<k, > is proven in Section

Remark 2.4. Recall that the kernel ko of the steady state 7\ of the open SSEP in the large N
limit, defined in (2.11)), was observed to be smooth away from the diagonal. As Theorem[2.3 shows,
by definition of the rate function (see (2.49)) ), it is in fact a general property that the time-average

of TIY is much more reqular than an element of T, when T, N are large: it belongs to H (). W

2.5 The relative entropy method

In this section, we explain the method used to establish Theorem i.e. to study, for some
IT € T/, the probability:

1 T
P (f / IV dt ~ H) when T, then N are large. (2.57)
0

Understanding correlations out of equilibrium (p_ # p.) is notoriously difficult. Existing results in
the literature deal either with the equilibrium case p_ = p, without bias (i.e h = 0), see e.g. [2§];
or use methods particular to the & = 0 case, which cannot easily be generalised to h # 0 [27]. The
methods rely on explicit knowledge of the invariant measure of the dynamics. However, for h # 0,
the invariant measure W%%h of the tilted dynamics P;, defined in (2.41)) is not known explicitly.

N

Even for h = 0, where the invariant measure 7, is well understood [16], its complexity makes the

study of the probability in (2.57) difficult. To study (2.57)) in full generality, we therefore need a
different approach.

The key idea is to find an approximation of the invariant measure, which is sufficiently close

to control the large time behaviour of correlations, yet simple enough to make explicit computa-
tions possible. The proximity of the law of the dynamics to this approximate invariant measure
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is quantified through the relative entropy method, relying on the beautiful generalisation by Jara
and Menezes [32] of the ideas of Yau [41]. The relative entropy method is presented in more
mathematical terms in Section and here we only describe it informally. In our context, the
relative entropy method consists in finding a measure © on the state space Qu, that is both
sufficiently simple to perform explicit computations, and as close as possible to the invariant mea-
sure 7y . This closeness to the invariant measure aims at ensuring that, if the dynamics Py,
starts from v then, at time ¢ > 0, the law f,u’" of the dynamics is still close to u”. The prox-
imity to the invariant measure is quantified by the relative entropy H(fiu™|u™). The level of
precision needed on this relative entropy depends both on the quantity to study - e.g. the density,
the density fluctuations, or in our case the correlations; and on the time range one wishes to probe.

Here, we improve on the estimates of Jara and Menezes [32], obtaining sufficiently precise
relative entropy estimates to study the probability . To do so, for a bias h in the set S(ep),
defined in , we compare the law of the dynamics at each time with a discrete Gaussian
measure l/éi of the following form: for each n in Qy,

i/gNh(n) = (ZQJZ)_l exp [QHN(gh)}DN(n), with 7V (n) = ® Ber(p;). (2.58)

1€EAN

Above, for p € [0, 1], Ber(p) is the Bernoulli measure on {0, 1} with parameter p. The partition
function Zﬁ is a normalisation factor. The function g, : 4 — R, which solves a partial differential
equation depending on the dynamical bias A, is the function that allows us to minimise the entropy
production 0, H (fv)) |v)), as stated in Theorem [2.6 below.

Let us first consider h = 0 and give a heuristic reason why the invariant measure 72 can be
approximated by a measure of the form for a well chosen function gg := g,—¢. Under the
product Bernoulli measure 7V (which has the same density profile as the steady state, but no
correlations), for each test function ¢ € C°([—1,1]), the fluctuation field YN (¢) = N=V2Y" i¢;
converges to a Gaussian field with covariance 6. Assuming for a moment that each 7; is a continuous
variable, the law of fluctuations under I/év is thus close to a Gaussian field with covariance (67! —
g)~!. This claim is made rigorous in the forthcoming paper [13, Appendix A|. Thus, in order for
I/év to have the same correlations ko (defined in (2.10])) as the steady state 77, when N is large,
one can take g = go to be the inverse correlation kernel of the steady state:

Cko =0 + k() =: (5’71 - go)il = go ‘= 5'71 — (5' + ko)il. (259)

Note that Cy, is indeed invertible as, by construction, ky is a negative definite operator on L?((J):
LN [ ok o) drdy <0 (2.60)
—1,1)2

The fact that gy is indeed a kernel operator follows from goCy, = ko, see the first theorem in
section 4.6.1 in [I1]. This identity also implies that gy is a negative definite kernel. Moreover, as
a function on I, gy inherits the regularity of ky (smooth all the way up to the diagonal D, but
with normal derivative having a jump across D). The following proposition and theorem provide
a systematic way of approximating the invariant measure for a non-local bias h € S(¢) for small
enough £ > 0.
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Proposition 2.5 (Main equation). Let 0 < p_, p; < 1, take a bias h € S(00) and consider the
following problem with unknown g, referred to as the main equation:

( — h)(zx 7(z) 7(y) —h)(x or (x
A(g — h)( 7y)+6(x) 5(y)32(2g h)(z,y)  for (v,y) €W

+/(_1 . 7(2)[019(z,2)01(9 — h)(z,y) + D1g(2,9)d1 (g — h)(z,x)]dz = 0,
g=0 | on 0L,
(0o — 1) (h — g) (24, 7) = (B — Do) (h — g)(z_, 2) = =

( a(x)?

There is eo(p—) > 0 and a function §(-) with lim, o d(x) = 0 such that, for any ¢ € (0,e0(p-)],
p <eandh e S(e) implies that (2.61) has a unique solution g, € go + S(0(¢)).

Proposition is proven in Appendix [F] The next theorem provides the key control on the
dynamics and determines the parameter €z mentioned in Theorem

0129 — h)(z,y) +

(2.61)

forx e (—1,1).

Theorem 2.6. Let 0 < p_ < p. < 1. There is egp = ep(p_) such that, if p' < ep and h € S(ep),

then the measure l/é\; defined in (2.58)) is a good approzimation of the invariant measure of the

dynamics Py, with bias h in the following sense. Let ftl/é\,: denote the law of P, at time t > 0.

There is then C, K > 0 depending on h, p+ such that:

C

N1/2°
Theorem is proven in Section [3] The conditions that the parameter ¢z must satisfy are

summarised in Definition [[.10l

Remark 2.7. For each bias h € S(ep), we prove in Appendix that obtaining a solution gy, to
the main equation with the desired reqularity is equivalent to obtaining a classical solution ky,
of the Euler-Lagrange with the same reqularity, with g, and ky, related through the following
wdentity of the associated operators:

vt >0, H(fw lve) < e S H(fory [v)) + (2.62)

c+ky=(0G"—gn " (2.63)

In particular this validates the heuristics behind the choice (2.59) of go. The following diagram
summoarises the relationships between h, k and g.

R B3y
g

Remark 2.8. The entropy control of Theorem 2.7 has many interesting consequences. For in-
stance, it allows one to compute two point correlations under the invariant measure. Indeed, if
7y . is the invariant measure for PY . then for any bounded f1, fy: (—1,1) — R,

wN o VYOV ()] = o YN YN (12)] + on()
- /( R = 0) ™ ) dr + ox(1). (2.64)
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By Pinsker’s inequality, the relative entropy controls the total variation distance, which together
with the uniform integrability of the correlation field, Lemma |5.4| implies the first equality. The
second equality follows from the explicit knowledge of correlations under VgNh, see Proposition A.2

in [13]. |

2.6 Conclusion and perspectives

2.6.1 Extensions of the large deviation principle

N

The large deviation result of Theorem is stated starting from the invariant measure m;, . In
fact any choice of initial condition is possible, with no change to the proof.

An advantage of our very precise, quantitative microscopic estimates is that Theorem also
holds if one takes a diverging sequence Ty of times. Moreover, it is also possible to take the limits
in the opposite order (large N, then large time). In this case the proof of Theorem is slightly
simpler as the relative entropy does not need to be controlled uniformly in time. The proof is
otherwise nearly the same.

Theorem gives large deviation bounds in the weak-* topology. In fact, the theorem also
holds in the strong dual topology. This can be seen to hold with no change to the proof for the
upper bound. For the lower bound, one needs to be more careful, so we chose to work in a weaker
topology to avoid technicalities. An extension of the lower bound to non-regular correlation fields

is also possible, and sketched in Section

2.6.2 Restriction on the biases and reservoir densities

In Theorem restrictions are imposed on both the biases h and the difference p, — p_ of the
reservoir densities.

e Some restriction has to be imposed on the bias size h, otherwise one expects that not only
the correlation structure, but also the typical density of the corresponding biased dynamics
changes. Nevertheless, the conditions in ({2.44)) are far from sharp.

e The restriction on the slope g/ = (pr — p_)/2 has two technical purposes. First, this is
convenient to prove existence of g solving the main equation (2.61)) (even though it should
be possible to remove this assumption). Secondly, it is used in the derivation of the relative
entropy bound of Theorem to control the relative entropy uniformly in time: one has to
make sure that error terms are bounded by ¢/N uniformly on the state space for sufficiently
small ¢ in order to estimate their exponential moments, and ¢ depends on p'. Again, one
should be able to relax this assumption, for instance through a priori estimate on the size of
the error terms using large deviation results for the density. All other uses of the fact that
0’ is small can be relaxed without additional work, but at the cost of more technicalities.

Let us however stress again that the large deviation result of Theorem is sharp for correlation
kernels close to the kernel kg of the steady state (2.11)), as in that case the rate functions Z. ,, Z,

(recall (2.50)) coincide.
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2.6.3 The relative entropy method

The relative entropy approach used to obtain large deviations can be applied to many other set-
tings, still in dimension one. Let us list a few.

A first direction is the study of more general diffusive gradient systems with the following
restrictions. For systems more complicated than the SSEP, the behaviour of correlations at the
boundary may be problematic, and it is unclear whether one could still get a relative entropy
estimate. However, results of the present paper should carry over to any diffusive gradient system
on the torus (see the discussion in Section 8.1. in [32]). Additional work would be needed, in
particular some large deviation estimates for the density to ensure that higher order correlations
on the diagonal (typically of the form >, 7;7;417i42) cannot be very large. The relative entropy
bound would then only be of size ox (1), instead of O(N~"/2) as in Theorem [2.6}

In the paper [I3], the present refinement of the relative entropy method is used to study fluctu-
ations in the WASEP on the one-dimensional discrete torus, constrained to produce a macroscopic
current on the time interval [0, 7']. The presence of this current is known to create a rich correlation
structure. An expression of these correlations in the long time limit has been conjectured in [10)].
In [I3], this conjecture is proved and the fluctuations of this process are described. In a related
manner, Derrida and Sadhu [20] study the density large deviations for a non equilibrium SSEP
conditioned to have an atypical macroscopic current.

Another direction of inquiry concerns the extension of the relative entropy results to higher
dimensions. This seems to be a complicated problem. One major hurdle is the fact that, in higher
dimensions, correlations are not smooth on the diagonal (see e.g. [40]), while the relative entropy
method requires smoothness.

2.6.4 Entropy of the invariant measure

The relative entropy estimate of Theorem can be used to recover the asymptotic behavior of

the entropy of the steady state found in [I7]. The entropy of 7)Y is by definition:
S(mp,) == Y m,(n)logwh,(n) > 0. (2.65)
neQN

In [17], the authors compute the first and second order contributions to this entropy as a function
of the size of the system. The leading order term is given by the entropy of a Bernoulli measure
with the correct density profile, and heuristics showing that the next order is the relative entropy
of a Gaussian with appropriate covariance are provided. The computations rely on the precise
knowledge of n-point correlation functions between each individual lattice sites and for each integer
n. These are obtained by recursion equations specific to the open exclusion process.

In the range of p in which it applies, Theorem gives the same result as we explain next.
Contrary to [I7], however, no knowledge of n-point correlations for n larger than 2 are required.

Let us now see why. Recall that 7V is the Bernoulli product measure (2.58). Then:

S) - SN = 2 (m, — 7)) log V() + 3 o) o ()

5N
UISYN neQN v (77)
= H(mpy,|[7"), (2.66)

inv
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where the last equality is obtained by noticing that the first term vanishes, since for each n € Qy:

log 7 ( Z n; log ( > Z log(1 — pi), (2.67)

€A N i€EAN

mu

O(N~'/2) (with v} defined in (2.58)). To use that result, let us turn 7% into v/}

H (i, [PY) = 3 minu (1) log (%) = 37 k() log (2 )

neQn 90 <n) neQn
( znv| ) IOg ZN + 27Tznv(HN(go))' (268)

The first term is bounded by O(N~'/2). The other two terms can be computed explicitly. Indeed,
the measure 72 in the last term can be replaced by v gO, again using Theorem to argue that
|7, — Vg llrv = on(1) and that (ITY(go))n is uniformly integrable under ), (see Lemma [5.4 .

Building on the fact that uég is very close to a Gaussian measure (it approximately satisfies
Wick theorem, see Appendix A in [13]), which one can show through elementary but tedious

computations in the spirit of Lemma one obtains in particular:

and each n; (i € AN) has the same average under both 7Y and V. Theoremgives H(my,lvl) =

sup ‘V;X (m:)?) — C'N (i,9)| = on(1), sup N|Vgo (mi7;) — C’é\g(i,j)’ = on(1), (2.69)

iEAN 1£JEA

with, interpreting go below as the matrix ((go):;):

. __ 90 -
C;X(Z,j) = (O’ 11i:j — ﬁll;éj) (Z,]). (270)
Adding and subtracting a diagonal term, this implies:
1 -1 1

I (go) = ~ SN (CN) ] 4+ 5 v ox() =on(1),  (271)

7

where we used sup; |} (77) — ;| = on(1) as proven in Lemma . Similarly, write:

log Z / Oy log 2y dit = / v (211Y (go)) dt
1
_ /0 [ Tr(CR (90 ) + on (1)) d. (2.72)

A careful control of the error terms shows that the integral of on(1) is still ox(1). Taking out &'/2
on each side and defining:

. 1 .
MU<Z7J) = N 1/ (90)1]1175] 1/27 Z?] 6 A?\/’a (273)

we end up with, writing also sp for the spectrum of M?:

I I A
N : o\—1pg0
log Z, = 3 /0 Tr((ld —tM?)" M > dt + on(1) = 3 /0 Agesp = dt 4 on(1)

— % Z log (ﬁ) +on(1). (2.74)
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Thus: ]
log 2N = élog det <6_1/20£5_1/2> +on(1). (2.75)

g0

This implies the result of [17]:

SN ) = SV — %log det (572005712 + on(1). (2.76)
In fact all error terms can be shown to be O(N~1/2), consistent with the fact that the next order
correction to S(mly ) should come from three point correlations. The above computation does not
use any special feature of 7\ and in particular generalises to the invariant measures of the tilted
dynamics PY as well as, more interestingly, all models for which an equivalent of Theorem
holds (having ox(1) relative entropy bound rather than O(N~'/2) is enough). This is the case for
one-dimensional Glauber 4+ Kawasaki dynamics on a torus as will be shown in future work. More
generally it should be the case for all diffusive one-dimensional gradient models on the torus as

discussed in Section

3 Main ingredient: the entropic estimate

In this section, we provide the key microscopic estimates to study the long-time behaviour of the
process (IIY);>0, i.e. we prove Theorem 2.60 We follow the strategy of Jara and Menezes [32]-
[33] and improve the controls by tuning correlations of the reference measure. The same kind of
computations give the expression of the Radon-Nikodym derivative D, = dP,/dP for h € S(ep),
stated in Proposition [3.18 at the end of the section.

3.1 The relative entropy method and Feynman-Kac inequality

Let us now recall the main features of the relative entropy method. Let (w;):>0 be a Markov chain
on a state space (2, assumed to be finite for simplicity. Let P, [E denote the associated probability
and expectation. Let V' : Q2 — R. One would like to estimate quantities of the form:

E[V(w)], t>0. (3.1)

The entropy inequality provides a tool to estimate (3.1). Let x be any probability measure on
and f;u be the law of wy, ¢ > 0. Then, for any v > 0:

Vt>0,  E[V(w)] <y H(fiplp) + 7 og p( exp[yV]). (3.2)

Remark 3.1. The symbol E always denotes dynamical expectations. In contrast, static expectations
with respect to a measure pu are denoted by u[-] (or u(-)). |

Through (3.2)), the dynamical estimate of V in is reduced to a static problem: a relative
entropy estimate, and a concentration-of-measure result under p. The relative entropy method
aims at finding a measure p which satisfies the following two criteria: exponential moments must
be under control, and the relative entropy H(fipu|p), ¢ > 0 must be sufficiently small, the size
depending on the kind of observables V' one is interested in.

The analysis in [32]-[33] greatly improves the existing method to control H(fiu|u), t > 0. As a
starting point, Jara and Menezes revisit Yau’s entropy bounds in the following form.
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Lemma 3.2 (Lemma A.1 in [32]). Let (w;)i>0 be a Markov chain on a finite state space 2, with
jump rates (c(w,w’))wwyca2. Denote by L ils generator and by I the corresponding carré du champ
operator:
VweEQV Qo R, Tfw) =Y clw,w)[fw)— fw)]” (3.3)
w’' €N
Let 11 be a probability measure on ) satisfying inf,cq pu(w) > 0. Let fiu be the law of the process
(ws)s>o0 at time t > 0. Then:

V20, QH(fuln) < —p(D(VR) + p(fiLD). (3.4)

where L* is the adjoint of L in L*(p) = {f : Q = R : u(f?) < oo}. It acts on f: Q — R according
to:

VweQ  Lfw) =3 [c(w',w) £ ) f(w)] (3.5)

w'eN

Since the adjoint L* is known explicitly in terms of u, provides a way to estimate
OH(fipulp), t > 0. An estimate of H(f;u|u) follows by applying the entropy and Gronwall in-
equalities.

The same estimates used to bound the relative entropy will allow us, together with a log-Sobolev
inequality (see Lemma , to get estimates on exponential moments. This is a consequence of a
bound involving the Feynman-Kac formula, stated now for future reference.

Lemma 3.3 (Feynman-Kac inequality, Lemma A.2. in [32]). For V :Q — R and T > 0,

T
log E# [exp </ V(wy) dtﬂ <T sup {,u(fV) — %M(F(\/})) + %,u(fL*l)}. (3.6)
0 f>0:u(f)=1
The main difficulty to use (3.4)—(3.6) is to control the term L*1. Notice that L*1 = 0 if and
only if 4 = 7 is the invariant measure. The quantity L*1 thus appears as a way to quantify the
proximity of p to the invariant measure 7. This serves as an informal guiding principle for the
choice of u:
for each f >0 with u(f) =1, p(fL*1) must be small. (3.7)

We are going to apply Lemma [3.2] to the dynamics Py, defined in ([2.41)), for h € S(ep). Let us
emphasize again that "small" must always be understood in comparison with the size of the V’s
one wishes to estimate as in . Typically, if one wants to study the hydrodynamic limit of the
density of particles in a d-dimensional open SSEP on a lattice of side-length N, related observables
are of the form Y, 7;¢; ~ N? for a test function ¢. The rule of thumb is then that one needs
o(N%) bounds on the relative entropy. These can be achieved if u is a product measure with the
same densities as those of the invariant measure at each site, i.e:

p=ov" = (X) Ber(p), (3.8)
€A N

with Ber(p) the Bernoulli measure on {0,1} with parameter p € (0,1), and p the steady state
density profile in the large N limit, see (2.5)). In contrast, consider the fluctuation field:

Vo (-L) SR, YY(6) = org O OO/, (3.9

1€EAN
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The typical observables to study Y.V should be of the form N'/2Y'N(¢) which is typically of order
N'/2 s0 one needs o(N'/?) bounds on the relative entropy (in fact o(N%?) bounds in dimension
d). Remarkably, while one could expect that some information on the correlation structure of the
invariant state should be necessary to study Y, Jara and Menezes [32] managed to obtain such
bounds on the relative entropy by still taking p product as in . To do so, they set up a general
renormalisation scheme to bound pu(fL*1), for a u-density f, in terms of the carré du champ, and
objects that can be estimated by the entropy inequality. Precisely, they manage to prove bounds
of the form:

N if d=1
H(fiplp) < C(T)ag(N)N?  with  ag(N) =< logN  ifd=2 (3.10)
1 if d> 3.

This is enough to study fluctuations in dimension d < 4. They also argue that these bounds are
the best possible when p is product.

Let us come back to the study of the correlation process IIY in the (one-dimensional) open
SSEP. Observables, of the form IIV(¢), should be bounded with N, so we need oy(1) bounds on
the relative entropy at each time. The measure p therefore cannot be taken product: one needs to
include information on the correlations under the invariant measure in p. With in mind, we
look for p that has both the same density at each site, and the same two-point correlations as the
invariant measure - which are in general not known - when N is large. We tune these unknown
correlations in an indirect way, taking a smooth function ¢ : 1 — R, and looking for the optimal
choice of g such that the measure y = v} satisfies (8.7), with:

1

yév = v OXP [QHN(g)] . Zév a normalisation factor, and 7 as in (3.§)), (3.11)
g

For each bias h € S(e) for sufficiently small ¢ > 0, the optimal g = g arises as the solution

of a certain partial differential equation, that we call the main equation (2.61f). For this g, the

method of [32], adapted to this context, and a logarithmic-Sobolev inequality yield the bound of
Theorem

JC, K > 0,Vt > 0, H(fw) v < e ™ H(for) [v)) + CN™2, (3.12)

The exponent —1/2 improves on . It is related to the size of exponential moments of three-
point and four-point correlation functions for product measures (see Section . It thus cannot
be improved without adding a correction to V;\’i . The proof of is the main technical result
of the article. The precise statement of the result is the content of the next two lemmas, a more
comprehensive reformulation of Theorem For h € §(00) (defined in (2.45)) and f: Qn — R,
let T'1,(v/f) be the carré du champ operator associated with the generator L; biased by h, with
jump rates ¢, defined in (2.41)):

1

Vn € Qn, Fh(\/?)(ﬁ) =1 Z cn(n,i,i+ 1) [\/?(nm'ﬂ) . \/?(77)}2
*’i S e[V = Vi) (3.13)

ie{x(N-1)}

23



Lemma 3.4 (Log-Sobolev inequality, adapted from [29]). Let 0 < p_ < py < 1. There is a
constant Cps = Crs(ps) such that, for each e, € (0,1/4), each h € S(¢) and each g € go+S(€'),
the following inequality holds. For any density f for Vév.‘

YN eN,  H(fvrY|w)) < CLsNY (Th(VF)). (3.14)
The e appearing in the next lemma is the same as the one of Theorems

Lemma 3.5 (Approximation of the invariant measure). Let 0 < p_ < p, < 1. Let h € S(o0)
and assume that the main equation (2.61)) has a solution gn € go + S(00) (the set S(o0) is defined
m -) For N € N*, the reference measure u 18 defined by -

There is then eg = ep(p_) > 0 such that, zfp = L= < cp and h € S(ep), then gy is a
negative kernel (as defined in ) and the followmg 18 true
e For any N € N*, there is a function £ : QA y — R such that, for any l/ﬁ—density f, the adjoint
Ly of Ly in L*(v))) satisfies:

2

vy (FN?Li1) < vy (f€) + —u ¥ (Cw(V1))- (3.15)
e There are constants v > 8CLg,C' > 0 depending on h and the reservoir densities px, such that:
% - C
VN e N, v log v (exp [7]8”) Nz (3.16)
e As a consequence, for any density f for v gNh,
H(fvN v C N2
N(pr= 2. N gn!”g N
Yon (thl) — Ny, (Ph(\/?)) = 8025 = N2z 9 Yo (Fh(\/?))
H(fv)vl) C N?
SR T NiE T T e (Th(v/1)), (3.17)
and if fthNh denotes the law of the dynamics at time t, then:
H(fiylve) C
* N, N
vVt > 0,VN € N, O H (fiv,, |v,,) < — 80925 gnl 4 7 (3.18)
Let us now prove Theorem [2.6] using Lemmas [3.4-3.5] Let gh solve the main equation (2.61]).
Recalling (3.18) and applying Gronwall inequality to ¢ — H(f,v,' 1)) yields Theorem
-1 8CLSC - —1
V20, H(fwluy) < H(fovy v e (0 4 = (1 — ¢~ (8Cis) t). (3.19)

Lemma is proven in Appendix It is a direct adaptation of the proof of [29]. The proof of
the key ingredient, Lemma [3.5] takes up the next four subsections. The fact that gy, is a negative
kernel if h € S(e) and p' < ¢ for small enough € > 0 is a consequence of Proposition [F.5] where it
is shown that ||gn — go||2 vanishes with e.

A function h € S(co0) and a negative kernel g € gy + S(00) are fixed throughout the rest of
the section, and we highlight where we need to restrict the size of h and p’. Recall that h, g are
symmetric functions, and that their restrictions to > are in C3(>). We do not a priori assume
that ¢ solves the main equation , and explain along the proof where this comes into play.
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3.2 Estimates on L;1

To prove Lemma we need to compute L;1. The computation of L;1 will give rise to many
different objects which, roughly speaking, will either contribute to leading order in N, or be sub-
leading order error terms. In this section, we define precisely how to estimate the size of a function
in terms of NV, and formulate criteria to identify which terms are error terms.

3.2.1 Size of error terms

Consider a density f for uév, and a function Xy : 2y — R. Our main tool to estimate the scaling
of Xxn with N is the entropy inequality:

H(fvy'lvy')

1
Yy >0, Vév(f|XN|) < +;loguév<exp [7|XN|}). (3.20)

Informally, we will say that Xy is small if its moment generating function under V;V vanishes with
N for v in a neighbourhood of 0. This is the kind of characterisation of smallness that is used to
estimate the size of the function £ in Lemma In some cases, typically when dealing with the
effect of the reservoirs, we will encounter an Xy that is not small, but can be transformed into

some Xy that is indeed small, up to a cost estimated by the carré du champ operator. The next
definition formalises these considerations and examples are given in Lemma below.

Definition 3.6. Let ay € R, N € N*. A family Xn : Qy — R, N € N* of functions is said to
be:

e Controllable with size ay if there are v, K independent of N such that:
1
VN € N7, —log V;V<exp [7|XNH> < Kay. (3.21)
Y

By convention, if ay(p) depends on an additional parameter p, then the constant K in (3.21))
will not depend on p. By the entropy inequality (3.20), (3.21) implies, for each density f for

N .
< H(fvy'lvy')
g

N
VN eN,  vY(flIXn]) + Kay:. (3.22)

e ['-controllable with size ay if one can transform Xy, using the carré du champ Iy, into a
controllable function with size an. More precisely: Xy is I'-controllable with size ay if there
are controllable functions Xiv with size ay such that, for each 6 > 0, each N € N* and each
density [ for Vév.'

vy (F(£XN)) < SN (Tu(f%)) + %V;V (FX2). (3.23)

The entropy inequality (3.20)) then again implies that there are v > 0, K > 0 independent of
0, N such that:

H(frvy) N Kan

vy (FEXN)) < ON*w (Dn(f1) + ——5 v:

(3.24)
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e An error term with size ay, or error term for short, if it is either controllable or I'-controllable
with size an, and any = on(1).

Remark 3.7. (I'-)controllability behaves well with respect to multiplication by a small constant in
the following sense. Assume that Xy is (I'-)controllable with size ay and let by € [0,1] (N € N*)
satisfy by = on(1). Then by Xy is (I'-)controllable with size byay by Jensen inequality. [ |

To illustrate the notion of controllability, the following proposition, proven in Appendix
states its consequence on the dynamical behaviour of observables.

Proposition 3.8. Let h € S(ep) with eg given by Lemma and let g, be the associated
solution of the main equation (2.61) as in Lemma . Let EN : Qn — R be an error term with
size ay = on(1), and let FN be (T )-controllable with size 1. There are then v,C and v/,C" > 0
independent of N, T such that:

1 T
vT > 0, T logE”‘ﬁ [exp "y/ EN(nt)dtH < Cay,
0

’/TFN(nt)dtH <c (3.25)

0

1
sup — log EYon [ exp
N T

Let ¢ : Ay — R. To determine whether a field is an error term or not, one must keep in mind
the following heuristics: the measures uév are discrete Gaussian measures, in the sense that the

fluctuation field YV (¢), which reads:

Y¥(9) = ﬁ > o), (3.26)

1€EAN

is close to a Gaussian random variable when N is large, provided ||¢||oc < oo. In particular,
A = v (exp[AYN(¢)]) is bounded uniformly in N in a neighbourhood [0,7(¢)) of 0 for some
v(¢) > 0. By (B.21), this means that YV (¢) is controllable with size 1 (or size C(¢) for some
constant C'(¢) > 0 if we want to keep track of the dependence on ¢). In analogy with Gaussian
random variables, one can prove that YV(¢)? is controllable with size 1, but Y (¢)" for n > 3 is

not. Similarly, the quantity:
1 _ :
N2 NiNiv19(1) (3.27)

I<N—1

Z%(¢) =

should not have worse concentration properties than Y (¢). Contrary to genuine Gaussian random
variables, however, Y (¢) and ZV(¢) are bounded, by C||¢||scN'/? for some C' > 0. As a result, it
is always possible to find ay small enough such that ax (Y (¢))" is controllable with size 1. This
discussion is summarised in the next lemma.

Lemma 3.9. For n € N*, let ¢, : A% — R satisfy supy ||¢nllec < 00. Define, for N € N* and
either J = {0} or J = {0, 1}, the functions (an empty product is by convention equal to 1):

Vn € Qu, X:f”J Z Z Gnlio, - in—l)(HT_]io+j> <Tﬁﬁz‘a);
: a=1

10<N—|J| i1, in—1€EAN

Us(n) = fev-1y, Ui (n) = Al Z m<b1 ce{—+} (328
z;ﬁs

Then:
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e the function U is I'-controllable with size N~', and Ui is T'-controllable with size ||¢1]|ooN .
Moreover, N~Y2X{", is controllable with size ||¢1]|2

e Forn > 2, there are constants v, > 0 that depend only on n, but not on ¢,, such that:

n —(n— 3
log uf(exp [HJH N UX;’S:]D < —=- (3.29)
This implies (but is stronger) that the function N~("~ l)X‘ZSJ is controllable with size |G| N~ "2)/2,

2
In addition, if ¢,(io,...,1in_1) vanishes whenever an index appears twice in the collection
io + J, 01, ey in—1, then one can replace ||pn||oo by the weaker norm ||y |2y in (3.29), where:

1/2

||¢n||2N - (Nn Z ¢n 'LO:-' Zn 1)2> . (330)

,,,,, —

e Forn=2and|J| >1, say J ={0,1}, the previous estimate can be improved: N~ 1X§5f’{0 1y @

-controllable with size ||¢nllaoN "2 (o1 ||pnllon N7Y2 if ¢o(i,i) = 0 = ¢o(i,i + 1) for each

Remark 3.10. To help clarify the definition of Xf;’}, take J = {0,1} and, for n € N*, let
G0y -y in1) = )=y G1(i). Then:

Xory = NN (00)" 7 2N (), (3.31)
with YN(¢), ZN(¢) defined in (8.26)-(3.27). Moreover, for any Bg 1 A% — R with ¢o(i,1) = 0 for
i € Ay, then the correlation field (2.7) can be recovered: X2 0 = ANTIN(¢5). [

Lemma is proven in Appendix for the variables XZ”"J. The statement for Uy, U
proven in Appendix [B.2] and the last item corresponds to Proposition

3.2.2 Bounding the entropy

After Classifying each term arising in the computation of L;1 according to the categories in Defi-

nition we will obtain the estimate (3.15)): for a good choice g;, depending on h and any density
f for v

(L) < v (76) + S (0(/)). 332

Above, € will be a controllable error term with size N~'/2: there is v, C' > 0 depending on py,h
such that

VN e N, log Vﬁ(exp [7|8H) (3.33)

C
N1/2
To turn this estimate on the adjoint into the entropy estimate of Theorem there is one more
step, which involves the log-Sobolev inequality of Lemma see (3.19). To apply the log-Sobolev
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inequality, we need to ensure that the constant v in (3.33) is sufficiently large compared to the
log-Sobolev constant C'rg, in the sense that we want to have:

v (fLp1) — N2 (Th(£17%))

H(fvN N 1 N2
< —(f o "0.) + ;logugNh(exp [7|5]]> - = (Th(f?))

v 2
H(fvylvh) € N* o
= SCLS + ’le/? 4 Yo (Fh(f ))’ (334)

where (8CLs)™! in the last line could be replaced by any smaller positive number. The last bound
requires v > 8C'Lg, and is the reason for the introduction of the following terminology.

Definition 3.11. e A (I'-)controllable error term Xy of size ayn is said to be of vanishing
type if there is a sequence (yn)n of positive numbers such that imy vy = 0o, and ynvXy is
(T-) controllable with size 1.

e A function Xy (error term or not) is said to be of large type if, for some v > 1 independent
of N, vXn has unbounded exponential moment as N — co.

e A controllable function is said to be of LS type if one can take v > 21°Crg in the defini-
tion of controllability (this is in particular always true for N large in the case of error
terms of vanishing type). A T'-controllable function is said to be of LS type if the controllable
functions YN associated via (3.23)) are of LS type.

Remark 3.12. The constant 2'° is not at all optimal (any large enough constant would also work),
but is sometimes convenient later on. [

Let us clarify this notion by classifying the functions appearing in Lemma [3.9

Lemma 3.13. Forn € N, J = {0} or {0,1} and ¢, : A — R with supy ||¢n||cc < 00, recall the
definitions of Xff,, U* in Lemma .

o N'2UF NYV2UFE are T-controllable with size 1, so both Uf and UL are error terms of van-
ishing type. Similarly, for any sequence ey > 0 (N € N*) with ex = on(1), gNN_l/QXff]
and SNN_(”_UX,?:, for n > 2 are error terms of vanishing type.

o Forn > 2, WN_("_l)Xff] has exponential moment bounded with N only if v > 0 is small
enough. Thus N_(”_I)Xf;f, 1s of large type.

e Forn > 2, there is a numerical constant ¢, > 0 such that mN_(”_l)XST’J s of LS type.

If in addition ¢, (ig, ..., in—1) vanishes whenever the same index appears twice in the collection
io + J,i1, ..., in—1, then the same statement is true replacing ||¢n|lee with ||¢nllan (defined

in (B30)).

e If a function Xy is of LS type and ¢ € (0,1), then eXy is of LS type. Moreover, (1+ a)Xy
is of LS type for sufficiently small o € (0,1) independent of N.
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Lemma (3.13| is obtained as a consequence of the proof of Lemma [3.9, carried out in Corol-
lary [A.4]

To see why the claim of Lemma is reasonable, consider again Y™ (¢;) = N~Y23" 701 (i)
(¢1 is bounded) as an approximately Gaussian random variable when N is large. Similarly, one
should see N*(”*l)Xfi’j] as approximately N~("=2/2 times a product of n Gaussian random variable

(n > 2) for bounded ¢,. For n > 3, the prefactor N~("~2/2 vanishes, thus N_(”_l)XffJ should
become an error term. Error terms, however, are defined in terms of smallness of exponential mo-
ments, and the moment generating function M, () of a product of n Gaussian random variables
is unbounded for 7 large enough (n = 2) or for any v > 0 if n > 3. For n > 3, the vanishing
prefactor N~("2/2 when considering N_(”_I)Xf;f] as a product of n Gaussians is precisely right
to ensure that its exponential moments are bounded with N in a neighbourhood of 0.

For an error term of LS type, a straightforward adaptation of the proof of Proposition (see
Section [C.2)) yields the following result.

Corollary 3.14. Let EVN be a (T'-)controllable function with size ay = On(1), and assume that
EN is of LS type. Then one can take v = 1 in Proposition i.e. there is C = C(py) > 0 such
that:

VN e N*. VT >0 T logE gh exp ‘ / (s dt‘ < Cay. (3.35)

In particular, this applies to EN = G|¢l; W IIN(¢) with ax = 1 for any bounded ¢ : (A — R, with
(o the constant in item 3 of Lemma[3.15

Equipped with these notations, we now turn to computing L;1, in the next two subsections.
We split L into Lj, = Lj, + Lj ., the adjoint dynamics respectively in the bulk and at the
boundaries, and study each contribution separately.

3.3 Adjoint at the boundary

In this section, we compute Lj .1, the part of the adjoint L;1 of L, with respect to v corre-

9
sponding to the dynamics at the boundary. By (3.5)), it reads:

N? v

MLm= 3 el )5 - alnd)
ie{+(N-1)} . 1_29.
ie{£(N-1)} pi i
—¢(n,i)exp [ (1- 2771 Z h”H (3.36)

J#

The jump rates ¢(n,i), i € {£(N — 1)} are defined in (2.3). To compute (3.36)), recall that both
h, g satisfy h(£1,-) = 0 = g(£1,-) by hypothesis. It follows that the arguments of the exponentials

n (3.36) are bounded by O(N~'). Moreover, introduce for i € Ay = {—N +1,..., N — 1} and at
the boundaries:

A :=log <1 p'p ) as well as ALy = log (1 pip > (3.37)
— Vi I
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With this notation and by reversibility, one has for i € {£(N —1)}:

i - . Psign(i 2mi—1 .
') = el i) (20— = >(.)) = c(m,3) exp [ (2 = Dsigniyw . (3.38)
sign(1

As a result, with the notation ¥\, = N(\py1 — A¢), we get :

1—2n
= c(n, 1) exp [(—N")(LZ(NDGNA_N — 1Z~:N_18NAN_1)} : (3.39)

Write for short the boundary term as:
Bii=1i— vV Ay — Liny—10V An_1. (3.40)
Using and the existence of Cj, ; 5 = C(||h|co, || 9]l ||Plloc) > 0 such that
" = 1= a%/2] < Chgplal® for |z] < 2([Ihllee + 2llglloc + [[M]loc). (3.41)

Equation (3.36) can be expanded with an error term:

« N . 1 _
03 (n) = N°Lj 1 1(n) — B} > e i)(1—2n) [N > WiN(g = h)ij+ Bz-] (3.42)
ie{£(N-1)} i#i
1 . 1 3 2 1 3 2
- Z' C(n,Z){(WZmN@g—h)i,ﬁBi) - (WZ%N}%J) }7
ie{£(N-1)} i i

and 64" satisfies |61 < Chy5/N. To compute the two terms in the left-hand side of (3.42), let
i € {£(N — 1)} and let us first rewrite the jump rate in terms of 7; in two different ways. One
has:

c(n, i) := (L = 1) psign(y + (1 = Psign() )i = Gsign(s) + M:(1 = 2psign(e)); (3.43)

with:
Asign(i) = (1 — Pi) psign(i) + (1 — Psign(i) ) Pi- (3.44)
Moreover, it also holds that:

(1 —=2n:)c(n,7) = =0 — psigntsy) = —7i + (Psign(s) — Pi)

1
= =10 — N [1i:—(N—1)8Nﬁ—N — ]-i:N—laNpN—l]- (3.45)
Using (3.45)) in the first sum in (3.42)), one finds:
N . 1 _
52 e it—2m)|5 Yo mNg - b

ie(E(V-1)) i
+ (L (v-1) OV Ay — 1i:N—18N)\N—1)]

ONﬁ_N N@N/\N_l [

_ ONpn_1
[77—(1\1—1) + N } + 5

N

= "IN—1 —

_N@N/\_N
2

| +o*m),  (3.46)
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where 03 is an error term that reads:
0% (n) (3.47)

= —% | Z <77i + %[L’:(Nl)aNp—N — 1i:N—1aNﬁN—1}) Z niN(g — h); ;.
ie{t(N-1)} JF#i

Since N(g—h); ; is of order 1 for i close to the boundary, the term involving 7); above is of the same
form as Uit in Lemma and recall that Ui is T-controllable with size N~' and of vanishing
type (as defined in Lemma B.13). The other term is of the form N~2YN(¢) for a bounded ¢
(recall (3.26)), and YN(¢) is controllable with size 1, thus N~Y/2Y™(¢) is also of vanishing type.
It follows that 5¢ is I'- controllable with size N=! and of vanishing type.

Consider now the second sum in (3.42). Using and recalling the definition of ay, it

reads:

i Z c(n, 1) {(% ZﬁjN(QQ —h)iy

ie{£(N-1)} i
2 1 2
+ (1i:—(N—1)8N)\—N — 1i:N—laN/\N—1)> — (ﬁ Zﬁjth‘,j> }
JF#i
_(ONM_N)? ONAn_1)?
_ a ( N) + CL+( N 1) +5£73(77)7 (348)

4 4

N3 . . o
where 0" is an error term that contains all other contributions:

51’3(77):2 > cni) l(ZNZm (29 — hw) —( Z%Nhu”

ie{£(N-1)}
1 . _
+ N E c(n, 1) [(11‘:7(N71)8N)\—N - ]-i:N—laN)\N—l) E ;N (29 — h)z‘,j}
ie{x(N-1)} J#i
ONA_N)? ONAn_1)?
+7-v-1)(1 = 2/)—)% +inv-1(1 = 2/’+)%~ (3.49)

With the notations of Lemma and bounding ¢(n, ) by 1, the first line of (5£’3 is bounded by
a term of the form N~ 2)(;’2{0}7 thus N~! times a quantity controllable with size 1. Similarly, the
second line is bounded by a term of the form N~Y2|Y™ ()| (recall that Y is defined in (3.26)))
for bounded ¢, and |Y¥(¢)| is controllable with size 1. Finally, the third line is of the form Uj,
and U§ is I'-controllable with size N~! and of vanishing type. The quantity 61’3 is therefore
I'-controllable with size N~/2 and of vanishing type.

Putting together (3.46)) and (3.48]), we have obtained the following expression of the adjoint at
the boundary:

NOVA_ oNp_ NONAy_
N2L2,i1(77) = _TN [ﬁ—(N—l) + ]'3 N] + 5 Ak [ﬁN—l —

LS (3]\;)\—1\]) n a (0" )‘N 1) Z 5N (). (3.50)

]
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It remains to notice that the constant terms in the last equation compensate each other to obtain
the final expression for N2L,’;7i1(77). Indeed, for each i € {£(N — 1)}, a Taylor expansion yields:
N p;

Lo, (3.51)

g;

Qsign (i) = 251 + O(N_l), 8N)\1 =
It follows that there is a configuration-independent error term §V4 with §¥*4 = O(N~'), such

that:

NONA_y NONAN_1 _

4
NQLZ,il(W) = —T_ﬁ—(N—l) + T_m\pl +6¥(n), 6 = Z(qu(n). (3.52)

The quantities 6%, 6% are, by definition, I-controllable with size N~! and of vanishing type.

3.4 Adjoint in the bulk
We now compute Lj ;1. For each ¢ <N — 1, define Bl CI, DI as follows:

1 oN p;
h _ — qQN h v ”+1 h __ h h
B}(n) = IN | Z ;01 hij, Di'(n) = T 9N C; =B+ D}, (3.53)
je{isi+1}
where, for u : A%, — R:
ONu(i,j) = N[u(i +1,5) —u(i,j)], i<N—1,7€ Ay. (3.54)

With these definitions,

VieN-1 T - 0w ) =~ o) (3.55)

Define similarly €Y, and notice that, since h, g are regular:

sup sup sup (|C7(n)| + |CY (n)]) < oo. (3.56)
NEN* neQy i<N-1

By (3.5), the adjoint L} ; in the bulk reads, by definition:

N2

2 1% ig+l - - Vy(ni7i+1) .o
N-Lhol(n) = — [Ch(n’ i1+ I)T) —cn(n,d,i+ 1)] (3.57)
I<N-1 Vg {1
With the above notations, this becomes:
Nit1 = 1) | o Pi(L = Pigr) 1=
N2L* = — n,i,1+ 1) {exp [(—(CZ - 2057)} [f}
ol z<21v:1 N pi+1(1 = pi)
—exp [— Wchﬂ . (3.58)
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To compute (3.58), recall the definition of A:

Vi€ Ay, A= 10g< Pi_ ) (3.59)
1 —p;

Notice that C" — 2C9 = Ch=29. Moreover, c(n,i,i + 1) = (n;41 — n;)? for each i < N — 1. With

these notations, (3.58)) reads:

N (g1 =) |
271 % _ v N2 i+1 i h=29 _ Ny
NLioll) =5 3 (s =) [exp[ (S ETAPY]

— exp [ - WQ"H : (3.60)

To compute ([3.60), we expand the above exponentials. Write (N 2L;OI)OMer p for the term of order
p € N. From the existence of C), ; = C(||h||c, [|¢]lo) > 0 such that |e*—1—z—22/2—2%/6] < C), ,2*
when |$‘ S 2(HhHOO + 2“9"00)7 one has ’(S(J)Yorder24<n)’ S 2Ch:g/N7 with 5(]]\,[order24<77> given by

N _
N*Ljo1(n) = 5 Z (Miv1 — i) [QCih 7 - aN)\z} (3.61)
i<N-—1
1
+7 2 = [(C17 = 0Vx)" = ()] (3.62)
i<N-—-1
1 _
o O =) [ [CF7 = V) + (O] + O orgersa (). (3:63)
i<N-—1

The sum in the last line will later be found to be an error term, in Section The
important terms are therefore the sums in (3.61)-(3.62), which we will see impose conditions on
the choice of g.

To highlight the structure of Lj ,1, let us rewrite the sums in — by grouping together
terms involving n-point correlations, n € N*. By , C'is the sum of B, which involves one-
point correlations (i.e. one 7); and of D, which is configuration-independent, like A. Moreover, the
sum in will have to be integrated by parts to remove the N factor. To do so, write:

Vi< N —1, Nis1 — 0 = i1 — T + Pis1 — Pi = Tis1 — 0 + N0V . (3.64)

The sum in (3.61)) therefore contains constant terms, fluctuations and two-point correlations. Let
us similarly analyse the second line (3.62). The jump rate (9,1 — ;)% i < N — 1 can be expressed
in terms of 7; and 7;,, as follows:

Vi< N—1, (Mis1 — m:)* = ai + 0" (P)Tis1 + 0" (Pig1) Tl — 2MiT)is s (3.65)

where a; = pi1(1 — pi) + pi(1 — piz1), ¢ < N — 1. The sum in (3.62)) therefore involves constant
terms and n-point correlations for each 1 < n < 4. In Section we prove that three-point
and four-point correlations lead to an error term 6)5_,, while the sum in the third line is
an error term 0y ;.4 3. The adjoint in the bulk thus reads:

N?L; 1= Const + Fluct + Corr + 63'5_4 + 60, order 3 + O ordersas (3.66)
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where Const, Fluct, Corr respectively denote the constant terms, the fluctuations and the correla-
tions. The expression of these terms is given in the next three sections. Informally, these are small
only when V;V satisfies specific conditions. Namely, the fluctuations term Fluct is small because,
by definition, Vév has the same average occupation number as the invariant measure in the large N
limit, see Section [3.4.1] On the other hand, the correlations Corr are small provided g solves the
partial differential equation , as shown in Section Finally, the constant Const is small
provided all other terms are, as established in Section We will repeatedly use the following
estimates (recall the definition (3.53)) of D):

sup |Di] = O(N™Y),

i<N-—1
ADY N p;
sup W A ONp| = O(N™Y) = sup [0V N — 7p : (3.67)
i<N—1 i<N-—1 o7

3.4.1 The fluctuations

Here, we estimate the fluctuations term Fluct in (3.66]), which we recall accounts for all terms with

a single 77 in the two sums (3.61)—(3.62). Recalling (3.65)), it reads:

1 _ _ h—
1<N-1
+ 5 [2BI7(DI7 = 9" \;) — 2B!'D)]
1

t3 (0" (pi) i1 + 0 (pia)in] (D27 — OV A)? = (D])] ] (3.68)

To estimate the size of each term above, recall from Lemma that a term of the form Y (¢)
(defined in (3.26))), with ¢ : (—1,1) — R bounded, is controllable with size 1. Using (3.67)), (3.68)
thus turns into:

1
Fluct = 3 Z [N (M1 — 1) (2D} 79 — OV X)) + 207 5, Bl — ;0" \; B}

i<N-1
O"N)? e, L
O o i + )] + ), (369
where (537 i1(n) reads:
1
N,1 — h—2g ;yh—2
do,i (n) == 3 4<;_1 [ai [B/~*D;™* — B{D{] (3.70)

+ [5/(ﬁz‘)ﬁz‘+1 + J/(pi-‘rl)ﬁi} [(D?_QQ)Q - QD?_anNAz‘ — (Dz'g)2] .

Recall from (3.53)) that each B; for i < N —1 is of the form N~/2YN(¢) for a bounded function ¢,
and that sup, |D;| = O(N!). As a result, all terms composing g are of the form N~1/2YN(y))
or N73/2Y'N (1)) for a bounded v, and Y™ (¢) is controllable with size 1 by Lemma . It follows

34



that (5(])\’[ il is controllable with size N~! and of vanishing type (recall Definitions (3.6 .

Let us compute (3.69). We start by integrating its first term by parts. From (3.53]) and the
regularity of h, g, one draws, for each : < N — 1:

_ _ 1
Dzh—lg - D? I = ToN? [(h 9)i, erlA pi + N[<h 9iit1— (h—g)i 1@}8 Pi— 1} (3.71)
where:

ANp; = 0N (0N pi—1) = N*[pis1 + pim1 — 273). (3.72)
Remark 3.15. In the present case, AVp; = 0 and ONp; = p' for each i, which could be used to
simplify (3.71) and several other expressions below. We chose not to use the properties of p until
the end of this section to highlight the structure of the Fluct term: it will contain a discrete PDE

involving p. Had we defined v} in terms of a density function p : [-1,1] = [0,1], this PDE would

determine the choice of density p in the measure V;V wn order to obtain an optimal bound on the

adjoint. [ |
As a result, sup; | D!{ — D!?| = O(N~2). Moreover, g(£1,-) = 0 = h(%1,-), which implies
that DE@{’PI) — O(N~2) = D79 An integration by parts therefore turns (3.69) into:

1 N N
Fluct = 5 Z AN\, —577]\/ 1O AN 2+ =7 8N)\ (3.73)

2
li|[<N—-1

_ Za A aN)\l 2 1/ — \ — /- _
+ Z [81\]@3? v _2 5 Bh * %[U (pi)ni+1+0(m+1)m]]
i<N-1

+Z§Nq

where 55 12 is a controllable error term with size N—! of vanishing type, as it reads:
1 _ - _ _ y _
56\7[12(77) - N Z 7N [D?_fq - D? g} + anlD]}iff% - 77—(N—1)D}_L(]€/_1)~ (3.74)
li|<N—-1

Using (3.67)) to express a.0V \. in terms of " p. in the terms involving B in the second line, (3.73)
becomes:

1 N N
Fluct = 3 E nAN N — 5771\7713N>\N72 + Eﬁ—(N-l)aN)‘—(N_l)
li|<N—-1
N g (aN)\)2 ’ Nq
+ [8 0; BY + . i1 + 0 (pi 1}+ doal(n), 3.75
z‘<§N—1 p L7 ()i + o' (piga)n qE 1 (3.75)

with d;;°(n) of the form N~Y2YN(4) (recall (3.26)) with ¢ bounded, thus controllable with size
N~! and of vanishing type. Indeed, recalling the estimates (3.67) and the definition (3.53)) of B,

N3
01 reads:

N,3 _ 1 _ 1 aiaN)\Z- _ AN= N . .
001 (M) = ~55 m( N&{WZN 1}]\7[ =0 pz]al (h—=29)i; ). (3.76)
1 J—1,7,0N—

JEAN
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and the term between parenthesis is bounded uniformly in 7 € Ay and N € N*. Let us
now compute the term involving B in (3.75). Recall that ¢ € C*(>) and is symmetric, thus
SUp|jj<n—1 N|gj—1;—gj+1,| is bounded uniformly in N. Integrating by parts and using g(+1, ) = 0,
and the symmetry of ¢ in the last line below; we find:

Z N pBY = % Z " pi Z 07 gij = % Z n;j Z O™ pid} g

i<N-—1 i<N—1 je{ii+1} JEAN  ig{j—1,,N—1}
1 _ _ _ _
= 5N > 773‘[ > AVpigiy+ 0Vpia(Ngjo1;) — 0V pira(Ngjs )
j€AN lil<N—1
l7—i[>1

+ 0N pn_o(Ngy_1;) — aNﬁN+1(NgN+1,j>:|

1 B _
ST Y AV )

JEAN  |i|<N-1
li—i>1

1 o s
= =5 > (N7 M) (Ap)(5) + 8 (), (3.77)
JEAN
where 5&4, 6[])V15 are of the form N~Y2YN(¢) (YN () is defined in (3.26))) for bounded ¢, and there-
fore (5(])\34, o0 71 are controllable with size N~ and of vanishing type. M, is the matrix (9i3)(i.)enz,

and (Ap.) the vector (Ap;)icny, S0 that 5(])\7[15 accounts for the replacement of AYp by Ap (this
cost vanishes in our case since p is linear, but we do not use this fact at this point), as well as the
addition of missing terms in the sum on :

05 () = Z oY, (A Anley

JeAN —N+1<i<N-1
l7—i|>1

— 2i > > Apigij. (3.78)

JEAN  ie{£(N-1)j,j£1}

Consider now the sums involving A. in (3.75)). Elementary computations give, for each i < N — 1:

N = aN—i 2 s
ANX = N[OV — OV 4] = A_lpl _ (0%) ') +el, sup eV =O(N1). (3.79)

0; (0:)? ! li|l<N—1

By (3.67), we also know sup, |0V \; — OV p; /55| = O(N~1). As a result:

N 8]\’)\
Z AT + Z (Pi)lli1 + 0 (Pz+1)771}
||<N 1 i<N-—1
N N

- gﬁNflaN)\N—Q + 577_(1\/—1)8N>\_(N_1)

1 Ap;, N N

=3 > A = SN0 dwos + v A vy + 01 () (3.80)

ieny 7 2 2
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N6
where ¢, reads:

W) =5 S m[AVAF [0 A1 (i) + (@A) (urn)] - 2]

7

li|<N—1
In-1(0"Av_2)?0"(pn=2) | T-(v-1)(O" A (v-1))?0" (P-(v-2))
+ +
4 4
Ap _ Ap
— NIN-1 PN — N—(N- 1)$ (3.81)
ON-1 0—(N-1)

The function 5(%6 involves terms of the form 7 (y_1)u(£(N — 1)) with u bounded (the last two
lines), and N~Y/2Y"N(g) for bounded ¢ : (—1,1) — R (the first line). Tt follows that &;; is I-
controllable with size N~! and of vanishing type by Lemma |3.13] m Note that the last line actually
vanishes since Ap = 0. This last line is an error term anyway, so we do not need this fact.

Putting (3.75)), (3.77) and (3.80) together, we have computed the fluctuations term (3.68) in
N2L} 1

1 o _ v N
Fluct = 5 Z 771‘(0 - N 1Mg) (AP-)(Z) - EUN—laN/\N—2
i€EAN
+ Eﬁ,(N,l)aN)\, Z ol (n). (3.82)
2

Since p is the steady state profile satisfying Ap. = 0, the first sum vanishes, and:

6
N N
Fluct = _EﬁNflaN/\Nf2 + Eﬁ—(N—l)aNA—(N—l) + 55)\,[1(77)7 55)\,[1 = 25&"- (3.83)

By definition of error terms, see Definition [3.6] we have proven the following: for any 6,~v > 0,
there is C'(6,v) > 0 such that, for any density f for v} and N larger than some N():

N
Vé\] (f . Fluct) < EV;V (f[—ﬁN,lﬁN)\N,z + ﬁ_(N_l)GN)\_(N_l)])

5 N H(fv,'|v))  C(6,)
+ONWY (Ch(V 1)) + . +

(3.84)

The expectation in the first line of (3.84)) is not an error term, but it will cancel out with the bound-
ary term obtained in ([3.52)). This cancellation will appear in Section where all contributions
to L;1 are summed.

3.4.2 The correlations

In this section, we compute the Corr term in (3.66)) and obtain the partial differential equation that
an optimal g must solve. Recall that Corr corresponds to all terms in (3.61)-(3.62)) that involve
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products of two n’s. It reads:

Corr = ) {N(ﬁm —)B! ™ — a; BB — %W?m (DI = 0V\)" — (D]

i<N—1
1 _ _
+t3 [0/ ()1 + o' (pisa)ii) [ B (D7 — 0N \;) — B]'D}] (3.85)
Recall from Lemma [3.9| that terms of the form TIV(u), or of the form:
N~V XY {01} = N2 Z NiMi+1Vi, (3.86)
i<N—1

are controllable with size 1 as soon as the test functions u, v are bounded. Multiplying them by ey
with ey = on(1) therefore turns them into controllable error terms with size ey, €3, respectively
by Lemma As in Section [3.4.1] we first use the estimate (3.67) on the size of D to remove
some terms from ((3.85):

_ g 1__
Corr = ) [N(ﬁH-l —:)B — a; BB} — 577z‘77i+1(aN)‘i)2
I<N-—1
1 _
= 5[0/ (P)iier + o' (P )] OV N B 29] + 605 (), (3.87)

with 5(])\7[ él controllable with size N~! of vanishing type, defined by:
1

003 1) = — 5 > Wl N[(D} )2 = 2D 0%\ — (DI)?]
i<N—1
1 — _
ToN Z [0 (pi)li1 + &' (i1 )] N[ B> DI — BIDP. (3.88)
i<N-1

Let us integrate by parts the term involving 7;.1 — 7; in (3.87), ¢ < N — 1. To do so, notice first
that, for each ¢ with |i| < N — 1:
N[B! -B!9 =N[B{"" — B{]]
1

= oN Z ALY (9= h)i
Jili—i|>1
1
+ 5 [ﬁi—lafv(g — h)iie1 — 107 (9 — h)i—1,1'+1]> (3.89)

with ANu(i, ) = 0N (ONu(i — 1,5)) for u: Z* — R and (i, j) € Z*. As a result:

ZNmH Bf

i<N-—1
= Nin1By % — Ni_w_yB" %)+ > N[B! — B!

li|l<N—1
1
= 5(])\@2(77) + N Z Z nin; A V(g — h)i; (3.90)
[i|<N—-1j:j—i|>1
1 — [ = _
+t3 > 3 [1m10Y (g = h)iio1 — 04107 (9 — B)ic1i41)
[i|<N—-1
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where 5(])\7[ 52(77) =N ﬁN_lB]}i,__gZ — Nij_(n- )B ZN - 5(]{ 52 involves correlations between the reservoir

and the bulk, of the same form as the function U;* defined in Lemma . (5év 52 is thus T-controllable
with size N~! and of vanishing type. On the other hand, the last line of (3.90) becomes, changing
indices:
Z ;i [ﬁifla{\](g —h)iio1 — Ni107 (g — h)ifl,iJrl}
li|l<N—-1
= Z Tillia1 (01 (9 — h)iyri — O (9 — h)iri] + 5(])\,[é3(77)7 (3.91)
—(N-1)<i<N-2
with:
8057 (1) = - (N—1yT-(v-2)01 (g — B)—(v—2),—(N—1)
— fin_afn_105 (g — h)n—3n-1- (3.92)

The quantity (50 5 is again a I-controllable error term with size N~! of vanishing type, as it is of
the same form as the function Ui of Lemma [3.9] Equation (3.90) thus reads:

Z N1 — mi) Bl = % Z Z miAY (g = )i

i<N-1 li| <N—1j:]j—i|>1
1 _
+ 9 Z TiMi+1 [a{\f(g —h)it1i — (9 (g—h)iza z+1 + Z(SNq (3.93)
—(N-1)<i<N-2

The other terms in (3.87) are simpler. Indeed, recall that:

oN p;
sup |a; — 25, = O(N™1), sup |[OVN — —=| =O(NY). (3.94)
i<N-1 i<N-1 g;
Using these estimates in ([3.87)), Corr becomes:
Corr = Z Z 1A (g = )i
\|<N 1j:lj—il>1
1 . 0" pi)?
. ) Z TiMi+1 [a{v@ — i1 = O (g — h)i-ri — ( (5,)2) }

—(N—-1)<i<N-2

- Z [ p’L 772+1 +o (Ioz-i-l) ]82—pZBh % +20 BgBh 9i| +25 (395)

i<N-—1 q=1

N4
where 6,5 reads:

1 . N oN pz
0050 = —5x D[0P + o' ()] [0V N — L] B
i<N—1 ‘
. 5o — L Ty 0D’
i<N-1 —(N-1)<i<N-2 v
1
~5 |:77—(N—1)77—(N—2) (8N)\—(N—1))2 + NN—2MN-1 (aN)\N—Q)Q} . (3.96)
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The last line comes from the fact that the sum involving 7;7;+1 in (3.87) and in (3.93) do not have
the same range. It is of the same form as U;" in Lemma thus is I'-controllable term with size
N~! and of vanishing type by Lemmas (3.9 -—- The first line and the first term of the second line

above are of the form N~ 2X§)1{0}, while the second term of the second line reads N~ 1/2X1¢2{0 135 for

bounded tensors ¢1, ¢2. As a result, 5075 is [-controllable with size N~! and of vanishing type by
Lemmas 3.9H3.13l

To conclude on the expression of the correlations, it remains to take care of the two terms
involving B in (3.95)). Recalling the definition (3.53|) of B, using the regularity of h, g and p and

changing indices, one can write:

O pi
a Z pz 772+1 +o (pH»l)nz} _IO BQQ h (397)
2<N 1 g
1 o' (pi)O" pi _ _
=ov 2 o Y W20 = Wi+ 65 (n),
li|<N—1 ! J#{ii+1}
where (55 ;> is an error term that reads:
N,5 1 — 1= 1= a pz 2g—h
do,5’ () = IN Z N 0" (pis1) — ' (pi)] ——B;
li|l<N—-1 g
ONpis N p;
+5 N > N |0 (i) B — o (o) LB
li|<N—1 -1 v
' (pn-2)0N pn—2 o' (p—(n—2)) O p—(n-1 _
HiN BX M i (voy (2_) S (3.98)
N-2 O_(N-1)

Jy5 is of the form N~— 1X¢2 , for a bounded ¢ for the first two lines, and N~U; for the third
line. By Lemmas “ 5N5 is therefore I'-controllable with size N~! and of vanishing type.

Finally, recall that (7.)?> = 6. +0’(p.)7.. Separating diagonal and off-diagonal contributions, the
term involving BYB"9 in (3.95) reads:

e, 1 ) -
=2 ) aBIB = > o Y i 900 (g — h)ie

i<N-—1 i<N—1 j,£¢{i,i+1}
! S (2 _ AN N
TON e <W ‘ Z ;01 9i,;01 (9 — h)z‘,e)
l7l<N—-1 i¢{j—1,j,6—1,6,N—1}
(]
—1 5.5 N6
T oN? Yo D 66507900 (9 — h)ig + 655 (n), (3.99)

i<N—1j¢{ii+1}

where 03’ is the sum of error terms of the form N~Y2YN () (recall (3:26)) and U, thus &7y is
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I-controllable with size N~! and of vanishing type. It is given by :
1
N, YN
Gos (1) = Nz > a5 ()0 9100 (9 — h)i
i<N—1j¢{i i+1}

+ D Z%W( > 5@'8{Vgi,j6{v(g—h)i,4). (3.100)

JE{E(N—1)} £#] zg{j—l,j,e—Le,N—u

The correlations ([3.85)) have so far been rewritten as follows:

1
Corr = 77177]{ |:1|z ]\>1A (g h)zy+1]¢z+1asz E )aN(Qg h) j (3101)

1 _
+ N Z agafvgg,ﬁfv(g - h)g,j:| (3.102)

N N o pi
+1jivi<n— 1 A (g—=h)it1i— 01 (9 —h)ic1it1 — G (3.103)

+_ Z Z 0i0; lgwaNg hw"‘25 (3.104)

i<N—1j¢{ii+1}

We claim that the curly bracket is a discrete version of the partial differential equation (2.61)).
To see it, first use the symmetry of g,h and exchange ¢,7. Recall then that, by assumption,
h,g € W4*(2) for some s > 2. By Sobolev embedding, W**([) ¢ C3(>)NC3(<), see Appendix|[E]
As a result, approximating discrete derivatives by continuous ones and the Riemann sum in (3.101)

by an integral, there is an error term (5[])\7[ 57, controllable with size N~! and of vanishing type, of
the form NIV (u) + Nﬁle,{O,l} for bounded u, v, such that the curly bracket spanning (3.101])—

(13.102)—(3.103)) equals:

e <A(g —h)+ ((;)/(91(29 —h) + 05(29 — h) (‘?'>

+ 1 (M(&g, d1(g — h)) + M(01(g — h), 019)

N——

=1\ 2
+ Z MiMi+1 {51 (g—=h)i,i—01(g—h)i_;— (pQ) ] + 55\[27(77), (3.105)

i<N—1
with M the bilinear operator defined in (2.46) and the convention, for (z,y) € J:
wi(z,y) = w(@)p(5,y), Sw(zy) = dzPuly), 6B Rw:(—L,1) SR (310

If ¢ is chosen as the solution g;, of the main equation (2.61), then the right-hand side of (3.105)
reduces to 6.3 5 "(n), whence:

Corr = Z Z 5,007 (9)i ;01 (gn — )i + 65.2(n), (3.107)

2<N 15¢{ii+1}
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with: i
Sola = 65, (3.108)
q=1

The first term is independent of the configuration, and will be estimated in Section By

definition of error terms (see Definition [3.6]), for any 6, > 0, there is thus C(6,~) > 0 such that,
N

for any density f for vy, and any N large enough depending on :

gh(f Corr <— Z Z 0050, thJa (gn — h)ij

iI<N-1j¢{ii+1}
H(fl/]\[ vNY 8,
+ON2Y (TL(Vf)) + i s 4 (N ) (3.109)

Remark 3.16. The choice of g = g, cancelling the curly bracket f s optimal in the
following sense: for another g, the first two terms in the right-hand side of (3.105) are not even
error terms, but only controllable with size 1. As a result, for g # gn, (3.109) can at best only be
true with vpN~'2, Cy respectively replacing Yo, CoN~Y? in the right-hand side, which breaks the
on(1) bound on the entropy obtained in Section [3.5 |

3.4.3 Higher-order correlations

In this section, we again assume that g = g, solves the main equation (2.61f), and we estimate
the third order term (N2L}1)order 3 in the development of the exponentials making up the
adjoint in the bulk, as well as three-point and four-point correlations arising in (3.62)). The choice
g = gn is not necessary here: higher-order correlations behave similarly under all measures I/;V
with suitable g. We keep g = g5, to avoid confusions.

Consider first (N2L}1)order 3, which by (3.63)) reads:

1 _
TN (Mit1 — mi) [[Cf o — 9NN + [Cﬂg] (3.110)

I<N—-1

(NQLzl(n))order 3 =

For i < N — 1, write 0,1 —1; = i1 — i + N 10N p; as before, and recall from (3.56) that Ch=29n
C" are bounded with N. As a result:

1
12N

<N-—1

(o = [[C22 =0 + [ < S an

(NQLIt]-(n))order 3 N

One need not even integrate by parts to find that the sum in (3.111)) is an error term. Indeed,
developing the cubes and recalling that C' = B + D (see (3.53))) with N D bounded, one finds:

12N Z Ni+1 — [Ch 29n 3N)\,-}3 ] ZN ”Xf;’f{o} (3.112)

i<N-—1
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for bounded ¢,, 1 < n < 4, depending on py, h. By Lemmas 3.13, N~ ”Xff{o} is controllable
with size N=3/2 at most for 1 < n < 4, and of vanishing type. This observation and (3.111) yield:

(N2L;1(77))0rder 3= 5(])\,70rder 3(”)7 |50 order 3( + ‘ Z N~ an;?o} } (3113)

and 6, 4o 3 s controllable with size N=! and of vanishing type.

0, order

Consider now three-and four-point correlations arising in the terms (3.63))—(3.64)—(3.65). They
read:

5(]{3—4(77) = Z [— [Ul(ﬁi)ﬁiﬂ + O—I(ﬁi-&-l)ﬁi]thBzh_gh

i<N—1
+ i1 B (DP9 — ONN) + 0y BE O (D + OV ;) (3.114)
+2 ) i BB (3.115)
i<N—1
Recall that sup,; [D?| = O(N~') for any bounded ¢ : [-1,1]*> — R, and that sup, |0V )\, — 7/, =

O(N™1). There are then bounded functions ¢,, 1, : (—1,1)" — R (n € {2,3}) such that, in the
notations of Lemma 3.9t

S = [0 + o (i) BB = N72X5,, (3.116)
i<N—1
Z M1 |:BighDi2hf2gh —I—B;LighD?gh] — N~ 2X;;$2{0 i (3.117)
i<N—1
Z 77i771+1B£172gh<9N)\¢ =N~ 1X§}?0 1} (3.118)
i<N—1
2 Z Tifli1 BB}~ =t N~ QX;b}LO 1} (3.119)
i<N-1
so that 60's_, reads:
2y 2y 2y 1y
634_N X2{01}+N X3{0}+N X201}+N X2?01} (3.120)

The first three terms are controllable error terms with size N~/2 at most, with the first term

of vanishing type. The second and third term, involving ¢s3, ¢35 are of large type, and ¢3,15 are
bounded as follows:

1
s { 6 e, 1651 b < 5 1919nl1c]101 (9 = ) (3121)

By taking o/ < e and h € S(e) for sufficiently small ¢, the right-hand side can be made as small

as needed, see Appendix |[F.5l Lemma [3.13| therefore ensures that N~ QXf?O} and N~ 2X3 o1y are
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of LS type.
The last term in (3.120) is N_IX;%OJ} given in (3.118)). 1)y satisfies:

Cp'||01(h — 2g1) lloo 0 (3.122)

W2l < min{p_(1 — p_), pr(1 — py)} #—0

At first glance, the second item of Lemma only yields that N‘lX;ﬁO’l} is controllable with
size ||Y2]|o- The last item of Lemma [3.9in fact yields that N_lX;ﬁO’l} is [-controllable with size

|%2]|ec N /2. This improvement is obtained in Appendix , through the renormalisation scheme
of Jara and Menezes [32]. In view of the bound ({3.122)), taking p’ < e and h € S(¢) for sufficiently
small € ensures that N*IX;?OJ} is of LS type. All terms in the decomposition (3.120) have now

been treated, and we conclude that, for small enough € > 0 such that g < e h € S(e), 5(])\773_4 is a
['-controllable error term of LS type. Thus, for all large enough N and each 6 > 0:

H(fvy'lvg) | C'(g.h)
20C g5 N2

v (foNs_4) < ON*UN(TWu(V/F)) + (3.123)

Remark 3.17. In addition to the boundary terms, the term N’IX;p?O 1} is the only one for which
a renormalisation scheme using the carre du champ s needed. |

3.4.4 The constant terms

Here, we prove that the configuration-independent terms appearing in the full adjoint N2L}1 are
small when g = gj,, with g), the solution of the main equation (2.61). The terms in question
correspond to various constant terms bounded by O(N ') encountered in the previous subsections
and the computation of N2L} , 1, which already are error terms; and the sum of the constant term

in (3.107)), as well as the Const term of (3.66)), which reads:

Const = Y [61\7@- (D?—g - %> + 2 (DE2 — 9N - (Df)ﬂ. (3.124)

A 2 4
<N—1
By definition of N2L}1, one has:
N 271 % N 2
vl (N?Lp1) = v} (N?Ly1) = 0. (3.125)

We can also estimate V (N2L;1) through the expression (3.52)) of the adjoint at the boundary
and the expansion (3.63)) of the adjoint in the bulk. Indeed, Lemma yields the estimates:

Vn > 1, sup VgNh(Hﬁj) = O(N—"?), (3.126)
et

Vi ¢ {£(V -1}, l/;vh(ﬁi(zv_uﬁj) =O(N7?), V;Vh(ﬁi(N_l)) = O(N3/?),

These bounds can be used on the error term 0% involving the adjoint at the boundary (3.52), the
error term 0);.,>3, defined in (3.113)), the error term 65, ; accounting for three and four point
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correlations defined in (3.114)—(3.115)), the estimates (3.83)) of the fluctuations and (3.107)) of the

correlations. They yield:

1
Vé\h[ (NQLZ]_) =0= Const + W Z Z 61-5]»3{\[9@]-8{\7(9 — h)@j + O(N_l)
i<N-1j¢{ii+1}
=: 60 + O(N 7). (3.127)

The configuration-independent terms 3 arising in N*Lj; ;1 are thus bounded by O(N1).

3.5 Conclusion

Let us put together the estimates obtained so far to conclude the proof of Lemma [3.5] The
expression of the adjoint at the boundary was obtained in for general g, while the adjoint
in the bulk has been estimated in the last three sections, provided one takes g = g, with g the
solution of the main equation (2.61)). One has therefore:

N?Lj1(n) = N*Lj, +1(n) + N*Lj y1(n)

N N
= 577/ <8N)\ N — 8N/\ ) — 577]\[_1 <8N)\N_1 — 8N)\N_2> + 5N(’I7)
=D ANy %ANA]H +6N(n), (3.128)
with " a I'-controllable error term with size N~/2, given by:
0" (n) = 0% (n) + 85 + 51(1) + 52(1) + 55-4(1) + 05" orer 3(1) + 05, oxdera(1)- (3.129)
Since supy |[AN A (v_1)| < 0o, the quantity:
AN vy = B AN (3.130)

is I-controllable with size N~' by Lemma [B.3] and of vanishing type. It follows that N2L;1 is
I-controllable with size N~'/2, and equal to a sum of terms of vanishing type, plus 63's_, which
is of LS type. Thus, by Definition of T'-controllability and taking 6 = 1/2 there, there is a
controllable function £ with size N2 and C(p<, h) satisfying, for some v > 8Cps:

1 C(p:l:’ h)
;log l/gNh<eXp [7|5|]> < Nz (3.131)

and for any density f for v}

2

U (INVLiY) < v (7E) + o) (mﬁ))

H(fv yh| gh) N C(px,h)
< —go M 71/% (Ca(v/ 1) + =72 (3.132)
This concludes the proof of Lemma ([l
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3.6 The Radon-Nikodym derivative

The computations in the previous subsections can be used to obtain an expression of the Radon-
Nikodym derivative D, = dP,/dP (h € S(c0)) on each fixed time interval. By definition, for
trajectories up to time 7' > 0, Dy, reads (see Appendix A.7 in [35]):

T
log Di((m)cr) = T (1) = T (1) = N2 [ e WO LEY0 . (3.133)
0

The correlation field ITV is defined in (2.7).
Proposition 3.18. Let h € S(eg), and recall that, for u,v € L*(Y) and (z,y) € A:
M(u,v)(z,y) :/ u(z,x)a(2)u(z, y)dz. (3.134)

(7171)
Then, for each n € Qp:

~1\2
N2 N0 [ () () — %HN (an+ M(@h,01m)) - 2 4) / h(z, x) du (3.135)
(7171)

1 1
+ 1 Z NiMi+1 (alhi+,i — 01h¢_,i) + 3 / o(z)o(y) [81}1(357 Z/)]le’dy +eM(h),

i<N—1 Z

where eN(h) is a T-controllable error term with size N™'/? and of LS type. It thus satisfies by
Corollary for some C(h, p+) > 0, each large enough N and each T > 0:

o g O(ha p:t)T
B [exp [/0 N(h) dt” < exp [W] (3.136)
Remark 3.19. A bias h € S(ep) is a symmetric function by definition. As a result, for each
(z,y) € &
Oh(z,y) = hh(y,z) = Oh(zy,x)—01h(z_,z) = (01 — D)h(zy, ). (3.137)
The first term in the second line of (3.135) thus corresponds to a contribution of the derivative of
h normal to the diagonal. [
The following corollary will be useful in the proof of lower bound large deviations.
Corollary 3.20. Consider the P,-martingale M™?, defined for T > 0 and ¢ € T (T is defined
in (2.38)) by:

T
MY® = T (6) — 11 (¢) — / N2L,IIN () dt. (3.138)

If additionally ¢ is a symmetric function in C3(5>), there is a T-controllable error term &~ (h, ¢)
with size N~Y2 such that, for any T > 0:

T
MY = (0) ()~ [ I (80 + M09, 00) + MO0, 0,0)

e N (7)*T
+ 1/0 KEN:_I i () 7i1(t) (81¢i+,i — alﬁbz;,z‘)dt + i /(1,1) ¢z, ) dx
T
-5 [o@owaele nornie.y) dedy+ [ o) dr (3.139)
4 | 0
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When ¢ = h, one has in particular:

MY~ log Dy (<) = —5 /0 Y (M(O1h, O1h) ) dt — % /ZU (2)5 () [Orh(w, y)] dedy
+/T5§V(h)dt, (3.140)

for a T-controllable error term &N (h) with size N~Y2 of LS type.

4 Long-time behaviour: upper bound

In this section, we establish the upper bound in Theorem for the e of Theorem [2.6] and any
closed set F in (7., %),

s

, _ 1 o~ o1 7 .
with Z., the functional defined in (2.50). A bound for compact sets is established in Section
relying on a regularity estimate in the space H'(IJ), proven in Section Exponential tightness,
which yields the bound for closed sets, is obtained in Section [4.3]

Before we start, let us make some remarks and fix notations. For N € N*T" > 0, a probability
measure x4~ on the state space {0y and each measurable set B C T, introduce the notation:

1 [T
Q" (B) =" <:T/ Y dt € B). (4.2)
0
For short, we will also write:
1 /7
BT = BT = {—/ Hgvdtezs}. (4.3)
T Jy
Recall that, for N € N*, vV is the discrete Gaussian measure (2.58) built from the inverse corre-

lation kernel gy of the steady state of the open SSEP. Changing initial condition from 7%  to the

measure vy (defined in (3.11)), with go given by (2.59)) has a cost independent of T":

* U ﬂ—z]Xv(n) Ygo
YT > 0,VN € N, T (B) < max x QL (B). (4.4)

Upon taking T~ !log and the large T, then large N limit, the initial condition of the dynamics
does not change the value of the left-hand side in (4.1). The dynamics will therefore be started

from the measure V% )

4.1 Upper bound for open and compact sets

To estimate (4.2)), we consider dynamics with tilted two-point correlations as in and use the
martingale method presented in Chapter 10 of [35]. It relies on the computation of the Radon-
Nikodym derivatives Dy, = dP,/dP, h € S(ep). In Section [4.1.1] a first upper bound on compact
sets with a rate function Z., < Z., is established. The bound is then improved to Z., in Sec-
tion with the help of the regularity estimate of Section
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4.1.1 A first upper bound
Here, we build a functional Z., : (77, %) — Ry such that, if £ C (77, %) is a compact set,

1 v ~
lim sup lim sup T log Q" (K) < — i%fIaB. (4.5)

N—o0 T—o0

We first prove an upper bound for general Borel sets, then specify to compact sets. Let h € S(ep).
In Proposition we proved that, for any 7" > 0 and any trajectory (n(t)):<r:

1 T
- / vy (Ah+/\/l(81h,61h)) dt (4.6)
2 Jo

— 1/T Z i () i1 (0) (O1hiy s — Orhi_ ;) + (ﬁ,)QT/ h(z,z) dx
4 0 i Mi+1 170 4 11t 4 (11) )

I<N—1

- g/za(x)a(y) [alh(x,y)fdxdy—/o er (h)dt,

log Dy ((0(t)) () = g () — TI5' () —

with eV (h) a [-controllable error term with size N~'/2 of LS type (see Definitions [3.6/{3.11)). For
any Borel set B in 7/, one can thus write:

N

1% l/N
Q7 (B) = B [15r(Dn) ™", (4.7)
and the point is to build the functional Z,, from D, (h € S(ep)).

Closed expression. Up to the error term ¢V (h), the expression (4.6)) is nearly closed in terms
of the distribution fOT [N dt applied to regular test functions. The only problematic term is the
diagonal term involving the 7;7;11, i < N — 1. Call it W}eu:
1 _
Wi (n) = 1 77i77i+1(3fvhi+,i - (%Vhi,,i), n € Q. (4.8)
i<N—1

In Appendix @, we estimate the cost of rewriting W}'®" in terms of the correlation field II"V applied
to a smooth test function supported in a small neighbourhood of the diagonal D. To state this
estimate, consider a function x* € C*°(0) with x* = 0 on d0J, 0 < x° < 2/e, such that x°(zx,-) is
supported on (z,x +¢) N (—1,1) for each z € (—1,1), and:

Ve <1l-—eg, / X (z,y)dy = 1, Ve >1-—g¢, / X (z,y)dy < 1. (4.9)
(w,+e€) (z,z+¢)

Define then Nf(z,y) for (x,y) € [ as follows:

T

N (z,y) = %Xa(x,y) (01 — o) h(zy, ). (4.10)
Then Nf € T (defined in (2.38)), and we prove the following in Proposition [D.1} Let # > 0 and
e € (0,1) be smaller than some eq(p, h,#) > 0. There are constants Cy(p<, h,0), Co(p+, h,e,0) >0

Q
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such that, for each N large enough depending on ¢, and each T" > 0:

N

g e [0 [ (2t - 1 (V)]

Ca(h 0)T
< exp |:Cl(h7pi’9)€1/2T+ 2(h, ps,e,0)

i (4.11)

The same bound is valid starting from I/é\é up to an additional €MV factor in the right-hand
side (in fact only a factor eCr:h) e bounded with N, but this does not matter for our purposes).
Since we take T' large first, this e“®="N multiplicative constant is not a problem.

Introduce then the following continuous functional J§ on (77, *):

VIle T, JE(I) = —%H(Ah £ M(@ih.0,h)) — TI(AR)

* q /(_171) Wz, z) dz — %/Z‘?(x)&(?/) [01h(z,y)]” da dy. (4.12)

With this definition, the Radon-Nikodym derivative (4.6) becomes:
1 [T
08 D1 (310)) ) = T () =TI () + T (7 [ 10 )
T T
- / W () — TN (A)] dt — / =N(h) dt. (4.13)
0 0

Estimates on error terms. Let us estimate the contribution of £¥(h) + W} () — II)Y (N}).
By Proposition , eN(h) will not contribute to the large deviations as it has small exponential
moment. Indeed, Proposition together with the last item of Lemma [3.13| give that, for some
small enough o > 0:

1 T

lim sup lim sup — log "o [exp [(1 + ) / eN(h) dt” = 0. (4.14)
N—o0 T—o0 T 0

Since a change of initial condition has no influence in the large 7' limit, the above estimate is also

. . N . . . .
valid starting from v, . Thus, by Holder inequality:

N T T
%log }P’Zgo {exp [/ [W,l;]eu(nt) - Hiv (/\/'Eh)]dt —I—/ Siv(h)dt]
0 0

< g B e [ [ 2D ey 1 (a2 ]|

+ m log P40 lexp [/OT(l + oz)aiv(h)dtl. (4.15)

Combining (4.11)—(4.14), we find that there is a constant C' = C(h, p+,a) > 0 such that:

T T
lim sup lim sup % log P [exp [/ (Wi (n,) — LY (V)] dt + / eN(h) dt] < CeY? (4.16)
0 0

N—o0 T—oo
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We can now try to obtain the upper bound (4.5)). Take a Borel set B. Starting from (4.7)), one has:

L 100 @9 (B) = L10g B [1,00 (D)
L10g Q@ (B) = 210 B [14r (D) (@17)

< %mgﬂzz% [exp [— 11y (R) + T13 () + /OT (Wi (ne) — ILY (M) ]dt + /OT eiv(h)dtH

" L)
< N | L og) {exp [ /O "W () — T (V) ]t + /O ' ggV(mdtH

+ sup ( — J;(ID)).

IIeB

Taking the large T, then large N limits and estimating the error terms via (4.16)), one finds that,
for all ¢ > 0 smaller than some €y = g¢(p+, h, a):

1 vl
lim sup lim sup T log @ (B) < C(h, p+)e"/? + sup (— Ji(II)). (4.18)

N—o0 T—o0 I1eB

Taking the infimum on € € (0,¢¢) and h € S(ep) yields a first bound:

1 vN
lim sup lim sup = lo (B) < inf inf sup( — J(II)). 4.19
N—>oop T—>oopT g@T ( )_hES(EB)EE(O»Eo)Heg< h( )> ( )

We now work out a way to exchange supremum and infima in (4.19) when B is a compact set. The
argument is standard and relies on Lemmas 3.2 and 3.3 in Appendix 2 of [35]. Let K C (77, %) be
compact. We wish to prove:

1 vV
lim sup lim sup — lo O(K) <sup inf liminf ( — J). 4.20
N—>oop T—>oopT g@T ( )_ Kphes(‘EB) =0 ( h) ( )

Since (Jf)ne is a family of continuous functionals on (7, %), Lemmas 3.2 and 3.3 in Appendix 2
of [35] allow for the exchange of the infima on h,e and the supremum on (open covers of) K:

limsup % log Q% (K) < sup inf | inf (=), (4.21)
Since inf..., increases when ¢ shrinks, yields:
lim sup lim sup ! log Q;?Aé (K) <sup inf liminf (— J;). (4.22)
Nooo T—oo 1 K heS(ep) e—0
This yields a first bound on compact sets and proves :

7., = sup limsupJ;. (4.23)

1 vy -
lim sup lim sup = log Q°(K) < —inf Z,
T K heS(ep) &0

€B)
N—o0 T—o00
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4.1.2 Refinement of the upper bound to restrict to more regular correlations

To improve the expression for the functional ZB, we would like to take the limit in € in (4.23]).
This is however not possible in general. Indeed, recall that I € 7/ is a distribution, and taking e
to 0 amounts to asking for II to have a well-defined trace on the diagonal D of the square 4. This
is possible only if II has some regularity.

In this section, we explain how to improve the upper bound so that it is finite only on
correlation fields Il that have a well defined trace. More precisely, write II = i<kn, > e T]. We
prove that one can restrict to II's with kg € H'(J). Note that, as 1T € T/ N HY(L), ky is a
symmetric function, and the traces on both sides of the diagonal coincide. We thus write trp (ki)
for the trace of ki on the diagonal without ambiguity. By definition of the trace, one has then:

1

- /(_1 \ tr(kn)(z,2)(0: — 01)h(zy, v)da. (4.24)

. . 1 .
lim THA) =l (B, N3 =

Thus, for IT € 7 N H (D), limsup,_,, |J; (IT) — J,(IT)| = 0, with J;, the functional equal to +oo
outside of T/ NH!(I1), and:

VIl e T/ NH@), T+ M(@1h, 0uh))

+ / trp (k) (02 — O1)h(z 4, x)dx (4.25)

) L z. ) dz
1 /(11) Mz, m)dfﬂ—gfz (2)5(y) [01h(z, y)] dwdy.

As a result, for II € T/ NHYW), Z., () = Z., (), with Z.,, defined in ([#23), and Z., > 7.,
the larger rate function defined in (2.50). The goal of the section is summarised in the following
lemma.

Lemma 4.1. Let K C (T],*) be a compact set. Then:

1 v
lim sup lim sup T log Q@ (K) < — irléfl'EB. (4.26)

N—oo T—o00

To prove Lemma [4.1] consider the functionals Q and Qy, defined for each ¢ # 0 in C2°(L2), the
set of compactly supported, C*° functions on [/, by:

VILe 7). Qu(ll) = , Q= sup  Q, (4.27)
H¢H2 PpeC>(@)\{0}

Note that Q is weak® lower semi-continuous on (7., *). Indeed, it is a supremum over the Q, for
¢ € CX () \ {0}, and Q, is weak™ continuous since ||¢[|2Q4(II) is the evaluation of IT at 01 € T
for IT € T..

It is classical that Q controls the regularity of elements of T, as stated in the next lemma.

Lemma 4.2. For I1 € T, 11 is in fact a function in H'(LA) if and only if Q(I) < co.
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Proof of Lemma[.1. We now begin the proof of the large deviation bound (4.26). Consider a
sequence ¢; € C(J) \ {0}, j € N*, dense for the norm of H*(I2). Introduce then, for each ¢ € N*
and each A > 0:

lNA@z{mMQ%SA} (4.28)

1<j<e

In Proposition [4.3] we prove the existence of C' = C(p4) > 0 such that, for A larger than some
Ay > 0 and each ¢ € N*:

1 vl
lim sup lim sup T log Q2 ((U(¢,A))) < —CA. (4.29)

N—oo T—o0

Notice also that, for IT € T, if (¢;,) converges to ¢ € C>°(J) in the norm of H?(I1), then 0;¢;,
converges to d1¢ in T, so that lim, Qy, (II) = Q4(II), and:

Q(IT) = sup Q,;,(I1). (4.30)

JEN*

The regularity of the correlation fields can therefore be controlled through the Q4. (j € N*). Let
¢ e N* and A > Aj. Recall the notation:

mamT:{%AﬂLﬁeUmA&, (4.31)

so that P(U(¢, A)T) = Qr(U(¢, A)). Let B C (T],*) be a Borel set. For ease of writing, let us
abbreviate limits in N, T as follows:

lim sup := lim sup lim sup . (4.32)

N,T—oc0 N—oo T—o00

N
We again estimate Q;"O(B), starting from the bound:

1 VN 1 VN
lim sup — log Q,°(B) < max { lim sup — log Q" (B NU(Y, A)),
NT—oo 1 NT—oo 1

lim sup % log @;5% (U, A)) }

N, T—o00
1 N
< max { l]ivrr%sup T logQ* (BNU(¢, A)), —CA}, (4.33)
,T—00

where (4.29) was used to obtain the second inequality. Proceeding as in (4.17)—(4.19) to estimate
the first probability, we find:

lim sup % log Q;‘% (B) < max {C’(h, pe)e+ sup (= Ji(ID)), —CA}. (4.34)

N,T—oc0 IIeBNU(¢,A)

For each admissible h, ¢, , A, let J; , 4 be equal to +oo in U({, A)°, and on U((, A):

T4 1= max {C(h, px)e — Jy (1), —CA}. (4.35)
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Minimising (4.34) on € € (0,&9), h € S(ep), £ € N* and A > Ay, we have therefore obtained the
upper bound:

1 v -
limsup = log Q@ (B) < inf supJ;, 4. (4.36)
N, T—0c0 T A,l,h,e B 7

Let us obtain a bound on compact sets from (4.36)). Let K C (77, *) be compact. Since U(¢, A)
is weak® closed by continuity of each Qy, (1 < j < ), (Jf, 4)nepa is a family of weak® upper
semi-continuous functionals. Lemmas A.2.3.2 and A.2.3.3 in [35] thus give as before:

1 vN
lim sup — lo () <sup inf inf J7, 4, 4.37
N’Tﬁog T g Q" (K) < ch heS(ep) s Rt A ( )

with the infimum still taken on £ € N*, A > A, and € € (0,¢y).
One can again bound the infimum on ¢ by a liminf:

]. yN
lim sup 7 log @ (K) < sup inf inf lim inf(—Jg , ,), —CA}. 4.38
zlvn%ilg) T % Q" (k) < s%p he{&w)l& max { um in (—=Jhe,a); } (4.38)

Let A > Ag. As U((,A) Cc U(W',A) if £ < ¢, the argument of the supremum on K in (4.38)) is
equal to —oo when evaluated at any II ¢ (,.y. U(¢, A). By definition of U(¢, A) in (4.28)) and

using (4.30), one has:

(Ut A)={Q<A} (4.39)
£eN>
Equation (4.38) thus becomes:
. 1 vl . . . .
lzl\flr%ilg) T log @, (K) < Sllép hEISn(EB) Al;lgo max { hran_gonf(—Jh’A), —CAY, (4.40)

with, for each h,e, A, J; 4 = +o0 on {Q > A}, and J; , = J; on {Q < A}, Consider again
A > Ag. For each IT € {Q < A}, the kyy associated with IT via II(-) = (g, -) belongs to H' (1)
by Lemma [4.2] In particular, by (£.24), if h € S(eg) and II € {Q < A},
lim iglf(—J,iA(H)) = —Jpa(ID). (4.41)
e—> ’

Above, Jpa = J, on {Q < A}, J, 4 = +0o0 outside, and J, is defined in (4.25). Equation (4.40))
thus becomes:

1 vN
lim sup — log Q% (K) < sup inf  inf — Jpa, —CAY. 4.4
]l\fr,r;“ilg) T o8 QT ( ) o Sllép hegtSB) AISAO fax { oA } ( )

Finally, note that J, 4 > Jj for A > Ay, since J,, may be finite on {Q > A} while J, 4 may not.
Lemma [1.1] is proven:

Z., = sup Jp. (4.43)

1 v
lim sup lim sup — log Q;”° (K) < —infZ, 5
T K heS(en)

€B)
N—o0 T—o0

]
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4.2 Regularity estimate
In this section, we prove the energy estimate (4.29)). The key argument is the following proposition.

Proposition 4.3. Let 0 < p_ < pi < 1 and assume p' < ep, with g given by Theorem [2.6
Let A > 0 be larger than some fized Ay > 0 and let ¢ € C*(A), where the subscript ¢ stands for
compactly supported. There are constants C1(p+), Ca(p+) > 0 and Cs(px, @) such that, for each
T >0, each A >0 and each N larger than some Ny(o):

Pvé (’% /OT Hf(@@)dt( > AH¢H2)

C3(Pi>¢)T}

i (4.44)

< 2exp | = Cilps) (A= Calps)) T +

In particular,

1 e
lim sup lim sup — log P"% (\— / I (219) dt\ > AH¢H2) < —Ci(pe)(A—Calps)).  (4.45)
N—o00 T—o0 T T 0
Assuming the proposition, (4.29) immediately follows by a union bound and the appropriate
limits.

Proof of Proposition[{.3 Up to considering —¢, it is enough to prove the result without the ab-
solute value and the factor 2 in front of the probability. Up to taking N large enough depending
on ¢, we can assume that the support of ¢ is contained in {z € 1 : d(z,0 J) > 2/N}, so that
Giiv1 = 0= 010,11 for each i < N — 1. We may also assume without loss of generality that ¢ is
symmetric owing to the identity IIV (¢) = TIV(@), with ¢(z,y) = ¢(y, z) for z,y € X The idea is
to use Feynman-Kac inequality (Lemma and a microscopic integration by parts to rewrite, for
each density f for v, the average v (f|o[l3 "IN (019)) as vl (fIIN(F([|¢2]lz'¢))) plus a term in-
volving the carré du champ, for some function F. The term F(||¢||5'¢) now involves only ||¢||5 ¢,
and not its first partial derivative. The average v (fIIN(F(||¢2]|l;'$))) is then estimated through
the entropy inequality.

By Feynman-Kac inequality (3.6) together with the bound (3.17) on the adjoint, one has, for
some C' = C(p+) > 0 and some £ > 0 to be chosen later:

1

vV 1 T 171N
oS (5 [ 1ol Y o) e > 4) (4.46)

B N? C(p+)
- 1 N (N _ N 1/2 :
< A/<;+f>02%1()f):1{n|\¢”2 v (fIIN(010)) 3 Voo (C(f1%)) + N1/2 }

To estimate the right-hand side, let us write out ||¢[|5 ' TIV (0,6). Fix n € Qx.

_ 1 - -
6]l IV (819) = LN Z [ Z 1507 Gij + 77i77¢+1(9fv¢z,i+1}
2V ien—1 Yjetiiny

1

_|_
Nll¢ll2

1 (b), (4.47)
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where b = N[0;¢ — 0N ¢] is the discretisation error, which is bounded in N. By assumption on the
compact support of ¢ in [, 81@-7”1 =0 for each : < N — 1, and 1) becomes:

, IV (0 ;0N ¢y j + N (). :

I<N-1j¢{ii+1}

By Lemma as b is bounded, the second term in the right-hand side above is controllable with
size N71, and of vanishing type. Let us rewrite the first term through an integration by parts:

4||¢H2 Z Z 77177] ¢Z+1j ¢Zj)

i<N-1j¢{ii+1}

1
4H¢||2 Z Z Ni—1 — M) Gij + 4||¢|| Z Ni—1(Mis1Piir1 — Ni®ii-1)

i <N—1 j:[j—i|>1 2 li|<N—1

Z Z 771 77]¢m =5 5 (449)

[i|<N—1j:|j—i|>1

||¢||2

where the first equality makes use of ¢+ (y_1). = 0, while the second equality follows from ¢; ;+; = 0
for each H < N — 1. To estimate the supremum in (£.46)), we see from (4.49) that we have to
estimate v (fS). This is done through the integration by parts Lemma . This lemma is
formulated Wlth the variables w; = 7;/a; for i € Ay, so we first rewrite (4.49) in terms of these
variables. For |i| < N — 1, using the identity:

Nie1 — T = 041 (wim1 — w;i) — (05 — G4—1)w;
—/
= 5'1',1((,02',1 — (A)Z') — %(U/(ﬁz) + N)wz (450)
and the convention:
qé(r,y) = q(x)p(x,y) for ¢:(-1,1) = Rand (z,y) €, (4.51)
the right-hand side S of (4.49) can be rewritten as follows:

Z Z Tim1(Wim1 — w;) NP5 — mHN<%/<U/<ﬁ) + %) gb)

li|<N—1 j:|j—i|>1

H¢||z

g TNy O) o__ LY PP
= S+ IV(Y©), YO = ||¢H25(J(p)+N)¢. (4.52)

N (Y (@) is of the form ||¢[|; ' TIV (¢¢) with ¢ bounded independently of ¢, i.e. the kind of expression
we were after. It remains to estimate S’. Define, for |i| < N — 1, a function v; on Qp as follows:

1 i
vneQn,  uiln) =+ NjOi-17 ik (4.53)
4o Iotl2:
Recall also the notation C'%° defined in ([3.53):
- N iit1 N o i =) g
VneQy, Vi< N—1,  TI(g0)(n""") = (g0)(n) = ————F——C}". (4.54)

N
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With these notations, we can apply the integration by parts Lemma to each |i| < N — 1 with

u = v;, and obtain the existence of C' > 0 such that, for each § > 0 and each density f for yg'

Vé\of(fS') < 5N2V;\g (F(fl/Q)) + 5—]6\;2 Z Vé\g (f(vZ)Q)

[i|<N—-1
li|[<N—-1
li|<N—-1

We express each term appearing in (4.55)) as IIV(G(¢)) plus error terms, for explicit G’s. Consider
first the second term on the first line. By definition (4.53) of v and using (77.)*> = 7. + o/(p.)7,, it
reads:

757 990 jPie
(D0 B et
166N S Fillt o1z
li—7|>1,]i—¢|>1

! Ny® i olx)o 29(T, ) T ol
= SN ) + o [ s dsdy (10 6/ l0l). (0560

with Y the function recording the off-diagonal, ¢ # j contribution:

Vir,y)eld,  YW(z,y) = %/( . 5(2)2%@ (4.57)

The error term 6, (||¢]l3¢) in ([E.56) involves discretisation errors and the diagonal, £ = j con-
tributions. It is given for n € Q0 by:

2 C b7
g1 1 / 2 2 dad 05—
(Il 6 = - PO dady - Ve 2 "ol
|7—i|>1
C 2 ¢z] 1 N
11 4.
165N2 Yo <f |<ZN 177z pz) 0j H¢H2> + N (), (4.58)
[j—i|>1

where c is a discretisation error arising in the replacement of by Y. We write 0™ (||¢[|5" ¢)
to emphasise the fact that 6 only depends on ||¢||;'¢ rather than ¢ itself. The first line of
ON1(||¢ll5 @) is configuration-independent, and bounded by C(¢)/N. The first sum on the second
line is of the form N~'2YN(u) for u : (—1,1) — R bounded, with Y (u) the fluctuations defined
in (3:26). 0™1(||¢ll5"¢) is therefore controllable with size N~! by Lemma and of vanishing
type by Lemma m For later use, note that the middle term in (4.56)) is bounded by C/(2'%)
for all large enough N, as ¢ < 1/4.

Consider now line 2 of (4.55)). Using the identity e* =1+ fol xe'® dt for x € R, there is C'(pL) >0

26



such that:

o~
Z (pi = pi-1)vg, (wiflwifei(mimfl)qgl/NUZ') - % Z Voo (wis1wi foi)
[i|<N—1 li|<N—1
C
< E\fzi) Y v (fuCL]). (4.59)

li|<N—-1

The second sum in the left-hand side already involves three point correlations. It is shown to be
I-controllable with size N~'/2 in Proposition and is of large type. The second term is of the
form N~2X'? . in the notations of Lemma and therefore controllable with size N~! and of

2,{0}
vanishing type. It follows that the first sum if a I'-controllable error term with size N~%/2 and of
large type, depending only on ||gz§||2_lgz5 rather than ¢ itself. We rewrite it as follows:
M2 ([0l ¢)) = - Z (pi — ﬁi&)l{g (wiﬂwifef(m*m’I)Cfgl/NUZ-). (4.60)

li|[<N—-1

By Lemma there is a numerical constant 7, > 0 such that v%0™2(||¢||; " ®) is of LS type.
Counsider finally line 3 of (4.55)). Let C'(p) > 0 be such that:

Vil < N—1, i —wii| <C(p). (4.61)

Using this time the existence of ¢(go) > 0 such that [e* — 1 — x| < ¢(go)z? for all x| < 2||go]|co,
one can write, for each n € Qy:

Z (wi —wia)(1 - e—(m—mq)Cé’&/N)vi < % Z (wi — wi—1) (M — Mie1)CP s
[i|<N—-1 li|[<N—-1
+ —C(QOEVC(’)) 3 %(0531)2. (4.62)

li][<N—-1

The last term is an average over ¢ of terms of the form N‘3\X§)%O}] with the notations of Lemma
where the wj satisfy supy,;supys |wj| < oo. Tt is therefore controllable with size N=%? and of
vanishing type. To estimate the first sum in the right-hand side of (4.62]), we use the following

elementary identity, valid for each |i] < N — 1:

(wi —wi—1)(mi —miz1) = [2 + (1 = pi — pi—1)|wi + wiz1] — (Gi-1 + 51)%’—1%‘} (4.63)
This identity can be obtained by making the following observation:

(i —pi) _ T~ ) = ’7? ey (4.64)

Vi € Ay, NiW; = Ni——
0; oy Pi

Looking at (4.62), we see that the term C7°,v; already contains two-point correlations for each
lil < N — 1. We therefore claim that only the constant term in the identity (4.63) will give

a7



something that is not an error term in (4.62)). More precisely, we claim that one can obtain the
following bound for line 3 of (4.62):

Z V;X((Wi - Wifl)(l - 6_(ni_nifl)ciggl/N)fvi> (4.65)
li|[<N—1
N N 2 1 - — Cb( ) N.,3 -1
< (mr ) + 5 [ st S5 g1, 2190 (@, y)dedy + vy (J6V(6]139)).

where 073(||¢||5 " #) is controllable with size N=1/2) of large type, and again depends on ||¢[|;"¢
only rather than on ¢. By Lemma there is thus 43 > 0 such that 0%3(||¢||;'¢) is of LS type.
There is C'(go) = C(p+) > 0 independent of ¢ bounding the middle term in (4.65)), which comes
from the constant term in the identity (7.)? = 7. + ¢/(p.)7., and Y? is defined as:

Vey) €D, YO(ry) = / 5(2)ohgo(z ) 22D g (4.66)
(—1,1) 9]
To summarise, we have established the following. If, for § > 0, Vj is the quantity:
Vs =TIV YO 4 vy® 4y, (4.67)
then, for each N large enough depending on ¢:
v (Fllolla TN (019)) < SNvy (T(V/F)) + van (fVa) + Clpx) + G (1121 9). (4.68)

The quantity ¢ (||¢||3 ) is a D-controllable error term of size N~/2 of large type. One can then

choose the x appearing in (4.46) equal to some ko(ps) > 0 independent of ¢, d such that, for N
large enough depending on ¢:

ko(p+)G (o)l @) is of LS type. (4.69)

To conclude the estimate of the right-hand side of using ([£.68)), it remains to bound the
average of V5. Fix 6 = 1/16. Recall that Y(©) has 2-norm bounded by 4 and, by Cauchy-Schwarz
inequality, that Y*) has 2-norm bounded by 27%6~'C' = C'/4 and Y® by \/_HVgoH /8. The Y
(0 <4 < 2) thus have 2-norm bounded independently of ¢. Lemma 3.9 E 9 then implies that there
is ko(p+) > 0 independent of ¢ and a numerical constant C' such that x((p+)Vi 16 is of LS type.
Taking r(p+) := min{ko(p+), ko(p+)}, there are then constants C(py), C(ps, @) > 0 such that, for
each N large enough depending on ¢:

K(p+)v, (f[vl/lﬁ + Cisllolly 1¢)])

( go| go) C , N2
= %L: +Clps) + (]C;jf/z@ + 25V (T (f'%). (4.70)

Injecting this bound in (4.46)) and using the log-Sobolev inequality of Lemma concludes the
proof:

C(p+, Cb)’

e (4.71)

1 vl [T
FlosP (7 [ 190 Gu0) dt > 4) < ~Anlps) + Clos) +
0
O
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4.3 Exponential tightness

In this section, we prove that the upper bound (4.43)) is also valid for closed sets. We refer to
Appendix [E| for a characterisation of compact sets in (7, %), and establish exponential tightness
in the next proposition.

Proposition 4.4. For each large enough A > 0, there is a compact set K4 C (T],*) such that:
, 1 2 N .
sup lim sup — log [P#0 <— IL," dt ¢ ICA> < —A. (4.72)
N Tooo T T Jy

Proof. Tn Appendix[E] we prove that there is a norm ||-||r,—5 on 7] such that the set {||-||7,-o < B}
is relatively weak-* compact for each B > 0. The norm ||-||1, 2 involves a certain family of functions
U € T (m € N?), and reads:

1
)%, = Z A5 [mp? TL(¢)]?, e T, (4.73)

2
meN?2 1+ |mf?)

Above, |m|? = m? + m3 for m = (my, my) € N2 It is therefore enough to prove the existence of
c(+) > 0 with limp_, ¢(B) = oo such that:

sup P (H—/ i dtHT_z > A) < el (4.74)

NeN*

To prove (4.74)), let € € (0,1) and define ¢. := Y, (1 + |m|*)'*¢ < co. A union bound gives:

P (|2 /THthH > )
T/ T,—2
1
<y IP”%(‘?/ Y () dt‘ 1/2 (1+ |mf2)'s ) (4.75)
meN?2

The v, are just restrictions to > of the eigenvectors of the torus Laplacian on [—2,2)% (see
Appendix [E). In particular, ||¢,|/« < C where C' does not depend on N, m. Each probability in
the above sum is thus estimated by Corollary according to:

P¥s0 (H% /OT Iy dtHT’_2 > A) < mEZNQ exp [— Z;;l (1 HJZLHQTT + C(pi)T]

A (1 2)45°
< Z exp [— c?ZC’( W@l:b”'oz T+ C(pi)T], (4.76)

where the parameter (, is a universal constant defined in item 3 of Lemma[3.13] The expression in
the right-hand side is summable for any £ < 1. It is moreover bounded by e~ with ¢(A) > 0
for A large enough and limp_ . ¢(B) = +00. This completes the proof. O
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5 Lower bound for smooth trajectories

N

In this section, we give a lower bound on Q" (O) (defined in (4.2))) when O is an open subset of
(T],%), in terms of the kernels ky, h € S(ep), with ep the quantity appearing in Theorems
2.6 As for standard large deviations (see Chapter 10 in [35]), we consider the tilted dynamics
Py, h € S(ep) such that i<kh, > € O, and obtain a lower bound by proving that the measure P,

concentrates on O. In the following, let Qr ), denote the law of % fOT Hivdt under Py,

We first change the initial measure to v, with g, chosen according to (2.61), and tilt the

gn?

dynamics by h. Using Jensen inequality to obtain the last line below, one finds, with D;, = dP,, /dP
the Radon-Nikodym derivative on [0, 7] (see (3.133):

LM Vo, Tows (700) -1
lo () = logE, " | 19— D
B Q5 (0) = log B} 10750 B (D) |

vV 7TN vV
= log By} 0 [—”“’(”0) (D) ™| + 108 Q4 (0)

vl (no)
vy vy o vy
> B o — log Da] +E% o[ log (©2 ((770)))} + 0@ (0)
g, \"10
vV N
> IEY;"’;LO [ — log Dh] — C(p+, h)N + log @T%(O)- (5.1)

l/N VN
Above, C(g, gn) > 0, while P} , is the probability P, conditional to {+ fOT Y dt € O}:

vN vl -1 N 1 T
P 9n (): gh(o) P o N _/ HthGO : (52)
o - () 2 ({1 [ <o}
with:
l/[;v Vé\’
Erhol 1= / - dPr} o (5.3)

The terms appearing in (5.1)) are of three types: the change of initial condition corresponding to
the constant —C'(p+, g5) N, which will vanish upon division by 7" when T is large; the dynamical

l/N
part with log Dy, and the term Q. (O). The latter is well controlled only if A is such that, under

I/N
T‘f;;, correlations are typically in O when N,T" are large. For such an h, upon dividing by 7" and

l/N
taking the large T limit, only the dynamical part will contribute. The limit of Q (O) is worked
out in the next section, and the dynamical part is studied in Section

5.1 Law of large numbers and Poisson equation

Proposition 5.1. Let h € S(ep), and let ky be the large N limit of the correlations under Vé\}i,

where gy, solves the main equation (2.61). If O C (T],*) is an open set containing i<kh, ~>, then:

N

. . . . Vg}L .
hNHi)loréf thilcgf Q71 (0) =1. (5.4)
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An open set in (7/,*) is a (possibly uncountable) union of finite intersections of sets of the
form {‘% fOT N (¢) dt — i(kh, gb>’ € U}, for an open set U C R and ¢ € T. It is therefore enough
to prove for those sets, with U = (—¢,¢) for ¢ > 0.

Let us first check that it suffices to prove for symmetric ¢ € C*(>) with ¢jgn = 0. Recall
the notation ||@|3 y = N72>7,¢7;. For each a > 0 and ¢,¢ € T, the entropy inequality and

Markov inequality together with the second item of Lemma give, for some C(h, p+) > 0:
w1 [T C(h —
]P)hgh (‘_/ Hi\/(¢ o w) dt‘ > a) < ( 7p:|:)H¢ 1/}“271\7
T Jo a
C(h —
_ Clhp)lld = ¥ll2

a

w(1). (5.5)

In addition, |(ks, ¢ — )| < ||knll2]l¢ — ¥[l2. Since one can approximate ¢ € T in L*(7) with
arbitrary precision by some 1 € T N C?(>) with ¥sg = 0, it is enough to focus on such ¢ as
claimed. This is done in the next proposition, by means of a Poisson problem associated with the
large N limit of the generator N2L,,.

Proposition 5.2. Let ¢ € T N C?*(>) be a symmetric function with ¢oq = 0, where we recall
T = H*(Y). Let h € S(eg). Then, for any € € (0,1) and any T > 0, there are positive constants
C(h,¢),C"(h,¢) > 0 (independent of T') such that:

o1 T 1 C(h, ¢) C'(h, ®)
9 N ) —2 —1 )
P, (‘T/o Y (¢) dt — Z<kha¢>‘ > 6H¢Hz) S —7 (7N + 5y (56
Proof. Fix a symmetric ¢ € TNC?(>). To prove Proposition we express the difference appear-
ing in the probability in (5.6) as a time integral involving the generator N2Lj,, plus a martingale
term. The martingale term is then proven to fluctuate like v/7 when N, T are large. It thus vanishes
in the large T limit upon dividing by 7. Recall that M(u,v)(z,y) = f(le) u(z,x)a(2)v(z,y)dz
for any u,v € L?(I). The key ingredient is the following Poisson equation:

%Af(x,y) + %M(@lf, 61h) + %M(@lh, alf) = gbﬁzié) for (x,y) e,
F=0 on 807, (5.7)

(O — 09) f(x4,2) =0 for x € (—1,1).
For ¢ € T N C?(1>) satisfying ¢on = 0, we prove in Appendix [F| that (5.7) has a unique solution

fo € TNC3(>), a symmetric function on . It satisfies || f4]|oo < C for a constant independent of
¢, see Proposition . The semi-martingale decomposition for IV (f,) reads:

T
VTS0, TE(f,) =T (f,) + / N2LIIN (f,) dt + MY, (5.8)

Let us first use the Poisson equation (5.7)) to express N2L,IIV(f,) in terms of IV ().

Lemma 5.3.
NELAE(fy) = o (109(6) = (ke 6)) +6% () (5.9

where OV (f,) is an error term of size N=Y2 of large type (recall Deﬁmtions of error terms
and of large type).
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Assuming Lemma for the moment, let us prove Proposition [5.2] For each T'> 0 and £ > 0,
integrate (5.9) between 0 and T and use the martingale decomposition (5.8)) to find:

w11 (T 1
B (|7 [ @) = S0)] 2 <l
N T
=IPZ%(%\H¥<f¢> N(f) — MY /Oeﬁf(b)dt\m). (5.10)

Let us estimate each of the terms appearing in the last probability. Proposition [3.8] takes care of
6N (fs): there are v,C' > 0 depending on pL, h, but not ¢, such that for all N € N* and T' > 0:

1/0 0N (f,) dt” —logE qh[exp‘—/ 0N (f,) dt” < CN7V2, (5.11)

Z/N
E "
h |:T

By Markov- and Chebychev inequalities:

w1 T 1
th(\f [ 0@ = Y. 6)] 2 <l
3C 3 9
o+ B [ - )] + SB[y, ] 51

The middle expectation involving the terms II¥ (f,), 2 (fs) is bounded by || fs/leoN (which does
not depend on ¢). Its contribution to thus vanishes when 7' is large. Let us prove that
the quadratic variation of M™/¢ has average bounded linearly in time for N large, which will be
enough to conclude the proof of Proposition The quadratic variation is given for each ¢t > 0
by:

(MNJo) = / Z cn(n ,z,z+1)[%(f¢)i,i+1+% Z ﬁj(s)a{V(fQS)i,jrds. (5.13)

i<N—1 J¢{ii+1}

Recall from the definition (2.41) of ¢ that supy g, cn < c(h) for some c(h) > 0. Using the
inequality (a + b)? < 2a® + 2b* for a,b € R and the fact that f4 is bounded, one has:

By i [<MNf¢> gh[ Z Z Uj(t)afv(ﬁﬁ)i,j)zdt}

i<N-1 j¢{i,¢+1}
Te(h)|I.fs113
— 5.14
20 (514
The integrand at each time ¢t < T is of the form N_lXﬁL,{o} in the notations of Lemma , with

u = (u;;)ijery glven by:

1
Uij = N Z O{V(f@k,iafv(f(ﬁ)m
ke{i—1,i,j—1,j,N—1}
N

— [ OSN3 Nz + 52 (515)
(=1,1)
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where v" is a discretisation error bounded by C(¢) > 0. N_ng,{o} is thus controllable with size

1, and Proposition [3.8 yields the existence of C'(h, ¢) > 0, C’'(h,¢) > 0 such that:

9 1 C(h,9)  C(h,9)
K [ M-S ] ( ’ ’ ) 1
g2T? < > = g2 T * N (5.16)
This estimate and (5.12) conclude the proof of Proposition assuming Lemma [5.3] proven
below. O]

Proof of Lemma[5.3. The starting point is the expression of N2L,IIV(f4) worked out in Corol-
lary [3.20f there is a T-controllable error term &V (h, f) with size N~1/2, of large type, such that:

~\2
NZLhHN(fd,) = %HN (Af¢ + M(81f¢, 81h> + M(@lh, 81f¢)) - (,04> / f¢(3§’, x)dx
(=1,1)

1

+1 [ o@D fota,norne. )] dady + ¥ (b, £ (5.17)

Note the absence of the diagonal term ).\ 7ifi+1(O1(fs)iyi — O1(fg)i_s): recall from Re-
mark that this term corresponds to the derivative of f, in the normal direction to the diagonal,
which vanishes according to (5.7). By Proposition [3.8] there are 7, C' > 0 depending on h, ¢ with:

gh U/ h f¢ dt” —10g]E 9h {exp‘fy/ &, (h7 f¢>) dt” < C(h, ¢)N71/2. (5.18)
As f, solves (5.7)), (5.17) can be written as:

N2LhHN(f¢) H;H HN(qb) - % /(1 3 f(i)(I,JT) dx
+ i /Z ()5 (y) [01 fo(x, y)Oih(z, y)] dody + EV (h, fs). (5.19)

Equation (5.19) will correspond to (5.9) with 6~ (f,) = £V (h, f,), if we can prove:

b = —(ﬁ/)z x,z)dx
o) = = ), fom
+;l/za(:£)a(y) [81f¢(:n,y)81h(x,y)] dx dy. (5.20)

By definition, k, + ¢ = (67! — g,)"* with g solving the main equation (2.61). We prove in
Appendix [F] that this is equivalent to saying that kj solves the Euler-Lagrange equation (F.5)).
The identity is then straightforwardly obtained by taking f, as a test function in the weak
formulation of the Euler-Lagrange equation, then integrating by parts. O

5.2 Estimation of the dynamical part and conclusion of the lower bound

N

Let h € S(ep). In this section, we estimate the term IE;";;O[ — log Dy,] arising in (5.1)), and prove:

N

1
lim inf lim inf TET?Z’O[ —logDy] = —Ju(kn) = —Z., (kn) = —Zoo(kn), (5.21)

N—oo T—oo
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where Z, is defined in (2.50) and Z., (k) is short for Z., (i<kh, >), idem for Z..(kp) and Jy(kp).
This concludes the proof of the lower bound for regular kernels close to that of the steady state.

N

Recall from Corollary |3.20|the definition of the martingale M%V’h. The average E;"ZO [ —log Dh}
reads:

B o~ logDy] = (Q74(0)) B {10( - M /0 "I (M(@ih, 0uh) dt)]
. / o ()0 ) [Ouh, )] sy 4 Lo f?/ f”h)(m)dt] R

with éV¥(h) the error term defined in Corollary Proposition [5.1] establishes the convergence

N
of Q;}(0) to 1 as T, then N become large. The error term £V (h) is controlled through Proposi-
tion 3.8t

ol [T
limsupsup E, " [ = / éN(h)(nt)dtH = 0. (5.23)
N—oco T>0 T 0
In particular,
vl T .
B (10 fy 2 (h) ()]
lim sup lim sup < = 0. (5.24)
N—oo  T—oo Yan (0)
T,h

Consider now the expectation in the first line of (5.22)). By Cauchy-Schwarz inequality and the
fact that <MN’h>T grows at most linearly in 7" up to a small error vanishing with N (see (/5.16))),
the contribution of the martingale term vanishes:

Y N.h
lim sup lim sup B [1O‘MT H

— = 0. (5.25)
N—o0 T—o0 TQTQ’Z(O)

Consider now the last remaining term in ((5.22)), the term involving TIN (M (01 h, 01h)). To estimate
it, we state the following moment bound, proven afterwards.

Lemma 5.4. For any continuous and bounded F :1J — R, there is C(h, || F||ls) > 0 such that:

Yo
sup supE,*" [|HiV(F)\3/2} < C(h, || Fllso)- (5.26)
NeN* >0

Lemma implies that, to prove convergence of the term involving IV (M (01 h, 01h)) in (5.22),

it is enough to prove that it converges in probability. Proposition shows convergence of 1o to
1 in probability, while Proposition implies convergence of the correlation field. We deduce:

N

v I 1
B/ [1%/ I (M(0uh, 1)) di]| — (ke M@k, 00| =0, (5.27)
0

lim sup lim sup
N—o00 T—o00
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From equations ({5.24)) to ( -, we obtain:

N
lim inf lim inf TIET";LL o[ log Dh}

N—oo T—oo

— ; /dedy ()5 (y) [uh(z,y)] - %<kh,M(81h,01h)>
1 _ _
- _é /(—1,1) d20(2)<81h(27 ')7 (J + kh)alh(’z’ )> (5'28)

Let us check that the right-hand side in (5.28) is indeed equal to —Z.,(k;), and that Z. (k) =
Z.,(kp). The weak formulation (2.52)) of the Euler-Lagrange equation on kj, with test function h
gives:

() = % /( ARG ). (7 kAL, ) (5.29)

Again usmg (2.52) for test functions f € S(ep), the rate function Z.(ky) := supjeg(ory J¢(kn) reads,
for any ¢’ > ep:

Iel(kh) = Ssup {%1/(_1 ) <(91f J—I—kh)81 ( )>

fes(e)

1
-l /() (S (=), (& + k)OS (=, >>} (5.30)
= ‘]h(kh) — Sup 1 d25-<z)<al(f_h)<z7)7(6_+kh>al(f_h)(27)>
8 J(-1,1)

fes(e)
= Jp(kp).

This in particular yields J, (k) = Z., (k) = Zoo (ki) and, together with (5.28)—(5.29)), proves (5.21]).

Proof of Lemma [5.4. Let F':[21— R be bounded. Let ¢t > 0, and let ¢ > 0 that will eventually be
chosen as € = 5. The moment bound is obtained by a careful application of the entropy inequality,
putting to good use the O(N~/2) estimate on the size of the relative entropy of Theorem . Note
that |TIN(F)| < [|F||leoN. As a result, fixing ¢ > 0 to be chosen later and applying the entropy
inequality to cAljg~ gy for each A > 1 in the second line below:

[[Fl[oc N
By ([ ()] < 1+ (1+2) /1 NP0 (LY (F)| > A)dA (5-31)

1Pl
<1+(1 +g)/ T e [H(fty;my;{) +log (1 + (e = DN (TV(F)| > A))]d)\.
1

By Theorem [2.6 . H(fwN i)y < CN7'2 for some C = C(h,ps) > 0. Moreover, by Corol-
lary , the probability involving v} above is bounded by C(h,||F||«)e —emllFllo)A for some
C(h, ] \Oo) c(h, [|Flle) > 0. Choosmgc = c¢(h, ||F||)/2, one obtains the existence of C’(h, || F'||s) >
0 such that:
(1+e)C"(h, |[Fll)
eN1/2—¢

2(1+¢) /”F""N -
L 2te) Nl gmelh I Fllso) A2 gy (5.32)
c(h, [ Fl)

/o [N (R <1+
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The integral is bounded with N whatever the choice of € > 0. Overall, the right-hand side above
is therefore bounded with N as soon as € € (0, 1/2], which yields (5.26)). This concludes the proof
of the lemma. ]

5.3 Towards a lower bound for non regular correlations

In this section, we discuss how to extend the lower bound to non regular correlations close to
ko, i.e. to kernels k € H'(I1) which solve the Euler-Lagrange equation associated with a
possibly non regular bias h, and for which |V (k — ko)||2 is small enough. As we shall see below,
this extension is much simpler here than in the case of large deviations of the density for the open
SSEP [6]. This is due to the fact that the Euler-Lagrange equation ([5.33)) is linear as an equation
with fixed h and unknown k£, and to the smallness assumption on admissible biases h.

Let us sketch an informal proof of this extension. Take a symmetric & € H' () with kg = 0
and recall that the Euler-Lagrange equation (2.52)), viewed as an equation with unknown A, reads
for all test functions ¢ € H'() with ¢jon = 0:

% /ZV(k — ko)(z,y) - Vo(x,y) de dy + % /(171) 7(2)(01h(z,"), Ck01¢(z,-)) dz = 0. (5.33)

For k close to kg, one has ¢ + k = (0 + ko) + (k — ko) > «aid for some a > 0, and the second
term is a coercive bilinear form for the norm ||V - ||o. There is thus a unique symmetric i € H' (1)
with hjgn = 0 associated with k. Using with test function h, this h has small norm (recall
c(p+) <o < 1/4 and ||Vh|3 = 2||01h]|5 as h is symmetric):

2

One would expect the estimate to be enough to approximate h in ||V - ||; norm by more
regular biases. However, to avoid technical difficulties, our set S(ep) of regular biases was defined
with an assumption on the sup norm of derivatives rather than on ||V - ||o. This assumption is
technical and could be lifted at the cost of lengthening some arguments. Assuming therefore that
one can take (h,) € S(ep)" with lim,, ||V (h, — h)||2 = 0, let k, denote the kernel associated with
h,, (n € N) through (5.33)). By linearity of Equation (5.33), written for k and k, with test function
k — k,, the bounds Cy =& + k < cid, 5 < 1/4 and ||Vh,||3 = 2||01h,||3 give:

acps) ) g2 < a/ 5(2)01h(z, 2)2dz dz < | Vh[||V (k — ko). (5.34)
|

c 1
IV (k= k)3 < IV = ha)ll2[IV (k= Ka)llz + Sllk = Fall2[[V (5 = K )ll2[ Va2 (5.35)

By assumption k is close to ko. This means that ||Vhly is small by (5.34). Since (||Vhn|2)n
converges to | VA||2, ||[Vh,]2 is also small for large enough n. Using Poincaré inequality on O with
0 Dirichlet boundary conditions on 90 to bound ||k — ky||2 by (2m) 7|V (k — ky,) |2, we thus find:

|Vl
IV (k= k)l (1 =

Assuming that k is close enough to kg for the parenthesis on the left-hand side to be, say, larger
than 1/2 when n is large enough; we conclude that lim, ||V (k, — k)||2 = 0. This yields the alleged
general lower bound:
1
T (k) = -/ dz5(2) (0 (2, ), (6 + k) Orhalz, ) —s Ty (). (5.37)
(_171)

n—o0

) < IV =)o (5.36)
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A Correlations and concentration under discrete Gaussian
measures

In this section, we investigate the measures yév , defined for ¢ : [ — R as follows:
= Q) Ber(p)),  VneQy, v)(n)=—Zgexp { > g@jmm] (), (A1)
iEAN 9 i£jEAN

where the partition function Zév is a normalising constant. For simplicity, we assume throughout
that g € L*(0) is a negative kernel, i.e.:

Vu € L2((—1,1)), /Z w(@)g(x, y)uly)dzdy < 0. (A.2)

None of the result in Appendix [A] would be modified if we instead assumed that g = g_ + g4 where
+g. is a positive kernel, and ||g.||2 < ¢ for a small enough constant c .

A.1 Bound on the partition function and correlations

Lemma A.1 (Bound on the partition function). Let g : 0 — R be a continuous, bounded and
symmetric function, and assume that g is a negative kernel (see (A.2))). Then:

sup ZN < 00, Zév = VN[exp [QN Z nm]g”H (A.3)

>
Nzl i#jEAN

Proof. As g is continuous and a negative kernel, the matrix (gi ;) e a2, has negative eigenvalues,
and one has:

_ 1 _
Vn € Qu, 211Y (g) + = Z (77:)*9ii = N Z nin;Gij < 0. (A.4)

€AN (i.4) €AY

The continuity of g on the diagonal and the bound |7.| < 1 imply:

_ 1 o
z) = VN[QXP [2]\, NN % — 2N Z QHH
(i,5) €A i€AN
[
Lemma A.2. Let g : O — R satisfy the hypotheses of Lemma[A. 1l Then:
Vn € N*, sup 1/;\[(1_[77@) = O(N—"?). (A.6)
ICAN:|T|=n e

Moreover, if g € C'(>) N CY(Q) with g(£1,-) = 0, then, for each n € N* and each € € {+, —}:

sup vy (ﬁgw_l) 1T ﬁa)] = O(N—"/271, (A7)
a(N—l)IeCI and [I|=n a€l\{e(N-1)}
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Proof. Let I, C Ay with |I| = n € N*. The proof relies on a development of the exponential
defining z/év in (A.1)), and the observation that the measure 7 is product, so that, for each p € N*|

p
V(i oorip) € ARy [ins o ipt > p/2 = ﬂN(HT_]ij>:O. (A.8)

Jj=1

In other words, in a product 7;,...7;,, each 7 must be paired with at least another 7 with the same
index i1, ..., 7,. Since 7. is bounded, a direct consequence is that, if 1 < p < n and w? = (w!)ieny
satisfies sup, . |w?| = On(1), then:

NiTr /L _ _n
VN[H (N 3 w;?nj)] = O(N~n21y, (A.9)
p=1 JEAN
Write I, = {i1,...,4,} for each 1 < p < n (and by extension write I;, := I,,). Define, for J C Ay:
1 _
GJc(T]) = m Z 1195, nec Qn. (AlO)
i#jEAN\{J}

Then, for each n € Qx:

QHN( ) - 2GIC + 7711 angzl N
]3&21

= 2Grs(n NZan Z 7 Gig.j» 1<p<n. (A.11)

]GAN\[q

As a result, one can write:

Z;Vyé\[(ﬁlnip> _ N {(f[lmp>6201% () exp [ Z Z njgip’jH’ (A.12)
p= p=

p=1 ]EAN\Ip

and Gp. does not involve any 7;, (1 < p < n). Note also that supy Z;V < 0o by Lemma , thus
establishing Lemma only boils down to estimating the right-hand side above. To do so, recall
first the following identity:

VieR, = Z — / (L —t)"etdt. (A.13)

Expanding the second exponential in (A.12)) to order n thus yields, writing ng := [n/2]:

20 () = [(Hm,,) oG+ T+ T} (s
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no—1 n
1 /1 i _ m
Ti(n) = %<szq > i) (A.15)
m=0 ’ q=1 jeAN\Iq
n—1 1 1 n B B m
Ty(n) ==Y %(WZ% > ﬁjgz‘q,j> , (A.16)
m=ng =1 jeAn\I,
Ta—t) 1 K _ n t = ~
T3(n) == W<NZ% > Ujgzq,j> exp [N Y njgiqd]dt‘ (A.17)
0 ‘ ¢=1  jeAn\I, ¢=1  jeAn\Iq

Let us estimate the average of T}, T5, T separately. Consider first T} in . For each 0 < m <
ng — 1, developing the term elevated to the power m yields products of at most 2m = 2ng—2 <n
7’s. In view of Equation (A.8), this is not enough to achieve a pairing of all indices in [[7_, 7,
thus the average of T vanishes identically.

Let us count the factors of 1’s appearing in 75 in . For each ny < m < n, the term to the
power m in (A.16) is a sum of terms of the form:

i _ " -
H (N Z T]jgm-> : K C I, (n:)iex € NE! with 1 < |K| < m, Zn, =m. (A.18)

i€k FEAN\I; €K

Again by (A.8), each term appearing in gives a non-vanishing contribution to the aver-
age provided each element iy, ...,%, of I,, appears at least once in the expansion. Since the
term contains the product [], ., 7 with |K| < n, n — |K]| indices j of the sums in (A.18])
must be fixed to an element of I, \ K. A contribution 1/N arises each time an index j is singled
out in a sum. It follows that the contribution of 75 to the average is bounded by a sum of
terms of the form:

n—1 C
Z Nn(infz'|< H Hgi,-Hoo>DN{€2Gl7cl(n)H‘% Z ﬁjgi,j

m=ng 1€l \K 134 JEAN\TL;

”} , (A.19)

where C'(m) > 0, K C I,,, and the n} satisfy:
0<n;<n; forie K, and Zn; = (m+ | K| — 1)1yt k|—n>0- (A.20)
i€k

Let us now estimate the average in (A.19)). Recall that g is continuous, and a negative kernel (as
defined in (A.2))). As a result, (g; ;)i jeay\z, has negative eigenvalues, and for each n € Qy:

1 1

2Gr:(n) = N NiNjYi; — N Z (1:)%9:.
i,jGAN\In iGAN\In
1 _
<—5v 2 (10 < gl (A.21)
iEAN\In
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Using then Cauchy-Schwarz inequality followed by the estimate (A.9) for moments of correlations
under the product measure 7V, the average in (A.19) is bounded by:

B 1 - n; B n! 1/2
VN[QQGI%@)H‘N S e }<€ugw N[H< 3 mg”) }
ieK JEAN\K iceK JEAN\K
= Ly K| nmo O(N(HIEI=/2), (A.22)

Putting together (A.19)-(A.22)) and summing on all possible choices for K, (n4)4ek, (17)qex yields:

{QG,C (H’?) ” Z 3 Z O(N-(=IKDY O N =(m+1Kl-m)/2)

qel m=no K:1<|K|<m (n;),(n})

= O(N"?), (A.23)

It remains to estimate the contribution of the average of T3, defined in (A.17). Since there are
already n sums involving 7, it is enough to use the following bound, valid for each n € Qx:

(ﬁﬁ )Tg ‘ Z’_ Z N 9iq.j /O%;e [ qu Z T]ngq]i| dt. (A.24)

JEAR\Iq JEAN\Iq

The integral on ¢ is taken care of with the following identity: for each ¢ > 0 and n € Qy,

2GIL qu Z NiGiq5 = 2HN Z NjYiq,j- (A.25)

JEAN\Iq JEAN\Iq

Indeed, since g is a negative kernel, it follows that:

{ 261 (n (H ) Tg]

e(n+1) ||g||oo
S _

‘Nzrhq Z nJngJ

jEAN\Iq :|
= O(N*"/Q). (A.26)

Putting (A.23)-(A.26)) together yields the first part of Lemma i.e. (A.6).

Let us now prove the improved estimate (A.7)) if correlations include points at the boundaries.
It g is assumed to be C* with g(+1,-) = 0, then |giv_1),|lcc = O(N7'). By (A.§), the index
+(N — 1) must arise in the terms — to compensate the 74 (y_1) present in the product
[1,c; 7, It follows that the O(N~"/2) bound in ([A.23)-(A.26) is improved to O(N~"/*>71), which
concludes the proof of Lemma n

A.2 Exponential moments of higher order correlations

Let g € go + S(o0) be a negative kernel, where this set is defined in (2.45). In this section, we
give bounds on the size of exponential moments, under Vév , of random variables involving n-point
correlations, n > 1. These are useful when applying the entropy inequality.
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Such concentration results are established in the literature by means of a logarithmic Sobolev
inequality, see [30]-|38]. That g be a negative kernel implies that, for any F': Qn — R:

v (exp[F]) < ellgll= (Zév)_IDN(eXp[F]), (A.27)

and it is enough to estimate exponential moments under the product measure V. To do so, let us
fix some notations. For d € N, let A : A4 — R be a tensor. Define its Hilbert-Schmidt norm by:

‘ _ 1/2
Al s = [ Z (A(zo,...,zd_l))z} : (A.28)
(0y--+ ’id_1)€A]dV
For J C Z containing 0, let X', (n) be defined for n € Qy as:
d—1
XQJ(U) = Z Ao, ooy a—1)Tig+J H i s Nig+J = H Dig+j- (A.29)
(io ..... Z‘d_l)GA‘]l\, p=1 jeJ

0+ JCAN

The next theorem gives concentration estimates of XQJ under 7V for J C Z and d € N*. The
case J = {0}, d < 4 corresponds to Theorem 1.4 in [30], but their proof extends to any d € N*.
However, we also use in the article the case J = {0, 1}, for which a proof is needed.

Theorem A.3. Let J C Z contain 0 and d € N*. Assume that A is such that A(ig,...,14-1)
vanishes whenever the same site appears twice in My HZ: mi, Jor n € Qn, t.e. assume:

V(igs ooy ig_1) € A%, <Elj € J,|{io + jir, riar }| < d) = A(ig,ig1) =0.  (A.30)
There are then constants ¢q > 0 depending only on d such that, for any c € (0,¢q) and any N with
J C AN-'

A 12/d
_N C|Xd J| ])
vl exp | —=——1 ) <2 (A.31)
( { (VR

Proof. The proof for general J and the J = {0} case in [30] are very similar, so we only give a
sketch. Without loss of generality, A can be assumed to be invariant under permutation of its last
d—1 indices. The idea is to proceed by recursion on d, noticing that, for each £ € Ay and n € Qp:

VfXQJ(U) s = X(‘{f.f(né) - XQJ(U)
d—1

= (1—2n) [ Z Z Aigy oy ig_1)7] 10+J)\{£}Hﬁia

10:90+J D0 11, s0g—1 a=1
d—2
N Alio, eeiaea Oiors [ | 77} . (A.32)
§0yeenrig2 a=1
io+JCAN

Fixde N, JC Z with 0 € J, and N with J C Ay. For brevity, simply write X, for XC‘;}J.
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Step 1: reduction to moment bound. To prove (A.31)), it is enough to prove the existence of
Cy > 0 such that:

d
2

WpEN,  My(Xg) = PN [[Xa"]"" < CallAllas p*. (A.33)

Indeed, assuming such a bound, one has, for each ¢ > 0, using Jensen inequality when d > 2 for
the convex function f(z) = 2%2 r € R:

2d 2p/d
Nexp (| Xal /]| Allne)] =1 +Z N (X204 )| Al

2/d p

<1+ Z . (A.34)

As pP < pleP for each p > 1, taking ¢ < ¢4 := (2C§/de)_1 yields (A.31]).

Step 2: moment estimate. It is enough to prove for p > 2, since the first moment
can be estimated by Cauchy-Schwarz inequality. We will restrict to p > 2 at some point in the
computation. For now, we treat p as a continuous variable in R¥ and differentiate A.(Xy). For
each p > 0, one has:

dMy(Xy) d |
T dp(exp |: logl/ (’Xd‘p):|>
- logDN<|Xd|p) 1EN<|Xd|p10g|Xd|)
= _—p2 Mp(Xd) + ]—) 9N(‘Xd|p) Mp(Xd), (A.35)

which can be written as:

dM, (X, M, (X ;)P
p >0, 2](9 Q) _ p(pj) Ent(|X.]7), (A.36)

with Ent(F?) the entropy of F? against 7"V, given by:
VE: Qy — R, Ent(F?) = o (F?log F?) — o™ (F?)log o (F?). (A.37)

The entropy on the right-hand side of (A.36) is estimated by means of a logarithmic Sobolev
inequality, satisfied by 7"V for the Glauber dynamics on Qy (see e.g. Theorem A.1. in [21]): there
is C'rg > 0, independent of N, such that:

VE:Qy » Ry,  Ent(F?) < CLSDN< 3y [viFf), (A.38)
€A N
where, for i € Ay and n € Qn, V,;F(n) = F(n')— F(n) for each F : Qx — R. Similarly, a Poincare
inequality holds with constant Cpg/2:
VE:Qy >Ry, #N(F2) - oN(F)? < CTaN( 3 [V,»Ff). (A.39)

1EAN
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Injecting (A.38) in (A.36]) and proceeding as in [30], one successively obtains, restricting to p > 2:

AM,(X4)?  200sMy(Xg)* P 5 (13 [P/2Y]2
Vp > 2, < L (Z (Va1 Xa2))
< CLSMP(Xd)LPDN(\ POEDD [VileHQ). (A.40)

1€EAN
Applying Holder inequality with exponents (p/(p — 2),p/2) then yields, for each p > 2:

%}j(d)z < CLSMP/2< Z [Vi’XdHQ) < CLsMp/z( Z [VZ-Xd}Q). (A.41)

i€EAN 1EAN

The function M.(X,) is increasing for p > 0 by (A.36). As a result, integrating between 2 and p
and using the Poincare inequality (A.39) to estimate My(X,) yields:

Vp > 2, Mp<Xd>2 < My(Xy)* + Crs(p — Q)Mp/2< Z [Vv;de)

1EAN

< Crs pMya( Y [ViXd]). (A.42)

1EAN

Step 3: recursion on d. Let p > 2. For j € Ay and 0 < a < d — 1, define A=) as the
d—1-tensor (A(io, ..., la—1, J, lat1, ---» id_l))(. o and note that A(«=7) also satisfies the assumption
1q)q#a

(A.30). Recall that X, was short for X7';. Let us prove by recursion on d:
2 _
Vp =2, My(Xg,) <27 (Cus p)(a)’] T AllLs, (A.43)

Proving such a result would conclude the proof. In the d = 1 case, (A.42)) yields, for each p > 2:

M,(X{))? < Crs pMp/2< > [viX{}J]2> <Crsp Y. My(VeXi))”. (A.44)
i€EAN 1EAN
By (A.32)), bounding 7. by 1, the result for d = 1 is proven:
2
W22 MX)P<Csp Y | Y 1AG)] < Cus plIPAlls: (A.45)

leAn  io+J30

For d > 2, ((A.42) similarly gives, bounding 7. by 1:

Mp/2< > [VfoJ}2> <> M, (ViX4,)’
LeAN leAn
ig_1= in—i 2
<y [(d— DM (XA )+ Y Mp(Xfiﬁ{o)})} . (A.46)
leEAN i:i+J3L
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For each ¢ € A4, the recursion hypothesis at rank d — 1 applied to X fja‘{}lze ,and to X C‘l“(llo {6)} for
each ¢ + J 2 ¢, yields:

2
Mp/2< Z [VKXQJ} )
LeN N
) . 2
< 2972(Cus P (= 1Y Y 1= DIA“ g+ D0 AP g
leA N i:i4-J>5L
< 2971 (Cs ) ((d = DY PP Alls = 27 (Cusp) (@12 N Allgs, (A7)

where we used (a+0b)? < 2a®+2b* for a,b € R and bounded (d—1)*+1 by d? to obtain the second
inequality. Injecting this bound in (A.42)) yields (A.43)) at rank d, concluding the proof. O

In the next corollary, we use Theorem to establish the controllability results of Lemma
on the variables X(fj.

Corollary A.4. Let J C 7Z contain 0 and, for N € N* and d € N*, let A= A(d, N) be a d-tensor.
We do not assume that A satisfy (A.30), but instead that supyey- || Al < 00. There are constants
~a, Ca(g) > 0 that are independent of A, with v; = 400, such that, for each v < ~4:

for each N € N* with J C Ay,
~y

log Vf(exp [mN 2 D < Co(g)y” if d=1,

(A.48)

N g (d—1) Ca(g)y TS
log v, <exp [HAHOON XdJ]) < p— if d > 2.

Nz
If instead A is assumed to satisfy (A.30), then (A.48) is valid with ||A||w replaced by ||All2n =
IN=2A|| gs < ||Alloe everywhere.

Proof. Fix J C Z with 0 € J, and N such that J C Ay. We will use Theoremto obtain (|A.48)).
Let us first explain why it is not necessary to assume the condition on the tensor A if it
is bounded. Assume that Corollary is proven for tensors satisfying the condition (A.30), and
assume that A is bounded but does not satisfy the condition. Then we claim that N*(dfl)Xj?J
can be written as N_(d_l)X(fJ with A satisfying condition (A.30)), plus a sum of terms of the form
N=@-DXE . for bounded d-tensors B, 1 < d < d — 1, and J' C J. A recursion then gives
Corollary |A.4] also in the case of bounded tensors that do not satisfy provided the corollary
holds under . The existence of the decomposition of X&‘?J is not difficult to see: it is enough
to sum separately on the indices 1, ...,%4_1 in XQJ for which the same site appears twice in the
collection Iy = (ig + J, i1, ...,i4_1), and use the formula 7? = 5; + 7;0"(p;) (i € An).

We thus prove Corollary for tensors A that satisfy (A.30).
We first obtain estimates of tail probabilities of X, := Xj{i] under uév. These are then used to
obtain (A.4§). By Theorem [A.3] there is ¢; > 0 such that, for any ¢ € (0, {y):

I/;V(exp |:C|Xd’2/d]) - ﬁ*ﬂ]\f(exp |:C’Xd|2/d}) < gellle (Zév)_l, (A.49)
9

||| 7 1Al14
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Define:

1 . . 1/2 7
1Az = (W Z Alio, '--72d71)2> = [IN"¥2 A gs. (A.50)
i0yemrid1
By assumption on A,
sup [|All2,v < oo (A.51)
NeN
For ¢ as in (A.49)), one has then, for each ¢ > 0:
N Ny -1 N <t2/d
v, <‘Xd| > t) < Z(Zg ) el exp [— —Z/d]
1Al s
_ Ct2/d
<2(2)) tellslloo exp [— — d] (A.52)
’ NIIAII

At this point the proof is the same for each d > 1. We focus on the d > 2 case. Let v > 0 and
write:

I/N[ex ( T N-6-D|x )] =1+/ooetyN<LN—<d—1>X >t> dt. A53
o [P Ly s v Tl Xl (4.53)

Note that N~V X, is bounded by C||A|snxN for some numerical constant C' > 0 and each
N € N*. Thus, with ¢ given by (A.52):
(2/d N (d=2)/d

yCN C
(e [ v e]) < wa(z) e [ [r- L
g P [ All2n [ Xal| ) < ( g) . P ~2/d

~yCN
— 14 2(2N) elal / 0. () dt. (A.54)
0

If 7 is small enough, we claim that the negative part of the exponential is dominant. Indeed, one
has:

(2/d N (@-2)/d
C@-d)/d¢

5 (A.55)

< Y <Ya, Ya=7(C) =

For any v < 74, one has then:

Vév(exp[ u N’(d*”!Xd\])

[ All2,n
. 00 CtZ/dN(df2)/d
The change of variable u = (%/*y"'N(@=2/2 and the boundedness of (Z))y (see Lemma [A.1
conclude the proof of Corollary for d > 2: for each v < 7y,
VN(eX [ i N~ x D
o Lo (g Y

2y(42

M gl [ u
<1+ W(Zg ) ellgl /0 exp [— T} du. (A.57)
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A.3 Log-Sobolev inequality under Vé\f

The following proposition extends to the measures v¥ a similar log-Sobolev inequality derived

g
in [26] for product measures.

Proposition A.5. Let 0 < p_ < p, <1 and h,g : A — R be bounded with ||g||.c < 1/4. There is
Crs(p£; |9llss, l|hllos) > O such that, for each density f for vY,

H(fv)|v)) < CosN*v) (Th(\V/ 1)) (A.58)

If in particular h € S(¢) and g € go + S(&') with €,&" € (0,1/4), then CLs can be taken to depend
only on p.

Proof. We shall see that Crg(p+, ||g]/co, ||]|o0) can be taken to be an increasing function of ||g|| o, ||| cos
which proves the second claim.
As ||h]loo < 00, the jump rates ¢y, satisfy:

c(n, i) < eltl=c(n, ), i€ {£(N —-1)},
c(n,j,j+1) < eltlec,(n,4,5+1), j<N-—1. (A.59)

It is therefore enough to prove the proposition for h = 0. By assumption ||g|l.c < 1/4, thus
lgll2 < 2||gllos, thus the difference A} between largest and smallest eigenvalues of the matrix
(N~1g; )iz is strictly below 1 for large enough N. By Theorem 1 in [4], the following log-Sobolev

inequality for the Glauber dynamics associated with I/év holds: for each density f with respect to
vy,
N, N 1 2)‘9[ N 2
H(fr) ) < S (14 =55 ) S v ([V/Fm 1) (A.60)
g

i€EAN

The claim of Proposition is then an immediate consequence of (A.60]) and the following bound:
for some c(p<, ||9]|s) > 0,

vie v, v ([ViVTm)]*) < clpw, gl NV (D(/T)). (A.61)

Let us now prove (A.61)). It is the claim of Lemma 4.2 in [29] when g = 0. When g # 0, the proof
is very similar and we only explain what changes. To prove , the idea is that changing the
occupation number at a site ¢ requires one to bring the particle or hole at 7 all the way to a reservoir
(say the one on the right), perform an exchange, then bring back to ¢ the new hole/particle. This
is expressed rigorously by the following formula, which gives a recursive description of the above
procedure: for any F': Qy — R,

ViF(n) = Vi1 F(n) + Vi F(" ) + Vi F (7)™, (A.62)
Using the identity (z+y+2)* < 2(1+8)(2*+y*)+ (1+571)2?, valid for any 8 > 0 and z,y, 2 € R,

one finds, after changes of variables:

vy ([VFEm]’) <204 8) 32 vy ) [VieaF) |1+ %

+ (145 Z Vév(n)(VmF(n))Q%

UISYN

(A.63)
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The computation of the above ratios is the only place where g plays a role. Since ||g||« < 00, one
can check that, for each n € Qu (recall that 7V is the product Bernoulli measure defined in (2.58))):

N ((,i\isi — i\i,i N (i — i
vy (1)) _ Y (0r) “)eznguoo’ vy () 0 g (A.64)
votn) = Nn) ve(n) = V()
The rest of the proof is then identical to that of Lemma 4.2 in [29]. In particular,
=N 1)\%,5+1 =N (3,041 —~/
) 1 )
i ((Z) ) o _ 1, %gw " (A6
vN(n) min{l — p,,p_} vN(n) min{l — p;, p_}2N

This yields the following bound:
v ([ViFm)]) <200+ 8) |1+ (

- 1) 2ug||m} N( F 2)
min{l — p;,p_} c Y [V A+l (77)]
P~
- p lgllee \ N (0. 2
+ (1+5 )<1+ min{1 —p+,p,}2N6 )I/g ([VzHF(n)] > (A.66)
Iterating the bound with the choice 5 = N concludes the proof of (A.61]), thus of Proposition
0

B Integration by parts formulae

Fix h € S(o0) and g € go + S(o0) (the set S(oo) is defined in (2.45)) throughout. In this section,
we provide integration by parts formulas under the measure yév, both in the bulk and close to the
reservoirs. These formulas are key to the renormalisation procedure used to estimate error terms,
in Section In particular, they are essential to proving the I'-controllability of the variables

U(;—L, Uli, X272{071} encountered in Lemma .

B.1 Integration by parts in the bulk

Before stating the result, let us give some notations and explain what we mean by an integration
by parts formula. Fix a density f: Qy — R for v}, Fori < N —1, let '+ be defined as:

ii 1 . 2
ey, IO = gamiit D[V Tm)], (B.1)
with, for any v : Qy — R and any i < N — 1:
Vn € Qn, Viipu(n) = u(n™*) —u(n). (B.2)

The jump rates c;, are defined in (2.41}).
Consider a family (w;);ea, of functions on Qy. To estimate certain error terms in the adjoint L;1
in Section a renormalisation scheme is used in Section below. For each density f for uév ,
some € > 0 and ¢ < N — N, this scheme consists in estimating the replacement:

i+eN—1

b &S )
TN — 1 (i)
= yév <f Z N [w; — ijD (B.3)

7



in terms of the entropy H(fv)Y|v)') and the averaged carré du champ v (I',(f'/?)). The right-
hand side in the last equation is obtained via a simple resummation. The key issue, then, is to
understand how the space gradient w; —w;;1 (j < N —1) can be turned into difference f(n')— f(n),
for a transition 7 — 1’ allowed by the dynamics (i.e. one of the differences contained in I';(f1/?)).
Solving this issue is what we mean by finding an integration by parts formula, typically a formula
of the form:

D (ipr —w) fvy ) =Y amf @) = F)l) () + v (£X), (B.4)

UISUN neQn

where ¢, X are explicit functions, and the average of X can be estimated via the entropy inequality
or another integration by parts formula. The natural choice for w. in our case is w. = 7., however
a simpler formula (B.4) is obtained, following [32], through the choice:

Vi € Ay, w; = @, =1 —pi, 0;=pi(1—pi). (B.5)

Lemma B.1. Let f be a Vév-density. Fizi <N —1and let u:Qn — R be such that V; ;11u = 0.
Then:

Vév [w(wisr — w;) f] = Vév (uqViit1f)
(pz+1 - pl)
+ V;V |:(Wi+1 — w;) (1 - 6_(m+1_m)cig/N> Uf} ) (B.6)

‘QZ

—(n. —n. g

where the function ¢ = g;;+1(n) is given by:
72i(1 — T_h"'l) e~ (miy1—mi)CY /N (B.7)
pi(1 = pit1)

Recall that, for each i < N —1, N™Y(n; —ni1)C? = V, ;111N (g) is defined in (3.53), and satisfies
max; [CF] < 2[|g/|co-

Vn € Qy, q(n) =

Proof. Let it < N —1 and ¢ : 2y — R. Notice that, by definition of V, ;;1:
zz+1 UQV ) vlﬁ-‘—l (qVN)
vy [uqViip f] = Z uqViig fv) Z f———Lv) =) [us—Ng}, (B.8)
g

where we used V;;11u = 0 to obtain the second equality. The gradient in the right-hand side
reads:

Vi € Qw, Vi’”;é(vq(zg) 0 _ 1) exp - —(UMN_ 1) (509 + )| —alm),  (BY)

where \; = log(p;/(1 — pi)). We need to choose a suitable g in order to have a difference w;; —w

arise above. In the g = 0 case, corresponding to [32], one can take:
~ ni(1 — 9it1)

() =—F——+ (B.10)

pi(1 — pit1)
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When g # 0, the exponential of C7Y does not change things much, and if ¢ is taken as in (B.7)),
then:

VtHl(qVéV)( ) = [Th'+1(1 —ni) (1l —ni1) o~ Criy1—n:)CY /N (B.11)
vy piri(L = pi)  pi(1 = pita)

The variables w. (see (B.5))) are tailored to give the above bracket a nice expression (see (A.3)
in [32]):
i1 =m)  mi(l —nip1)
piri(1—pi)  pi(l — pit1)
This formula can be checked by looking for the left-hand side as a polynomial in w;, w;;1, of the
form a + bw; + cw; 1 + dw;w; 1 for real numbers a, b, ¢, d. Equation then becomes:

:| = Wit1 — W + (ﬁi_H - ﬁi)wiwiﬂ. (B12)

Vi,z’+1(QVN) P
V—Ng(n) = wir1 — w; + (Wit1 — wi)(e (i1 =m)C7 /N _ 1)
+ (Pip1 — Pi)wiwigre” TGN, (B.13)
which proves the lemma when plugged into (B.8]). O

The next lemma is a rewriting of Lemma in terms of the carré du champ operator.

Lemma B.2. Leti < N—1 and let v : Qy — R be such that V; ;11u = 0. There is then a constant
C' =C(h,g,p) > 0 such that, for any 6 > 0:

vy [u(wier —wi) f] < SNZu [T (F%)] + 5—5@% [fu?] (B.14)
— (Piv1 — PV, [sziﬂe_(m“_m)cf/NUf}
+ I/;V [(wiﬂ — w;) <1 — 6_(77”1_7“)019/N> uf} :
Proof. Let i < N —1 and 3 > 0. In (B.6), write, for each € Qy:
Vi f (mu(n)a(n) = 8220+ — f172()]

B Pl a2 + f () (B.15)
Apply then Cauchy-Schwarz inequality to obtain:
i [ulier — 00 f] < S0 (Ve f12)7] + 02 [(Fn) + £+ ue? (B.16)

— (pit1 — PV [Wz‘wz‘ﬂe_(m“_m)cig/NUf]
+vy [(Wi-i-l — w;) (1 - 6_(77”1_%)05/]\[) Uf}

Changing variables 1 <— "' since p; € [p_, p;| C (0,1), the second expectation in (B.16]) reads:

1 RS 2. i+l Vév<77i7i+1> N
Bg[(f(>+f( - = ng;Nf [ () +q°(n )W}Vg(ﬁ)
= WN (1], (B.17)



where M = max{(p;(1 — pj+1)) 2, (6;6,41)"" : j < N — 1} depends only on py.
Consider now the first term in the right-hand side of (B.16)). Since c;(n,,i4+1) > c(n,4,i+1)e~ 2l
for each n € Qy, it reads:

§ / (Vs f112) A0 < BedlMl=uN (T (/F)). (B.18)

Taking f = §N2e2IMl= concludes the proof. O

B.2 Integration by parts at the boundary and boundary correlations

Here, we estimate dynamical correlations involving sites close the reservoirs, i.e. correlations of
the form 77, (v XN for a function Xy : Qy — R. Recall that h € §(c0), g € go +S(00) are fixed,
and the deﬁmtlon of the jump rates at the boundary. Define, for f: Qy — R:

ca(n, £(N —1))

[F =Dy — f()]?, (B.19)

and observe:
Ch(777 :l:(N - 1)) > 672“}1“00 min{psu (1 - pEz) 1E1,62 € {_7 +}} (BQO)

Lemma B.3. For n,N € N*, let ¢, : A}y, — R satisfy supyey-
e € {+,—}, define U5(n) = Nev-1) (n € Qn) and, forn > 1:

gbn“oo < oo. Formn € Qn and

_ . . 1 o . .
Us(n) = ev—)Vir (), Vi(n) = > M Wi bnli, cein). (B.21)

Then, for each n € N, U: is T'-controllable with size N~ and of vanishing type in the sense of
Lemmas . More precisely, there is C' > 0 such that, for any Vév-density f and any 0 > 0:

v (FNV2UZ) < NN (T5(V 1))

N CT(Vi)? B
T fN[ + ‘N1/2 Z nj(Nga(N—n,j)
j#e(N—-1)

D +aV, (B.22)

setting V§ = 1 by convention and with o = O(N~Y/2).

Remark B.4. The estimate on the size of U;, is optimal only if n < 1. U; withn <1 are used in
the computation of the adjoint in Section [3.3, while U3 is useful in Section [( [

Proof. Let n € N*. Using the notations of Corollary [A.4] the term in the expectation in the right-
hand side of (B:22) is of the form N—(»=1 XY= wioy TN ""ij:l{o} with supyens |60 < 00,
¢ € {n,2n}. It is thus controllable with size (at most) 4~ 1. The estimate (B.22)) then implies that
Ut is T-controllable with size N~ by taking § = N'/2, but also that N/2U¢ is I'-controllable with

size 1 and thus that U is of vanishing type.

Let us therefore prove (B.22)). We do so for the left boundary ¢ = —, the proof for the right
boundary being identical. The goal is to create a gradient of f of the form (B.19). We use the
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shorthand notation b = —(N — 1). Notice that V.- (n?) = V" () for any . The mapping 7 > n°
is bijective on Qy, thus:

N{pe 1/— 1 N - _ b _ v ()
neEQN g
For ) € Qy, let us compute the ratio v’ (1°) /v, (1):
Vév("b) _ (1 =) pp + (1 — ﬁb>€2HN(g)(nb)f2HN(g)(17)
v () mepe + (1 —m)(1 — pp)
Py 17w (1—2m) -
= (1 —bpb> exp [Tb angb,j]- (B.24)

i#b

For future reference, notice that (B.24)) is bounded by C/(p+)e?l9l= for some C(ps) > 0. Forgetting
g for a second in (B.23)), notice also that, for each n € Qy:

FOn)n = ) + )0 = = g ()

=m(1 =) [f(n) = F(")] = (L= m)p [f(n) = F(n")]
i (f(n) = f(n")), (B.25)
which involves a gradient of f as desired. Coming back to , note that, since g(+1,) = 0, the

argument of the exponential in (B.24)) is bounded by O(N~1). Equation (B.25]) and the existence
of C(g) > 0 such that |e” — 1 — z| < C(g)z? holds for z < 2||g||« therefore yield the bound:

1/2
NV (F Vi) = 2= S v )V ) L) — £)]

neEQN
N1/2 N B . B Db 1-2m, B
Gz o A V) = a) ($22) - 2m) Yo n (N
neEQN j#b
< % =: ay. (B.26)

Since |V ||e = O(N), a% = O(N~1/2) as claimed. It remains to estimate the second and third
terms in the left-hand side. Consider first the third term. Using the bijection n +— 7’ to turn
f(n®) into f(n), recalling that V.~ (n®) = V.~ (n) for each n € Qy, and bounding the ratio by
C(px)eldll= " one finds:

)1 277;)277] Ngbj >‘

) (B.27)

1/2
o X v o) ) (2

el L —p

< C(pi)e2||g||oo N(
9

= N3/2 Ngb])

J7#b
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which is one of the terms appearing in (B.22)). Consider now the second term in the left-hand side
of (B.26). For 8 > 0 and n € Qy, split as follows:

NY2[f(n) = F(")] = BNYV2FY2 ) = FR@OBTH 2 ) + £ 000): (B.28)
Apply then Cauchy-Schwarz inequality twice to find, bounding (7,)? by 1:
1/2
N S Vi) — f6P) (B.29)
neQN
< BNS™ (g - gy Z n)+ F)] (V)R ()
=7 n-
neEQN UEQN

As for (B.27)), the last expectation is bounded by B_IC(g)Vg (f(V.7)?). To conclude the proof,

recall from ([B.19) the expression of I'; and from (B.20) the lower bound C(p.)e~I"l= on the jump
rates. Choose 3 = 2C(ps)e IPl<§N for § > 0. Then:

% > Vi [ fn) = F(n")] < ON*v) (T3 (V1))

UISUN

C(g9)C(py) L2l o —\2
+ 20N Vg (f(vn ) ) (BSO)

The last equation together with (B.26) and (B.27) is precisely the right-hand side of (B.22). O

C Control of the error terms

Fix h € S(oo) (this set is defined in (2.45)) and an associated g, € go + S(o0), solution of the
main equation - In this section we estimate, for each density f for I/é\}i , the average against

fv) of the function X2 (0.1} ¢ : A3 — R, defined below in (C.1)). This proves the last item of
Lemma .90 We also estimate the expectatlon of the time average of any error term encountered
in the text, proving Proposition [3.8 and Corollary [3.14]

Proposition C.1. Let gzﬁ € A2 — R satisfy sup yen-
as Xo, was defined in (A.29) by:

vn € Qy, Xo(n) = Z Z Nifi+17;90(i, 7). (C.1)
i<N—1j¢{iit1}
Then N='X, is D-controllable with size N~/ (recall Definition of controllability).
The next proposition was stated as Proposition and is proven in Section

®2)|0o < 00. Recall that X2 {01} abbreviated

Proposition C.2. Let 0 < p_ < py < 1 and eg(p_) be chosen as in Lemma and assume
p <ep, h € S(ep). Let EN : Qn — R be an error term with size ay = on(1), and let FN be
controllable with size 1. There are then v, C and ', C" > 0 depending on h, p+ such that, for each
T >0 and N € N*:

T
log E¥on [exp‘y/ EN(n,) dtH < Cay,
0

N = N~

'/T Py ai]] < ¢ (C.2)

0

log E¥on [exp
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Propositions are proven in the next two sections.

C.1 Estimate of X,

In this section, we prove Proposition Fix ¢ : A3 — R, N € N* as in the proposition. Fix also
a density f for V;\}i once and for all. The proof of Proposition being very technical, we first
present its general structure.

The idea is to smoothen the product 7;7;11 into a quantity that depends on all #’s in a box of size
¢ with ¢ sufficiently large, then use the entropic inequality to estimate the resulting term. The cost
of this replacement will be estimated by an integration by parts formula, see Section

We need room between the indices 7,7 + 1 and j in the definition of X5 to take averages in

a box. Let I; be the segment {0,...,¢ — 1} and split the sum on j in (C.1) as follows:

1 1 .
Vn € Qp, NXQ(U) = )7@ + ?é, Xké =N E g NiMi+17;0(%, 7)), (C.3)
i<N—-1j7eAN\{i}
i1+,

1
¢ _ L.
§2 - N Z _ Z NiMli117; (4, 7). (C.4)
i<N-1jeAN\{ii+1}
JEI+1+1,
The direction of the arrow indicates the direction in which the replacement of 7; (<) or ;41 (—)
by averages on sites to the left of i («—) or to the right of i + 1 (—) is going to be performed.

Estimates for ?g and ?g are identical, so we only estimate the latter. In practice, the replacement
is made thanks to the integration by parts Lemma , which uses w. = 7./6. as main variable.
Write:

A(i,5) == 0i10(1,9), i< N-—1,7€Ay. (C.5)

Then:
1 .
Vn € Qu, ?g(n) =N E 5 Niwir1M; A, 7), (C.6)

i<N—1jeAn\{ii+1}
jgit+1+I,
and we replace w; 1 by %ZGGH—LFU we. If 7+ 1 is too close to the reservoirs, i.e. if i +¢ > N — 1,
then this replacement does not make sense. In this case, we spread the unit mass at i + 1 to 1/¢

(i+1)

at each site in ¢ + 1 + I, N Ay, and leave the remaining N_I_T mass at the boundary. This is

summarised in the following definition of the replacement w* 41 of wiygq:

min{i+¢,N—1} N—1—3i
VieN-1  @li=7 Y watlisya (1 - T)WN_l. (C.7)
a=i+1

Choice of (. Let 7§ denote the averaged version of Yg
e Qy, Vi) = Z5m) (©8)

1 N-—-1-—i .
+ N Z Z NiMjLitesnN-1 (1 - T)wN_lA(z,]),

i<N—-1j5eAn\{i,i+1}
J¢i+1+1,
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with:
min{i+1+¢,N—1}

ey, Zim=vx Y X an(; X w)aii. (@9

i<N—1jeAn\{ii+1} a=i+1
JEi+1+1,

The last term in (C.8) is T-controllable with size N=! by Lemma For the replacement of ?g

by ?g to be useful, 75 should be controllable with size oy (1). This requirement will fix the choice
of £. Looking at Corollary we see that any ¢ such that ¢ = o(N) fails, so we take:

{:=N. (C.10)

The entropy inequality is then effective on ?é\’ . Indeed, it is of the form:

1 o a
ey, 25X =55 Y. WA a), (C.11)
(i,5,0) €AY
[{(.4,a)}|=3

for some function A satisfying |A(i, j, a)| < |A(4, j)| for each (i, j,a) € A%,. By Corollary ?Q’
is therefore controllable with size N~'/2: there are v, C' > 0 such that:
HU ) HURWY) |

i (F72) < R el

(C.12)

+ % log I/év [exp (7?5)} <

Cost of the replacement. Let us estimate the cost of replacing )_gév by ?Q’, defined in (C.8)).
To do so, we use of the following integration by parts identity, which explicitly describes how to
spread the unit mass at ¢ + 1, ¢ < N — 1, to 1/N on every site up to the boundary, where the
remaining mass is then left. One has:

min{i+N,N—1}-1

Wiy — I, = > dn(a— (i + 1)) (wWe — Warr), (C.13)
a=1+1
with: No1_8
PN (D) = N lo<p<n, be Z. (C.14)
For brevity, for a € Ay, let u, denote the quantity:
1 . _ o
vn € Qy, Uuq(n) = N Z on(a— (i +1))7; | Z mjA(i, j)- (C.15)
i<N—1 JEAN\{ii+1}
a—N<i<a jeit1+Iy

Then, for each n € Qy:

XY=V = 3 (o= wor)ualn). (C.16)

a<N-1

To estimate the expectation of the right-hand side above under fl/év , apply, for each a < N — 1,
the integration by parts formula of Lemma [B.2] with u = —u,. There is thus a constant C' > 0
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such that, for each 6 > 0:

Z l/éi (f(wa — wa+1)ua) < (5N21/;\£ (Fh(\/?))

a<N-—-1
C
+ 533 D Yo af) (=g (fR) (C.17)
a<N-1

+ Z (pa—i—l - pa)’/;\}i (wawa+16_(na+1_na)cgh/Nuaf) (:: V;\}i(fRQ)) <C'18)
a<N-—-1

= > (s = wa) (1= e e N Y £) (= Y (fRy)), (C.19)
a<N-1

Let us estimate one by one each of (C.17)-(C.18)-(C.19). Consider first v}, (fRs), and note that:

h

Sup sup |(War1 — wWa) (a1 — 1a)| < Clpa)- (C.20)
acAn

As a result, using the identity e* = 1 + fol ze®dt for x € R and the fact that |C9| < 2||gn ]|,
v (fRs) can be bounded as follows:

1
WY (FRy)| < Clps)eloleeY (N 3 f\Cg’LuaD. (C.21)
a<N-1
By definition of C% (see e.g. Lemma [B.1)) and of w. in (C.15]), the product C%u. is of the form:
1
Va € Ay, Cou, = e Z Ny 15 + Dt g,  sup DI = O(N™Y), (C.22)
(i,5,b)EAZ,

where the functions ¢ : (—=1,1)3> — R are bounded uniformly in a. It follows by Corollary
that Rj is controllable with size N~2.

Consider now Ry, defined in (C.18). Again using ¢* = 1 + fol re®dt for x € R, we can bound
vl (fRy) as follows:

7 2llonlloc

N p N I N

Vg, (fR2) < N > U (fwawaritia) + —r > o (f\CghuaD. (C.23)
a<N-—-1 a<N-1

Recalling the definition of u. from (C.15]), the first term in (C.23)) is of the form N‘zXf{OJ} in the

notations of Theorem i.e. of the form N—2 > i jo Milli417 M B(4, j, b), with B bounded. Corol-
lary tells us that this function does not behave worse than a sum of three-point correlations,
and is therefore controllable with size N~'/2. In addition, the second term in has the same
structure as N~!'Rj3, and is therefore controllable with size N~3/2.

Consider finally R; in . It reads:

C
Vo IR =55 D D [ch(a—<z’+1>>¢N<a—<j+1>>ﬁmj (C.24)
a<N—-1 ij<N-1
a—N<i,j<a

X Z ﬁbﬁcA(ia b)A(jv C) .
b,ce An\{3,i+1}
bi+1+IN
cj+1+1IN
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In particular, it is of the form N‘?’X}f“{o} for a vy : Ay — R satisfying supy SUP 4 lvg] < 00, and
therefore controllable with size N~! by Corollary For each 0 > 0, we have proven the existence
of a controllable function R : 2y — R such that:

y (X@V) ) <BNWY (Th(VH) +vY (F(YY + Ry)),  Ry= R4+ Ry+Rs.  (C.25)

The arguments above do not depend on the sign of A in the definition (C.4) of ?é\f . This implies
that Yév is ' controllable with size N~'/2 in the sense of Definition Since the same arguments
also apply to YQZ , Proposition is proven.

C.2 Proof of Proposition and Corollary

Proof. Let T' > 0. Corollary is obtained as a side product of the proof of Proposition
which we focus on. Write GV for either the error term EV with size ay, or the (I'-)controllable
function F'V with size 1. For each v > 0, Feynman-Kac inequality and the bound on
the adjoint Lj1 in L*(v)) imply:

% log ;" [exp [v /0 ' GN(m)dt] }

2

< sup {I/;\}Z (f(fyGN +8/2)) — NIygNh (Fh(\/?))} (C.26)

F20w (=1

In addition, the function & satisfies, for some constant C' = C(p+,h) > 0:

H(fvNwh)y 9¢ N2 20

where we used the entropy inequality first, then the log-Sobolev inequality of Proposition to
get the right-hand side. Thus:

% log ;" [eXp [v /O ' GN(nt)dtH

< sup {I/ﬁ (fAGN) — N?z/é\; (Fh(\/?)) + %} (C.28)

F20wd (=1

Suppose first that GV is controllable with size sy (including both sy = Ox(1) and sy = on(1)
cases): for some vy > 0,
VN eN,  logu) [e79"] < sy. (C.29)

By the entropy- and log-Sobolev inequalities, the quantity inside the supremum in Equation (C.28)
is bounded above, for each density f for ygNh, by:

Crs 1 C
(v%Ls ~ §>N2y§£ TW (/) + f—ON + 7 (C.30)
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Taking any 7 < Sgis ensures that the first term is negative, and concludes the proof in the
controllable case:

. 1 vly T N VSN 1/2
UNEN,  —logE" [exp [’y G (nt)dtH < 3N L oN2, (C.31)
0 7o
If GV is not only controllable but also of LS type (recall Definition [3.11)), corresponding to the
controllable case in Corollary |3.14] then vy > 219C} g > 8C}s by assumption, thus one can take
v > 1.

If now GV is I'-controllable with size sy, the idea is the same, except that one first bounds
v (fG™) from above using Definition [3.6| of I'-controllability:

W0, N (FGY) < 6NN (Ta(VD)) + %V;V (Y ), (C.32)

with Yo~ controllable with size sy. Choosing § = %6, the proof becomes identical to the controllable

case. L]

Remark C.3. If one is interested only in estimating the expectation of the time integral of G
rather than its exponential moment, then the log-Sobolev inequality is not necessary. One can
instead directly rely on Theorem [2.6] that bounds the relative entropy along the dynamics. |

D The Neumann condition on the diagonal

Let h € S(00) (this set is defined in (2.45)) Assume that p' < ep, h € S(ep) so that the solution
gn € go + S(00) of the main equation (2.61)) exists and the conclusions of Lemma [3.5 hold. In this
section, we rewrite the term:

1 1
1 NiNi+1 (alhi+,i - alhi_,i) =1 Z WiWi 1100541 (alhi+,i - alhi_,i)a w. =

i<N—1 i<N-—1

SIEST

. (D)

as a function of the two-point correlations field TV, defined in (2.7). This is necessary in the proof
of upper-bound large deviations, in order to obtain a closed expression of the Radon-Nikodym
derivative in terms of the field IT"V. It is done through the integration by parts Lemma , replacing
wiwit1 by local averages of w’s. As h € S§(o0), the function 6,(x) = Oh(zy,x) — O1h(z_, x),
x € (—1,1) can be extended into an element of C?([—1,1]), still denoted by ¢, which satisfies
on(£1) = 0. Let ¢ € (0,1) € N* and Iy := {0,...,Ne — 1}, writing eN for |eN]. In the
large N limit, the correlation fields II we consider act on 7, which only contains functions with
a certain regularity. We cannot simply replace w;y; by a uniform average of w. on i + 1+ I.x
and obtain an element of 7 (the indicator function 1) is not regular enough). Consider instead
a smooth function x* € C*(0) with x* = 0 on 900, 0 < x* < 2/e, and such that x°(z,-)
approximates €1 ;4o)n(—1,1) in the following sense: x°(x,-) is supported on (z,z +¢) N (—1,1)
for each z € (—1,1), and:

€ — 2
/ X (2, 9) — e L garan1y(y)| dedy <e. (D.2)
O
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Define then, recalling that (x) = p(z)(1 — p(z)) for x € [-1,1]:
Yo €8 M) = S (o) 0.3)

Note that A% belongs to T, defined in (2.38)), thus II(N°") is now a well defined object for each
IT € 7]. At the microscopic level, IV also acts on functions with less regularity and we have the
following more general result.

Proposition D.1. Let g € C°([—1,1]). Define, for n € Qn:
1 _
Wq(n) = 1 Z NiNi+19i- (D.4)
I<N—1

For each € € (0,1) smaller than some €o(p+, h,q) > 0, there are constants Cy(p+,h,q) > 0 and
Co(p+, h,q,€) > 0 such that, for each N larger than some constant depending on € and each T > 0:

N

B {exp [ /0 W) - 11 (Ng)}dtH

C. Jh,q,e)T
< exp |:Cl (p:tv h7 q)gl/QT + 2<’0iN1/2 ) (D5)
Proof. Let T > 0, € € (0,1), and write:
N TPEN | TrheN N
W, — TIN(NVE) = W, — WEN 1 N — 1Y (), (D.6)

_>
where WZN corresponds to ¥, in which the unit mass at each ¢ +1 < N has been replaced by a
mass (eN)~! at each site in {i +1,...,i + &N A N — 1} (recall that eN = |[eN]):

— olx _
WY YA, Adey) = @) e o) @y €D (D7)

a(y)

Up to applying Cauchy-Schwarz inequality in the exponential moment in (D.5)), it is enough to
separately estimate the contribution of each difference in (D.6).

%
Consider first the contribution of WeN —IIV(N¥). According to Corollary |A.4} for some v, C' > 0
independent of ¢, N, ¢:

1
T

Hoélder inequality applied to then yields:

N r —
log B [exp o [ = A2 ) - T )| dt}] <c. (D)
0

1 v e 1
sros B e [2 [0 - m¥ ]| < M- At 09
0

Let us estimate ||A. — N9|[ay. Since x© is smooth,

. (T j+s>‘ C(e)
= < ) D.1
X;,; X( NN ) SN (D.10)

max sup
(1.3)EAY (r,5)€[0,1)2
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It is also not difficult to check that, for some different C'(¢) > 0:

1 N i j i ?
e Hge(mwre)i-Use(Frreo)] aud
N%Z/QE[NGNN+€ N lywnte wa
()enz " 1
<3 (D.11)
— 2N’ '
From (D.10)—(D.11)) and property (D.2)) of x*, using also the elementary bound (a+b)* < 2a®+ 2b
for real a, b; the difference A, — N4 therefore satisfies:

1 2 C(p:l:aq7€)
lAe =M =5 Do (A= M), <20 A = NIS + ==
(i,5) €A

Clp+9,2)

N

This yields a bound on of the same form as the right-hand side in Proposition for any
e > 0 and any N large enough depending on ¢, p4,q.

Consider now the contribution of W, — WV to (D.3). The idea is the same as in the proof
of Proposition |C.2; we express W, — W;N in terms of the carré du champ operator and explicit

controllable functions with size vanishing when ¢ is small. We start from the bound (C.28) on
exponential moments:

< 2¢ + (D.12)

%logEzévh [exp [/OT [(We(ne) — W/ZN(nt))}dtH (D.13)

<  sup {I/éi (f[Wq — IT/‘;N]) — EV;{Z TV F)) + M}

F20w (£)=1 N2
Recall Definition [3.6] of controllability. To obtain the claim (D.8), it is enough to prove:

e 2 W, — I?/ZN} is (I'-)controllable with size 1. (D.14)

%
Indeed, if so, W, — WY will be (I'-)controllable with size e'/2, and of LS type (see Definition [3.11
for € small enough depending on ¢, p, h.

To prove (D.14)), we use the integration by parts Lemma[B.1] It is formulated with the variables
w; = 1;/0;, © € Ay, for which W, becomes:

1 o 1 _
v € Qy, We(n) = 1 Z Wikdi410i0i+10i = Z wiwir1(3:)%q; + 00 (n), (D.15)
I<N-—-1 i<N-—-1
where V0 is the error term:
1 e _
vn c QN, GN’O(U) — W '<2N:_1 wiwz‘+1N0'i [Ui—H — O'Z'] qi. (D16)
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It is of the form N~'X7 ,, with the notations of Theorem , thus controllable with size N~!
and of vanishing type (recall the terminology of Definitions [3.643.11))
Recall from (C.7) the definition of the quantity os7;:

min{i+eN,N—1}

1 N—1—i

TN== w; + 1 (1——>w i<N-—1 (D.17)

i+1 7 i+eN>N—-1 N—1, . .
eN imn eN

For each i < N — 1, one can write as before:

min{i+N,N—1}—1

Wi+1 — ﬁﬁr\fl = Z pen(a— (i + 1)) (Wa — War1), (D.18)
a=i+1
with: Ne—1—b
E J— —
¢5N(b) - g—NlO§b<5N, b € Z (Dlg)
Define then u; : Qy — R for j > —(N — 1) similarly to (C.15]):
VneQy,  wi(n) =) olgwiden(i— (i+1). (D.20)
i<j

_>
With this definition, the quantity W, — W‘;N reads, for each n € Qy:
—>€
Wy =W = > (wj—wiea)u(n)

>—(N-1)
N—-1—1 N
+ wn_1 Z 1iicnvsna1 (1 - €—N>Wi(ai)2 + QN’O(U)- (D-Ql)

1<N—-1

Fix a density f for y . The first term in the second line involves boundary correlations. According
to Lemma it is F controllable with size N~ and of vanishing type: for each § > 0, there is a
function Ds, controllable with size N=! and of vanishing type, such that:

N—-1—1
Vé\,i (wal Z Litensn—1 (1 - 5—]\7) (51‘)2%’%)

i<N-—1

< SN (Th(V 1)) + v (fDs). (D.22)
It therefore remains to estimate the other term in the right-hand side of (D.21]). By the integration

by parts Lemma applied to —u; for each j < N — 1, there is a constant C' > 0 such that, for
any 6 > 0:

v (530 (= win)us) < N3 (Ta(V/F))

J<N-1
bowa 2 [ HluPan) (= 5uAD)
J<N-1
+ Z (Pj+1 —ﬁj)/ijj+1€_(m“_"j)cjh/NfujdVgNh (= v, (fN2))
j<N-1
— Z / Wit — 1—6 (Mj+1— 77])0 /N)fu] N (:: V;\]Z(f./\/’g,)) (D23)
J<N-1
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The functions N; (1 < i < 3) are then estimated as in (C.24)—(C.23)—(C.21)) respectively, but not
all of them are error terms and one has to be careful to get a bound that vanishes with €. Let us
check that each of them indeed satisfies (D.14). For N, and the bound ||u;||e < ||g]|cceN
imply that it is of the form N‘levf{O} with v, given by:

C o . : CllqlAe
) = 5 3 Lo a2 — (0t D)ong — b+ 1)) < THIEE (.90
J<N-1
It follows that eI\ satisfies (D.14)), thus e~/2\; as well.
Consider now N;. From ((C.23)), we get:
0 ple2lonll 1
I/é\}: (f/\/z) < N Z I/ﬁ (ijj+1uj) + N Z =5 I/é\; (f]C;’hujD. (D.25)
J<N-1 j<N—1 Jj+1

Here we do not even need the I'-controllability with size N~/ of the first term established in
Proposition |C.2| Instead, recall that C¥" = B + D" (j < N — 1) with:

BI- _ L — aN ) DIn _ aNﬁj (gh)jd-i-l -0 N1 D
9(n) = 5N Z M0y (gn);j.e; ) = ——7— =0(N"). (D.26)

— 2N
£¢{j,5+1}

It is then enough, recalling that u; is given by (D.20), to notice that v’ (f\?) satisfies:

V.;V}L (fN2) < Vévh (f[Nﬂngo,l}])
ple2lgnllos 1

_|_
2N . . 6-]6-]+1

VY (f[|N—1X§f%O}| + YQD, (D.27)

where:

- p'Ti S
wa(i, ) = licj=———qi¢en(J — (i + 1)),

0j05+1
. 1 _ ]
wy(a,b) = 5 Lag(ig+1) Lo<i 000 den (G — (b+1))(07 gn)jar (D.28)
Yo=Y |uD¥| < Clpx,q. gn)e.
j<N—-1

Due to the fact that ¢ is non-zero only for e N different integers, w, and each w) have ||-||2, y-norm
bounded by Ce'/? for some C' = C(p<,q,gn) > 0 that does not depend on j < N — 1. It follows
from Corollary that e7'/2\; is controllable with size 1 and of large type, i.e. satisfies (D.14).

Consider finally N3, defined in (D.23). The bound (C.21)) shows that v} (fN3) is bounded by

a constant times the second term in (D.25)). It follows that e~'/2A5 also satisfies (D.14), which
concludes the proof. O
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E Sobolev spaces

Definition E.1. Let U C R? be a bounded open set with Lipschitz boundary. Forn € N andp > 1,
let WP(U) be the following space. If n =0, it is simply LP(U). If n > 1, W*P(U) is the set of
functions f € LP(U) such that, for any (ni,ns) € N? with ny + ny < n, there is f*"2 € LP(U)
satisfying:

Vue CEO), [ 1oy opte.y) dedy
:(—1)”1+"2/f”l’”Q(:v,y)u(x,y)dxdy. (E.1)
U

WnP(U) is a separable Banach space for the norm:

1/2
v eW U),  flwewy = X I ] (E.2)

(n1 ,ng)ENz
ni+n2<n

Moreover, the set C>®(U) of restrictions of elements of C*(R?) to U is dense in WP(U) for
| - [[wre@)- In the special case p =2, define H*(U) := W™P(U). This is a Hilbert space.

Along the text, we make use of the following Sobolev embedding results (see Theorem 4.12
in [I] and Theorem 1.4.4.1 in [31]).

Proposition E.2. Let U C R? be a bounded set with Lipschitz boundary. The following embeddings
hold.

e Let p>2 and n € N*, then W*»(U) C C"(U).
o Let p>2 and n € N*, then WP(U) C W54(U) for any £ <n —1 and any q > 1.

In our case, U = 1= <1 U >, where we recall that 0 = (=1,1)>, U=0\ D and > = {(z,y) €
A:x <y} =W\ {<}. We are interested in the subset 7/, defined in (2.39)), of the topological dual
T of T.

Definition E.3. If (X, | - ||x) is a Banach space, let X' be its topological dual, equipped with the
norm:

VL € X', Nx(L) = sup M (E.3)
pex\(o} [19llx

If 3= R, let ps(z,y) = [p(z,y) + ¢(y, )] /2 denote its symmetric part, and let T] C T be the
subset of elements 11 satisfying 11(¢) = [l(¢s) for any ¢ € T. Then:

VH E 7;/7 N’T(H) - sup |H(¢)| — Sllp |H(¢S)’
sem\(0} 1Pl semor 10slle2@)

$eT\{0} H¢\>HH2(
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where ¢ is the restriction of f to >. T is closed for the norm (E.4).
The weak* topology on T’ is the topology of simple convergence: a sequence (I1,,)) € (TN weak®
converges to Il € T if and only if:

veT., ImIL()=N() & YeeT. lmIL(¢.)=1(¢). (B5)

n—oo

The set T! is also closed for the weak® topology. We write (7;’, *) when explicitly referring to this
topology.

E.1 Compact sets

In this section, we give a sufficient condition for compactness in (7;/ , *) Recall that 7 = H?* ().
Banach-Alaoglu’s theorem characterises compactness in (7, *):

Proposition E.4 (Banach-Alaoglu). Let K C (T/,%) be such that supe N7 < oco. Then K is
relatively weak” compact.

The norm N7 is defined through a supremum, which is difficult to work with. Instead, we
formulate a sufficient condition for compactness which involves a sum. Such a characterisation is
known to hold when the underlying space is periodic, e.g. on the torus T?,, = [-2,2)% a linear
form = € (H?*(T?,,))" is bounded if and only if

I7llz—2 ==Y 1+ m]>)2|m(gm)]" < o0, (E.6)

meN?2

with |m|? = m? + m3 for m = (my,my) € N?, and where (¢,,)menz 18 an orthonormal basis of
L*(T?,,) made of real eigenvalues of the Laplacian: for (z,y) € T2, ,, writing N* := N\ {0}

1/2 if m; =0,
Ou(2.9) = G (D) ona(y). () = {27 2cos (5=)  imy=2m' —1eN, (£7)

2
2-1/2gin ("é”) if m; = 2m/ € N*,

The equivalence between and N7 in the periodic setting comes from the fact that a function
has the same regularity as its Fourier transform. In our case, however, this property does not hold
because of the boundaries in 4, and N7 is not equivalent to the norm || - ||1 —2.

We look for a sufficient condition for compactness that can nonetheless be stated in terms of
the norm || - ||7_o defined in (E.6). To do so, note first that, by (E.4), it is sufficient to work on
the triangle > = {(z,y) € ¥ : x < y}. The idea is then to extend elements IT € T/ to linear
forms acting on the larger space ]H[2(T2_2,2) of test functions, then check that the norms of II and
its extension are comparable. Define then:

1% (u) = H(u), u € H*(T?,,). (E.8)

Clearly, II*** is a linear form on H?*(T?,,), although it may not be bounded any more. The
sufficient condition for compactness can now be stated.
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Proposition E.5. Let A > 0, and let Ky := {Il € T" : |[II®|y_5 < A}. Then K4 is weak*
relatively compact in T .

Proof. The goal is to bound the original norm N7 by the norm || - ||r—2 from (E.6]), then use the
Banach-Alaoglu theorem (Proposition [E.4)) to conclude. In view of (E.4)), it is sufficient to work
with test functions defined on the triangle. Consider:

To ={¢p:0€T} (E.9)

We first explain how to embed 7 into ]HIQ(T%M) and bound the norm N7 by the strong dual norm
|+ ll-2(r2, ) (recall (E.3))). Since this norm is equivalent to the norm (k.6)), this will be enough
to conclude.

By Theorem 1.4.3.1 in [31], there is a continuous linear extension P from T to H?(R?), i.e.
there is C'(>>) > 0 such that:

Yu € 7;, Pu € HQ(R2), (Pu)|> =u, HPUHH2(R2) < C([>)HUHH2(|>). (ElO)

Let x € C*(R?) be equal to 1 on >, and be compactly supported in (—2,2)%. By Theorem 1.4.4.2
in [31], H"*(R?) is a Banach algebra as soon as n > 2. It follows that there is C'(y,>) > 0 such
that:

Vu € Tz, X Pullez @2y < C0>)|Ix|lm@e) | Pullm 2y = C(x, &) ||ullm2es)
< O(x, &) |IxPullmzrs), (E.11)

where the last inequality comes from the inclusion > C (—2,2)? and the fact that (xPu). = u.
The mapping x P is an embedding from 7. to 72 := HZ((—2,2)?), the closure of C*°, compactly
supported functions on (—2,2)? for the norm of H?((—2,2)?). An element u of 7' can be turned
into a periodic function in H*(T?,,) with the same norm, by setting u(- + (4a, 4b)) = u(-) for each
(a,b) € 72

Let us now compare the elements of 7, and their extensions to H?*(T?,,). Take II € 7/, and
extend it to a linear form II®* on H*(T?,,) (possibly unbounded) through (E.§). Then:

IT(u 1% (y Pu
N e s ML TP
u€Te\{0} HU||H2(>) u€Te\{0} ||UHH2(>)
Hext
<C(x,>) sup (o)l
veT 20\ {0} ||UHH2(R2)
Hext w .
cctee) s Ol o) g, (BA2)
wer? (12, )\ (o} | WllE2(r2,, ) |
The fact that || - [[g—2(rz, ) < ¢l - [[7,-2 for some ¢ > 0 concludes the proof. O

F Poisson equations

In this section, we give conditions for the existence and uniqueness of solutions of the various Pois-
son equations — among which the Euler-Lagrange equation (2.52) and the main equation (2.61)
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— encountered along the text. To do so, we prove that finding a kernel k that solves the (linear)
Euler-Lagrange equation or a solution g of the (non-linear) main equation is the same, and rewrite
all linear equations in a common framework.

Throughout Appendix [F| a function u € L?(lY) is identified with the kernel operator u¢(-) =
Ju(,y)p(y) dy for ¢ € L*((—1,1)). View also & as a multiplication operator: if ¢ € L*((—1,1)),
(ou)(z,y) = o(z)u(z,y), (uo)(z,y)=u(z,y)o(y),

)@ = [ ute ool dy (k1)
~11

For a symmetric function f € T, write d; for the operator:

5f($) = (82 - 81)f<l',$+> = an(x7x+) - an(mvx*)
= (0 — ) f(zs,2), xE(—11). (F.2)

F.1 Euler-Lagrange equation

The next proposition is classical, and proves Proposition [2.2]

Proposition F.1. Let II € T] be associated with a kernel k via I1 = %1</€, ->, and write Cy, == g+ k.
Write for short T.(k) for Zo(11), and idem for Jn(k). Assume Zo(k) < oo. There is then a
generalised bias h € (), with h a symmetric function admitting a weak derivative that satisfies:

/(_1 : 7(2)(01h(z, ), CkOih(z, ")) dz < oo, (F.3)

such that Too(k) = Jn(k). Moreover, k and h are related through the following Euler-Lagrange
equation: for any test function ¢ € H' (D) with ¢jon = 0,

%/V(k: — ko) - Vo — 7(2)(01h(z,"), CkO1¢(z,-)) dz = 0. (F.4)
7 (-11)

This is a weak formulation of:

(

Ak(z,y) — [6(2)0(x) + 5(y)0n(y)] k(z,y)
_ 0, (5(x)01h(x, 2)) k(z,y) + k(x, 2)0, (Dh(z, y)zf(y))] dz

(—1,1)
= 0, (5 (x)a(y) Oh(x,y)) + 0y (0(2)a(y) Dh(z,y)) for (x,y) € W,
hjog = kjgo = 0,

o(x)*(0g — O1)h(zy,x) — (0g — k(x4 x) = (§)* forz € (—1,1).

(F.5)

\

Proof. The existence (and uniqueness) of the generalised bias h such that Jj,(k) = Z (k) is classical
and follows from arguments similar to those of Section see Lemma 5.3 in Chapter 10 of [35].
Let us show that k satisfies the Euler-Lagrange equation with bias h. Since h is such that J, (k) =
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infj o) J7(k), one has e (Jhae — Jn) < 0 for any ¢ € H' () with ¢jpn = 0 and small enough
e > 0. Thus:

1 1 —/\2

- | VE-Vo+ - (7)) p(x,x) dx

8 Jm 4 )

1 g 0 J—
- /(_171) U(Z)<(91h<z, ), (6 + k)(010(z, ))> dz = 0. (F.6)

Applying this equation in the h = 0 case corresponding to the steady-state kernel ko (or just
recalling the expression ({2.11))), one gets:

1 1
| V-V = —= )2 dx. F.7
3 /Z 0 Vo 1 /(1,1)(9 ) ¢(z, r)dx (F.7)

This yields (F.5)). Equation (2.52)) follows by careful integration by parts. For instance, the term
7(y)on(y)k(x,y) comes from the contribution of k in the integral involving C = 7 + k:

/(_1 . () h(z,x)(kdd)(z,x) drdz = / 7(2)01h(z, )8 (k) (2, x) dx dz

(_171)2

— [ o@|hle-z) = Oih(ae,0)] (ko) o, ) do
(-1.1)

_ /(1 0 (5(2)0uh(z, 7)) (ko) (2, 7) dx d=. (F.8)

Note that k¢(z,x) is simply f(f1 D k(y,x)o(y, x) dy as k is symmetric, thus:

/(_1’1) a(z) [alh(lt_, x) — Oth(xy, x)} (ko) (z,x) dx

B /(1 12 Kz, y)o(z,y)ay) [31’1(?;—, y) — Oh(yy,y) | dz dy. (F.9)

Using the symmetry of h and the fact that O1h(z_,z) = O01h(z,z4) (it is the same point in the
same triangle), the bracket involving d1h is —j as claimed:

O1h(z_,x) — O1h(zy,x) = (0y — O1)h(x 4, x) = —dp(2), x € (—1,1). (F.10)

[

F.2 Equivalence of the Euler-Lagrange equation and the main equation

Proposition F.2. Let h € S(00), where this set is defined in (2.45)). Recall that O := (—1,1)?,
A=0\D and > ={(z,y) ed:z <y}, <=0\ D.

o Letk € C3(>)NC3(Q) be symmelric and suppose k solves the Euler-Lagrange equation (F.5)).
Assume that k satisfies:
o N (2)k(z,y)?c  (y) de dy < 1. (F.11)
7
Then the correlation operator Cy, = & + k is invertible in L*(J). Define g € L*(D) through
Cv =0+k=("1—g)"'. Then g € C3(>) N C3*(Q) is symmetric and solves the main
equation (2.61)).
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e Conversely, let g € C3(5>) N C3(Q) be symmetric and solve the main equation (2.61)), and
assume:

/6(x)g(:v,y)26(y) dx dy < 1. (F.12)

Then ¢~ — g is invertible, and k € C3(>) N C3(<) defined through ¢ +k = (67 — g)~' is
symmetric and solves the Euler-Lagrange equation ([F.5]).

Remark F.3. Conditions (F.11)-(F.12)) hold if o' < e,h € S(e) for small enough «. |

Proof. We only show that & € C3(>) N C?(<) symmetric solving the Euler-Lagrange equation
implies that g solves the main equation, is symmetric and is in C3(>)NC®(<), the other implication
being similar.
By assumption (F.11)), g admits a series expansion:
g=—-a"(1+o ke V)5V 4 5!
_ _671/2 o Z(_l)n(5_71/2k5_—1/2)0n o 5_71/2

n>1

= 5 to Z(k oG 1), (F.13)

n>1

where o denotes composition and on n-times composition, n > 1. In particular, g is symmetric,
satisfies (F.12)), and it inherits the regularity of k: g € C*(>) N C?*(<Q). Moreover, (F.13) already

shows that gon = 0 if kjpg = 0.

To check the Neumann condition on the diagonal and the fact that g satisfies the main equa-
tion (2.61), let us write derivatives of k in terms of g. We henceforth drop the symbol o. Using
the inverse operator C; ' = (67! — g), it holds that:

(G+k)(o'—g)=id = ko '=Cg = k=Cygo. (F.14)

In the same way k = ggCy. Differentiating k& with respect to the second variable (or alternatively
integrating against the derivative ¢’ of a test function ¢ on (—1, 1) and integrating by parts) yields:

82/€ = (%(C’kg&) = C,ﬁg(g5) (F15)

Note that since k is symmetric, Ohk(z,y) = O1k(y, x) for (z,y) € [ means that 0,k is the operator
adjoint to Ook in L2((—1,1)), thus one has also:

In particular, this gives the Neumann condition for g on the diagonal:
(01 — D)k(wy, w) = 0(2)*(01 — Do)g(wy, @), weE(=1,1). (F.17)

Let us now prove that g satisfies the main equation (2.61). Recall the convention: if ¢ : 1 — R
and ¢ : (—1,1) = R, then ¢q is the function (x,y) — &(z,v)q(y), while (¢¢)(x,y) := q(z)p(y).
The Euler-Lagrange equation (F.5)) then reads:

Ak = |0y (601h)Ci + Chda (0515) | = [0k + ko] = 0, (F.18)
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where the above is an equality between functions on 4. In , the right-hand side in has
been included in the term in the bracket by using the operator Cy, = & + k. The partial derivatives
Dok, Ok were obtained in (F.15)-(F.16). As k is not C? across the diagonal, taking the second
derivative is more subtle, and we do so against a test function ¢ € C'°°(0J) vanishing on 0CJ:

—OhkOyp = O3kp + Opp = —Cy D2(g0) 02 = Ci03(g7) + Cr5040.

Above, recall that, for a symmetric function ¢ : 4 — R, 4, is the function operator:

Op(x) = (O = D)y (x, 24) = (91 — Oa)ip(x 4, )

= (911/)($+7$) - aﬂﬁ(ﬂc—,l‘) = 321?(%@) - 82¢(x7x—)7 x € <_17 1)'

Since 0y, = %4, we get:
D5k = Cy03(g5) + kad,.

By symmetry, one has also
81k;:81(ag) Cr = 8%1{;:8%(09) Ck+595'/{7.
Thus:

Ak = (6979 + 25" 019 + 7" g)Cx + Cr(059 G + 20295 + g&") + 0,5k + k&d,.

(F.19)

(F.20)

(F.21)

(F.22)

(F.23)

Compose (F.18) by C, ' on each side. Using C;;! = 67! — g, this yields for Ak, still as an identity

between functions on [

CylAKCT =67197(6 g) — g0i(og) + 05(g5)a " — D3(g5)g
+ C; N (6,0k + kad,)Cy

From kC\ ! — ¢ and the following identities obtained by integration by parts
—90}(0g) = D290 19 + 950, + D2g3'g,

we obtain:

/ =1/

o’ o 15 o
Ck_lAka_l:A9+2g(91g+2829g+28295819+955g+5599+9;+ =9

+ 0og8'g + g5’ 019 + 0,09 + g6,0 — 290,5°g.

We next show that:

Ot [au(e0n) i+ Cuou(0oh0)] €t = A+ Zoyh+ ;0%

+ 029001 h + 02ha01g + gady, + 6nag.

This follows by noticing that

Ck_l 81(5'81]1) =g ! (5'/81h+5'afh) — gal (5'8111)

/

= —01h + 02h + 0,950, h + g by,

Q QI

ST
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where in the last step, we used an integration by parts as in (F.25)). Part of the boundary terms
cancels thanks to the final identity:

Cil[a6nk + kadn ) Cl = (67" — g) a6, + (67" —g) —2(67" — g)adra (67" — g)
= 20y, — go 6, — 60ng — 2(1 — g&)6,(1 — 5g) = goé), + GOng — 295°619. (F.29)
Plugging the relations (F.26]), (F.27)), (F.29) in the Euler-Lagrange equation (F.18]), we get:

/ /

o o
0= A(g — h) + g 81<2g — h) + 82(29 — h) g + 82(9 — h)&ﬁlg + 829581(9 — h)
= =/
+ 29620149 + 9o (U—z + 20, — 25h) +0 <0—2 +29, — 2(5h> g+ 0295'g + 93’01 g. (F.30)
g g

In addition, the boundary conditions of (F.5) imply that 6, = —
Finally, an integration by parts gives:

25 (recall 6" = —2(p)?).
Ohga'g = —ga"g — ga'dg. (F.31)
The second line in (F.30)) thus vanishes, and the first line is precisely the main equation (2.61). O

In the next sections, we focus on establishing existence, uniqueness and regularity for solutions
of the Euler-Lagrange equation (F.5). In view of Proposition this will prove Proposition [2.5]

F.3 Existence and uniqueness

We now focus on solving the Euler-Lagrange equation and the Poisson equation (5.7). To
do so, we rewrite them in a common framework. Both equations are formulated as equations on
1 involving symmetric functions. To solve them, it is therefore enough to look at the equation in
a single triangle, say >. To do so, let us introduce some notations.

Recall that the function M acts on ¢, € L*(J) according to:

1
M. 0)(w9) = [ o 2))ol )z, () €8, (¥.32)
Define by extension M on the triangle as follows: if (¢,) € L?(1>)2,

o(z,y) ifz <y,

Oy, x) ifx>y. (F.33)

M(¢7¢) = M(¢S7¢S)7 ¢9($’y) = {

For ¢ € L*(>>) and ¢ : (—1,1) — R, we often write:

(af)(x,y) = q@) f(z,y), (fo)(x,y):=flz,y)q(y), (z,y) €>. (F.34)

Given symmetric ¢,¢,& : I — R and d : (—1,1) — R, we say that f : 7 — R solves the Poisson
problem (P) = (Pyy.¢a4) if f is symmetric, and f. is a classical solution of (P, ), where:

Af(x,y) + [d(x) + dy)lf (z,y) = M(f,) for (z,y) € >,
(Pl>) . _M<€7f) _M(81f7 aﬂﬂ) —M(aﬂﬂ,alf) = ¢($,y) (F35)
O/ =0 on D,

f=0 on (0>)\D.

where 0, stands for the normal derivative on the diagonal.
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Remark F.4. (i) If v =h € S(c0) (recall (2.44)), d =0, £ =0 and ¢ € T N C*(>) has norm
2, then (P) corresponds to the Poisson problem encountered in the proof of large deviations,

in (5.7).
(i) Let h € S(o0), ¥ =0, d = 56;, with 6, given in (F.20). Take & as follows:
{(z,y) = 01(601h) (z,y) = 0,(5(x)01h(z,y)), (x,y) € J. (F.36)
Define then ¢(x,y) for (xz,y) € D as:

(b(l’, y) = _al (5']1) (.I, y) - 82<h5',) (l’, y) + M(k‘o + 5']15', £)<I, y)
+ M(ko + oha,§&)(x,y) — [ko(x, y) + (cha)(z, y)} [5(3:)5h(x) + 5(y)5h(y)]. (F.37)

Then (P) is the Euler-Lagrange equation (E.5)) written with unknown f = k—ky—aoha. Note
that f is chosen so that the boundary conditions in imply the Neumann condition
O [ =0.

|

In the remainder of the section, we study existence, uniqueness and regularity of solutions of

(P). For x € {>, <}, we write <-, > for the usual scalar product on LL?(%), and simply <-, > for
the scalar product on L2(0J) = L?(I7). The norm on L?(lY) is denoted by || - ||o. Let also tr denote
the trace operator on the boundary of . When interested only in a portion I' of the boundary,
we may write trr.
We will use the fact that the Laplacian with 0 Dirichlet boundary condition on (9>) \ D and 0
Neumann boundary condition on the diagonal D has a gap a > 7%2/4 > 0, see e.g. Equation 5 in
Section 3.3. of [39]. This means that, for any symmetric f € T satisfying the boundary conditions
of (P.), one has:

Ifiell < HIVAsIE = IIfI5 < a IV (F.38)

We first obtain existence and uniqueness of solutions of (P) in the set 7(py C T = H?*(J) of
functions satisfying the boundary conditions of (P) by a fixed point argument. The set 7(p) and
its counterpart 7(p, ) for functions on > are defined as follows:

Tipy =H@) N {f : trp(dy. f) = 0,tran(f) = 0},
Ty = H2(>) N {f :tr(f) =0 0n O(>) \ D, trp(D,, f) = 0} = {fio : f € T(py}. (F.39)

Proposition F.5 (Solving (P)). Let ¢,& € L*(0), v € T be symmelric functions. Let also
d: (—1,1) — oo be bounded. For f € T(py, define Sf as the symmetric function such that, for
(z,y) € >,

Sfz,y) = (=Ax)™" | —o+df + fd— M(f,&) = M(E, f)
— M(O1f,01¢) — M(O1, 01 f) | (z, ). (F.40)

Above, AZ' is the inverse of the Laplacian on 1> with 0 Dirichlet condition on (0>) \ D, and 0
Neumann conditions on the diagonal D.
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Then Sf € Tipy. Moreover, if d =0, £ =0 and [|[Vy|ls < 1, ||¢]l2 < 2, then S has a unique fized
point fgp € Tipy with || foullm@ < C and || foullee < C', for constants C,C" > 0 independent of

¢, 1.
If instead b = 0, there is a fived point foge € Tip) provided |||z, ||d||o are small enough, with

[faoellz @ < 0(lldllo, IEll2; 91l2) and & vanishes when ([|d]|so, [I€]l2; |¢1l2) vanishes.

Proof. We prove that S is a contraction on 7(p) for the norm ||V - ||;. Let us start by showing
that S is well defined. The inverse operator AZ! exists by Lemma 4.4.3.1 in [3I] and, by Theorem
4.4.3.7 in [31], maps L*(t>) onto T(p.). It follows that S(T(p)) C T(p).

We now prove that S is a contraction. For f € T(py, one has:

IVSFI5 = ((VSF)ss (VSf)ie) . + ((VSf)ia, (VSF)a)
= —((S)iss (AS )y, = ((Shias (ASf)ia), = —(SF, ASS). (F.41)

The integration by parts is legitimate by Theorem 1.5.3.1 in [31]. Let us compute the right-hand
side. One has, using ¢ < 1/4:

e eld MA@ = [ 1)

= 411 ( /(1,1) fe.2) dz) " < /(1,1> V() dz) 1/2’ (F.42)

and the same holds for M (0, f, 01¢) As a result, by Cauchy-Schwarz inequality and using ||0; f||2 =
271/2||V f||5 as implied by the symmetry of f:

(54, M(5.€)| < IS0 elele

1
(S5, M@11,00))| < SISFIRIV 1T (F.43)
Recalling the expression of Sf from (F.40)), (F.41)) is therefore bounded as follows:
fll21l€ V2l VY
15113 < 151l (91 + 2ol 7o + 21y VTRV = gy

Since f,Sf € T(py, the Poincaré inequality can be applied and yields:

IVS£ll2 < a2 (llolz + 2072l dlc|V £ 2

—1/2)1v7 \V/ \V
L@ | 4f||2||€\|z+|! fllzgl wHQ).

By similar computations, if fi, fo € 7T(py, one obtains:

—1/2
o Plels  IVYls
4 8

(F.45)

IV(Sfi = Sha)lle < a2(207 2] dl| + NV = Rl (F46)

In particular, S is a contraction as soon as:

—1/2
a1/ <2a*1/2HdHoo + 2 4“5”2 + ||v;p||2> <1 (F.47)
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Recall that o > 72/4. Ifd = 0, £ = 0, ||Ve]s < 1 and ||¢]|s < 2 (which includes case (i) of
Remark [F.4)), then:

4
IVS(h — )l < 3=V (= )l IVSFl < IV flh+

—. F.48
: (F.13
There is thus a unique fixed point fs, € 7T(p), and since [|¢|s < 2, it belongs to the ball
B(0,¢) = {u € H'(Y) : tr(u) = 0on 90, ||Vullzs < ¢} with ¢ = 8/(2r — 1) < 2. Poincaré
inequality (F.38) vields || fyullm@ < (4 + 16/7%)Y? < 2, and Theorem 4.3.1.4 in [31] yields

| fo,6lm2@) < C for some universal C' > 0. The Sobolev embedding H?*(I2) € C°(>) N C%(<) then
implies || fsulleo < C” for a universal C’ > 0 as claimed.

Consider now the case ¢ = 0 which includes item (ii) of Remark Then:

4
VS~ £l < 5 (2Nl + EEY 1V (A~ £l
4 2
11l < 5 (2Nl + 152wy + 21202 (F.49)

If ||d|| o, |I€]|]2 are small enough, S is a contraction and the norm of its fixed point vanishes when
|d||o, [|€]]2 and ||@||2 vanish. This concludes the proof. O

F.4 Regularity estimates

In Proposition [F.5] the solution of (P) has been shown to be in H?*(J). In this section, we use
results of [31]] to argue that the solution of (P) is more regular if the data ¢, are regular. This
concludes the proof of Proposition The study of regularity is made very complicated by the
presence of corners.

Proposition F.6 (Theorem 5.1.3.1. in [31]). Let b € N, p > 2 and let ¢ € W*P(1>). Let Sy, S, Ss
denote the corners of > numbered in a counter-clockwise fashion, with Sy the upper left corner.
Consider on > the equation Af = (, with the boundary conditions of (P.). If b = 0, then
feW2P(>). If b< 3, f € Wt2P(1>) provided ¢ vanishes at the corners, i.e. provided:

vj € {1,2,3}, ¢(S;) =0. (F.50)

Remark F.7. Though the statement of Proposition makes no mention of them, we recall
notations from [31] so that the reader may check that Theorem 5.1.3.1 applies to our case.

Label by j € {1,...,3} the line segments composing 0> in a counter clockwise fashion, with the
convention that j = 1 for the y = —1 segment. S; is then the point joining segments j,j + 1 in
O>. Let w; be the counter-clockwise measure of the inwards angle at S;:

o {w/z ifj=1,

/4 ifj€{2,3}. (51)

Let vj = p; denote the unit outwards normal and 7; be the (counter clockwise) unit tangent vector
on the line segment j. Define also ®; = w/2 if j € {1,2}, ®; =0 if j = 3 and P341 := $1. Finally,
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form € Z and each j, define:

2m if 7 =1,
=49 2+4m if 7 =2, (F.52)
—2+4m if 7 =3.

. (I)j — CI)j_H +mm
= o,

Ajm

In our context, Proposition translates to the following result.

Proposition F.8 (Regularity of solutions of (P.)). Let ¢,,d, & be such that the solution f given
by Proposition erists.

(i) Assumed =0, =0, let p € C*(>)NC?*(Q) be symmetric and let ) € S(00), corresponding
to item (i) of Remark . If o0 = 0, then f € WHP(LA) for any p > 2.

(11) Recall the definition (2.44) of S(g) for e > 0. Take v = 0, and d, ¢,& defined in terms
of h € 8(¢) as in item (i) of Remark[F.J. Then f € W*?(2) for any p > 2, and k =
f+ko+aha € kg + S(e') for some e > 0 depending only on p+ and ¢.

Proof. Since f is symmetric, we work only on >>. Let us first assume f has the alleged regularity
and treat all claims of item 2 that do not have to do with the regularity of f.
Define:

I = kollen = max { 6 = Folloe, 191 (k — koIl } (F.53)

Notice first that k — kg = f + cho with h € S(¢) implies that k — kg € WAP(I0) for all p > 2, thus
k also as kg is regular.

Let us now prove that ||k — ko||c: vanishes when d, ¢,& vanish. By Sobolev embedding (see
Proposition , it is enough to prove the same for ||k — ko||w2r@). Since k — kg = f + cha, it is
enough to bound || f||w2r@). Theorem 4.3.2.4 in [31] implies that, for a universal constant C' > 0:

1 llwzs < € (1A s + [ fllvs ). (F.54)
Recalling the expression (F.40) of the mapping S, it holds that:

1A lwor@y < (19l + 2lldlloslLFlp + €llo) 1f 1920 @)
< C'(lIlly + 2lldll ool fllp + 1Elloo) I1f 12 ), (F.55)

where the second inequality is again a Sobolev embedding. The fact that || f||m2@) vanishes with
d, ¢, & now follows from Proposition

We now prove that k — kg satisfies the boundary conditions of elements of S(o0). Since f, ko, h
vanish on 0UJ, so does k. Moreover, O.h = 0 at the extremities S5, S5 of the diagonal D and
O-f = 0 on D means Ox(k — ko)(S2) = 0 = 0x(k — ko)(S3). We have thus shown that if f has
the alleged regularity, then k — ky € S(&') for some ¢’ > 0 depending on d, ¢,&, i.e. on pi,e

recalling (F.37)—(F.36) and h € S(e).

Let us now prove the regularity of f. By definition, Af = ASf, with S defined in (F.40). Let
p > 2. The idea is classical: if f € W**™P(I2), n € N, we want to prove that ASf € Witmr(I),
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from which f € W3+™P(11) by Propositionprovided AS f satisfies suitable boundary conditions.
To implement this recursion scheme, we first prove that ASf € LP(1). By assumption on ¢, in
case of item (i) (using the Sobolev embedding C?(5>) C W*(>) for any s > 2), and from (F.36)-
for item (ii), we see that it is the regularity of f only that limits the regularity of ASf.
The fact that ASf € LP(J) then follows from the Sobolev embedding H'(J) C L*(1J), valid for
any s > 2, see Proposition It follows that f € W2P(I2) by Proposition

To obtain further regularity on f, let us check that ASf is in W°~1P(I2) whenever f € Wb (1)
for b € N*, and also that ASf satisfies the condition (F.50) in Proposition
The regularity of ASf boils down to proving that W(u, v), defined in (F.32)), is in W*?(>>) (b € N*)
whenever u,v € WP(1>). This is the claim of the following lemma.

Lemma F.9. Let p > 2 and 1 < b < 4. Let u,v € WPP(>), and recall from (F.32) the definition
of M. Then M(u,v) € WoP(1>).

Lemma is easily proven by approximating u,v in W®P(>) by sequences in C*°(>), and
integrating by parts.

It remains to prove that ASf satisfies the condition of Proposition [F.€] i.e. that ASf(S;) =0
for j € {1,2,3}. By assumption in the case of item (i), and from the expression and
the definition of S(e) for item (ii), we know that ¢jpn = 0. The fact that fon = 0 gives
M(f.€)(S;) = 0= M(E, f)(S;) for each j. Integrating by parts and since ¢» € S(c0), one has
also M(O1f,01)(S;) = 0= M(01¢, 01 f)(S;). It follows that ASf(S;) =0 for j € {1,2,3}, thus
f € W4P(I1). Since p > 2 was arbitrary, this concludes the proof. ]

F.5 Bounds on the solution and definition of ¢p

Let h € S(oo) and let g, = 5~ — (5 + k;,) ™! be the solution of the main equation obtained
from the solution kj, of the Euler-Lagrange equation (F.5)). In this section, we define the e arising
in Theorems and show that the C' norm of g, — go can be controlled by [|h|c: and p’
as claimed in Theorem Writing Cy, = 6 + ko = (67" — go) ™', notice first that, as soon as
|kn — kol|2 is sufficiently small:

gh—90=Cpl = (G +kn) " =Cpt — (Ciy + (ki — ko)) ™"
= C Y (=)™ ((kn — ko) C )" (F.56)

n>1

For kj, — ko € S(¢’) for some suitably small ¢’ > 0, one can take derivatives inside the sum, which
directly yields:

lgn — gollcr < 8(p, |k — kollen), lim &(z,y) = 0. (F.57)
(z,y)—0

Since f = ky — ko — dha is the solution of (P), ||k, — kl/c1 in turn only depends on p, ||hl|c1,
thus ||gn — gol|/cr only depends on g/, ||h||c1, and vanishes when they both vanish as claimed in

Theorem
We now define ep.

Definition F.10 (Definition of e5). Let h € S(c0). Let p_ € (0,1), and choose ep = ep(p-) >0

and py € [p—, 1) such that, if p := 252~ < ep and h € S(ep), then:
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e The contraction S has a fixed point f.

e g, is a negative kernel (as defined in (A.2)).

e To ensure good concentration properties in Section[3, ||gn—hl|c1]lgnllcr < (21°Crs)™, 0'llgn—
hller < (2'°Crs)™! and pep < (21°Crs)™', where Crs is the log-Sobolev constant appearing
in Lemma |5.4].
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