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Convergence rate for the incompressible limit of nonlinear diffusion-advection equations

Introduction

We consider the following nonlinear drift-diffusion equation

∂n ∂t -∇ • (n∇p + n∇V ) = ng, (1) 
posed on (0, T ) × R d , d ≥ 2, where n describes a population density and p = p(n) is the density dependent pressure. The reaction term on the right-hand side represents the population growth rate, g = g(t, x), while V = V (t, x) is a chemical concentration. The pressure is assumed to be a known increasing function of the density. We consider the following two representative examples:

p γ = P γ (n) := γ γ -1 n γ-1 , γ > 1, (2) 
and

p = P (n) := n 1 -n , > 0. (3) 
We are concerned with calculating the rate at which solutions to Eq. ( 1) converge to the socalled incompressible (or stiff pressure) limit, as described below. More precisely we prove the following results.

Theorem 1.1 (Convergence rate in Ḣ-1 ). Assume (A-L 1 data), (A-drift), and (A-reaction) (for d = 2) and (A-reaction') or (A-reaction") (for d ≥ 3). For d = 2 assume additionally (A-2D). Then, for all T > 0, there exists a unique function n ∞ ∈ C([0, T ); L 1 (R d )) such that the sequence n γ (resp. n ) converges, as γ → ∞ (resp. → 0) to n ∞ strongly in L ∞ (0, T ; Ḣ-1 (R d )) with the following rate

sup t∈[0,T ] n γ (t) -n ∞ (t) Ḣ-1 (R d ) ≤ C(T ) γ 1/2 + n 0 γ -n 0 ∞ Ḣ-1 (R d ) .
Theorem 1.2 (Convergence rate in L 4/3 ). Under the assumptions of Theorem 1.1, and additionally (A-BV data), (A-BV drift) and g ∈ BV ((0, T ) × R d ), we also have n ∞ ∈ BV ((0, T ) × R d ) and

sup t∈[0,T ] n γ (t) -n ∞ (t) L 4/3 (R d ) ≤ C(T ) γ 1/4 + n 0 γ -n 0 ∞ 1/2 Ḣ-1 (R d ) . (4) 
Theorem 1.3. Under the assumptions of Theorem 1.1, there exists a function p ∞ ∈ L ∞ ((0, T )× R d ) such that, after extracting a subsequence, the sequence p γ converges to p ∞ weakly * in L ∞ ((0, T ) × R d ) and the following relation holds

p ∞ (1 -n ∞ ) = 0, (5) 
almost everywhere in (0, T ) × R d .

The above graph relation between the limit pressure and density is well-known in the literature. In particular, when considering tumor growth models it implies that saturation holds in the region where there is a positive pressure, which is usually referred to as the region occupied by the tumor. Here we provide a new proof that does not require strong convergence of the density nor the pressure.

In fact, the limit n ∞ satisfies (together with a limit pressure, p ∞ ) a free boundary type problem, discussed shortly below, and the question of passing to this limiting problem has been vastly addressed in literature. Our contribution is to provide a new proof together with a convergence rate.

Motivation and previous works. Models like Eq. ( 1) are well-known and commonly employed in a variety of applications, for instance in bio-mathematical modelling of living tissue. In the case V = 0, g = 0, it is well-known that if the pressure satisfies the power law (2), then Eq. ( 1) is actually the porous medium equation

∂n γ ∂t -∆n γ γ = 0, (6) 
whose well-understood properties (e.g. regularising effects) facilitate the analysis notably. The other choice of the pressure, given by Eq. ( 3), is well-known in kinetic theory of dense gases where the short-distance interactions between particles are strongly repulsive. In this spirit it has been used in models describing collective motion or congested traffic flow, see [START_REF] Berthelin | A traffic-flow model with constraints for the modelling of traffic jams[END_REF][START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF][START_REF] Degond | Self-organized hydrodynamics with congestion and path formation in crowds[END_REF][START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Perrin | Free/congested two-phase model from weak solutions to multidimensional compressible navier-stokes equations[END_REF]. Despite having a singularity when the population density reaches its maximum value (here standardised to 1), this choice of pressure gives rise to a tissue growth model with similar properties -indeed, the crucial a-priori estimates are the same and the limiting free boundary type problem is almost identical. A difference is that the singularity in the pressure prevents the cell densities to ever rise above the maximum value 1. Taking advantage of these similarities, we shall henceforth index the solution of Eq. ( 1) by γ, n = n γ , and consider the singular limit γ → ∞. Each of the assumptions and properties we discuss below has its natural -analogue by putting = 1/γ.

Let us recall that the study of the incompressible limit has a long history and it has been investigated for many different models related to Eq. ( 1). The first result on the limit γ → ∞ has been obtained for the classical porous medium equation [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]. The most interesting difference from the case with a non-trivial reaction term is that the free boundary problem arising in the limit turns out to be stationary. In fact, as proven in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] the limit density, n ∞ , is independent of time. This result can be intuitively explained by noticing that the degenerate diffusivity of Eq. ( 1), namely γn γ-1 converges to 0 if n < 1, while it tends to infinity in the regions where n > 1. Therefore, while there is no motion in the regions where the density is below 1, where the solution lies above this level it tends to collapse instantaneously, cf. [START_REF] Gil | Boundary layer formation in the transition from the porous media equation to a Hele-Shaw flow[END_REF]. In the absence of reaction terms and, hence, of any evolution process in the Hele-Shaw problem, the limit pressure turns out to be constantly equal to zero, p ∞ ≡ 0.

Introducing non-trivial Dirichlet boundary conditions changes drastically the behaviour of the limit free boundary problem. In fact, the limit pressure no longer vanishes and this triggers the evolution of the interface in accordance with Darcy's law (which states that the velocity of the free boundary is proportional to the pressure gradient). This problem was addressed in [START_REF] Gil | Convergence of the porous media equation to hele-shaw[END_REF], where the authors study the incompressible limit of the porous medium equation defined in [0, ∞) × Ω, where Ω is a compact subset of R d , and the pressure satisfies p(t, x) = f (t, x) on ∂Ω, for some f (t, x) ≥ 0. In the absence of Dirichlet boundary data, i.e. f ≡ 0, and for Ω large enough, the problem is actually the same as in [START_REF] Caffarelli | Asymptotic behavior of solutions of u t = ∆u m as m → ∞[END_REF] and it still holds that n ∞ = n ∞ (x) as well as p ∞ ≡ 0. On the other hand, if one imposes the pressure to be strictly positive somewhere on ∂Ω, i.e. f ≡ 0, then the pressure gradient no longer vanishes and the dynamics of the limit problem is governed by Darcy's law.

The same non-stationary effect, although due to different dynamics, is produced by a nontrivial reaction process. The incompressible limit for Eq. (1) without convective effects, i.e. V = 0, and with a pressure-dependent growth rate g = G(p), was first addressed in the seminal paper [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] by Perthame, Quirós and Vázquez. They prove that it is possible to extract subsequences of n γ and p γ which converge in the L 1 -norm to functions

n ∞ ∈ C([0, T ]; L 1 (R d )) ∩ BV ((0, T ) × R d ), p ∞ ∈ L 2 (0, T ; H 1 (R d )) ∩ BV ((0, T ) × R d ),
satisfying the following equation in the sense of distributions on (0,

T ) × R d ∂n ∞ ∂t -∆p ∞ = n ∞ G(p ∞ ),
and the following relations

(1 -n ∞ )p ∞ = 0,
almost everywhere, as well as

p ∞ (∆p ∞ + G(p ∞ )) = 0, (7) 
in the sense of distributions. The last equality is usually referred to as the complementarity relation and represents the link between the limit equation and the free boundary problem. In fact, denoting by Ω(t) := {x ∈ R d | p ∞ (x, t) > 0} the region occupied by the tumor, from Eq. ( 7) one can see that the pressure satisfies an elliptic equation in the evolving domain Ω(t) with homogeneous Dirichlet boundary conditions. The free boundary ∂Ω(t) is moving under Darcy's law, which finally allows to obtain the fully geometrical representation of the limit problem. A derivation of the velocity law can be found in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] for initial data given by characteristic functions of bounded sets, although the proof relies on formal arguments. A weak (distributional) and a measure-theoretic interpretation of the free boundary condition have been recovered in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF], while in [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] the same result is achieved through the viscosity solutions approach. An analogous result regarding the limit γ → ∞ has been shown in [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF] for the pressure law given by Eq. ( 3). The authors obtain virtually the same limiting problem, the only difference being that the complementarity relation [START_REF] Cinti | Interpolation inequalities in pattern formation[END_REF] becomes

p 2 ∞ (∆p ∞ + G(p ∞ )) = 0, see [19, Theorem 2.1].
Let us point out that due to uniform estimates in L ∞ the convergence of the sequence of densities is also true in any L p -space, p < ∞.

The Hele-Shaw limit for the porous medium equation including convective effects, cf. Eq. ( 1) with V ≡ 0, and possibly reaction terms, has attracted a lot of interest as well. Similarly as for the driftless case, when passing to the limit γ → ∞, the model converges to a free boundary problem where, however, the interface dynamics is no longer driven only by Darcy's law, but also by the external drift, i.e. the normal velocity is given by -(∇p ∞ + ∇V ) • ν, where ν is the outward normal direction. The asymptotics as γ → ∞ has been addressed both for local and non-local drift, in the absence of reactions, see for instance [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF], where the authors adopt techniques relying on the gradient flow structure of the equation. In [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF], Kim, Požàr and Woodhouse include also a linear reaction term into the equation and are able to prove the convergence to the incompressible limit using viscosity solutions. Recently, in [START_REF] David | On the incompressible limit for a tumour growth model incorporating convective effects[END_REF] the authors show that the complementarity condition including a drift, i.e.

p ∞ (∆p ∞ + ∆V + G(p ∞ )) = 0,
holds in the sense of distributions.

In recent years, many other variations of the model at hand have been proposed together with the analysis of their incompressible limit. We refer the reader to [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF] for a model including the effects of nutrients, [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF] for the generalization of the driftless model with a non-monotone proliferation term, and [START_REF] Tang | Composite waves for a cell population system modeling tumor growth and invasion[END_REF] for the model including active motion. In order to account for visco-elastic effects, several models propose to use Brinkman's law instead of Darcy's law [START_REF] Perthame | Incompressible limit of a mechanical model of tumour growth with viscosity[END_REF]. Moreover, cross-reaction-diffusion model using Darcy's law, Brinkman's law or singular pressure law have attracted a lot of attention as they raise challenging questions both on the existence of solutions and their incompressible limit, see [START_REF] Bubba | Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues[END_REF][START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF][START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF][START_REF] Dębiec | Incompressible limit for a two-species tumour model with coupling through Brinkman's law in one dimension[END_REF][START_REF] Gwiazda | A two-species hyperbolic-parabolic model of tissue growth[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF].

Our aim is to compute the rate of convergence of the solutions of Eq. ( 1) as → 0 or γ → ∞ in Eq. ( 3) or Eq. ( 2) respectively. To the best of our knowledge the only result in this direction is given by Alexander, Kim and Yao in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF] for the porous medium equation including a spacedependent drift. Passing to the incompressible limit, the authors are able to build a link between the Hele-Shaw model and the following congested crowd motion model

∂ t n + ∇ • (n∇V ) = 0, if n < 1,
with the constraint n ≤ 1. To prove the equivalence of the two models, they study the convergence as γ → ∞ of the porous medium equation with drift, cf. Eq. ( 1) with G ≡ 0. Unlike [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], their approach is based on viscosity solutions. On the one hand, they are able to prove locally uniform convergence of the viscosity solution of Eq. ( 1) to a solution of the Hele-Shaw model. On the other hand, they show the convergence of the porous medium equation with drift to the aforementioned crowd motion model in the 2-Wasserstein distance. Therefore, they prove the equivalence of the two models in the special case of initial data given by "patches", namely n 0 = 1 Ω 0 for a compact set Ω 0 . In fact, the locally uniform limit holds only for solutions of the form of a characteristic function, while the limit in the 2-Wasserstein metric holds for any bounded initial data, 0 ≤ n 0 ≤ 1 with finite energy and second moment. Moreover, while the local uniform convergence only requires a strict subharmonicity assumption on the drift term, i.e. V ∈ C 2 (R d ), ∆V > 0, stronger regularity is needed to pass to the 2-Wasserstein limit. More precisely the authors make the following assumptions on V = V (x): there exists λ ∈ R such that inf

x∈R d V (x) = 0, D 2 V (x) ≥ λI d , ∀x ∈ R d , ∆V L ∞ (R d ) ≤ C.
Under these assumptions, they derive the following rate of convergence, cf. [1, Theorem 4.2.]

sup t∈[0,T ] W 2 (n γ (t), n ∞ (t)) ≤ C γ 1/24 ,
where C is a positive constant depending on V n 0 , ∆V ∞ and T .

The main result of this paper offers an improved polynomial rate of convergence in a negative Sobolev norm and the strong topology of Lebesgue spaces, see Theorems 1.1 and 1.2 above and Corollary 1.7 below. Let us remark that the 2-Wasserstein distance and the Ḣ-1 -norm can be bounded by each other when the densities are uniformly bounded away from vacuum, see Appendix A. We refer the reader to [27, Section 5.5.2], and references therein, for further discussion about the equivalence of the two distances.

Preliminaries and assumptions. Throughout this paper we make the following assumptions on the components of the model. Firstly, we assume that Eq. ( 1) is equipped with non-negative initial data n 0 γ (resp. n 0 ) such that there is a compact set

K ⊂ R d and a function n 0 ∞ ∈ L 1 (R d ) satisfying supp n 0 γ ⊂ K, p 0 γ = P γ (n 0 γ ) ∈ L ∞ (R d ), 0 ≤ n 0 γ ∈ L 1 (R d ), n 0 γ -n 0 ∞ L 1 (R d ) → 0, p 0 = P (n 0 ) ∈ L ∞ (R d ), 0 ≤ n 0 ∈ L 1 (R d ), n 0 -n 0 ∞ L 1 (R d ) → 0.
(A-L 1 data) Note in particular that the compact support assumption is needed only in the power law pressure. This is because when the pressure is given by Eq. ( 3) we can achieve our main estimate without a uniform bound for the pressure in L ∞ , which is not the case for the power law. Having uniformly compactly supported data allows to derive a maximum principle for the equation satisfied by the pressure. When additionally specified, we assume further

n 0 γ ∈ BV (R d ), ∆ n 0 γ γ ∈ L 1 (R d ), (A-BV data)
uniformly in γ. Secondly, the chemical concentration potential, V , is assumed to satisfy

D 2 V ≥ λ + 1 2 tr(D 2 V ) I d , for some λ ∈ R, (A-drift)
and additionally

D 2 V ∈ L ∞ ((0, T ) × R d ), ∇V ∈ L ∞ ((0, T ) × R d ), ∇∆V ∈ L 1 ((0, T ) × R d ). (A-BV drift)
Thirdly, we assume the proliferation rate, g = g(t, x), to be locally integrable and satisfy one of the following assumptions

g + ∈ L ∞ ((0, T ) × R d ) and ∆g ≥ 0, (A-reaction)
where f + := max(f, 0) denotes the positive part of the function, or

g + ∈ L ∞ ((0, T ) × R d ) and (∆g) -∈ L ∞ (0, T ; L d/2 (R d )), d ≥ 3, (A-reaction')
where f -:= max(-f, 0) denotes the negative part of the function, or in alternative

g + ∈ L ∞ ((0, T ) × R d ) and ∇g ∈ L ∞ (0, T ; L d (R d )), d ≥ 3. (A-reaction")
Under these assumptions one can derive several crucial uniform estimates for Eq. ( 1).

Lemma 1.4 (A-priori estimates). Under assumption (A-L 1 data) the family n γ of solutions to Eq. (1) satisfies the following bounds, uniformly in γ 1. supp p γ (t) ⊂ K(t) for some compact set K(t),

2. there exists a positive constant

p M = p M (T ) such that 0 ≤ p γ ≤ p M , 0 ≤ n γ ≤ γ-1 γ p M 1 γ-1 , 3. n γ ∈ L ∞ (0, T ; L 1 (R d )).
Assuming in addition (A-BV drift) we also have

n γ ∈ L ∞ (0, T ; BV (R d ))
. When the pressure is given by Eq. (3) points 2. and 3. still hold, and moreover 0 ≤ n ≤ 1.

These bounds are enough for our purposes. Their proofs are fairly standard and derived in full detail in [START_REF] David | On the incompressible limit for a tumour growth model incorporating convective effects[END_REF][START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF][START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], so we omit them here. Let us point out that to fully justify passing to the incompressible limit γ → ∞ one usually needs to derive additional estimates for the time derivative of the population density and the pressure.

Remark 1.5 (More general drift term). It is easily seen in the proof of our main results that we do not require the drift velocity to be a gradient. Indeed, one can replace the term n∇V in Eq. ( 1) by nU (t, x) with appropriate modifications to the regularity assumptions (A-drift) and (A-BV drift).

Our approach is to first obtain a rate of convergence in the homogeneous negative Sobolev norm Ḣ-1 and then interpolate with the uniform bound in BV to deduce a convergence rate in Lebesgue spaces. To realise this program we make use of the diffusion structure of the problem and "lift" the Laplacian. More precisely, we define the function ϕ to be the solution of the following Poisson equation in (0,

T ) × R d -∆ϕ γ = n γ , (8) 
given by the convolution ϕ γ = K n γ , where K is the fundamental solution of the Laplace equation. Explicitly, for x = 0,

K(x) =        - 1 2π ln |x|, for d = 2, 1 d(d -2)ω d |x| 2-d , for d ≥ 3,
where ω d denotes the volume of the unit ball in R d . Suppose for now that d ≥ 3. Then, since

n γ ∈ L 1 (R d )∩L ∞ (R d )
, a straightforward application of Young's inequality shows that

ϕ γ ∈ L p (R d ), for p > d d -2 ,
and

∇ϕ γ ∈ L 2 (R d ).
If d = 2, then we do not have ϕ γ ∈ L ∞ (R 2 ) and we cannot apply Young's inequality to deduce square-integrability of ∇ϕ γ (indeed, this is an endpoint case). However, let us point out that, for the power law case, since by Lemma 1.4 (point 1.) solutions are always compactly supported we can take ϕ γ to be the solution of the Poisson equation on K(T ) ⊂ R 2 with homogeneous Dirichlet boundary conditions. In this case, we know that ∇ϕ γ ∈ L 2 (K). Under suitable conditions it is possible to infer the L 2 -integrability of ∇(ϕ -ϕ ) in R 2 , which is needed for the singular pressure law. In this case, we impose the following additional assumptions

g = g(t), ∇V ∈ L 1 ((0, T ) × R 2 ), R 2 |x| n 0 < ∞. (A-2D)
The bound on the first moment is propagated in time and guarantees the well-posedness of K n . Taking a space-independent growth rate implies that the difference n -n has zero mean for all times. Therefore, we have

R 2 (n -n ) = 0, R 2 |x||n -n | < ∞, from which we conclude that ∇(ϕ -ϕ ) ∈ L 2 (R 2 ).
Notice that the L 1 convergence of the initial data implies the convergence of ∇ϕ 0 γ to ∇ϕ 0 ∞ in L 2 . Moreover, the uniform bounds on n γ together with the Hardy-Littlewood-Sobolev inequality imply that the convolution n γ → K n γ is a bounded linear operator from L 2d/d+2 to L 2 . Therefore there is a subsequence ∇ϕ γ k which converges weakly in L 2 to ∇ϕ ∞ .

Finally, we recall that the gradient ∇ϕ can be used to represent the Ḣ-1 -norm of the function n as follows

n(t) Ḣ-1 (R d ) = ∇ϕ(t) L 2 (R d ) .
Having obtained a convergence rate in the negative norm and assuming additionally the BV bounds provided by Lemma 1.4, we will use the following interpolation inequality, proved (in greater generality) by Cohen et al. [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] (see also [START_REF] Cinti | Interpolation inequalities in pattern formation[END_REF]), to deduce a rate in the Lebesgue 4/3-norm:

Lemma 1.6 (Interpolation inequality). There exists a constant

C = C(d, T ) > 0, such that, for all t ∈ [0, T ], n(t) L 4/3 (R d ) ≤ C|n(t)| 1/2 BV (R d ) ∇ϕ(t) 1/2 L 2 (R d ) . (9) 
Thus, Theorem 1.2 is a simple consequence of Theorem 1.1, Lemma 1.6 and the uniform bound in BV provided by Lemma 1.4. By the usual log-convex interpolation of the L p -norms we readily obtain the following corollary to Theorem 1.2.

Corollary 1.7 (Convergence rate in L p ). sup t∈[0,T ] n γ (t) -n ∞ (t) L p (R d ) ≤ C γ α , with α :=        p -1 p , for p ∈ (1, 4/3], 1 3p , for p ∈ [4/3, ∞).
Remark 1.8 (Finite speed of propagation). When one assumes additionally that the initial data have uniformly compact support, then at any later time the support of n γ is still uniformly contained in a bounded set (this is one of the fundamental properties of the porous medium equation, see [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF]Lemma 2.6] and [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF]Lemma 3.3] for the model with a non-zero right-hand side). Therefore one can consider problem (1) to be posed on a bounded subset of R d with homogeneous Dirichlet boundary condition. Naturally our results remain true in this case with the improvement that we obtain a rate ∼ γ -1/4 in any L p -norm, 1 ≤ p ≤ 4/3. In particular this covers the case of "patches", i.e. , when the initial distribution is given by an indicator function of a compact set, as considered recently in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF].

Plan of the paper. The remainder of the paper is devoted to proving the main theorem. It turns out that the equation can be conveniently trisected and dealt with term-by-term: considering separately the pressure-driven advection, drift, and proliferation. Indeed, it is the diffusion term that governs the rate of convergence. The proof is therefore structured as follows. In Sections 2 and 3 we prove the main theorem for the choice of the singular pressure in Eq. ( 3) and the power law pressure in Eq. ( 2) in the absence of reactions and drift. Then in Section 4 we explain how to treat the additional terms.

Notation. Henceforth we shall usually suppress the dependence on time and space of the quantities of interest, only exhibiting the time variable in the final results. Similarly, for the sake of brevity, all space integration should be understood with respect to the d-dimensional Lebesgue measure.

Singular pressure law

In this and the following section, to explain the main idea in a simple situation, we ignore the drift and proliferation terms in Eq. ( 1) and consider only the nonlinear diffusion equation

∂n ∂t -∇ • (n ∇p ) = 0, (10) 
assuming now the pressure law as in Eq. [START_REF] Berthelin | A model for the formation and evolution of traffic jams[END_REF]. In this case we can rewrite Eq. ( 10) as

∂n ∂t -∆H (n ) = 0, with H (n ) := n 0 sp (s) ds = n 1 -n + ln(1 -n ).
Recall that we have the uniform bound n < 1, so that the right-hand side above is well-defined with ln(1 -n ) ≤ 0.

Let us take > > 0. We subtract the equation for n from the equation for n to obtain

∂(n -n ) ∂t -∆(H (n ) -H (n )) = 0. ( 11 
)
Now we pose Eq. ( 8) for both solutions n and n

-∆ϕ = n , -∆ϕ = n .
Then Eq. ( 11) reads

-∆ ∂(ϕ -ϕ ) ∂t -∆(H (n ) -H (n )) = 0,
and we test it against ϕ -ϕ to derive

1 2 d dt R d |∇(ϕ -ϕ )| 2 = R d (n -n )(H (n ) -H (n )).
We now proceed to estimate the right-hand side. On the set {n > n } we make use of nonnegativity of H (n ) and non-positivity of the logarithmic term in H (n ) to write

{n >n } (n -n )(H (n ) -H (n )) ≤ {n >n } (n -n ) n 1 -n ≤ {n >n } n .
Similarly, on the complementary set {n ≤ n } we have

{n ≤n } (n -n )(H (n ) -H (n )) ≤ {n ≤n } (n -n ) n 1 -n ≤ {n ≤n } n .
Therefore we have

1 2 d dt R d |∇(ϕ -ϕ )| 2 ≤ {n ≤n } n + {n ≥n } n ≤ n (t) L 1 (R d ) + n (t) L 1 (R d ) ,
and since n and n are uniformly bounded in L ∞ ((0, T ), L 1 (R d )) with respect to and , we obtain

1 2 d dt R d |∇(ϕ -ϕ )(t)| 2 ≤ C( + ).
Integrating in time on [0, t) we then have

1 2 R d |∇(ϕ -ϕ )(t)| 2 ≤ Ct( + ) + R d |∇(ϕ -ϕ )(0)| 2 .
It follows that the sequence (∇ϕ ) converges in the strong topology of L ∞ ((0, T ), L 2 (R d )) to ∇ϕ ∞ . Consequently, letting → 0, we deduce the following rate for the convergence n → n ∞ in the space Ḣ-1 (R d )

n (t) -n ∞ (t) Ḣ-1 (R d ) ≤ C √ t √ + n 0 -n 0 ∞ Ḣ-1 (R d ) ,
where C is a positive constant defined as follows

C = 2 sup >0 n L 1 ((0,T )×R d )) .
Assuming the additional BV bounds for the initial data, we get from Lemma 1.4 that n is uniformly bounded in L ∞ (0, T ; BV (R d )), and we can use Eq. ( 9) to obtain the rate 1/4 , as announced in Eq. ( 4). Thus Theorems 1.1 and 1.2 are proved in this special case.

Power law

Let us now consider Eq. ( 10) with the pressure law given by Eq. ( 2) and demonstrate that the method employed in the previous section remains valid. We now have the porous medium equation ∂n γ ∂t -∆n γ γ = 0.

Let us recall that there exists a positive constant p M such that

0 ≤ γ γ -1 n γ-1 γ ≤ p M , 0 ≤ γ γ -1 n γ -1 γ ≤ p M .
Let us define

c γ := γ -1 γ 1 γ-1 p 1/(γ-1) M and ñγ := n γ c γ .
Then it immediately follows that ñγ ≤ 1 and solves the equation

∂ t ñγ -∆(c γ-1 γ ñγ γ ) = 0.
Following the same argument as before, we define ϕ γ and φγ by

-∆ϕ γ = n γ , -∆ φγ = ñγ , i.e. φγ = ϕ γ /c γ .
Without loss of generality, we take 1 < γ < γ . Now we subtract the equation for ñγ from the equation for ñγ to obtain

∂(ñ γ -ñγ ) ∂t -∆(c γ-1 γ ñγ γ -c -1 γ ñγ γ ) = 0. (12) 
Then from Eq. ( 12) we have

-∆ ∂( φγ -φγ ) ∂t -∆(c γ-1 γ ñγ γ -c γ -1 γ ñγ γ ) = 0,
and we test it against φγ -φγ to deduce

1 2 d dt R d ∇( φγ -φγ ) 2 = R d (c γ-1 γ ñγ γ -c γ -1 γ ñγ γ )(ñ γ -ñγ ) ≤ R d c γ-1 γ ñγ γ (1 -ñγ ) + R d c γ -1 γ ñγ γ (1 -ñγ ), (13) 
where the inequality follows from the fact that ñγ , ñγ ≤ 1. It is easy to see that for 0 ≤ s ≤ 1 it holds s γ (1 -s) ≤ s γ . Hence, we have

1 2 d dt R d ∇( φγ -φγ ) 2 ≤ c γ-1 γ 1 γ R d ñγ + c γ -1 γ 1 γ R d ñγ ≤ γ -1 γ p M sup γ ñγ (t) L 1 (R d ) 1 γ + γ -1 γ p M sup γ ñγ (t) L 1 (R d ) 1 γ ≤ C 1 γ + 1 γ ,
where in the last inequality we used the fact that by Lemma 1.4 n γ is uniformly bounded in

L ∞ (0, T ; L 1 (R d ))
. Finally, we remove the scaling using the triangle inequality

1 3 ∇(ϕ γ -ϕ γ )(t) 2 L 2 (R d ) ≤ ∇(ϕ γ -φγ )(t) 2 L 2 (R d ) + ∇( φγ -ϕ γ )(t) 2 L 2 (R d ) + ∇( φγ -φγ )(t) 2 L 2 (R d ) ≤ 1 - 1 c γ 2 ∇ϕ γ (t) 2 L 2 (R d ) + 1 - 1 c γ 2 ∇ϕ γ (t) 2 L 2 (R d ) + Ct 1 γ + 1 γ + ∇( φγ -φγ )(0) 2 L 2 (R d ) ≤ 1 γ Ct + γ 1 - 1 c γ 2 sup γ n γ (t) 2 Ḣ-1 (R d ) + 1 γ Ct + γ 1 - 1 c γ 2 sup γ n γ (t) 2 Ḣ-1 (R d ) + ∇( φγ -φγ )(0) 2 L 2 (R d ) .
By the definition of c γ , γ 1 -1 cγ 2 → 0 as γ → ∞. Thus, we have

∇(ϕ γ -ϕ γ )(t) 2 L 2 (R d ) ≤ (Ct + C) 1 γ + 1 γ + 3 ∇( φγ -φγ )(0) 2 L 2 (R d ) .
By the same argument, we find

∇( φγ -φγ )(0) 2 L 2 (R d ) ≤ C 1 γ + 1 γ + 3 ∇(ϕ γ -ϕ γ )(0) 2 L 2 (R d ) .
Finally, we conclude

∇(ϕ γ -ϕ γ )(t) 2 L 2 (R d ) ≤ (Ct + C) 1 γ + 1 γ + 9 ∇(ϕ γ -ϕ γ )(0) 2 L 2 (R d ) . (14) 
Consequently, arguing as before and letting γ → ∞, we find

n γ (t) -n ∞ (t) Ḣ-1 (R d ) ≤ C √ t + C √ γ + 9 n 0 γ -n 0 ∞ Ḣ-1 (R d ) .
Again, under the additional BV assumptions we obtain (4) thanks to the interpolation inequality in Lemma 1.6.

Including drift and reaction terms

Having obtained the announced rate of convergence due to the nonlinear diffusion term, we now exhibit that we can include the drift and reaction terms. In fact, due to our assumptions on the proliferation rate and the chemical potential, all the additional terms will either have an appropriate sign, or be absorbed into the L 2 -norm of the potential ϕ. We now write Eq. ( 1) as follows

∂n γ ∂t -∆A γ (n γ ) = ∇ • (n γ ∇V ) + n γ g,
where g = g(t, x) and A γ is chosen appropriately depending on the state law for the pressure. As seen before, there is no harm in assuming the uniform bound n ≤ 1. Then, arguing in the same way as previously, we obtain

1 2 d dt R d ∇(ϕ γ -ϕ γ ) 2 + R d (n γ -n γ )(A γ (n γ ) -A γ (n γ )) = - R d (n γ -n γ )∇(ϕ γ -ϕ γ ) • ∇V + R d g(t, x)(n γ -n γ )(ϕ γ -ϕ γ ) = R d ∆ ϕ γ -ϕ γ ∇(ϕ γ -ϕ γ ) • ∇V - R d g(t, x)∆(ϕ γ -ϕ γ )(ϕ γ -ϕ γ ).
It only remains to consider the two new terms on the right-hand side. For the first one we can write

R d ∆ ϕ γ -ϕ γ ∇(ϕ γ -ϕ γ ) • ∇V = - R d ∇(ϕ γ -ϕ γ ) T D 2 (ϕ γ -ϕ γ )∇V - R d ∇(ϕ γ -ϕ γ ) T D 2 V ∇(ϕ γ -ϕ γ ) = - 1 2 R d ∇|∇(ϕ γ -ϕ γ )| 2 • ∇V - R d ∇(ϕ γ -ϕ γ ) T D 2 V ∇(ϕ γ -ϕ γ ) = 1 2 R d |∇(ϕ γ -ϕ γ )| 2 ∆V - R d ∇(ϕ γ -ϕ γ ) T D 2 V ∇(ϕ γ -ϕ γ ) ≤ -λ R d |∇(ϕ γ -ϕ γ )| 2 ,
where we have integrated by parts and used assumptions (A-drift). For the remaining term we integrate by parts to obtain

R d g ∇(ϕ γ -ϕ γ ) 2 + R d (ϕ γ -ϕ γ )∇(ϕ γ -ϕ γ ) • ∇g ≤ g + L ∞ ((0,T )×R d ) R d ∇(ϕ γ -ϕ γ ) 2 + R d (ϕ γ -ϕ γ )∇(ϕ γ -ϕ γ ) • ∇g A .
In case of d = 2, we suppose that g satisfies Assumption (A-reaction). Then we can integrate by parts in the last term to obtain

A = - 1 2 R d |ϕ γ -ϕ γ | 2 ∆g ≤ 0.
If instead d ≥ 3, we may alternatively assume that g satisfies Assumption (A-reaction') or Assumption (A-reaction"). In the first case, using successively the inequalities of Hölder and Sobolev we obtain

A ≤ 1 2 ϕ γ -ϕ γ 2 L 2 * (R d ) (∆g) -L d/2 (R d ) ≤ C S (∆g) -L d/2 (R d ) R d |∇(ϕ γ -ϕ γ )| 2 ,
where C S denotes the constant from Sobolev inequality, and 2 * = 2d d-2 is the Sobolev conjugate exponent. Otherwise, if g satisfies Eq. (A-reaction"), in order to estimate the term A we do not integrate it by parts and we use in turn the inequalities of Young, Hölder and Sobolev to obtain

2A ≤ R d ∇(ϕ γ -ϕ γ ) 2 + R d (ϕ γ -ϕ γ ) 2 |∇g| 2 ≤ R d ∇(ϕ γ -ϕ γ ) 2 + ϕ γ -ϕ γ 2 L 2 * (R d ) ∇g 2 L d (R d ) ≤ 1 + C S ∇g 2 L d (R d ) R d ∇(ϕ γ -ϕ γ ) 2 .
Therefore we have

1 2 d dt R d ∇(ϕ γ -ϕ γ ) 2 + R d (n γ -n γ )(A γ (n γ ) -A γ (n γ )) ≤ C R d ∇(ϕ γ -ϕ γ ) 2 .
Assuming for concreteness the power law pressure, using inequality ( 14) and a Gronwall inequality, we deduce

sup t∈[0,T ] ∇(ϕ γ -ϕ γ )(t) L 2 (R d ) ≤ C 1 √ γ + 1 √ γ + ∇(ϕ γ -ϕ γ )(0) L 2 (R d ) .
Finally, passing to the limit γ → ∞, we conclude the proof of Theorem 1.1. Using the uniform BV -bound and Eq. ( 9) we obtain Theorem 1.2.

Limit relation between n ∞ and p ∞

Here we prove relation ( 5) between the limit density and pressure, where p ∞ is defined as the weak * limit (up to a sub-sequence) of p γ in L ∞ ((0, T ) × R d ).

Proof of Theorem 1.3. The relation is a straightforward consequence of the main estimate obtained in Section 3. We inspect Eq. ( 13), this time not ignoring the non-positive terms. After integration in time, these terms can be bounded as follows, using Eq. ( 14)

T 0 R d ñγ γ (1 -ñγ )c γ -1 γ + T 0 R d ñγ γ (1 -ñγ )c γ-1 γ ≤ C(T ) 1 γ + 1 γ + R d ∇(ϕ γ -ϕ γ )(0) 2 .
Now let ψ be a compactly supported test function and consider the quantity

T 0 R d ψñ γ γ (1 -ñγ ) ≤ ψ ∞ T 0 supp ψ ñγ γ (1 -ñγ ) = ψ ∞ T 0 supp ψ p γ γ-1 γ (1 -ñγ ).
Using weak lower semicontinuity of convex functionals and weak * convergence of the pressure and the density, we can pass to the limit with γ and γ in turn to obtain

T 0 R d ψp ∞ (1 -n ∞ ) = 0,
which concludes the proof.

Conclusions and open problems

We computed the rate of convergence of the solutions of a reaction-advection-diffusion equation of porous medium type in the incompressible limit. Our result in a negative Sobolev's norm can be interpolated with uniform BV -estimates in order to find a rate in any L p -space for 1 < p < ∞.

How to assess the accuracy of our estimate remains an open problem. For the pure porous medium equation it might seem tempting to attempt a calculation for the illustrious example of the Barenblatt solution (taking as initial data the solution at some time t > 0). However, a direct calculation shows that in this case the data is "ill prepared" in the sense that it converges (in L 1 ) to its limit profile with too slow a rate of ∼ ln γ/γ. It is unclear how to approach the question of optimality in general. We expect that the "worst" rate would be exhibited by a focusing solution, whose support is initially contained outside of a compact set and closes up in finite time, thus generating a singularity.

Another challenging problem is to find an estimate for the convergence rate of the pressure, for which the method used above seems inapplicable as it is not clear how to relate the quantities p γ -p γ and ϕ γ -ϕ γ . Consequently, we are also currently unable to treat more general, pressure dependent, reaction terms. Finally, it would be of interest to investigate whether it is possible to strengthen the estimate of Theorem 1.1 to Lebesgue norms without interpolation with BV . One advantage of any such alternative approach could be to allow for passing to the incompressible limit when BV bounds are not available, as is the case for systems of equations like [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF]. Additionally, it could allow for estimating the rate of convergence in the L 1 -norm rather than the seemingly arbitrary L 4/3 -norm.

Therefore the pair (ρ, V ) solves the continuity equation Combining these last two inequalities, we obtain the following bound

W 2 (µ γ , µ ∞ ) ≤ 1 0 V τ (x) L 2 (R d ,dρτ ) dτ ≤ 1 √ n ∇(ϕ γ -ϕ ∞ ) L 2 (R d ) 1 0 1 √ τ dτ = 2 √ n n γ -n ∞ Ḣ-1 (R d ) .
Interestingly, a reverse bound can also be shown. Rather than a positive lower bound, a common upper bound is now required of all the densities (which is of course the case here). Let now σ : [0, 1] → P 2 (R d ) be a constant-speed geodesic from µ γ to µ ∞ and E be a vector field such that (σ, E) satisfy the continuity equation, and E τ L 2 (R d ;στ ) = W 2 (µ γ , µ ∞ ). Then

∇ϕ γ -∇ϕ ∞ 2 L 2 = Ω (ϕ γ -ϕ ∞ )(n γ -n ∞ ) = 1 0 Ω ∇(ϕ γ -ϕ ∞ ) • E τ dρ τ dτ ≤ 1 2 ∇ϕ γ -∇ϕ ∞ 2 L 2 + 1 2 W 2 (µ γ , µ ∞ ) 2 .
We refer the reader to [27, Section 5.5.2], and references therein, for further discussion about the equivalence of the two distances.

1 0

 1 ∂ρ τ ∂τ + ∇ • (V τ (x)ρ τ ) = 0,posed on (0, 1) × R d with the marginal constraintsρ 0 = µ γ , ρ 1 = µ.Consequently, from Theorem 5.15 in[START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], we deduce that ρ is absolutely continuous and the following inequality holds|ρ |(τ ) ≤ V τ L 2 (R d ,dρτ ) ,where |ρ | denotes the metric derivative of the curve ρ with respect to the Wasserstein distance. Furthermore, since (P 2 (R d ), W 2 ) is a length space, we haveW 2 (µ γ , µ ∞ ) ≤ |ρ |(τ ) dτ.
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A Bounding W 2 -norm by the Ḣ-1 -norm

We consider here the conservative case of Eq. ( 1), assuming n γ (t) = n ∞ (t) = 1. Moreover, rather than the Cauchy problem set in the whole space, we consider the boundary valued problem set in a bounded domain Ω ⊂ R d with homogeneous Neumann boundary conditions.

We put dµ γ = n γ (x) dx, dµ ∞ = n ∞ (x) dx, ignoring time-dependence for the sake of brevity. Furthermore we make the additional assumption that n ∞ ≥ n > 0 for some constant n.

Consider the curve ρ : [0, 1] → P 2 (R d ) given by τ → ρ τ := (1 -τ )µ γ + τ µ ∞ together with the vector field

For any test function ψ ∈ C ∞ c ((0, 1) × Ω) we have