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1. History of the Quarterly Reports

After marrying Janaki in 1909, Ramanujan moved to Madras in 1910 to secure employment but also
with the goal of seeking recognition for his mathematical discoveries. In 1911, Ramanujan began to
publish both papers and problems in the Journal of the Indian Mathematical Society. His emerging
fame reached the English astronomer Sir Gilbert Walker, working at an observatory in Madras. In
a letter to the University of Madras dated February 26, 1913 [6, p. 51], he wrote, “The University
would be justified in enabling S. Ramanujan for a few years at least to spend the whole of his time
on mathematics, without any anxiety as to his livelihood.” The Board of Studies at the University
of Madras agreed to this request, and its chairman, Professor B. Hanumantha Rao, wrote a letter
to the Vice-Chancellor on March 25, 1913, with the recommendation that Ramanujan be awarded a
scholarship of 75 rupees per month [6, p. 76]. The approval was swift, and Ramanujan was awarded
a scholarship commencing on May 1, 1913.

A stipulation in the scholarship required Ramanujan to write quarterly reports describing his
research to the Board of Studies in Mathematics. Ramanujan wrote three of these quarterly reports,
dated 5th August 1913, 7th November 1913, and 9th March, 1914, before he departed for England
on March 17, 1914. Unfortunately, these reports were either destroyed or misplaced at the University
of Madras; they have never been found. Fortunately, in 1925, T. A. Satagopan made a handwritten
copy of the reports totalling 51 pages. This copy was sent to G. H. Hardy and is now at the library
at Trinity College, Cambridge. Also on file at Trinity College is a second copy of the reports made
by G. N. Watson. Hardy used the reports in writing Chapter 11 of his book [8] on Ramanujan’s
work. The reports have never been published in their entirety. However, a complete description
of their contents was published by this editor in the Bulletin of the London Mathematical Society
[4]. A shorter, somewhat less technical account was written by the same author for the American
Mathematical Monthly [3].

Some of the material in the Quarterly Reports can also be found in Chapters 3 and 4 of
Ramanujan’s second notebook [2], [1], [5, Chapters 3, 4]. In contrast to his notebooks [11], Ramanujan
provided proofs in his reports. His proofs are mostly formal and not rigorous. In discussing perhaps
the most important result from the reports, in a paper published in 1937, Hardy [7, p. 150] remarked,
“There is one particularly interesting formula . . . of which he was especially fond and made continual
use. . . . had not ‘really’ proved any of the formulae which I have quoted. It was impossible that he
should have done so because the ‘natural’ conditions involve ideas of which he knew nothing in 1914,
and which he had hardly absorbed before his death”. (Hardy’s paper [7] is reprinted in Chapter
1 of [8].) The aforementioned theorem provides a method for evaluating large classes of definite
integrals. After arriving in England, Ramanujan evidently was informed by Hardy that his proof
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was not rigorous, for in a paper [9], [10, pp. 53–58] offering several integral evaluations written in
1915, Ramanujan remarked, “My own proofs of the above results make use of a general formula, the
truth of which depends on conditions which I have not yet investigated completely. A direct proof
depending on Cauchy’s theorem will be found in Mr. Hardy’s note which follows this paper”. Readers
of Ramanujan’s Quarterly Reports will find many interesting applications of his ingenious “general
formula.”
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2. Notes on Transcribing the Quarterly Reports

We have attempted to reproduce Ramanujan’s style as much as possible. But it should be emphasized
that we have prepared our transmission of the Quarterly Reports from a handwritten copy made at
the University of Madras in 1925. Presumably, the copyist, T. A. Satagopan, had a background in
mathematics. Out of a deep respect to Ramanujan, we guess that Satagopan attempted to adhere
to Ramanujan’s style as much as possible. However, we have made some exceptions. For example,
Ramanujan frequently wrote mathematical symbols, especially integrals, within his text. A long series
of equalities on multiple lines can sometimes be shortened by distributing them on fewer lines. For
typographical and aesthetical reasons, we have often put these mathematical expressions in display
modes. In a few instances, we have put Ramanujan’s words in sans-serif font to indicate that we were
unable to apply latex to reproduce Ramanujan’s style.

In general, we have not changed Ramanujan’s punctuation, but for clarity, we have occasionally
inserted commas and periods. Ramanujan’s results and proofs are not organized consistently, with
Theorem, Cor., Art., (a), (b), (i), (ii), etc., 1, 2, 3, etc., (1), (2), (3), etc. being employed, but we
have kept his designations.
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We have adhered to Ramanujan’s notation, but with two notable exceptions. We write ! in place
of the now antiquated n . which was utilized by Ramanujan. In his third Quarterly Report, he used
the notation II(x) for Γ(x + 1). Since the latter notation is almost now universally used, we have
adopted the Γ-function notation.

We are grateful to Jaebum Sohn, who helped prepare the Quarterly Reports, and to Shivajee
Gupta, who constructed the two geometric figures.

3. Ramanujan’s Quarterly Reports

Sample image from Satagopan’s copy

Madras
5th Aug. 1913

From S. Ramanujan,

Scholarship holder in Mathematics

To The Board of Studies in Mathematics

Through The Registrar, University of Madras.

Gentlemen,

With reference to para. 2 of the University Registrar’s letter no. 1631 dated the 9th April 1913, I
beg to submit herewith my quarterly Progress Report for the quarter ended the 31st July, 1913. The
Progress Report is merely the exposition of a new theorem I have discovered in Integral Calculus. At
present there are many definite integrals the values of which we know to be finite but still not possible
of evaluation by the present known methods . This theorem will be an instrument by which at least
some of the definite integrals whose values are at present not known can be evaluated. For instance,
the integral treated in Ex(V) note Art. 5. in the paper, Mr. G. H. Hardy M.A., F.R.S. of Trinity
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College, Cambridge, considers to be “new and interesting.” Similarly, the integral connected with
the Besselian function of the nth order which at present requires many complicated manipulations to
evaluate can be readily inferred from the theorem given in the paper. I have also utilised this theorem
in definite integrals for the expansion of functions which can now be ordinarily done by Lagrange’s,
Burmann’s, or Abel’s theorems. For instance, the expansions marked as examples nos. (3) and (4),
Art. 6, in the second part of the paper.

The investigations I have made on the basis of this theorem are not all contained in the attached
paper. There is ample scope for new and interesting results out of this theorem. This paper may be
considered the first instalment of the results I have got out of the theorem. Other new results, based
on the theorem I shall communicate in my later reports.

I beg to submit this, my maiden attempt, and I humbly request that the Members of the Board
will make allowance for any defect which they may notice to my want of usual training which is now
undergone by college students and view sympathetically my humble effort in the attached paper.

I beg to remain,
Gentlemen

Your obedient servant
S. Ramanujan

1. Subject of the paper
If F (x) be a function capable of expansion in positive integral powers of x, then
(A) the value of ∫ ∞

0
xn−1F (x)dx

can be found from the coefficient of xn in the expansion of F (x) and conversely.
(B) the expansion of F (x) in powers of x can be found if the value of the integral∫ ∞

0
xn−1F (x)dx

be known.

2. A:—

Let the expansion of F (x) be

φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · · ,

then ∫ ∞
0

xn−1F (x)dx = Γ(n)φ(−n).

Dem. We know ∫ ∞
0

e−mxxn−1dx =
Γ(n)

mn
.

By giving the values 1, r, r2, r3, . . . to m on both the sides, multiplying the results by

f(a),
hf ′(a)

1!
,

h2f
′′
(a)

2!
,

h3f
′′′

(a)

3!
, . . .
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and adding up all these results, we have

f(a)

∫ ∞
0

e−xxn−1dx+
h

1!
f ′(a)

∫ ∞
0

e−rxxn−1dx+
h2

2!
f
′′
(a)

∫ ∞
0

e−r
2xxn−1dx

+
h3

3!
f
′′′

(a)

∫ ∞
0

e−r
3xxn−1dx+ · · ·

=Γ(n)

{
f(a) +

h

rn
f
′
(a)

1!
+
h2

r2n

f
′′
(a)

2!
+
h3

r3n

f
′′′

(a)

3!
+ · · ·

}
.

Expanding e−x, e−rx, e−r
2x, . . . on the left side in ascending powers of x and collecting all the terms

that contain the same powers of x, we have by applying Taylor’s Theorem,∫ ∞
0

xn−1

{
f(a+ h)− x

1!
f(a+ rh) +

x2

2!
f(a+ r2h)− · · ·

}
dx

= Γ(n) f

(
a+

h

rn

)
.

Now let us suppose f(a + hrn) = φ(n) treating a, h and r to be constants. Then we see
that f(a + h

rn ) = φ(−n) and also f(a + h), f(a + rh), f(a + r2h), . . . are respectively equal to
φ(0), φ(1), φ(2), . . . . Substituting these results in the above one we have,∫ ∞

0
xn−1

{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · ·

}
dx = Γ(n)φ(−n).

Q. E. D.

3. When valid?

The above theorem is legitimate if the following conditions are satisfied.
(a) As already stated, F (x) should be capable of expansion in positive integral powers of x.
(b) F (x) should be finite and continuous between the limits 0 and ∞ but not necessarily at 0 and

∞.
(c) n should be positive.
(d) xnF (x) should vanish when x becomes infinite.
The first two conditions are evident from the nature of the integral itself.
The 3rd condition is necessary because we have used the Eulerian Integral∫ ∞

0
xn−1e−xdx = Γ(n)

which is true only when n is positive.
The 4th condition is also necessary; for, if when x =∞, xnF (x) does not vanish but be finite, say

equal to a, then the greatest term in the expansion of xn−1F (x) is a
x and consequently the greatest

term in ∫
a
xn−1F (x)dx

is a log x which is infinite when x =∞. Hence we see that, if when x =∞, xnF (x) is finite, then∫ ∞
0

xn−1F (x)dx

is infinite; and much more so it will be if xnF (x) is itself infinite when x becomes infinite.
Although the first three conditions are necessary in case of oscillating functions such as the circular,

Besselian and other functions, yet the fourth condition differs for different functions we take.
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4. Generalization:—

(a) The theorem can be used not only in case of Integrals having the limits 0 and ∞ but also in
case of Integrals having any two limits; for any Integral∫ β

α
ψ(x)dx

may be transformed to an Integral of the form∫ ∞
0

F (x)dx

by suitable substitutions such as x−α
β−x = y, etc.

(b) According to the condition 3(a), F (x) may include all algebraic functions and all transcendental
functions which can be expanded in ascending powers of x, such as cosx, sinx, e−x, tan−1 x, log(1+x),
etc.; but if F (x) contained transcendentals of the form log x, etc. which cannot be expressed in powers
of x, we can substitute ey etc. for x and then apply our theorem.

(c) Similarly by suitable substitutions all fractional powers also may be removed.

5. Examples:—

The extreme importance of this theorem in the Integral Calculus is illustrated by the following
few examples:

(i) Let us take the integral ∫ ∞
0

xm−1

1 + xn
dx.

Changing x to y1/n we have the integral reduced to

1

n

∫ ∞
0

y
m
n
−1

1 + y
dy.

The conditions to be satisfied are:—

m

n
should be positive . . . by 3(c)

ym/n

1 + y
= 0 when y =∞. . . by 3(d)

i.e.
m

n
should lie between 0 and 1.

or m should lie between 0 and n.

Now
1

n

∫ ∞
0

y
m
n
−1

1 + y
dy =

1

n

∫ ∞
0

y
m
n
−1

{
φ(0)− y

1!
φ(1) +

y2

2!
φ(2)− · · ·

}
dy,

where φ(t) = Γ(1 + t).

Hence the integral =
1

n
Γ
(m
n

)
φ
(
−m
n

)
by 2.

=
1

n
Γ
(m
n

)
Γ
(

1− m

n

)
=

π

n sin πm
n

.

Thus we see that if m lies between 0 and n∫ ∞
0

xm−1

1 + xn
dx =

π

n sin πm
n

.
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(ii) ∫ 1

0
xm−1(1− x)n−1dx =

Γ(m)Γ(n)

Γ(m+ n)
,

if m and n are positive.
Changing x to y

1+y the integral becomes∫ ∞
0

ym−1(1 + y)−m−ndy.

The conditions to be satisfied are

m should be positive by 3(c)

ym

(1 + y)m+n
= 0 when y =∞ by 3(d)

i.e. n should also be positive.

Now ∫ ∞
0

ym−1(1 + y)−m−ndy =

∫ ∞
0

ym−1

{
φ(0)− y

1!
φ(1) +

y2

2!
φ(2)− · · ·

}
dy,

where

φ(t) =
Γ(m+ n+ t)

Γ(m+ n)
.

Hence the integral = Γ(m)φ(−m) (by 2) =
Γ(m)Γ(n)

Γ(m+ n)
.

(iii) When n lies between 0 and 1,∫ ∞
0

xn−1 cos px dx =
Γ(n)

pn
cos

πn

2
.

Changing x to
√
y, we have∫ ∞
0

xn−1 cos px dx =
1

2

∫ ∞
0

y
n
2
−1

(
1− p2

2!
y +

p4

4!
y2 − · · ·

)
dy

=
1

2

∫ ∞
0

y
n
2
−1

{
φ(0)− y

1!
φ(1) +

y2

2!
φ(2)− · · ·

}
dy(

where φ(t) =
p2tΓ(t+ 1)

Γ(2t+ 1)
.

)
=

1

2
Γ
(n

2

)
φ
(
−n

2

)
=

Γ
(
n
2

)
Γ
(
1− n

2

)
2pnΓ(1− n)

=
Γ(n) cos πn

2

pn
.

In a similar manner on differentiating the above result with regard to p and then changing n to
n− 1 on both sides, we have,

When n lies between 0 and 1∫ ∞
0

xn−1 sin px dx =
Γ(n)

pn
sin

πn

2
.

(iv) Similarly taking the Besselian Function of the nth order, we have,
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If p lies between 0 and 2n+3
2 ,∫ ∞

0
xp−1

{
1− x2

2
· 1

2n+ 2
+

x4

2 · 4
· 1

2n+ 2
· 1

2n+ 4
− · · ·

}
dx

=
2p−1Γ

(p
2

)
Γ(n+ 1)

Γ
(
n+ 1− p

2

) .

The above result is immediately got by changing x to
√
y and applying our theorem.

(v) If n is positive and a less than unity, then∫ ∞
0

xn−1dx

(1 + x)(1 + ax)(1 + a2x)(1 + a3x) · · ·

=
π

sin πn
· 1− a1−n

1− a
· 1− a2−n

1− a2
· 1− a3−n

1− a3
· 1− a4−n

1− a4
· · · .

Dem. Suppose

1

(1 + x)(1 + ax)(1 + a2x)(1 + a3x) · · ·
= 1−A1x+A2x

2 −A3x
3 +A4x

4 − · · · .

Then changing x to ax, we see that

1

(1 + ax)(1 + a2x)(1 + a3x) · · ·
=1−A1ax+A2a

2x2 − · · ·

=(1 + x)
(
1−A1x+A2x

2 −A3x
3 + · · ·

)
.

Hence,

A1 =
1

1− a
; A2 =

1

(1− a)(1− a2)
; A3 =

1

(1− a)(1− a2)(1− a3)

and generally

Ar =
1

(1− a)(1− a2)(1− a3) · · · (1− ar)
.

Hence the integral

=

∫ ∞
0

xn−1

{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · ·

}
dx,

[
where φ(t) = Γ(t+ 1)

1− a1+t

1− a
· 1− a2+t

1− a2
· 1− a3+t

1− a3
· · ·
]

= Γ(n)φ(−n) by 2.

= Γ(n)Γ(1− n)
1− a1−n

1− a
· 1− a2−n

1− a2
· 1− a3−n

1− a3
· · ·

=
π

sin πn

1− a1−n

1− a
· 1− a2−n

1− a2
· 1− a3−n

1− a3
· · ·

Note. If n is any positive integer the value of the above integral assumes an indeterminate form and
the value may be evaluated by writing n+h instead of n and ultimately making h vanish; examples.—
(a) When n = 1, the above becomes∫ ∞

0

dx

(1 + x)(1 + ax)(1 + a2x)(1 + a3x) · · ·
= − log a.
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(b) When n = 2, the result is∫ ∞
0

dx

(1 +
√
x)(1 + a

√
x)(1 + a2

√
x) · · ·

= −2(1− a)

a
log a.

(c) When n = 3, the result is∫ ∞
0

dx

(1 + 3
√
x)(1 + a 3

√
x)(1 + a2 3

√
x) · · ·

= −3(1− a)(1− a2)

a3
log a.

and so on.

But if n is any fraction we can actually substitute that value; example:—
(d) when n = 1

2 , the result is∫ ∞
0

dx

(1 + x2)(1 + a2x2)(1 + a4x2)(1 + a6x2) · · ·

=
π

2

1− a
1− a2

· 1− a3

1− a4
· 1− a5

1− a6
· 1− a7

1− a8
· · ·

which I have found to be equal to

π

2(1 + a+ a3 + a6 + a10 + a15 + · · · )

where the general term in the denominator is

an(n−1)/2.

(vi) If a is positive, m less than 1 and n greater than −m, then∫ ∞
0

Γ(x+ a)

Γ(x+ a+ n+ 1)

dx

xm

=
π csc πm

Γ(n+ 1)

{
1

am
− n

1!

1

(a+ 1)m
+
n(n− 1)

2!

1

(a+ 2)m
− · · ·

}
Dem. We know that ∫ 1

0
zx+a−1(1− z)ndz =

Γ(x+ a)Γ(n+ 1)

Γ(x+ a+ n+ 1)
.

Expanding the left side, we have∫ 1

0
zx+a−1

{
1− n

1!
z +

n(n− 1)

2!
z2 − · · ·

}
dz

=
1

a+ x
− n

1!
· 1

a+ x+ 1
+
n(n− 1)

2!
· 1

a+ 2 + x
− · · · .

Therefore ∫ ∞
0

Γ(x+ a)Γ(n+ 1)

xmΓ(x+ a+ n+ 1)
dx

=

∫ ∞
0

x−m
{

1

a+ x
− n

1!

1

a+ x+ 1
+
n(n− 1)

2!

1

a+ 2 + x
− · · ·

}
dx.

Now expanding the terms within the integral on the right side, we see that the above integral

=

∫ ∞
0

x−m
{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · ·

}
dx.
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[
where φ(t) =Γ(t+ 1)

{
1

at+1
− n

1!

1

(a+ 1)t+1
+
n(n− 1)

2!

1

(a+ 2)t+1
− · · ·

}]
=Γ(1−m)φ(m− 1) = Γ(1−m)Γ(m)

{
1

am
− n

1!

1

(a+ 1)m
+ · · ·

}
=π csc πm

{
1

am
− n

1!

1

(a+ 1)m
+ · · ·

}
Hence ∫ ∞

0

Γ(x+ a)

Γ(x+ a+ n+ 1)

dx

xm
=
π csc πm

Γ(n+ 1)

{
1

am
− · · ·

}
.

6. B. Converse of A:—
Expansions of functions by using the theorem.
examples:——

(i) Required the expansion of

(
2

1 +
√

1 + 4x

)n
in ascending powers of x.

Let the expansion of

(
2

1 +
√

1 + 4x

)n
be

φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · · .

Then ∫ ∞
0

xp−1

{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · ·

}
dx

=Γ(p)φ(−p)

=

∫ ∞
0

xp−1

(
2

1 +
√

1 + 4x

)n
dx

(
Substitute x = y + y2

)
=

∫ ∞
0

yp−1(1 + y)p−n−1(1 + 2y)dy

(
Substitute y =

z

1− z

)
=

∫ 1

0
zp−1(1− z)n−2p−1(1 + z)dz

=

∫ 1

0
zp(1− z)n−2p−1dz +

∫ 1

0
zp−1(1− z)n−2p−1dz

=n
Γ(p)Γ(n− 2p)

Γ(n− p+ 1)
.

Hence

φ(−p) = n
Γ(n− 2p)

Γ(n− p+ 1)
or φ(p) = n

Γ(n+ 2p)

Γ(n+ p+ 1)
,

i.e.

φ(0) = 1; φ(1) = n; φ(2) = n(n+ 3); φ(3) = n(n+ 4)(n+ 5);

φ(4) = n(n+ 5)(n+ 6)(n+ 7); and so on.

Hence (
2

1 +
√

1 + 4x

)n
=1− n

1!
x+

n(n+ 3)

2!
x2 − n(n+ 4)(n+ 5)

3!
x3

+
n(n+ 5)(n+ 6)(n+ 7)

4!
x4 − · · · .
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(ii) Required the expansion of
1

(x+
√

1 + x2)n
in ascending powers of x.

Let the expansion be

φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · · ,

then ∫ ∞
0

xp−1

{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− x3

3!
φ(3) + · · ·

}
dx

=Γ(p)φ(−p) =

∫ ∞
0

xp−1

(x+
√

1 + x2)n
dx

(
put x+

√
1 + x2 =

1

y

)
=

1

2p

∫ 1

0
(1− y2)p−1yn−p+1

(
1 +

1

y2

)
dy;

(
put y =

√
z
)

=
1

2p+1

∫ 1

0
(1− z)p−1z

n−p
2

(
1 +

1

z

)
dz

=
n

2p+1

Γ(p)Γ

(
n− p

2

)
Γ

(
n+ p

2
+ 1

) .
Hence

φ(p) = n 2p−1

Γ

(
n+ p

2

)
Γ

(
n− p

2
+ 1

)
so that

φ(0) = 1; φ(1) = n; φ(2) = n2; φ(3) = n(n2 − 12); φ(4) = n2(n2 − 22);

φ(5) = n(n2 − 12)(n2 − 32); φ(6) = n2(n2 − 22)(n2 − 42); etc.

Hence

1

(x+
√

1 + x2)n
=1− n

1!
x+

n2

2!
x2 − n(n2 − 12)

3!
x3

+
n2(n2 − 22)

4!
x4 − n(n2 − 12)(n2 − 32)

5!
x5 + · · · .

Cor. Changing x to ix, and n to in, we have

en sin−1 x = 1 +
n

1!
x+

n2

2!
x2 +

n(n2 + 12)

3!
x3 + · · · .

(3) Given log x
x = −a, required the expansion of xn in ascending powers of a.

Let the expansion be

φ(0)− a

1!
φ(1) +

a2

2!
φ(2)− · · · ,
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then ∫ ∞
0

ap−1

{
φ(0)− a

1!
φ(1) +

a2

2!
φ(2)− · · ·

}
da = Γ(p)φ(−p)

=

∫ ∞
0

ap−1xnda =

∫ 1

0

(
− log x

x

)p−1

xn
1− log x

x2
dx

=

∫ ∞
0

yp−1(1 + y)e−y(n−p)dy, by changing x to e−y

=
nΓ(p)

(n− p)p+1
.

Hence φ(p) = n(n+ p)p−1 so that

φ(0) = 1; φ(1) = n; φ(2) = n(n+ 2); φ(3) = n(n+ 3)2; . . .

Hence

xn =1− n

1!
a+

n(n+ 2)

2!
a2 − n(n+ 3)2

3!
a3 +

n(n+ 4)3

4!
a4 − n(n+ 5)4

5!
a5 + · · · .

(4) Given aqxp + xq = 1; required the expansion of xn in ascending powers of a.
Let the expansion be

φ(0)− a

1!
φ(1) +

a2

2!
φ(2)− · · · ,

then ∫ ∞
0

ar−1

{
φ(0)− a

1!
φ(1) +

a2

2!
φ(2)− a3

3!
φ(3) + · · ·

}
da

=Γ(r)φ(−r) =

∫ ∞
0

ar−1xnda

(
substitute

1− xq

qxp
for a

)
=

∫ 1

0
xn
(

1− xq

qxp

)r−1{p
x
· 1− xq

qxp
+ xq−p−1

}
dx (put x = y1/q)

=

∫ 1

0

1

q
y

n+1
q
−1
(

1− y
qyp/q

)r−1( p

y1/q
· 1− y
qyp/q

+ y
q−p−1

q

)
dy

=
p

qr+1

∫ 1

0
y

n−pr
q
−1

(1− y)rdy +
1

qr

∫ 1

0
y

n−pr
q (1− y)r−1dy

=
n

qr+1

Γ(r)Γ

(
n− pr
q

)
Γ

(
n− pr
q

+ r + 1

) .
Hence

φ(r) =nqr−1

Γ

(
n+ pr

q

)
Γ

(
n+ pr

q
− r + 1

) (so that φ(0) = 1)

=nqr−1

{(
n+ pr

q
− 1

)(
n+ pr

q
− 2

)(
n+ pr

q
− 3

)
· · · to r − 1 factors

}
=n(n+ pr − q)(n+ pr − 2q)(n+ pr − 3q) · · · to r factors.
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Hence we see that: if aqxp + xq = 1, then

xn =1− n

1!
a+

n(n+ 2p− q)
2!

a2 − n(n+ 3p− q)(n+ 3p− 2q)

3!
a3

+
n(n+ 4p− q)(n+ 4p− 2q)(n+ 4p− 3q)

4!
a4

− n(n+ 5p− q)(n+ 5p− 2q)(n+ 5p− 3q)(n+ 5p− 4q)

5!
a5 + · · ·

S. Ramanujan
5thAug. 1913.
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The Second Quarterly Progress Report of
S. Ramanujan

The Mathematics Research Student

————————————————-

As further examples of the Theorem in the previous progress report, let us have one on integrals
and another on expansions.

(a) If r lies between 0 and 1∫ ∞
0

xr−1

{
1m − 2m

x

1!
+ 3m

x2

2!
− 4m

x3

3!
+ · · ·

}
dx = Γ(r)(1− r)m. (1)

Let us verify the result for a few values of m by the known methods.
When m = 1, the integral reduces to∫ ∞

0
xr−1e−x(1− x)dx = Γ(r)− Γ(r + 1) = Γ(r)(1− r).

When m = 2, the integral is∫ ∞
0

xr−1e−x(1− 3x+ x2)dx = Γ(r)− 3Γ(r + 1) + Γ(r + 2) = Γ(r)(1− r)2.

It is very difficult to prove the result by the known methods for non-integral values of m; e.g.,∫ ∞
0

(
1π − 2π

x9

1!
+ 3π

x18

2!
− 4π

x27

3!
+ · · ·

)
dx =

23π

32π
Γ

(
10

9

)
.

Cor. Putting r = 1
2 , and changing x to x2 in (1), we have∫ ∞

0

(
1m − 2m

x2

1!
+ 3m

x4

2!
− 4m

x6

3!
+ · · ·

)
dx =

√
π

2m+1
.

(b) Let us try to find the expansion of eax in ascending powers of e−bx
sin cx

c
.

First let us expand e−ax in ascending powers of
sinh cx

c
e−bx and then change a to −a and c to ci.

Let

e−ax = φ(0)− φ(1)
y

1!
+ φ(2)

y2

2!
− · · ·

where

y = e−bx
sinh cx

c
.

Then, we have by the theorem in the previous progress report:∫ ∞
0

yn−1

{
φ(0)− y

1!
φ(1) +

y2

2!
φ(2)− · · ·

}
dy = Γ(n)φ(−n)

=

∫ ∞
0

(
e−bx

ecx − e−cx

2c

)n−1

e−ax · (c− b)e(c−b)x + (c+ b)e−(c+b)x

2c
dx

=
c− b
(2c)n

∫ ∞
0

e−{a+n(b−c)}x(1− e−2cx)n−1dx

+
c+ b

(2c)n

∫ ∞
0

e−{a+n(b−c)+2c}x(1− e−2cx)n−1dx.
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But we know that∫ ∞
0

e−px(1− e−qx)n−1dx =

∫ 1

0
zp/q−1(1− z)n−1dz

q
=

Γ(n)Γ(pq )

qΓ(pq + n)
.

Hence the previous integral

=
c− b

(2c)n+1

Γ(n)Γ

(
a+ n(b− c)

2c

)
Γ

(
n+

a+ n(b− c)
2c

) +
c+ b

(2c)n+1

Γ(n)Γ

(
a+ n(b− c) + 2c

2c

)
Γ

(
n+

a+ n(b− c) + 2c

2c

)

=

aΓ(n)Γ

(
a+ n(b− c)

2c

)
(2c)n+1Γ

(
a+ n(b+ c)

2c
+ 1

) .
Hence

φ(n) =

a(2c)n−1Γ

(
a+ n(c− b)

2c

)
Γ

(
a− n(b+ c)

2c
+ 1

)
=a {a− n(b+ c) + 2c} {a− n(b+ c) + 4c} {a− n(b+ c) + 6c}
× {a− n(b+ c) + 8c} · · · {a− n(b− c)− 2c}

and also φ(0) = 1. Hence we have,

e−ax =1− a

1!
e−bx

sinh cx

c
+
a(a− 2b)

2!

(
e−bx

sinh cx

c

)2

−
a
{

(a− 3b)2 − c2
}

3!

(
e−bx

sinh cx

c

)3

+
a(a− 4b)

{
(a− 4b)2 − 22c2

}
4!

(
e−bx

sinh cx

c

)4

− · · · .

Now changing a to −a and c to ci on both the sides of the above result we have,

eax =1 +
a

1!
e−bx

sin cx

c
+
a(a+ 2b)

2!
e−2bx

(
sin cx

c

)2

+
a
{

(a+ 3b)2 + c2
}

3!
e−3bx

(
sin cx

c

)3

+
a(a+ 4b)

{
(a+ 4b)2 + 22c2

}
4!

e−4bx

(
sin cx

c

)4

+

{
a(a+ 5b)2 + c2

}{
(a+ 5b)2 + 32c2

}
5!

e−5bx

(
sin cx

c

)5

+
a(a+ 6b)

{
(a+ 6b)2 + 22c2

}{
(a+ 6b)2 + 42c2

}
6!

e−6bx

(
sin cx

c

)6

+ · · · . —– (2)

2. By comparing the nth and the (n + 1)th terms of the above expansion it can be proved that it

is convergent if
∣∣e−bx sin cx

c

∣∣ is not greater than
e−

b
c

tan−1 c
b

√
b2 + c2

; but the least value of x which makes

e−bx
sin cx

c
equal to

e−
b
c

tan−1 c
b

√
b2 + c2

is
1

c
tan−1 c

b
.
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Therefore the expansion (2) is legitimate only when x is not greater than
1

c
tan−1 c

b
though the

series is convergent for many higher values of x. —————————————— (3)
As particular cases of (2), we have,

(a) When b = 0,

eax =1 +
a

1!

sin cx

c
+
a2

2!

(
sin cx

c

)2

+
a(a2 + c2)

3!

(
sin cx

c

)3

+
a2(a2 + 22c2)

4!

(
sin cx

c

)4

+
a(a2 + c2)(a2 + 32c2)

5!

(
sin cx

c

)5

+ · · · ,

from which we have, as particular cases, the expansions of cos ax, sin ax, x, x2, x3, . . . in ascending

powers of
sin cx

c
.

(b) When c = 0, we have

eax =1 +
a

1!
xe−bx +

a(a+ 2b)

2!
x2e−2bx +

a(a+ 3b)2

3!
x3e−3bx + · · ·

from which Abel’s Theorem and all the expansions connected with it can be found.
(c) Changing a to ai and b to bi in (2) and separating the real and imaginary parts we have,

cos ax =1 +
a

1!
sin bx

sin cx

c
− a(a+ 2b)

2!
cos 2bx

(
sin cx

c

)2

−
a
{

(a+ 3b)2 − c2
}

3!
sin 3bx

(
sin cx

c

)3

+
a(a+ 4b)

{
(a+ 4b)2 − 22c2

}
4!

cos 4bx

(
sin cx

c

)4

+ · · · .

Similarly for sin ax also.
(d) Taking the coefficient of a on both sides in (2) we have,

x =
e−bx

1!

sin cx

c
+
b

1!
e−2bx

(
sin cx

c

)2

+
(3b)2 + c2

3!
e−3bx

(
sin cx

c

)3

+
b
{

(4b)2 + (2c)2
}

3!
e−4bx

(
sin cx

c

)4

+

{
(5b)2 + c2

}{
(5b)2 + (3c)2

}
5!

e−5bx

(
sin cx

c

)5

+
b
{

(6b)2 + (2c)2
}{

(6b)2 + (4c)2
}

6!
e−6bx

(
sin cx

c

)6

+ · · · ——————— (4)

Similarly we can expand x2, x3, . . . also in powers of e−bx sin cx.

3. Not only can a number of expansions be derived as particular cases from (2) but also the solution
of many transcendental equations. As an example, let us consider the equation

1− x3

3!
+
x6

6!
− x9

9!
+
x12

12!
− · · · = 0.
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This equation has an infinite number of real roots, as will be seen later, and all its imaginary roots
can be found by multiplying all the real roots by ω and ω2, the imaginary cube roots of unity.

Now,

1− x3

3!
+
x6

6!
− · · · =e−x + e−xω + e−xω

2

3
=
e−x + 2ex/2 cos

x
√

3

2
3

= 0.

Hence

cos
x
√

3

2
= −1

2
e−3x/2 (5)

We can easily see that there are an infinite number of intersections of the two curves y = cos x
√

3
2 and

y = −1
2e
−3x/2 and the values of x corresponding to these intersections are all positive and are very

near to the roots of cos x
√

3
2 .

As the roots of cos x
√

3
2 are πn√

3
where n is odd, let x =

(
πn√

3
− z
)

, n being any odd positive integer.

Substituting this value of x in the equation (5) we have,

cos

(
πn

2
− z
√

3

2

)
= −1

2
e−πn

√
3/2+3z/2

that is

(−1)(n−1)/2 sin
z
√

3

2
= −1

2
e−πn

√
3/2+3z/2.

Let h stand for e−πn
√

3/2. Then we see that

(−1)(n+1)/2h

2
= e−3z/2 sin

z
√

3

2
.

Now expand z in ascending powers of e−3z/2 sin z
√

3
2 by using (4) and then substitute (−1)(n+1)/2 h

2

for e−3z/2 sin z
√

3
2 in the expansion.

Thus we see that

z =
(−1)(n+1)/2

√
3

· h
1!

+
h2

2 · 1!
+

(−1)(n+1)/2

√
3

· 7h3

3!
+ · · · .

Hence

x =
πn√

3
− z =

πn√
3
− 1

2

{
h2

1!
+

13

3!
h4 +

28 · 31

5!
h6

+
49 · 52 · 57

7!
h8 +

76 · 79 · 84 · 91

9!
h10 + · · ·

}
+

(−1)(n−1)/2

√
3

{
h

1!
+

7

3!
h3 +

19 · 21

5!
h5 +

37 · 39 · 43

7!
h7

+
61 · 63 · 67 · 73

9!
h9 +

91 · 93 · 97 · 103 · 111

11!
h11 + · · ·

}
where h = e−πn

√
3/2 and n any odd positive integer.

The series is convergent if h < e−π
√

3/6 by (3) and fortunately the first value of h itself is

e−π
√

3/2 which is by far less than e−π
√

3/6. When n becomes greater and greater, h rapidly diminishes
and consequently the series becomes more and more rapidly convergent.
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4. Let us write for the sake of simplicity the Theorem in the first progress report viz.∫ ∞
0

xn−1

{
φ(0)− x

1!
φ(1) +

x2

2!
φ(2)− · · ·

}
dx = Γ(n)φ(−n)

in the form ∫ ∞
0

xn−1

{
µ0 − µ1

x

1!
+ µ2

x2

2!
− · · ·

}
dx = Γ(n)µ−n.

Theorem II. If φ(0) = ψ(0) and φ(∞) = ψ(∞), then

∫ ∞
0

φ(ax)− ψ(bx)

x
dx = {φ(0)− φ(∞)}

log
b

a
+

d log
coeff of xn in ψ(x)

coeff of xn in φ(x)

dn


n=0

 .

Dem. By Theorem I we have,∫ ∞
0

xn−1

{
u0 − u1

ax

1!
+ u2

a2x2

2!
− · · ·

}
dx = Γ(n)a−nu−n

and ∫ ∞
0

xn−1

{
v0 − v1

bx

1!
+ v2

b2x2

2!
− · · ·

}
dx = Γ(n)b−nv−n.

Let

u0 − u1
x

1!
+ u2

x2

2!
− · · ·

be denoted by φ1(x) and

v0 − v1
x

1!
+ v2

x2

2!
− · · ·

be denoted by ψ1(x) then we see that∫ ∞
0

xn−1 {φ1(ax)− ψ1(bx)} dx =Γ(n)
(
a−nu−n − b−nv−n

)
=Γ(n+ 1)

a−nu−n − b−nv−n
n

.

Now suppose that φ1(0) = ψ1(0) so that u0 = v0 and let n become indefinitely small and ultimately
vanish, then we have,∫ ∞

0

{φ1(ax)− ψ1(bx)}
x

dx =

[
a−nu−n − b−nv−n

n

]
n=0

=

[
bnvn − anun

n

]
n=0

, by changing n to − n

=

[
d(bnvn − anun)

dn

]
n=0

,

(
since the above is of the form

0

0

)
=

[
vnb

n log b− unan log a+ bn
dvn
dn
− andun

dn

]
n=0

= v0 log b− u0 log a+

[
dvn
dn
− dun

dn

]
n=0

= v0 log b− u0 log a+

[
vn
d log vn
dn

− un
d log un
dn

]
n=0

= v0 log b− u0 log a+ v0

[
d log vn
dn

]
n=0

− u0

[
d log un
dn

]
n=0

.
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But u0 = v0 = φ1(0). Hence the above reduces to

φ1(0)

log
b

a
+

d log
vn
un

dn


n=0


But

vn
un

=
coefft of xn in ψ1(x)

coefft of xn in φ1(x)
.

Hence we have: if φ1(0) = ψ1(0), then

∫ ∞
0

φ1(ax)− ψ1(bx)

x
dx = φ1(0)

log
b

a
+

d log
coefft of xn in ψ1(x)

coefft of xn in φ1(x)

dn


n=0

 .

But according to the 4th condition of validity of Theorem I given in the first Progress Report φ1(x)
and ψ1(x) should vanish when x becomes infinitely great.

Now let φ(x) and ψ(x) be two functions which do not necessarily vanish when x = ∞ but let
them approach the same finite limit when x becomes infinite so that φ(∞) = ψ(∞) and let φ(0) be
also equal to ψ(0).

Then we see that,∫ ∞
0

φ(ax)− ψ(bx)

x
dx =

∫ ∞
0

{φ(ax)− φ(∞)} − {ψ(bx)− ψ(∞)}
x

dx

= {φ(0)− φ(∞)}

log
b

a
+

d log
coefft of xn in ψ(x)

coefft of xn in φ(x)

dn


n=0


since {φ(ax)−φ(∞)} and {ψ(bx)−ψ(∞)} vanish when x =∞ and also φ(0)−φ(∞) = ψ(0)−ψ(∞).

Q.E.D.

5. Examples of Theorem II.
(1) ∫ ∞

0

φ(ax)− φ(bx)

x
dx = {φ(0)− φ(∞)} log

b

a
.

This result, which is known as “Frullani’s Theorem” (given in Williamson’s Integral Calculus) can
very easily be got from Theorem II by supposing φ and ψ to be the same function.
(2) ∫ ∞

0

(1 + ax)−p − (1 + bx)−q

x
dx

= log
b

a
+

d log
Γ(q + n)Γ(p)

Γ(p+ n)Γ(q)

dn


n=0

which reduces to

log
b

a
+

1

p
− 1

q
+

1

p+ 1
− 1

q + 1
+

1

p+ 2
− 1

q + 2
+ · · · .
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In particular cases we have,∫ ∞
0

(1 + ax)−5 − (1 + bx)−7

x
dx =

11

30
+ log

b

a
.∫ ∞

0

(1 + ax)−p − (1 + bx)−p−1

x
dx =

1

p
+ log

b

a
.∫ ∞

0

(1 + ax)−p−1 − (1 + bx)−p−5

x
dx =

2(2p+ 5)(p2 + 5p+ 5)

(p+ 1)(p+ 2)(p+ 3)(p+ 4)
+ log

b

a
.∫ ∞

0

(1 + ax)−1/4 − (1 + bx)−3/4

x
dx =π + log

b

a
,

and so on.
(3)

∫ ∞
0

(1 + ax)−p −
(

2

1 +
√

1 + 4bx

)q
x

dx

= log
b

a
+

d log
qΓ(q + 2n)Γ(p)

Γ(q + n+ 1)Γ(p+ n)

dn


n=0

= log
b

a
− 1

q
+

(
1

p
− 1

q
+

1

p+ 1
− 1

q + 1
+ · · ·

)
.

Cor. ∫ ∞
0

(1 + ax)−p −
(

2

1 +
√

1 + 4bx

)p
x

dx = log
b

a
− 1

p
.

(4) ∫ ∞
0

(1 + ax)−p − (bx+
√

1 + b2x2)−2q

x
dx

= log
b

a
+


d log

2nqΓ(q + n
2 )Γ(p)

Γ(q + 1− n
2 )Γ(p+ n)

dn


n=0

=
1

2
ψ(q) +

1

2
ψ(q + 1)− ψ(p) + log 2 + log

b

a

= log
2b

a
+

1

2q
+

1

p
− 1

q
+

1

p+ 1
− 1

q + 1
+ · · · .

Cor. ∫ ∞
0

(1 + ax)−p − (bx+
√

1 + b2x2)−2p

x
dx = log

2b

a
+

1

2p
.

Similarly many other Integrals, such as

∫ ∞
0

e−ax − (1 + bx)−p

x
dx,

∫ ∞
0

e−ax cos5 bx−
(

2

1 +
√

1 + 4cx

)p
x

dx
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etc. can be found from Theorem II.
(5) If

pφ(0) + qψ(0) + rf(0) + sχ(0) + · · · = 0,

and

pφ(∞) + qψ(∞) + rf(∞) + sχ(∞) + · · · = 0,

then ∫ ∞
0

pφ(kx) + qψ(`x) + rf(mx) + sχ(nx) + · · ·
x

dx

can be found from Theorem II.

6. Corollaries to Theorem I. (1)∫ ∞
0

xn−1

(
u0 − u2

x2

2!
+ u4

x4

4!
− · · ·

)
dx = Γ(n)u−n cos

πn

2
,

n being any positive quantity.

Dem. By Theorem I we have,∫ ∞
0

xn−1

(
u0 − u2

x

1!
+ u4

x2

2!
− · · ·

)
dx = Γ(n)u−2n.

Changing x to x2 and n to n
2 , we have,∫ ∞

0
xn−1

(
u0 − u2

x2

1!
+ u4

x4

2!
− · · ·

)
dx =

1

2
Γ
(n

2

)
u−n.

Now changing un to un
Γ(n

2 )
Γ(n) we have∫ ∞

0
xn−1

(
u0 − u2

x2

2!
+ u4

x4

4!
− · · ·

)
dx =

Γ
(
n
2

)
Γ
(
−n

2

)
2Γ(−n)

u−n

=Γ(n)u−n cos
πn

2
.

(2) If n lies between 0 and 1,∫ ∞
0

xn−1
(
u0 − u1x+ u2x

2 − u3x
3 + · · ·

)
dx =

πu−n
sinπn

.

Dem. Changing un to unΓ(n+ 1) in Theorem I we can get the result.

(3) If n lies between 0 and 2,∫ ∞
0

xn−1
(
u0 − u2x

2 + u4x
4 − u6x

6 + · · ·
)
dx =

πu−n
2 sin πn

2

.

Dem. Change x to x2, n to n
2 , and ut to u2t in Cor. 2.

Similarly by changing x to x2 and n to n
r , we have

(4) If n lies between 0 and r,∫ ∞
0

xn−1
(
u0 − urxr + u2rx

2r − u3rx
3r + · · ·

)
dx =

πu−n
r sin πn

r

.
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(5) ∫ ∞
0

(
a0 − a1

x

1!
+ a2

x2

2!
− a3

x3

3!
+ · · ·

)
cosnx dx

= a−1 − n2a−3 + n4a−5 − n6a−7 + · · · .

Dem. Expand cosnx and integrate separately.

(6) In a similar manner we have,∫ ∞
0

(
a0 − a1

x

1!
+ a2

x2

2!
− · · ·

)(
b0 − b2

n2x2

2!
+ b4

n4x4

4!
− · · ·

)
dx

=b0a−1 − n2b2a−3 + n4b4a−5 − n6b6a−7 + · · · .

(7) ∫ ∞
0

(
a0 − a2x

2 + a4x
4 − a6x

6 + · · ·
)

cosnx dx

=
π

2

(
a−1 −

n

1!
a−2 +

n2

2!
a−3 −

n3

3!
a−4 + · · ·

)
.

Dem. Here we should not expand cosnx and integrate separately as in Cor. (5) for the integral∫ ∞
0

xn−1
(
a0 − a2x

2 + a4x
4 − · · ·

)
dx =

πa−n
2 sin πn

2

is true only when n lies between 0 and 2. Now(
a0 − a2x

2 + a4x
4 − · · ·

)
cosnx

= a0 − x2

(
a2 + a0

n2

2!

)
+ x4

(
a4 + a2

n2

2!
+ a0

n4

4!

)
− · · · .

Let

ur = ar + ar−2
n2

2!
+ ar−4

n4

4!
+ · · · to infinity

−a−2
nr+2

(r + 2)!
− a−4

nr+4

(r + 4)!
− · · · .

Then we see that,∫ ∞
0

(
a0 − a2x

2 + a4x
4 − a6x

6 + · · ·
)

cosnx dx

=

∫ ∞
0

(
u0 − u2x

2 + u4x
4 − u6x

6 + · · ·
)
dx =

π

2
u−1 by Cor. (3)

=
π

2

(
a−1 −

n

1!
a−2 +

n2

2!
a−3 −

n3

3!
a−4 + · · ·

)
.

(8) Similarly we can prove that∫ ∞
0

(
a0 − a2x

2 + a4x
4 − · · ·

)(
b0 − b2

n2x2

2!
+ b4

n4x4

4!
− · · ·

)
dx

=
π

2

(
b0a−1 −

n

1!
b1a−2 +

n2

2!
b2a−3 − · · ·

)
.
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7. Theorem III If ∫ ∞
0

φ(x) cosnx dx = ψ(n)

then ∫ ∞
0

ψ(x) cosnx dx =
π

2
φ(n),

and also: if ∫ ∞
0

φ(x) sinnx dx = ψ(n)

then ∫ ∞
0

ψ(x) sinnx dx =
π

2
φ(n).

Dem. By Cor. (5) to Theorem I, we have,∫ ∞
0

(
a0 − a1

x

1!
+ a2

x2

2!
− · · ·

)
cosnx dx = a−1 − n2a−3 + n4a−5 − n6a−7 + · · ·

and by Cor. (7) we have∫ ∞
0

(
a−1 − x2a−3 + x4a−5 − · · ·

)
cosnx dx =

π

2

(
a0 − a1

n

1!
+ a2

n2

2!
− · · ·

)
.

Let

a0 − a1
x

1!
+ a2

x2

2!
− · · ·

be denoted by φ(x) and
a−1 − n2a−3 + n4a−5 − · · ·

by ψ(n). Then we evidently see that∫ ∞
0

ψ(x) cosnx dx =
π

2
φ(n).

Thus the first part of the theorem is proved.
In a similar manner the 2nd part also can be proved.

Q. E. D.

Examples:—-
(1) ∫ ∞

0
e−x cosnx dx =

1

1 + n2
;

Hence ∫ ∞
0

cosnx

1 + x2
dx =

π

2
e−n.

(2) ∫ ∞
0

xp−1e−ax cosnx dx =
Γ(p) cos

(
p tan−1 n

a

)
(a2 + n2)p/2

.

Hence

Γ(p)

∫ ∞
0

cos
(
p tan−1 x

a

)
(a2 + x2)p/2

cosnx dx =
π

2
np−1e−an.

(3) ∫ ∞
0

xp−1e−ax sinnx dx =
Γ(p) sin

(
p tan−1 n

a

)
(a2 + n2)p/2

.
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Hence

Γ(p)

∫ ∞
0

sin
(
p tan−1 x

a

)
(a2 + x2)p/2

sinnx dx =
π

2
np−1e−an.

(4) ∫ ∞
0

e−ax
2

cos 2nx dx =

√
π

2
√
a
e−n

2/a.

Changing a to a+ bi, separating the real and imaginary parts and then putting a = 0, we have∫ ∞
0

cos 2nx cos bx2 dx =

√
π

2
√
b

cos

(
π

4
− n2

b

)
and ∫ ∞

0
cos 2nx sin bx2 dx =

√
π

2
√
b

sin

(
π

4
− n2

b

)
.

Changing x to
√
x we have ∫ ∞

0

cos 2
√
ax cosnx√
x

dx =

√
π

n
cos
(π

4
− a

n

)
and ∫ ∞

0

cos 2
√
ax sinnx√
x

dx =

√
π

n
sin
(π

4
− a

n

)
.

Hence by Theorem III, we have∫ ∞
0

cos
(
π
4 −

a
x

)
√
x

cosnx dx =

√
π

2
√
n

cos(2
√
an)

and ∫ ∞
0

sin
(
π
4 −

a
x

)
√
x

sinnx dx =

√
π

2
√
n

cos(2
√
an).

S. Ramanujan
7th Nov. 1913.
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Madras
9th March 1914

From
S. Ramanujan
Scholarship holder in Mathematics

To The Board of Studies in Mathematics

through The Registrar of the University of Madras

Gentlemen,

In continuation of my second progress report, dated 7th Nov. 1913, I beg to submit herewith my
third progress report for the period ended the 28th Feb. 1914.

I beg to remain
gentlemen,

Your obedient servant
S. Ramanujan

1. The validity of the Theorem given in the first report, viz.,∫ ∞
0

xn−1

(
u0 − u1

x

1!
+ u2

x2

2!
− · · ·

)
dx = Γ(n)u−n

depends upon
(a) The nature of n
(b) The nature of the function (of x) viz.,

u0 − u1
x

1!
+ u2

x2

2!
− u3

x3

3!
+ · · ·

(c) The nature of the function (of n) un.

(a) and (b) have already been discussed in the 1st report, (c) is the most important of all as the
theorems in the 2nd report as well as many other results are derived from the above theorem.

Since n can be fractional un should be a continuous function of n for all values of n.
un should not be infinite for all finite positive integral values of n.

2. In spite of all these conditions there is another difficulty, viz., that of ascertaining un for fractional
values of n from the values of un for positive integral values of n only.

But an infinite no. of functions may have the same values u0, u1, u2, u3, . . . as shown below.

Figure 1: Graphical Illustration
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Now let us try to ascertain which of these functions we should take for our theorem as the value
of the integral cannot be indeterminate.

First let us see what becomes of un when u0 = 0, u1 = 0, u2 = 0, u3 = 0, u4 = 0, . . . . Here we
evidently see that the value of the integral is always zero for all values of n integral or fractional.
Therefore un in this case should always be zero and not a function of n vanishing only for the values
0, 1, 2, 3, 4, . . . of n, such as the functions f(n) sin πn, f(n)

Γ(−n) , etc. where f(n) is any arbitrary function
not becoming infinite for positive integral values of n. Hence we infer that un in the integral we
have taken should not contain any function of n vanishing for positive, integral values of n; as an
example n+ sin πn should not be supposed to be un as it contains a function sin πn which vanishes
for 0, 1, 2, 3, 4, . . . of n.

3. There can be only one such function having the values u0, u1, u2, u3, . . . corresponding to the values
of 0, 1, 2, 3, . . . of n.

For, if possible let there be two such functions un and vn different from each other, and yet having
the same values u0, u1, u2, u3, . . . when n = 0, 1, 2, 3, . . . . Then we see that vn = un + (vn − un) of
which vn − un = 0 when n = 0, 1, 2, 3, 4, . . . which contradicts our hypothesis. Hence we conclude
there cannot be more than one such function.

Thus we see that, whenever we want such a unique function passing through u0, u1, u2, u3, . . .
first we should find a continuous function passing through u0, u1, u2, u3, . . . and then remove from
it functions vanishing for positive integral values of n (if any) and the function left is the unique
function required.

Examples:—- If u0 = 0, u1 = 1, u2 = 4, u3 = 9, etc., the squares of natural numbers, then the unique

un is n2 and not any other function such as n2 + sin2 πn.
If u0, u1, u2, . . . are 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, etc., then

un =
n+ 1 + cos πn2

2
.

The unique un is not only useful in the present theorem on integrals but also in all fractional order
of functions, differentiations, etc.

Fractional Order of Functions

4. Let FF (x) be denoted by F 2(x), FFF (x) by F 3(x) and so on. Then Fn(x) for all values of n is
the unique function passing through

F 0(x), F 1(x), F 2(x), F 3(x), . . . ; e.g.,

let F (x) = axp, then we see that

F 0(x) = x; F 1(x) = axp; F 2(x) = ap+1xp
2
; F 3(x) = ap

2+p+1xp
3
;

and so on.
Hence

Fn(x) = a
pn−1
p−1 xp

n

which is unique, so that

F 1/2(x) = a
1

1+
√
px
√
p.

5. The meaning of Fm(x) when m is not an integer can be got from the identity Fm(Fn(x))
= Fm+n(x). Since F 1/2F 1/2(x) = F (x), we see that F 1/2(x) is a function operated upon by the
same function producing the original function F (x); e.g., let

ψ(x) = a
1

1+
√
px
√
p,
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then

ψψ(x) = a
1

1+
√
p

(
a

1
1+
√
px
√
p
)√p

= axp.

Hence if F (x) = axp, then

F 1/2(x) = a
1

1+
√
px
√
p.

Similarly, F p/q(x) may be defined and Fn(x) may be extended to irrational values of n such as

F
√

2(x); F log 2(x); F e(x); F π(x); etc.

6. Theorem.
If

Fm(x) = φ(x)

and
Fn(x) = ψ(x),

and
fm(x) = χ−1φ{χ(x)},

then
fn(x) = χ−1ψ{χ(x)}.

Dem. Since
fm(x) = χ−1φ{χ(x)},

we see that

f2m(x) =χ−1φ2{χ(x)}

and generally

fn(x) =χ−1φn/m{χ(x)}.

But
φn/m{χ(x)} = Fn{χ(x)} = ψ{χ(x)}.

Hence
fn(x) = χ−1ψ{χ(x)}.

Q.E.D.

Examples.
(a) If

F (x) = m
√
a(xm + 1)p − 1,

then

Fn(x) =
m

√
a

pn−1
p−1 (xm + 1)pn − 1.

Dem. Let χ(x) = xm + 1, so that χ−1(x) = m
√
x− 1 and φ(x) = axp, then we see that

F (x) =χ−1φ{χ(x)}
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so that

Fn(x) =χ−1φn{χ(x)}

=χ−1

[
a

pn−1
p−1 {χ(x)}pn

]
by the above theorem

=
m

√
a

pn−1
p−1 (xm + 1)pn − 1.

(b) If F (x) = x2 − 2, then

F 1/2(x) =

(
x+
√
x2 − 4

2

)√2

+

(
x−
√
x2 − 4

2

)√2

,

F
log 3
log 2 (x) =x3 − 3x,

and

F
log 5
log 2 =x5 − 5x3 + 5x.

Dem. Let x = y +
1

y
, then we see that

F 0(x) = y +
1

y
; F 1(x) = y2 +

1

y2
; F 2(x) = y4 +

1

y4
; etc.

Hence

Fn(x) = y2n + y−2n =

(
x+
√
x2 − 4

2

)2n

+

(
x−
√
x2 − 4

2

)−2n

,

so that F 1/2(x) etc. = the required result.

(c) Find Fn(x) when

(i) F (x) =x2 + 2x,

(ii) F (x) =x2 − 2x,

(iii) F (x) =x2 + 4x.

(i) Let φ(x) = x2 and χ(x) = x+ 1 so that χ−1(x) = x− 1 then we see that

F (x) = χ−1φ{χ(x)}.

Hence we have

Fn(x) = χ−1φn{χ(x)} = (x+ 1)2n − 1.

(ii) Let φ(x) = x2 − 2, and χ(x) = x− 1, so that χ−1(x) = x+ 1, then we see that

F (x) = χ−1φ{χ(x)}.

Hence we have

Fn(x) =χ−1φn{χ(x)} which by (b)

=1 +

(
x− 1 +

√
x2 − 2x− 3

2

)2n

+

(
x− 1−

√
x2 − 2x− 3

2

)−2n

.
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(iii) Let φ(x) = x2 − 2, and χ(x) = x+ 2 so that χ−1(x) = x− 2, then we see that

F (x) = χ−1φ{χ(x)}.

Hence we have

Fn(x) =χ−1φn{χ(x)} which by (b)

=

{(√
x+ 4 +

√
x

2

)2n

−
(√

x+ 4−
√
x

2

)−2n
}2

.

(d) If

1 +
√
F log 2(x) =

√
1− F log 2(x)

1− x

then

1 + 2

√
F log 3(x)

x
=

√
1− F log 3(x)

1− x
.

Dem. Let

F log 2(x) =

(
1− y2

1 + y2

)2

,

then we see that
√

1− x = y or x = 1 − y2 from which we can prove as in the previous example
that

Fn log 2(x) =
4(

1 + y

1− y

)2n

+

(
1− y
1 + y

)2n

+ 2

.

Now putting n =
log 3

log 2
, we have

F log 3(x) =
4(1− y2)3

{(1 + y)3 + (1− y)3}2
=

(1− y2)3

(1 + 3y2)2
,

so that

1− F log 3(x) =
y2(3 + y2)2

(1 + 3y2)2
.

Hence we have

1 + 2

√
F log 3(x)

1− y2
=

√
1− F log 3(x)

y2

that is

1 + 2

√
F log 3(x)

x
=

√
1− F log 3(x)

1− x
.

Orders of Infinity

7. Using the notation used by Mr. G. H. Hardy, viz., � which means ‘is of an order higher than’ and
≺ which means ‘is of an order lower than’ we have when x becomes infinite,

x ≺ x2 ≺ x3 ≺ x4 and so on.
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ex
2 � xx � x! � ex � xn however great n may be.

ex ≺ eex ≺ eee
x

and so on.

There are functions which defy all exponential scales; for example, the series,

1 +
ex

23
+
ee

x

234
+
ee

ex

2345
+
ee

ee
x

2345
6 + · · ·

(which is convergent for all values of x)

� eee
··
·e
x

however great n may be, and where there are n e’s. We need not consider the higher orders than x
and lower orders than x separately as the higher orders are inverse functions of the lower orders; e.g.,
ex is the inverse of log x; ee

x
is the inverse of log log x or log2 x and so on.

log x ≺ n
√
x however great n may be

log2 x or log log x ≺ n
√

log x ” ” ”

log3 x ≺ n

√
log2 x ” ” ”.

and so on.

8. Now let us try to find a function defying all logarithmic scales i.e., a function ≺ logn x however
great n may be.

First let us consider the function φ(x) defined by the relation xφ(x) = φ(log x) and φ(0) = 1.
Then we see that

φ(1) = 1; φ(e) =
1

e
; φ(ee) =

1

e1+e
and so on.

Let

φ

(
ee

e·
··
e )

= un,

and where there are n e’s. Then

u0 = 1, u1 =
1

e
, u2 =

1

e1+e
, etc.

Hence by taking the unique function un passing through u0, u1, u2 etc. we see that φ(x) is finite and
definite for all values of x and φ(±∞) = 0 and also φ(x) < 1 when x > 1.

Figure 2: Graphical Illustration
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Let ∫ 1

0
φ(x)dx = C,

then we see that ∫ e

1
φ(x)dx =

∫ 1

0

φ(log x)

x
dx =

∫ 1

0
φ(x)dx = C,∫ ee

e
φ(x)dx =

∫ e

1

φ(log x)

x
dx =

∫ e

1
φ(x)dx = C,

and so on. Hence ∫ ∞
0

φ(x)dx =∞

and therefore ∫ x

0
φ(x)dx

is a function becoming infinite as x becomes ∞. Now let us see what the order of
∫
φ(x)dx is. When

x is great,

φ(x) <
1

x
since φ(x) =

φ(log x)

x
.

Therefore ∫
φ(x)dx ≺ log x.

Similarly

φ(x) =
φ(log x)

x
=
φ(log log x)

x log x
=
φ(log log log x)

x log x log log x
, etc.

Hence ∫
φ(x)dx ≺ logn x

however great n may be. Therefore
∫
φ(x)dx is a function becoming infinite when x =∞ and defying

all logarithmic scales and consequently the inverse of
∫
φ(x)dx defies all exponential scales.

From the above result we can easily prove that the series

φ(1) + φ(2) + φ(3) + φ(4) + · · ·

is a divergent series defying all logarithmic tests and its divergency is so slow that the sum to 102000000

terms does not exceed 5.
But there will be no wonder in the above statement if we know that even if we add up 1029 terms

in the ordinary divergent series

1

2 log 2
+

1

3 log 3
+

1

4 log 4
+

1

5 log 5
+ · · ·

the sum will not exceed 5.

Scales of Orders of Infinity

9.
x,

√
x, 3

√
x, 4

√
x, . . .

belong to the ordinary scale.

log x, 3
√

log x, log log x, log log log x, log(x+ log x),
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etc. belong to the logarithmic scale.
Using the φ function of art. 8., we have

φ(x), φφ(x) or φ2(x), φ(log x),

etc. belonging to the φ-scale. Thus we see that the number of orders of infinity in each scale is infinite.

Theorem. The number of scales is infinite.

Dem. Let
f(x), ff(x), or f2(x), {f(x)}2,

√
ff(x),

etc. belong to the f -scale (a known scale) and let F be a function defined by the relation

F (x) = f1(x)F{f(x)}.

Then we can prove, as in art. 8. that∫ f(a)

a
F (x)dx =

∫ f2(a)

f(a)
F (x)dx =

∫ f3(a)

f2(a)
F (x)dx = · · · = C say.

Hence ∫ fn(a)

a
F (x)dx = nC,

and consequently ∫ ∞
a

F (x)dx =∞.

Therefore
∫
F (x)dx is a function becoming infinite as x becomes infinite, and can be proved to be

(as in the previous art. 8) to be ≺ fn(x) however great n may be; that is
∫
F (x)dx defies all f -scales.

Hence we see that if one scale is known another scale can be found defying the known scale and so
the number of scales is infinite.

To Expand f r(x) in Ascending Powers of r

10. In arts. 4 and 5 we have given meaning to f r(x) for fractional values of r and since there is a
continuity in the value of r we shall try to differentiate f r(x) with respect to r and expand it in
ascending powers of r also.

(a) Let

f r(x) = ψ0(x) +
r

1!
ψ1(x) +

r2

2!
ψ2(x) + · · · ,

where ψ0(x), ψ1(x), . . . do not contain r.
(b) Putting r = 0, we have f0(x) = x = ψ0(x).

Again changing x to fh(x) in both sides we have

f r{fh(x)} = fh(x) +
r

1!
ψ1{fh(x)}+ · · · .

But

f r{fh(x)} =f r+h(x) which by Taylor’s Theorem

=fh(x) +
r

1!

dfh(x)

dh
+ · · · .
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Hence by equating the coefficients of r we have

dfh(x)

dh
= ψ1{fh(x)}.

Let fh(x) = y and fh(y) = z, then we see that

dy

dh
= ψ1(y).

Therefore
dz

dh
= ψ1(y)

dz

dy

i.e.,
dfh(y)

dh
= ψ1(y)

dfh(y)

dy
,

which by changing h to r and y to x becomes

(c) Theorem.
df r(x)

dr
= ψ1(x)

df r(x)

dx
.

Again,
df r(x)

dr
= ψ1(x) +

r

1!
ψ2(x) +

r2

2!
ψ3(x) + · · ·

and

ψ1(x)
df r(x)

dx
= ψ1(x) +

r

1!

dψ1(x)

dx
ψ1(x)

+
r2

2!

dψ2(x)

dx
ψ1(x) +

r3

3!

dψ3(x)

dx
ψ1(x) + · · · by 10(a).

Hence by equating the coefficient of rn−1 we have

Theorem.

ψn(x) = ψ1(x)
dψn−1(x)

dx

from which we can deduce ψ2(x), ψ3(x), ψ4(x), . . . from ψ1(x) so that we have to determine ψ1(x)
only.

Now let us consider the function in art. 9; viz., F (x) defined by the relation

F (x) = F{f(x)}df(x)

dx
.

Then integrating both sides, we have ∫ f(x)

x
F (z)dz = C,

i.e., a constant whatever be the value of x. We have also proved in art. 9. that∫ fr(x)

x
F (z)dz = rC.

Differentiating both sides with respect to r we have

F{f r(x)}df
r(x)

dr
= C.
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But
df r(x)

dr
= ψ1(x)

df r(x)

dx
by 10(c).

Hence we have

ψ1(x)
df r(x)

dx
F{f r(x)} = C.

But

F (x) =
df(x)

dx
F{f(x)} =

df2(x)

dx
F{f2(x)}

=
df3(x)

dx
F{f3(x)} = · · · = df r(x)

dx
F{f r(x)}.

(e) Therefore

ψ1(x) =
C

F (x)
.

Thus we have expanded f r(x) in ascending powers of r.

Fractional Order of Differentiation

11. Using the notation
Df(x) = f ′(x), D2f(x) = f

′′
(x), etc.,

we can define Dnf(x) for all values of n as the unique function (discussed in art. 3) passing through

D0f(x), D1f(x), D2f(x), D3f(x), . . . ; e.g.,

Let f(x) = eax then we see that Dneax is the unique function passing through

eax, aeax, a2eax, a3eax, etc.

Hence
Dn(eax) = aneax

for all values of n.

Theorem. If n is any positive quantity then∫ ∞
0

xn−1f (r)(a− x)dx = Γ(n)f (r−n)(a)

where f (r)(a) denotes that f(a) is differentiated r times. The above result is a theorem as well as a
definition; for if we know f (r)(a) for all values of r, we can use the theorem in finding the definite
integral ∫ ∞

0
xn−1f r(a− x)dx.

But if we do not know f r(a) for all values of r, we can use the theorem in getting fractional order of
differential coefficient, thus:–

Suppose we want the kth differential coefficient of f(a) where k is any quantity, fraction or integer.
Take r any integer greater than k and let n = r− k. Then n is a positive quantity and so we have∫ ∞

0
xn−1f r(a− x)dx = Γ(n)fk(a).
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Since r is an integer the left side is intelligible and so we can use the theorem as a definition of
fractional differentiation.

Dem. of the Theorem.∫ ∞
0

xn−1f (r)(a− x)dx =

∫ ∞
0

xn−1
{
f r(a)− x

1!
f (r+1)(a) + · · ·

}
dx

=Γ(n)f (r−n)(a) by the Theorem on Integral.

Cor. Putting n = 1
2 , and changing x to x2 in the above theorem, we have∫ ∞

0
f (r)(a− x2)dx =

√
π

2
· f (r− 1

2
)(a),

so that ∫ ∞
0

f(a− x2)dx =

√
π

2
· f (− 1

2
)(a).

We can get a number of difficult, new and interesting results by differentiating many known simple
results to fractional number of times.

The Use of Operators

12(i) If n is any positive integer Enφ(0) can be used for φ(n) whatever be the function φ. But if n
is not restricted to positive integers Enφ(0) = φ(n) only when φ is the unique function discussed in
(3), for

Enφ(0) =(1 + ∆)nφ(0)

=

{
1 +

n

1!
∆ +

n(n− 1)

2!
∆2 + · · ·

}
φ(0)

=φ(0) +
n

1!
{φ(1)− φ(0)}+

n(n− 1)

2!
{φ(2)− 2φ(1) + φ(0)}+ · · · .

Hence if we write φ(n) for Enφ(0), we see that φ(n) is got from the values φ(0), φ(1), φ(2), φ(3), . . .
only. Therefore φ(n) should be the unique function in 3.

Example.– The Euler–Maclaurin Sum Formula viz.

φ(1) + φ(2) + · · ·+ φ(n) = C +

∫
φ(n)dn+

1

2
φ(n) +

B2

2!
φ′(n)− · · ·

should be applied if φ(n) is the unique function as we have used the operators in getting the result
and φ(n) is known for integral values of n in the left side while we use φ(n) and

∫
φ(n)dn as if it is

known for all values of n.

ii. If a result is true only for real values of a quantity (say a), then the result got by using the
operators for a is true only when the new function can be expressed in terms of the original function;
e.g.,

We know ∫ ∞
0

cos ax

1 + x2
dx =

π

2
e−a

is not true for complex values of a. Hence∫ ∞
0

cosDx

1 + x2
φ(0)dx =

π

2
e−Dφ(0)
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or ∫ ∞
0

φ(ix) + φ(−ix)

2(1 + x2)
dx =

π

2
φ(−1)

is true only when φ(ix) + φ(−ix) can be expressed in the form

A+B cosPx+ C cosQx+ · · ·

and not in case of any other function.

iii. But if a result is true for complex values of a then we can freely use the operators; e.g.
(a) Since ∫ ∞

0
xn−1e−axdx or

∫ ∞
0

xn−1
∞∑
s=0

(−1)sasxs

s!
dx =

Γ(n)

an

is true even when a is changed to p+ qi, we have

∫ ∞
0

xn−1
∞∑
s=0

(−1)sEsxs

s!
φ(0)dx =Γ(n)E−nφ(0) E operating on φ

i.e.

∫ ∞
0

xn−1
∞∑
s=0

(−1)sxsφ(s)

s!
dx =Γ(n)φ(−n)

which is the theorem in the first report.

Example. Since

Jn(x) =

∞∑
s=0

(−1)sxn+2s

2n+2ss!Γ(n+ s+ 1)

we have ∫ ∞
0

xp−n−1Jn(ax)dx = 2p−n−1an−p
Γ(1

2p)

Γ(n+ 1− 1
2p)

.

(b) Since we have ∫ ∞
0

e−ax cosnx dx =
a

n2 + a2

and ∫ ∞
0

a

x2 + a2
cosnx dx =

π

2
e−an,

both being true even if we change a to p+ iq, we easily infer that∫ ∞
0

e−aDx cosnx f(b)dx =
aD

n2 + a2D2
f(b)

and ∫ ∞
0

aD

x2 + a2D2
cosnx f(b)dx =

π

2
e−aDnf(b).
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Now let

e−aDxf(b) = φ(x) and
aD

x2 + a2D2
f(b) = ψ(x);

then we see that: if ∫ ∞
0

φ(x) cosnx dx =ψ(n)

then ∫ ∞
0

ψ(x) cosnx dx =
π

2
φ(n).

Similarly for sinnx also, which is the theorem at the end of the 2nd report.
N.B. The use of operators is somewhat dangerous when the constant for which the operator is
substituted is not true for complex values.
13. By splitting

1{
1 +

(
x
a

)2}{
1 +

(
x
a+1

)2
}{

1 +
(

x
a+2

)2
}
· · ·
{

1 +
(

x
a+n

)2
}

into partial fractions and ultimately making n infinite we can show that

(i)

1{
1 +

(
x
a

)2}{
1 +

(
x
a+1

)2
}{

1 +
(

x
a+2

)2
}
· · · ad infinitum

=
2Γ(2a)

{Γ(a)}2

{
1

a+ x2

a

− 2a

1!

1

a+ 1 + x2

a+1

+
2a(2a+ 1)

2!

1

a+ 2 + x2

a+2

− 2a(2a+ 1)(2a+ 2)

3!

1

a+ 3 + x2

a+3

+ · · ·

}
.

Hence we have

(ii)

∫ ∞
0

cos 2nx dx{
1 +

(
x
a

)2}{
1 +

(
x
a+1

)2
}{

1 +
(

x
a+2

)2
}
· · ·

=

√
π

2

Γ(a+ 1
2)

Γ(a)

1

cosh2a n
.

Hence by applying the theorem in 12(b) we have

(iii)

∫ ∞
0

cos 2nx

cosh2a x
dx =

√
πΓ(a)

2Γ(a+ 1
2)
{

1 +
(
n
a

)2}{
1 +

(
n
a+1

)2
}{

1 +
(

n
a+2

)2
}
· · ·
.

Example. Putting a = 5
2 we have by changing n to n

2∫ ∞
0

cosnx

cosh5 x
dx =

π(n2 + 1)(n2 + 9)

48 cosh πn
2

.
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(iv) Changing a to 1− a in (iii) and multiplying the two results we have∫ ∞
0

cos 2nx

cosh2a x
dx

∫ ∞
0

cos 2nx

cosh2(1−a) x
dx =

πΓ(a)Γ(1− a)

4Γ(a+ 1
2)Γ(3

2 − a)

× 1{
1 +

(
n
a

)2}{
1 +

(
n
a+1

)2
}{

1 +
(

n
a+2

)2
}
· · ·
{

1 +
(

n
1−a

)2
}{

1 +
(

n
2−a

)2
}
· · ·

=
π sin 2πa

2(1− 2a)(cosh 2πn− cos 2πa)
;

that is ∫ ∞
0

cosnx

cosha x
dx

∫ ∞
0

cosnx

cosh2−a x
dx =

π sinπa

2(1− a)(coshπn− cosπa)
.

Similarly we can find ∫ ∞
0

cosnx

cosha x
dx

∫ ∞
0

cosnx

coshb x
dx

if a+ b is any odd even integer.

14. ∫ h

0
e−ax cosmxdx is the real part of

∫ h

0
e−(a+mi)xdx

i.e. that of
1− e−(a+mi)b

a+mi
=
a(1− e−ab cosmb)

a2 +m2
+
me−ab sinmb

a2 +m2
.

Again we have,∫ ∞
0

a(1− e−ab coshx) + xe−ab sinhx

a2 + x2
cosnx dx =

π

2
e−an,

π

4
e−an, or 0

according as n < h,= h or > h. Using the operator in the above result as in 12 iii(b) we have the

Theorem. If ∫ h

0
φ(x) cosmxdx = ψ(m)

then ∫ ∞
0

ψ(x) cosnx dx =
π

2
φ(n),

π

4
φ(n), or 0

according as n < h, n = h or n > h.
Similarly for sine also.
Till now we have seen only the peculiarities of the trigonometric functions sine and cosine within

a definite integral and now let us try to find out other functions having similar properties.

15. Theorem. If the functions F and f are so related that∫ ∞
0

F (ax)f(bx)dx =
1

a+ b
,

or ∫ ∞
0

xp−1F (x)dx

∫ ∞
0

x−pf(x)dx =
π

sinπp
,

p being any positive proper fraction, then if∫ ∞
0

φ(x)
F (nxi) + F (−nxi)

2
dx = ψ(n)
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then ∫ ∞
0

ψ(x)
f(nxi) + f(−nxi)

2
dx =

π

2
φ(n).

If F is known, then f can be found by solving the first or the second Integral Equation.

Dem. By Cor. 6 and 8 to Theorem I given in the 2nd progress report, we have,

(a)

∫ ∞
0

(
a0 − a1

x

1!
+ a2

x2

2!
− · · ·

)(
b0 − b2

n2x2

2!
+ b4

n4x4

4!
− · · ·

)
dx

=a−1b0 − a−3b2n
2 + a−5b4n

4 − a−7b6n
6 + · · · .

and

(b)

∫ ∞
0

(
c0 − c2x

2 + c4x
4 − · · ·

)(
d0 − d2

n2x2

2!
+ d4

n4x4

4!
− · · ·

)
dx

=
π

2

(
c−1d0 −

n

1!
c−2d1 +

n2

2!
c−3d2 − · · ·

)
.

Supposing cr = bra−r−1 and dr = 1
b−r−1

, and

φ(x) =a0 − a1
x

1!
+ a2

x2

2!
− · · ·

ψ(x) =c0 − c2x
2 + c4x

4 − · · ·

F (x) =b0 − b1
x

1!
+ b2

x2

2!
− · · ·

and

f(x) =d0 − d1
x

1!
+ d2

x2

2!
− · · · ,

we see that, by Theorem I,∫ ∞
0

xp−1F (x)dx = Γ(p)b−p and

∫ ∞
0

x−pf(x)dx = Γ(1− p)dp−1.

Multiplying the two results, we have∫ ∞
0

xp−1F (x)dx

∫ ∞
0

x−pf(x)dx =
π

sinπp
,

since

b−p =
1

dp−1

by supposition. Thus, the second part is proved.
Now change x into kx in f(x) and multiply F (x) by f(kx).
Then expanding the product in ascending powers of k and integrating the terms separately by

Theorem I, we have ∫ ∞
0

F (x)f(kx)dx =
1

1 + k
.

Now putting k = b
a and changing x into ax, we have∫ ∞

0
F (ax)f(bx)dx =

1

a+ b
.
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Also (a) and (b) may be written as∫ ∞
0

φ(x)
F (nxi) + F (−nxi)

2
dx = ψ(n)

and ∫ ∞
0

ψ(x)
f(nxi) + f(−nxi)

2
dx =

π

2
φ(n).

Cor. 1 We know that ∫ ∞
0

e−axe−bxdx =
1

a+ b
.

Here F (x) = f(x) = e−x when the theorem is: if∫ ∞
0

φ(x) cosnx dx =ψ(n)

then ∫ ∞
0

ψ(x) cosnx dx =
π

2
φ(n).

Cor. 2 We know that ∫ ∞
0

1

1 + a2x2
· 2/π

1 + b2x2
dx =

1

a+ b
.

Here

F (x) =
1

1 + x2
and f(x) =

2

π(1 + x2)

and the theorem reduces to: if ∫ ∞
0

φ(x)

1− n2x2
dx = ψ(n)

then ∫ ∞
0

ψ(x)

1− n2x2
dx =

π2

4
φ(n).

Cor. 3. In a similar manner, we can prove that: if∫ ∞
0

xφ(x)Jn(`x)dx = ψ(`)

then ∫ ∞
0

xψ(x)Jn(`x)dx = φ(`)

and so on.

Cor. 4 If
a

m
=
n− b
n

= p
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and ∫ ∞
0

F (αx)f(βx)dx =
1

α+ β

then ∫ ∞
0

xa−1F (xm)dx

∫ ∞
0

xb−1f(xn)dx =
π

mn sinπp
.

Dem. We have proved that: if ∫ ∞
0

F (αx)f(βx)dx =
1

α+ β

then ∫ ∞
0

xp−1F (x)dx

∫ ∞
0

x−pf(x)dx =
π

sinπp
.

If we change x to xm and xn respectively in the above integrals we can get the result by assuming

p =
a

m
=
n− p
n

.

Cor. 5 As a particular case of the above Cor. when m = n = 2, and a = b = 1 and p = 1
2 we have: if∫ ∞

0
F (ax)f(bx)dx =

1

a+ b

then ∫ ∞
0

F (x2)dx

∫ ∞
0

f(x2)dx =
π

4
.

* * * * * *

Bruce C. Berndt, Editor
Department of Mathematics
University of Illinois, 1409 West Green Street
Urbana, IL 61801, USA

e-mail : berndt@illinois.edu


	History of the Quarterly Reports
	Notes on Transcribing the Quarterly Reports
	Ramanujan's Quarterly Reports

