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My background

2003-2010 Engineering in Sound and Acoustics          (B.Sc. + “M.Sc.”)

2010-2012 Acoustic consultant

2012-2014 KU Leuven         – “Predoc” in Cochlear Implant sound 
processing (prof. Jan Wouters)

2014-2018 TU Eindhoven        – Ph.D. in Auditory modelling 

(prof. Armin Kohlrausch)

2018-2020 UGent         – PostDoc in Auditory modelling 

(prof. Sarah Verhulst, prof. Dick Botteldooren)

2021 – ENS        : fastACI project with Léo Varnet

2020 – Developer within the Auditory Modelling Toolbox project
amtoolbox.sourceforge.net  (lead by dr. Piotr Majdak)

I hope I manage to bring you a “different perspective”

http://amtoolbox.sourceforge.net/
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Motivation (1 / 2)

Based on: 

Osses, Varnet, Carney, Dau, Bruce, Verhulst, Majdak (2022, Acta Acustica)
Preprint at https://arxiv.org/abs/2107.01753 

Abstract:

A number of auditory models have been developed using diverging approaches, 
either physiological or perceptual, but they share comparable stages of signal 
processing, as they are inspired by the same constitutive parts of the auditory 
system. In this seminar, I will briefly describe the main stages of sound processing 
from the outer ear (or pinna) up to the inferior colliculus (midbrain) but I will focus 
on the physiological aspects that have been implemented in the model stages of 
inner hair cell (IHC) processing and auditory nerve (AN) synapse, at the beginning 
of the auditory neural pathway. I will also show auditory responses obtained from 
perceptual models that can capture specific neural processing properties.

https://arxiv.org/abs/2107.01753
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Motivation (2 / 2)

From Maxwell et al. (2020, JASA):

Model by Zilany et al. (2014)

Another model

True

True, but this does not mean that a model may not account for neural fluctuations and capture 

“Publish your code: it is good enough” (Barnes, 2010, Nature) 

So, if a code is published, you can try it!
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What is a model? 
https://en.wikipedia.org/wiki/Model

“A model is an informative representation of an object, person or system”

https://en.wikipedia.org/wiki/Model
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What is a computational model?

We will focus on computational models of the auditory system

Auditory model
(“Peripheral model”)

“Decision”

Input sounds
(Waveform)

Internal representation 
of the sound(s)

Simple task:
Yes, the target sound is present
No, the target sound is absent

I will show one auditory task:
- Not modulated by cognitive aspects
- Based on bottom-up evidence

Biophysical model
Phenomenological model
Functional effective model
Statistical model

Computational modelling is the use of computers to simulate and study 
complex systems using mathematics, physics and computer science.

(https://www.nibib.nih.gov/science-education/science-topics/computational-modeling)

(Video from
 https://en.wikipedia.org/wiki/Hair_cell)

https://www.nibib.nih.gov/science-education/science-topics/computational-modeling
https://en.wikipedia.org/wiki/Hair_cell
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What is a model?
● Biophysical 

● Phenomenological 

● Functional effective 

Eight models:

One model is “one ear”
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Differences between the models

● They were built using different rationales:

– Physiologists don’t like functional effective (perceptual) models

– Psychoacousticians do not always like the complexity of the biophysical and 
phenomenological models

– Physiologists and psychoacousticians do not always use the same input stimuli 
in their model design

● But in the end, all models are just an approximation...
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Stage 5: Auditory adaptation stage
● Learning from observations:

Approximation using “adaptation loops” 
(used in dau1997, relanoiborra2019, osses2021)

Kohlrausch et al. (1992): 
“The last class of investigated models tries to incorporate the adaptive properties of the auditory periphery. 

Adaptation means a change in the transformation characteristic according to the input level. Such an automatic gain 
control can be achieved with a feedback loop […].”

Fig. C.11B 
from Osses (2018, Ph.D. thesis)
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Stage 5: Auditory adaptation stage

● The “more accurate models”:

– Auditory-nerve synapse models

● Next:

– Brief overview of each 
processing stage: Key features

– Some emphasis in the IHC and 
AN (adaptation) stage

Fig. 9 from Osses et al. (2022)
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An input signal: The waveform
● “It will not be too expensive, surely, she said”

she saidIt will      be  ex-pensive, surely

not    too

(P
a
)

(P
a
)

● This is fast-varying time information
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Outer ear filtering
● The pinna acts as an equaliser

● The ear canal acts as a tube that resonates

● This process is approximated as a linear filter

Physiological output: 
Ear canal pressure (Pa)
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Middle ear filtering

● This process is approximated as a linear filter too

Physiological output: 
Stapes velocity (m/s)

● It is an impedance matcher: Change of medium from air to fluids in the cochlea

● It acts as a filter with a non-null gain
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Cochlear filter bank

An schematic drawing:
(downloaded from here)

Physiological output: 
Basilar membrane velocity (dB re. 1 m/s)

● It is a non-linear frequency analyser

● Basilar membrane: ~35 mm long
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Inner-hair-cell processing
● Typically: Approximated as a half-wave rectification + low-pass filter

Physiological output: 
Inner-hair-cell potential V

m
 (V)

https://www.pinterest.com/amp/pin/fibonacci-soundartmusicnaturedid-you-know-that-the-cochlea-the-innermost-part-of-the-ear-is-about-the-size-of-a-p--115193702955826459/
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Inner-hair-cell processing
● Mechanical basilar membrane oscillations into receptor potentials

● A zoom in into the “organ of Corti”:

A transversal 
section:

Basilar
membrane

This is the schematic of a 
neuron that can spike

Actually, there are:
~3500 hair cells
~20 AN fibres / cell
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Inner-hair-cell processing
● Model verhulst2018 simulates the IHC membrane potential Vm 

using a Hodgkin-Huxley circuit
– Mechanoelectrical channel (MET)

– Fast potassium channel (Kf)

– Slow potassium channel (Ks)

– No sodium channel

– No leakage channel

Fig. from
McPherson (2018)

I
MET

I
MET

I
kf,s

Trigger the release of neurotransmitter

Generation of action potentials in the
auditory nerve



20

Inner-hair-cell processing
● The generic HH model:

I
MET

I
MET

I
kf,s

Fig. from Gerstner et al. (2014)
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Inner-hair-cell processing
● Model verhulst2018 simulates the IHC membrane potential Vm 

using a Hodgkin-Huxley circuit
– Mechanoelectrical channel (MET)

– Fast potassium channel (Kf)

– Slow potassium channel (Ks)

– No leakage channel

I
MET

I
MET

I
kf,s

Conservation of energy:

0 =I
MET

+ I
C
 + I

Kf
 + I

ks

-C dV/dt = I
MET

 + I
Kf
 + I

ks

I
MET

=n
MET

G
MET, max

(V
m
-EP)

I
kf     

=n
kf    

G
kf, max     

(V
m
-V

Kf
)

I
ks    

=n
ks    

G
ks, max    

(V
m
-V

Ks
)

Fig. from Altoè et al. (2017)

V
Kf

V
Ks

“g” stands for conductance,
       with g = 1/R

No external (injected) current

Ohm’s law
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Inner-hair-cell processing
● The voltage-gated channels I

MET
=n

MET
G

MET, max
(V

m
-EP)

I
kf     

=n
kf    

G
kf, max     

(V
m
-V

Kf
)

I
ks    

=n
ks    

G
ks, max    

(V
m
-V

Ks
)

Described by a
specific equation

Time (s)

Example for band at 520 Hz 
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Inner-hair-cell processing (3 / 3)
● The voltage-gated channels From Slide 17

Negative potential (0 V for each channel indicated in magenta)
Asymmetric waveforms along V

rest

“Envelope extraction” too for high frequency channels

A
m

p
lit

u
d
e
 (

m
V

)

Simulated IHC 
membrane potential

38 mV

0

0

0

0

0

0

0
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Auditory nerve firing
● One possibility was to use Im to obtain spikes when reaching the neuron threshold

But the IHC cannot spike! 
(“presynaptic to the AN”)

Fig. 1.5 from 
Gerstner et al. (2014)

Two presynaptic
neurons

One postsynaptic
neurons
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Auditory nerve firing

● Here I am showing the output of the spike model used in one of the models 
(“bruce2018” from Bruce et al., 2018)

Raster plots: Speech
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Auditory nerve firing
Raster plots:

Peri-stimulus time histograms (PSTHs):

Speech 4-kHz pure tone
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Auditory nerve firing

Maybe now we can compare across model outputs

4-kHz pure tone
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Example of an application: Simultaneous masking

Auditory model
(“Peripheral model”)

“Decision”

Input sounds
(Waveform)

Internal representation 
of the sound(s)

Simple task:
Yes, the target sound is present
No, the target sound is absent

I will show one auditory task:
- Not modulated by cognitive aspects
- Based on bottom-up evidence
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m-Alternative Forced Choice (m-AFC) paradigm
● There are m intervals (sounds), the listener is asked to pick up one:

Simultaneous masking

● If m = 3: “Which sound is different from the other two?”

● I will show a task where:

– The noise is 300 ms long

– The tone is 10 ms long in three conditions: simultaneously or after the noise

– We look for the tone level at which the signal+noise interval is correctly detected
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 300 ms

Remark: For this schematic figures I am using the target sounds (tone+noise) and only one of the two noise-alone sounds
i.e., this is another simplification
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 330 ms
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 340 ms
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 350 ms

(Post-masking)
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 380 ms

(Post-masking)
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m-Alternative Forced Choice (m-AFC) paradigm

Tone onset at time 250 ms Tone onset at time 400 ms

(Post-masking)
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m-Alternative Forced Choice (m-AFC) paradigm
● Putting all the simulation thresholds together:

● This is a non-linear
problem Noise 

offset
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Summary

● This study (the paper) compares different models and use them on the same set of sounds, 
independent of the rationale of each model 

● Different models will give different (but hopefully comparable) results:

– Make sure you are aware of the capabilities of the specific models 

– Warning: Not all model descriptions are always available (codes somewhere?)

● In this lecture, I showed some physiological aspects that have inspired “functional implementations”

● I showed an example of application (not shown in the paper)

● Different models have been validated with different sounds and more complex models are not 
necessarily best to other models (you need to check that, if not shown in the literature)

● Make sure your simulations are replicable, and that you can use your model with different sets of 
parameters without having to re-program: 

– For instance, use 
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Out colleague/classmate Hugo didn’t like the stochastic shape of the internal representation of the 

noise-alone interval (obtained from one noise) of slide 30:

Extra slide (not shown during the lecture)

Time (s)
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Out colleague/classmate Hugo didn’t like the stochastic shape of the internal representation of the 

noise-alone interval (obtained from one noise) of slide 30:

Extra slide (not shown during the lecture)

After N=100 averages
(Grey curves are the traces 

of each individual noise)

Time (s)

Time (s)

As discussed during the lecture, my opinion is that stochasticity is a 
desired and natural property in neuronal signals. 

In this talk I used only one noise (a “frozen noise”) 
to better illustrate the auditory tasks.
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