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A B S T R A C T
Monitoring the power consumption of smart and connected devices is a challenging task with
heterogeneous devices and a variety of hardware and software configurations. In order to accurately
monitor these devices and follow the speedy changes in their configuration, a new approach is needed.
In this paper, we present an automated architecture and approach to empirically generate power models
for a large set of devices. Our approach allows conducting automated benchmarks to collect power
data and metrics, generating or updating accurate power models, and allowing software tools to query
and retrieve the most accurate and up-to-date power model of a specific device configuration. We
also present a proof-of-concept implementation for modeling the power consumption of Raspberry
Pi devices. Finally, we conduct a comprehensive experiment, modeling the entire current lineup of
Raspberry Pi devices with error margins as low as 0.3%, and then we discuss the impact of multiple
device configurations on power consumption.

1. Introduction and Challenges
With the explosion of smart and connected devices, there

is a need to monitor and optimize the power consumption
of these devices. Around 2008, it was estimated that the
world had more connected devices than people, and by 2030
it is expected that 500 billion devices will be connected
to the Internet [12]. The impact of all these devices on
ICT power consumption and carbon footprint is undeniably
rising. Recent estimations expect that ICT will account for
as much as 14% of the total worldwide carbon footprint [3].

These connected devices have different CPU architecture
than current and legacy computing devices (i.e., ARM/RISC
compared to x86/CISC architecture), and have a huge variety
of hardware and software configuration and components.
External power meters can provide accurate power mea-
surements for specific workloads and environments (such as
in [1]). However, these meters are costly financially, scale
badly for a large park of devices, have a time-consuming
setup, and require physical access to each device. Therefore,
it is important to provide software-based power models for
these devices. However, without embedded power sensors
or constructors’ power models and API, it is challenging to
provide accurate power models for this variety of device con-
figurations. In addition, monitoring the power consumption
at run-time (in addition to other performance metrics) helps
software developers to detect misbehaving software, or spe-
cific power drains due to a particular hardware configuration.

Current power estimation techniques are either based on
mathematical formulas (such as in [22]), or on a static data
set used to generate an empirical model (such as in [24]). In
addition, such models target a single device release with no
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way to estimate other revisions or variations of the device
without manually conducting the experiments again.

Our main motivation is to provide an automated ap-
proach to model the power consumption of various devices,
while allowing the models to be updated, extended, im-
proved, and shared. We argue that such an approach leads
to democratizing power comprehension of hardware and
software in different devices and environments.

Providing an accurate and automated approach to solve
these questions is challenging, and in particular:

• Heterogeneous environment: monitoring the power
consumption of heterogeneous devices is challenging:
different hardware configuration, architectures, revi-
sions, or cooling. Also, software heterogeneity has
an impact on power, such as the operating system,
software workloads, or libraries.

• Empirical validity: generating empirical power mod-
els requires a large set of valid data and metrics, which
in many cases is difficult to collect in statistically
sufficient numbers.

• Automated power modeling: automating such an
approach with large heterogeneity and an empirical
backbone requires a crowd-sourcing architecture that
facilitates benchmarking devices and data collection.
Automated safety and security checkups should also
prevent erroneous or malicious data to impact the
accuracy of the generated power models.

In this paper, we present an automated approach and
architecture to empirically generate power models for, poten-
tially, unlimited devices and configurations. Our approach
provides always up-to-date and accurate power models with
low error rates. The approach follows a crowd-sourcing ar-
chitecture where benchmarking components can run on any
device, generate empirical data, and lastly, our power model
generator component will generate an accurate power model
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for the specific device, or improve the model if a previous
one already exists. Monitoring software can connect to our
architecture to query and retrieve the most accurate and up-
to-date power model for their devices. The data collection
and model generation phases are relatively fast as they only
take a few minutes. Once the model is generated, power
consumption can be estimated with negligible overhead in
real-time. With time, the accuracy of the model can be
improved as more data are collected and fed to generate more
accurate regression models.

The main novelties of this work can be summarized as
follows: (i) energy estimation models are always up-to-date
due to the continuous data benchmarking as new models are
automatically generated when necessary, (ii) model genera-
tion is done in an automated manner from the data collection
to the testing (with human intervention needed only to start
the benchmarking process, and (iii) our proposed approach
is a collaborative one where benchmarks can also be crowd-
sourced, and energy estimation models are shared across
users and devices.

We provide a proof-of-concept implementation for au-
tomated power modeling of the entire current set of Rasp-
berry Pi devices. A comprehensive experiment validates our
approach, implementation, and power models. We generate
various and accurate power models, using two regression
models, with very low error rates as low as 0.3%. Our
models are vastly more accurate than existing models with
as much as 10 times lower error rates. We also discuss
and analyze the impact of multiple hardware and operating
system configurations, and discuss a use-case scenario in
remote power monitoring.

Our paper is organized as follows. Section 2 discusses re-
lated work. In Section 3 we present our architecture for auto-
mated power modeling. In Section 4, we detail the proof-of-
concept implementation of our architecture for modeling the
power consumption of Raspberry Pi devices. In Section 5,
we describe our experimental setup, present our generated
power models, and discuss the results and validity of our
approach. Finally, we conclude and layout future directions
and perspectives in Section 6.

2. Related Work
Several approaches and tools have been proposed to

measure or estimate the power consumption of computing
devices. Some focus on hardware meters while others use
software-based approaches. In this section, we review the
related approaches to monitoring and estimating power in
computers and IoT devices, and discuss the relevant work
around power and regression benchmarks.

In [2], the authors studied the energy impact of users’
operations in Raspberry Pi compared to other computing
devices. Measurements were carried out using hardware me-
ters due to the lack of accurate software approaches. In [26],
a method for energy estimation of Zolertia RE-Mote devices
was proposed. It combines offline profiling with online en-
ergy estimation, using both a software-based mode and a

hardware-based one. The former uses theoretical energy for
each operating state, taken from the datasheet, and captures
the time spent in each state, and provide energy estimations
with an error margin of 53% The latter uses an integrated
circuit to measure accurately the power consumption of
each state in real-time. A hybrid (hardware and software)
power measurement platform for wireless IoT devices called
EMPIOT was proposed in [9]. It mainly targets the issue
of the power consumption measurement for peripherals. It
studied the impact of various design parameters on precision
and overhead. It was evaluated by running sleep, encryption,
and communication workloads on five different computing
devices. SMARTWATTS [13] is a power monitoring plat-
form that increases the accuracy of its CPU and DRAM
power models by using an online calibration technique for
containers. The authors argue that this approach can be
implemented on various machines because it does not need
any training phase or pre-configuration. Since 2014, many
systems use the Running Average Power Limit (RAPL)
feature for power consumption measurements. This feature
became available on most Intel CPUs. Yet many devices
having ARM or AMD processors do not support RAPL.

In [10], a micro-benchmark-based modeling approach
for heterogeneous processors was proposed, in which the
authors state that statistical modeling has a significant initial
cost during the model training. In [6], the authors propose
a technique to generate CPU power models without having
a profound knowledge of the CPU architecture. It automati-
cally detects the hardware performance counters correlated
to the power consumption and generates the power model
from the selected features. Their approach supports changing
the learning approach according to the need and software-
defined power metering. In [5], a power prediction by ap-
plying linear regression to on-chip performance monitoring
counters, in particular for the number of micro-operations
that are fetched, completed, and retired in each monitoring
cycle. In [27], a piece-wise linear function was proposed to
estimate the power consumption of an AMD processor. The
result of this approach showed a better fit to the collected
data when compared with linear and exponential functions.
The micro-benchmark data was collected by stressing four
AMD performance counters. In [21], the authors reviewed
direct measurement and estimation models. Most of the
reviewed models apply linear regression techniques on hard-
ware performance counters. They showed that previous stud-
ies were limited regarding the considered workloads and the
impact of the complexity for each model. In [15], the authors
proposed an approach based on statistical power modeling
by applying regression analysis on high-level activity met-
rics. For example, they collected the time spent in each state
and the occurrence of certain events and focused mainly
on the interaction between the processor and the memory.
In [8], the authors surveyed the literature approaches used
for energy consumption modeling and prediction for data
centers. They noticed a linear relationship between power
consumption and CPU utilization.
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PowerPi [16] and EMM [17] proposed power models for
a particular Raspberry Pi version (RPi 2B and RPi 3B+,
respectively). In both approaches, they empirically created
a data set correlating power consumption from a power
meter to CPU utilization. A linear regression analysis was
then applied to generate a power model. However, two main
limitations of their approach: first, the model targets only
one particular device version and cannot be used on other
models due to the distinct power consumption of each RPi
model [23]. And second, improving the accuracy of the
regression requires manually conducting the experiments
again with additional data. In [25], the authors proposed
five different power modeling techniques by correlating
software metrics with physical power measurements using
Mantis [11]. The latter generates a power model using a one-
time model fitting technique by collecting software metrics
and correlating them to the measured power. It collects
metrics from the main system components, namely CPU,
memory, and disk. In the paper [25], the authors found that
the CPU is the major energy consumer in a computer, but the
relation between power and utilization is not always linear.

In [4], the authors proposed a deep neural network
(DNN) that predicts the remaining battery of IoT devices.
This approach is based on pre-processing the data (eliminate
missing values, convert them to numerical format, and nor-
malize data). Then, a Moth Flame Optimization is used to
select the optimal features that are input for a DNN model.
It provided advantages regarding the feature selection and
the battery life estimation accuracy. However, the approach’s
overload was not calculated and tends to be high due to the
significant processing needed. In [28], the authors have gone
beyond only predicting battery life using machine learning
models to propose a DNN alongside a blockchain. The use of
blockchain, as a secure and trustworthy prediction storage,
improved the authenticity of the prediction from a security
point of view. The DNN predicted the remaining battery with
an average accuracy of 90%.

The related work is summarized in Table 1. Although
some results appear consistent with prior research, the ex-
isting research has multiple limitations: i) Proposed energy
estimation models are quickly out-of-date due to software or
kernel updates, or new revisions. Such updates are becoming
more frequent in modern software, therefore reducing the
efficiency of a model generated from a particular software
version or hardware revision, ii) The process of model gen-
eration is not fully automated and requires human interven-
tion for different tasks (running the benchmark, collecting
data, generating, and validating the energy model), and iii)
Estimation models are not easily and automatically shared in
an effective way between different devices and users. Users
need to manually acquire the appropriate energy model for
their devices.

To the best of our knowledge, none of the power estima-
tion model generation approaches is based on a continuous
improvement method or proposed a technique to automate
model generation on a large scale.

Table 1

Summary of related work.

Paper Suitability Error (%) Description

[2] Any N/A Hardware solution
[26] IoT 4-18 Hardware/Software
[9] IoT 3.5 Hardware/Software
[13] Containers N/A RAPL
[6] CPU 1.5 Performance counters
[27] CPU 3-7 Performance counters
[25] CPU 10 Performance counters
[10] AMD APU 3-7 Regression
[5] CPU 2.6 Regression
[15] ARM SoC 5 Regression
[4, 28] IoT 5.17 DNN

Most comparable related work

[16] RPi 2B 14.56 Regression
[17] RPi 3B+ 40.76 Regression

3. Automated Power Modeling Architecture
In this section, we present our automated power model-

ing architecture where we describe the architecture of both
our client and server components, along with the automatic
generation of power models.

The architecture aims to generate an always up-to-date
and accurate power model for various computing devices,
such as servers, PCs, single-board computers, or embedded
and IoT devices. We achieve this automatic generation with
a multi-component architecture aimed to collect and process
power data and metrics, apply machine learning algorithms,
and generate an updated, more accurate, power model.

Concretely, our architecture, in Figure 1, is composed
of three distinct but complementary components: a data
collection and benchmarking client, a machine learning and
power modeling server, and a power estimator client. Simply
put, our benchmarking client will collect run-time software,
hardware, and power metrics, which are then sent to the
power modeling server. The latter will then generate empir-
ical power models based on the current and previously col-
lected metrics, using machine learning techniques. Finally,
the power estimator client will query the server for the most
up-to-date and accurate model for the device it’s running on,
and use that model to estimate the power consumption of the
device.

Each component of our architecture can be indepen-
dently implemented as we aim to provide a decentralized and
decoupled architecture. For instance, our generated power
models can be used by third-party power estimator clients
to provide run-time and live power estimations, or used
by hardware management software to supervise the power
consumption of a set of devices.

In addition, the architecture is designed to maintain a
high level of flexibility to manage: new devices introduced
to the environment, changes occurring to the existing ones
(such as OS or kernel updates), new metrics to consider and
collect, or changing the model generation algorithm.
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Figure 1: A general overview of our Automated Power Model-
ing Architecture

3.1. Data Collection and Benchmarking Client
Architecture

Figure 2 presents the architecture of our data collection
and benchmarking client. Its main role is to collect software,
hardware, and power metrics of run-time and real-world
workloads. The collected data will then be used as a training
and validation data set for the machine learning algorithms
in our server.

Figure 2: Benchmarking Client Architecture

Our benchmarking client first needs to collect the power
consumption of the workload. This first step requires an
accurate power measurement component, as this metric will
be used as the truth for this power metric. Therefore, we rec-
ommend using a physical power device, such as an external
power meter, or an integrated physical power sensor.

The main components of our architecture are the follow-
ing:
Power Collector : this component connects to the power

measurement sensor and collects run-time power met-
rics (such as the power consumption in watts, the cur-
rent, the voltage, or any other power-related metrics),
and associates each measure to a timestamp.

Metrics Collector : this component collects various met-
rics from the operating system, hardware (through the
OS), and software. For example, it can collect the
number of CPU cycles, the transmitted data packets
in a network, the number of storage access requests,

or more complex metrics and data (such as software
running, network throughput, quality of service, or
metadata about the operating system or the software
workload).

Controller : this component orchestrates the data collection
from the energy and metrics collectors. It controls
the frequency of data collection and sharing with the
server. It also makes sure that the metric collector is
running simultaneously with the power collector.

Sharing Interface : this component’s role is to share the
collected data to the power modeling server. It can
be implemented as a web service API, or through a
file-sharing mechanism (on a local network, over FTP,
etc.), or any other sharing method understood by the
server.

3.2. Power Modeling Server Architecture
Figure 3 presents our power modeling server architec-

ture. Its main role is to receive generate accurate and always
up-to-date power models using the data collected from the
benchmarking client. The server acts as a centralized entity
towards multiple benchmarking clients, receiving data from
multiple similar or different devices.

For example, benchmarking clients can collect data from
workloads running on multiple instances of a same-type
device. This data collection can also spread across time,
and the server will regenerate a new updated power model
each time a new data set of metrics is received from a
benchmarking client.

Figure 3: Power Modeling Server Architecture

The main components of our architecture are the follow-
ing:
Collector Interface : this component receives the data col-

lected by the benchmarking clients. At this point, the
data is received as is, and further processing is handled
in the next components.

Data Synchronizer : this component processes the re-
ceived data (which might be in multiple formats or
files), synchronize timestamps between the metric and
power data, verifies and synchronizes clock diversion
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between the timestamp of the computing device and
the one from the physical power sensors or meters.

Data Cleaner : this component cleans the synchronized
data by identifying and eliminating redundant, erro-
neous, or out-of-context data. For example, the cleaner
tries to identify when the useful workload started and
ended, and discards data points outside this range. The
cleaner also verifies that the received data is valid,
such as if the provided power values are within the
power range of the device it was run on, or whether
bogus or spamming data are present.

Model Generator : this component generates a power es-
timation model based on empirical machine learning
techniques, using the newly received data along with
the data already stored in the server about the par-
ticular device. For example, the estimation models
can be based on any prediction algorithm (such as
regressions, decision trees, neural networks, etc.).

Model Validator : this component validates that the new
model is more accurate than the current model stored
in the server for the device. For example, using
all available data sets (including the newly received
ones), it can compare the average error of the new
model to the currently stored one, and then keep the
more accurate one.

Historical Data Repository : this database contains all the
collected data of all devices, benchmarks, metrics, and
workloads. The newly received, cleaned and validated
data are added to this repository, and therefore con-
tributing to building big data set associating various
metrics and data to power consumption, and gradually
improving the accuracy of our model generator.

Power Models Repository : this component contains all
the generated power models for all devices. Only the
most accurate power model is saved to this repository,
along with the model and estimation parameters, and
the average error of the model. The repository distin-
guishes between devices, but also between revisions of
devices (for example, Raspberry Pi 4B revision 1 and
revision 2), between operating systems architectures
(32 or 64 bits), etc.

Sharing Interface : this component provides a sharing
mechanism for power estimator clients to retrieve the
latest up-to-date power model of their device. As with
our other sharing interfaces, it might be implemented
as a web service API, a format-specific file, or any
other sharing mechanism and format.

4. Implementation for Raspberry Pi Power
Models
In this section, we present a specific implementation of

our architecture aimed to generate accurate power models

for single-board computers in general and Raspberry Pi
devices in particular. To the best of our knowledge, our
implementation is the first to provide a comprehensive set
of benchmarks and power models for the entire current set
of Raspberry Pi devices.
4.1. Data Collection and Benchmarking Client

Our implementation of the benchmarking client consists
of two main components: a workload-generating benchmark
and a data collector. Our architecture supports multiple
types of data collections and can generate power models for
multiple hardware components. However, in our proof-of-
concept implementation, we focus on generating an accurate
power model for the ARM processor of Raspberry Pi devices
by collecting CPU metrics.

The workload generated by the benchmark consists of
applying variable loads on the device’s processor. We decide
to apply a stress load on the CPU covering the entirety of
the load range, i.e., we stress the CPU from 0% all up to
100%, with an incremental step of 5%. The load is applied
for 60 seconds for each percentage step. We also saved the
workload timestamp and store everything in a CSV file.

The data collector component is a program collecting
CPU metrics. In particular, we collect CPU cycles from the
Linux proc interface (/proc/stat). Then we calculate the
CPU utilization (ranging from 0 to 1) and save this data to
another CSV file.

We calculate the CPU utilization by calculating the ratio
of the busy cycles (CPU cycles in user and kernel mode) with
the total cycles which includes idle ones:

𝑢[𝑡] =
𝑐𝑏𝑢𝑠𝑦[𝑡] − 𝑐𝑏𝑢𝑠𝑦[𝑡 − 1]
𝑐𝑡𝑜𝑡𝑎𝑙[𝑡] − 𝑐𝑡𝑜𝑡𝑎𝑙[𝑡 − 1]

(1)

where:
• 𝑐𝑏𝑢𝑠𝑦[𝑡] is the total number of busy cycles up to time

𝑡 (busy is here equal to: user + nice + system from
/proc/stat).

• and 𝑐𝑡𝑜𝑡𝑎𝑙[𝑡] is the sum of 𝑐𝑏𝑢𝑠𝑦[𝑡] and the number of
idle cycles 𝑐𝑖𝑑𝑙𝑒[𝑡].

In addition, we collect the actual power usage using a
power meter and store the power data in a third separate
CSV file. The power data is collected from another device
to reduce the impact on the workload and accuracy of the
benchmark. The controller makes sure the collection of
metrics and power is done with the same frequency and at
the same time. It gathers the three CSV files and prepares
them to be shared with the power modeling server.
4.2. Power Modeling Server

We build our power modeling server following a deci-
sion algorithm presented in Figure 4.

We first collect the three generated CSV files from the
client (in our implementation, sharing the CSV file from a
common storage location). We then normalize and clean the
data:
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• Remove irrelevant data points (the ones from before,
after, and separating the workloads),

• Synchronize timestamps of the three CSV files,
• Synchronize the clock diversion between the Rasp-

berry Pi timestamp and the power meter,
• Aggregate the three CSV files into one containing the

label power, the CPU utilization, and the timestamp,
• Remove the inconsistency in the data that results in

anomalies (peaks and troughs present at the beginning
and end of workloads).

Figure 4: Our Implementation Approach for Power Modeling

We then proceed with the generation and validation of
our power model. First, we check if an estimation model
already exists on the server for the specific Raspberry Pi
device and version. If no model exists, then we proceed to

generate a new power model (𝑀 ′(𝑛)) using the collected
data, calculate its average error 𝐸′(𝑛). Furthermore, we
save the new power model to the model repository and the
collected data to the historical data repository.

However, if a current power model exists (𝑀(𝑛−1) along
with its average error 𝐸(𝑛 − 1)), then we proceed with the
following process:

• We first read all the data saved in the historical data
repository of the specific device, and temporally add
the newly collected data to form a new data set. This
data set is then used to generate a new power model
𝑀 ′(𝑛), and the average error for this new model is also
calculated 𝐸′(𝑛).

• If the error rate of this new model 𝐸′(𝑛) is outside of
an accepted predefined range compared to the previ-
ous model 𝐸(𝑛−1), then we discard the collected data
(as we consider it is not valid), and the server keeps
its data and power model. In our implementation, we
consider a 5% range around the error rate as a good
indicator of whether the data is valid or has been
trafficked. The latter can happen if the power data of
a device has been mixed with the collected metrics
of another, or fake data has been sent, or an error in
converting numbers happens in the client.

• If the error rate is within the predefined range, then
we calculate the error rate 𝐸(𝑛) of the existing model
𝑀(𝑛− 1) using all the data (historical and new ones).
We do this additional calculation because the current
error rate 𝐸(𝑛 − 1) has been calculated using the
historical data only.

• We then compare the new error rate 𝐸(𝑛) of the
current model 𝑀(𝑛 − 1), with the error rate 𝐸′(𝑛)
of the new model 𝑀 ′(𝑛). The model with the lowest
error rate will then be stored in the models repository
as the new up-to-date and accurate power model of
the specific device. And lastly, we store the newly
collected data in the historical data repository.

At the end of this process, the server will contain addi-
tional data points which will, over time, improve the accu-
racy of our empirical power model generation.

In our implementation, we use linear and polynomial
regression algorithms to generate power models, as a cor-
relation was observed between CPU utilization and power
consumption in Raspberry Pi devices.

In the next section, we detail the empirical experimenta-
tion to validate our implementation and power models.

5. Empirical Validation and Discussions
In this section, we detail the empirical experimentations

that validate our approach, implementation, and generated
power models.
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Table 2

The variety of Raspberry Pis used during experiments

Model Rev. OS CPU Architecture Cores Released

Zero W 1.1 32 armv6l 1 2017
1B 2 32 armv6l 1 2012
1B+ 1.2 32 armv6l 1 2014
2B 1.1 32 armv7l 4 2015
3B 1.2 32 armv7l 4 2016
3B+ 1.3 32 armv7l 4 2018
4B 1.1 32/64 armv7l/aarch64 4 2019
4B 1.2 32/64 armv7l/aarch64 4 2019

5.1. Experimental Setup
Our experimental setup consists of 8 Raspberry Pi de-

vices from different generations and revisions as detailed in
Table 2, dating back from 2012 until the latest current model.
We run our workload on both 32 bits (armv7l) and 64 bits
(aarch64) operating systems for model 4B (for each of the 2
revisions we used).

We used the same SD card to boot Raspberry OS on all
devices, switching operating systems and ARM architecture
accordingly. We also automated the benchmark experimen-
tation by adding a boot script to /etc/rc.local.

To collect power consumption, we use the PowerSpy2
power meter 1. PowerSpy2 is a Bluetooth power meter used
for advanced and accurate analysis. To reduce interference
in the experiments, we use a separate computer to connect
to the meter and collect power metrics.

We run all our experiments on Raspberry Pi OS (version
based on Debian 9 stretch), with Linux kernel 4.14. Our
components and tools are written in Python and run with
version 2.8, and in C compiled with GCC 6.3.0. For Rasp-
berry Pi 4B, we the supported version of the OS based on
Debian 10 buster with Linux Kernel 5.4, and GCC 8.3.0.

To further reduce interference on the accuracy of our
experiments, and as we aim to generate a CPU power model,
we disconnected all external peripherals during the workload
(including the monitor through HDMI, keyboard, and mouse
through USB ports and the network through the Ethernet
interface). We also disabled from the operating system all
network interface cards (i.e., WiFi and Bluetooth). We also
limited the running applications to the minimum as to only
monitor the power impact of the workload. Furthermore,
we made sure that every device was cooled down before
running the experiments, as overheating can have an impact
on power consumption. Specifically, each Raspberry Pi was
disconnected from its power supply until the device was
cooled down.
5.2. Benchmark Data Collection

To collect our CPU metrics, we wrote a minimal C
program that read the /proc/stat file every second and
calculated the CPU utilization. The latter was then saved into
a CSV file.

1https://www.alciom.com/en/our-trades/products/powerspy2/

As described in our implementation in Section 4.1, we
stressed the CPU from 0% to 100% with a 5% increment.

We initially used the same stress command (or stress-ng)
used in the literature [17] to specify a percentage CPU load.
However, we noticed that the CPU load was inconsistent,
with the actual CPU load altering between 0% or 100% in
various time duration, rather than consistently stabilizing at
the asked percentage load. Instead, we used a Python script,
CPULoadGenerator 2, which consistently stressed the CPU
at the asked percentage with a small degree of variation.
Figure 5 outlines the differences in CPU load consistency
between the two tools.

For each experiment, we stressed the CPU for 60 seconds
for each CPU load step and is followed by a 10-second
pause. A 60-second pause precedes each experiment in order
to reduce the impact of our script on the results. In total,
each experimental benchmark runs on average for about 25
minutes (24 min and 20 sec).

Each benchmark generates a total of 1460 data points.
After the cleaning phase, we end up with more than a
thousand data points. These are then used to generate our
empirical power models. For the purpose of our experi-
ments, we run our benchmark a few times for the Raspberry
Pi 3B+ and Raspberry Pi 4B rev 1.2 (64 bits) and ended
up with around 5400 data points for the former, and around
2000 data points for the latter. In total, RPi Zero has 666
data points, 1B has 1034, 1B+ has 954, 2B has 1137, 3B
has 1105, 3B+ has 5383, 4B 1.1 (32 bits) has 1089 and its
64 bits version has 998, 4B 1.2 (32 bits) has 1017 and its
64 bits has 2014 data points. The difference in the number
of data points for each device type is due to our additional
experiments (in particular for the 3B+ and 4B, for instance,
to compare 32 bits vs 64 bits, or the validation of the power
model generator). Additionally, our cleaning script strips
the waiting time between each experiment run of the stress
benchmark. As the stress command is not precisely perfect
in its timing, the duration of each test might vary by a few
seconds, hence the additional data points.
5.3. Regression Power Models

For our experiment, we used two regression algorithms
in our server to generate the power models: linear and
polynomial regression. We choose these two regression al-
gorithms because of the visible correlation between power
and CPU utilization. However, other machine learning tech-
niques and algorithms can be applied to generate different
regression models.

Our power modeling server is implemented in Python
scripts, automating the data cleaning, synchronization,
power modeling, and storing data into the repositories. We,
then, generated power models for all different Raspberry Pi
models.

Table 3 outlines the generated power models using lin-
ear regression algorithms, and Table 4 outlines the models
generated with polynomial regression models.

2https://github.com/GaetanoCarlucci/CPULoadGenerator
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(a) (b)

Figure 5: CPU theoretical load compared to the load generated by (a) the stress-ng command and (b) the CPULoadGenerator

Table 3

Generated power models using linear regression algorithms

Raspberry Pi Estimation Model

RPi Zero W Rev 1.1 𝑃 = 0.4733 × 𝑈 + 0.9201
RPi 1B Rev 2 𝑃 = 0.1424 × 𝑈 + 2.9117
RPi 1B+ Rev 1.2 𝑃 = 0.1220 × 𝑈 + 1.3143
RPi 2B Rev 1.1 𝑃 = 1.1488 × 𝑈 + 1.2903
RPi 3B Rev 1.2 𝑃 = 3.4774 × 𝑈 + 1.0782
RPi 3B+ Rev 1.3 𝑃 = 3.2983 × 𝑈 + 2.0022
RPi 4B Rev 1.1 𝑃 = 3.7121 × 𝑈 + 2.2058
RPi 4B Rev 1.1 (64 bits) 𝑃 = 4.4958 × 𝑈 + 2.3073
RPi 4B Rev 1.2 𝑃 = 3.4842 × 𝑈 + 2.2434
RPi 4B Rev 1.2 (64 bits) 𝑃 = 4.5344 × 𝑈 + 2.2857

5.4. Validation of Power Models
To validate the accuracy of our power models, we com-

pare the power consumption calculated by our models to the
power consumption measured from the power meter. This
allows us to calculate the absolute difference between these
two values for every data point in the collected metrics. We
then calculate an average error using all measurements from
all devices with different regression models.

Figure 7 presents the measured correlation between CPU
load (in percentage), and the power consumption (in watts)
for our two regression models (linear and polynomial) and
the actual measurements from the power meter. Except for
Raspberry Pi 1B and 1B+, our empirical benchmarks show
a better fit for the polynomial regression.

This translates into a lower average error for the polyno-
mial model as compared to the linear model for all exper-
iments and Raspberry Pi devices, as seen in Figure 6. The
average error for the linear models varies from as low as
0.34% for RPi 1B+, to 7.81% for RPi 3B. In contrast, the
highest average error for the polynomial model is 3.83% to
the RPi 3B+.
5.5. Impact of Raspberry Pi Revisions

The Raspberry Pi Foundation often revises its current
offering of devices, with modifications to various hardware
components. As our implementation focuses on generating

power models for the CPU, we suspect that revisions on the
USB port or other minor modifications will only have a small
impact on the average error of our models.

We proceed to run our benchmarking client and generate
power models for the Raspberry Pi 4B revisions 1.1 and 1.2,
as seen in the previous Tables 3 and 4. For this particular
device, the differences between revisions 1.1 and 1.2 are
minimal and related to the USB-C connector as some elec-
tronic components were added and reallocated to fix a fault
regarding the connector.

Table 5 shows minor differences in the average error
between the rev 1.1 and 1.2 for the same OS architecture
(32 or 64 bits). This difference is not negligible for accu-
rate power measurements as an increase of up to 56% was
observed for using the power model of another revision.
However, the average error compared to the power meter
is still low in both power models when switching revisions
(i.e., around 3% to 4% for rev 1.1). Therefore, we recommend
generating and using power models for specific revisions,
while still allowing estimator clients to use another revision
power model if one isn’t provided for the specific revision.
5.6. Impact of 32 and 64 bits Raspberry Pi

Versions
Newer Raspberry Pi devices have a 64 bit supported

ARM architecture, where users can run either a 32 or a
64 bits operating system. As a stable 64 bits version of
Raspberry OS hadn’t been released during our experiments,
we use its latest beta version (arm64-2020-08-24). Recent
experiments had shown that a 64 bits OS on a Raspberry
Pi 4 provides a much higher performance compared to a 32
bits OS, up to doubling the performances in benchmarks [7].
Therefore, we suspect that our power models generated in a
32 bits OS would not provide a similar accuracy on a 64 bits
OS.

For both Raspberry Pi 4B revisions, we generate power
models running our benchmarks on a 64 bits OS, as seen in
the previous Tables 3 and 4. As we suspected, our bench-
marks running on a 64 bits OS have, on average, higher
power consumption than the same device running the same
benchmarks on a 32 bit OS.
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Table 4

Generated power models using polynomial regression algorithms

Raspberry Pi y-intercept Degree
1 2 3 4 5 6 7 8 9

RPi Zero W Rev 1.1 0.85 7.21 -135.52 1254.81 -6329.45 18502.37 -32098.03 32554.68 -17824.35 4069.18
RPi 1B Rev 2 2.826 3.54 -43.59 282.49 -1074.12 2537.68 -3761.78 3391.05 -1692.84 357.80
RPi 1B+ Rev 1.2 1.251 1.86 -18.11 101.53 -346.39 749.56 -1028.80 863.88 -403.27 79.93
RPi 2B Rev 1.1 1.36 5.14 -103.3 1027.17 -5323.64 15592.04 -26675.60 26412.96 -14023.47 3089.79
RPi 3B Rev 1.2 1.52 10.05 -234.19 2516.32 -13733.56 41739.92 -73342.79 74062.65 -39909.43 8894.11
RPi 3B+ Rev 1.3 2.48 2.93 -150.40 2278.69 -15008.56 51537.32 -98756.89 106478.93 -60432.91 14053.68
RPi 4B Rev 1.1 2.57 2.79 -58.95 838.88 -5371.43 18168.84 -34369.58 36585.68 -20501.31 4708.33
RPi 4B Rev 1.1 (64 bits) 3.41 -11.83 137.31 -775.89 2563.40 -4783.02 4974.96 -2691.92 590.36
RPi 4B Rev 1.2 2.59 12.34 -248.01 2379.83 -11962.42 34444.27 -58455.27 57698.69 -30618.56 6752.27
RPi 4B Rev 1.1 (64 bits) 3.41 -3.07 47.75 -271.97 879.97 -1437.47 1133.33 -345.13

Figure 6: Average Error percentage for linear and polynomial regression algorithms per Raspberry Pi

Table 5 presents the average error of each generated
power model when applied to the benchmark data of every
experiment. We observe, consistently, that a different archi-
tecture highly impacts the accuracy of the generated power
models, up to more than 5 times. For instance, RPi 4B rev 1.2
32 bits power models are nearly 5 times less accurate when
used on the same revision but with a 64 bits OS. These results
confirm our hypothesis and the higher performance of a 64
bits OS on supported devices as seen in the literature [7].

Consequently, we recommend using power models gen-
erated specifically for the device’s architecture.

5.7. Impact of Connected Peripherals
Raspberry Pi devices are designed to be easily connected

to external peripherals via a variety of physical interfaces. To
assess the impact of connected peripherals on the validity
of our energy models, we conduct the same benchmark
experience in two different scenarios on a Raspberry Pi 4B,
revision 1.2. In the first scenario, we disconnect all peripher-
als and follow the procedure mentioned in Section 5.1. In the
second scenario, we launch the benchmark after connecting
the Raspberry Pi to a screen using the mini HDMI interface,
a USB wired keyboard, and a wireless mouse, and we
activate WiFi.

We generate two power models, one for each scenario,
and calculate its average error. As seen in Table 6, both CPU

Table 5

Comparison of the average error of the linear models for 32 bits and 64 bits OS, for both revisions of Raspberry Pi 4B

RPi / Power model RPi 4 B 1.1 32 bits RPi 4 B 1.1 64 bits RPi 4 B 1.2 32 bits RPi 4 B 1.2 64 bits

RPi 4 B 1.1 32 bits 3.86 12.47 4.64 12.47
RPi 4 B 1.1 64 bits 10.68 2.99 12.22 2.97
RPi 4 B 1.2 32 bits 3.70 14.65 2.97 14.63
RPi 4 B 1.2 64 bits 10.60 3.97 12.09 3.92
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Figure 7: Linear vs polynomial regression power estimation models of the (a) RPi Zero W (b) RPi 1B (c) RPi 1B+ (d) RPi 2B
(e) RPi 3B (f) RPi 3B+ (g) RPi 4B 1.1 (h) RPi 4B 1.1 (64 bits) (i) RPi 4B 1.2 (j) RPi 4B 1.2 (64 bits)

linear and polynomial models have a lower error when dis-
connecting the peripherals. However, the models generated
with the peripherals are still within an acceptable margin
below 8%. This proves that our approach can generate CPU
power models with an acceptable accuracy even with inter-
ference from connected peripherals.

Table 6 also shows the average error when using the
power model of one scenario onto the data of the other
scenario, i.e., using the power model generated with the
peripherals on benchmarking data generated without the

peripherals, and vice versa. The average error shows a lower
accuracy of the model, but still within a range below 8%.
This means our CPU power models generated in an ideal
benchmark setup (with peripherals disconnected), are still
accurate enough to, not only estimate the power of the CPU,
but to estimate the power of the Raspberry Pi device (as the
CPU is shown to be the most power-consuming component).

Raspberry Pi devices are often used in a headless server
setup (such as to control industrial machines, control heating
or lightning in a smart home or city, a web or NAS server,
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Table 6

Comparison of the average error of the linear and polynomial
models with and without peripherals on a Raspberry Pi 4B,
rev. 1.2

Power Model
Data

with without

Linear with 4.19% 7.83%
Linear without 7.34% 2.92%

Polynomial with 3.73% 7.72%
Polynomial without 6.91% 1.64%

etc.). In these situations, our approach generates accurate
CPU power models without interference from peripherals.
5.8. Comparison to the State of the Art Models

To assess the validity of our models and our automated
approach in generating up-to-date models, we compare our
generated power models to the ones provided by the state of
the art. In particular, we tested and compared our models to
two models: PowerPi [16] and EMM [17].

PowerPi provided linear power models for the Raspberry
Pi 2B and used a custom tool to stress the CPU using an
infinite loop doing two additions of two integer variables.
cpulimit was used to limit the CPU utilization which was
stressed with a 10% step.

EMM provided linear power models for the Raspberry Pi
3B+ and used the stress-ng command to stress the CPU for
a particular load. As we explained in Section 5.2, we found
that using this command generates an inconsistent CPU load.
In comparison, we use a more random CPU load generator
(compared to PowerPi), and a more consistent CPU load
tool (compared to EMM). We also stressed the CPU with
a 5% step, collecting more data points at more CPU load
percentages. Therefore, we have a more comprehensive and
complete data set to generate more accurate power models.
Our architecture also follows a crowd-sourced approach al-
lowing adding additional benchmarks and data to constantly
improve the generate power models.

PowerPi announces an average error of 1.2%, while
EMM announces an average error of 1.25% with a maximum
of 3%. However, in our experiments, we found that both
models have a much higher error rate: 14.56% for PowerPi
and 40.76% for EMM (cf. Figure 8). In contrast, our linear
models provide an error rate of 3% for RPi 2B, and 6.71%
for RPi 3B+, and even much lower error rates for our
polynomial models (1.53% and 3.83%, respectively).

In addition, our approach is based on a dynamic model
generation that deals with dynamic workloads. It is validated
on a large variety of Raspberry Pi devices in comparison
with state-of-the-art methods (which are tested on a single
device). It also allows the collection of a large data set
due to its decentralized data collection technique. Another
advantage of our approach is its flexibility: new models can
be added or modified as the system evolves. As such, it can
integrate into complex and moving environments (such as
when new devices are often introduced or updated).

Figure 8: Average Error percentage for linear and polynomial
regression algorithms for our approach compared to the litera-
ture

5.9. Overhead of Regression Models
Most of our generated polynomial models have a degree

of 9, requiring calculations up to the power of 9. In our
analysis, we found that polynomial models with a higher
degree than 9 have negligible accuracy improvements but
with a higher calculation complexity. As these models have
a much higher accuracy than the linear ones, we compared
the overhead of running both models in our implementation
of the power estimator client.

Our client is a minimal C program reading CPU cycles,
calculating CPU utilization, and applying the power models.
The client monitors power consumption at run-time and
provides a power value every second. We compare the power
overhead of running the client with both power models, and
also in comparison to the base power consumption without
our client. We conduct our experiment on two Raspberry Pi
models: RPi Zero W for a low-power device, and the 3B+
for a more recent higher-power one.

Figure 9 outlines the absolute differences in Watts be-
tween both our implementations: linear and polynomial
models. For both devices, although we observe some rare
data points of higher diversion, the overall difference is
quite low with an absolute average difference of 0.084 watts
(corresponds to a relative difference of 1.32%) for the RPi
Zero W, and only 0.109 watts (corresponds to a relative
difference of 0.72%) for the RPi 3B+. These numbers show
a negligible overhead for using our polynomial models over
the linear ones, even on low-power devices. We, therefore,
recommend using the polynomial power models even for
run-time power monitoring.
5.10. Validation of the Power Model Generator

The core idea of our power modeling generator, de-
scribed in Section 4.2, is to allow third-party benchmarking
clients to send new benchmark metrics to further improve
the accuracy of the generated power models. In this section,
we validate our approach with a breakdown of a step-by-step
experiment of the linear power model in a Raspberry Pi 3B+
device.

We run our experiment 10 times, emulating 7 bench-
marks sending data incrementally one after the other for one
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(a) (b)

Figure 9: Power overhead of the (a) RPi Zero W and the (b) RPi 3B+

Table 7

Breakdown of our Power Model Approach (linear model on RPi
3B+, bold for the selected model)

Step M'(n) E'(n) E(n) M(Server)

S1 𝑃 = 3.357 × 𝑈 + 2.024 7.64% - 𝑆1
S2 𝑃 = 3.271 × 𝑈 + 2.032 6.61% 7.07% 𝑆2
S3 𝑃 = 3.272 × 𝑈 + 2.011 6.13% 6.23% 𝑆3
S4 𝑃 = 3.285 × 𝑈 + 2.014 6.58% 6.51% 𝑆3
S5 𝑃 = 3.296 × 𝑈 + 2.004 6.72% 6.66% 𝑆3
S6 𝑃 = 3.294 × 𝑈 + 1.997 6.45% 6.43% 𝑆3
S7 𝑃 = 3.292 × 𝑈 + 1.992 6.25% 6.27% 𝑆7

particular device (Raspberry Pi 3B+). Our server implemen-
tation then runs our model generator algorithms and keeps
the best accurate power model in every step.

The result of this breakdown is outlined in Table 7 for the
linear model, and Table 8 for the polynomial model. Each
row of the table represents a new server iteration (receiving
new data, data normalization and cleaning, validation, power
model generation, and comparison, etc.). 𝑀 ′(𝑛) indicates
the newly generated power model in the server, along with its
error rate 𝐸′(𝑛). 𝐸(𝑛) is the error rate of the currently saved
power model using all the data. And𝑀(𝑆𝑒𝑟𝑣𝑒𝑟) is the power
model that is saved after the current iteration.

As we can observe in this breakdown, the newly gener-
ated model is not always the most accurate. For instance, for
the linear model, at step 4, the new model has a worst average
error (6.58%) compared to the current model (6.51% calcu-
lated with all data including the new ones). This also happens
in steps 5 and 6. However, across multiple iterations, we
observe a decrease in the average error, which started at
7.64%, then gradually went down up to 6.25% after only
7 benchmarks and model iterations. We observe a similar
breakdown for the polynomial model with an improvement
of the error rate and our approach uses the most accurate
power model on every step.

We argue that the more benchmark data we have, the
more our architecture and approach will provide empirical
power models with better accuracy.
5.11. Use Case of Remote Power Monitoring

A use case illustrating the advantages of our approach is
remote power monitoring of a park of deployed Raspberry Pi
devices. Examples of such use cases vary from monitoring
environmental metrics [20, 19], smart management [14], or
health [18]. In particular, smart devices, such as Raspberry
Pis, send collected metrics and their status (including CPU
statistics) to a central monitoring service.

An example of the latter is Zabbix 3, an open-source
server used for real-time monitoring of a large number
of clients. In each Raspberry Pi client, a Zabbix agent is
installed to allow remote monitoring and management. It
can send CPU utilization and many other metrics for the
device in real-time. We developed a prototype plugin for
Zabbix to integrate our power models and architecture into
its web interface. Our plugin updates the power models of
the monitored devices by connecting to our power modeling
server. It also tweaks the Zabbix web interface to calculate
the power consumption of monitored devices, in real-time,
and displays them along with the CPU utilization, as seen in
Figure 10.

With our approach and power models, remote manage-
ment tools can efficiently, accurately and with no overhead
on the monitored devices, monitor the power consumption in
real-time. It also allows these tools to always have updated
and accurate power models, and to support new device power
models easily by just calling our sharing interface.
5.12. Threats to Validity

Our approach and experimentation suffer from the fol-
lowing threats to validity:

• Our implementation is limited to one type of single-
board computers, i.e., Raspberry Pi devices. We run

3https://www.zabbix.com/
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Table 8

Breakdown of our Power Model Approach (polynomial model on RPi 3B+, bold for the selected model)

Step P[0] Degree of M'(n) E'(n) E(n) M(Server)
1 2 3 4 5 6 7 8 9

S1 2.34 11.95 -334.15 3997.0 -23579.71 76091.11 -140313.95 147466.42 -82193.81 18858.15 3.68 - 𝑆1
S2 2.45 5.33 -186.67 2534.97 -15983.94 53687.34 -101595.06 108702.03 -61390.2 14229.05 3.73 4.15 𝑆2
S3 2.49 2.66 -129.57 1976.33 -13076.81 45047.92 -86526.32 93476.51 -53148.84 12380.92 3.63 3.79 𝑆3
S4 2.48 3.07 -146.99 2215.22 -14580.93 50066.17 -95944.1 103459.96 -58730.58 13660.99 3.8 3.71 𝑆3
S5 2.49 2.96 -151.39 2289.23 -15064.96 51709.94 -99070.29 106810.86 -60621.69 14098.12 3.82 3.73 𝑆3
S6 2.51 1.69 -123.33 2010.51 -13596.98 47304.09 -91325.7 98938.95 -56341.33 13134.87 3.78 3.71 𝑆3
S7 2.52 0.74 -102.99 1810.06 -12545.46 44155.31 -85798.75 93326.76 -53291.99 12449.07 3.74 3.69 𝑆3

Figure 10: Power consumption of a Raspberry Pi displayed on
a Zabbix server web interface

our experiments on a wide variety of RPi device
models from each generation, but some devices and
revision models were not modeled.

• Our implementation only uses one metric to correlate
to the power consumption, i.e., CPU utilization which
is calculated from the measured CPU cycles. Even
though our results show a strong correlation, and
allow us to generate very accurate power models (that
can have an average error as low as 0.3%), we did
not investigate additional metrics or other hardware
components (such as the WiFi or Bluetooth).

• Although we made sure no interference happened to
our experiments and data collection, we could not
formally discard that no external factors impacted the
results. In particular, the experiments spanned over
4 months in different weather conditions (winter and
spring) and therefore different room temperatures.
Additionally, the power overhead of the benchmark-
ing client was not subtracted from the collected data
because we wished to emulate real usage of the client
(where it is difficult to automatically deduce a vari-
able overhead. This deduction process might require
additional data collection, such as the CPU cycles of

the client process, and therefore adds an additional
overhead itself).

6. Conclusion and Future Directions
In this paper, we presented an architecture to automate

the generation of always up-to-date and accurate power
models for a variety of devices. Our approach allows crowd-
sourced benchmarking of devices, the collection of various
metrics, and the generation of specific power models based
on the collected data. A sharing interface allows power
estimator clients to query and retrieve the most accurate
power model available for the client’s device.

We implemented a proof-of-concept client and server
to automate the generation of power models for Raspberry
Pi devices. We also conducted a comprehensive experiment
validating our approach, algorithms, and power models. The
latter provides high accuracy with error rates as low as
0.33% and up to 7.81% for linear models, and 0.3% up to
3.83% for polynomial models. Furthermore, we analyzed
and discussed the impact of device revisions, CPU and OS
architectures, and the overhead of both generated power
model types. Finally, we validated our approach in the power
model generator and provided an example of a use-case
scenario of our models in remote power monitoring.

In the future, we plan to study and model the power
consumption of additional hardware components of Rasp-
berry Pi devices, such as the network (WiFi and Ethernet),
Bluetooth, HDMI, and connected USB devices. We also
plan in expanding our implementation to cover additional
single-board devices, such as BeagleBoard, and mobile and
embedded devices. In addition, we would like to study
the impact of additional software and hardware metrics on
power consumption, as this might help in improving the
accuracy of the generated power models. Furthermore, we
plan to study and implement additional machine learning
algorithms and automate the selection of the most efficient
algorithm. We also plan to investigate reinforced learning
approaches and their integration into our architecture.
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