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* Correspondence: m.przybylek@cm.umk.pl (M.P.); alinas@umk.pl (A.S.)

Abstract: Chitosan–collagen blends have been widely applied in tissue engineering, joints diseases
treatment, and many other biomedical fields. Understanding the affinity between chitosan and
collagen type II is particularly relevant in the context of mechanical properties modulation, which
is closely associated with designing biomaterials suitable for cartilage and synovial fluid regenera-
tion. However, many structural features influence chitosan’s affinity for collagen. One of the most
important ones is the deacetylation degree (DD) in chitosan and the hydroxylation degree (HD)
of proline (PRO) moieties in collagen. In this paper, combinations of both factors were analyzed
using a very efficient molecular dynamics approach. It was found that DD and HD modifications
significantly affect the structural features of the complex related to considered types of interactions,
namely hydrogen bonds, hydrophobic, and ionic contacts. In the case of hydrogen bonds both direct
and indirect (water bridges) contacts were examined. In case of the most collagen analogues, a very
good correlation between binding free energy and DD was observed.

Keywords: chitosan; collagen; intermolecular interactions; affinity; binding; molecular dynamics

1. Introduction

The proper function of joints depends on the optimal composition of synovial fluid
and cartilage, which guarantees an effective biolubrication. Collagen and hyaluronan are
probably the most important extracellular matrix molecules. Inter- and intramolecular
interactions involving biomacromolecules in connective soft tissues significantly affect
their nanomechanical features [1]. Collagen–hyaluronate mixtures are commonly used in
various fields, including tissue engineering, pharmacy, and cosmetics [2–4]. An interesting,
much cheaper, and easily available alternative for hyaluronan is chitosan, which shows
quite similar features. However, there are also some differences. For instance, hyaluronan
is in general more hydrophilic than chitosan, on the other hand, chitosan is more prone
to aggregation than hyaluronan [5]. Due to its high biocompatibility and other unique
features, collagen/chitosan blends were widely applied in tissue engineering, including
vascular tissue-, skin-, bones- and cartilage-mimicking materials [6–16]. The chitosan
precursor material namely chitin which contains the maximal number of acetyl groups
can be easily obtained from various natural sources. This important biomaterial occurs in
mushrooms, shrimps, crabs, silkworms, fungi, and green algae [17–21]. For this reason,
chitin is considered a “green material”, since many of the above-mentioned sources such as
shells of crustaceans are waste products. The chitin/chitosan carbohydrate chain consists
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of glucosamine (2-amino-2-deoxy-β-D-glucan) and N-acetylated glucosamine moieties
linked by 1→4 glycosidic bonds. The number of acetyl groups in chitosan affects various
features such as membrane permeability, viscosity, hydrophobicity, air/water contact angle,
bio-compatibility, and solubility [22–26].

The affinity of chitosan to collagen is a crucial factor affecting important properties
of biocomposites consisting of these macromolecules. This was confirmed by different
studies that probed the intermolecular interactions between chitosan and collagen by
combining various measurements to characterize the rheological, mechanical, and stability
properties [27–29]. However, there is not much information in the literature on the influence
of the deacetylation degree of chitosan and the degree of hydroxylation in type II collagen
on the properties of composites. As was established by Hsu et al. [30] in the case of the
alginate blends with chitosan, the low number of acetyl groups in chitosan is beneficial for
the mechanical properties. This can be explained by the efficient assembly of biopolymers,
caused by the high number of amino groups able to interact more strongly with the alginate
than acetyl groups [30].

Proline (PRO) hydroxylation degree (HD) is an important factor affecting collagen
properties, including mechanical behavior [31] and thermal stability [32]. The larger
number of the hydroxyproline (HYP) residues, the higher the denaturation temperature.
Importantly, HD seems to be also a crucial factor that may affect the stability of molecular
complexes with chitosan. This hypothesis is based on several observations. For instance,
according to Sipila et al. [33], the HYP/PRO ratio in collagen significantly affects the binding
affinity toward integrin. However, collagen–chitosan systems have not been studied in
terms of HD effect on complex stability.

The general scheme of chitin deacetylation and collagen PRO hydroxylation was
presented in Figure 1. In the case of deacetylation, it can be carried out either by enzymatic
process [34–36] or by using simple basic hydrolysis [26,37–39]. The former method is
very limited and cannot be used to remove the majority of acetyl groups [36]. On the
other hand, by using the latter method very high or even complete deacetylation can be
achieved [38], however the process often leads to polymer chain degradation [26]. The PRO
hydroxylation process in collagen analogues should be rather considered as HYP/PRO
regulation by modulating the prolyl hydroxylase activity [33,40–42]. An experimental study
that systematically investigates this problem is hard to conduct due to different limitations.
An alternative to gaining deep knowledge is the use of molecular dynamics simulations to
study all effects on various combinations of DD in chitosan and HD in collagen. Herein,
the main aim of the research was to investigate how structural alterations in biomolecular
chains affect the stability of the complexes.
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Figure 1. The enzymatic hydroxylation of the PRO moiety in collagen (A) and deacetylation of chi-
tosan (B). In case of the reaction scheme shown on the panel A, L-proline moiety is hydroxylated, 
which is a natural isomeric form in collagen. In the current study the hydroxylation of the same 
PRO form yielding trans-4-Hydroxy-L-proline residues was taken into account. 

2. Results and Discussion 
In this study, the intermolecular interactions between collagen type II characterized 

by different HD degrees and chitosan molecules modified by alternating the number of 
acetyl moieties attached to the amino groups were examined. The analysis of Gibbs free 
energy values indicates that the formation of all complexes is thermodynamically favora-
ble (Figure 2). The Gibbs free energy of binding is lower than −150 kJ/mol. Further, the 
stability of the collagen-chitosan complex is significantly affected by both HD and DD, as 
documented in Figure 2. All collagen structures with a different HD degree show a linear 
decrease in the Gibbs free energy as the DD content rises. The correlation coefficients R2 
were 0.99 (HD = 0), 0.96 (HD = 0.14), 0.96 (HD = 0.29), 0.93 (HD = 0.43), 0.94 (HD = 0.57), 
0.96 (HD = 0.71), 0.94 (HD = 0.85), and 0.58 (HD = 1.00). The increase in HD influences the 
binding affinity irrespectively of DD values. The highest affinity of chitosan to collagen 

Figure 1. The enzymatic hydroxylation of the PRO moiety in collagen (A) and deacetylation of
chitosan (B). In case of the reaction scheme shown on the panel A, L-proline moiety is hydroxylated,
which is a natural isomeric form in collagen. In the current study the hydroxylation of the same PRO
form yielding trans-4-Hydroxy-L-proline residues was taken into account.

2. Results and Discussion

In this study, the intermolecular interactions between collagen type II characterized
by different HD degrees and chitosan molecules modified by alternating the number of
acetyl moieties attached to the amino groups were examined. The analysis of Gibbs free
energy values indicates that the formation of all complexes is thermodynamically favorable
(Figure 2). The Gibbs free energy of binding is lower than −150 kJ/mol. Further, the
stability of the collagen-chitosan complex is significantly affected by both HD and DD, as
documented in Figure 2. All collagen structures with a different HD degree show a linear
decrease in the Gibbs free energy as the DD content rises. The correlation coefficients R2

were 0.99 (HD = 0), 0.96 (HD = 0.14), 0.96 (HD = 0.29), 0.93 (HD = 0.43), 0.94 (HD = 0.57),
0.96 (HD = 0.71), 0.94 (HD = 0.85), and 0.58 (HD = 1.00). The increase in HD influences the
binding affinity irrespectively of DD values. The highest affinity of chitosan to collagen
was observed in the case of the completely hydroxylated and completely deacylated
species (HD = 1 and DD = 1) molecular assembly. It is worth mentioning that the collagen
characterized by the high HYP/PRO ratio is in general more stable [32]. Therefore, the
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high number of HYP residues promotes self-association during the gelling process [43,44].
According to some suggestions [45], this factor may have the effect of reducing the ability
of collagen to complex chitosan, which of course is based on the supposition that the
complexation takes place as a result of tertiary structure degradation. This behavior seems
to be opposed when considering the use of chitosan as a substitute for hyaluronic acid.
Nevertheless, it is known that this additive improves the thermal stability of collagen
by increasing the denaturation temperature [46]. Thus, the interactions occurring on the
collagen surface seem to be more favorable and maintain the consistency of the tertiary
protein structure. Indeed, as one can infer from Figure 3, only the side functional groups
are involved in the interactions between chitosan and collagen. This is consistent with the
study of Taravel and Domard [47] showing that the calf skin collagen’s triple helix system
stability is enhanced as a result of complexation with chitosan. On the other hand, some
experimental results show that chitosan can affect the tertiary structure [27].
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Figure 3. Visualization of collagen type II helices interacting with chitosan. The panels (A–D) rep-
resent exemplary snapshoots of the complexes characterized by HD = 1/DD = 1, HD = 0.5/DD = 1, 
HD = 0.5/DD = 0.5, and HD = 0/DD = 0.125, respectively. Hydrogen bonds were denoted by pink 
dotted lines, while ionic contacts by solid pink lines. Solid green lines stand for hydrophobic con-
tacts. Collagen helices are presented as solid turquoise lines, whereas chitosan is represented by 
ball-stick model with colors representing: carbon-turquoise, nitrogen-dark blue, oxygen-red, and 
hydrogen-white. 
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chitosan HD > 75% and collagen was reflected by the exceptionally high mechanical du-
rability of the composites [48–50]. Furthermore, highly deacetylated chitosan (c.a. 90%) is 
characterised by excellent miscibility with collagen [51]. Chitin (DD = 0) can also form 
blends with collagen [52]. This is consistent with the negative sign of free energy of bind-
ing, which can be noticed in the case of all chitin complexes (Figure 2).  

The graphical representation of the exemplary complexes was presented in Figure 3. 
As one can see the several types of intermolecular interactions (hydrogen bonds, ionic 
contacts, water bridges, and hydrophobic interactions) can be distinguished in the case of 
collagen–chitosan complexes. 

2.1. Hydrogen Bonds 
According to the default definition implemented in the YASARA force field [53], the 
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In the case of E values higher than −6.25 kJ/mol, the interaction is classified as a hy-
drogen bond. Some structural details of studied molecular systems including characteris-
tics of identified H-bonds was provided in Table S1-S25. Among all collagen–chitosan 
complexes considered in this study the most stable hydrogen bond was formed by GLU 
and chitosan O3 hydroxyl group (atoms numbering according to Supplementary Figure 
S1) in case of a structures characterized by DD = 1 and HD = 1 and the energy of this 
interaction was 25 kJ/mol. This contact was characterized by one of the shortest H-bond 

Figure 3. Visualization of collagen type II helices interacting with chitosan. The panels (A–D)
represent exemplary snapshoots of the complexes characterized by HD = 1/DD = 1, HD = 0.5/DD = 1,
HD = 0.5/DD = 0.5, and HD = 0/DD = 0.125, respectively. Hydrogen bonds were denoted by pink
dotted lines, while ionic contacts by solid pink lines. Solid green lines stand for hydrophobic
contacts. Collagen helices are presented as solid turquoise lines, whereas chitosan is represented
by ball-stick model with colors representing: carbon-turquoise, nitrogen-dark blue, oxygen-red,
and hydrogen-white.
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The high affinity of highly deacetylated chitosan can be explained by the significantly
higher basicity of the amino group, which is more capable of interacting with carboxylic
and hydroxyl groups. The high stability of the complexes formed by highly deacetylated
chitosan HD > 75% and collagen was reflected by the exceptionally high mechanical
durability of the composites [48–50]. Furthermore, highly deacetylated chitosan (c.a. 90%)
is characterised by excellent miscibility with collagen [51]. Chitin (DD = 0) can also form
blends with collagen [52]. This is consistent with the negative sign of free energy of binding,
which can be noticed in the case of all chitin complexes (Figure 2).

The graphical representation of the exemplary complexes was presented in Figure 3.
As one can see the several types of intermolecular interactions (hydrogen bonds, ionic
contacts, water bridges, and hydrophobic interactions) can be distinguished in the case of
collagen–chitosan complexes.

2.1. Hydrogen Bonds

According to the default definition implemented in the YASARA force field [53], the
energy of a particular contact can be determined from the atom distances, appropriate
donor–hydrogen–acceptor, hydrogen–acceptor–X angle, and scaling factors by using the
following Equation (1):

E = −25·2.6−max(DisH−A,2.1)
0.5

·ScaleD−H−A·ScaleH−A−X (1)

In the case of E values higher than−6.25 kJ/mol, the interaction is classified as a hydro-
gen bond. Some structural details of studied molecular systems including characteristics of
identified H-bonds was provided in Table S1-S25. Among all collagen–chitosan complexes
considered in this study the most stable hydrogen bond was formed by GLU and chitosan
O3 hydroxyl group (atoms numbering according to Supplementary Figure S1) in case of
a structures characterized by DD = 1 and HD = 1 and the energy of this interaction was
25 kJ/mol. This contact was characterized by one of the shortest H-bond lengths (1.64 Å).
The weakest H-bonds characterized by slightly higher energy than the threshold were
ALA(N) and amine group in chitosan (E = −7.3 kJ/mol) for the same complex. In the case
of collagen–chitosan complexes the most frequently appearing hydrogen bonds are formed
by HYP, PRO, GLY, and residues, i.e., the most abundant amino acids in the structures.
Chitosan residues can take both hydrogen bond accepting or donating parts. By comparing
the three different variants of collagen HD = 0, HD = 0.42 (native) and HD = 1 some
interesting differences in the H-bonds accepting roles can be observed (supplementary
Tables S20–S22). First of all, the accepting role of ARG is increasing with the increase in HD.
This can be explained by a closer distance of chitosan in the complex being the consequence
of intermolecular interactions involving HYP residues. As expected also the DD affects the
accepting role of the residues. For instance, when considering the complexes involving
the native collagen, the number of H-bonds formed by ARG playing the accepting role is
higher for DD = 0.5 (Table S24) than for DD = 1 (Table S21). These observations are intuitive
and show an increase in the number of basic centers as a consequence of deacetylation,
which affects the accepting abilities. The consequence of this is, in turn, a reduction in the
general accepting role of the collagen residues.

Interestingly, although the examples presented above suggest a significant influence
of the DD on the donor–acceptor character, there are no significant changes in terms of
the number of interactions. The distributions of direct and water-mediated H-bonds are
presented in Figure 4. As one can see, the number of hydrogen bonds decreases with the
increase in DD.
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collagen-chitosan complexes.

In the case of water bridges, the number of contacts is not affected by the DD. As one
can see, in the case of HD = 0, most of the interactions are formed by PRO. However, the
sum of other H-bonds is higher. Surprisingly, when considering both direct and indirect
H-bonds, in the case of HD = 1, most of the contacts are formed by HYP. This suggests that
the interactions employing the hydroxyl group attached to PRO are more favorable than
other H-bonds.

2.2. Hydrophobic Interactions

As it is documented in Figure 5 the number of hydrophobic (HP) interactions for all
different HD states decreases with the increase in DD. Interestingly, most of the contacts of
this type are formed by PRO or HYP. This is understandable, since HP forces are formed
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by the aliphatic groups including CH3 in the acetyl moiety. Noteworthy, in the case of all
collagen structures, there is a very good correlation between the number of hydrophobic
interactions and DD (R2 ranges from 0.98 to 0.99). The inspection of the slope values
indicates that the complexes employing collagen characterized by HD = 0 are the most
sensitive to DD. It was found the most susceptible residue for the decrease in hydrophobic
interactions was PRO; however, the slope was strongly related to HD.
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2.3. Ionic Interactions

The influence of DD on the formation of electrostatic interactions is associated with
the increase in amino groups which undergo protonation. Noteworthy, the amino nitrogen
atom attached to the aliphatic chain is characterized by a much more basic character than
the delocalized lone electron pairs in the acetyl group. According to expectation, the ionic
interactions are formed by the ionized GLU carboxyl group in the amino acid residue and
the ammonium NH3

+ group in chitosan (DD = 1). The contacts between COO− and -NH3
+

were confirmed experimentally for collagen and gelatin blends containing chitosan by using
FTIR spectroscopy [27,54,55]. The distributions of these interactions for the complexes
characterized by different HD and DD were presented in Figure 6. Noteworthy, in the
case of all collagen structures, there is a very good correlation between the number of
ionic interactions and DD (R2 ranges from 0.6 to 0.97). Since, there was no significant
change in slope value between HD, the HYP/PRO ratio generally in most cases does not
affect the ionic interactions. However, in the case of HD = 0 and HD = 0.43, a decrease in
the number of ionic contacts can be observed for DD = 1. In the case of HD = 0.29 and
HD = 0.71, the number of interactions of this type is almost constant for DD = 0.875 and
DD = 1. This apparently abnormal behavior is caused by the formation of mainly hydrogen
bonds between GLU and hydroxyl groups in chitosan due to conformations that favour
positions further from GLU located at the canter of helices.
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Figure 6. Number of ionic contacts vs. chitosan DD for different HD of collagen.

Since the ionic forces are directly related to the charge distribution the electrostatic
potential maps were determined (Figure 7). The characteristic zwitterionic structure of the
peptide necessitates significant variations in charge density. Hence, in the case of collagen
and chitosan, many centers with localized positive and negative charges can be noticed.

2.4. Entropic and Enthalpic Contributions to Solvation

Solvation is a crucial factor affecting the overall complex stability. As expected, the
HD affects the solvation efficiency expressed by the free energy of solvation (Figure 8).
Interestingly, the enthalpic absolute contributions to the free energy are higher than the
entropic one. When considering the chitosan molecule interacting with collagen, DD
significantly influences ∆Gsolv. The downhill trend is a consequence of the increase in the
number of highly hydrophilic amino groups and the decrease in acetyl moieties. On the
other hand, when considering complexes formed by particular collagen analogues, there
is a very weak effect of DD on the free energy of solvation. As expected, the solvation
of the complexes formed by the completely hydroxylated collagen analogue (HD = 1) is
more efficient than in the case of the dehydroxylated collagen. Interestingly, in all cases,
the ∆Gsolv value of the complexes is higher than the sum of ∆Gsolv values of peptide and
chitosan. This indicates that the acidic and basic centers in the considered biopolymers
take part in interactions with each other, at the expense of solvation.
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3. Methods
3.1. Docking and Molecular Dynamics Simulation Setup

In this study, the collagen II structure, (Pro-Hyp-Gly)3-Arg-Ala-Gly-Glu-Pro-Gly-Leu-
Gln-Gly-Pro-Ala-Gly-(Pro-Hyp-Gly)3 obtained from the protein data bank (PDB) (code
6JEC 10.2210/pdb6JEC/pdb) was used. In this structure, twelve amino acid residues
form a common motif characteristic for human type II collagen. In order to stabilize the
triple-helical assembly, the peptide chains were ended with (Pro-Hyp-Gly)3 triplets. In the
current study we used trans-4-Hydroxy-L-proline as it is the most common type of HYP
present in collagen [56].

The hydroxylation degree in the collagen chain was modified by adding or removing
OH groups from PRO and HYP moieties. Peptide structures characterized by the following
HD: 0, 6 (HD = 0.14), 12 (HD = 0.29), 18 (HD = 0.43, original structure), 24 (HD = 0.57),
30 (HD = 0.72), 36 (HD = 0.86), and 42 (HD = 1) were taken into account. The positions
of HYP/PRO residues for each of ten variants for given HD are provided in Table S1
in Supplementary information. For each HD a set of randomly hydroxylated structures
were constructed. Random positions have been generated using the random number
generator built in MATLAB [57]. Ten distinct PRO/HYP sequences of available positions
for a given HD have been generated based on these random numbers. Randomization of
the PRO/HYP position was applied in order to have more statistically significant results. A
similar procedure was applied in deacetylation on chitosan, where 5 variations of each DD
were prepared to take into account randomization of acetyl group position in chitosan of a
given DD. It should be also taken into account that PRO can be hydroxylated in position
3. However, this modification is much more important for collagen IV than collagen
II [58]. Furthermore 4-hydroxylation is important from the collagen tertiary structure
perspective [32,59,60].

The next effect, namely chitosan deacetylation was visualized in Figure 1b. For this
purpose, the chitin structure was retrieved from the PubChem database (800 Da) and used
to construct chitosan structures characterized by DD = 12.5–100%.

Finally, all collagen and chitosan structures were subjected to geometry optimization.
The docking procedure was performed with an aid of VINA method [61] using default
settings. The used for collagen (receptor) initial point charges were determined using
AMBER14 force field [62], while in the case of chitosan (ligand) GLYCAM06 force field [63]
was applied. Simulation box containing complexes of interest was filled with water and
chloride ions to keep the system electrostatically neutral. Noteworthy, the AMBER14
force field applied for collagen shows good recreation of protein dynamics and ensures
that the proper configurations and conformations of residues are maintained [64–66]. All
calculations were carried out using the YASARA software [67]. The most stable complexes
of 50 runs were selected by taking into account the 42 kJ/mol free binding energy threshold.
As a result, about 1000 complexes for every variant of given hydroxylated collagen and
deacetylated chitosan molecule pair. Structures characterized by the native collagen se-
quence (HD = 0.43), as well as ones with all hydroxylated (HD = 1) and none hydroxylated
PRO residues (HD = 0) have only one variant; therefore, those formed only ~150 complexes
each. In total, we have obtained ~40,000 complexes that were further used.

In order to include the solvation effect, the molecular dynamics (MD) simulations
were performed in water. The applied procedure included the optimization of hydrogen
bonds (H-bonds) to achieve appropriate protonation microstates (pH = 7.0) [53]. Then, after
achieving the steepest gradient during the annealing simulations, the MD calculations were
carried out for one ns using the three different forcefields namely, AMBER14 for collagen,
GLYCAM06 for chitosan, and TIP3P for water. The default AMBER settings, namely
10 Å-threshold for van der Waals interactions, and no threshold was applied for Particle
Mesh Ewald algorithm [68], used for the electrostatic forces identification. The following
default settings [67] were used for motions equations integration: 1.25 fs multiple time
steps in case of bonded interactions and 2.5 fs for non-bonded ones, T = 310 K, P = 1 atm,
NPT ensemble, protocol. After the RMSD (root mean square deviation/displacement)
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analysis of MD simulations, an arithmetic average of 100 points from the 0.9–1 ns range
(0.01 ns sampling) were selected for determination of free energy of binding. The analogical
procedure was applied for the numbers of intermolecular interactions.

In order to evaluate the structural consequences of DD and HD expressed by the alter-
nations in the distributions of particular types of interactions (direct and water-mediated
hydrogen bonds, ionic and hydrophobic forces), the default YASARA [67] definitions were
applied for mentioned contacts.

3.2. Binding Free Energy Determination

In this study, the binding free energy was calculated by using a single trajectory
approach (Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) and the
YASARA Structure). For this purpose, the APBS (Adaptive Poisson–Boltzmann Solver)
and AMBER14 force field was utilized for solvation energy determination and include elec-
trostatics [69,70]. The binding free energy, ∆Gb, was determined for optimized structures
using the Equation (2).

∆Gb = ∆Gc –(∆GL + ∆GR) (2)

where ∆Gc, ∆GL, and ∆GR denote the free energy of the chitosan–collagen complex, the
ligand, which is chitosan and the receptor (collagen type II).

3.3. Determination of Free Energy and Entropy of Solvation

The free energy and entropy of solvation were determined based on the approach
presented in the study of Syme et al. [71]. The free energy of solvation (∆Gsolv) was
calculated by subtracting the free energy for the unsolvated form from the free energy
value corresponding to the solvated form. On the other hand, the entropy of solvation at a
given temperature (∆GT) can be calculated from the following equation:

∆Ssolv(T) = −
[∆Gsolv(T + ∆T)− ∆Gsolv(T − ∆T)]

2∆T
(3)

where ∆T denotes temperature difference, for which the additional MD simulations were
performed. The value of entropy is an average from 70 structures for two types of collagen
analogues characterized by the highest and the lowest HYP/PRO ratio (HD = 0 and
HD = 1).

4. Conclusions

Collagen–chitosan blends are very often explored biomaterials due to their unique
properties. In this study, the effect of collagen PRO residues hydroxylation and chitosan
deacetylation was analyzed using MD methodology. Both HD and DD are crucial factors,
which are known to affect the important properties of considered biopolymers. It could
be observed that for all collagen type II analogues a linear relationship between the Gibbs
binding free energy and DD ratio exists. Apart from the energetical features, the important
structural parameters such as the number of H-bonds, hydrophobic interactions and
ionic contacts were determined. It can be concluded that the high affinity of collagen to
completely deacetylated chitosan is caused by a large number of amino groups in chitosan
which increases the basic character.

The obtained results are quite intuitive and consistent with some experimental studies
reported in the literature. The used collagen structures represent a fragment of human
collagen type II characterized by the tertiary structure arrangement and the presence of
the crucial residues and fragments (particularly the most common triplet PRO-HYP-GLY).
Although, the applied peptide helices are relatively short they seem to be sufficient to show
how the HYP/PRO ratio can influence the chitosan affinity for collagen. However, there
are some aspects which are worth considering in further studies, such as the influence of
the number of individual residues on the collagen affinity for chitosan. This seems to be
important in the context of the polyelectrolytic nature of collagen. Therefore, the obtained
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results, are a good starting point for examining more complex systems. For this purpose a
coarse-grained model seems to be a promising tool. In addition, the results presented in
this study indicate the important factors affecting collagen-chitosan stability that are worth
investigating experimentally.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010154/s1, Figure S1: The oxygen atoms numbering
in units of chitin.; Table S1: The HYP positions presented on the collagen structures used in the study;
Table S2: Distribution of H-bonds between chitosan and collagen amino acid atoms for HD = 0 and
DD = 1; Table S3: Distribution of H-bonds between chitosan and collagen amino acid atoms for
HD = 0.42 and DD = 1; Table S4: Distribution of H-bonds between chitosan and collagen amino acid
atoms for HD = 1 and DD = 1; Table S5: Distribution of H-bonds between chitosan and collagen
amino acid atoms for HD = 0 and DD = 0.125; Table S6: Distribution of H-bonds between chitosan and
collagen amino acid atoms for HD = 0.42 and DD = 0.5; Table S7: Distribution of H-bonds between
chitosan and collagen amino acid atoms for HD = 1 and DD = 0.125; Table S8: H-bonds lengths [Å]
between chitosan and collagen amino acid atoms for HD = 0 and DD = 1; Table S9: H-bonds lengths
[Å] between chitosan and collagen amino acid atoms for HD = 0.42 and DD = 1; Table S10: H-bonds
lengths [Å] between chitosan and collagen amino acid atoms for HD = 1 and DD = 1; Table S11:
H-bonds lengths [Å] between chitosan and collagen amino acid atoms for HD = 0 and DD = 0.125;
Table S12: H-bonds lengths [Å] between chitosan and collagen amino acid atoms for HD = 0.42 and
DD = 0.5; Table S13: H-bonds lengths [Å] between chitosan and collagen amino acid atoms for HD = 1
and DD = 0.125; Table S14: Energies of H-bonds [kJ/mol] between chitosan and given collagen
amino acid residue atom for HD = 0 and DD = 1; Table S15: Energies of H-bonds [kJ/mol] between
chitosan and given collagen amino acid residue atom for HD = 0.42 and DD = 1; Table S16: Energies
of H-bonds [kJ/mol] between chitosan and given collagen amino acid residue atom for HD = 1 and
DD = 1; Table S17: Energies of H-bonds [kJ/mol] between chitosan and given collagen amino acid
residue atom for HD = 0 and DD = 0.125; Table S18: Energies of H-bonds [kJ/mol] between chitosan
and given collagen amino acid residue atom for HD = 0.42 and DD = 0.5; Table S19: Energies of
H-bonds [kJ/mol] between chitosan and given collagen amino acid residue atom for f HD = 1 and
DD = 0.125; Table S20: The H-bonds acceptor-donor frequency analysis. Values in cells represent
how often chitosan in a given interaction plays the role of acceptor for HD = 0 and DD = 1; Table S21
The H-bonds acceptor-donor frequency analysis. Values in cells represent how often chitosan in
a given interaction plays the role of acceptor for HD = 0.42 and DD = 1; Table S22: The H-bonds
acceptor-donor frequency analysis. Values in cells represent how often chitosan in a given interaction
plays the role of acceptor for HD = 1 and DD = 1; Table S23 The H-bonds acceptor-donor frequency
analysis. Values in cells represent how often chitosan in a given interaction plays the role of acceptor
for HD = 0 and DD = 0.125; Table S24 The H-bonds acceptor-donor frequency analysis. Values in
cells represent how often chitosan in a given interaction plays the role of acceptor for HD = 0.42 and
DD = 0.5; Table S25: The H-bonds acceptor-donor frequency analysis. Values in cells represent how
often chitosan in a given interaction plays the role of acceptor for HD = 1 and DD = 0.125.
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