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AN HYBRID FINITE ELEMENT METHOD FOR A QUASI-VARIATIONAL

INEQUALITY MODELING A SEMICONDUCTOR

Abdeljalil Nachaoui1,* and Mourad Nachaoui2

Abstract. A problem of determining the characteristics of a semiconductor can be reduced to the

study of the quasi-variational inequality, (J. Abouchabaka, R. Abouläıch, A. Nachaoui and A. Souissi,

COMPEL 18 (1999) 143–164.) where the obstacleℳ(𝑢) is the solution of an elliptic problem depending

on 𝑢. We present here an hybrid finite element method for the computation of obstacleℳ(𝑢) and we

discuss some numerical aspects appearing in its approximation.
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1. Introduction

The stationary distribution of the carrier motions inside a semiconductor device is described by the following
system of nonlinear elliptic partial differential equations:

∇ · 𝜀∇𝑢 = 𝑞(𝑛− 𝑝−𝑁) (1)

∇ · 𝐽𝑛 = 0, 𝐽𝑛 = 𝐷𝑛∇𝑛− 𝜇𝑛𝑛∇𝑢 in Ω (2)

∇ · 𝐽𝑝 = 0, 𝐽𝑝 = −(𝐷𝑝∇𝑝+ 𝜇𝑝𝑝∇𝑢) (3)

where (1) is the Poisson equation, (2) is the continuity equations for electrons and (3) is the continuity equations
for holes.

The domain Ω is an open of R2 corresponding to the interior of the semiconductor device, of lipchitzian
boundary 𝜕Ω with , 𝜕Ω = Γ𝐷 ∪ Γ𝑁 . These equations are subject to the following boundary conditions:

𝜈 · ∇𝑢 = 𝜈 · ∇𝑛 = 𝜈 · ∇𝑝 = 0 on Γ𝑁 (4)

𝑢 = 𝑢𝑑, 𝑛 = 𝑛𝑑, 𝑝 = 𝑝𝑑; on Γ𝐷, (5)

where 𝑢𝑑, 𝑛𝑑, 𝑝𝑑 are given functions on Γ𝐷 and 𝜈 denotes the external normal vector of 𝜕Ω.
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44322 Nantes Cedex 3, France.
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Figure 1. Junction field effect transistor.

In the van Roosbroeck model (1)–(3), the potential 𝑢, the electron density 𝑛 and the hole density 𝑝 are the
unknowns; the doping function 𝑁, the charge constant 𝑞 and the permittivity 𝜀 are given. In the expression of
the current density 𝐽𝑛 the quantities 𝐷𝑛, 𝜇𝑛 represent the mobility and the diffusivity of the electrons. This
problem has been studied by several authors [19,20,30,31], especially in a fairly general framework, [13,15,16,29]
and for more realistic boundary conditions by the author [13, 16]. Uniqueness is not possible in general, it is
obtained under restrictive hypotheses [14,17,23].

Several authors are interested in the approximation of this system. For example, a finite element approxima-
tion is done in [22, 24, 28, 34], mixed finite elements is in [32], and several approximations based on the use of
finite volumes can be consulted in [4, 6, 7] and the references therein. A finite-difference approximation is used
in [2] for the equilibrium electrostatic potential.

Concerning the convergence of approximations, we refer the reader to [24] where he will find a general
framework for the study of the convergence of approximations whatever their types. An application of this
study to finite elements can be found in [22].

Under physical assumptions, we show that the system (1)–(2) leads as a limit case to a quasi-variational
equation [1, 12,25], given in the case of a unipolar field-effect semiconductor, by∫︁

Ω

∇𝑢∇(𝜙− 𝑢)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙− 𝑢)d𝑋 ∀𝜙 ∈ 𝐾(𝑢) (6)

with 𝐾(𝑢) = {𝑣 ∈ 𝐻1(Ω), 𝑣 = 𝑢 on Γ𝐷 and 𝑣 ≤ℳ(𝑢) a.e. dans Ω} where ℳ(𝑢) is the solution of problem⎧⎪⎨⎪⎩
∇𝑒𝑢∇𝑒−𝑤 = 0

𝑤 = 𝑤𝑑 on Γ𝐷,
𝜕𝑤

𝜕𝜈
= 0 sur Γ𝑁 ,

(7)

with 𝑢𝑑 = 𝑤𝑑 = 0 on the source, 𝑢𝑑 = 𝑤𝑑 = 𝑉 + ≥ 0 on the drain, 𝑢𝑑 = 𝑉 − ≤ 0 and 𝑤𝑑 = 𝑉 + on the grid (see
Fig. 1).

This IQV model is a formulation of a free boundary problem where we have to find the unknown boundary
separating two sets Ω𝐶 and Ω𝐷, corresponding to the charge neutrality region where the potential 𝑢 and the
Fermi quasi-potential 𝑤 = ℳ(𝑢) are identical and the depletion region where 𝑢 < 𝑤 [1, 21,25].

The existence and uniqueness of the solution to the problem (6)–(7) are discussed in [1] where the authors
propose a technique based on topological degree theory which extends the results of [20] to cases where the
solution is not regular. The solution of the quasi-variational inequality being obtained as the limit of a series of
variational inequalities where the two problems (6) and (7) are decoupled

𝑢𝑚 ∈ 𝐾(𝑢𝑚−1),
∫︁

Ω

∇𝑢𝑚∇(𝜙− 𝑢𝑚)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙− 𝑢𝑚)d𝑋 ∀𝜙 ∈ 𝐾(𝑢𝑚−1). (8)
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The approximation of (6) poses no problem, any reasonable approximation scheme works. The difficulty appears
in the discretization of (7) where it is necessary to take into account the electric field which can be very
important in certain regions of the semiconductor. We are interested here in a hybrid discretization, [5], whose
main property is the preservation of electric current, which is a particularly important property in practice, and
an exact computation of the integral of the exponential. For recent use of this type of approximation in different
fields see [3, 9, 18,26,27,33] and the references therein.

2. Hybrid method for the obstacle approximation

Using the change of variable 𝜂 = 𝑒−ℳ(𝑢), we obtain new expressions of the equations verified by the electric
current 𝐽 :

𝑒−𝑢𝐽 −∇𝜂 = 0 and ∇ · 𝐽 = 0. (9)

The multiplication of the first equation of (9) by 𝜙 ∈ [𝐿2(Ω)]2 and the second equation by 𝜓 ∈ 𝐻1(Ω), 𝜓 = 0
sur Γ𝐷 and integration on Ω gives rise to the following problem: find 𝑢 ∈ 𝐻1(Ω) and 𝐽 ∈ [𝐿2(Ω)]2 such that⎧⎪⎨⎪⎩

∫︁
Ω

𝑒−𝑢𝐽 · 𝜙d𝑋 −
∫︁

Ω

∇𝜂 · 𝜙d𝑋 = 0 ∀𝜙 ∈ [𝐿2(Ω)]2∫︁
Ω

𝐽 · ∇𝜓 d𝑋 = 0 ∀𝜓 ∈ 𝐻1(Ω), 𝜓 = 0 on Γ𝐷.
(10)

The hybrid discretization will be based on the approximation of (10). For this, consider a regular triangulation
𝒯ℎ of Ω and define the following finite-dimensional spaces:

𝑀ℎ =
{︀
𝜇ℎ ∈ 𝐶0(Ω), 𝜇ℎ|𝑇 ∈ P1(𝑇 ), ∀𝑇 ∈ 𝒯ℎ

}︀
𝑀𝜁

ℎ = {𝜇ℎ ∈𝑀ℎ, 𝜇ℎ = 𝜁 sur Γ𝐷}
𝑋ℎ =

{︁
𝑞ℎ ∈ [𝐿2(Ω)]2 , 𝑞ℎ|𝑇 ∈ [P0(𝑇 )]2 ∀𝑇 ∈ 𝒯ℎ

}︁
where P𝑘(𝑇 ) is the set of polynomials in 𝑥, 𝑦 of degree less than or equal to 1, restricted to 𝑇. The current 𝐽
and the function 𝜂 are then approximated by 𝐽ℎ ∈ 𝑋ℎ and 𝜂ℎ ∈𝑀𝜂𝑑

ℎ such that⎧⎪⎨⎪⎩
∫︁

Ω

𝑒−𝑢𝐽ℎ · 𝑞ℎ d𝑋 −
∫︁

Ω

∇𝜂ℎ · 𝑞ℎ d𝑋 = 0 ∀𝑞ℎ ∈ 𝑋ℎ∫︁
Ω

𝐽ℎ · ∇𝜇ℎ d𝑋 = 0 ∀𝜇ℎ ∈𝑀0
ℎ .

(11)

The choice of 𝑋ℎ and 𝑀0
ℎ results in the uniqueness of the solution of (11), (see [5]).

On each triangle 𝑇, 𝑞ℎ and 𝐽ℎ are constant, the system (11) is then written⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝑇∈𝒯ℎ

𝑞ℎ · (𝐽ℎ

∫︁
𝑇

𝑒−𝑢 d𝑋 −
∫︁

𝑇

∇𝜂ℎ d𝑋) = 0∑︁
𝑇∈𝒯ℎ

𝐽ℎ ·
∫︁

𝑇

∇𝜇ℎ d𝑋 = 0.
(12)

The choice in the first equation of (12) of an element of 𝑋ℎ not zero on the triangle 𝑇 and vanishing elsewhere
results in:

𝐽ℎ

∫︁
𝑇

𝑒−𝑢 d𝑋 −
∫︁

𝑇

∇𝜂ℎ d𝑋 = 0,
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hence

𝐽ℎ =

∫︁
𝑇

∇𝜂ℎ d𝑋∫︁
𝑇

𝑒−𝑢 d𝑋
· (13)

The introduction of the relation (13) in the second equation of (12) gives a system where the unique unknown
is 𝜂ℎ

𝜂ℎ ∈𝑀𝜂𝑑

ℎ ,
∑︁

𝑇∈𝒯ℎ

𝛼𝑇

∫︁
𝑇

∇𝜂ℎ · ∇𝜇ℎ d𝑋 = 0, ∀𝜇ℎ ∈𝑀0
ℎ . (14)

where 𝛼𝑇 is defined by 𝛼𝑇 = 𝑚𝑒𝑠(𝑇 )
(︂∫︁

𝑇

𝑒−𝑢 d𝑋
)︂−1

.

The following proposition allows us to define an approximation of ℳ(𝑢)

Proposition 2.1. Suppose that the triangulation 𝒯ℎ is such that for all 𝑇 ∈ 𝒯ℎ the angles of 𝑇 are ≤ 𝜋
2 , then

min
Γ𝐷

(𝜂ℎ) ≤ 𝜂ℎ ≤ max
Γ𝐷

(𝜂ℎ).

Proof. The matrix 𝐴 associated with the system (14) is unreduced, symmetric with strictly dominant diagonal.
These coefficients verify the following relation∑︁

𝑗

𝐴𝑖𝑗 ≥ 0, ∀𝑖, 𝐴𝑖𝑗 ≤ 0 pour 𝑖 ̸= 𝑗.

As the second member of (14) is zero, we can deduce (cf. Ciarlet [8]) that the principle of discrete maximum
can be applied to 𝜂ℎ, that is:

min 𝜂𝑑 ≤ 𝜂ℎ ≤ max 𝜂𝑑.

�

Since 𝜂𝑑(𝑥) > 0 ∀𝑥 ∈ Γ𝐷, we then define an approximation 𝑀ℎ de 𝑀 by ℳℎ(𝑢) = 𝑟ℎ{− ln 𝜂ℎ(𝑢)}.

3. Approximation of Q. V. I.

Consider now the convex 𝐾ℎ(𝑢) defined by

𝐾ℎ(𝑢) = {𝜙ℎ ∈𝑀𝑢𝑑

ℎ , 𝜙ℎ ≤ℳℎ(𝑢)},

the finite element approximation of Q.V.I. is then given by

𝑢ℎ ∈ 𝐾ℎ(𝑢ℎ),
∫︁

Ω

∇𝑢ℎ∇(𝜙ℎ − 𝑢ℎ)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙ℎ − 𝑢ℎ)d𝑋 ∀𝜙ℎ ∈ 𝐾ℎ(𝑢ℎ). (15)

Proposition 3.1. The approximate problem (15) admits a solution in 𝑀𝑢𝑑

ℎ .

Proof. Let 𝑤ℎ𝑠 be the solution of

𝑤ℎ𝑠 ∈𝑀𝑤𝑑

ℎ ,

∫︁
Ω

∇𝑤ℎ𝑠∇𝜙ℎ𝑑𝑋 = 0, ∀𝜙ℎ ∈𝑀0
ℎ ,



AN HYBRID FINITE ELEMENT METHOD FOR A QUASI-VARIATIONAL 2201

and let 𝑆𝑡 be the operator who with 𝑧ℎ ∈𝑀ℎ associates 𝑧′ℎ solution of the variational equation

𝑧′ℎ ∈ 𝐾ℎ𝑡(𝑧ℎ),
∫︁

Ω

∇𝑢ℎ∇(𝜙− 𝑢ℎ)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙ℎ − 𝑢ℎ)d𝑋∀𝜙 ∈ 𝐾ℎ𝑡(𝑧ℎ). (16)

where

𝐾ℎ𝑡(𝑧ℎ) = {𝜙ℎ ∈𝑀𝑢𝑑

ℎ , 𝜙ℎ ≤ 𝑤ℎ𝑡(𝑧ℎ)},

with

𝑤ℎ𝑡(𝑧ℎ) = (1− 𝑡)𝑤ℎ𝑠 + 𝑡ℳℎ(𝑧ℎ) ∀𝑡 ∈ [0, 1].

Any fixed point of 𝑆1 is a solution of (15). As for the problem (1)–(5) (see [23]), the fact that 𝑆𝑡(𝑧) ∈ 𝐾ℎ𝑡 and
an argument of the principle of the discrete maximum [8] implies that any fixed point 𝑧ℎ of 𝑆𝑡 is such that
𝑉 − ≤ 𝑧ℎ ≤ 𝑉 +. Let 𝐵 be the open defined by:

𝐵 = {𝜙ℎ ∈𝑀ℎ, ‖𝜙ℎ‖∞ < 𝐶},

where 𝐶 is a constant much greater than max(|𝑉 −|, 𝑉 +), it is clear that no fixed point of 𝑆𝑡 belongs to 𝜕𝐵

therefore deg[𝐼 − 𝑆𝑡, 𝐵, 0] is defined and independent of 𝑡, where deg[·, ·, ·] is the topological degree of Brouwer
[10,11] and 𝐼 is the identity of 𝑀ℎ.

For 𝑡 = 0, 𝐾ℎ0(𝑧ℎ) = 𝐾ℎ0 = {𝜙ℎ ∈𝑀𝑢𝑑

ℎ , 𝜙ℎ ≤ 𝑤ℎ𝑠}. The operator 𝑆0 matches to any 𝑧ℎ ∈𝑀ℎ the solution
of the variational inequality

𝑢ℎ ∈ 𝐾ℎ0,

∫︁
Ω

∇𝑢ℎ∇(𝜙− 𝑢ℎ)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙ℎ − 𝑢ℎ)d𝑋, ∀𝜙 ∈ 𝐾ℎ0.

Consequently 𝑆0 is trivial and therefore deg[𝐼 − 𝑆0, 𝐵, 0] = 1, which implie deg[𝐼 − 𝑆𝑡, 𝐵, 0] = 1, ∀𝑡 ∈ [0, 1].
Hence 𝑆1 admits a fixed point in 𝐵 which is solution of (15). �

The questions concerning the convergence of 𝑢ℎ towards 𝑢 are natural and will be published in a future work.
We will treat the case where the operator ℳ is approached by a classical finite element method as well as the
case of the new hybrid finite element approach.

4. Numerical aspects

To solve (15) which is also a Q.V.I., we use an iterative scheme based on the operator 𝑆1, specifically we
define the following

𝑢𝑚
ℎ ∈ 𝐵 ∩𝑀𝑢𝑑

ℎ , telle que 𝑢𝑚
ℎ = 𝑆1(𝑢𝑚−1

ℎ ), (17)

𝑢0
ℎ being chosen as the solution of the variational inequality∫︁

Ω

∇𝑢0
ℎ∇(𝜙−0 𝑢ℎ)d𝑋 ≥ 𝜉

∫︁
Ω

(𝜙ℎ − 𝑢0
ℎ)d𝑋, 𝜙 ∈𝑀𝑢𝑑

ℎ , 𝜙 ≤ 𝑤0,

where 𝑤0 is the Fermi quasi-potential called the Shokley approximation.
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4.1. Treatment of exponential nonlinearity

The computation of the Fermi quasi-potential 𝑤ℎ, which serves as an obstacle in the computation of the
potential 𝑢ℎ, solution of the variational inequation (17), is reduced to solving the system of linear equations∑︁

𝑗∈𝐸ℎ𝑖

𝑏𝑖𝑗𝜂ℎ𝑗 = 0 (18)

𝑏𝑖𝑗 =
∑︁

𝑇∈𝑇 𝑖𝑗
ℎ

𝐶ℎ𝑇𝛼ℎ𝑇 (19)

where 𝛼ℎ𝑇 = 𝑚𝑒𝑠(𝑇 )
(︂∫︁

𝑇

𝑒−𝑢ℎ d𝑋
)︂−1

, 𝐶ℎ𝑇 is the contribution of the triangle 𝑇 to the discretization of the

Laplacian, 𝑇 𝑖
ℎ is the set of triangles having the node 𝑖 as vertex, 𝐸ℎ𝑖 is the set of nodes which are vertices of

a triangle 𝑇 ∈ 𝑇 𝑖
ℎ, 𝑇 𝑖𝑗

ℎ = 𝑇 𝑖
ℎ ∩ 𝑇

𝑗
ℎ , and 𝑢ℎ𝑙 the value of 𝑢ℎ at node 𝑙. In the form (19) the computation of the

coefficients 𝑏𝑖𝑗 leads to capacity overruns (underflow-overflow), especially for the computation of the diagonal
terms.

To eliminate this problem we will describe a technique which does not require any additional storage and
which is very efficient for sufficiently small ℎ steps.

Multiply equation (18) by 𝑒𝑢ℎ𝑖 we get ∑︁
𝑗∈𝐸ℎ𝑖

𝑏𝑖𝑗𝑒
𝑢ℎ𝑖𝜂ℎ𝑗 = 0,

that we write in the form ∑︁
𝑗∈𝐸ℎ𝑖

𝑏′𝑖𝑗𝜂ℎ𝑗 = 0. (20)

Typically, the coefficients 𝑏′𝑖𝑗 keep the properties of 𝑏𝑖𝑗 , i.e., the property of the dominant diagonal. However,
the system of linear equation (20) is no longer symmetric. But we can still manipulate this system, by storing
only the upper part of the matrix (𝑏′𝑖𝑗). Indeed, the non-zero subdiagonal terms can be obtained as follows:
The coefficient 𝑏′𝑗𝑖, 𝑗 > 𝑖; is obtained from the coefficient 𝑏′𝑖𝑗 , 𝑗 > 𝑖, by the relation

𝑏′𝑗𝑖 = 𝑏′𝑖𝑗𝑒
(𝑢ℎ𝑗−𝑢ℎ𝑖).

This means that the solution of the system of equation (20) does not require any additional storage than that of
the upper part of the matrix (𝑏𝑖𝑗) and the vector [𝑢ℎ𝑖]𝑖. System (20) therefore preserves the main characteristics
of (18), with the following properties:

Proposition 4.1. For ℎ sufficiently small, the calculation of all the coefficients 𝑏′𝑖𝑗 is done without any capacity
overrun (neither underflow nor overflow).

Proof. The proof of the proposition is obtained from the relation

𝑏′𝑖𝑗 =
∑︁

𝑇∈𝑇 𝑖𝑗
ℎ

𝐶ℎ𝑇 𝑚𝑒𝑠(𝑇 )
(︂∫︁

𝑇

𝑒(𝑢ℎ𝑖−𝑢ℎ) d𝑋
)︂−1

.

Since 𝑢ℎ ∈ P1(𝑇 ), we can calculate in an exact way the integral 𝐼 appearing in the previous relation. For
simplicity we assume that

𝐼 =
∑︁

𝑙∈𝑉 (𝑇 )

𝑎𝑙𝑒
(𝑢ℎ𝑖−𝑢ℎ𝑙)
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where 𝑉 (𝑇 ) is the set of vertices of the triangle 𝑇. Since 𝑖 ∈ 𝑉 (𝑇 ), ∀𝑇 ∈ 𝑇 𝑖𝑗
ℎ , there is an 𝑙0 ∈ 𝑉 (𝑡) such as

𝑒(𝑢ℎ𝑖−𝑢ℎ𝑙0 ) = 1, which eliminates any division by zero in the calculation of 𝛼ℎ𝑇 . Furthermore, 𝑢ℎ ∈ P1(𝑇 ) leads
to

|𝑢ℎ𝑖 − 𝑢ℎ𝑙| ≤ 𝐶ℎ, ∀𝑖, ∀𝑙 ∈ 𝑉 (𝑇 ).

It is clear that the sign of (𝑢ℎ𝑖 − 𝑢ℎ𝑙) can be negative or positive. However, for ℎ small enough we can ensure
that −𝜒 < (𝑢ℎ𝑖 − 𝑢ℎ𝑙) < 𝜒 où 𝜒 is the lower limit value acceptable by the machine for 𝑒𝑥, this guarantees that
the capacity is not exceeded in the calculation 𝑒(𝑢ℎ𝑖−𝑢ℎ𝑙). �

4.2. Computation of Drain current

The following proposition expresses the weak continuity of the electric current.

Proposition 4.2. Let (𝜂ℎ, 𝐽ℎ) be the solution of the system (11), let 𝑖 be a node of 𝒯ℎ, 𝑖 /∈ Γ𝑑 and let 𝐿𝑖
ℎ be

the set of sides having 𝑖 as vertex. Then ∑︁
𝑒∈𝐿𝑖

ℎ

∫︁
𝑒

𝐽ℎ · 𝜈 𝑑𝜎 = 0.

Proof. Integration by parts, the second equation of the system (12) leads to the equation∑︁
𝑇∈𝒯ℎ

∫︁
𝜕𝑇

𝐽ℎ · 𝜈𝜇ℎ 𝑑𝜎 = 0, ∀𝜇ℎ ∈𝑀0
ℎ .

For the basis element 𝜙𝑖 associated with the node 𝑖 we obtain
∑︁

𝑒∈𝐿𝑖
ℎ

∫︁
𝑒

𝐽ℎ · 𝜈 𝑑𝜎 = 0. �

In semiconductor device technology the most important feature is the computation of the current flowing
along a given contact. For FETs, it is the current of Drain 𝐽𝑑 defined by

𝐽𝑑 =
∫︁

Γ𝑑

𝐽 · 𝜈𝑑𝜎,

where Γ𝑑 is the Drain contact. To computation of 𝐽𝑑 by this formula requires the computation of the electric
field and a numerical integration. In the following we describe how we can get around this problem by using a
method that does not require any additional calculation.

Let 𝜃ℎ be the function of 𝑀ℎ defined by
𝜃ℎ =

∑︁
𝑙∈𝑉𝑑

𝜔𝑙

where 𝜔𝑙 is the base function associated with node number 𝑙 and 𝑉𝑑 is the set of nodes belonging to the Drain.
By construction 𝜃ℎ = 1 on Γ𝑑 and it is identically zero on the remainder of 𝜕Ω, hence

𝐽𝑑 =
∫︁

𝜕Ω

𝜃ℎ𝐽 · 𝜈𝑑𝜎

=
∫︁

Ω

𝜃ℎ∇ · 𝐽 d𝑋 +
∫︁

Ω

𝐽 · ∇𝜃ℎ d𝑋.

Since 𝐽 has zero divergence, we get

𝐽𝑑 =
∑︁
𝑙∈𝑉𝑑

∫︁
Ω

𝐽 · ∇𝜔𝑙 d𝑋.
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Figure 2. Depletion region 𝑉 − = −0 and 𝑉 + = 1.

Figure 3. Depletion region 𝑉 − = −0.5 and 𝑉 + = 1.

We approach the current 𝐽 by 𝐽ℎ, the current of Drain 𝐽𝑑 is then approached by

𝐽𝑑ℎ =
∑︁
𝑙∈𝑉𝑑

∑︁
𝑇∈𝒯ℎ

𝛼ℎ𝑇

∫︁
𝑇

∇𝜂ℎ · ∇𝜔𝑙 d𝑋

=
∑︁
𝑙∈𝑉𝑑

(︃∑︁
𝑖=1

𝑏𝑙𝑖𝜂ℎ𝑖

)︃
(21)

where 𝐵 = (𝑏𝑖𝑗) is the matrix associated with the system (14).

Remark 4.3. The calculation of 𝐽𝑑ℎ by the formula (21) is reduced to the product of the matrix 𝐵 by the
vector [𝜂ℎ𝑖], whose elements are already computed and stored.

5. Numerical results

Numerical simulation is made using the following value of the main parameters: 𝑁𝑞
𝜀 = 1, 𝐷𝐴 = 8 microns

and 𝐴𝐵 = 2 microns.
We set the gate voltage to 0 V and we apply a positive voltage to the drain contact thus the current flow

through the channel and we can calculate 𝐽𝑑, the current of the Drain contact.
We increased the drain voltage, the current 𝐽𝑑 increases up to the value 2.8 mA, then it becomes stationary.

The same remark when 𝑉 𝑔 = −1 V the limit value of 𝐽𝑑 approaches 1.2 mA. Then, the limit value only reaches
0.5 mA when 𝑉 𝑔 = −1.5 V. The current therefore becomes increasingly weak when the absolute value of 𝑉 𝑔
becomes increasingly large. This is consistent with the Figures 2–4 which show that the depth of the depletion
region increases, when the value of 𝑉 𝑔 becomes smaller and smaller, until this zone extends through the active
channel which stops the current movement in the channel. This gate-source potential phenomenon is known in
physics as “Pinch-off voltage”.

We set the drain voltage to +1 V and we vary the Gate voltage from 0 V to −1.8 V. The depth of the depletion
region becomes higher when we increase the gate voltage. This continues until the boundary of the depletion
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Figure 4. Depletion region 𝑉 − = −1.8 and 𝑉 + = 1.

Figure 5. MESFET 𝑛-type, equipotentials 𝑉 − = −1, 𝑉 + = 1.

layer touches the side opposite the Gate. The channel is then closed, which causes the flow of current to stop
(2)–(4).

We observe from Figure 5 that the negative equipotentials do not cross the free boundary. They all remain
confined inside line 7, equipotential of value equal to 0 V. The positive equipotentials go around line 7, cross
the channel and therefore allow current to flow.

In Figure 6, where only the positive equipotentials have been represented, it can be seen that there are no
more lines around the line number 1, where the potential is of value 0 V, which is no longer a closed curve. This
shows that the channel is closed and there is no more current flow.

6. Conclusion

From these numerical results we have observed, (see the following figures), that

– The depletion region is localized around the gate contact.
– As is known from physical experience, when applying a positive potential difference between source and

drain contacts, an electric current flows from one end to an other. The gate contact allows us to control the
drain current by modifying the thickness of the depletion zone: a sufficiently negative gate-source voltage
cuts the conducting channel and thereby switches off the drain current.
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Figure 6. MESFET 𝑛-type, equipotentials 𝑉 − = −1.8, 𝑉 + = 1.

We can conclude that for the semiconductor device, used in the numerical experiments, the simplified model
described in section introduction does not change the behavior of the full system. Also, we can conclude that the
proposed hybrid finite element method provides a good alternative for solving free boundary problems arising
in the depletion approximation model. This method combined with the scaling technique makes it possible to
avoid capacity overruns and leads to a correct calculation of the current.

Acknowledgements. The authors are indebted to the referees of this paper for their most helpful comments and sugges-

tions, which helped to improve the presentation greatly.
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