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Abstract

This paper presents a new approach to conditional inference, based on the simulation of samples conditioned
by a statistics of the data. Also an explicit expression for the approximation of the conditional likelihood of long
runs of the sample given the observed statistics is provided. It is shown that when the conditioning statistics is
sufficient for a given parameter, the approximating density is still invariant with respect to the parameter. A new
Rao-Blackwellisation procedure is proposed and simulation shows that Lehmann Scheffé Theorem is valid for this
approximation. Conditional inference for exponential families with nuisance parameter is also studied, leading
to Monte Carlo tests; comparison with the parametric bootstrap method is discussed. Finally the estimation of
the parameter of interest through conditional likelihood is considered.

Keywords: Conditional inference, Rao Blackwell Theorem, Lehmann Scheffé Theorem, Exponential families,
Nuisance parameter, Simulation.

1 Introduction and context

This paper explores conditional inference in parametric models. A comprehensive overview on this area is the
illuminating review paper by Reid (1995) [27]. Our starting point is as follows: given a model P defined as a
collection of continuous distributions Pθ on Rd with density pθ where the parameter θ belongs to some subset Θ in
Rs and given a sample of independent copies of a random variable with distribution PθT for some unknown value
θT of the parameter, we intend to provide some inference about θT conditioning on some observed statistics of the
data. The situations which we have in mind are of two different kinds.

The first one is the Rao-Blackwellisation of estimators, which amounts to reduce the variance of an unbiased
estimator by conditioning on any statistics; when the conditioning statistics is complete and sufficient for the
parameter then this procedure provides optimal reduction, as stated by Lehmann-Scheffé Theorem. These facts
yield the following questions.

1. is it possible to provide good approximations for the density of a sample conditioned on a given statistics,
and, when applied for a model where some sufficient statistics for the parameter is known, does sufficiency
w.r.t. the parameter still holds for the approximating density?

2. in the case when the first question has positive answer, is it possible to simulate samples according to the
approximating density, and to propose some Rao-Blackwellised version for a given preliminary estimator?
Also we would hope that the proposed method would be feasible, that the programming burden would be
light, that the run time for this method be short, and that the involved techniques would keep in the range
of globally known ones by the community of statisticians.

The second application of conditional inference pertains to the role of conditioning in models with nuisance
parameters. There is a huge bibliography on this topic, some of which will be considered in details in the sequel.
The usual frame for this field of problems is the exponential families one, for reasons related both with the importance
of these models in applications and on the role of the concept of sufficiency when dealing with the notion of nuisance
parameter. Conditioning on a sufficient statistics for the nuisance parameter produces a new exponential family,
which gets free of this parameter, and allows for simple inference on the parameter of interest, at least in simple
cases. This will also be discussed, since the reality, as known, is not that simple, and since so many complementary
approaches have been developped over decades in this area. Using the approximation of the conditional density
in this context and performing simulations yields Monte Carlo tests for the parameter of interest, free from the
nuisance parameter; comparison with the parametric bootstrap will also be discussed. Also conditional maximum
likelihood estimators will be produced.
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This paper is organized as follows. Section 2 describes a general approximation scheme for the conditional
density of long runs of subsamples conditioned on a statistics, with explicit formulas. The proof of the main result
of this section is presented in [4]. Discussion about implementation is provided. Section 3 presents two aspects of
the approximating conditional scheme: we first show on examples that sufficiency is kept under the approximating
scheme and, second, that this yields to an easy Rao-Blackwellisation procedure. An illustration of Lehmann-Scheffé
Theorem is presented. Section 4 deals with models with nuisance parameters in the context of exponential families.
We have found it useful to spend a few paragraphs on bibliographical issues. We address Monte Carlo tests based
on the simulation scheme; in simple cases its performance is similar to that of parametric bootstrap; however
conditional simulation based tests improve clearly over parametric bootstrap procedure when the test pertains to
models for which the likelihood is multimodal with respect to the nuisance parameter; an example is provided.
Finally we consider conditioned maximum likelihood based on the approximation of the conditional density; in
simple cases its performance is similar to that of estimators defined through global likelihood optimization; however
when the preliminary estimator of the nuisance is difficult to obtain, for example when it depends strongly on some
initial point for a Newton-Raphson routine (this is indeed a very common situation), then, by the very nature of
sufficiency, conditional inference based on the proxy of the conditional likelihood performs better; this is illustrated
with examples.

2 The approximate conditional density of the sample

Most attempts which have been proposed for the approximation of conditional densities stem from arguments
developped in [16] for inference on the parameter of interest in models with nuisance parameter; however the
proposals in this direction hinge at the approximation of the distribution of the sufficient statistics for the parameter
of interest given the observed value of the sufficient statistics of the nuisance parameter. We will present some of
these proposals in the section devoted to exponential families. To our knowledge, no attempt has been made to
approximate the conditional distribution of a sample (or of a long subsample) given some observed statistics.

However, generating samples from the conditional distribution itself (such samples are often called co-sufficient
samples, following [20]) has been considered by many authors; see for example [12], [17] and references therein, and
[18].

In [12], simulating exponential or normal samples under the given value of the empirical mean is proposed.
For example under the exponential distribution Exp(θ), the minimal sufficient statistics for θ is the sum of the
observations, say tn; a co-sufficient sample x∗ can be created by generating an x

′
-sample from Exp(1) and taking

x∗i = x
′

itn/x
′. However, this approach may be at odd in simple cases, as for the Gamma density in the non

exponential case.
Lockhart et al. [20] proposed a different framework based on the Gibbs sampler, simulating the conditioned

sample one at a time through a sequential procedure. The example which is presented is for the Gamma distribution
under the empirical mean; in these examples it seems to perform well for location parameter, when the true
parameter is in some range, therefore not uniformly on the model. Their paper contains a comparative study with
the global maximum likelihood method. In a simple case, they argue favorably for both methods. We will turn
back to global likelihood maximization in relation with conditional likelihood estimators, in the last section of this
paper.

Other techniques have been developped in specific cases: for the inverse gaussian distribution see [22], [8]; for the
Weibull distribution see [21]. No unified technique exists in the literature which would work under general models.

2.1 Approximation of conditional densities

2.1.1 Notation and hypotheses

For sake of clearness we consider the case when the model P is a family of distributions on R.
Denote Xn

1 := (X1, ..,Xn) a set of n independent copies of a real random variable X with density pX,θT on R.
Let xn1 := (x1, ...,xn) denote the observed values of the data, each xi resulting from the sampling of Xi. Define
the r.v. U := u (X) and U1,n := u (X1) + ... + u (Xn) where u is a real-valued measurable function on R, and,
accordingly, u1,n := u (x1) + ... + u (xn) . Denote pU,θT the density of the r.v. U. We consider approximations of
the density of the vector Xk

1 = (X1, ..,Xk) on Rk when U1,n = u1,n. It will be assumed that the observed value
u1,n is ”typical”, in the sense that it satisfies the law of large numbers. Since the approximation scheme for the
conditional density is validated through limit arguments, it will be assumed that the sequence u1,n satisfies

lim
n→∞

u1,n
n

= Eu (X) . (1)
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We propose an approximation for

pu1,n,θT

(
xk1
)

:= pθT (xk1 |U1,n = u1,n)

where xk1 := (x1, ..,xk) and k := kn is an integer sequence such that

0 ≤ lim sup
n→∞

k/n ≤ 1 (K1)

together with
lim
n→∞

n− k =∞ (K2)

which is to say that we may approximate pu1,n,θT

(
xk1
)

on long runs. The rule which defines the value of k for a
given accuracy of the approximation is stated in section 3.2 of [4].
The hypotheses pertaining to the function u and the r.v. U = u (X) are as follows.

1. u is real valued and the characteristic function of the random variable U is assumed to belong to Lr for some
r ≥ 1.

2. The r.v. U is supposed to fulfill the Cramer condition: its moment generating function satisfies

φU(t) := E exp tU <∞

for t in a non void neighborhood of 0.

Define the functions m(t), s2(t) and µ3(t) as the first, second and third derivatives of log φU(t). Denote

παu,θT (x) :=
exp tu(x)

φU(t)
pX,θT (x)

with m(t) = α and α belongs to the support of PU,θT , the distribution of U. Also it is assumed that this latest
definition of t makes sense for all α in the support of U. Conditions on φU(t) which ensure this fact are referred to
as steepness properties, and are exposed in [1], p153 and followings.

We introduce a positive sequence εn which satisfies

lim
n→∞

εn
√
n− k =∞ (E1)

lim
n→∞

εn (log n)
2

= 0. (E2)

2.2 The proxy of the conditional density of the sample

The density gu1,n,θT (xk1) on Rk, which approximates pu1,n,θT

(
xk1
)

sharply with relative error smaller than εn (log n)
2

is defined recusively as follows.
Set

m0 := u1,n/n

and
g0(x1|x0) := πm0

u,θT
(x1)

with x0 arbitrary, and for 1 ≤ i ≤ k − 1 define the density g(xi+1|xi1) recursively.
Set ti the unique solution of the equation

mi := m(ti) =
u1,n − u1,i
n− i

(2)

where u1,i := u(x1)+ ...+u(xi). The tilted adaptive family of densities πmiu,θT is the basic ingredient of the derivation
of approximating scheme. Let

s2i :=
d2

dt2

(
logEπmiu,θT

exp tu (X)
)

(0)

and

µij :=
dj

dtj

(
logEπmiu,θT

exp tu (X)
)

(0) , j = 3, 4
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which are the second, third and fourth cumulants of πmiu,θT . Let

g(xi+1|xi1) = CipX,θT (xi+1)n (αβ +m0, β, u (xi+1)) (3)

where n (µ, τ, x) is the normal density with mean µ and variance τ at x. Here

β = s2i (n− i− 1) (4)

α = ti +
µi3

2s4i (n− i− 1)
(5)

and the Ci is a normalizing constant.
Define

gu1,n,θT (xk1) := g0(x1|x0)

k−1∏
i=1

g(xi+1|xi1). (6)

It holds

Theorem 1 Assume (K1,K2) together with (E1,E2). Then (i)

pu1,n,θT (xk1) = gu1,n,θT (xk1)(1 + oPu1,n,θT (εn (log n)
2
))

and (ii)

pu1,n,θT (xk1) = gu1,n,θT (xk1)(1 + oGu1,n,θT (εn (log n)
2
)).

(iii) The total variation distance between Pu1,n,θT and Gu1,n,θT goes to 0 as n tends to infinity.

For the proof, see [4].
Statement (i) means that the conditional likelihood of any long sample path Xk

1 given (U1,n = u1,n) can be
approximated by Gu1,n,θT (Xk

1) with a small relative error on typical realizations of Xn
1 .

The second statement states that simulating Xk
1 under gu1,n,θT produces runs which could have been sampled

under the conditional density pu1,n,θT since gu1,n,θT and pu1,n,θT coincide sharply on larger and larger subsets of Rk
as n increases.

Remark 2 Theorem 1 states that the density gu1,n,θT on Rk approximates pu1,n,θT on the sample Xn
1 generated

under θT . However, in some cases, the r.v.’s Xi’s in Theorem 1 may at time be generated under some other
parameters, say θ0. Indeed, for direct applications developped in this paper, Theorem 1 have to hold when the sample
is generated under an other sampling scheme. Theorem 11 in [4] states that the approximation scheme holds true
in this case. Indeed let Yn

1 be i.i.d. copies with distribution Pθ0 . Define

pu1,n,θ0

(
yk1
)

:= pθ0
(
Yk

1 = yk1
∣∣U1,n = u1,n

)
with distribution Pu1,n,θ0

. It then holds

Theorem 3 With the same hypotheses and notation as in Theorem 1,

pθT
(
Xk

1 = Y k1 |U1,n = u1,n
)

= gu1,n,θT (Y k1 )(1 + oPu1,n,θ0
(εn (log n)

2
)).

2.3 Comments on implementation

The simulation of a sample Xk
1 with density gu1,n,θT is fast as easy. Indeed the r.v. Xi+1 with density g

(
xi+1|xi1

)
is

obtained through a standard acceptance -rejection algorithm. When θT is unknown, a preliminary estimator may
be used. When U1,n is sufficient for pu1,n,θ it is nearly sufficient for its proxy gu1,n,θ (see next section); indeed
changing the value of this preliminary estimator does not alter the value of the likelihood of the sample; as shown
in the simulations developped here after, any value of θ can be used; call θ∗ the value of θ chosen as initial value
, using henceforth pX,θ∗ instead of pX,θT in (3). In exponential families the values of the parameters which appear
in the gaussian component of g

(
xi+1|xi1

)
in (3) are easily calculated; note also that due to (1) the parameters

in n (αβ, β, u (xi+1)) are such that the dominating density can be chosen for all i as pX,θ∗ . The constant in the
acceptance rejection algorithm is then Ci/

√
2πβ. The constant Ci need not be evaluated since it cancels in the

ration defining the acceptance-rejection rule. This is in contrast with the case when the conditioning value is in
the range of a large deviation with respect to pX,θT ; in this case, which appears in a natural way in Importance
sampling estimation for rare event probabilities, the simulation algorithm is more complex ; see [5].
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3 Sufficient statistics and approximated conditional density

3.1 Keeping sufficiency under the proxy density

The density gu1,n,θT (yk1 ) is used in order to handle Rao -Blackellisation of estimators or statistical inference for
models with nuisance parameters. The basic property is sufficiency with respect to the nuisance parameter. We
show on some examples that the family of densities gu1,n,θ(y

k
1 ) defined in (6), when indexed by θ, inherits of the

invariance with respect to the parameter θ when conditioning on a sufficient statistics.
Consider the Gamma density

fr,θ(x) :=
θ−(r+1)

Γ(r + 1)
xr exp−x/θ for x > 0. (7)

As r varies in (−1,∞) and θ is positive, the density runs in an exponential family with parameters r and θ, and
sufficient statistics t(x) := log x and u(x) := x respectively for r and θ. Given a data set x1, ...,xn obtained through
sampling from i.i.d. r.v’s X1, ...Xn with density frT ,θT the resulting sufficient statistics are respectively t1,n :=
logx1 + ...+ logxn and u1,n := x1 + ...+ xn. We consider two parametic models (frT ,θ, θ ≥ 0) and (fr,θT , r > −1)
respectively assuming rT or θT known.

We first consider sufficiency of U1,n := X1 + ...+ Xn in the first model. The density gu1,n,(rT ,θT )(y
k
1 ) should be

free of the current value of the true parameter θT of the parameter under which the data are drawn. However as
appears in (6) the unknown value θT should be used in its very definition. We show by simulation that whatever
the value of θ inserted in place of θT in (6) the value of the likelihood of xk1 under gu1,n,(rT ,θ) does not depend upon
θ. We thus observe that U1,n is ”sufficient” for θ in the conditional density approximating pu1,n,(rT ,θ) , as should
hold as a consequence of Theorem 1 . Say that U1,n is quasi sufficient for θ in gu1,n,(rT ,θ) if this loose invariance
holds.

Similarly the same fact occurs in the model (fr,θT , r > 0) .
In both cases whatever the value of the parameter θ (Figure 1) or r (Figure 2), the likelihood of xk1 remains

constant.
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Figure 1: Proxy of the conditional likelihood of Xk

1 under gT1,n as a function of θ for n = 100 and k = 80 in the
gamma case.
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Figure 2: Proxy of the conditional likelihood of Xk
1 under gU1,n

as a function of r for n = 100 and k = 80 in the
gamma case.

We also consider the Inverse Gaussian distribution with density

fλ,µ(x) :=

[
λ

2π

]1/2
exp−λ (x− µ)

2

2µ2x
for x > 0

with both parameters λ and µ be positive. Given a data set x1, ...,xn generated from the i.i.d. r.v’s X1, ...,Xn with
density fµ,λ, the resulting sufficient statistics are respectively t1,n := x1+...+xn and u1,n := x−11 +...+x−1n . Similarly
as for the Gamma case we draw the likelihood of a subsample xk1 under gu1,n,(λ,µT ) with T1,n := X1 + ...+Xn,which

is a sufficient statistics for µ (Figure 3), and upon U1,n := X−11 + ...+ X−1n which is sufficient for λ (Figure 4). In
either cases the other coefficient is kept fixed at the true value of the parameter generating the sample. As for the
Gamma case these curves show the invariance of the proxy of the conditional density with respect to the parameter
for which the chosen statistics is sufficient.

3.2 Rao-Blackwellisation

Rao-Blackwell Theorem holds regardless of whether biased or unbiased estimators are used, since conditioning
reduces the MSE. Although its statement is rather weak, in practice the improvement is often enormous. New
interest in Rao-Blackwellisation procedures have risen in the recent years, conditioning on ancillary variables (see
[13] for a survey on ancillaries in conditional inference); specific Rao-Blackwellisation schemes have been proposed
in [6], [7], [26], [28] and [14], whose purpose is to improve the variance of a given statistics (for example a tail
probability) under a known distribution, through a simulation scheme under this distribution; the ancillary variables
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Figure 3: Conditional likelihood of Xk
1 under gT1,n as a function of µ for n = 100 and k = 80 in the Inverse Gaussian

case.
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Figure 4: Conditional likelihood of Xk
1 under gU1,n

as a function of λ for n = 100 and k = 80 in the Inverse Gaussian
case.
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Figure 5: Variance of θ̂k, the initial estimator (dotted line), along with the variance of θRB,k, the Rao-Blackwellised
estimator (solid line) with n = 100 as a function ok k.

used in the simulation process itself are used as conditioning ones for the Rao-Blackwellisation of the statistics. The
present approach is more classical in this respect, since we do not assume that the parent distribution is known;
conditioning on a sufficient statistics U1,n with respect to the parameter θ and simulating samples according to the
approximating density gu1,n,θ will produce the improved estimator.

Since U1,n is quasi sufficient for the parameter θ in gu1,n,θ it can be used in order to obtain improved estimators
of θT through Rao Blackwellization. We shortly illustrate the procedure and its results on some toy cases. Consider
again the Gamma family defined here-above with canonical parameters r and θ.

First the parameter to be estimated is θT . A first unbiaised estimator is chosen as

θ̂2 :=
X1 +X2

2rT
.

Given an i.i.d. sample Xn
1 with density frT ,θT the Rao-Blackwellised estimator of θ̂2 is defined through

θRB,2 := E
(
θ̂2

∣∣∣U1,n

)
whose variance is less than V arθ̂2. Given the data set x1, ...xn the estimate of θRB,2 is produced through simulation

of as many θ̂2’s as wished, under gu1,n,(rT ,θT ). Denote θ̂RB,2 the resulting Rao-Blawellised estimator of θ̂2.

Consider k = 2 in gu1,n,(rT ,θT )(y
k
1 ) and let (Y1, Y2) be distributed according to gu1,n,(rT ,θT )(y

2
1); note that any

value θ can be used in practice instead of the unknown value θT , by quasi sufficiency of U1,n. Replications of (Y1, Y2)

produce an estimator θ̂RB,2 for fixed u1,n; we have used 1000 replications (Y1, Y2). Iterating on 1000 simulations

of the runs Xn
1 produces, for n = 100 an i.i.d. sample with size 1000 of θ̂RB,2’s and V arθRB,2 is estimated. The

resulting variance shows a net improvement with respect to the estimated variance of θ̂2. It is of some interest to
confront this gain in variance as the number of terms involved in θ̂k increases together with k. As k approaches n
the variance of θ̂k approaches the Cramer-Rao bound. The graph below shows the decay in variance of θ̂k. We note
that whatever the value of k the estimated value of the variance of θRB,k is constant. This is indeed an illustration
of Lehmann-Scheffé’s theorem.

Remark 4 Lockhart and O’Reilly ([19]) establish, under certain conditions and for fixed k, the asymptotic equiva-
lence of the plug-in estimate for the distribution PθML

(
Xk

1 ∈ B
)

and the Rao-Blackwell estimate P
(
Xk

1 ∈ B
∣∣U1,n

)
where θML is the maximum likelihood estimator of θT based on the whole sample Xn

1 (this result is known as Moore’s
conjecture (see [23])). They also provide rates for this convergence.
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4 Exponential models with nuisance parameters

4.1 Conditional inference in exponential families

We consider the case when the parameter consists in two distinct subparameters, one of interest denoted θ and a
nuisance component denoted η. As is well known, conditioning on a sufficient statistics for the nuisance parameter
produces a new exponential family which is free of it. Assuming the observed dataset xn1 := (x1, ...,xn) resulting
from sampling of a vector Xn

1 := (X1, ...,Xn) of i.i.d. random variables with distribution in the initial exponential
model, and denoting U1,n a sufficient statistics for η, simulation of samples under the conditional distribution of
Xn

1 given U1,n = u1,n and θ = θ0 for some θ0 produces the basic ingredient for Monte Carlo tests with H0 : θT = θ0
where θT stands for the true value of the parameter of interest. Changing θ0 for other values of the parameter
of interest produces power curves as functions of the level of the test. This is the well known principle of Monte
Carlo tests, which are considered hereunder. We consider a steep but not necessarily regular exponential family
exponential family P := {PX,(θ,η), (θ, η) ∈ N} defined on R with canonical parametrization (θ, η) and minimal
sufficient statistics (t, u) defined through the density

pX,(θ,η)(x) :=
dPX,(θ,η) (x)

dx
= exp [θt(x) + ηu(x)−K(θ, η)]h(x). (8)

For notational conveniency and without loss of generality both θ and η belong to R. Also the model can be
defined on Rd, d > 1, at the cost of similar but more envolved tools. The natural parameter space is N (which is a
convex set in R2) defined as the effective domain of

k(θ, η) := exp [K(θ, η)] =

∫
exp [θt(x) + ηu(x)]h(x)dx. (9)

As above denote xn1 := (x1, ...,xn) be the observed values of n i.i.d. replications of a general random variable X
with density (8). Denote

t1,n :=

n∑
i=1

t(xi) and u1,n :=

n∑
i=1

u(xi). (10)

Basu [3] discusses ten different ways for eliminating the nuisance parameters, among which conditioning on
sufficient statistics and consider UMPU tests pertaining to the parameter of interest. In most cases, the density of
T1,n given U1,n = u1,n is unknown. Two main ways have been developped to deal with this issue: approximating
this conditional density of a statistics or simulating samples from the conditional density. These two approaches
are combined hereunder.

The classical technique is to approximate this conditional density using some expansion. Then integration
produces critical values. For example, Pedersen [24] defines the mixed Edgeworth-saddlepoint approximation,
or the single saddlepoint approximation. However, the main issue of this technique is that the approximated
density still depends on the nuisance parameter. In order to obtain the expansion, some suitable values for the
parameter of interest and for the nuisance parameter have to be chosen. In the method developped here, as seen
before, the conditional approximated density inherits of the invariance with respect to the nuisance parameter when
conditioning on a sufficient statistics pertaining to this parameter.

Rephrasing the notation of Section 2 in the present setting the MLE (θML, ηML) satisfies

∂K (θ, η)

∂η

∣∣∣∣
θML,ηML

= u1,n/n

and therefore u1,n/n converges to
(
∂K(θT ,η)

∂η

)−1
(ηT ) .

For notational clearness denote µ the expectation of u (X1) and σ2 its variance under (θT , ηT ) , hence

µ := µ(θT ,ηT ) := ∂K(θT , ηT )/∂η σ2 := σ2
(θT ,ηT )

:= ∂2K(θT , ηT )/∂r2

Assume at present θT and ηT known. It holds

φ(r) := E(θT ,ηT ) exp[ru (X)] = exp [K(θT , ηT + r)−K(θT , ηT )]

9



and

m(r) = µ(θT ,ηT+r)

s2(r) = σ2
(θT ,ηT+r)

µ3(r) = ∂3K(θT , ηT + r)/∂η3 .

Further

παu,θT ,ηT (x) :=
exp ru(x)

φ(r)
pX,(θT ,ηT ) (x) = pX,(θT ,ηT+r) (x) (11)

for any given α in the range of PX,(θT ,ηT ). In the above formula (11) the parameter r denotes the only solution of
the equation

m(r) = α.

For large k depending on n, using Monte Carlo tests based on runs of length k instead of n does not affect the
accuracy of the results.

4.2 Application of conditional sampling to MC tests

Consider a test defined through H0 : θT = θ0 versus H1 : θT 6= θ0. Monte Carlo (MC) tests aim at obtaining
p−values through simulation when the distribution of the desired test statistics under H0 is either unknown or very
cumbersome to obtain; a comprehensive reference is [15].

Recall the principle of thoses tests: denote t the observed value of the studied statistic based on the dataset and
let t2, .., tL the values of the resulting test statistics obtained through the simulation of L − 1 samples Xn

1 under
H0. If t is the Mth largest value of the sample (t, t2, ..., tL), H0 will be rejected at the α = M/L signifiance level,
since the rank of t is uniformly distributed on the integer 2, ..., L when H0 holds. The present MC procedure uses
simulated samples under the proxy of pu1,n,(θ0,ηT ). Using quasi-sufficiency of U1,n we may use any value in place of
ηT ; we have compared this simple choice with the common use, inserting the MLE η̂θ0 in place of ηT in gu1,n,(θ0,ηT ).
This estimate η̂θ0 is the MLE of ηT in the one parameter family pX,(θ0,η) defined through (8); this choice follows the
commonly used one, as advocated for instance in [24] and [25]. Innumerous simulation studies support this choice
in various contexts; we found no difference in the resulting procedures.

Consider the problem of testing the null hypothesis H0 : θT = θ0 against the alternative H1 : θT > θ0 in model
(8) where η is the nuisance parameter.

When pu1,n,(θ0,ηT ) is known, the classical conditional test H0 : θT = θ0 versus H1 : θT > θ0 with level α is
UMPU.

Substituting pu1,n,(θ0,ηT ) (Xn
1 = xn1 |U1,n = u1,n ) by gu1,n,(θ0,ηT )

(
xk1
)

defined in (6), i.e. substituting the test

statistics Tn
1 by Tk

1 and pθ0
(
Xk

1 = xk1 |U1,n = u1,n
)

by gu1,n,(θ0,ηT )

(
xk1
)

i.e. changing the model for a proxy while
keeping the same parameter of interest θ yields the conditional test with level α

ψα(xk1) :=

 1 if t1,k > tα
γ if t1,k = tα
0 if t1,k < tα

and
EGu1,n,(θ0,ηT )

[ψα(Xk
1 )] = α

i.e. α :=
∫
1t1,k>tαgu1,n,(θ0,ηT )

(
xk1
)
dx1...dxk. Its power under a simple hypothesis θT = θ is defined through

βψα(θ|un) = EGu1,n,(θ0,ηT )
[ψα(Xk

1)].

By quasi-sufficiency of U1,n with respect to η any value can be inserted in gu1,n,(θ0,ηT ) in place of ηT .
Recall that the parametric bootstrap produces samples from a parametric model which is fitted to the data,

often through maximum likelihood. In the present setting, the parameter θ is set to θ0 and the nuisance parameter
η is replaced by its estimator η̂θ0 which is the MLE of ηT when the parameter θ is fixed at the value θ0 defining H0.
Comparing their exact conditional MC tests with parametric bootstrap ones for Gamma distributions, Lockhart et
al [19] conclude that no significant difference can be noticed in terms of level or in terms of power. We proceed
in the same vein, comparing conditional sampling MC tests with the parametric bootstrap ones, obtaining again
similar results when the nuisance parameter is estimated accurately. However the results are somehow different
when the nuisance parameter cannot be estimated accurately, which may occur in various cases.
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4.3 Unimodal Likelihood: testing the coefficients of a Gamma distribution

Let Xn
1 be an i.i.d. sample of random variables with Gamma distribution frT ,θT and x1, ...,xn the resulting data set.

As r and θ vary this distribution is a two parameter exponential family. The statistics T1,n := logX1 + ...+ logXn

is sufficient for r and U1,n := X1 + ...+Xn is sufficient for the parameter θ.MC conditional test with H0 : rT = r0
Denote u1,n =

∑n
i=1 xi and θ̂r0 the MLE of θT . Calculate for l ∈ {2, L}

tl :=

k∑
i=0

log (Yi(l)) .

where the Y ′i are a sample from gu1,n,(r0,θ̂r0).

Consider the corresponding parametric bootstrap procedure for the same test, namely simulate Zi(l), 2 ≤ l ≤ L
and 0 ≤ i ≤ k with distribution fr0,θ̂r0

; denote

sl :=

k∑
i=0

log (Zi(l)) .

In this example simulation shows that for any α the Mth largest value of the sample (t, t2, ..., tL) is very close
to the corresponding empirical M/L-quantile of sl’s. Hence Monte Carlo tests through parametric bootstrap and
conditional compete equally. Also in terms of power, irrespectively in terms of α and in terms of alternatives (close
to H0), the two methods seem to be equivalent.

MC conditional test with H0 : θT = θ0 Denote t1,n =
∑n
i=1 log (xi) and r̂θ0 the MLE of rT . Calculate for

l ∈ {2, L}

tl :=

k∑
i=0

Yi(l)

where the Y ′i are a sample from gu1,n,(r̂θ0 ,θ0)
and, as above define accordingly

sl :=

k∑
i=0

log (Zi(l))

where the Zi(l)’s are simulated under fr̂θ0 ,θ0 .
As above, parametric bootstrap and conditional sampling yield equivalent Monte Carlo tests in terms of power

function under alternatives close to H0.
In the two cases studied above the value of k has been obtained through the rule exposed in section 3.2 of [4].

4.3.1 Bimodal likelihood: testing the mean of a normal distribution in dimension 2

In contrast with the above mentioned examples, the following case study shows that estimation through the un-
conditional likelihood may fail to provide consistent estimators when the likelihood surface has multiple critical
points.

Sundberg [29] proposes four examples that allow likelihood multimodality. Two of them can also be found in [9]
and [10], and in [2], Ch 2. We consider the ”Normal parabola” model which is a curved (2, 1) family (see Example
2.35 in [2], Ch 2 ). Two independent Gaussian variates have unknown means and known variances; their means are
related by a parabolic relationship.

Let X and Y be two independent gaussian r.v.’s with same variance σ2
T with expectation ψT and ψ2

T . In the
present example σ2

T = 1 and ψT = 2.
Let (xi,yi) , 1 ≤ i ≤ n be i.i.d. realizations of (Xi,Yi) .
The parameter of interest is σ2 whislt the nuisance parameters is ψ. Derivation of the likelihood function of the

observed sample with respect to ψ yields the following equation

(u1,n − ψ) + 2ψ
(
v1,n − ψ2

)
= 0

with u1,n := x1 + ... + xn and v1,n := y1 + ... + yn. Define accordingly U1,n and V1,n.The following table shows
that the likelihood function is bimodal in ψ.
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Figure 6: Bimodal likelihood in ψ.

Estimation of the nuisance parameter ψ is performed through the standard Newton Raphson method. The
Newton-Raphson optimizer of the likelihood function converges to the true value when the initial value is larger
than 1 and fails to converge to ψT = 2 otherwise. Hencefore the ML estimation based on this preliminary estimate
of the nuisance parameter may lead to erroneous estimates of the parameter of interest. Indeed according to the
initial value we obtained estimators of ψT close to 2 or to −2. When the estimator of the nuisance parameter is
close to its true value 2 then parametric bootstrap yields Monte Carlo tests with power close to 1 for any α and any
alternative close to H0. At the contrary when this estimate is close to the second maximizer of the likelihood (i.e.
close to −2) then the resulting Monte Carlo test based on parametric bootstrap has power close to 0 irrespectively
of the value of α and of the alternative, when close to H0. In contrast with these results, Monte Carlo tests based
on conditional sampling provide powers close to 1 for any α; we have considered alternatives close to H0 . This
result is of course a consequence of the quasi sufficiency of the statistics (U1,n,V1,n) for the parameter

(
ψ,ψ2

)
of

the distribution of the sample (xi,yi)i=1,...,n; see next paragraph for a discussion of this point.

4.4 Estimation through conditional likelihood

Considering model (8) we intend to perform an estimation of θT irrespectively upon the value of ηT . Denote η̂θ
the MLE of ηT when θ holds; the model pX,(θ,η̂θ)(x) is a one parameter model which is fitted to the data for any
peculiar choice of θ.The optimizer in θ of the resulting likelihood function is the global MLE. Properties of the
resulting estimators strongly rely on the constistency properties of η̂θ at any given θ.

Consider the consequence of Theorem 3. Condition on the value of the sufficient statistics U1,n, and consider
the conditional likelihood of the observed subsample xk1 under parameter (θ, η̂θ); recall that xk1 is generated under
(θT , ηT ) . By Theorem 3 this likelihood is approximated by gu1,n,(θ,η̂θ)

(
xk1
)

with a small relative error. Conditioned

likelihood estimation is performed optimizing gu1,n,(θ,η̂θ)

(
xk1
)

upon θ. Any value of the nuisance parameter η can
be used in place of η̂θ as seen in Section 3.1.

In most cases, as the normal, gamma or inverse-gaussian, estimations through the unconditional likelihood or
through conditional likelihood give a consistent estimator.

We consider the example of the bimodal likelihood from the above subsection, inheriting of the notation and
explore the behaviour of the proxy of the conditional likelihood of the sample (xi,yi) , 1 ≤ i ≤ n when conditioning
on u1,n and v1,n , as a function of σ2. This likelihood writes

L
(
σ2
∣∣u1,n, v1,n)

= pu1,nσ2 (xn1 ) pv1,nσ2 (yn1 )

where we have used the independence of the r.v.’s Xi’s and Yi’s.
Applying Theorem 1 to the above expression it appears that ψ cancels in the resulting densities gu1,n,σ2

and

gv1,n,σ2 . This proves that the proxy of the conditional likelihood provides consistent estimation of σ2
T as shown on

Figures 7 and 8 (see the solid lines).
On Figure 7, the dot line is the likelihood function

L
(
σ2
)

:=

n∑
i=1

log pX,(σ2,ψ̂σ2)(xi)
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Figure 7: Proxy of the conditional likelihood (solid line) along with the classical likelihood (dotted line) as function
of σ2 for n = 100 and k = 99 in the case where a good initial point in Newton-Raphson procedure is chosen.
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Figure 8: Proxy of the conditional likelihood (solid line) along with the classical likelihood (dotted line) as function
of σ2 for n = 100 and k = 99 in the case where a bad initial point in Newton-Raphson procedure is chosen.

where ψ̂σ2 is a consistent estimator of the nuisance parameter; the resulting maximizer in the variable σ2 is close
to σ2

T = 1. At the opposite in Figure 8 an inconsistent preliminary estimator of ψT obtained through a bad tuning
of the initial point in the Newton-Raphson procedure leads to unconsistency in the estimation of σ2

T , the resulting
likelihood function being unbounded.
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