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ABSTRACT With the advent of whole slide image (WSI) scanners, pathology is undergoing a
digital revolution. Simultaneously, with the development of image analysis algorithms based on artificial
intelligence tools, the application of computerized WSI analysis can now be expected. However,
transferring such tools into clinical practice is very challenging as they must deal with many artifacts
that can occur during sample preparation and digitization. Therefore, the quality of WSIs is of prime
importance, and we propose a review of the state-of-the-art of computational approaches for quality
control. In particular, we focus on WSI quality issues related to the presence of sample preparation
artifacts, compression artifacts, color variations, and out-of-focus areas. An analysis of the monthly
WSI clinical routine in a cytological laboratory confirms the importance of implementing quality control
measures. Given this observation, we draw perspectives on how a computational quality process can be
included in a computational pathology diagnosis pipeline.

INDEX TERMS Digital Pathology, Whole Slide Image, Computer-Aided Diagnosis, Computational

Pathology, Quality Control, Artifacts.

. INTRODUCTION

IGITAL Pathology (DP) is the crossroads between
Dthe pathology world and the digitization revolution.
Pathology, from pathos (nddoc) and logia (Aoylo) respec-
tively "suffering/experience” and "study of" is a medical
science that involves the study and diagnosis of disease
through the examination of surgically removed organs,
tissues, and bodily fluids. Because each pathology sub-
domain (histology, cytology, etc.) needs adequate expertise
to analyze dedicated samples, DP was first seen as an answer
to fulfill the local lack of health specialists. As depicted at
the First International Conference on Image Management
and Communication in Patient Care [1]: "static and dynamic
imaging in pathology represent ways to address the problem
of maldistribution of specialty pathology services and to
provide primary pathology diagnostic services in rural areas.
These technologies are also valuable for consultation and
educational programs. Because of the high information den-
sity in pathology specimens as compared with radiograms,
image storage and image transport in pathology represent
special challenges to video and communications engineers."
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The first wave of changes affecting pathology began
with the development of the Internet and the appearance of
affordable scanners to digitize pathological samples. Whole
slide images (WSIs) are numerical objects that are made to
be displayable and shared through networks, see Preston et
al. [2] for a vision from the 1980s. WSIs allow the screening
of optical data at different magnifications and are described
by a family of file formats that ease the automation of
specific tasks (locating regions of interest, labeling a slide,
etc.). The second wave in which DP was installed as a
legitimate domain was the increase in available annotated
data in the early 2000s. Digital pixel data enriched with
expert labels allowed DP to benefit from machine learning
(ML) tools and deep learning (DL) by approximately 2010
year. Nowadays definition of DP has followed these different
evolutions, as depicted in "Introduction to Digital Pathology
and Computer-Aided Pathology" [3]: "DP, which initially
delineated the process of digitizing WSIs using advanced
slide scanning technology, is now a generic term that
includes Artificial Intelligence (Al)-based approaches for
detection, segmentation, diagnosis, and analysis of digital-
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ized images".
The main goal of DP, through different periods, is to
investigate and study a digital object with the same di-
agnostic properties as the original biological sample. DP
was first involved in easing the delivery of diagnostics by
connecting specialists. Then it mutated to computer-aided
diagnosis (CAD) to add valuable information to experts.
Regardless of the case, adding the digitization step to the
standard pathology pipeline involves certain requirements
for the subsequent stages. Is the quality requirement to
diagnose a slide the same for an Al as for a human
expert? Does digitization embeds sufficient information to
obtain an equivalent diagnostic for both a sample and its
digital representation? What are the requirements to obtain
acceptable digitization of a slide, and are these requirements
the same for a human expert and an AI?
In a pragmatic way of thinking, a laboratory entering the
DP realm should expect an additional Quality Control (QC)
step to ensure that each slide and its digital clone are well
prepared. Janowczyk et al. [4], highlighted the QC need
for laboratories diving in a DP world: "Manual review of
glass and digital slides is laborious, qualitative, and subject
to intra- and inter-reader variability. Therefore, there is
a critical need for a reproducible automated approach to
precisely localize artifacts to identify slides that need to
be reproduced or regions that should be avoided during
computational analysis". Thus, when considering the issue
of quality in DP, two main related topics emerge:
¢ QC in laboratories: computer-aided verification of fail-
ures in the digital pipeline to check whether each
WSI meets the diagnostic requirements according to its
domain (histology, cytology, etc.) and to the laboratory
(specific machines preparing slides and scanner),

¢ Quality of a representative corpus from a CAD per-
spective: This ranges from the versatility of learned
models for machine learning engines to the ability to
process and detect out-of-scope or "never seen before"
manifestations (rare visual anomalies induced by any
prior steps of the laboratory pipeline).

Figure 1 depicts the trends in DP scientific publications
that involve WSIs processing. The same rise in publications
can be observed for either generic DP or WSI related papers
or QC in DP, highlighting the interest in this emerging field.
It should be noted that pathology subdomains do not receive
the same attention, with many more studies focusing on
histology rather than cytology. In addition, there is some
confusion between pathology and histology: many articles
of DP use the term pathology instead of histology even if
all the considered examples are from this subdomain. In
addition, even in specific categories, the level of interest is
different, focus detection and color adaptation are the two
main tasks in which QC is mainly involved.

This study focuses on QC issues in DP, driven by a
laboratory point of view: how to guarantee the quality of
WSIs or associated labeling information, how to detect a
failure in a pipeline when analyzing a WSI, which decision
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to take when a quality dysfunction is detected, etc. are some
of the questions we address here.

In the next sections, we run through different stages of
DP, from sampling to diagnosis. We elaborate on some
technical aspects addressed in the literature, from focus,
blur, or artifact detection to color deviation. We end this
survey with a review of quality issues of a 1-month stream of
WSIs in a DP laboratory to confront the previously exhibited
ideas with reality. Last sections provide perspectives and a
conclusion.

Il. DIGITAL PATHOLOGY PIPELINES

To understand the challenges in DP, we begin with a descrip-
tion of the processes involved in pathology laboratories, with
a digital accent, to understand the impact of QC at different
stages.

A. LABORATORY POINT OF VIEW

To obtain a specific accreditation that allows them to op-
erate, laboratories must follow guidelines certified by a
dedicated consortium (European cooperation for Accred-
itation'!, International Laboratory Accreditation Coopera-
tion?, International Accreditation Forum?, etc.). Accredita-
tion organisms, based on norms (e.g., NF EN ISO 15189)
with specifications relative to the countries where they are
applied, guarantee the technical and diagnostic reliability
of the pathology examinations occurring in a laboratory.
These guidelines include pre-analytic, analytic, and post-
analytic risk management and require laboratories to analyze
each step of their processes according to: what has already
happened (retrospective analysis), what occurs currently
(ongoing quality measures, user returns), what could happen
(risk analysis) and what has happened in other laboratories
(bibliographical and clinical studies). To show just one
example, here are some requirements for medical Pathology
Services from the Australian Department of Health [5]*:
SB8.4 Acceptable test performance must be confirmed by
the ongoing use of internal quality control material, SB8.8
Uncertainty measurement must be estimated for each test
procedure where relevant and possible, SB8.9 The Medical
Pathology Service must have evidence that its uncertainties
measurements meet clinical requirements.

From sampling to diagnosis, the biological material goes
through many different and entangled stages; the firsts are
made to prepare the next stages until an expert diagnoses
the sample. These stages differ according to the pathological
sub-domain involved. However, the pipelines are broadly the
same in both histology and cytology, with samples collected,
registered in the laboratory management system, prepared,
disposed on a slide, stained, preserved, digitized, and ana-
lyzed. However, significant differences can be noticed when

Thttps://european-accreditation.org/

Zhttps://ilac.org/

3https:/fiaf.nu

“https://www 1 .health.gov.au/internet/main/publishing.nsf/Content/
health-npaac-publication.htm
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Figure 1: Google scholar trends for publications involving Digital Pathology (DP), Whole Slide Images (WSI), Quality

Control (QC) and specific subdomains.

preparing the sample, which can lead to various quality and
performance issues (discussed later in Section III).

Laboratories that have completed their digital transition
can screen slides on monitors and be helped by various
artificial intelligence assistance tools. Therefore, precau-
tions should be taken by the DP laboratory. Indeed, the
digitization, storage, and computation steps have minimal
requirements to operate as intended and these should be
controlled. Digitization is located at the end of the pipeline,
and its outputs (pixel data in the WSI and other meta-data
information) are directly used for the diagnosis of an Al
or a pathologist. We describe the main steps in various DP
pipelines to highlight the potential quality issues that impact
diagnosis.

B. FROM SAMPLE TO SLIDE
Biological samples to be examined by pathologists must
follow a specific sample preparation pipeline because of
the requirements of brightfield microscopy. In particular,
the requirements for a sample to be examined under the
microscope are as follows: i) the sample is well preserved,
i) the sample is transparent so that light can pass through it,
iii) the sample is thin so that a single layer of cells is present
and iv) some components of the sample can be distinguished
by different colors. Because of these requirements, the
preparation pipelines differ in histology and cytology. In
addition, these differences lead to specific quality issues
according to the specificity of the step in which they occur.
Figure 2 depicts the typical issues in each preparation step
for both histology and cytology. Some errors due to the
failure of the information system management are included;
they have been addressed in the early ages of DP. Aspects
that alter the final diagnosis are the main topics discussed
here.

In histology, the following steps are performed [6], as
depicted in the left column of Figure 2:

« Tissue collection: A specimen is collected by a surgeon
who removes a piece of tissue from the body, and a
sample is cut from it.

« Tissue processing: To preserve the cells of a sample, it
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Bad Dehydration
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Sect Artifacts (stripes, contamination)
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‘Wrong protocol

l
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Wrong area scanned
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Sub-optimal focus plan selected

Flgure 2: Histology and Cytology pipeline steps and their

related issues

is fixed with a chemical product, placed into a cassette,
processed (dehydration, clearing), and then embedded

in paraffin wax.

o Tissue sectioning: The paraffin block is cut into thin
sections (3-10 microns) to allow visualization through

a microscope and placed

on glass slides.

o Tissue staining: slides are stained to reveal the struc-
tural details of the tissue sample, and covered with a

glass cover slip.

In cytology, the following steps are performed [7],

Figure 2, right column:

o Fluid collection: A biofluid is extracted from a patient

and placed into a tube.

¢ Fluid preparation: Cells are processed and displayed on
a glass slide. It can include centrifugation or filtration
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steps to concentrate the cells in the tube.

o Fluid spreading and staining: cells are distributed
within a disk on a glass slide, and the slides are stained
and covered with a glass cover slip.

Therefore, preparing a histological or cytological sample for
microscopic examination is a technically complicated step
that is rather sensitive. In addition, it requires specialized
equipment and expertise. Even if we consider a specific
slide preparation pipeline (e.g., using either centrifugation
or filtering with cytological samples), differences between
laboratories can appear. Any problem that occurs during the
preparation of the slides can have an impact on the quality of
the prepared samples, which is of utmost importance for the
final diagnosis taken by the pathologist. In the next section,
we focus on the heart of the DP pipeline: the digitization
step and its related constraints.

C. DIGITIZATION OF SLIDES

Once the slides are prepared, they can be transformed into
digital slides using WSI scanners. There are many different
types of WSI scanners. Table 1 provides a (non-exhaustive)
list of the most common ones. WSI scanners have two

Company WSI scanner
3DHistech Pannoramic SCAN II, 250 Flash
Hologic Genius
Hamamatsu NanoZoomer RS, HT, S360, S210, S60 and XR
Huron TISSUescope 4000, 4000XT, HS
Leica ScanScope AT, AT2, CS, FL, SCN400, GT450
Olympus vS120-SL
Omnyx vL4, vL120
OptraScan OS 15, OS-Ultra (80, 160, 320, 480), OS-SiA
Perkinelmer Lamina
Philips Ultra-Fast Scanner, iSyntax
Sakura Finetek visionTek
Unic Precice 500, Precice 600x
Ventana iScan Coreo, iScan HT
Zeiss Axio Scan.Z1

Table 1: List of whole slide image scanners.

major components. The hardware components include a
microscope with lens objectives, a light source (bright field
or fluorescent), robotics to load and move glass slides,
digital cameras for (line or tile) image capture and a built-in
computer. The software components include digital slides
I/O, management, and visualization. Farahani et al. [8]
and Patel er al. [9] reviewed the different properties of
WSI scanners including slide capacity, image magnification
and resolution, file format, and scan speed. Some scan-
ners can digitize a slide at several focal planes, which
can be of interest for cytological slides that are thicker
than histological slides. With many different WSI scanners
available using different technologies, the digitization of
slides can produce very different results. Consequently, the
parameters of each WSI scanner component can impact the
quality of the WSI and therefore its further interpretation.
In addition, as pointed out by Ogura et al. [10] the same
slide repeatedly scanned with the same WSI scanner will
not produce completely identical WSIs. As such, the FDA
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has designated WSI systems as class III (highest risk)
medical devices. When using a WSI, validation must be
performed first to ensure that the diagnostic performance
based on digitized slides is at least equivalent to that of glass
slides and light microscopy [11]. Pantanowitz et al. provided
guidelines on this topic [12]. They have analyzed the impact
of differences between digitized slides. Then, WSI scanners
can be validated through stability measurement with regard
to the quality of the information captured in the WSI. Shi et
al. [13] concluded that one should use 20x magnification
scans for diagnostic workouts and 40x for challenging
cases. In [14], after a review of different studies led on eight
different WSI scanners, the mean diagnostic concordance of
WSI and light microscopy (LM), weighted by the number
of cases per study, was established at 92.4%. A similar
finding was reported by Rajaganesan et al. in [15], with
four different scanners. The diagnostic accuracy of LM was
95.44%, and that of WSI was 93.32%. They also reported
rates from other studies in the literature and the diagnostic
concordance rate was always > 96%. Interestingly, this
study also estimated that the mean digital image artifacts
(out of focus and stitching) appearance rate was 6.8% (we
will discuss this later in the paper). Given these studies,
digitization produces digital slides that do not seem to
affect diagnostic performance as long as their quality is
sufficient. However, as the visual quality of the digital slides
(in terms of color and introduced digital artifacts) can vary
significantly among WSI scanners, this must be carefully
monitored. In particular, only two scanners from Philips™
and Leica™ companies received FDA approval for the
review and interpretation of digital surgical pathology slides
prepared from biopsied tissue. This shows that obtaining
WSIs of good visual quality is still a challenge.

D. COMPUTATIONAL PATHOLOGY

With the advent of WSI scanners, the development of image
analysis algorithms based on artificial intelligence tools,
and an increase in the computational power of computers,
the application of computerized image analysis to WSIs
can now be expected. In 2011, Fuchs er al. introduced
the term "computational pathology" (CP) [16] in a journal
special issue dedicated to WSI processing [17]. This was
the first appearance of this term and it encompasses all
approaches that make use of AI methods on WSIs to analyze
patient samples [3]. However, what gain can be provided to
pathologists with an automated system using computational
pathology? First, the samples analyzed by pathologists are
most often benign and can be easily distinguished from
cancerous ones. This is a potentially huge waste of time,
and any system that could help pathologists in localizing
cancerous areas in slides would be beneficial [18]. There-
fore, computational pathology can be useful for computer-
aided diagnosis. Second, it can be used to predict disease
outcome and survival. In particular, grading approaches have
been established for prostate and breast cancers (Gleason
and Elston/Ellis) which are correlated with patient outcome
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and long-term survival. Computational pathology can be
very interesting in providing such a grade estimation based
on a quantitative analysis of the slide biological structures.
From all these potential outcomes, we can roughly say that
computational pathology [19] aims at using computational
methods to analyze patient specimens (and especially WSIs)
for the study of disease [3], [20]. Currently, these computa-
tional methods are often referred to as machine learning
or artificial intelligence methods [21] and particularly to
deep learning methods based on neural networks. In [22],
Janowczyk et al. showed in tutorial cases how deep learning
can be used for computational pathology tasks: segmentation
(nuclei, epithelium and tubule), detection (lymphocytes and
mitosis), and classification (lymphoma sub-type). This paper
is important to the community as it has shown how pathol-
ogists can benefit from such computational approaches. In
[23], a similar approach was adopted to demonstrate the
incorporation of Al and machine learning tools into clinical
oncology. Many approaches have been proposed so far for
the processing and analysis of WSIs. Recent approaches use
Vision Transformers and Multiple Instance Learning (e.g.,
[24], [25], to quote a few). A review of such approaches
is beyond the scope of this paper. We refer the reader
to recent comprehensive reviews for more insights on Al
and deep learning in computational pathology [26]-[29],
with specific reviews for histology [30]-[34] and cytology
[35]-[37]. If some ethical issues have appeared in the use
of computational pathology in clinical routine [38], most
pathologists are in favor of their use [39].

At this time, most of the proposed computational pathol-
ogy tools are restricted to research use only (RUO) and
can only be used to provide a complementary analysis
to that performed by a pathologist. In [40], [41], it was
shown that the combination of computational pathology and
human pathologists has the potential to improve accuracy
and efficiency in gastric cancer diagnosis. However, with
the use of computational pathology, remarkable progress
has been made beyond RUO. For the Gleason grading
of prostate cancer [42]-[44] and the Elston/Ellis grading
of breast cancer [45]-[47], commercial solutions recently
reached the market>®. Similarly, for cancer screening in
cervical cytology, some commercial solutions have been
proposed’-®. One can see that computational pathology en-
ables the addressing of many tasks such as tissue detection,
segmentation, and classification with a very broad focus
from computer-aided decision (that aims to assist pathol-
ogists in routine diagnosis) to precision medicine (that aims
to study the clinical outcome of a patient). However, this
is at the cost of collecting large sets of manually annotated
WSIs to train deep learning models efficiently.

Shttps://ibex-ai.com/solutions/the- galen-platform/
Surlhttps://www.paige.ai/hospitals-and-labs
Thttps://www.hologic.com/hologic-products/cytology/
geniustm-digital-diagnostics-system
Shttps://datexim.ai/cytoprocessor/
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E. QUALITY CONTROL IN DIGITAL PATHOLOGY

With the development of DP and CP, it becomes now
commonplace to acquire digital slides and to analyze them
with Al tools. However, new problems have appeared that
are important to overcome for routine clinical practice.
Indeed, slide preparation can introduce many artifacts that
can impact the readability of the slide. This is also the case
with slide digitization (e.g., with blurred areas). Both these
kinds of artifacts can be annoying for either a visual analysis
by a pathologist or an automated analysis by an Al tool. As
a consequence, some approaches have been developed to
minimize the appearance of these artifacts or to cope with
them by automated detection or correction. As previously
mentioned, clinical laboratories have to follow guidelines
for quality control and both DP and CP have to conform to
these to be usable in practice. As a result, quality control
is an emerging topic in DP and CP [26], [35], [48]-[50].
In the next sections, we review the approaches proposed to
assess the quality of WSIs. As both the slide preparation
and slide digitization can have an impact on the final WSI
quality, we analyze both separately. Finally, we present
approaches for quality control at the slide level, and we
provide recommendations for improving the quality of slides
considered as unanalyzable by computational pathology
pipelines.

lll. QUALITY OF SLIDE PREPARATION
In a digital pathology flow for sample analysis and diag-
nosis, the first factor that can strongly impact the quality
of a WSI (the digital item) is related to the quality of the
slide preparation (the physical item). As slide preparation
is very technical and sensitive, mistakes can be made and
artifacts can appear. In histology and cytology, an artifact is
a structure which should not be present in living samples. In
some situations, the presence of an artifact can compromise
an accurate diagnosis with an examination under a micro-
scope [51]. Consequently, artifacts due to slide preparation
can also cause potential mistakes in quantitative analysis
involving the processing of WSIs. As the preparation of
slides can be very heterogeneous between and within insti-
tutions, artifacts are inevitable. What type of artifacts can
be encountered? There is no perfect answer to that question
as an artifact is in essence an item that was not foreseen to
appear. In a very detailed technical note, Leica” presented a
list of artifacts that can be annoying for the interpretation of
(digital or not) slides. As several artifacts are very rare, we
present the most common ones grouped into two categories.
« Domain-independent artifacts (in histology or cytol-
ogy) can be generated from the sample preparation:
(i) The sample can have been contaminated with an un-
expected biological element (e.g., blood, bacteria, mu-
cus), or a foreign (non-biological) object (e.g., surgical
contaminant). (if) The glass slide can be dusty or dirty,
affecting its background. (iii) Air bubbles can appear
during the glass cover slip. (iv) Staining is a critical
step, it can cause severe visual color artifacts if it is
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not well monitored (e.g, by checking the validity of the
coloration chemicals). Artifacts can also be generated
after sample preparation. For example, pathologists
often use markers on glass slides to identify specific
areas for analysis. These markers can mask biological
components.

« Domain-dependent artifacts are due to the specific
characteristics of the specimens and their preparation.
In histology, thin tissues can fold on themselves [52],
Yagi et al. [53] showed that there is a correlation
between the quality of slide preparation (the thinner the
tissue, the better) and the quality of WSIs. In cytology,
if the centrifugation is not well performed, many clus-
ters will appear, preventing their interpretation [54]. In
addition, in cytology, slides are usually thicker [55],
which can lead to focus problems (discussed in the
section on digitization).

Figure 3 illustrates such preparation artifacts that affect
the quality of the slide. As we just have seen it, artifacts
that occur during slide preparation can have a significant
impact on the accuracy of slide analysis [58], whether this
analysis is performed by a human pathologist or a computer-
aided decision system. This has received attention from
the computational pathology community only recently [48],
[59]. Recent works proposed to perform quality control
(automatic or not) of slide preparation to identify the type
and/or severity of artifacts from WSIs. The output of such
systems can then be used as additional input for computer-
aided decision systems to establish a more accurate analysis
of WSIs. We review some of these artifacts’ detection meth-
ods in the sequel. At this level, we focus only on artifacts
related to slide preparation. Digitization artifacts will be
further considered (even if some of the cited works also
consider digitization artifacts such as out-of-focus areas).
They are summarized in Table 2, specifying the pathology

Figure 3: Different types of artifacts: foreign object, marker,
dust, tissue fold, air bubble, biological contaminant. Samples
are from the dataset https://grand-challenge.org/algorithms/
quality-assessment-of-whole-slide-images-through-a/ [56]
and [57].
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domain, artifact types, and detection methods.

In [60], Avanaki et al. proposed automatic quality esti-
mators by adapting image quality assessment (IQA) meth-
ods that were originally developed for natural images. In
particular, they considered IL-NIQE, a no-reference IQA,
to detect artifacts and showed that the scores provided by
this estimator enable discrimination of artifacts following
the ratings given by a pathologist. In [61], Kothari et al.
proposed a method for identifying tissue-fold artifacts in his-
tological WSIs. Assuming that tissue folds are different from
the other slides’ areas w.r.t. color saturation and intensity,
they considered the difference between both. The difference
is then thresholded at different values and the distribution
of the remaining connected components is studied to define
two thresholds that enable the extraction of tissue-folded
regions. A similar approach was proposed in [62]. In [63]
Palokangas et al. proposed the extraction of folds using k-
means clustering in a saturation-intensity feature space. In
[4], Janowczyk et al. proposed HistoQC®, an open-source
quality control tool for digital pathology slides. This tool
uses a combination of handcrafted features extracted from
a digital slide (related to color, brightness, contrast, and
edges) that can be fed to machine learning techniques for
artifact extraction. The software can then be used to identify
artifacts and artifact-free areas. In [64], Chen et al. used
HistoQC for quality control of renal biopsy WSIs. They
aimed at identifying the slides that were unsuitable for
computational analysis because of the presence of artifacts.
They used different modules of HistoQC to identify artifacts
such as tissue folds, pen markers, air bubbles, and ink stain
variations. They showed that HistoQC could identify batch
effects in the slides’ cohorts of three pathological laborato-
ries and concluded that a quantitative process is necessary
for robust and reproducible quality control of digital slides.
Kumar et al. [65], proposed a method for the identification
of artifacts in cytological cervical smears WSIs. Cells that
are not epithelial are considered as artifacts: e.g., blood cells.
The cells were extracted using classical image processing
methods. Features (describing intensity, shape, and texture)
are extracted from the segmented cells and the latter are
classified as artifact or non-artifact cells with an SVM. They
obtained an accuracy of 86.64%. In [66], [67], Shakhawat
et al. proposed the detection of artifacts (air bubbles and
tissue folds) in histological WSIs at low resolution, as
the considered artifacts can be seen at low magnification
and have visual properties that are very different from the
surrounding tissue. They extracted luminance and saturation
features, and Haralick gray-level co-occurrence matrix tex-
ture features from 100 x 100 patches. Only relevant features
were retained using sequential feature selection and fed to an
SVM classifier. They obtained an accuracy of 98.98%. Smit
et al. [56] proposed a multi-class deep learning model'® for
the semantic segmentation of artifacts caused by tissue folds,

9https://github.com/choosehappy/HistoQC
10https://github.com/DIAGNijmegen/pathology-artifact-detection
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| Pathology domain | Type of Artifact Type of method

Reference | Histology | Cytology | Air bubble | Marker | Ink T;(Sjse F;);;ftn c](?;?zli(rﬁllf;rln pr(I)I(I:::asi?ng ll\gz?rcilr?ge le]z?::lfiﬁg
[60] v v v Ve

[611-[63] v v Ve
[4] v v v v v v
[64] v v v v v v v v
[65] v v v

(661, [67] v v v v
[56] v v v v v v

[68], [69] v v v v v v v
[70] v v v
[71] v v 4
[72] v v v
[73] v v v v v v v

Table 2: Computational methods for the detection of artifacts in WSIs.

ink, air bubbles, dust, and markers for histological WSIs
of multiple tissues and staining types. The network archi-
tecture was an encoder-decoder network with EfficientNet-
B2 as the encoder and DeepLabV3+ as the decoder. The
semantic labeling is performed on 1024 x 1024 patches.
They obtained an accuracy of 89.45%. In [68], Foucart et
al. proposed a deep residual network for artifact detection
in H&E and THC stained WSIs. Their approach relies on
rough annotations and works at a low resolution of the WSI
pyramid to enable a fast analysis. Semantic labeling was
performed using 128 x 128 patches. They also considered
a specific data augmentation technique as artifact areas are
much less present than non-artifact areas. They obtained an
accuracy of 89.77%. They recently extended their results in
[69] and showed that a deep learning approach to artifact
segmentation!! can produce interesting results as long as
learning strategies are adapted to dataset characteristics.
In particular, artifacts in digital pathology slides are ill-
defined objects, which makes them particularly challenging
to annotate precisely, and their work addresses this aspect of
imprecise annotations'2. Babaie et al. [70], proposed the use
of a pre-trained DenseNet201 CNN as a feature extractor to
characterize tissue folds, and fed an SVM classifier with
these features. The DenseNet201 CNN was fine-tuned on a
dataset of folded and fold-free 255 x 255 patches along with
data augmentation. They obtained an accuracy of 96.7%.
Ali et al. [71] proposed a fully automatic CNN for the
classification and restoration of WSIs containing pen ink
markers'?. First, a CNN detects tiles corrupted by a pen
marker. Second, in these corrupted tiles, a Yolo CNN detects
the bounding boxes of pen marker areas. Third, corrupted
pixels are restored by a domain-adaptive cycle-consistent-
adversarial generative model. Their approach can produce
visually coherent marker-free WSIs while enhancing their
quality (as assessed using PSNR, SSIM, and VIF IQA
measures). In [72], Zhang et al. proposed a method for

Mhttps://github.com/adfoucart/deephisto
2https://zenodo.org/record/3773097
Bhttps://github.com/sharib- vision/histopathology-inkRemoval
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assessing the staining quality of WSIs for Gram staining.
They considered a MobileNet CNN to estimate the staining
quality of the slides’ tiles. They obtained an accuracy of
86.8%. The results were shown to pathologists in the form
of a stain-quality heat map. In [73], [74], Haghighat et al.
proposed a multi-task ResNetl8 deep neural network to
determine the presence of artifacts on 228 x 228 patches
at low resolution'*. From the patch-level artifact estimation
statistics, they also provided a slide-level "usability" index
that estimates wether the slide is appropriate for establishing
a clinical diagnosis and an indication of the impact of arti-
facts on WSI quality. This can help pathologists determine
whether the slide needs to be re-scanned or re-stained. They
obtained an accuracy of 98.7%.

From these representative studies on artifact detection
in WSIs, we observed that this problem has rarely been
addressed in the literature. Most recent studies rely on deep
learning and obtain very good detection results. However,
the integration of the artifact detection result within a
computer-aided diagnosis system still needs to be explored.

IV. QUALITY OF SLIDE DIGITIZATION

A. QUALITY OF WSI FORMAT

Many commercial scanners have appeared in the market
and each has introduced its proprietary file format. Con-
sequently, there is no established file format for storing and
exchanging WSIs produced by WSI scanners (see Table 3).
However, these proprietary file formats can share similar
properties. Indeed, given the flexibility of the TIFF file
format, many have adopted it to store WSI data, often in
the form of a tiled multi-resolution pyramid (Figure 4).
Nevertheless, this abundance of proprietary file formats can
be a strong barrier to their use even if some formats are very
similar. Indeed, as we will point it out later in this review,
deep learning methods for computational pathology require
large and diverse datasets from different centers potentially
using different scanners. Therefore, the quality of the WSI
file format is an important factor for its use in the digital

https://github.com/MaryamHaghighat/PathProfiler
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Company WHI file format Compression
3DHistech .Mrxs Jpeg, JpegXR
Hamamatsu .vms,.ndpi Jpeg, Jpeg2000

Hologic Jpeg
Huron tf Jpeg, Jpeg2000
Leica .SVS, .scn, .CWS Jpeg, Jpeg2000

Olympus .vsi Jpeg, Jpeg2000
Omnyx Jp2, .rts Jpeg, Jpeg2000

OptraScan .otiff Jpeg, Jpeg2000
Perkinelmer .qptiff LZW

Philips Liff, iSyntax Jpeg, Jpeg2000, LZW

Sakura Finetek .svslide Jpeg
Unic .tmap Jpeg

Ventana bif,.tif Jpeg

Zeiss .czi Jpeg, Jpeg2000, LZW

Table 3: Different file formats of WSI scanners.

1X Magnification

10X Magnification

40X Magnification

Figure 4: A WSI pyramidal file [80]

computational pathology analysis pipeline. For instance, the
macro-image (that represents a snapshot of the entire glass
slide) provides a low-magnification overview of all of the
tissue pieces. It can be used to guide the scanner’s tissue
detection system or for focus-point selection. As reported
in [75], [76], an incorrect macro-image can generate techni-
cal problems such as automatic tissue detector failure, or
poor scan coverage. Even if a standard specification for
WSI data has been published by the Digital Imaging and
Communications in Medicine (DICOM) Working Group
[77], its adoption is rather limited. Consequently, reading
and writing WSIs can be technically difficult, even if some
open-source libraries have made significant progress [78],
[79]. The quality of the WSI file format, in terms of
interoperability, must be considered when choosing a WSI
scanner. In addition, the quality of a digitized slide can be
altered by many factors which we review in the sequel.

B. COMPRESSION

A parameter that can impact image quality is the use of com-
pression. Indeed, all WSI scanners use lossy compression to
ensure reasonable file sizes. Typically, image compression is
measured using the quality factor (QF) or compression rate.
An uncompressed image has a QF of 100. If the scanner
uses a QF that is too low, compression artifacts will appear,
which are mostly visible as block effects. Figure 5 presents
examples of such compression artifacts on histological and
cytological images. As shown, a QF that is too low can
severely affect the image content making it more difficult

8

to diagnose.

Some studies investigated the optimization of compres-
sion standards for WSI scanners. Sharma et al. [81], consid-
ered WSIs obtained from a scanner at different compression
rates for 12 different stain types. Then, they determined the
most suitable QF for pathologists to be able to perform a
diagnosis on compressed images. They concluded that a QF
of 50 was suitable for all stains. In [82], Bug et al. in-
vestigated Scalable High Efficiency Video Coding (SHVC)
as a replacement for the JPEG and JPEG2000 standards
currently found in most WSI formats. They showed that
SHVC can provide a gain in compression performance but
introduces blurring artifacts. In [83], Helin ef al. defined an
optimized parameterization for JPEG 2000 image compres-
sion specifically used with histopathological WSIs. Their
parameterization is based on allowing a very high degree
of compression on the background part of the WSI while
using a conventional amount of compression on the tissue-
containing part of the image.

Although there is no consensus regarding acceptability
of image compression levels, JPEG is thought to allow a
compression rate between 10:1 and 20:1, and between 30:1
and 50:1 for JPEG 2000, without the loss of diagnostic in-
formation [77], [84]. Therefore, lossy compression is not an
issue because few visible compression artifacts will appear
making the interpretation difficult. However, many studies
have used deep learning to analyze WSIs. Compression
can be a problem with such methods. In [85], Zanjani et
al. studied the impact of JPEG 2000 compression on a
CNN for detecting tumor metastases in H&E-stained tissue
sections. Their experiments showed that the CNN model
is robust against a compression rate of up to 24:1 when
trained on uncompressed images. In addition, they showed
that when the CNN was trained on compressed images, the
performance is not much impacted even at high compression
rates. Chen et al. [86] also investigated the effect of com-
pression on the performance of deep learning approaches
for segmentation and detection tasks in WSIs. Their find-
ings are similar: the images can be compressed by 85%
while still maintaining the performance of the algorithms
at 95% of what is achievable without any compression. In
particular, they observed that the minimum acceptable QF
for diagnosis by a pathologist corresponded to a decrease
in the performance of the deep learning algorithms. These
results are in line with the findings of Dodge er al. [87] for
natural images. They studied the robustness of four state-
of-the-art CNNs against five distortions. The CNNs were
highly resilient to compression and it was only at very low
QF that their performance began to decrease (less than 10
for JPEG and less than 30 for JPEG2000).

From these works, we can conclude that the usual lossy
compression employed by whole slide scanners does not
have a strong impact on the image quality and its use in
machine learning tasks, even at high compression rates.
Therefore, fixing the compression rates at established values
ensures the visual quality of WSIs [84].
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Figure 5: Images with compression artifacts. Each line presents an original uncompressed image, its compressed version in
JPEG with loss (compression rate of 5:1), and zoomed and cropped parts from the uncompressed and compressed images.

Block effects can be seen in compressed images.

C. COLOR

Assessing and enhancing the color quality of WSIs is proba-
bly what has been mostly addressed in the pre-processing of
WSIs. Several steps can have a significant influence on color
quality in the preparation of digital slides [88]. First, the
slides are stained with chemical dyes to highlight the cellular
structures and enable their interpretation. If standardized
staining protocols [89], [90] can help to reduce variations
in staining results, many factors can affect the stain color in
practice: the use of different staining equipment, dye brands,
and staining protocols. Second, the slides are digitized
using WSI scanners that can provide very different results
depending on their electronic components and internal color
calibration (if any). Consequently, it is inevitable for WSIs
to have variations in their color appearance among different
institutions, because they use different staining protocols
and scanners (see Figure 6). The computational pathology
community has embraced this problem and has tried to
address it through different means: color calibration or
color normalization. We provide a review of the most
representative works in this section.

1) Color calibration

Color calibration is an established routine in the print
and photography industries (to quote a few) that has been
adopted by most digital systems with the use of ICC
(International Color Consortium) color profiles. The cal-
ibration process consists in comparing the known colors
of a set of color patches with their digitization from a
digital device. The difference between the two can then
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Figure 6: Images with staining from different institutes and
scanners (top: H&E histological images, bottom: Papanico-
laou cytological images).

be used to define a color correction embedded in the ICC
color profile. The US Food and Drug Administration has
released recent guidance [91] stating the need to develop a
method to control color reproduction throughout the digiti-
zation process in whole-slide imaging for primary diagnostic
use. They stated that color control is essential in digital
pathology and recommended the use of a target slide with
spectral characteristics similar to those of stained biological
components. The ICC Medical Imaging Working Group has
started pooling resources to develop a calibration system
for digital microscopes'>. Unfortunately, this is still not
standardized among WSI scanners’ vendors, and even if

Bhttps://ftinyurl.com/ysxz6vjv
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calibration slides have appeared recently'®!7, their use is
not widespread. A general review of this color calibration
problem in pathology can be found in [88].

To meet these requirements of color calibration, in [92]
Yagi et al. were the first to propose a target slide containing
nine filters with color patches selected for H&E-stained
slides. This has been further explored by Bautista et al. in
[93] that proposed a color correction procedure based on the
comparison between the spectral colors of the patches and
their scanned colors. Using this procedure, they have shown
that the color difference between two slides scanned from
different scanners is significantly reduced after correction.
In [94], Chen et al. eliminated the need for a color cali-
bration slide by measuring the spectral transmittance of a
reference biological tissue sample. However, this is difficult
to use in practice. In [95], Shrestha et al. proposed an
alternative to using a specific color calibration slide. They
considered a standard IT8-target transmissive film on a slide
and proposed a matrix-based calibration method compliant
with the ICC standards, without the use of external color
measurement devices such as colorimeters. They showed
that with this method there is no visible difference between
calibrated slides scanned by different scanners in terms of
CIE-Delta2000 JND (Just Noticeable Difference). In [96], a
color calibration slide was used to calibrate a WSI scanner
for cytology. They showed that this reduces the color
variation to less than 2-JND and maintains color fidelity.
Therefore, color calibration minimizes system-to-system
variability, producing repeatable color output regardless of
system age or optical component variation.

At this time, even if color calibration should be a require-
ment of any whole slide scanner, this is still not the case.
A recent work by Ogura et al. [10] has shown that this
can be a strong problem as several digitization of the same
slide with the same scanner and the same parameters provide
slightly non-identical images. Although the fact that color
calibration from reference targets (such as MacBeth or IT8)
are established methods in displays, print, and photography,
the lack of such an established reference target slide is still
a barrier to color calibration in digital pathology.

2) Color normalization

Color normalization is the transformation process from one
image to another which affects the colors. There are various
algorithms for color normalization, most of which were
presented in [97], [98]. Color normalization methods can
be categorized into three categories from the most ancient
to the most recent: global normalization, stain separation,
and generative model-based approaches. All the methods
are summarized in Table 4 including the pathology domain,
the type of staining under consideration, and the category
of the method for color normalization.

1ohttps://tinyurl.com/55xnd2as
Thttps://ffei.ai
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Global color normalization methods apply either his-
togram matching or color transfer. In histogram matching, a
normalized histogram is computed, its probability distribu-
tion function (PDF) is estimated and the PDF of the image
is matched to a reference image [99]. Because histogram
matching on entire images ignores local differences in image
content, colors associated with one stain may be matched
to irrelevant colors. In color transfer, a statistical analysis
is used to impose the characteristics of a reference image
on other images. In [100], Reinhard et al. matched the
mean and standard deviations of reference and query images
in Lab color space. Because images stained by multiple
chemical dyes may have different color distributions, colors
associated with different biological components may blend
after color transfer. To address this problem, before the color
transfer, an image can be divided into different regions.
Magee et al. [101], applied a Gaussian mixture probabilistic
model for automatic segmentation at the pixel level in three
classes: Hematoxylin (H), Eosin (E), and background (B)
which was followed by color transfer on the corresponding
classes from the reference to the query image. Nevertheless,
color transfer methods cannot ensure that the structural
features of biological components are preserved.

Stain separation methods aim at estimating the main
stain vectors of an image that can be used for stain intensity
correction and stain replacement. Generally, these methods
compute stain vectors using Singular Value Decomposition
(SVD) or Non-negative Matrix Factorization (NMF), as
the stain concentration cannot be negative. Both involve
factorization of the optical density (OD) space matrix.
In [102], Ruifrok et al. proposed that each pixel color
can be represented as a linear combination of different
stains using a stain matrix. They proposed a method called
color deconvolution, that decomposes the optical densities
of stain mixtures into stain-specific channel information.
The method is supervised as the OD values of the pure
stains must be provided in the form of a stain matrix that
describes how color is affected by stain concentration. In
[103], Macenko et al. proposed an algorithm using plane
fitting with SVD to determine the stain matrix from the
stain vectors of an image. Prior knowledge of the stains
can also be used in the plane fitting process as proposed
in [104]. In [105], [106]'°, CNNs were used to estimate
stain vectors faster. Gupta et al. [107]?° performed the color
normalization in three steps: illumination correction, stain
color vector correction from an alignment and a rotation of
their SVD estimation, and stain quantity correction. Khan et
al. [108] learned an image-specific stain color matrix from a
color-based classifier using a stain color descriptor. A non-
linear mapping of the channel statistics obtained after color
deconvolution enables the reconstruction of a normalized
image. Kather ef al. [109]*' proposed an optimized variant

https://github.com/Zhengyushan/ssc
20https://github.com/shivgahlout/ GCTI-SN
2l https://zenodo.org/record/35083
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Type of staining

Category of method

m

Reference | Histology | Cytology IHC DAB
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Table 4: Computational methods for color normalization of WSIs. The StainLib software [125

methods of [100], [103], [111].

of [102] for immunostained images.

To avoid the supervision required to define the stain
matrix in previous methods, unsupervised methods have
been developed. In [110] Li er al. proposed the use of
illuminant and spectral estimation from a reference image.
For each query image, the image illuminant is estimated
and an NMF-based stain spectral estimation is performed
with an initialization using saturation-weighted statistics
to enable a better convergence. In [111] Vahadane et al.
performed stain separation to estimate the stain matrix by
an NMF that incorporates a sparseness constraint followed
by a structure-preserving color normalization. Lei et al.
[112] proposed an improvement to this method by using
CNN s to estimate the stain matrix instead of a sparse NMF.
These methods do not require prior information and preserve
the structure of the original image. However, they do not
preserve all the color information of the source images.
Bejnordi et al. [113] used color and spatial information to
classify the image pixels into different stain components.
The chromatic and density distributions for each of the stain
components in the hue-saturation-density color model were
then aligned to match the corresponding distributions of a
reference.

Generative model-based methods have recently attracted
considerable attention. They use adversarial learning of
deep neural networks to perform a style transfer to a
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] '® contains the popular

WSIL In addition to being more adaptive than the global
color normalization and stain separation approaches, they
suppress the need of selecting reference images to define
the stain parameters. Indeed, generative adversarial network
(GAN) [126] based methods consider the overall dataset of
the target style as the template and approach the problem of
color normalization as an image-to-image translation. GAN-
based color normalization approaches can be divided into
supervised and unsupervised methods. Supervised methods
require paired images of different staining protocols and
use L1 and adversarial losses to optimize the generative
networks. For instance, in [114]?%, Salehi et al. proposed
the use of conditional GANs where the generator is trained
to generate restained images conditioned by input gray-scale
images. However, paired images of different styles require
multiple staining which is difficult to perform in practice. In
contrast, unsupervised methods do not require paired images
and are much more appealing. Cho et al. [115]* proposed a
stain-style transfer GAN composed of two transformations:
gray-level normalization to have a laboratory-independent
image, followed by a colorization that fits the stain-style
of a chosen laboratory. The latter used a specific loss that
combines reconstruction loss, conditional GAN loss, and

22https://github.com/pegahsalehi/Stain-to- Stain- Translation
Zhttps://github.com/hanwen0529/DSCSI-GAN
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feature-preserving loss to ensure the preservation of the
extracted features (essential for subsequent analysis of the
normalized image). In [116]**, Shaban et al. proposed a
method called StainGAN that uses Cycle-Consistent Adver-
sarial Networks (CycleGAN) for one-to-one domain stain
transfers. Cycle consistency allows the images to be mapped
to different color models but preserves the structures of
biological components. This method was also used by Runz
et al. [127]. In [122], Lee et al. proposed an extension
of [115], [116] that uses UNet as the generator for bet-
ter structure preservation, and a Markovian discriminator
with local receptive fields. To improve the quality of the
generated image, they also introduce a color classifier that
provides feedback to the generator on the normalized color
content. Comparisons were led for classification tasks on
H&E breast cancer WSIs and the classification performance
was better than the compared methods, i.e., [100], [103],
[111], [L15], [116]. In [117]%, Kang et al. proposed a
faster alternative to StainGan using a 1x 1 convolution.
In [118]%, Liang et al. proposed a method %’ that uses a
different reconstruction loss (based on the use of a structural
similarity index matrix and directional statistics-based color
similarity index) to better preserve the texture, structure, and
color of the biological components. In [119]?® Shrivastava et
al. proposed a self-attentive adversarial stain normalization
approach for normalizing of multiple stain appearances to
a common domain. This enables many-to-one domain stain
transfer and the feature preserving loss of [116] is replaced
by a structural cycle consistency loss. Chen er al. [120]
proposed to normalize an input image by style removal
and reconstruction, as in [115]. Style removal generates
a grayscale image using a color-encoding mask. For style
reconstruction, the loss contains an intra-domain adversarial
loss, an L1 penalty, and an inter-domain adversarial loss.
Ren et al. [121] considered a Siamese network as the
generator to regularize the normalization. In [123], Nazki
et al. have proposed an unsupervised adversarial network to
normalize histological WSIs while preserving the structural
features of the tissue. To that aim, a single generator is
trained to normalize images. The preservation of the fine
salient anatomical structures is performed using an auxiliary
feature extraction network and a perceptual loss to minimize
the perceptual distance between the normalized and the orig-
inal images. Experiments were led for color normalization
between different WSI scanners. Recently, some authors
have proposed performing color normalization with self-
supervised techniques. In [124], Zhao et al. first perform
stain separation to estimate H and E dyes from H&E stained
WSIs. Then, a UNet-based network learns how to re-stain
the grayscale images in a self-supervised manner using a
combination of adversarial, color, and staining losses. Their

Z*https://github.com/xtarx/StainGAN
Zhttps://github.com/khtao/StainNet
26https://github.com/hanwen0529/DSCSI-GAN
2Thttps://github.com/hanwen0529/DSCSI-GAN

28 https://github.com/4m4n5/saasn-stain-normalization

approach outperforms the methods [100], [103], [111], [116]
in terms of image quality assessment measures (SSIM,
PSNR, etc.), and of performance for segmentation and
classification of H&E stained breast cancer WSIs.

3) Influence of color

We reviewed approaches for color calibration and normal-
ization, but how important are these two steps in a computer-
aided diagnosis? Some recent studies have attempted to
answer that question by studying the influence of color
normalization on decision systems. In [128], Leo et al.
considered H&E stained histological prostate WSIs. They
have shown that textural and structural features can become
very unstable when scanned on different scanners. In [129],
Jia et al. have also studied the influence of color on H&E
stained WSIs by comparing the color spectrums with an
MDS embedding, which enables to easily identify low
staining quality and abnormal staining conditions. However,
no solution is proposed on how to use this information for
quality control of the staining. Liu et al. [130] evaluated the
degree of color similarity between two images based on the
volume of their color gamut. They compared the normalized
images obtained using the methods of [100], [103], [111]
with a reference obtained by a hyperspectral imaging mi-
croscopy system. They observed that the methods in [103],
[111] reduced significantly the color gamut and that the one
in [100] better preserved the color gamut but was unable to
fully preserve the color information. In [131], Ziaei et al.
proposed an evaluation of the color normalization methods’
ability to normalize images obtained from one scanner to
match the color rendering from another scanner. The com-
parison was based on the CIE Delta E color difference. They
compared the methods in [100], [103], [111], [116]. Their
experimental results showed that color normalization was
effectively able to reduce color variation and that StainGAN
[116] performed significantly better than the other global
and stain separation approaches. However, these two works
studied only the color variation of the color normalization
methods and not their influence on the subsequent machine
learning process. In [132], Aubreville et al. showed that the
influence of the color domain shift introduced by different
scanners strongly affects the performance of CNN-based mi-
tosis detection on histological H&E slides. In [133], Nisar et
al. have also shown that it is possible to detect and estimate
the staining shift in digital histopathology. To that aim, they
considered a domain shift metric measuring the differences
between two domains’ distributions using features extracted
from pre-trained neural networks. As attended, this shift can
impact the generalization performance. This advocates the
use of color normalization. Pontalba et al. [134] evaluated
the necessity and impact of color normalization for CNN
nuclei segmentation methods on histological H&E slides.
They considered the color normalization methods of [100],
[103], [108], [116]. As in [131], they observed that color
variations are less important with StainGAN [116]. For
nuclei segmentation, the segmentation performance varied
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significantly depending on the applied color normalization
method. Only the approach in [108] preserved the segmen-
tation performance with respect to those with un-normalized
images. In [135], Swiderska-Chadaj et al. noticed that
for prostate cancer classification, StainGAN normalization
can improve CNN robustness as compared to classical
color normalization. In [136], Bianconi et al. evaluated
the effect of color normalization methods [100], [103],
[108] on automated classification methods (based on either
classical machine learning or deep learning techniques) of
histological H&E slides of different types of cancers. Their
results showed that in most cases color pre-processing did
not improve the classification accuracy and could even
result in a noticeable reduction in accuracy. Similar findings
were reported by Gadermayr et al. [137]. They studied the
combination of several color normalization methods [100],
[103] with feature extraction methods (Fisher vectors, LBP,
color histograms, and a VGG CNN) for the classification of
patches in the glomerulus and non-glomerulus tissue with
slides stained by alpha-smooth muscle actin or periodic
acid Schiff staining. They observed that the use of color
normalization always causes a loss in accuracy. Tellez et al.
[138] studied the effect of color normalization [103], [113],
[116] on the performance of several different CNN classifi-
cation tasks on histological H&E slides. They also observed
that color normalization was not necessary to achieve better
performance. Hameed et al. [139] have considered six inter-
mediate layers of the pre-trained Xception model to extract
features for the classification of histological H&E breast
cancer images. None of the normalization methods they
considered [100], [102], [103], [111] was able to outperform
the results of the original un-normalized dataset. However,
with GAN-based approaches, the classification results of the
unnormalized and normalized images can be very similar. In
[140], Ciompi et al. investigate the influence of color nor-
malization methods [103], [113] on tissue classification of
colorectal cancer tissue samples in H&E-stained images. In
contrast to the previously mentioned studies, they reported a
significant gain in performance with the color normalization
of [113]. Finally, in [141], the influence of several color
normalization algorithms [100], [103], [106], [108], [111],
[113] has been studied for the classification of three different
histological cancer H&E WSIs (ovarian, breast, and pleural)
using a ResNetl8 network. Their finding is that color
normalization does not improve performance when WSIs are
from the same center. However, when normalized datasets
from several centers are used for learning, an increase of
classification performance can be obtained.

In conclusion, color normalization is important for ob-
taining images of similar colors for analysis by pathologists.
Howeyver, it is still not demonstrated that color normalization
can enhance the performance results of a computer-aided
system, even if the recent GAN-based approaches for color
normalization appear very promising [142], [143] for learn-
ing stain invariant features to improve the generalization of
CNNEs.
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Figure 7: Different types of blur (global, regional, local)
that can be encountered in histology (first row) or cytology
(second row).

D. OUT-OF-FOCUS

Despite a controlled environment and an autofocus process,
scanners can produce blurred WSIs, either globally, region-
ally, or locally (see Figure 7). This is mostly caused by
a poor focusing on the objects of interest [8], known as
the out-of-focus (OOF) effect. During acquisition, several
problems may appear and contribute to this effect, such as
thermal variations, internal or external vibrations, errors in
the focus determination at a focus point, or in the generation
of the WSI focus map (interpolation from the focus points).
Some of these errors are caused by preparation issues, such
as tissue folds, bubbles, dirt, or the distribution of objects
along the z-axis in liquid-based preparations. Specific tissue
types, such as fat, may also affect slide sections.

The objective of automated focus quality assessment
(FQA) is to: i) determine whether a slide must be rescanned,
either locally, regionally, or globally, and ii) provide an FQA
map for visual inspection and possible weighting of further
processing steps (a kind of confidence map). To perform
this, FQA methods locally estimate a focus class (or score)
at the patch or tile level, with high magnification levels
(usually 20x or 40x). The local scores are directly used to
define the pixel values of an FQA map, usually in the form
of a heatmap (as shown in Figure 8). Eventually, regional
or global focus scores can be deduced from the local ones.
Some works have also proposed to directly modify the
acquisition process to perform learned auto-focusing in WSI
scanners, either for histological [159] or cytological [160]
samples. All the FQA methods are summarized in Table 5
including the pathology domain, the type of staining, the

Figure 8: Focus Heat Map (from [148]) with a color range
from blue to red corresponding to low to high focus quality.
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Pathology domain | Type of staining Data used for training and Testing @
Reference |Histology | Cytology | H&E |IHC |Other| Magnif. #* Data #Focus Type Other | Other
Nx scanners | MAN | STK | SYN/| Classes | IP |[HFC | LFC | Stain | Scan.

(1441, 1451 v v 1.25x —20% v 2 |V v

[146] v V4 20%, 40 | 2 [V v
(1471, (1481 v v v 40x v 2 v

[149] v v 20 v 2 v

[150] v v 20%, 40x Va4 2 v

[151] v v 20 v 2 v

[152] v V4 20% v 2 v v

[153] v v v v V| 6 v

[154] v v 20 v 2 v v

[155] v VN 40% v 2 v v

[156] v Va4 40 v vV | 30 v v

[157] v v v 40 v 12 VI v/

[158] v v v 40% v 12 v

Table 5: Computational methods for the detection of out-of-focus areas in WSIs.

data used, the number of focus classes, the category of the
method for OOF estimation (IP: Image Processing, HFC:
Handcrafted Feature Classification, LFC: Learned Feature
Classification), and possible transfer test with other stains
Or scanners.

The FQA methods used either during or after digitization
are essentially similar. They are inspired by auto-focusing
techniques and both determine a local quality score. How-
ever, images after digitization usually contain some degrada-
tion due to post-processing, e.g.,, JPEG compression. This
section focuses on FQA methods at the patch or the tile
level once the WSI has been acquired.

1) Image Processing methods

The firstly proposed OOF estimation works used classical
image processing tools. In [161], Walkowski et al. con-
sidered Haralick contrasts and entropies. In [144], [145],
Ameisen et al. considered maximum local variations on the
brightness. In [162], Zerbe et al. considered the Tenenbaum
gradient. Once these locally computed features are ob-
tained, thresholds are used for binary blur scoring. In [146],
Jimenez et al. conducted an individual analysis of such
features. They suggested predicting a patch as OOF if two of
the four features predict it as OOF with a manually adjusted
threshold for each feature. Obviously it is very difficult
to establish manual thresholds that will perform accurately
in all focus configurations. As a consequence, works have
rapidly shifted towards learned predictions to better adapt
to image focus variations. However, this requires annotated
datasets.

2) OOF datasets

To be able to learn to detect OOF areas, FQA research
works have considered annotated datasets. The latter can
be obtained by different techniques (resulting in different
dataset types). The most commonly employed techniques to
label the focus quality of patches in WSIs are:
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« Fully manual annotation (MAN): patches are extracted
from the WSI and labeled by human experts.

o Automatic z-stacks (STK): patches extracted from real
z-stacks with an offset value from the in-focus plane,
or an absolute z-level from this location.

o Semi-synthetic z-stacks (SYN) simulate the previous
one by applying several degrees of synthetic blur to
the in-focus patches.

The labels associated to the patches are usually binary (in-
focus or out-of-focus) but in some works [153], [156], [157]
several levels of focus have been considered. FQA methods
designed on subjectively labeled data (MAN) should provide
a response closer to manual FQA according to the assessor
cohort, which is usually able to distinguish a maximum of
six OOF grades. Because the creation of MAN datasets
is tedious, thus limiting their size, they are mainly used
to evaluate the performances of FQA methods optimized
with objectively labeled data (STK and SYN). The latter
data, related to auto-focusing and z-stacking, are easier to
create and overcome the limitations of the former (size and
dependence on assessors). Note that STK and SYN are
not completely objective (manually calibrated and checked),
and SYN is an augmentation technique. While Gaussian
blur is commonly used, Bokeh blur (2D Heaviside step
function) is known to be closer to the perception of real OOF
occurring in photography and microscopy. As observed in
[156], the human perception of blur follows an exponential
relationship with the OOF level rather than a linear one. In
particular, Gaussian blur tends to underestimate strong OOF
which is less the case for the Bokeh blur model.

Even if labeled datasets are mandatory to design a learned
FQA method, still few datasets are available. FocusPath®
[147], and its extended version®, contain 864 (resp. 8640)
1024 x 1024 pathological images with 16 absolute z-levels
as scores (STK), and acquired with Huron TissueScope

2https://sites.google.com/view/focuspathuoft/
30https://zenodo.org/record/3926181
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LE1.2 at 40x. TGCA@Focus®' [157], selected from the
Cancer Genome Atlas [163], contains 14371 manually
annotated patches (MAN, 2 classes) from 52 organ types.
Both of them are restricted to histology.

3) Handcrafted feature classification

In [150], Gao et al. proposed the first work on learned WSI
FQA from handcrafted features. They used 44 standard mea-
sures of image quality as features (neighborhood contrasts,
derivative-based, local intensity statistics, wavelet-based),
which have already been identified as good candidates for
characterizing the OOF effect in the context of microscopy
and auto-focusing [164], [165]. Then, an AdaBoot-based
binary classifier is used to estimate if a patch is in or out of
focus. They considered MAN and STK datasets [150], both
at 20x and 40X, and trained their binary AdaBoost classifier
based on 44 features for the four datasets independently. For
the MAN dataset, the classification accuracy was higher at
20x with a large improvement (approximately 5%). For the
STK datasets, it was higher at 40x with a slight improve-
ment (< 1%). Globally, STK achieved better performances
than MAN (> 92.7 and just above 91% respectively.). The
individual behavior of these handcrafted features was further
analyzed by Moles Lopez et al. [152]. They observed that
the discriminatory ability of these features varies from one
biological structure to another for the same stain (most
importantly for IHC), and from one stain to another. To cope
with this, they considered several binary classifiers based
on height discriminatory features and decision trees (DT),
trained either on a stain-specialized dataset (H&E or IHC) or
on a mixed version, with objective scores (MAN). All three
learned models achieved an accuracy of at least 96%. To test
the transfer ability of these three learned models, they tested
them on an independent MAN dataset, and the performances
dropped by up to 89%, particularly for classifiers that rely on
IHC. As classification accuracy was reduced for the mixed
version in any case, mainly owing to the presence of IHC
patches, they retained the stain-specialized versions with a
reduced number of four features (Haralick features, mean
gradient magnitude, Tenenbaum gradient, and noise used
in [149]) and decision tree depths (approximately seven).
In the context of liquid-based cervical cytology, Lahrmanb
et al. proposed a binary classifier for patches containing
cells automatically selected using Otsu segmentation and
HSV analysis [151]. The classification is based on a SVM
and five handcrafted features expressing the mean quantity
of edges and local variations, and the differences between
sharpened, smoothed, and blurred versions of the patches.
High accuracy and sensitivity (> 98%) were obtained for
the MAN dataset. Inspired by previous studies, Campanella
et al. [153] considered a Random Forest (RF) model with
13 features to predict a blur class (among six). Based
on a feature selection on a Gaussian-SYN dataset, a RF

31https://zenodo.org/record/3910757
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regression model composed of 19 trees and 10 features was
retained.

More recently, Hosseini ef al. designed several sharpness
measures (HSV-MaxPol [147] and FQPath [148]) based on
a symmetric FIR kernel that mimics the ability of the human
visual system to boost high-frequency domain magnitudes
in a balanced manner. It is defined as a superposition of
multiple even-order derivative kernels, either fixed (HSV-
MaxPol) or to fit the inverse PSF of the scanner optic
(using the Born & Wolf model) up to a threshold frequency
(FQPath). By using the FocusPath dataset (STK) to tune
the parameters, good correlations with the FocusPath scores
were obtained by HSV-MaxPol and FQPath compared to
several state-of-the-art measures, close to the behavior of
Maximum Local Variations (MLV) [166], for a reduced
computation time. Similar results were obtained for the
binary classification [157] (ROC~0.94, PR~0.97). How-
ever, when using a different dataset (MAN) to test the
transfer ability (other scanners and stain-tissue types), the
performances were considerably reduced and were different
for HSV-MaxPol, FQPath, and MLV (0.56 <PR< 0.67).
This confirms the observations made in previous studies on
the transfer ability of handcrafted features.

4) Learned feature classification
During the past five years, several data-driven methods
based on CNNs have been proposed for FQA of digital mi-
croscopy images [167] and WSI to improve transfer ability.
They can be divided into three main categories: i) standard
architectures eventually adapted with minor adjustments, ii)
truncated at a lower level, and iii) architectures developed
specifically for WSI FQA. Standard architectures, which are
usually pre-trained with natural images are all re-trained for
WSI FQA. Campanella et al. provided the first example
with ResNet-18 [153], but restricted to grey-level patches for
comparison to RF. In Contrast, the CNN models considered
in all the other studies take RGB color patches as input data.
Senaras et al. proposed DeepFocus** [155], a binary
classifier based on five convolutions and three max-pooling
layers to extract the features, and two fully-connected layers
followed by a Softmax and manual threshold to determine
the OOF class. Trained by using an STK dataset and
categorical cross entropy as a loss function, DeepFocus
showed high classification accuracy (93.2%) for an inde-
pendent dataset (from the same scanner and stains, H&E
and THC), and confirmed that H&E-stained tiles are much
easier to classify than THC ones (< 90% for 2 slides among
3). Kohlberger et al. proposed ConvFocus [156], which is
a similar network that distinguishes 30 OOF levels. The
network is a truncated Inception V3 architecture composed
of six layers to extract the features (three conv. + max
pooling + average pooling + dropout), and a fully connected
layer followed by a SoftMax. ConvFocus was trained using
cross entropy with two Bokeh-SYN datasets, coming from

32 https://github.com/cialab/deepfocus
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two different scanners, and augmented by various trans-
formations (orientation, brightness, contrast hue, saturation,
translational jitter, Poisson noise, and JPEG compression). It
was tested using two MAN datasets (similar scanners, same
stains, six grades). The predictions were highly correlated
with the expert scores, mainly for one scanner (SRCC
approximately 0.8 and 0.93 resp.).

Wang et al. proposed FocusLiteNN®* [157], a shallow
CNN that provides a sharpness score from a single con-
volution layer (with £ filters for each color channel) and
non-linear pooling as an activation function (linear combi-
nation of the extremum feature values). FocusLiteNN was
compared to the knowledge-based methods discussed in
[148], including FQPath, HSV-MaxPol [147], [148], and
MLV [166], as well as five standard CNN architectures
similar to those considered in previous works (DenseNet-
13, EONSS, and different configurations of ResNet). All
CNNs were trained on FocusPath using their initial loss
function (PLCC for FocusLiteNN). Performances on Fo-
cusPath and a TGCA@Focus datasets were always higher
for CNN-based models (ResNet-10 performed best), with
interesting transfer ability (0.97 <PR< 0.99 for FocusPath
and 0.9 <PR< 0.87 for the TGCA @Focus dataset). Differ-
ences between shallow and deeper CNN architectures were
only slight, while shallow CNN improved computation time
by a large margin. Albuquerque et al. [158] performed a
comparison using FocusPath to train seven other standard
CNN architectures (MobileNet_V2, AlexNet, GoogleNet,
ResNet18, VGG16, truncated ShuffleNet, and SqueezeNet)
for a classification task (12 OOF levels). Contrary to
Wang et al. [157], data augmentation (shifting, zooming,
flipping, and rotation) was applied. As most previously
tested models were trained according to a non-ordinal
loss function (typically cross-entropy), Albuquerque et al.
[158] also considered five different ordinal loss functions
(ordinal encoding, binomial unimodal, regularized cross-
entropies, ordinal entropy). The performances for Focus-
Path, w.r.t. classification accuracy, MAE, and Kendall’s
7 measure showed that cross-entropy was the second-best
option. MobileNet_V2 with ordinal encoding was the best
performer and improved the correlation (SRCC, PLCC) with
the FocusPath scores previously obtained by Wang er al.
[157] for all CNNs with a reasonable computation time
compared with FocusLiteNN.

5) Discussion

To conclude this tour of WSI FQA, best performances
can be obtained by CNN-based methods trained on semi-
synthetic or stack datasets. However, most methods are
dedicated to specific stains and scanners. The results on
transfer ability are encouraging for subjectively assessed
data containing other stain-tissue types and acquired by
different scanners, even for very shallow networks [157].
While shallow networks seem to provide a more appealing

3https://github.com/icbcbicc/FocusLiteNN
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ratio between computation time and classification accuracy
than handcrafted feature-based methods, their behavior for
specific stain-tissue types (e.g., IHC) and cytology images
has been rarely studied. The datasets used for learning or
evaluation are generally free of artifacts owing to slide
preparation or manipulation. Therefore, even if the quality
of the images produced by autofocus and FQA during digiti-
zation is becoming higher and higher, FQA after digitization
is still necessary. Another important issue concerns the
decision at the slide level from OOF estimation at the patch
level for automatic rescan decisions, which has only been
addressed in a few studies, for example [144], [151], as
described in the following section.

V. QUALITY DRIVEN BY DIAGNOSIS

With the advent of computational pathology, computer-
aided (CAD) systems are now able to assist pathologists
in establishing their daily diagnosis, for example for tumor
detection or cancer grading. However, if these systems can
reach the performance of pathologists for some diagnostic
tasks, very few can be considered as being directly clinically
applicable in clinical practice [168], [169]. Indeed, when
such algorithms, which were developed and validated in
pure research settings, are applied in routine diagnostics,
they face many variations that can have occurred at each
step of the digital slide preparation. As we have seen in
the previous sections, both the quality of slide preparation
and digitization can introduce severe artifacts. If the latter
can be annoying for a visual examination by a pathologist,
they will represent a potential failure case for computer-
aided systems, as they will have never learned to recognize
these before. For example, Wright et al. [170] showed that
the quality issues of digital slides can have a strong im-
pact on the performance of classification algorithms. Some
recommendations have recently been released to facilitate
the implementation of computational pathology workflows
in pathology laboratories [171]. Standardizing the sample
preparation in laboratories is of course a solution to such
issues. The CAP NSH WSI Quality Improvement Program*
is an initiative toward this purpose. Labs can have the quality
of their histological H&E WSIs estimated and feedback
is provided to help the lab in preventing the appearance
of preparation or digitization artifacts. However, standard-
ization will not eliminate the appearance of artifacts, and
computational pathology methods must be able to address
them. As we have seen in the previous section, methods
have been developed to handle these problems of slides’
preparation artifacts, staining variations, and out-of-focus
areas. These can be considered as the first steps toward
quality control of WSIs. They should be integrated within
any CAD pipeline in digital pathology to establish if a slide
is of sufficient quality to be analyzed, and if not, what
countermeasures have to be taken. However, how can we
establish such a quality of a WSI towards its analysis? In

3https://www.nsh.org/learn/histogip
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this paper, we consider that a slide is analyzable, and can
lead to a trusted CAD diagnostic, if:

o The sample is sufficiently representative according to
the analysis requirements (sufficient tissue in histology,
enough cells in cytology). For instance, in cytology,
the Bethesda System for Reporting Cervical Cytology
(TBS) imposes a minimum of 5000 analyzed cells to
obtain a sample of sufficient quality. In histology, the
Elston-Ellis breast cancer grading requires the number
of mitotic figures per 10 consecutive high-power fields.

« No element of the sample is obfuscated, potentially
leading to doubt in the diagnostic. In cytology, the TBS
imposes that less than 50% of the cells can be obscured.

o If part of the sample is obfuscated but an abnormality
is detected in a clear area, then the slide can lead to a
diagnosis if no other clues are needed.

Indeed, even if a slide contains preparation artifacts such
as air bubbles, or digitization artifacts such as out-of-focus
areas, if the slide contains enough information of good
visual quality to establish a diagnosis, the slide can be
considered as "analyzable". The methods we reviewed for
the detection of artifacts, the estimation of out-of-focus
areas, and staining problems provide the results of their
analysis in two main forms: i) a heatmap that assigns a
quality score to patches of the WSI. Figure 8 presents
a heatmap for the estimation of out-of-focus areas. ii) a
semantic segmentation map that assigns a label to each pixel
(or patch) of the WSI as predefined semantic labels. Figure 9
presents such a semantic segmentation map for the labeling
of artifacts and non-artifact areas.

ssuotods [k [ovst [vorsor [Ax bubbies

Original tissue Prediction

Figure 9: Artifact semantic segmentation map [56] (from
https://www.computationalpathologygroup.eu/projects/
artifact_detection/)

Both outputs can be used as inputs to computational
pathology methods that can integrate this information into
their analysis (e.g., by not analyzing identified artifacts).
However very few methods have been designed to assess
the analyzability level of a whole slide: is it suitable for
CAD analysis or should it be re-prepared, re-stained, or re-
scanned? These methods are reviewed in the sequel (Table
6 provides a summary).

In [151] Lahrmanb et al. proposed an approach for
scoring the focal quality of cytological slides. The slide was
divided into 16 low-resolution regions from which cells are
extracted with Otsu thresholding. A total of 200 cells were
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randomly chosen and cropped at high resolution for each
region. Each cell is described by sharpness image processing
features that are fed to an SVM, which classifies each cell
as in or out of focus. The percentage of in-focus cells in
each region is divided by the number of regions. If this
value is lower than a user-defined threshold, the slide has
to be re-scanned. Ameisen et al. [144], [145] proposed a
method to assess the focus quality of a WSI. Blank tiles
were excluded based on their color saturation values. The
remaining tiles were characterized using image processing
methods in terms of sharpness, contrast, brightness, and
color. A combination of in-house thresholds is applied to
these features to determine whether a tile is of sufficient
quality. Depending on the magnification in the tile pyramid,
the image is considered sharp if 90% of the tiles are sharp at
2x magnification (70% at 10x magnification). Their results
were consistent with those of pathologists for 100 WSIs
with various blurred areas. Their work has recently been
extended as a software 3° that was presented in [172].
A similar approach was proposed in [173], [174], but
without providing a slide-level quality decision. In [153],
Campanella et al. first performed background detection to
avoid blank tiles. A set of 10 sharpness measures were
extracted from the patches and fed to a random forest
classifier that assigns a blur score to each patch. This method
provides a blur heat map as output but also provides a blur
slide-level score as the percentage of the blurred surface
of the WSI. Zhang et al. [72] proposed using a CNN to
assess the quality of WSIs stained with Gram staining.
They considered a MobileNet CNN to estimate the staining
quality of the slide tiles. From the quality of the tiles, they
generate assessments (good/average/low) of the slide quality
from empirically selected thresholds in terms of staining,
density, and artifacts presence. In [66], [67], Shakhawat
et al. proposed the detection of artifacts (air bubbles and
tissue folds) at low resolution in histological WSIs using an
SVM trained from handcrafted features extracted on non-
blank tiles. The tiles were then classified into three groups
(good/average/poor) based on empirical thresholds. The final
slide-level quality was estimated as

#Good
2
#Tiles x0.25+

#Poor
#Tiles

#Average

_— 0.75
#Tiles x

x 0.50 +

where # means "number of". The slide can be proposed
to be re-scanned or not depending on the slide quality. In
[56], Smit et al. proposed a multi-class deep learning model
for the semantic segmentation of artifacts. The segmentation
output is used by a quality control module in the form
of a decision tree and proposes four possible actions: no
action (the slide is analyzable), re-prepare (re-cut or clean
up), and re-scan. In [73], Haghighat er al. proposed the
pathProfiler tool for quality control in a large retrospective
cohort of prostate WSIs. After extracting the tissue regions
to avoid blank tiles, a multi-task deep neural network

3Shttps://magiq.xyz/en/pathology/
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Type of criterion Type of decision
Reference Histology | Cytology | Artifacts | Staining | Focus | Analyzable | Re-prepare | Re-stain | Re-scan
[151] v v v
[144], [145] v v v v
[153] v v v v
[72] v v v v v
(661, [67] v v v Ve
[56] v v v v v v
[73], [74] v v v v v v v v

Table 6: Slide-level quality control methods.

performs a quality estimation at 5x magnification. With this
model, a tile is described by six inferred quality measures
assessing usability, no artifact presence, staining artifacts,
focus artifacts, tissue folding, and presence of other artifacts
(dirt, ink, air bubble, etc.). The tile-level statistics are then
aggregated and fed to a fully connected neural network to
predict quality at the slide-level. Three slide-level scores are
provided to predict the WSI usability, focus, and staining
qualities. They also used handcrafted features extracted
from HistoQC [4] (this tool does not provide a slide-level
analysis) and found that learned deep features perform much
better. This work is interesting as it is the only one that:
i) considers the usability of WSIs to assess if the slide
is appropriate for clinical diagnosis and ii) simultaneously
estimates artifact presence, staining problems, and out-of-
focus areas. This study is probably the closest to an ideal
quality control tool.

Now, if we compare the number of approaches in Table 6
with those presented for artifact detection, staining quality,
and focus quality, we can see that very few approaches
proposed a global slide-level quality analysis. Indeed, most
state-of-the-art approaches we have seen in the previous
sections do provide only a quality heat map or a semantic
segmentation map, and usually for only one quality criterion.

To conclude, the field of quality control of WSIs is just
in its infancy. The main issues are known and are related
to artifact detection, staining quality, and focus quality.
If some methods have been proposed separately for each
quality issue (as exposed in the previous sections), they all
have limitations in terms of accuracy and reproducibility
on other datasets from other digital pathology centers. In
addition, their output is at the moment limited to heat and
segmentation maps that can be overlaid on the WSIs but
not to evaluate the global slide quality. The two recent
approaches of [56], [73] provide good directions towards
what the community should converge to: a quality control
based on artificial intelligence able to recognize all the
quality problems and to decide what to do with the slide
from rejecting it, advising re-stain or re-scan, or considering
the slide as analyzable by a CAD system.

VI. LABELED DATA QUALITY AND QUANTITY: HOW TO
LEARN THE UNEXPECTED

In the previous sections, we reviewed the most recent state-
of-the-art approaches for WSI quality control in digital
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pathology and observed how they can be integrated within
a slide-level quality analysis for a computational pathology
process. Regardless of the QC to be performed (artifact
and out-of-focus detection or stain normalization), the most
recent and efficient state-of-the-art methods do rely on
deep learning approaches. Many recent reviews of the field
of deep learning in computational pathology have been
published, and we refer interested readers to these [22],
[26], [27], [30]-[32], [35], [36], [36], [47], [175]. If deep
learning approaches enable astonishing results that have
put forward the field of computational pathology, these
techniques require a large number of labeled examples to
guarantee good generalization. Generalization is a well-
known issue in machine learning. Generalization refers to
the ability of a learned algorithm to adapt properly to new
and previously unseen data (hopefully drawn from the same
distribution as that used to create the model). It has been
studied from a theoretical point of view with the help of
the VC Dimension [176]. The VC dimension is a measure
of the capacity (or complexity) of a set of functions, which
can be learned using a classification algorithm. Baum and
Haussler [177] proposed that if a generalization level of
90% is desired, the number of training samples should
be about 10 times the VC dimension [176]. It has been
recently proved [178] that the VC dimension of a multi-layer
perceptron of W weights and L layers is (W - L -log(W)).
For instance, a shallow MLP with an input vector of size 100
to be classified into 5 classes with L = 2 layers containing

L
SS(1 + Hy)Hiyy = 7855

weights (with H; denoting thle_%umber of neurons of a
layer) and it will theoretically require more than one million
examples to achieve a good generalization. Deep Neural
Networks (DNN) such as Convolutional Neural Networks
(CNN) are very different and their convergence properties
are still not well understood. Recently, in [179] Long and
Sedghi presented several theorems bounding the general-
ization error of a class of CNNs with a high probability by
0 \/W(B+L+loy(>\))+log(1/5)

each 50 neurons has W =

) , where W is the number of

weights, L is the number of layers (both convolutional and
fully-connected layers), 5 is the distance from initialization
in the operator norm, A is the margin, n is the number of
sample data, and the bound holds with a probability of at
least 1 — §. Thus, with very deep neural networks, it can
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be expected that attaining good generalization will require a
very huge number of examples if the number of weights and
the depth of the CNN are large. As this is usually the case
(with the popular ResNet 101, W is more than 44 million
with L = 101 layers), a key issue of applying DNNs in
computational pathology is therefore highly related to the
availability of a huge and well-labeled learning dataset.

The quantity and the quality of a learning dataset are also
something that has to be taken into account when designing
a computational pathology approach for CAD. Indeed, the
quality of the dataset used for learning can potentially
have a strong impact on the quality of the induced deep
learning algorithm. We already addressed this partly when
we reviewed the influence of color and focus of WSIs:
once a DL algorithm has been trained, it is built only to
work on data that are similar to those used to train it.
Therefore, if one wants an algorithm to be as versatile
as possible, it should have learned to recognize patterns
in many different situations. Therefore the evaluation of
machine learning algorithms for digital pathology can be
very delicate [180]. In [181], Wahab et al. have studied, for
the classification of different breast cells in H&E WSIs,
the quality of annotations in terms of completeness, ex-
haustiveness, diversity, and agreement. They concluded that
standardization of annotation protocols is necessary and
proposed a new one. Two direct consequences of annotation
quality are that: i) datasets have to be very carefully labeled
to have high-quality training corpus (to cope with the lack of
quality of labels), and ii) the DL algorithm can use specific
learning strategies to make them more robust to variations
(to cope with the lack in quantity of data). These two aspects
are considered in the sequel.

A. LACK IN QUALITY OF LABELS

In [182], Marée et al. summarized the potential data collec-
tion issues in digital pathology and proposed guidelines for
constructing realistic ground-truth datasets while controlling
their quality:
o Examples should come from different staining and
scanner equipments.
« Examples should be equally represented in each class.
« Biological variations of the examples should be covered
in each category of examples.
« Artifacts should be considered as additional categories
to avoid too many false positives.
« Annotations should be performed by several experts.

Unfortunately, very few datasets encompass all these re-
quirements (see in [32] for a list of available cancer his-
tology datasets). Recently, Hosseini et al. [183] proposed a
new digital pathology dataset called the "Atlas of Digital
Pathology". In particular, they demonstrated the quality of
their image labels through pathologist validation and by
training three state-of-the-art neural networks for tissue type
classification. This stresses that obtaining annotations of
large cohorts of representative WSIs is a very sensitive
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step. This is mainly because of the expertise required
to generate quality labels and the limited availability of
qualified experts. Therefore, pathologists require efficient
annotation tools (preferably open-source) that easily enable
them to label patterns in WSIs . Hopefully, such software
are available (see [184] for a complete review):

o Icy?® [185].

o QuPath’” [186].

« Cytomine’® [187].

o SlideRunner® [188].
 Quick Annotator*® [189]

Regardless of the chosen annotation tool, the quality of
the labeled dataset must be carefully monitored, because
labeling is usually performed by a single pathologist. This
can have a strong influence on the learned deep learning
generalization quality and introduce some bias as recent
studies have stressed [190]-[192], but this is a well-known
issue of any deep learning based computer vision approach
[193].

B. LACK IN THE QUANTITY OF DATA

When the objective of a method is to detect rare items in
WSIs (such as artifacts), the collection of annotated data
is all the more problematic. Indeed, because rare items are
by definition not often encountered, the constitution of a
representative dataset is almost impossible and this is partic-
ularly true for artifact detection in quality control. Therefore,
other strategies have been envisioned to address this lack
of data. In computer vision, when a dataset is strongly
imbalanced or its size is too limited to train a deep learning
algorithm, typical strategies exist to alleviate the scarcity of
annotated data [194]: data augmentation, transfer learning,
domain adaptation, and weakly-supervised learning. Data
augmentation [195] artificially generates synthetic data from
the initial dataset to enlarge it and improve the performance
of the model. Augmentation can be performed using many
different transformations, such as geometric transformations
or color shifts. Transfer Learning [196] works by training a
network on a large dataset such as ImageNet and then using
those weights as the initial weights in a new classification
task. Transfer learning works only if the data to be processed
are similar to have a valid transfer (e.g., natural images). Do-
main adaptation is a type of transfer learning method. A DL
algorithm learns from a source domain with a large labeled
dataset and aims at achieving comparable performance for
the same task on a target domain with few labeled data
[197]. Weakly supervised learning [198] consists in training
the models with labels less expensive to collect than image-
level annotations (e.g., grades at the slide-level). Such labels
are often easier to obtain with limited efforts, and also in

36http://icy.bioimageanalysis.org
3https://qupath.github.io

38https://cytomine.be
https://github.com/maubreville/SlideRunner
4Ohttps://github.com/choosehappy/Quick Annotator
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large quantities. All these strategies have been explored in
computational pathology, an excellent review of which can
be found in [30]. We quote only some representative recent
works for each strategy in the sequel to provide a rough
overview.

1) Data Augmentation

Data augmentation is a frequently used solution to introduce
a certain degree of invariance to a CNN and to tackle class
imbalance by artificially increasing the learning dataset.
In [138], Tellez et al. conducted a study on different
kinds of data augmentation (rotations, mirroring, scaling,
elastic deformation, Gaussian blur and noise, brightness and
contrast, Hue-Saturation-Value and Hematoxylin-Eosin-Dab
color shifts) and showed that this can lead to performance
gains. In particular, stain color augmentation is crucial for
achieving the best performance. In [199], Teramoto et al.
demonstrate a consequent gain in performance with data
augmentation for the classification of benign and malignant
cells in cytology with a VGG CNN. In [200], Annuscheit et
al. investigated data augmentation techniques (color-based,
geometric-based, filter-based transformations, and erasing)
on different datasets using multiple network architectures
(VGQG, Inception, DenseNet). They observed that geometric-
based techniques increase the model performance but color-
based augmentations have no significant effect. This re-
sult is not in concordance with those of [138], but their
approach has strong sensitivity towards data augmentation
hyperparameters. To address this problem, in [201] Faryna
et al. proposed to use automated and computationally ef-
ficient data augmentation, as classical data augmentation
requires extensive hyper-parameter tuning and can lead
to sub-optimal generalization performance. Based on the
RandAugment framework, they considered several domain-
specific modifications relevant to histopathological images
(based on these of [138]). They showed that this automated
data augmentation could outperform the approach of Tellez
et al. [138] where data augmentation was manually tuned.

2) Transfer Learning

Two strategies were considered in transfer learning. The
first strategy consists in using off-the-shelf features extracted
from a source pre-trained network that are fed to a specific
classifier for the target task. The second strategy consists in
using a source network with pre-trained weights and fine-
tuning the weights on the target domain. In [202], Sharma
et al. demonstrated the ability of the pre-trained Xception
model to perform breast cancer histopathological image
classification in contrast to handcrafted approaches. Li et
al. [203] showed that off-the-shelf features learned from
natural images can be reused in computational pathology,
but the amount of information that could be transferred
heavily depended on the complexity of pathology images.
Some papers have studied this transfer ability from general
models such as ImageNet in pathology. In [204], Sharma et
al. compared the performance of features extracted from net-
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works trained on ImageNet and histopathology data. They
demonstrated that specific encoders (ResNet) trained on
multiple histopathology datasets result in superior features
than their ImageNet trained counterparts and should be used
for weight initialization in histopathology tasks. Aitazaz et
al. have recently shown [205] that the vision transformer
works better on histopathology images than CNN models
pre-trained on ImageNet. In [206], Mormont et al. investi-
gated various deep learning transfer learning strategies on
histological and cytological datasets. They compared trans-
fer strategies for seven different network architectures. They
observed that fine-tuning always outperformed off-the-shelf
features from the last layer of the network, regardless of the
network. Similar conclusions were drawn by Jang ef al. in
[207] who studied transfer learning between different types
of cancers. In [208], Mormont et al. investigated multi-task
learning as a way of pre-training networks. They gathered
22 digital pathology datasets into a single dataset and used
multi-task training. The features extracted from their model
are superior to those of ImageNet. This shows that domain-
specific pre-training can be an interesting alternative to fine-
tuning. Another way is to try to consider the existence of
generalizable knowledge between different problems and to
use weight distillation [209] for cross-knowledge transfer.

3) Domain adaptation

When transfer learning is considered, the source and target
domains are assumed to follow similar distributions. Domain
adaptation deals with cases where a model trained on a
source distribution is used in the context of a different
(but related) target distribution. This problem has been
recently addressed by employing adversarial learning: a
discriminator is trained to distinguish source and target data
using features extracted from a deep neural network as
inputs, while the deep neural network is tuned to confuse
the discriminator. This helps to map the source and target
data close. In [210], BenTaieb er al. proposed the use
of GANs to learn dataset-specific staining properties to
transfer stains across datasets. Fine-tuning the obtained
stain transfer network with images from a new domain can
enable normalizing training images with respect to the new
domain distribution. Ren et al. [121], [211] proposed using
unsupervised domain adaptation to transfer discriminative
knowledge obtained from the source domain to the target
domain. Adaptation is achieved through adversarial training
to find an invariant feature space in the source domain
along with a Siamese network architecture on the target
domain to enforce regularity. Shi et al. [212] also use
stain style transfer to translate the style of a small image
dataset into a large dataset style with cycleGAN. Because an
inception CNN has been trained on a large dataset, it can be
applied to datasets from other centers. In [213], a different
approach has been proposed. The authors train a "universal”
model to recognize diverse histological tissue types from a
source domain dataset of healthy slides from various organs.
They can then adapt the model to transfer diagnostically
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relevant labels for tissue and disease classification into target
domains without any re-training or fine-tuning, by using
prior histological knowledge.

4) Weakly supervised learning

Building a large dataset of cell-level labels on WSIs is
tedious and time-consuming. In contrast, slide-level labels
(e.g., grading or diagnosis) are easier to obtain as they
are readily available from diagnostic reports. This is the
motivation of weakly supervised learning where the slide-
level diagnoses constitute weak labels. Recent reviews on
that topic can be found in [214], [215]. It is then assumed
that if a WSI has a cancer diagnosis, at least one of
its tiles must contain cancer cells. An application of this
principle, referred to as multiple instance learning (MIL),
was performed by Campanella et al. [168]. They used a
dataset of 44,732 WSIs using only slide-level diagnoses
as labels with impressive results on test sets of prostate
cancer, basal cell carcinoma, and breast cancer metastases.
In [216], Kanavati et al. trained a CNN based on the
EfficientNet-B3 architecture, using transfer learning and
weakly-supervised learning, to predict carcinoma in WSIs.
They also compared fully-supervised learning and weakly-
supervised learning and demonstrate that: i) fully-supervised
learning performs best when cell-level labels are available,
and ii) when only slide-level diagnoses are available, weakly
supervised learning can be performed but requires a much
larger dataset of WSIs. In [217], Teramoto et al. developed
a weakly supervised method for the classification of be-
nign and malignant lung cells in cytological images using
attention-based deep multiple instance learning (AD MIL).
Images were divided into patches images and stored in bags.
Each bag was then labeled as benign or malignant, and
classification was conducted using AD MIL. Their weakly
supervised learning with AD MIL was able to reach the
accuracy obtained with supervised learning and in addition,
enables the visualization of the regions that contributed to
the decision by the attention mechanism. In [218], Lu et
al. proposed a Clustering-constrained Attention Multiple
instance learning (CLAM) that also only requires slide-
level multi-class labels. CLAM uses attention-based learning
to automatically identify sub-regions of high diagnostic
value to accurately classify the whole slide, while also
utilizing instance-level clustering over the representative
regions identified to constrain and refine the feature space.
In contrast to classical MIL, CLAM uses an attention-
based pooling function to aggregate the patch-level features
into slide-level representations for classification. This makes
their approach much more efficient than classical MIL and
diminishes the need for very large sets of slide-level labels.
This last work showed that weakly supervised learning can
be beneficial in computational pathology. This has been
confirmed by the recent study [219] of Ghaffari Laleh et
al. that compared weakly-supervised deep learning pipelines
for whole slide classification in computational pathology. In
particular, they showed that a classical weakly-supervised
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approach using Vision Transformers (that are very new in
computational pathology) can outperform MIL and CLAM.
As the field continuously evolves, there is also much atten-
tion now on self-supervised learning. Contrary to weakly-
supervised learning that uses slide-level annotation, self-
supervised learning aims at pre-training a self-supervised
model on an unlabeled set to obtain task-agnostic feature
representations. The model can then be fine-tuned on a lim-
ited amount of labeled data to obtain task-specific features
[220]-[222]. If these models are appealing, they still need
many computational resources to be trained.

VIl. IMPORTANCE OF QUALITY CONTROL IN A
ROUTINE LABORATORY PROCESS

To support our conclusion that quality control is essential
in digital pathology in a routine laboratory process, we
consider the monthly WSI output of a laboratory for cy-
tological slides. Indeed, with the large number of slides that
have to be digitized daily in a laboratory, quality issues are
inevitable. However, it might be beneficial to detect these
quality problems automatically. To support this assumption,
we analyze the obtained monthly set of cytology WSIs both
qualitatively and quantitatively. First, we provide details
on the corpus of WSIs. They were obtained from a sin-
gle laboratory equipped with a P250 3DHISTECH scanner
generating .mrxs files. The whole corpus was digitized
consecutively in a 30-day window between October 10,
2020, and November 29, 2020 (i.e., during 21 days) where
slides were scanned. It represents 2093 WSIs, each scanned
at different magnifications from 5x to 40x. At the highest
resolution, the number of microns per pixel (mpp) for each
slide is approximately 0.24, in other words, 1 micron of a
glass slide need 4-5 pixels to be stored digitally. It represents
approximately 2.85 terabytes of data. On this basis, we
will analyze different aspects related to QC, each involving
perturbation in the diagnosis. The aim is to be as close as
possible to reality when analyzing the need for a laboratory
when moving to the digital world.

A. SELECTED CRITERION

A digital slide is considered "unanalyzable" or "unreadable"
(denoted as READ -) if there is doubt in the diagnosis
according to all the pixel data available. For example, if
some visible nuclei are noticeable but obfuscated by any
factor (preparation issue, sample quality, out-of-focus area,
etc.), doubt is allowed because these nuclei could potentially
change the diagnosis for the whole slide. Several criteria
have been defined for monitoring the different manifesta-
tions of these obfuscations. The labels used to annotate the
corpus are described in Table 7 and are discredited with
levels denoted by "-", "+", or "++" ordered by ascending or-
der. These labels were defined according to the background
of the annotator in cytology diagnosis with or without Al
assistance. They also correspond to the main issues that
the literature has already addressed according to our survey.
Two main categories of elements are considered:
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o Issues that an automatic method can handle from a
quality diagnostic perspective (BLUR, BUBB)

o Elements that affect an automatic analysis that should
be considered when collecting training corpus (ATRO,
PAuc, BLOO, PoLY, MUCU, BACT)

The intuition behind this selection is that several concomi-
tant elements that slightly affect readability can accentuate
the perturbation in the establishment of a reliable diagnosis.

label description

ATRO characteristic of the sample altering the rendering of nuclei
and cytoplasm
("-" no atrophy, "+" atrophy sample)

PAaucC | presence of visible nuclei

nyn

("-" low presence, "+" acceptable presence)

BUBB | a bubble appears in the digitization

("-" no bubble, "+" one or more bubbles)
BLUR a zone of the slide is blurred

("-" no blur, "+" small zone, "++" large zone)
BLOO | presence of blood

n,n

("-" no trace of blood, "+" some traces, "++" a lot of blood)

PoLy presence of poly-nuclear cells
("-" few, "+" noticeable presence, "++" huge presence)

Mucu | presence of mucus

n,n

("-" few, "+" noticeable presence, "++" huge presence)

BACT | presence of bacteria

nyn

("-" few, "+" noticeable presence, "++" huge presence)

Table 7: Corpus label description.

All annotations were made by a single expert of the do-
main (a Cyto Technologist (IAC) involved in the diagnostic
of both glass/digital slides and in collecting corpus cell ex-
amples to train machine learning based nuclei classification)
with more than 10 years of experience.

B. DIACHRONIC AND QUANTITATIVE ANALYSIS

The 2093 slides were annotated according to the labels
and their scale, at two or three different levels. WSIs are
split into two main categories, "readable” (READ+) and
"unreadable" (READ-) with their levels ("-" "+" or "++").
Each WSI was annotated with each category label and a
level of readability. A synthesis of all annotations made is
given in Table 8. Approximately 15% of WSI have been
labeled as "hard to diagnose" (READ -). One can see that,
even if considered as readable, the slides always contained
preparation (air bubbles, blood, mucus and bacteria) and
digitization (blurred areas) artifacts. Therefore, artifacts are
not always a problem in terms of the readability of the
slide. However, as expected, some labels determined the

LABEL READ + (1787) READ - (306)
LEVEL - + [ 4+ - + [ ++
ATRO 1537 250 248 58
PAauC 1787 0 254 52
BUBB 1787 0 122 184

BLUR 1787 0 0 73 229 4
BLOO 1597 | 179 11 253 41 12
PoLy 1104 | 460 | 223 93 165 | 48
Mucu | 1668 | 118 1 276 24 6
BAcT 1579 | 200 8 275 31 0

Table 8: Corpus label distribution.
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readability of the slide more than others. WSIs with a sparse
distribution of cells (PAUC +/++) often lead to the READ -
classification. The same effect appears in the presence of
bubbles (BUBB +), blur (BLUR +/++) or poly (POLY +/++).
For the other labels, the correlation between a given label
and readability is less noticeable. But one can notice that for
approximately 90% of the "hard to diagnose" slides, there
was a joint presence of several preparation artifacts such as
blood, mucus and bacteria. Similar studies have been led
for histological slides [223], [224] and reported a rate of
around 20% of quality issues (mainly due to out-of-focus
and stitching).

Figure 10 presents the stream of slides according to their
labels. Some labels and days were gathered for readability
purposes when the amount of associated data in each was
too small. Regardless of the label, approximately the same

160 — all WSI

PoLy

BLOOD OR MuCUS OR BACTERIA
ATROPHY

BLUR OR BUBBLE

PauCI

140

120

100

80 1

number of WSI

60

40

20 1

Figure 10: Characteristics of slides according to time.

proportion of WSI arrives at each time step. In addition,
from the perspective of capturing examples to build a
machine learning training dataset, some labels are scarcer
than others. In this laboratory, it would take approximately
a month to collect 100 paucicellular WSIs and a few days
for atrophic WSIs.

To complete this journey through the labels, we analyze
the data to check the interdependence between the labels.
In other words, we want to ensure that the chosen labels
are good descriptors with few redundancies in the overall
information they provide. The uncertainty coefficient (en-
tropy coefficient or Theil’s U) is a non-symmetric measure
based on the conditional entropy between two phenomena
A and B. Knowing phenomenon A, it checks if we can
predict phenomena B. We use this measure to check the
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predictability of labels according to others.
H(A)— H(A|B)

H(A)
with H the conditional entropy as

ZPAB a,b)log(Pap(alb))
a,b

U(A|B) =

H(A|B) =

P4 p the joint distribution between A and B
P4 p the conditional distribution of A knowing B

The uncertainty coefficient is non-symmetrical. From a
WSI, if knowing the degree of B implies that we can
estimate its A feature, we cannot infer systematically that
knowing its degree of A can estimate how it is affected by
feature B.
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Figure 11: Correlation between labels in the corpus.

Figure 11 shows that the READ class is mainly due to the
presence of the labels BLUR and BUBB. Similarly, the pres-
ence of BLUR and BUBB affects the readability status READ
of the slide. Conversely, the PAUC label affects the READ
class of the slide, but knowing the READ characteristic of
the slide rarely implies a PAUC label. None of the other
labels used were correlated according to the uncertainty
coefficient. This acknowledges that the chosen labels form
an orthogonal semantic space. Therefore, the annotations
build a good foundation for describing digital slides from a
diagnostic perspective.

As the last window opened on those data, we analyze
the impact of concomitant labels on the WSI. If a single
noise disturbs the interpretation of a WSI, the addition of a
new perturbation can increase the difficulty of the diagnosis.
Figure 12 shows the proportion of WSI READ+ / READ-
according to the number of different labels characterizing
the WSI positively. For instance, we counted 3 for a WSI
labeled as BLOO+, ATRO+, and MUCU+. The number of
labels and the readability characteristic of the WSI are
correlated, the more a WSI is affected by disturbances, the
less trustworthy is its diagnosis. This highlights that ana-
lyzing WSI through different angles is a necessary strategy:
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Figure 12: Evolution of the readability according to the
number of labels attributed to WSIs.

taken individually, each label doesn’t necessarily warn of a
potential issue on the slide. A WSI can be categorized with
regard to its analyzability only when analyzed holistically
with orthogonal features. As well, by defining each case
that can be encountered in a "divide and conquer" approach,
the detected cause can lead to adequate countermeasures if
anticipated. In the case of multiple causes compromising the
readability of a WSI, the best set of actions to take is the
one with the lowest cost for the laboratory, both in terms of
time and material resources.

VIll. PERSPECTIVES

Out of this state of affairs, we can see that there are
still many improvements to be expected for QC of WSI
for routine clinical diagnosis. In particular, if some recent
methods [56], [73] have opened the way toward global
quality assessment of WSIs, there is still much to do.
First, the methods have to be able to detect simultaneously
different quality problems and to globally assess the slide
quality in terms of analyzability for a final diagnosis (by
a human or a computer-aided diagnosis system). Second,
quality control should be able to detect out-of-the-scope
items to avoid their analysis by an Al In particular, too
few works have been led on artifact detection in WSIs.
Third, the methods have to be robust to the different quality
situations that can occur in real practice. In particular, most
of the methods for quality control are developed on specific
small-size datasets. If they can work reasonably well on
the learned datasets, their generalization abilities to data
coming from other centers (using different slide preparation
and digitization protocols) are not enough explored. Only
the recent work of [225] has explored how deep neural
networks perform on corrupted images (with compression,
focus, color, and artifact issues) and shown that this can
severely decrease the prediction accuracy. This makes none
of the existing quality assessment tools ready for clinical
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use. However, it can be expected that novel techniques
using larger datasets will converge to models close to being
deployed for clinical practice.

We propose to draw an outline of what a QC tool
for whole slide images should do and how it could be
included within a computational pathology pipeline. The
pipeline is as generic as possible as it encapsulates any
histology and cytology routines. A similar pipeline was
proposed in [226]. This is illustrated in Figure 13. In this
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Figure 13: Holistic approach in QC — prototypical pipeline

prototypical pipeline, quality control checks are performed
on two nodes: after digitization and conjointly with the Al
module used in this DP pipeline. After the preparation of the
biological sample, a scan is performed by a WSI scanner.
The latter must be calibrated using a calibration slide to
ensure color fidelity and reproducibility. The slide can be
rejected if it needs to be re-scanned (digitization problem),
re-stained (staining preparation problems), re-prepared (does
not contain sufficient material), or accepted and analyzed
for CAD. Just after digitization, several checks configured
with the laboratory constraints and material (protocol for
staining, the chemical used, machine for several preparation
steps) are made:

D to D - re-digitize: Check if the minimum requirements are
met in terms of magnification, microns per pixel, and size
of the scanned area. Automatic glitch, blur, foreign body
detection, and other feature detection with a relative pipeline
agnostic characteristic can lead to scanner reconfiguration
or glass slide cleaning before regenerating a new WSI.

D to P - re-prepare: Check gamut deviation according to
laboratory standards (depending on the protocol, chemicals,
and machine used). If the stain preparation was incorrect,
the colors can be too far from what is expected. Such
a gamut test can be performed using the estimated stain
vectors [105].

D to S - re-sample: Some issues need another extraction
from the initial sample e.g., when a large fold is detected
in a histological WSIL

After these checks, the WSI can be used by a pathologist
to perform its examination. With the addition of an Al
module as a certified assistant for a pathologist, new
constraints and new indicators can be performed, each
eventually leading to backward action to any prior step of
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the pipeline.

Al to D - re-digitize: the scanner needs to meet the
requirements for creating WSI in a compatible format and
with enough information to allow the use of the Al module
as intended.

Al to P - re-prepare: Sometimes, color deviation from
the standard is not captured by quality control made in
the prior steps. According to a fine analysis of the train
data and data augmentation, the Al module should be self-
aware of its range of acceptability. Countermeasures can be
applied with color/style transfer from the domain of the
processed WSI to the domain described by the training
dataset. In the same way, an Al can be self-aware of its
weaknesses by incorporating a module for the detection of
known perturbation (artifact, blur, glitch, or pipeline-specific
disturbance such as a large presence of blood). Any error
detection module listed above must indicate the backward
action to take to bypass the issue encountered.

Al to S - re-sample: In the same way, automatically
detected issues can lead to the preparation of a brand-
new sample (lack of biological material or un-recoverable
preparation error).

Backward actions do not have to be automatic. When
issues are located precisely on a WSI, joining data analysis
with a map of trusted/corrupted areas allows the pathologist
to obtain the final word. WSI containing blurred areas
but visible suspicious regions should not be filtered out
blindly. Finally, if a set of causes leads to difficulties in
establishing a diagnosis (as depicted in our corpus analysis,
Section VII) the best set of actions to take is the one
minimizing the number of steps that have to be redone.
Any other phenomenon that does not fit this ontology should
be considered by enhancing the Al module with this new
type of object or changing the laboratory workflow with a
preemptive procedure.

IX. CONCLUSION

In this paper, we considered the quality of WSIs in digital
pathology. Many factors in a digital pathology pipeline
can have a strong influence on the quality, from slide
preparation to slide digitization. In particular, we reviewed
issues related to quality concerning the presence of sample
preparation artifacts, compression artifacts, color variations,
and out-of-focus areas. We have proposed a review of all
the computational methods that have been proposed in the
state-of-the-art for their detection.

In the quality process driven by diagnosis, we have
established the notion of the analyzability of a WSI. The
latter can be obtained from the previous computational
methods that analyze the quality of slides. They can be
blended to assess whether a slide is of sufficient quality
to be used by a computer-aided diagnosis system, or should
be re-prepared (too many physical artifacts), re-stained (too
much color deviation), or re-scanned (too many out-of-focus
areas).
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As the most recent competing methods rely on deep
learning, we also addressed issues related to the quality of
the data used for learning deep models, and ways to cope
with this problem.

Finally, to illustrate the importance of quality control in
the daily practice of a real laboratory, we have labeled and
analyzed the quality issues of cytological WSIs digitized
during one month. This confirms that the presence of prepa-
ration artifacts (e.g., air bubbles) or digitization artifacts

(e.g.,

out-of-focus areas) occurred for at least 15% of the

slides. The greater the presence of artifacts, the less the slide
is analyzable by a human expert and therefore might also
be difficult to analyze using an Al-based system.

Based on this observation, we have drawn perspectives
on how a computational quality process can be included in
a computational diagnosis pipeline.
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