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Abstract. Establishing a correspondence between two non-rigidly de-
forming shapes is one of the most fundamental problems in visual com-
puting. Existing methods often show weak resilience when presented with
challenges innate to real-world data such as noise, outliers, self-occlusion
etc. On the other hand, auto-decoders have demonstrated strong ex-
pressive power in learning geometrically meaningful latent embeddings.
However, their use in shape analysis has been limited. In this paper,
we introduce an approach based on an auto-decoder framework, that
learns a continuous shape-wise deformation field over a fixed template.
By supervising the deformation field for points on-surface and regulariz-
ing for points off-surface through a novel Signed Distance Regularization
(SDR), we learn an alignment between the template and shape volumes.
Trained on clean water-tight meshes, without any data-augmentation,
we demonstrate compelling performance on compromised data and real-
world scans. 1

Keywords: Non-rigid 3D Shape correspondence, Neural Fields

1 Introduction

Understanding the relations between non-rigid 3D shapes through dense cor-
respondences is a fundamental problem in computer vision and graphics. A
common strategy is to leverage the underlying surfaces of shapes represented
as triangle meshes. While recent advancements [65,21] demonstrate near-perfect
correspondence accuracies, they strongly rely on idealistic settings of clean input
data, which unfortunately is far from typical 3D acquisition setups. The question
of generalizability of non-rigid shape correspondence to artifacts such as noise,
outliers, self-occlusions, clutters, partiality, etc. which are innate to general 3D
scans, is largely unanswered.

On the other hand, 3D shape representations through neural fields [80] or
learned implicit functions have been shown to achieve remarkable accuracy, flex-
ibility and generative power for a wide range of shape and scene modeling tasks
[46,14,54,67]. Unlike standard shape representations, learning implicit functions
through a neural network allows one to capture continuous surfaces, while seam-
lessly adapting to changes in topology. Indeed, implicit surface representations

1 Our code is available at https://github.com/Sentient07/IFMatch
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Fig. 1: Key advantages of our non-rigid shape correspondence pipeline: Our ap-
proach is extremely robust to common artifacts in 3D shapes like: (a) variations
in sampling density, (b) significant noise, (c) cluttered outliers and (d) partiality.

not only allow to introduce an adaptive level of detail, but can also benefit
from strong network regularization to control the desired resolution [71,66]. As
a result, although initial efforts have focused on using implicit representations
primarily for generative modeling and shape recovery, several recent works have
shown their utility in other tasks including differentiable rendering for image syn-
thesis [40,68], part-level shape decomposition [55], modeling dynamic geometry
[51] and novel view synthesis [48,50] among many others.

This flexibility of implicit surface representations, however, comes at a cost,
especially in applications that involve multiple shapes, such as shape corre-
spondence or comparison. Since the surface is defined as the zero-level set of
a function, individual points are no longer easily identifiable. As a result, recent
methods based on implicit surface representations that have aimed at shape
alignment, try to model a warping field over an underlying template [17,84,33],
or between shape pairs [7]. All of these works, however, primarily focus on de-
formations across nearby, sufficiently similar 3D shapes.

In this paper, we introduce an efficient method for establishing correspon-
dences across arbitrary non-rigid shapes, using neural field representations. To
this end, we develop a new architecture based on the auto-decoder framework [54],
that aims to recover a 3D deformation field between a fixed template and a target
shape volume. The key ingredient of our architecture is defining the shape-wise
deformation field from the latent embedding, augmented with two effective regu-
larizations. First, we regularize the deformation field for arbitrary points in space
through a novel Signed Distance Regularization (SDR). Second, we simultane-
ously condition the latent embedding to be compact and geometrically meaning-
ful by learning a continuous Signed Distance Function (SDF) representation of
the target shape. The resulting method is able to compute dense point-to-point
correspondences between shapes while being extremely robust in the presence
of varying sampling density, noise, cluttered outliers and missing parts as shown
in Figure 1. To the best of our knowledge, ours is the first non-rigid correspon-
dence method, based on neural field representation, that can be generalized to
arbitrary shape categories such as articulated humans and animals.
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Training on clean watertight meshes without any data-augmentation, we eval-
uate on a wide range of challenges across multiple benchmarks as well as real
data captured by a 3D-scanner. Our approach shows compelling resilience to
challenging artifacts and is more robust than existing point-based, mesh-based
and spectral methods. In summary, our main contributions are: (1) We intro-
duce an efficient approach based on the auto-decoder framework, capable of
recovering a volumetric deformation field to align a source and a target shape
volumes, even for significant non-rigid deformations. (2) We propose a novel way
of regularizing the deformation of arbitrary points in space through the Signed
Distance Regularization (SDR). (3) We perform rigorous evaluations by intro-
ducing challenges to existing benchmarks and on real-world data acquired by a
3D-scanner.

2 Related Work

2.1 Mesh-based Shape Correspondence

There is a large body of literature on shape matching, for shapes represented
as triangle meshes. We refer interested readers to recent surveys [73,70,9,63]
for a more comprehensive overview. Notable axiomatic approaches in this cat-
egory are based on the functional maps paradigm [53,37,2,61,23,13]. Typically,
these methods solve for near isometric shape correspondence by estimating lin-
ear transformations between spaces of real-valued functions, represented in a
reduced functional basis. The conceptual framework of functional maps was fur-
ther improved by learning-based formulations [39,30,62,19,22] that predict and
penalize the map as a whole. Concurrently, recent advances in geometric deep
learning have also tackled the correspondence problem by designing novel archi-
tectures for mesh and point cloud representation [49,12,43,58,78,38,83,21]. Such
methods typically treat the correspondence learning problem as vertex labelling,
which is learned efficiently using the respective architectures.

However, these methods that are predominantly based on mesh based repre-
sentation of shapes are prone to sub-par performance when exposed to artifacts
like sensitivity to variations in mesh discretization [65], sampling, missing or
occluded parts, noise and other challenges that are common in typical 3D acqui-
sition setups.

2.2 Template Based Shape Correspondence

Deforming a template to fit any given shape is a well-established technique in
non-rigid shape registration [3,4]. The advent of learning-based skinning tech-
niques [41,86,85] enabled deformation of a fixed template to an arbitrary shape
and pose by calibrating a fixed set of SMPL model parameters. The introduction
of parametric models has opened the avenue for generating copious amounts of
training data [75,26,74] for data-driven methods. Such data-driven techniques
have led to some seminal works in: 3D pose estimation [35,28,52], digitizing



4 R.Sundararaman et al.

humans [16,81] and even model-based 3D shape registration for articulated hu-
mans [10,57,11,56,8]. Most relevant to our work is LoopReg [8], which proposes
to diffuse SMPL parameters in space to learn correspondence. In contrast, our
approach does not require any parametric models as priors and can be general-
ized across arbitrary categories.

On the other hand, there are techniques that learn a model-free deformation
to align a fixed template to a target shape [26,18,27,77]. Most notable among
them is 3D-CODED [26], which learns to deform a fixed template mesh to a
target shape. While this approach is succinct and well-founded, it requires sig-
nificant amounts of training data to achieve optimal performance. Moreover, the
deformation space is confined only to the surface of a mesh and can suffer from
deformation artifacts. To ameliorate this, recent methods [17,84] have chosen to
“implicitly define the template”. However, their application in non-rigid shape
matching is limited.

2.3 Neural Field Shape Representations

Coordinate-based neural networks are emerging methods for efficient, differen-
tiable and high-fidelity shape representations [54,6,15,66,51,25,31,79,82] whose
fundamental objective is to represent zero level-sets using parameters of neural
network. In its most general form [54,66,67], these methods share two principal
common goals - to perform differentiable surface reconstruction and to learn a
latent shape embedding. This has given rise to numerous applications especially
in the field of generative 3D modelling [72], such as shape editing [31,69,76],
shape optimization [47,24] and novel view synthesis [48,71,50,64] to name a few.
Most relevant to our work are DIF-Net [17] and SIREN [66] which achieve shape-
specific surface reconstruction through Hyper-Networks [29]. However, leveraging
the power of this representations in the domain of dense correspondence learning
has so far been limited to nearly rigid objects [17,84,25,33].

3 Method

Notation: Throughout this manuscript, we use S to denote the target shape
whose latent embedding is denoted by αS ∈ R512 and T as the fixed template.
X and Y denote an arbitrary pair of shapes between which we aim to find a
correspondence. We let x̃ ∈ ∂S be a point on the surface of the target shape S,
x ∈ R3 denotes a point in space and σx be its signed distance, σx := d(x, ∂S).
We define [S] := {x ∈ R3|σx < ζ} to be the shape volume, which is the set of
points sampled in space, in the vicinity of the shape surface ∂S, with ζ being a
constant. Analogously, [T ] := {ti ∈ R3|σti < ζ} denotes the template volume.

3.1 Overview

Given a pair of shapes X and Y, represented either as triangle meshes or point
clouds, our goal is to estimate a point-wise map Π : X → Y. To this end, we
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Fig. 2: Given a target shape volume (left) and a template volume (right) as
input, DeFieldNet (Sec 3.2) aligns the template to target volume regularized by
SDFNet (Sec 3.3). Shape-specific network weights are modeled by latent code
(Sec 3.1). Points sampled within volumes (input) are shown only for visualization
purposes to emphasize that our network operates over the 3D domain.

learn a shape-specific deformation field Dω(.) : R3 → R3 which when applied
to a fixed template volume [T ], yields the target shape volume [S]. Then, by
using Dω(.) to independently align [T ] to [X ] and [Y], we obtain correspondence
between X and Y through nearest neighbor search. We stress that differently
from previous data-driven works [26,18] that align a template mesh to a target
mesh, our approach aligns two volumes. This is because, we observe that learning
a volumetric alignment between arbitrary points in space naturally leads to a
more robust map estimation as the deformation field is not constrained to an
underlying surface defined by a mesh or a point cloud. While aligning on-surface
points is straightforward in the supervised setting, aligning off-surface points
is ill-posed. To this end, we propose a novel Signed Distance Regularization
(SDR) for constraining the change in the SDF brought about by the deformation
field. Learning a continuous deformation field also allows us to impose useful
smoothness and volume preservation constraints, for enhancing the regularity of
the map.

To make the deformation shape-specific, we learn a latent embedding αS ,
which governs the parameters ωS of DωS (·). We drop the subscript of ω for
the sake of brevity. This latent embedding is learned following the auto-decoder
framework [54]. However, constructing an embedding based on the deformation
field alone leads to topological inconsistencies as we discuss in the ablation stud-
ies (refer to Suppl). Therefore, we introduce a geometric prior to αS by learning
a continuous Signed Distance Function (SDF) representation of the shape, re-
sulting in two concurrent auto-decoder networks as shown in Figure 2. On one
side (left), we learn the continuous Signed Distance Function (SDF) of the tar-
get shape, which we refer to as SDFNet. Simultaneously (right of Figure 2), we
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learn a deformation field Dω over [T ] through DeFieldNet. The parameters of
our SDFNet θ := ΓHS(αS) and DeFieldNet ω := ΓHD(αS) are defined as two
functions of the latent embedding, through Hyper-S and Hyper-D respectively.
We perform an end-to-end training, to jointly learn the latent embedding αS ,
through the gradients of SDFNet and DeFieldNet, similar to [29,66]. In sum-
mary, we learn a latent embedding by concurrently learning a deformation field
over the template volume and the target shape’s SDF. We stress that our main
objective is to learn a plausible deformation field (via DeFieldNet) and the role
of learning an implicit surface (via SDFNet) is to act as a geometric regularizer.

3.2 DeFieldNet

The main objective of DeFieldNet is to learn a smooth continuous shape-specific
deformation field over the fixed template volume. We apply on surface supervi-
sion and off-surface regularization in order to deform the template volume [T ]
to the target shape volume [S].

On Surface Supervision: For two corresponding points x̃i ∈ ∂S and t̃i ∈
∂T , where Π(x̃i) = t̃i, our goal is to find a deformation Dω : t̃i ∈ R3 → v⃗ ∈
R3, s.t. t̃i + v⃗ ≈ x̃i. Thus, solving for the desirable deformation field amounts
to optimising the following loss:

Lsurf =
∑

x̃i∈∂S

||x̃i − ˆ̃xi||2

where, ˆ̃xi = Dω(t̃i) + t̃i

(1)

Signed Distance Regularization (SDR): In addition to supervising
the deformation of points on the surface, we also regularize the deformation
field applied to arbitrary points in the template volume t ∈ [T ] ∈ R3. For
this, we propose a Signed Distance Regularization which preserves the Signed
Distance Function under deformation for points sampled close to the surface.
More specifically, given signed distances: σti , σx̂i of points ti, x̂i respectively
where x̂i = Dω(ti)+ ti, we require σti ≈ σx̂i , for all points sampled closed to the
surface.

While σti is available as a result of pre-processing, computing σx̂i
requires

a continuous signed distance estimator as the SDF is measured w.r.t deformed
shape. Therefore we perform discrete approximation of the signed distance at
any predicted point using Radial Basis Function (RBF) interpolation [32]. For
any x̂i ∈ R3, we first construct the RBF kernel matrix Φ as a function of its
neighbors in the target shape volume N (x̂i) ∈ [S].

Φij := φ(pi, pj) =
√
ε0 + ||pi − pj ||2 (2)

Where, φ is the radial basis function and pi,j ∈ N (x̂i). Assuming ∆ =
[σ1 . . . σK ]T to be the vectorized representation of the SDF values of neighbors,
the estimated SDF σ̂x̂i

of x̂i w.r.t deformed template T̃ is given as:

σ̂x̂i
= φ (x̂i)Φ

−1∆ (3)
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We use shifted multiquadric functions as our RBF interpolant to avoid a singular
interpolant matrix (refer to Suppl for more details). Therefore, our final SDF
Regularization constraint can be written as:

LSDR =
∑

ti∈[T ]

|| clamp(σti , η)− clamp(σ̂x̂i , η)||2 (4)

Where clamp(x, η) := min(η,max(−η, x)) is applied to make sure that the
penalty is enforced only to points close to the surface. We highlight that this
clamping is necessary, since the change in SDF under a considerable non-rigid
deformation may differ significantly for points far from the surface.

Smooth Deformation: For the deformation field to be locally smooth, we
ideally expect the flow vectors at neighboring points to be in “agreement” with
each other. We enforce this constraint by encouraging the spatial derivatives to
have minimal norm:

LSmooth =
∑

ti∈[T ]

|| ∇Dω( ti)∥2 (5)

Volume Preserving Flow: Since a volume-preserving deformation field
must be divergence-free, it must have a Jacobian with unit determinant [1].

Lvol =
∑

ti∈[T ]

|det(∇Dω(ti))− 1| (6)

We use autograd to compute the Jacobian.

3.3 SDFNet

Given a set of N target shapes {S0 . . .SN}, our goal is to regularize their latent
embedding {αS0

. . . αSN
} through implicit surface reconstruction. We adopt the

modified auto-decoder [66] framework with sinusoidal C∞ activation function as
our SDFNet. Given fθ(·) : x ∈ R3 → σx ∈ R to be the function that predicts the
Signed Distance for a point x ∈ [S], SDFNet’s learning objective is given by,

LSDF =
∑

x∈[S]

(
| ∥∇xfθ(x)∥2 − 1|+ |fθ(x)− σx|

)
+

∑

x̃∈∂S

(1− ⟨∇xfθ(x̃), n̂(x̃)⟩)

+
∑

x\∂S
ψ(f(x))

(7)

The first term penalizes the discrepancy in the predicted signed distance and
enforces the Eikonal constraint for points in the shape volume. The second term
encourages the gradient along the shape boundary to be oriented with surface
normals. The last term applies an exponential penalty where ψ := exp(−C ·
|σx|), C ≫ 0, for wrong prediction of fθ(x) = 0.
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3.4 Training Objective:

In summary, the energy minimized at training time can be formulated as a
combination of aforementioned individual constraints:

ETrain = Λ1LSDF + Λ2Lsurf + Λ3LSDR + Λ4LSmooth + Λ5Lvol (8)

Here, Λi are scalars provided in Sec 3.6. The first term helps to regularize
the latent space, while the other terms encourage a plausible deformation field.

3.5 Inference

At inference time, given X ,Y to be a pair of unseen shapes, our approach is
three-staged. First, we find the optimal deformation function Dω associated with
X ,Y to deform [T ]. We solve for optimal parameters for our deformation field
ω through Maximum-a-Posterior (MAP) estimation as:

αi = argmin
αi

Λ1LSDF + Λ3LSDR

ω := ΓHD(αi)
(9)

Second, similar to [26] we enhance the deformation field applied by minimiz-
ing the bi-directional Chamfer’s Distance

αopt = argmin
αi

∑

s̃∈∂S
min
t̃i∈∂T

∣∣Dω (̃ti)− s̃
∣∣2 +

∑

t̃i∈∂T
min
s̃∈∂S

∣∣Dω (̃ti)− s̃
∣∣2 (10)

Finally, we establish the correspondence between X ,Y through their respec-
tive deformed templates using a nearest neighbor search.

3.6 Implementation details

Our two Hyper-Networks, SDFNet and DeFieldNet all use 4-layered MLPs with
20% dropout. SDFNet uses sinusoidal activation [66] while DeFieldNet uses
ReLU activation. We fix Λ1 = 1, Λ2 = 500, Λ3 = 50, Λ4 = 5, Λ5 = 20, namely
the coefficients in Equation 8. For a shape in a batch, we use 4,000 points for
on-surface supervision Equation 1. We use 8,000 points for SDF regularization in
Equation 4 and η = 0.1 after fitting all shapes within a unit-sphere. We provide
additional pre-processing details in the Suppl.

4 Experiments

Overview: In this section we demonstrate the robustness of our method in com-
puting correspondences under challenging scenarios through extensive bench-
marking. We perform our experiments across 4 datasets namely, FAUST [59],
SHREC’19 [44], SMAL [86] and CMU-Panoptic dataset [34]. The first three are
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mesh based benchmarks and are well-studied in non-rigid shape correspondence
literature. In addition, we introduce challenging point cloud variants of these
benchmarks which will be detailed below. CMU-Panoptic dataset [34], on the
other hand, consists of raw point clouds acquired from a 3D scanner.

For evaluation, we follow the Princeton benchmark protocol [36] to measure
mean geodesic distortion of correspondence on meshes. We perform evaluation on
our point cloud variants by composing the predicted map to the nearest vertex
point and measure the mean geodesic distortion [36]. On the CMU-Panoptic
dataset [34], we measure the error on established key-points. We stress that
across all experiments, while the evaluations are performed under challenging
scenarios, our model is trained on clean water-tight mesh without any data-
augmentation. Across all tables, “*” denotes a method that requires a mesh
structure and cannot be evaluated on point clouds. “**” refers to computational
in-feasibility in evaluating a baseline.

Baselines: We compare our method against several shape correspondence
methods which can be broadly categorized into four main classes - axiomatic,
spectral learning, template based and point cloud learning (PC Learning). We
use ZoomOut (ZO) [45], BCICP [59] and Smooth Shells (S-Shells) [20] as
our axiomatic baselines. For spectral basis learning baselines, we use Geomet-
ric Functional Maps (GeoFM) [19] with the recent more powerful Diffusion-
Net [65] feature extractor and DeepShells (D-Shells) [22]. We use 3D-CODED
(3DC) [26], Deformed Implicit Fields (DIF-Net) [17] and Deep Implicit Tem-
plates (DIT-Net) [84] as template based baselines. We use Diff-FMaps (Dif-
FM) [42], DPC [38] and Corrnet [83] as our point cloud learning baselines. For a
fair evaluation, we identically pre-train them according to their category for dif-
ferent experimental settings as mentioned in the respective sections. We provide
more details on the hyper-parameters used for baselines in the Supplementary.

4.1 FAUST

Dataset: FAUST [10] dataset consists of 100 shapes where evaluation is per-
formed on the last 20 shapes. Recently, Ren. et al. [59] introduced a re-meshed
version of this dataset and Marin et al. [42] proposed a non-isometric, noisy
point cloud version. For our robustness discussion, we introduce two additional
challenges on top of the aforementioned variants. First, complimentary to [42],
we introduce a dense point cloud variant consisting of 45,000 points perturbed
with Gaussian noise. Second, we introduce 10% clutter points by random sam-
pling of points in space. In summary, we perform evaluation on (1) Re-meshed
shapes [59], (2) Non-isometric noisy point cloud (NI-PC) [42], (3) Dense point
clouds with noise (De-PC) and (4) Clutter.

Baselines: We train our model and all data-driven methods on the first
80 meshes of the FAUST dataset. All baseline methods are trained using the
publicly available code, following the configuration stipulated by the respective
authors.
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Fig. 3: Correspondence quality through color transfer on challenges we intro-
duced to FAUST [59]. 1st Row: Point clouds corrupted with 10% clutter shown
in black. In contrast to baselines, our method shows strong resilience in the
presence of clutter. 2nd Row: Point cloud with 45k points and noise.

Category Axiomatic PC Learning Spectral Learning Template Based

Method
BCICP
[59]

ZO
[45]

S-Shells
[20]

Dif-FM
[42]

DPC
[38]

CorrNet
[83]

D-Shells
[22]

GeoFM
[19]

3DC
[26]

DIF-Net
[17]

DIT-Net
[84]

Ours

Remesh [59] 10.5 6.0 2.5 34.0 27.1 28.1 1.7 2.7 2.5 21.0 20.1 2.6

NI-PC
+ Noise [42]

11.5 8.7 * 6.6 8.4 25.2 * 31.3 7.3 14.6 13.6 3.1

De-PC
+ Noise

* * * 31.8 ** 27.9 * 53.7 9.1 18.1 18.0 4.1

Clutter * * * 17.7 50.0 51.1 * 52.2 22.1 14.7 14.3 8.1

Table 1: Quantitative results on FAUST-Remesh dataset and its variants re-
ported as mean geodesic error (in cm) scaled by shape diameter.

Discussion: Our main quantitative results are summarized in Table 1. On
the re-meshed shapes [59], our method demonstrates comparable performance
with existing state-of-the-art methods. However, as we decrease the perfection of
data, our method shows compelling resilience towards artifacts and consistently
outperforms all the other baselines by a noticeable margin. It is also worthy to
remark that among all baselines that we compare with, our method is the only
one that is capable of providing reasonable (less than 10cm) correspondence in
the presence of clutter points. We also show two qualitative examples on our
newly introduced variant in Figure 3.
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Fig. 4: Correspondence quality on SHREC’19 [44] and its variants. 1st Row:
Meshes. 2nd Row: Point clouds with noise and outliers. 3rd Row: Missing parts.
Compared to baselines, our method exhibits strong resilience to artifacts.

4.2 SHREC’19

Dataset: SHREC’19 [44] is a challenging shape correspondence benchmark due
to significant variations in mesh sampling, connectivity and presence of multiple
connected components. It consists of 44 shapes and a total of 430 evaluation
pairs. In addition, we introduce 3 challenging scenarios with different data im-
perfections. Scenario 1: We compare the meshes provided by Melzi et al. [44].
Scenario 2: We subsample the meshes to 10,000 points and introduce 20%
outliers. Scenario 3: We further corrupt the surface information in Scenario 2
using Gaussian noise. Scenario 4:We introduce partiality in the form of missing
parts, to a subset for a part-to-whole evaluation scheme [60].

Baseline: We pre-train all template based and point cloud learning baselines
on 2,000 SURREAL shapes [75] including 10% humans in bent poses [26]. For
our spectral basis learning baselines, we pre-train them on the training set of
FAUST+SCAPE [5], consisting of

(
80
2

)
+

(
51
2

)
shape pairs, a setting which is

demonstrated to be best suited for them [22,19]. We use Partial Functional Map
(PFM) [60] as an additional axiomatic baseline for Scenario 4.

Discussion: Quantitative results across 4 scenarios are summarized in Ta-
ble 2. Our method demonstrates state-of-the-art performance across all variants
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of the SHREC’19 dataset and remains inert to imperfections in the data. While
Smooth-Shells [20], is comparable to our approach in Scenario 1, it cannot be
evaluated in other scenarios due to its strong dependence on spectral informa-
tion. Moreover, even among template based methods, it is important to note
that the supervised learning baseline 3D-CODED [26] demonstrates significant
decline in performance in the presence of outliers and noise. We posit that a well
defined shape embedding, obtained by learning a volumetric mapping, plays a
crucial role in our method’s performance. Even among methods that construct
a shape space through an auto-decoder framework, DIF-Net [17] and DIT [84],
are not reliable when presented with non-rigid shapes. Among point cloud learn-
ing methods, while DPC [38] shows comparable performance to our approach in
Scenario 2, their performance declines in Scenario 3, when surface information is
corrupted by noise. Furthermore, since DPC [38] depends on input point cloud
resolution, it is infeasible to be evaluated in Scenarios 1 and 4. Finally, despite
training on clean meshes with no missing components, the performance of our
approach is unaffected by the partiality introduced in Scenario 4. We attribute
our learning of volumetric alignment coupled with off-surface regularization to be
the reason behind robustness to missing components. We summarize this discus-
sion by qualitatively depicting Scenarios 1, 3 and 4 in Figure 4, wherein, despite
subsequently increasing artifacts, our method shows compelling resilience. Ad-
ditional qualitative results in different poses are provided in the Supplementary.

Category Axiomatic PC Learning Spectral Learning Template Based

Method
S-Shells
[20]

PFM
[60]

CorrNet
[83]

DPC
[38]

Diff-FM
[42]

GeoFM
[19]

D-Shells
[22]

3DC
[26]

DIF-Net
[17]

DIT-Net
[84]

Ours

Scenario: 1
(Meshes) [44]

7.6 N/A 13.4 ** 29.6 11.7 15.2 9.2 14.9 41.4 6.5

Scenario: 2
(Outliers)

* N/A 35.9 8.5 17.1 26.1 * 12.2 12.4 12.6 7.4

Scenario: 3
(Outliers + Noise)

* N/A 36.0 11.5 16.7 27.8 * 14.4 36.2 12.5 7.7

Scenario: 4
(Missing parts)

* 52.4 23.5 ** 26.3 48.6 23.8 6.0 11.9 41.1 4.3

Table 2: Quantitative results on 430 test set pairs of SHREC’19 dataset reported
as mean geodesic error (in cm), scaled by shape diameter.

4.3 SMAL

Dataset: In this section, we show the generalization ability to inter-class non-
rigid shape correspondence among to non-human shapes. To this end, we use
the SMAL dataset [86], a parametric model that consists of 5 main categories
of animals. We construct the training set by sampling 100 animals per each
category. For correspondence evaluation, we generate 20 new shapes consisting of
4 animals per category, resulting in 180 inter-class evaluation pairs. We relax the
degrees of freedom for selected joints while generating the test-set to introduce
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new poses, unseen in the training set. In addition, we introduce partiality to this
dataset in the form of multiple connected components.

Baseline Settings: We train all template based methods, including ours, on
the aforementioned 500 training shapes. For our method and 3D-Coded, which
are supervised template based methods, we share the same animal template.
Since spectral basis learning baselines learn correspondence pairwise, we train
all data-driven spectral methods on

(
100
2

)
shapes with 20 animals per-category.

Fig. 5: Quantitative and qualitative inter-class correspondence on SMAL[86]
dataset. Our approach produces a smooth map, unaffected by partiality.

Discussion: Our main quantitative and qualitative results are summarized
in Figure 5. We observe that Geo-FM[19,65] that is a representation agnostic
method and Partial Functional Maps, an approach built to tackle partial non-
rigid shape correspondence methods fail to establish reasonable correspondence.
Our approach on the other hand, remains agnostic to shape connectivity arising
from inter-class non-isometry and introduced partiality. Finally, our method sur-
passes the template-based baseline method, 3D-Coded by a considerable margin.

4.4 CMU-Panoptic Dataset

Dataset: In this section, we demonstrate the generalization ability of our ap-
proach to real-world sensor data. To that end, we use the CMU Panoptic [34]
dataset, which consists of 3+hrs footage of 8 subjects in frequently occurring
social postures captured using the Kinect RGB+D sensor. This dataset con-
sists of point clouds with noise, outliers, self-occlusions and clutter, allowing
to evaluate correspondence methods on real-world data. We sample 200 shape
pairs consisting of 3 distinct humans in 7 distinct poses. We measure non-rigid
correspondence accuracy using the sparsely annotated anatomical landmark key-
points. More specifically, for each keypoint in the source, we consider 32 neigh-
bors points and measure the disparity (as Euclidean distance, in cm) between
their closest keypoint in the target and source.

Discussion: In order for a fair evaluation of generalizability, we test all ap-
proaches using the trained model elaborated in Section 4.2. Quantitative results
of keypoint errors are summarized in Table 3. Our approach shows convincing
performance in comparison to baselines, and more noticeably, it outperforms the
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Fig. 6: Qualitative comparison using texture transfer on noisy point clouds from
the CMU-Panoptic [34] dataset.

Method Dif-FM[42] GeoFM[19] 3D-CODED[26] DIF-Net[17] CorrNet[83] DPC [38] Ours

Keypoint Error 39.4 23.9 17.1 15.3 14.8 ** 8.5

Table 3: Avg. Euclidean keypoint error (cm) for 200 test pairs, scaled by shape
diameter.

conceptually closest supervised baseline, 3D-CODED [26] by a twofold margin.
We also show a qualitative example through texture transfer in Figure 6, high-
lighting the efficacy of our approach in comparison to existing approaches on
real-world data.

5 Conclusion, Limitations and Future work

We presented a novel approach for robust non-rigid shape correspondence based
on the auto-decoder framework. Leveraging its strong expressive power, we
demonstrated the ability of our approach in exhibiting strong resilience to prac-
tical artifacts like noise, outliers, clutter, partiality and occlusion across multiple
benchmarks. To the best of our knowledge, our approach is the first to success-
fully demonstrate the use of Neural Fields, which predominantly are used as
generative models, to the field of non-rigid shape correspondence, generalizable
to arbitrary shape categories.

Despite various merits, we see multiple avenues for improvement and possi-
ble future work. Firstly, our current framework of joint learning of latent spaces
by continuous functions opens possibilities for local descriptor learning along-
side purely extrinsic information. This can potentially lead to an unsupervised
pipeline in contrast to our existing supervised method. Also, auto-decoder style
learning approaches are not rotation invariant and conventional techniques like
data-augmentation can prove costly in terms of training effort. Making Neural
Fields rotational invariant is also an interesting future direction.
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22. Eisenberger, M., Toker, A., Leal-Taixé, L., Cremers, D.: Deep shells: Unsupervised
shape correspondence with optimal transport. arXiv preprint arXiv:2010.15261
(2020) 3, 9, 10, 11, 12

23. Ezuz, D., Ben-Chen, M.: Deblurring and denoising of maps between shapes. In:
Computer Graphics Forum. vol. 36, pp. 165–174. Wiley Online Library (2017) 3

24. Gao, L., Yang, J., Wu, T., Yuan, Y.J., Fu, H., Lai, Y.K., Zhang, H.: Sdm-net:
Deep generative network for structured deformable mesh. ACM Trans. Graph.
38(6) (nov 2019). https://doi.org/10.1145/3355089.3356488, https://doi.org/

10.1145/3355089.3356488 4
25. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.A.:

Learning shape templates with structured implicit functions. 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV) pp. 7153–7163 (2019) 4

26. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: 3d-coded : 3d cor-
respondences by deep deformation. In: ECCV (2018) 3, 4, 5, 8, 9, 10, 11, 12,
14

27. Groueix, T., Fisher, M., Kim, V., Russell, B., Aubry, M.: Unsupervised cycle-
consistent deformation for shape matching. In: Symposium on Geometry Process-
ing (SGP) (2019) 4



Implicit Field Matching 17
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60. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial func-
tional correspondence. Computer Graphics Forum 36(1), 222–236 (Feb 2016).
https://doi.org/10.1111/cgf.12797, https://doi.org/10.1111/cgf.12797 11, 12
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In Section 1, we provide an elaborate illustration of the proposed Signed
Distance Regularisation (SDR), followed by implementation details (Section 2)
and evaluation protocols (Section 3). In Section 4, we perform an in-depth ab-
lation study to quantitatively justify the efficacy of different components in our
pipeline. In Section 5, we extend the robustness analysis by discussing the ability
of our approach to endure varying noise levels and the impact of training data
required to achieve optimal performance. Notably, we compare against methods
trained with 100× more training shapes with data-augmentation and show that
our approach, trained on a fraction of data is more robust. Finally, we conclude
by discussing the known shortcomings of our method in Section 7 and show
more qualitative results over different challenging datasets in Section 6. We em-
phasize that for this supplementary material, we do not perform any additional
parameter tuning or improve upon our reported results in the main submission.

1 Signed Distance Regularization

To recall, we are given a template volume and target volume, denoted as [T ],
[S] respectively, which, we wish to align by learning a deformation field Dω(·).
Let ti ∈ [T ] be a point sampled in the template volume and xi ∈ [S] be a
point in the shape volume. Let x̂i := ti +Dω(αi) be a point in space upon ap-
plying the deformation field Dω(ti). We drop subscript i for brevity. Let σ̂x̂ be
the signed distance of x̂ in the shape volume σ̂x̂ := d(x̂, ∂S) that we wish to
estimate. Similarly, let σt, be the signed distance of t in the template volume
σt := d(t, ∂T ). Then, our regularisation aims to preserve the SDF under the
deformation σt ≈ σ̂x̂ as shown in Figure 1.

This regularisation is straightforward if σ̂x̂ is known. However, in discrete
settings, measuring σ̂x̂ is not well-defined. To that end, we elaborate on the
approximation technique using Radial Basis Function (RBF), introduced in the
main paper. We begin by constructing the neighbourhood N (x̂i) = [x1 . . . xK ]T

of x̂ in the target shape volume [S]. Please note that N (x̂i) consists of points
sampled in [S], whose SDF values are available as the result of pre-processing.
Accordingly, let ∆ = [σ1 . . . σK ]T be the signed distance of xj ∈ N (x̂i) j ∈
[1,K].

We used multiquadric kernel function as our interpolant, φ(||pi, pj ||) :=√
ε0 + ||pi − pj ||2 with Φ being the corresponding kernel matrix. Then, the in-
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Fig. 1: Illustrating the key intuition behind Signed Distance Regularisation. (a)
Given a point near the surface in [T ], (b) its corresponding point upon applying
the deformation Dω(·) must approximately have same the SDF. (c) and (d) : A
particular case that shows SDF preserving the deformation field, owing to LSDR.

terpolated signed distance at the deformed point w.r.t target shape volume [S]
is given as follows,

σ̂x̂ = φ(x̂)Φ−1∆ (1)

The above equation has a solution iff the kernel matrix Φ is invertible. For
our choice of kernel function, it is easy to infer the following properties,

1. φ(||pi, pj ||) ≥ 0 ∀pi, pj ∈ R3

2. φ(||pi, pj ||) > 0 ∀pi, pj ∈ R3, s.t pi ̸= pj

Therefore, φ satisfies elementary properties of positive definiteness [20] and
hence our matrix Φ is always invertible. Furthermore, since we estimate σ̂x̂ as a
differentiable function of x̂, the interpolation is differentiable w.r.t the input t
and can be used with auto-grad libraries.

2 Additional Implementation Details

First, we provide additional details on pre-processing and training details con-
cerning our method. Subsequently, we elaborate on the experimental setting of
different baselines.

2.1 Pre-Processing

We start with a fixed template T and a set of shapes {S0 . . .SN} with a known
correspondence Π. We scale all shapes to fit within a unit sphere and align them
along Y-axis, similar to previous works [6,26,9,21]. This pre-processing step is
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Fig. 2: Template meshes and respective volumes for human and animal experi-
ments. For visualization purposes, we depict 10,000 points sampled in the tem-
plate volume.

performed for all baselines. We construct the shape volume [S̃i] by sampling
400,000 points off-the surface of the shape. We perform this sampling aggressively
close to the surface by displacing points sampled on the surface with a small
Gaussian noise. We estimate the signed distance of displaced points by placing
100 virtual laser scans of the shape from multiple angles, similar to [16]. This
setup enables us to simultaneously compute surface normals for 20,000 points
sampled on the surface of the shape. This pre-computed surface normals are used
to enforce normal consistency prior in Equation 7 of the main paper. We perform
this pre-processing independently and identically for template T to obtain [T̃ ]
and σT . As mentioned previously, we use two templates (analogously template
volumes) across all experiments, namely, one human and one animal as depicted
in Figure 2.

2.2 Training and Inference

We train all our networks, namely Hyper-S, Hyper-D, SDFNet and DeFieldNet
end-to-end and update the latent vector through back-propagation, a common
practise in auto-decoder frameworks [16,24]. Although our two Hyper-Networks
share the same input latent embedding, we stress their weights are distinct and
are initialized by the same latent vector. We use a learning rate of 1e-4 and train
for 30 epochs with a batch size of 20. For experimental settings with no reliable
information on ground truth SDF or normal information, we do not impose
LSDR and normal consistency terms of LSDF . In addition, at inference time, for
point clouds, we consider SDF=0 for all points. We use the same coefficients as
Sitzmann et al. [24] for our geometric regularization applied in Equation 7 of the
main paper. We train our network on an Nvidia A100 GPU for 12hrs requiring
2.3Gb of memory per-batch. We will release our code, pre-trained models and
dataset variants introduced for full reproducibility.
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Fig. 3: Figure depicting the details of our SDFNet, DeFieldNet (left) and an
individual Hyper-network block corresponding to Hyper-S and Hyper-D. Please
refer to Section 2.3 for more details.

2.3 Network Architecture

A detailed depiction of our network’s architecture is visualized in Figure 3. The
input coordinates (denoted as (X,Y,Z)) correspond to template volume for De-
FieldNet and the target shape volume for SDFNet. “H” denotes the hidden
dimension which we set to 256 for experiments with fewer than 1000 training
shapes (c.f Section 4.1, 4.3 from the main paper) and 512 when using more than
2000 training shapes (c.f Section 4.2, 4.4 from the main paper). “O” denotes
the output that lies in R3 for DeFieldNet and R for SDFNet. Each Hyper-Net
operates individually, predicting the weights and biases of corresponding layers
of DeFieldNet and SDFNet respectively. An individual block of Hyper-Net is
visualized in the right of Figure 3, where each block denotes MLP followed by
ReLU activation.

2.4 Run-time

We report the run-time comparison between our approach and different base-
lines. For this, we consider one (top-performing, c.f. Table.2, main paper) base-
line per category. Our observation is summarized in the Table 1. The run-
time is measured per-pair, in seconds, averaged across 430 evaluation shapes
of SHREC’19 [13]. While GeoFM outperforms the remaining approaches, this
method is not built to handle point cloud inputs. On the other-hand, the second
best performing axiomatic method S-Shells [4] has a costly run-time.

Method S-Shells [4] CorrNet [26] GeoFM [3] 3DC [6] Ours

Run-time 904.1 26.1 4.2 14.3 12.1

Table 1: Comparison of inference run-time of different methods.
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2.5 Baselines

We provide more details on various baselines used in our main paper. Ax-
iomatic: First, we solve for a Functional Map [15] using 40 Eigenvalues on each
shape with 20 Wave Kernel descriptors [1] and refine the point-to-point map by
spectral upsampling [14], expanding the map size to 120x120. We refer to this as
ZoomOut in our experiments. By introducing the orientation preservation oper-
ator, we optimize for the same map as before and refer to as BCICP [17]. For
Smooth Shells [4] and PFM [19] we used the available code as is, using prescribed
parameters in the respective papers. Spectral Basis learning : For GFM [3],
we used DiffusionNet [22] feature extractor consisting of 4 diffusion blocks with
128 dimensional layer-wise features. For all the point cloud based experiments,
we computed the Point Cloud Laplacian [23] and used 33 Eigenvalues on each
shape. For DeepShells [5], we re-trained the author provided code without mod-
ifying the hyper-parameters. Template learning : We trained DIF-Net [2],
DIT [27] and 3D-CODED [6] for 70 epochs, 2000 epochs and 100 epochs respec-
tively. For 3D-CODED, we used the high-res template (230k vertices) and scaled
the point cloud to match the spatial extents of template. Point Cloud learn-
ing : For DPC [9], we used the author provided code and pre-trained model as
their experimental setting are comparable to ours. For Corrnet3D [26] and Diff-
FMap [12], we re-train on the same dataset as DPC using the author provided
code for a fair evaluation. Additionally, Corrnet3D and DPC are trained only
on 1024 input points. To scale the evaluation to arbitrary resolution, we follow
the solution prescribed by the respective authors.

3 Evaluation

3.1 Meshes

We follow the Princeton benchmark protocol [8] for evaluating non-rigid shape
matching accuracy for our mesh-based experiments. Given a predicted corre-
spondence Π̃ and a ground truth correspondence Π for shape X , we measure
the geodesic error as

εM(Π̃,Π) =
dG(Π̃,Π)√
area(X )

(2)

In the partial setting, correspondence is evaluated only on the vertices that
are present [18].

3.2 Point Clouds

Unlike for meshes, there is no universally accepted protocol for correspondence
evaluation on point clouds. Hence, we created point cloud variants of SHREC’19 [13]
and FAUST [17] based on meshes from respective benchmarks for correspondence
evaluation. We measure the correspondence error in two main steps. First, for
each point in the source and target Point Clouds x ∈ X , y ∈ Y, we construct
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Fig. 4: Qualitative summary of our ablation study. Figures depict the recon-
structed template mesh corresponding to different ablations. Inclusion of LSDR
results in a smooth deformation field for points on and close to the surface.

Euclidean maps Fx,Fy that maps them to the nearest vertex in the underlying

mesh. Given Π̃ and Π to be predicted point-to-point map between point clouds
and underlying mesh, we compose the two aforementioned maps to measure
correspondence defined on mesh vertices as follows:

εP(Π̃,Π) = εM(FY ◦ Π̃(X ), Π ◦ FX (Y)) (3)

Where εM is given in Equation 2.

3.3 Key Point Evaluation

We perform key point evaluation on the CMU-Panoptic dataset [7]. This dataset
consists of point clouds acquired from 3D-scans for which key-points annotations
are available in the form 3D skeleton joints. There are in total 19 key-points
following the Microsoft-COCO19 format [25]. For our evaluation, we consider
these 19 key-points to be in correspondence, e.g. right-hip of two persons are
in correspondence and measure the error in a small key-point neighbourhood.
More precisely, let κXi and κYj be two key-points in correspondence, belonging

to source X and target Y respectively. Let N : κXi ∈ R3 → X ∈ RK×3 be a map
that constructs a Euclidean neighbourhood around key-point κXi in the source
such that X ⊂ X . Here, K denotes the size of neighbourhood and we set K=32
in our evaluation. Similarly, let G : Y ∈ RK×3 → κYj ∈ R3 be a map between

points on target shape Y ⊂ Y to its nearest key-point. Considering Π and Π̃
to be the ground truth map between key-points and predicted point-wise map
respectively, the key-point error is measured as follows,

εP(Π̃,Π) = dE(G(Π̃(N (κXi ))), Π(κYj )) (4)

Where dE is the Euclidean distance.

4 Ablation Studies

We justify the presence of each component in our network through an ablation
study. We perform experiments on the FAUST-Remesh [17] and SHREC’19 [13]
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datasets respectively. Training data and hyper-parameter details are in accor-
dance with the main paper. We gauge the efficacy of each individual component
by measuring correspondence accuracy of our network without different compo-
nents listed herewith.

1. w/o SDFNet: The purpose of SDFNet is to regularize the latent em-
bedding constructed from the deformation field through the gradients of
DeFieldNet. We test the necessity of SDFNet by removing it. Our learning
objective then becomes,

Ltrain = LSDR + Lsurf + Lvol + Lsmooth

Where we jointly optimize for shape latent space purely based on defor-
mation. Analogously, at test time we minimize the same objective without
LSDF .

2. W/o Lsurf: In the similar spirit of two conceptually similar prior works [27,2],
we try to reason for correspondence only through SDF representation. How-
ever, please note that different from the two aforementioned approaches,
we use an explicitly defined template volume. Our new training objective is
given by

Ltrain = LSDR + Lvol + Lsmooth

3. Tr-Te W/o LSDR: Our proposed SDR aims to regularize the deformation
field by making preserve signed distance under deformation. To understand
its necessity, we remove LSDR with the resulting loss that we minimize at
training time,

Ltrain = LSDF + Lvol + Lsmooth + Lsurf

Similarly, we remove LSDR from the inference objective, corresponding to
Equation. 9 in the main paper.

4. Te W/o LSDR: While regularizing the deformation field at training time
alone seem sufficient, it is also important to have a spatially consistent de-
formation field at test time, i.e, the field must only map between level-sets.
We hypothesize the highly non-convex nature of the optimisation to solve
for a shape latent embedding to be a possible cause for this requirement.
We empirically test this hypothesis by removing the LSDR term only during
inference.

αi = argmin
αi

Λ1LSDF

ω := ΓHD(αi)

Our training objective remains unchanged.
5. W/O Field-Regul. :Here, we try to understand different off-surface reg-

ularisations applied to the deformation flow. such as Lsmooth, LSDR, Lvol.
Our training objective is therefore,
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Ltrain = Lsurf + LSDF

Analogously, we remove the aforementioned terms at test-time.
6. W/O Opt: Lastly, we remove Chamfer’s Distance optimization (detailed in

Equation 10 of the main paper) that is performed to enhance the deforma-
tion.

Observation: We summarize our quantitative results in Table 2. We make
the following two main observations. First, while it might seem straightforward to
learn a shape latent embedding only by supervising the deformation field, we ob-
serve a noticeable performance difference in correspondence accuracy across the
two benchmarks SHREC’19 [13] and FAUST [17] without our SDFNet. A possi-
ble explanation, coherent with our motivation, could be the efficacy of learning an
implicit surface through the auto-decoder framework in providing geometrically
meaningful and compact latent embedding. Second, we also observe a discernible
difference in performance with and without our proposed regularization, LSDR.
This observation is consistent with our hypothesis on the necessity to make the
flow-field for points close to the surface spatially consistent. Moreover, making
the deformation field preserve SDF also leads to a smoother reconstruction of
template mesh as depicted in Figure 4.

5 Further robustness analysis

We perform two additional experiments to consolidate our robustness discussion.
First, we analyze the necessary training effort for our model to achieve optimal
robustness in comparison to the closest supervised baseline, 3D-CODED [6].
Second, we vary the levels of noise and clutter points for the experimental set-
ting discussed before. Furthermore, in our second analysis, we compare our pre-
trained model used in the main paper against baselines that were trained on
100× more training data, i.e 230,000 shapes and with data-augmentation in the
form of noise. We refer to such baselines as Oracle baselines to the scope of
this study. Subsequently, we demonstrate that our approach outperforms the
baselines with a fraction of training data and without data-augmentation.

5.1 Effect of training data

We gradually increase the amount of training data and compare the correspon-
dence accuracy across Scenario 1, Scenario 3 and Scenario 4 from Table. 2 in the

Experiment W/O SDFNet W/O Field-Regul Tr-Te W/O LSDR Te W/O LSDR W/OLsurf W/O Opt Ours

SHREC’ 19 11.6 7.3 7.5 6.8 17.0 10.8 6.5

FAUST 14.8 4.9 3.7 3.6 26.8 5.0 2.6

Table 2: Quantitative comparison of ablation study reported as mean geodesic
error (in cm). Note that our model, using all components and losses leads to the
lowest error
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Fig. 5: Number of training shapes and corresponding geodesic error on SHREC19
and its variants. Since we perform partial (source) to full (target) shape match-
ing, the evaluation in the last graph only consists of a subset.

main paper respectively. We construct four training sets consisting of 100, 500,
1000 and 2000 shapes from the SURREAL dataset [6]. Our motivation behind
this study is to demonstrate the efficacy of our approach in settings with paucity
of training data. To this end, we compare with the closest supervised baseline,
3D-CODED [6], and show that in spite of being supervised, our approach needs
significantly less training data, fractions to be precise. Our approach and the
baseline are trained with the same hyper-parameters as previously discussed.

Discussion: Across three scenarios, we observe that our approach con-
sistently outperforms the baseline irrespective of the number of samples in the
training set as shown in Figure 5. Interestingly, in Scenario 3, where we introduce
corruption to the data in the form of outliers, our approach achieves an error
when trained on 100 shapes that is comparable to 3D-CODED trained on 2000
shapes. Finally, we observe over a two-fold improvement in performance in the
partial setting with 100 training shapes. We posit that a stronger conditioning
of the latent embedding through SDF regularization and learning a volumetric
map, which is independent of the underlying geometry to be a possible reason
behind this observation.

5.2 Comparison to Oracle baselines

We compare our approach with three baselines, namely, 3D-CODED [6], Diff-
FMaps [12] and CorrNet3D [26]. The three aforementioned baselines are trained
on 230k SURREAL shapes [6] and thereby referred to as Oracle baselines. How-
ever, we stress again that we use our pre-trained network discussed in the main
paper, trained on 2k SURREAL shapes.

We compare our method to the baselines by varying the level of corruption
to data, across experimental settings studied in the main paper. To that end,
we further subdivide this study in two experimental settings. First, we consider
the variant of FAUST consisting of point clouds with clutter points. Second,
we evaluate on the variant of SHREC’19 involving point clouds with noise and
outliers respectively. For the first case, we use 15%, 25% and 30% clutter points
in contrast to 20% of the total points discussed in the main paper. Similarly,
for the second case, we vary the standard deviation of the Gaussian noise added
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to the surface between 0.5% and 25%, in contrast to 10% discussed in the main
paper. Furthermore, for the second case, we add a stronger Gaussian Noise with
standard deviation σ = 0.1 to 20% of the points in the point cloud.

Fig. 6: Quantitative comparison for matching point clouds with varying levels
of noise. Our method is trained on 2000 training shapes while all the Oracle
baselines are trained on 230k shapes.

Fig. 7: Quantitative comparison between our method and different baselines for
matching point clouds in the presence of varying levels of clutter points. Our
method is trained on 2000 training shapes while all the baselines are trained on
230k shapes.

Discussions: Our results are summarized quantitatively through geodesic
accuracy graphs [8] in Figure 6 and Figure 7 respectively. Consistent with our
observation in the main paper, our method shows high resilience towards noise
and imperfection in data. Our aim of reducing the amount of noise is to show
that performance of existing state-of-the-art methods rapidly degrades even in
the presence of negligible imperfection in the data.

6 Qualitative results

Finally, we show qualitative results across different benchmarks, namely the
noisy point cloud variant of SHREC’19 mentioned in our main paper, additional
qualitative examples of scanned point clouds from CMU Panoptic dataset [7],
animal shapes from Deforming Things 4D [10] and real-world scans of humans
in clothing with registration artifacts from CAPE Scans dataset [11].



Implicit Field Matching 11

6.1 SHREC’19 Point clouds with outliers

Fig. 8: Additional qualitative results of our approach and the baselines 3DCoded
[6], CorrNet3D [26] on SHREC’19 point clouds with outlier introduced in the
main paper. For ease of observation, we highlight stark differences in map quality
in red. In the final row, we also report a failure case of our approach.
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6.2 Point Clouds from CMU Panoptic dataset

3D-CODED OursCorrNet GTSource

Fig. 9: Additional qualitative results on CMU Panoptic dataset through texture
transfer. Stark differences are highlighted using a bounding box for better visu-
alization. Last row depicts a failure case of our method.
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6.3 Deforming Things 4D

For the sake of completeness, we report additional qualitative results on inter-
class point clouds consisting of animals from the Deforming Things 4D dataset [10].
This dataset consists of point clouds with self-occlusion and partiality, emulated
through Blender. Please note that unlike previous cases, there is no ground truth
information available for inter-class shapes. For our qualitative example, we con-
sider Cow, Bear, Fox and Deer classes. Our choice is based on large inter-class
variability and non-isometry. All methods are trained on SMAL dataset [28] as
mentioned in the main paper.

3D-CODED OursCorrNet DPCSource

Fig. 10: Additional qualitative results on Deforming Things 4D animals dataset
through color transfer. Our approach shows better qualitative correspondence
for large non-isometry between point clouds.
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6.4 Clothed humans : CAPE Scans

3D-CODED OursCorrNet TargetSource

Fig. 11: Additional qualitative results on clothed humans from CAPE scans [11]
consisting of noisy meshes with outliers.

7 Limitations

While our method is largely robust through learning a volumetric map with
strong regularisations, similar to all approaches that purely learn from extrinsic
information, our approach suffers from generalization to unseen poses as de-
picted in the last row of Figure 8. This issue can in part be attributed towards
the ill-posed problem of learning an embedding space purely from Cartesian co-
ordinates. However, our current framework of joint learning of latent spaces by
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continuous functions opens possibilities for descriptor learning alongside purely
extrinsic information. Another notable failure case of our method occurs at the
area of self-intersection as depicted in the last row of Figure 9. Making our ap-
proach robust to self-intersections is also an interesting future work.
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19. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial func-
tional correspondence. In: Computer Graphics Forum. vol. 36, pp. 222–236. Wiley
Online Library (2017) 5

20. ROHATGI, V.: An introduction to probability theory and mathematical statistics
(1979) 2

21. Sharma, A., Ovsjanikov, M.: Weakly supervised deep functional maps for shape
matching. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
dfb84a11f431c62436cfb760e30a34fe-Abstract.html 2

22. Sharp, N., Attaiki, S., Crane, K., Ovsjanikov, M.: Diffusionnet: Discretization ag-
nostic learning on surfaces (2021) 5

23. Sharp, N., Crane, K.: A Laplacian for Nonmanifold Triangle Meshes. Computer
Graphics Forum (SGP) 39(5) (2020) 5

24. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Advances in Neural Information
Processing Systems 33 (2020) 3

25. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: European Conference on Computer Vision (ECCV) (2018) 6

26. Zeng, Y., Qian, Y., Zhu, Z., Hou, J., Yuan, H., He, Y.: Corrnet3d: Unsupervised
end-to-end learning of dense correspondence for 3d point clouds. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2021) 2, 4, 5,
9, 11

27. Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3d shape repre-
sentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1429–1439 (2021) 5, 7

28. Zuffi, S., Kanazawa, A., Jacobs, D., Black, M.J.: 3D menagerie: Modeling the
3D shape and pose of animals. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (Jul 2017) 13


