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Abstract

The task of authorship verification consists in detecting whether two texts have been written by the same
person. This paper describes the CLG Authorship Analytics software, which implements several individual
methods as well as a stacked generalization system for authorship verification. The approach relies primarily
on ensemble learning methods, i.e. repeatedly sampling the data in order to capture the invariant stylistic
patterns. The approach is tested through a series of experiments designed to test the ability of the system
to generalize, depending on various parameters.

The code and results of the experiments are publicly available.1

1 Introduction
The task of authorship verification consists in detecting whether two texts have been written by the same
person. Literary studies, e.g. identifying the anonymous author of a text, are the most traditional application
of the task of authorship verification; but it also has direct applications in forensics, e.g. finding the author of
anonymous threats (Lambers and Veenman, 2009; Abbasi and Chen, 2005), and potentially in various problems
with social media, e.g. unmasking a user who posts messages under several identities, or detecting identity theft
when an account has been hacked.

Authorship verification is the cornerstone of a range of authorship applications, because solving this question
would contribute greatly to solving most author identification problems (Koppel et al., 2012). In particular, the
traditional task of author identification, which consists in predicting the author of a text among a set of known
authors, can be expressed as multiple authorship verification problems. Importantly, authorship verification
focuses on distinguishing a known author from any other author, as opposed to only discriminating among a set
of known authors. This makes it usable not only for the traditional closed-set classification problem of author
identification but also for the open-set variant of the problem, where the author can be one of the known authors
or some new unknown author. This makes authorship verification much more general in theory and also much
more useful in real-world applications such as forensics applications, where problems are usually open-ended.
In terms of methods, this also means that authorship verification focuses on the most challenging part of any
authorship problem, which is the problem known in Machine Learning (ML) as the bias-variance tradeoff: an
authorship verification system must be able to distinguish features which are characteristic of an author’s style
(the general author’s stylistic patterns) against features which are only characteristic of the available documents
by this author (for instance when the document addresses a specific topic or belongs to a specific genre).

The authorship verification problem can be considered under different angles, in particular in a supervised
or unsupervised context. In the former case, authorship verification is seen as a one-class classification problem;
this setting is usually favored because it provides more reliable results in general, provided the tested data
belongs to the same distribution as the training data. However, this condition is not easy to satisfy in most
real applications, either by lack of adequate training data or simply because the type of data to process cannot
be predicted. On the other hand, the unsupervised approach is a harder problem to tackle, but is by definition
more robust and adaptable.

CLG Authorship Analytics is an open-source software2 for solving authorship problems, with a particular
focus on authorship verification. While the system is intended to allow both supervised and unsupervised
learning, the latter is not very developed in the current version. The system originated from the authors’
participation in the PAN shared tasks from 2013 to 2015 (Moreau and Vogel, 2013; Moreau et al., 2014, 2015).3
It is based on the prototype which was ranked second at the 2015 shared task, with significant improvements in
efficiency and genericity. The system allows various setups, ranging from applying a single unsupervised method

1https://github.com/erwanm/clg-authorship-experiments.
2Available at https://github.com/erwanm/clg-authorship-analytics.
3https://pan.webis.de/clef15/pan15-web/authorship-verification.html – last verified July 2022.
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to training a meta-classifier with genetic learning, using distributed computing. Additionally to the large range
of options which can be used with the existing methods, the system is designed to facilitate the integration of
new methods at different levels: new categories of features or specific similarity measures can be added, new
verification methods can be implemented and used in combination with the existing ones, etc.

The approach relies primarily on ensemble learning methods to address the challenging bias-variance tradeoff
of authorship verification. By definition ensemble methods require repeatedly sampling the data in order to
capture the invariant patterns, and this makes the system resource-intensive, in particular when training models
with genetic learning. Additionally the numerous options makes the system fairly complex and somewhat
cumbersome. This is why a detailed user guide has been written to accompany the present article.4 This user
guide details the technical aspects of the software, so that readers interested in testing or using the system may
follow it in parallel to the explanations provided in this paper.

The article is organized as follows: We briefly review the state of the art in section 2; after describing
the system in section 3, some new experiments intended to test the ability of the system to solve authorship
verification problems under various conditions are presented in section 4 and analyzed in section 5. The focus
of these experiments is not performance per se, but rather the study of the conditions which make the system
perform well or not. In particular, these experiments are designed to measure how well the system generalizes
to new unknown authors. For the sake of reproducibility, the code and results of the experiments are made
available at https://github.com/erwanm/clg-authorship-experiments.

2 Related work
Various methods have been proposed in the literature to address author verification. In particular ensemble
methods have proved quite sucessful at tackling the challenge of capturing the features relevant to the author’s
style and discarding the ones which are not (Koppel et al., 2007; Vogel et al., 2009; Koppel and Seidman, 2013;
Koppel and Winter, 2014; Potha and Stamatatos, 2019). Author verification has also been the focus of several
iterations of the PAN shared tasks,5 e.g. (Stamatatos et al., 2014, 2015; Bevendorff et al., 2020; Kestemont
et al., 2021). These events contribute datasets and evaluation measures, thus allowing the community to compare
different methods on the same basis and in turn boosting the development of author verification methods. The
organizers also host a github.com project page6 which indexes the source code of a large number of participating
systems, thus providing a rich collection of state of the art authorship verification systems.

Recent years have seen the development of “big data” author verification methods. Until recently, most
methods used for author verification were still relying on traditional supervised ML (Stamatatos, 2016), even
though the state of the art in NLP had already moved towards deep (neural) representations. This observation
motivated the PAN organizers to collect a very large dataset, in order to allow neural methods, which need a
high volume of training data, to show their strength in the task of authorship verification (Kestemont et al.,
2021). This resulted in a new neural networks-based methods being proposed, e.g. (Schaetti and Emile-Argand,
2019; Tyo et al., 2021; Manolache et al., 2021; Boenninghoff et al., 2021a,b).

The approach presented in this paper belongs to the “traditional” category of authorship verification meth-
ods, but a recent neural system is evaluated for the sake of comparison ((Boenninghoff et al., 2021a), see details
in Section section 4.3).

3 Approach
3.1 General design
The task of authorship verification consists essentially in answering the following question: given two distinct
texts, have these texts been written by the same person? We opt for a general interpretation of this question,
formally defined as follows: given two sets of texts {a1, .., aI} and {b1, .., bJ}, knowing that all the ai texts were
authored by A and that all the bj texts were authored by B, are A and B the same person? Naturally this
definition includes the most simple case where a single text a1 is compared against a single text b1. It also
includes the PAN 13-15 variant of the question where a set of texts {a1, .., aI} written by a “known author”
is compared against a single document b1 (the “unknown” or “questioned” document). We also adopt the
same probabilistic representation as PAN, defining the output of a verification problem as a numerical value
in the interval [0, 1] which represents the probability that the answer is positive (same author). The intended
interpretation is for 0 to mean “different author” with maximum certainty, for 1 to mean “same author” with
maximum certainty, and any intermediate value describes the likelihood of a positive answer. Again this is

4Available at https://erwanm.github.io/clg-authorship-experiments/user-guide-part1.html.
5https://pan.webis.de/ – last verified July 2022.
6https://github.com/pan-webis-de.
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the most general representation, since this numerical value can easily be converted to a boolean answer by
thresholding it at 0.5.

As a post hoc analysis, the organizers of PAN 2014 evaluated a meta-model based on all the individual
systems answers. They observed that “this meta-classifier was better than each individual submitted method
while its ROC curve clearly outperformed the convex hull of all submitted approaches. This demonstrates the
great potential of heterogeneous models in author verification, a practically unexplored area.” (Stamatatos et al.,
2014, p. 893).

This idea of combining the strengths of multiple heterogeneous systems forms the basis of our supervised
approach: many individual systems are trained, then their predictions are used to train a meta-model which
combines them optimally to predict the final answer (stacked generalization). In this approach, the final model
performs theoretically at least as well as any individual learner, and potentially better. However this has two
main disadvantages:

• There is a high risk of overfitting the model due to the optimization of a possibly very large number of
parameters based on a limited training dataset.

• The system is complex and computation-heavy, since it requires training multiple different models and
minimizing overfitting by repeatedly sampling the data.

It is worth noting that every possible individual learner can be used as an independent unsupervised au-
thorship verification system, but the system is not particularly adapted for this usage for two reasons:

• An individual model depends on a set of hyper-parameters with many possible values. This is because
the individual models are intended to be optimized and used as independent heterogeneous learners in a
supervised context. The choice of these values can have an important impact on the performance of the
system, but there is no indication of which one to choose in an unsupervised context.

• The individual models can (and usually do) deliver multiple features as output (see also below). Depending
on the method, some of the features may be used individually as an answer to the verification problem,
but in general this output is not directly interpretable.

3.2 Common parameters
We call observation types the different types of raw features used by the individual models.7 An observation can
be any observable feature in a text. The most common type is n-grams, but observation types are unrestricted.
A document can be represented as a collection of n-grams (e.g. bag-of-words or bag-of-characters) of a single
observation type.

Different types of observations can be taken into account, e.g. words bigrams, character 5-grams, POS
trigrams, etc. The different kinds of observations are distributed among different categories (called observations
families in the system):

• Token-based n-grams. Examples: T represents unigram tokens, TT represents bigrams, etc. A skip-gram
is represented with a S, e.g. TST is a skip-gram of length 3 where the middle token is skipped; the result
is a bigram which contains the 1st and 3rd token.

• Character-based n-grams. Examples: CC represents character bigrams, CSSCC skip-grams of length 5 where
the 2nd and 3rd chars are skipped; the result is a trigram which contains the 1st, 4th and 5th token.

• Part-Of-speech-based n-grams, which can combine tokens (T), POS tags (P), lemmas (L) and skip (S).

• Class-based observations, which represent specific mappings of words to predefined classes, for example:

– Morphology classes, such as “number”, “punctuation”, “capital first letter”;
– Token length classes, where the tokens are classified depending on their length.

Every observation type also has two parameters which control (1) the minimum frequency for an observation
to be taken into account, and (2) whether they should be extracted when they overlap several text units,
typically sentences. Additionally, the token-based features accept an option which specifies which words to take
into account as predefined vocabulary. This causes all the words which are not in the vocabulary to be replaced
by a placeholder symbol. It can be used to count only patterns involving frequent words (often called stop
words), in order to avoid content words which are less likely to be good indicators of an author style. Note that
this is different from the minimum frequency option, which discards full observations, as opposed to some of
the words in an observation.

7To prevent any confusion, we reserve the word “features” for the information fed to the supervised learning algorithms.
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3.3 Strategies
A strategy is a method to produce indicators about the answer to a verification problem. It is possible for a
verification strategy to return only one feature value which answers the question directly, but in general the
output is a set of features, the meaning of which depends on the strategy. This set of features is intended to be
used as input to a learning algorithm. A strategy can have multiple hyper-parameters which can be optimized in
the supervised context using genetic learning (see section 3.4.3). Three strategies described below are currently
implemented in the system. Every strategy receives as input a set of observation types, each corresponding to
a particular representation of the input documents.

3.3.1 Basic strategy

As its name suggests, the basic strategy is a simple method. It computes the similarity between two documents
according to a similarity measure for every input observation type:

• The only similarity measures currently available in the system are cosine and minmax.8

• An output feature is produced for every input observation type, containing the value of the corresponding
similarity score.

3.3.2 General Impostor strategy

This method is described fully in (Koppel and Winter, 2014), used in previous PAN workshops by Seidman
(2013) and in a modified form by Mayor et al. (2014) and Khonji and Iraqi (2014). It repeateadly compares
portions of the tested documents against each other and against other (portions of) external documents which
represent the impostors. If the similarity between the tested documents is significantly higher than the similarity
obtained between a tested document and an impostor, then the tested documents are likely to be from the same
author.

Randomness plays a crucial role in this method: at every run, the portions of document, the impostor
document, the observation type and the subset of observations are picked randomly. Additionally the method
takes several parameters, the most important of which are listed below:

• Number of iterations.

• Preselection of the most similar impostors documents. This option allows a subset of impostors documents
to be used instead of the full set in order to compare roughly comparable documents.

• Proportion of observations to select at every iteration.

• The similarity measure to use.

• Method to count the most similar features. Available methods include the original one defined in (Koppel
and Winter, 2014) as well as two variants.

The choice of the set of impostors documents is an important parameter. Different options have been
proposed in the literature. A common option is to use the results of some Google queries formed by randomly
picking words from the set of input documents as impostors.9 In the experiments presented below (see section 5),
we opt for using all the training documents as impostors. While this option is not ideal since the documents
obviously include precisely the documents to be compared, it is a reasonable simplification if the training set
is diverse enough in terms of authors and if the number of iterations is large enough to prevent the occasional
wrong comparison from having a significant effect on the output features.

3.3.3 Universum Inference strategy

This strategy follows the idea described in (Vogel et al., 2009): in this paper, a large corpus containing several
“categories” (the input documents in our task) is split into small chunks. A chunk of category A is compared
against many chunks from other categories and from category A as well, picked randomly. It was shown that a
reliable measure of the category homogeneity can be derived from examining how different the level of similarity
is between comparing A to A and comparing A to some distinct category X.

We adapted the approach to the case of smaller documents in the following way. Let A and B be two
documents, the following process is repeated N times with different random subsets:

8Minmax is defined as
∑

i
min(xi,yi)∑

i
max(xi,yi)

, where (xi, yi) represent the frequency of the observation i in the two documents.
9The system includes a script to this effect.
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1. The two documents are split into three parts randomly: A1, A2, A3 and B1, B2, B3; one of the thirds is
split again into two parts: X3 = X ′

3, X
′′
3 .

2. The pieces of text are re-organized under three categories, each containing two parts and all the parts
being of similar size: CA = {A1, A2}; CB = {B1, B2}; Cmixed = {A′

3 ∪B′
3, A

′′
3 ∪B′′

3 }.

3. The three categories are compared in the same way as in (Vogel et al., 2009), that is, both against itself
(using the two parts belonging to this category) and against each other category (picking one of the two
parts randomly).

In other words, different portions of A and B are mixed together repeatedly, then we compare the similarity
obtained between A and A, B and B, A and B, mixed-AB and A, mixed-AB and B, mixed-AB and mixed-AB.
If A and B have the same author, the resulting similarity scores should be all similar. The hyper-parameters
specify the number of iterations, the proportion of observations to pick at every iteration, the similarity measure,
as well as several parameters which determine the calculations used to obtain the output features.

3.4 Supervised learning
3.4.1 General principle

A strategy returns a set of features for every verification problem. A problem can be labelled, i.e. provided with
the gold-standard answer indicating whether the two groups of documents are actually from the same author or
not. Naturally, a set of labelled verification problems can be used to train a supervised model, using the features
returned by the strategy to represent every problem as an instance. The most simple option would be to treat
the task as binary classification, but since we are also interested in quantifying the level of the confidence of the
system (see section 3.1), the supervised setting is implemented as a regression task:

• During training, the problems are provided with the answer as 0 (different author) or 1 (same author).
The model is trained to predict this numerical value based on the features returned by the strategy for
multiple such problems.

• When the model is applied, the predicted value for the answer may vary between 0 and 1. A value close to
0 (resp. 1) indicates probably different (resp. same) author, and a value around 0.5 indicates uncertainty.

Thus a regression model is trained (or applied) to the features which have been computed for all the input
problems (instances for the model). As learning algorithms, we use the Weka Hall et al. (2009) (version 3.8.5)
implementation of SVM regression (with polynomial or RBF kernel) (Keerthi et al., 2001) as well as decision
trees regression (Quinlan, 1992), with variants depending on their parameters.

Optionally, a second model can be trained in order to evaluate the confidence of the model in each answer,
and possibly replace it with the special value 0.5, meaning that the case is unanswered in the PAN evaluation
methodology. This classification “confidence model” can use any of the available features, as well as the score
computed with the first regression model. In the learning stage, the model which was trained is applied to the
instances. Depending on the configuration, the instances can be split up so that the second model is based
on unseen instances, but then less instances are used to train each model. This option is not used in the
experiments presented in this paper.

3.4.2 Evaluation

The system supports three evaluation measures:

• Accuracy, i.e. the proportion of problems predicted correctly. The system actually uses the modified
accuracy c@1, which was introduced in (Peñas and Rodrigo, 2011) in order to take into account the
possible absence of answer (represented as the special value 0.5), i.e. cases where the system chooses to
answer “I don’t know”. Such cases are less penalized than wrong predictions by c@1. Since we do not use
the confidence evaluation system in these experiments (see above), the system is very unlikely to predict
exactly 0.5 so this measure is practically equivalent to accuracy in our case.

• Area Under the ROC curve (AUC), which can be interpreted as the probability that a true negative case
obtains a score lower than a true positive case.

• The product of two above scores, which was the official evaluation measure at PAN15 (Stamatatos et al.,
2015). It is worth noting that this evaluation score is mathematically lower than accuracy or AUC (it
is equal only in the case of perfect performance). In particular, the random baseline corresponds to a
performance of 0.5 for both accuracy and AUC but to 0.25 for their product.
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3.4.3 Genetic algorithm

As mentioned above, a verification strategy may be applied to any set of observation types and may accept
a number of specific hyper-parameters. These input parameters are provided to the strategy in the form of
a configuration, which represents every possible option as a name-value pair: C = {p1 7→ v1, . . . , pn 7→ vn}.
Naturally the total number of possible configurations, i.e. all the combinations of name-value pairs, can be
extremely high. The genetic algorithm is used to explore the space of all the possible configurations efficiently
and discover the best performing ones for a particular training set. In other words, this process is essentially
hyper-parameter tuning with an extremely large number of parameter values.

The genetic algorithm works with configurations as “individuals”: each configuration describes the hyper-
parameters of a strategy. A multi-configuration associates multiple values to one parameter:

MC =
{
p1 7→ {v11 , . . . , v1m1

}, . . . , pn 7→ {vn1 , . . . , vnmn
}
}

In theory, a set of multi-configurations can be used to describe the set of meaningful combinations of
parameters, in a way similar to a disjunctive normal form. For the sake of simplicity we use a single multi-
configuration by strategy, leaving the selection of relevant combinations to the genetic algorithm. A multi-
configuration is the input of the genetic algorithm:

• The first generation of configurations is initialized randomly: N configurations are selected among the
possible combinations represented by the multi-configuration.

• After the first one, every generation is obtained based on the individual performance of the configurations
from the previous generation:

– The “breeders” are selected in a way such that the probability of a configuration being selected is
proportional to its rank by performance.

– For every new configuration, two parents are selected randomly among the breeders and every pa-
rameter is assigned the value of either one of the parents value, with a small possibility of mutation.

Additionally, the algorithm allows for a proportion of the new generation to be selected fully randomly, and
for a proportion of the best previous configurations to be cloned to the next one (elitism).

The convergence of the algorithm is assessed automatically: at the end of every generation, the mean
performance over a window of the last n generations is calculated. If this value does not increase anymore over
a fixed number of windows, the stop criterion is met. The user can specify various parameters in order to adapt
the process to the task at hand and the available computing resources: the multi-configuration which defines
the search space, the parameters which control the genetic algorithm, and the stop criterion. This way the
genetic process can be configured to favor speed or a more exhaustive exploration of the search space.

The disadvantage of using a genetic algorithm, especially with a vast set of possible configurations, is
the risk of overfitting. We use cross-validation inside the genetic algorithm: every generated configuration is
evaluated using k-fold cross-validation, and the resulting performance is used as the fitness function by the
genetic algorithm. We use several other techniques in order to keep overfitting to a minimum:

• The partitioning for the k-fold cross-validation is randomly (re-)generated at every generation.

• The system allows to chain multiple stages of genetic learning with different parameters, in particular
different values of k and different values for the size and number of windows in the stop criterion. At every
new stage, the previously selected set of configuration is used as first generation, and re-evaluated under
the new parameters. This allows the process to check and progressively refine the optimal configurations
and/or adjust the trade-off between the precision of the process and the required computing power.

• At the end of the last stage, the N best configurations are re-evaluated using a 10x2 cross-validation
setting,10 in order to control the influence of the cross-validation partitioning on the performance variance.

The genetic learning process is applied to every strategy independently, resulting in a set of N best config-
urations for each strategy.

3.5 Meta-model (stacked generalization)
Training the meta-classifier consists in finding an optimal way to combine the results obtained by the N best
individual strategy configurations returned for each of the strategies (e.g. if three strategies are trained, there
are N × 3 configurations available as features for the meta-training; in the experiments below we use N = 50).

10Repeat 2-fold cross-validation 10 times with a different split every time.
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Among these, the strategy configurations which prove useful are selected (in the experiments, the meta-model
usually selects between 50 and 70 individual models out of 150 available), the other ones are discarded (feature
selection). The method to combine them is also selected during this stage. This process results in a set of M
best meta-models, each model being a combination of a selection of strategy configurations. The initial N best
individual strategy configurations are also re-evaluated, to allow selecting a single strategy model instead of the
best meta-model. In the below experiments we also use this option in order to study the performance of the
meta-model in relation to individual models.

The predicted scores of the N best strategy configurations for every strategy are used as features by the
meta-classifier. A subset of strategy configurations, together with a method to combine them, forms a meta-
configuration. The genetic learning algorithm is used once again at this stage in order to find the optimal
meta-configuration(s).

In a meta-configuration, an additional parameter indicates how the strategy predictions are combined. In
order to avoid another potential source of overfitting, we restrict this combination to the simplest methods:
the algorithm can select only the arithmetic mean, geometric mean or the median. The system allows using a
regression algorithm; while this might provide better results, it would also increase the risk of overfitting.

The cross-validation setting is quite complex because it needs to balance the limited amount of instances
with the need to assess the model on fresh instances at three different levels. The computational complexity is
also an issue that must be taken into account. Importantly, the instances used to train the individual strategy
models cannot be reused to train the meta-model: the selected configurations have been optimized during the
previous stages, therefore their predicted scores otained on these instances are unrealistically accurate. This
would result in the trained meta-classifier expecting higher quality features than those actually obtained from
fresh instances, causing a large performance drop on the test set. For these reasons, the system applies a method
which does not correspond to a proper nested cross-validation setting but is somewhat similar: at the outermost
level, the training data is split into two subsets A and B. The following process is run independently twice, once
with A as training set and B as test set and once with the opposite training/test assignment:

1. The strategy genetic training uses the outermost training set only (50%). The genetic process uses cross-
validation internally at every generation, then returns the set of N best models for every strategy.

2. The outermost test set (50% of the full data) is split further into meta training set (25%) and validation
set (25%).

3. The meta-model is trained using only the meta training set. Again, the genetic process uses cross-validation
internally at every generation.

4. The best meta-models, as well as the best individual strategy models, are finally evaluated on the validation
set, i.e. the last unseen 25% instances. This evaluation uses a variant of bagging (bootstrap aggregation):11

the models are evaluated 20 times against a different random half of the instances (thus one can manually
control for variance).

But there are still two issues left:

• The last evaluation stage is done on a small proportion of instances, so the results might not be very
reliable.

• The resulting models from the two outermost cross-validation runs are not comparable together. Moreover,
it is possible that one of the runs would perform better than the other in average because of the different
subsets the two use for training and testing.

This is why an additional stage of evaluation of all the resulting models is carried out on the whole dataset,
using our variant of bagging again. This unusual methodology relies on the fact that the meta-models have
not directly seen the outermost training instances used for the strategy training stage. In other words, this is a
pragmatic workaround for the two issues above. Testing proved that the performance on these instances was,
in general, not overevaluated compared to the actual fresh instances of the validation set. There is an obvious
risk of bias with this final evaluation method, thus it might be preferable to rely on the validation set results,
at least when the number of instances is large enough.

4 Experimental setup
4.1 Data
The Diachronic Corpus for Literary Style Analysis (DCLSA), proposed by Klaussner and Vogel (2018), is made
of 554 books written by 22 American literary authors from the mid 19th to early 20th century. The books were

11Strictly speaking, the process differs from bagging because the instances are sampled without replacement.

7



collected mostly from Project Gutenberg,12 supplemented with books from the Internet Archive.13 Klaussner
and Vogel (2018) indicates that books from the latter source were scanned using Optical Character Recognition
(OCR), causing various OCR errors which were corrected using a semi-automatic method.

We opted for an English literature corpus because the experiments are aimed at exploring how well the system
distinguishes authors by varying parameters such as the size of the documents or the number of verification
problems used as training data. This corpus offers a quite diverse collection of authors and multiple long texts
for most authors, thus allowing the selection of subsets of data along different dimensions. Literary texts are
notably less challenging for stylometry systems than user-generated content such as social media texts, since
the authors are professional writers who are able to maintain stylistic consistency. Since we are interested in
comparing performance between different settings, high quality texts are more suitable in order to minimize
variations due to the texts themselves. The corpus was originally compiled for the purpose of studying changes
in the authors’ style across time, but we do not consider this aspect in this paper.

The experiments presented below in section 5 are made with limited portions of the full books. The size of
the portions is counted in number of lines, knowing that all the documents are formatted with standard-size
lines: in average a non-empty line contains 10.3 words or 56.6 characters, with 99% of the lines made of less than
76 characters. Thus 100 lines of a document, as used in most of the experiments, corresponds to approximately
1,030 words or 5,700 characters. All the books except one are more than 1,000 lines long, ranging from 230 lines
to 30,000 with an average of 10,344 lines. Contiguous portions of text are extracted randomly from a document,
after discarding empty lines in order to maintain a consistent document size. The random selection is done only
once in the first experiment (see section 5.1).

4.2 Design of the experiments
In order to measure the effect of various parameters and preserve comparability of the results, the documents
are split in a controlled way between the training and test set:

1. The 22 authors14 are randomly split into three groups of approximately equal size:

• Authors assigned to the training set only;
• Authors assigned to the test set only;
• Authors shared between the training and test set.

2. For every author, their books are pre-assigned to either the training or test set:

• If the author belongs to the training set only group (resp. test set only) then all their books are
pre-assigned to the training set (resp. test set);

• If the author belongs to the shared group, their books are randomly pre-assigned to either the training
and test set.

As a result of this method, a book cannot belong to both the training and test set in any of the experiments.
For every experiment, books are randomly picked according to these pre-assignments in order to build a labelled
dataset of verification problems, i.e. a set of of pairs of same/different authors groups. The specific training and
test set vary for every experiment (see section 5), but the pre-assignments described above is maintained identical
across all the experiments. As a consequence the variations in performance cannot be due to a particular author
or book being assigned to either the training or test set. The “shared author” category is used to compare the
performance on the test set between authors seen vs. unseen in the training set. An ideal verification system
should be able to perform as well whether the involved authors were known from the training or not. All the test
set problems containing at least one group where the author was seen in the training set are marked as “author
seen in the trainining set”.15 The difference in performance between the cases where the author was seen in the
training set versus those where they were not is called the known author bias in the analysis presented below.

All the experiments described below follow the same general design: given a particular parameter as target
of the experiment, a range of appropriate values for this parameter is studied. An individual experiment is
prepared for each such value, where the training and test data are generated randomly but following various
constraints (specific to the study) in order to maintain “all other things equal” as much as possible. The
results of the experiments are obtained in a standard way, by using the training set for the full training process
(including the nested cross-validation splitting described in section 3.5), then calculating the performance of

12https://www.gutenberg.org/ – last verified July 2022.
13https://archive.org/ – last verified July 2022.
14Note: according to the filenames identifying the authors in the DCLSA, the dataset contains two additional authors with one

book each. It is not clear to the author whether this was intended or not. In our experiments these two isolated authors are
automatically assigned to the test set.

15Note: this includes cases where one author is known from the training set and the other is not.
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every model on the unseen test set. The product of accuracy and AUC is used to measure performance (see
section 3.4.2). Additionally the performance on the training set is calculated in order to measure overfitting,
and the test set performance is also calculated separately for the “author seen in the trainining set” instances
vs. “author not seen”. Finally we extract not only the meta-model but also the best model for each of the
three individual strategies (naturally the “best” model is selected based on the training procedure described in
section 3.5). This allows the analysis of the differences between types of models, in particular with respect to
overfitting. In the graphs in the next section, the models corresponding to the basic, General Impostor and
Universum Inference strategies are abbreviated respectively as basic, GI and univ. The meta-model is simply
called meta.

Ideally the experiments would be performed multiple times in order to minimize the effect of randomness
on performance. Unfortunately the complexity of the system makes this difficult, as a single training process
take one to three days using 40 cores under the default parameters. This is why each experiment is run only
once, but with several values of the varying parameter in order to obtain an accurate picture of the performance
variations across values. The code used for the experiments is available at https://github.com/erwanm/
clg-authorship-experiments.

4.3 Baseline systems
Experiments are also carried out with a third-party system for the sake of comparison. To this end, a recent
neural system has been trained and tested in the same way as the main system. The AdHominem/O2D2 system
(Boenninghoff et al., 2021a)16 is a hybrid neural-probabilistic end-to-end framework, which includes neural
feature extraction and deep metric learning, deep Bayes factor scoring, uncertainty modeling and adaptation,
a combined loss function, and an out-of-distribution detector for defining non-responses. This system achieved
the best performance at the PAN 21 authorship verification task. Thus in theory this system is a competitive
baseline, but it is designed to be trained with a high volume of data. This is why two models are used in every
experiment:

• The regular AH model is trained on the same data as our system.

• The pretrained AH.pan21 model submitted to PAN 21 (made available by the authors), trained on the
PAN official training data (Kestemont et al., 2021): 148,000 same-author and 128,000 different-author
pairs across 1,600 fandoms “fanfiction”.

We do not use the out-of-distribution detector (O2D2) part of the model, consistently with the exclusion
of the confidence evaluation system in our own model (see section 3.4). We originally intended to use the
predictions of the Uncertainty Adaptation Layer (UAL), i.e. the output of the model immediately before the
O2D2 component is applied. However preliminary tests showed very poor performance with both models, due
to the models always predicting a positive case. This happens with both the regular and pretrained model,
ruling out an error in the training process for AH.17 Because of this issue, it was decided to use the predictions
of the Deep Metric Learning (DML) part, i.e. the first component of the model.

In the following experiments, the performance of the two AH models is shown in the main performance
graph (first from the left). These systems are excluded from the graphs showing the training/test and the
seen/unseen authors difference in performance. Additionally they are excluded from the second experiment
about the number of documents by group, because the AdHominem/O2D2 model is designed only for pairs of
single documents (i.e. it cannot take into account multiple documents by the same author).

5 Experiments
5.1 Document size
In this experiment we measure the effect of the documents size on the performance of the system. Both the
training and test set contain 100 instances (problems). Every problem is made of a pair of single documents
(i.e. no group of multiple documents is used to represent an author). Both the training and test set contain
an equal number of positive and negative instances. Additionally the books are picked without replacement, so
that a book never appears twice neither in the training set nor in the test set. The different sizes of documents
are applied to both the training and the test set.

16The authors made their system available at https://github.com/boenninghoff/pan_2020_2021_authorship_verification
(last verified July 2022). Some adaptations were required in order to train and apply the system to our dataset: reading the
different input data format, not shuffling the full data but using the predefined training and test sets, and not requiring a “fan-
dom” category in the internal data format (a concept specific to the PAN 21 dataset). These modifications are made available at
https://github.com/erwanm/pan_2020_2021_authorship_verification.

17AdHominem/O2D2 is a complex system, and despite our best efforts it is possible that an error was made is some other part
of the process.
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Figure 1: Performance by document size. Left: performance of the three best strategy learners and meta-
learner, with the models selected by the training stage for every size marked with a black square box.19Middle:
performance of the selected model on the training and test set. Right: performance of the selected model (test
set) when separating instances whether the author was “seen during training” or not. The middle and right
graphs show the linear regression lines (dashed lines). For the sake of readability the data points are split into
two series, with sizes from 20 to 200 by step of 20 shown in the top graphs and sizes from 100 to 1,000 by step
of 1000 shown at the bottom.

Fig. 1 shows the performance of the system for different sizes of documents. As expected, the performance
tends to increase with the size. However the variations in performance are very large even when reaching large
sizes. These variations are very likely due to the different portions of documents being picked randomly at
different sizes, making the set of verification problems more or less difficult to solve. The training stage tends
to overestimate performance, which is a clear indication of overfitting. While overfitting tends to reduce as
the size of the documents increases (second graph), the opposite is true about the known author bias (third
graph). There is too much noise in the observations to draw any solid conclusion, but it is possible that larger
documents cause the models to become more specific about their authors.

5.2 Number of documents by group
Recall that a problem is represented as two sets of texts {a1, .., aI} and {b1, .., bJ}, with all the ai texts authored
by A and all the bj texts authored by B. In this experiment we measure the effect of the number of documents
in the group on one side of a verification problem, that is we make the number I of documents ai vary, while the
second group {b1, .., bJ} always contains a single document (J = 1). This is an important parameter because
when I > 1 the system can leverage the similarities and differences between the documents ai to characterize
the style of author A more accurately. Both the training and test set contain 100 instances (problems) equally
divided between positive and negative instances. The documents are picked with replacement in the training,
allowing a book to appear several times in the training set. However the same book never appears twice in the
the test set. All the documents are 100 lines long.

As expected, fig. 2 shows that the performance increases with the number of documents by group. However
there is no observable reduction in overfitting as the group size increases. The difference in performance between
author seen vs. unseen instances is important, but decreases significantly when the group size increases. This
tends to indicate that the system generalizes better to new author if it is fed with verification problems made
of large groups of documents.

19Some model types may not have a value for every size because the system returns only the top 50 models. As a consequence,
a model type is ignored if it did not reach the top 50 during training.
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Figure 2: Performance by group size. See the explanations about the different graphs in the caption of fig. 1.
The AH and AH.pan21 baseline systems are not included in this experiment because the AdHominem/O2D2 is
designed only for pairs of single documents (see section 4.3).

5.3 Number of problems in the training set
This experiment examines the role of the number of problems in the training set. A high number of instances
is likely to reduce the risk of overfitting. The test set is once again made of 100 instances without any duplicate
book, while the training set contains a varying number of instances in which books are picked with replacement.
Both the training and test set instances are made of a single document by group and the positive/negative cases
are balanced. All the documents are 100 lines long. It is also worth noting that the training process is much
longer when the number of instances in the training set is large.
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Figure 3: Performance by number of problems in the training set. See the explanations about the
different graphs in the caption of fig. 1.

Increasing the number of instances in the training set reduces overfitting, as expected. The training and test
performance become quickly much closer to each other, and there is no visible overfitting starting from around
500 instances. Interestingly, this gives the meta model a clear advantage over the individual models: compared
to the other experiments where the number of intances is always 100, the meta model is more often selected as
the best model by the training stage, and does indeed perform best on the test set most of the time. However
the overall performance increases only moderately with more instances. Finally the difference in performance
between author seen vs. unseen instances is large, and even appears to increase as the size of the training set
increases. It seems that the larger number of training instances causes the model to “specialize” in the authors
found in the training set. But the variations in seen/unseen author are very large across the different sizes, so
it is unclear whether this observation is a real pattern or due to chance.

5.4 Author diversity in the training set
In this experiment we study how the number of distinct authors in the training set impacts the performance
of the verification system. This makes it possible to measure how author-wise diversity in the training set
influences the ability of the model to generalize to unseen authors found only in the test set. The experiment
setting is as follows: the test set contains 100 instances split equally between positive and negative cases, with no
duplicate book. The training set also contains 100 instances but can contain duplicate books. The problems are
all defined with groups made of single documents and the documents are 100 lines long. In order to guarantee a
minimum of document-level diversity in the training set when the variable number of authors is low, the training
set authors are first ranked by decreasing order of their number of books, and then added to the training set
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Model type Best on training set Best on test set
GI 69.8% 51.2%
basic 2.3% 11.6%
meta 2.3% 32.6%
univ 25.6% 4.6%

Table 1: Overall statistics by model type.

in order. This means that more distinct books are added at every increment for the low values in number of
authors than for the high values.
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Figure 4: Performance by number of distinct authors in the training set. See the explanations about
the different graphs in the caption of fig. 1. Note: the number of authors starts at 4 in the test set because
there are not enough distinct documents by author to satisfy the conditions (contant size of the test set, balance
between positive and negative cases) with less than 4 authors.

It can be observed in fig. 4 that overfitting decreases drastically when the number of authors increases: the
performance on the test set and training set converges when reaching the highest number of authors. Curiously
though, the performance on authors unseen during training increases only slightly and stays far below the
performance on seen authors, even when reaching the highest number of authors. This might indicate that
author diversity contributes mostly to a more accurate estimation of performance during training, but not
(or very slightly) to a higher performance on the test set. However this interpretation would require more
experiments to be confirmed, since it may be a consequence of the important performance variations.

5.5 Global observations
Table 1 shows how often every type of model is estimated as the best model during the training stage and (2)
actually performs best out of the four model types on the test set.

While GI is clearly the best individual strategy, the second best strategy on the training set is univ even
though it almost never performs best on the test set. This is due to overfitting, as observed in the various
experiments: univ tends to perform well on the training set, but drastically underperforms on the test set.
By contrast, the meta-model barely suffers from overfitting and achieves the best performance on the test set
almost a third of the time.

The better stability of the meta method is also confirmed by a small study of the case where the size of
the documents is 100, the number of documents by group is one, the number of training instances is 100 and
the number of authors is maximum. This combination of parameters is present in all four experiments. We
calculated the standard deviation of the performance on the test set for the four model types: all three individual
models have a standard deviation between 0.066 and 0.069, while the meta model has only 0.026. The sample
is too small for this observation to be conclusive, but this observation evidences the better stability of the
meta-model.

Finally, the global performance of the different models is given in Table 2, which also shows whether the
difference between models is significant or not. These results confirm the trends observed above: the GI strategy
performs best, closely followed by the meta-model. The basic and univ strategies perform decently, followed by
the AH baseline models which perform significantly worse than the other models. As mentioned in section 4.3,
this is probably due to the fact that the AH model was designed for a massive volume of training data and that
the pretrained model is too specific to the domain of fanfiction. In particular, the AH model performs especially
bad in experiments 1 and 3 when the number of instances or authors is low. It is likely that these models would
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Model Mean Perf. Model performs significantly better than:
meta basic univ AH.pan21 AH

GI 0.428 * *** *** *** ***
meta 0.405 - *** *** ***
basic 0.369 - - ** *** ***
univ 0.341 - - - *** ***
AH.pan21 0.310 - - - - ***
AH 0.271 - - - - -

Table 2: Mean performance across all the cases in the four experiments (test set). A paired Wilcoxon test
is performed for every pair of models: *, ** and *** represent a significantly higher performance with p-value
lower than 0.05, 0.01 and 0.005, respectively.

outperform our model if provided with a lot more training data, but it is questionable whether a high volume
of training data is a realistic setting in the perspective of authorship verification applications.

6 Conclusion
We described the CLG Authorship Analytics system, which implements several individual methods as well as a
meta-model for the task of authorship verification. We performed a series of experiments in order to measure
the impact of various standard parameters of the authorship verification task on performance. The analysis
shows that the size of the documents as well as the number of instances in the training set tend to reduce
overfitting but to increase the known author bias. On the contrary, increasing the number of documents by
group has little or no effect on overfitting but tends to decrease the known author bias.

Overall, the General Impostor method performs best. The results also show that the stacked generalization
approach tends to cause less overfitting and more stable performance overall. However our experimemts did
not establish clearly the superiority of the meta-model: the best individual strategy, GI, performs as well or
slightly better most of the time. Despite the variety of the hyper-parameters for each individual strategy and
the multiple learners combined in the meta-model (usually 50 to 70), the meta-model could certainly benefit
from more having diversity to choose from in the type of models. Future work should focus on adding new and
diverse models, in order to improve the performance of the meta-model.

Finally, a thorough “user guide” has been developed together with the source code of these experiments,20

additionally to the original documentation provided with the CLG Authorship Analytics software.21 These
are intended to allow the use of the software for different applications, and possibly its extension to different
methods.
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