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AN ODE CHARACTERISATION OF MULTI-MARGINAL
OPTIMAL TRANSPORT

LUCA NENNA AND BRENDAN PASS

Abstract. The purpose of this paper is to introduce a new numeri-
cal method to solve multi-marginal optimal transport problems with
pairwise interaction costs. The complexity of multi-marginal optimal
transport generally scales exponentially in the number of marginals
m. We introduce a one parameter family of cost functions that inter-
polates between the original and a special cost function for which the
problem’s complexity scales linearly in m. We then show that the
solution to the original problem can be recovered by solving an ordi-
nary differential equation in the parameter ε, whose initial condition
corresponds to the solution for the special cost function mentioned
above; we then present some simulations, using both explicit Euler
and explicit higher order Runge-Kutta schemes to compute solutions
to the ODE, and, as a result, the multi-marginal optimal transport
problem.

1. Introduction

The theory of optimal transport plays an important role in many ap-
plications (see [48, 50, 52, 53]). Its generalization to the multi-marginal
case consists in minimizing the functional

γ 7→
∫
X1×...×Xm

c(x1, · · · , xm)dγ

among all probability measures γ ∈ P(X1 × · · · × Xm) having fixed
µi ∈ P(X i) with i = 1, · · · ,m as marginals, for a given cost function
c(x1, ...., xm). This problem has been at the center of growing interest
in recent years since it arises naturally in many different areas of ap-
plications, including Economics [18], Financial Mathematics [5, 25–27],
Statistics [9,17], Image Processing [49], Tomography [1], Machine Learn-
ing [32, 51], Fluid Dynamics [11] and Quantum Physics and Chemistry,
in the framework of Density Functional Theory [13,22].

The structure of solutions to the multi-marginal optimal transport
problem is a notoriously delicate issue, and is still not well understood,
despite substantial efforts on the part of many researchers [14,19–21,31,
33, 36, 37, 39, 42, 43, 45–47]; see also the surveys [44] and [24]. In many
of the aforementioned applications, it is therefore pertinent to develop
efficient numerical algorithms to compute solutions. This, however, rep-
resents a significant challenge, since the problem amounts to a linear (or
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convex, in a popular regularized variant discussed below), yet high di-
mensional optimization problem: the complexity scales exponentially in
the number m of marginals. For instance a crude discretization of each
of 5 marginals (notice that in many applications the number of marginals
could be dramatically large, e.g. in quantum mechanics where m is the
number of electrons in a molecule) using 100 Dirac masses would mean
that the coupling γ between the 5 marginals is supported over 1005 = 1010

Dirac masses, rendering the problem practically intractable. There have
been recently some attempts to tackle this problem by using different
approaches: entropic regularization [6,8,40], relaxation via moment con-
straints approximation [3, 4], genetic column generation algorithm ex-
ploiting the existence of a sparse solution in the discrete case [28, 29],
Wasserstein penalisation of the marginal constraints [38] and semidefi-
nite relaxation [34,35].

In many cases of interest, the cost function c(x1, ....xm) =
∑m

i=1w(xi, xj)
is given by a sum of two marginal cost functions; when w(xi, xj) =
|xi − xj|2, for instance the multi-marginal problem is equivalent to the
well known Wasserstein barycenter problem [2], while the Coulomb cost
w(xi, xj) = 1

|xi−xj | plays a central role in the quantum chemistry applica-

tions pioneered in [22] and [13]. Here, for such pairwise interaction costs,
our aim is to develop a continuation method which, by introducing a suit-
able one parameter family of cost functions, establishes a link between
the original multi-marginal problem and a simpler one whose complex-
ity scales linearly in the number of marginals. For discrete marginals,
we show that, after the addition of an entropic regularization term, the
solution of the original multi-marginal problem can be recovered by solv-
ing an ordinary differential equation (ODE) whose initial condition is
the solution to the simpler problem. This method is actually inspired
by the one introduced in [15] to compute the Monge solution of the two
marginal problem, starting from the Knothe-Rosenblatt rearrangement;
note, however, that since we apply this strategy to a regularized problem,
our resulting ODE enjoys better regularity than the one in [15], which, in
turn, makes it amenable to higher order numerical schemes (see the de-
scription of numerical results in Section 4 below). The above mentioned
differential equation will be derived by differentiating the optimality con-
ditions of the dual problem; in particular by penalizing the constraints
with the soft-max function we will obtain a well defined ODE for which
existence and uniqueness of a solution can be established.

When developing the ODE approach in Section 3 below, we restrict
our attention to the case when the marginals µi are all identical. This has
the significant advantage of reducing the Kantorovich dual problem to a
maximization over a single potential function, while also capturing im-
portant applications arising in density functional theory. Though we do
not pursue this direction here, our approach, with minor modifications,
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will also work with distinct marginals. In this case, if each measure is
discretized using N points, one would need to solve (m − 1)N coupled,
real-valued ODEs (rather than the N coupled ODEs dealt with here
in Section 3), reflecting the m − 1 independent Kantorovich potentials
needed to fully capture the solution.

The remainder of this manuscript is organized as follows. In Section
2, we recall some basic facts about multi-marginal optimal transport, as
well as its entropic regularization and the duals of both problems, and
prove that for a particular, simple cost function, the solutions to the
regularized problem and its dual can be computing by solving m− 1 two
marginal problems. This solution will serve as the initial condition for
an ODE, which is introduced, and proven to be well-posed, in Section
3. In Section 4, algorithms, based on this ODE, to compute the solution
to the multi-marginal optimal transport problem are described and some
resulting numerical simulations are presented.

2. Multi-marginal optimal transport and entropic
regularization

Given m probability measures µi on bounded domains X i ⊆ Rn for
i = 1, 2...,m and a lower semi-continuous cost function c : X1 × X2 ×
... × Xm → R ∪ {+∞}, the multi-marginal optimal transport problem
consists in solving the following optimization problem

inf
γ∈Π(µ1,··· ,µm)

∫
X1×X2...×Xm

c(x1, ..., xm)dγ (1)

where Π(µ1, · · · , µm) denotes the set of probability measures on X1 ×
X2× ...×Xm whose marginals are the µi. One can easily show by means
of the direct method of calculus of variations that this problem admits
at least a solution, which will be referred as the optimal transport plan.
It is well known that under some mild assumptions the above problem is
dual to the following

sup

{
m∑
i=1

∫
Xi

ϕi(xi)dµi | ϕi ∈ L1(µi),
m∑
i=1

ϕi(xi) ≤ c(x1, ..., xm)

}
. (2)

We will also consider a common variant of (1), known as entropic optimal
transport which consists in adding an entropy regularization term. For a
parameter η > 0, this is to minimize

inf
γ∈Π(µ1,··· ,µm)

{∫
X1×X2...×Xm

c(x1, ...., xm)dγ + ηH⊗mi=1µ
i(γ)

}
(3)

where the relative entropy H⊗mi=1µ
i(γ) with respect to product measure

⊗mi=1µ
i is defined by

H⊗mi=1µ
i(γ) =

∫
X1×...×Xm

dγ

d(⊗mi=1µ
i)

log(
dγ

d(⊗mi=1µ
i)

)d(⊗mi=1µ
i),
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if γ is absolutely continuous with respect to the product measure ⊗mi=1µ
i

and +∞ otherwise. The regularized transport is, in turn, dual to the
following unconstrained optimization problem

sup
m∑
i=1

∫
Xi

ϕi(xi)dµi

− η
∫
X1×...×Xm

e

∑m
i=1 ϕ

i(xi)−c(x1,...,xm)

η d(⊗mi=1µ
i)(x1, · · · , xm).

(4)

The regularized problem (3) and its dual (4) arise frequently in compu-
tational work. We note in particular that (3) is the minimization of a
strictly convex functional and therefore admits a unique solution. It is
well known that as η → 0, solutions of (3) and (4) converge to solutions
of (1) and (2), respectively. When each X i is a finite set (a case of par-
ticular interest in this paper), we obtain discrete versions of (1) and its
dual, which amount to linear programs, taking the forms

inf

 ∑
x∈×mi=1X

i

c(x)γx | γ ∈ Π(µ1, · · · , µm)

 , (5)

where x = (x1, · · · , xm) ∈ X1 × ....×Xm and

sup{
m∑
i=1

∑
x∈Xi

ϕixµ
i
x | (ϕ1, · · · , ϕm) ∈ T} (6)

where, if we identify functions ϕi : X i → R with points in R|Xi|,

T := {ϕi ∈ R|Xi| ∀i = 1, · · · ,m,
m∑
i=1

ϕixi ≤ c(x1, · · · , xm), ∀(x1, · · · , xm) ∈ ×mi=1X
i}.

Notice that, if each |X i| = N , in the case of the primal problem we have
to deal with Nm unknowns and mN constraints, whereas in the dual
problem there are mN unknowns and Nm constraints. In both cases
we have to deal with the so called “curse of dimensionality,” namely the
complexity of the problem increases exponentially with the number of
marginals.

In this discrete setting, the entropy regularized problem (3) and its
dual (4) then become finite dimensional convex optimization problems:

inf

 ∑
x∈×mi=1X

i

c(x)γx + η[H(γ)−H(⊗mµi)] | γ ∈ Π(µ1, · · · , µm),

 (7)

where η > 0 and H is the entropy with respect to uniform measure on
the finite set X (we suppress the subscript on H indicating the reference
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measure in the finite case, as we will only deal with entropy relative to
the uniform measure), H(γ) =

∑
x∈×mi=1X

i h(γx), with

h(t) =


t(log(t)− 1), t > 0

0, t = 0

+∞, t < 0,

and

sup


m∑
i=1

∑
x∈Xi

ϕixµ
i
x − η

∑
x∈×mi=1X

i

exp

(∑
i ϕ

i
xi − c(x)

η

)
(⊗mµi)x

 . (8)

We note in particular that (8) is an unconstrained finite dimensional
concave maximization problem. Solutions may be computed using a
multi-marginal version of the Sinkhorn algorithm [7, 23, 30, 48], and one
can then recover the optimal γ in (7) from the solutions ϕ1, ..., ϕm to (8)
via the well known formula:

γx = exp

(∑m
i=1 ϕ

i
xi − c(x)

η

)
µ1
x1µ

2
x2 ...µ

m
xm

where x = (x1, ...., xm).

2.1. Pairwise costs. We are especially interested in this paper in cost
functions c(x1, ...., xm) involving pair-wise interactions, that is

c(x1, ...., xm) =
m∑
i<j

w(xi, xj).

Such costs are ubiquitous in applications: for example, for systems of
interacting classical particles in [13,22], c is a pair-wise cost, with w(x−
y) =

1

|x− y|
, known as the Coulomb cost.

Let us now consider costs cε of the form

cε(x
1, · · · , xm) := ε

m∑
i=2

m∑
j=i+1

w(xi, xj) +
m∑
i=2

w(x1, xi). (9)

It is clear that when ε = 1 we retrieve a pair-wise cost as defined above
whereas in the limit ε→ 0 we obtain a cost involving only the interactions
between x1 and the other xi individually. Later on, we will develop an
ordinary differential equation that governs the evolution with ε of the
solutions to the regularized dual problem (8); the results below assert
that the initial condition for that equation (that is, the solutions when
ε = 0) can be recovered by solving each of the individual two marginal
problems between µ1 and µi.

In what follows, we will assume that each marginal µi is absolutely
continuous with respect to a fixed based measure νi with density given

by dµi

dνi
.
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Proposition 1. Assume that each marginal µi is absolutely continuous

with respect to a fixed based measure νi with density given by dµi

dνi
(xi):

dµi(xi) = dµi

dνi
(xi)dνi(xi). Consider the regularized problem (3) with lim-

iting pairwise cost; that is, set ε = 0 in (9) to obtain:

min
γ∈Π(µ1,µ2,...,µm)

∫ m∑
i=2

w(x1, xi)dγ + ηH⊗mi=1µ
i(γ). (10)

Let dπi

d(ν1⊗νi) be the density with respect to product measure ν1(x1) ⊗
νi(xi) of the minimizer πi = dπi

d(ν1⊗νi)ν
1⊗νi in the regularized two marginal

problem:

min
πi∈Π(µ1,µi)

∫
w(x1, xi)dπi(x1, xi) + ηHµ1⊗µi(π

i).

Then the density dγ
d(⊗mi=1ν

i)
of the optimal γ = dγ

d(⊗mi=1ν
i)

(⊗mi=1ν
i) in (10) is

given by

dγ

d(⊗mi=1ν
i)

(x1, ..., xm) =

dπ2

d(ν1⊗ν2)
(x1, x2)

dµ1

dν1
(x1)

dπ3

d(ν1⊗ν3)
(x1, x3)

dµ1

dν1
(x1)

...

dπm

d(ν1⊗νm)
(x1, xm)

dµ1

dν1
(x1)

dµ1

dν1
(x1).

Proof. Choose any γ = dγ
d(⊗mi=1ν

i)
(⊗mi=1ν

i) ∈ Π(µ1, µ2, ..., µm) which is ab-

solutely continuous with respect to⊗mi=1ν
i and let πi(x1, xi) =

(
(x1, .., xm) 7→

(x1, xi)
)

#
γ ∈ Π(µ1, µi) be its twofold marginals. Then

H⊗mi=1µ
i(γ) =

∫
x1×...×Xm

[log(
dγ

d(⊗mi=1ν
i)

(x1, ..., xm))−
m∑
i=1

log(
dµi

dνi
(xi))]dγ(x1, ..., xm)

=

∫
X1×...×Xm

[log(
dγ

d(⊗mi=1ν
i)

(x1, ..., xm))]dγ(x1, ....xN)−
m∑
i=1

Hνi(µ
i),(11)

where eachHνi(µ
i) =

∫
Xi log(dµi

dνi
(xi))dµi(xi) is constant throughout Π(µ1, ..., µm).

Now disintegrating γ = γx1(x
2, ..., xm)⊗µ1(x1) with respect to its first

marginal µ1, we note that γx1(x
2, ..., xm) = dγ

d(⊗mi=1ν
1)

(x1, x2, ..., xm) 1
dµ1

dν1
(x1)

(⊗mi=2ν
i)

and so ∫
X1×...×Xm

log

(
dγ

d(⊗mi=1ν
i)

)
dγ

=

∫
X1×...×Xm

log

(
dγx1

d(⊗mi=2ν
i)

)
dγ +Hν1(µ

1)

=

∫
X1

∫
X2×...×Xm

log

(
dγx1

d(⊗mi=2ν
i)

)
dγx1dµ

1 +Hν1(µ
1)

=

∫
X1

H⊗mi=2νi
(γx1)dµ

1 +Hν1(µ
1)

(12)
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where H⊗mi=2νi
(γx1) is the entropy of γx1 with respect to ⊗mi=2νi and

Hν1(µ
1) is the entropy of µ1 with respect to ν1. Now note that if we

disintegrate each πi = πix1(x
i)⊗ µ1(x1) with respect to µ1, then for each

fixed x1, the conditional probability πix1 is the ith marginal of γx1 and so

∫
X1

H⊗mi=2νi
(γx1)dµ

1(x1) ≥
∫
X1

m∑
i=2

Hνi(π
i
x1)dµ

1(x1)

=
m∑
i=2

∫
X1

Hνi(π
i
x1)dµ

1(x1)

=
m∑
i=2

[Hν1⊗νi(π
i)−Hν1(µ

1)]

=
m∑
i=2

[Hµ1⊗µi(π
i) +Hνi(µ

i)], (13)

where the equality Hν1⊗νi(π
i) =

∫
X1 Hνi(π

i
x1)dµ

1(x1) + Hν1(µ
1) in the

second to last line follows very similarly to the derivation of (12) above
and the equality Hν1⊗νi(π

i)−Hν1(µ
1) = Hµ1⊗µi(π

i) +Hνi(µ
i) in the last

line follows very similarly to the derivation of (11). Therefore, combining
(11), (12) and (13), we get∫

X1×...Xm

∑m
i=1w(x1, xi)dγ + ηH⊗mi=1µi

(γ) =
∫
X1×Xi

∑m
i=1w(x1, xi)dπi + ηH⊗mi=1µi

(γ)

≥
∫
X1×Xi

∑m
i=2 w(x1, xi)dπi +

∑m
i=2[Hµ1⊗µi(π

i) +Hνi(µ
i)] +Hν1(µ

1)−
∑m

i=1Hνi(µ
i)

≥
∫
X1×Xi

∑m
i=2 w(x1, xi)dπi +

∑m
i=2 Hµ1⊗µi(π

i)

by optimality of π. We have equality in the last line if and only if πi = πi

for each i, and equality in the line above if and only if µ1 almost every
γx1 couples the πixi independently; this yields the desired result. �

Note in particular that this result allows us to recover the solution
to problem (7) with cost (9), when ε = 0, by solving m − 1 individual
regularized two marginal optimal transport problems. In the following
section, we will develop a dynamical approach to solve the dual problem
(8) to (7) for cost (9) with ε > 0. Our initial condition will be the dual
potentials when ε = 0, which we can obtain from the corresponding two
marginal dual potentials, as the following corollary confirms.

Corollary 2. Assume each µi is absolutely continuous with respect to
a given reference measure νi. For each i = 2, ...m, let ψi(x1), ϕi(xi),
solve the regularized two marginal dual problem (8) between marginals
µ1 and µi with cost function w(x1, xi). Then ϕ1(x1), ϕ2(x2), ..., ϕm(xm),
with ϕ1(x1) =

∑m
i=2 ψ

i(x1) solve the regularized dual (8) with marginals
µ1, µ2, ...., µm and cost c(x1, ..., xm) =

∑m
i=2w(x1, xi).
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Proof. We have that for each i, the optimizer πi in the regularized two
marginal primal problem satisfies

dπi

d(ν1 ⊗ νi)
(x1, xi) = e

ϕi(xi)+ψi(xi)−w(x1,xi)
η

dµ1

dν1

dµi

dνi
.

By the preceding proposition, the optimizer in the regularized multi-
marginal problem (10) satisfies

dγ

d(⊗mi=1ν
i)

(x1, x2, ..., xm) =

dπ2

d(ν1⊗ν2)
(x1, x2)

dµ1

dν1
(x1)

dπ3

d(ν1⊗ν3)
(x1, x3)

dµ1

dν1
(x1)

...

dπm

d(ν1⊗νm)
(x1, xm)

dµ1

dν1
(x1)

dµ1

dν1
(x1)

= e

∑m
i=2[ϕ

i(xi)+ϕi(x1)−w(x1,xi)]

η
dµ2

dν2

dµ3

dν3
...

dµm

dνm
dµ1

dν1

= e

∑m
i=1 ϕ

i(xi)−
∑m
i=2 w(x1,xi)

η
dµ1

dν1

dµ2

dν2

dµ3

dν3
...

dµm

dνm

This is exactly the first order condition identifying the regularized poten-
tials for the multi-marginal regularized problem with cost

∑m
i=2w(x1, xi).

�

3. An ODE characterisation of discrete multi-marginal
optimal transport

We now turn our attention to developing an ODE for the Kantorovich
potentials after discretizing the marginals. Working with the regularized
discrete problem (7) and its dual (8) with pairwise cost (9), we make the
following, standing assumptions throughout this section:

(1) (Equal marginals) All the marginals are equal µi = ρ =
∑

x∈X ρxδx,
where X is a finite subset of Rd,

(2) (Symmetric cost) The two body cost w is symmetric w(x, y) =
w(x, y).

(3) (Finite cost) The two body cost function w : X × X → R is
everywhere real-valued.

A motivating example of a pairwise, symmetric two body cost arises in

Density Functional Theory where the cost is given by w(x, y) =
1

|x− y|
;

in problems with this cost, the marginals are typically also identical.
The cost does not satisfy the finiteness hypothesis, but one can con-

sider a truncation w(x, y) = min

(
1

|x− y|
, C

)
cost; it is known that

the solution stays away from the diagonal, and for sufficiently large C,
the solution with the truncated cost coincides with the solution for the
original Coulomb cost (for instance see [12]).

Remark 3. One could dispose of the equal marginal and symmetric cost
assumptions. Analogues of the results proved below would sill hold; one
could characterize the solution to the regularized dual problem (8) by
an ODE, and prove that this ODE is well-posed. As we will see below,



AN ODE CHARACTERISATION OF MULTI-MARGINAL OPTIMAL TRANSPORT9

however, solving the problem numerically becomes more feasible under
the hypotheses above, as the solution can be characterized by a single
Kantorovich potential, and so the resulting ODE is an equation on RN ,
where N is the number of points in the support of the marginal. With
unequal marginals and a non-symmetric cost, one would require m − 1
independent Kantorovich potentials to fully characterize the solution; if
each marginal is supported on N points, this would lead to an (m− 1)N
dimensional system of ODEs.

3.1. Formulation of the ODE problem. Notice now that although
the cost (9) at ε = 1 is symmetric in the variables x1, x2, ..., xm, the one
at ε < 1 is not. It is, however, symmetric in the variables x2, ..., xm; this
means that the optimal ϕi in (8) satisfy ϕi = ϕj = ϕ for i, j ≥ 2 and so,
setting ϕ1 = ψ, we can rewrite (8) as

inf
ϕ,ψ:X→R

{Φ(ϕ, ψ, ε)} , (14)

where

Φ(ϕ, ψ, ε) := −(m−1)
∑
x∈X

ϕxρx−
∑
x∈X

ψxρx+η
∑
x∈Xm

e

(∑m
i=2 ϕxi

+ψ
x1
−cε(x)

η

)
⊗mρ.

Remark 4 (Notation). Recall that we use the notation x to represent a
point in a product space, such as x = (x1, · · · , xm) ∈ Xm, as above, or,
as will often be the case in what follows, x = (x1, · · · , xm−1) ∈ Xm−1.
We introduce the following notation to represent corresponding products
of the densities:

ρ̃x = (⊗m−1ρ)x = ⊗m−1
i=1 ρxi

Since the functional Φ(ϕ, ψ, ε) is convex on the set {ϕ, ψ : X → R} ≈
R2|X|, as the sum of a linear and an exponential function, optimal solu-
tions (ϕ∗, ψ∗) can be characterized by the first order optimality conditions
∇ϕΦ = ∇ψΦ = 0, or (component-wise):

ϕ∗z = −η log

( ∑
x∈Xm−1

exp

(∑m−1
i=2 ϕ∗xi + ψ∗x1 − cε(x, z)

η

)
ρ̃x

)
and

ψ∗z = −η log

( ∑
x∈Xm−1

exp

(∑m
i=2 ϕ

∗
xi − cε(z, x)

η

)
ρ̃x

)
. (15)

In particular, note that (15) allows us to express the optimal ψ∗ in (14)
in terms of the optimal ϕ∗, after which (14) reduces to the following
optimization problem

inf
ϕ:X→R

{
Φ̃(ϕ, ε)

}
, (16)
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where

Φ̃(ϕ, ε) := −(m−1)
∑
x∈X

ϕxρx+η
∑
z

log

( ∑
x∈Xm−1

e

(∑m
i=2 ϕxi

−cε(z,x)
η

)
ρ̃x

)
ρz.

Remark 5 (LogSumExp and convexity). The function

ϕ 7→ log

( ∑
x∈Xm−1

exp

(∑m
i=2 ϕxi − cε(z, x)

η

)
ρ̃x

)
:= LSEcε(ϕ)z

is also known as Log-Sum-Exp function (LSE). By using the Hölder in-
equality one can easily show that the Log-Sum-Exp is convex.

It is well known that the solution to (8) is unique up to the addition
of constants ϕi 7→ ϕi + Ci adding to 0,

∑m
i=1C

i = 0; thus, solutions to
(16) are unique up to the addition of a single constant, ϕ 7→ ϕ+ C. We
therefore impose the normalization

ϕx0 = 0 (17)

for all ε ∈ [0, 1] and a fixed x0 ∈ X.
The problem (16), restricted to ϕ’s satisfying (17) then has a unique

solution; the function Φ̃(·, ε) is strictly convex when restricted to this
set, and the solution ϕ∗ = ϕ(ε) can be characterized by the optimality
condition ∇ϕΦ̃(ϕ∗, ε) = 0, where each component of the gradient is given
by

∂

∂ϕz
Φ̃ = −(m−1)ρz+(m−1)eϕz/ηρz

∑
y

∑
x∈Xm−2

e

(∑m
i=3 ϕxi

−cε(y,z,x)
η

)
(⊗m−2ρx)ρy.

(18)
where

ρy =
ρy∑

x∈Xm−1 exp

(∑m
i=2 ϕxi−cε(y,x)

η

)
ρ̃x

.

Our numerical method consists then in solving an ODE for the evolution
of ϕ(ε) obtained by differentiating

∇ϕΦ̃(ϕ(ε), ε) = 0 (19)

with respect to ε:

∂

∂ε
∇ϕΦ̃(ϕ(ε), ε) +D2

ϕ,ϕΦ̃(ϕ(ε), ε)
dϕ

dε
(ε) = 0. (20)

If the pure second derivatives with respect to ϕ as well as the mixed
second derivatives with respect to ϕ and ε exist and are Lipschitz, and the
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Hessian with respect to ϕ is invertible, we will obtain a characterization
of ϕ as the solution to the following well-posed Cauchy problem:

dϕ

dε
(ε) = −[D2

ϕ,ϕΦ̃(ϕ(ε), ε)]−1 ∂

∂ε
∇ϕΦ̃(ϕ(ε), ε),

ϕ(0) = ϕw,
(21)

where, by Corollary 2, the initial value ϕ(0) of ϕ when ε = 0 coincides
with ϕw, the optimal potential for the two marginal optimal transport
problem with cost w.

The next section is devoted to proving these properties.

3.2. Well posedness of the ODE. We refer the reader to appendix
A for the computation of the second pure and mixed derivatives with
respect to ϕ and the second mixed derivative with respect to ϕ and ε.
In order to prove invertibility of D2

ϕ,ϕΦ̃ and well posedness of the ODE
we need some lemmas giving uniform bounds on the potential ϕ and
the eigenvalues of D2

ϕ,ϕΦ̃. We highlight that the following arguments are
similar to (and largely inspired by) those in [16] (the main differences lie
in the fact that we re-write the dual problem by using the Log-Sum-Exp
function).

Lemma 6. Let cε satisfy the boundedness assumption ‖cε‖∞ ≤M , ∀ε ∈
[0, 1] 1. Then the maximizer ϕ(ε) of (16) subject to the normalization
constraint (17) satisfies

‖ϕ(ε)‖∞ ≤ 4M.

Proof. By the first order optimality condition ∇ϕΦ̃ = 0 for (16) we de-
duce that each component of ϕ(ε) is given by

ϕz = −η log

(∑
y

∑
x∈Xm−2

exp

(∑m
i=3 ϕxi − cε(y, z, x)

η

)
(⊗m−2ρ)xρy

)

It is is easy to see that ρy can be bounded as follows

e−M/ηρy∑
x∈Xm−1 exp

(∑m
i=2 ϕxi
η

)
ρ̃x

≤ ρy ≤
eM/ηρy∑

x∈Xm−1 exp

(∑m
i=2 ϕxi
η

)
ρ̃x

.

1Note that the boundedness ‖cε‖∞ ≤ M for some M > 0 follows immediately from
our finite cost assumption on the finite set Xm.
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Since we have imposed the normalization ϕx0 = 0 we get

ϕz = ϕz − ϕx0 ≤ −η log

(
e−2M/η

∑
x∈Xm−2 exp

(∑m
i=3 ϕxi
η

)
(⊗m−2ρ)x

∑
x∈Xm−1 exp

(∑m
i=2 ϕxi
η

)
ρ̃x

)

+ η log

(
e2M/η

∑
x∈Xm−2 exp

(∑m
i=3 ϕxi
η

)
(⊗m−2ρ)x

∑
x∈Xm−1 exp

(∑m
i=2 ϕxi
η

)
ρ̃x

)
,

≤ 4M,

and the desired result immediately follows. �

Having established the above bounds, we aim to prove the well posed-
ness of the Cauchy problem (21) on the set

U := {ϕ : X → R | ϕx0 = 0, ‖ϕ‖∞ ≤ 4M}. (22)

Lemma 7. D2
ϕ,ϕΦ̃(ϕ, ε) and ∂

∂ε
∇ϕΦ̃(ϕ, ε) are Lipschitz with respect to ϕ

on U .

Proof. This immediately follows from the fact that the the second pure
and mixed derivatives computed in Appendix A are easily seen to be C1,
and their derivatives are all bounded on U . �

In order to prove the invertibility ofD2
ϕ,ϕΦ̃ we need the following lemma

assuring the strong convexity of the Log-Sum-Exp function on the set U .

Lemma 8. Let Ψ : Ũ → R be defined on

ŨC = {θ : Xm−1 → R | θx0 = 0, ‖θ‖∞ < C}.

where x0 = (x0, ..., x0) ∈ Xm−1, by Ψ(θ) =
∑

y∈X log
(∑

x∈Xm−1 eθx−cε(y,x)ρ̃x

)
ρy.

Then Ψ is β-strongly convex for some β > 0.

Proof. It is enough to show strong convexity on this set of the function

fy : θ ∈ ŨC 7→ log
( ∑
x∈Xm−1

eθx−cε(y,x)ρ̃x

)
= log

(
e−cε(y,x0)ρ̃x0+

∑
x∈Xm−1\{x0}

eθx−cε(y,x)ρ̃x

)
for a fixed y.

Enumerating the set Xm−1 \ {x0} of independent variables as xj for
j ∈ (1, ..., K) with K = |X|m−1 − 1, and denoting zj = eθx−cε(y,x)ρ̃x the
Hessian of fy is

1(
e−cε(y,x0)ρ̃x0 +

∑
j z

j
)2

(
− z ⊗ z + diag(z)(

∑
j

zj + e−cε(y,x0)ρ̃x0)
)
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The first two terms together constitute a positive semi-definite matrix
(see [10], p.74), while the third is positive definite, with lower bound

β =
e−C−2M ρ̃x0 minx ρ̃x

(eC+M ρ̃x0 +
∑

x∈Xm−1\{x0} e
C+M ρ̃x)2

= e−4M−3C ρ̃x0 min
x
ρ̃x.

It follows that fy, and therefore Ψ, is β-convex on Ũ .
�

Lemma 9. Let Λ : U → Ũ4(m−1)M be the linear mapping defined by

Λ(ϕ)x = ϕx1 + · · · + ϕxm−1 ∀x ∈ Xm−1. Then Ψ̃(ϕ) := Ψ(Λ(ϕ)) is
α−strongly convex on U .

Proof. By the linearity of Λ, one gets that, for ϕ ∈ U , D2Ψ̃(ϕ)(v, v) =
D2Ψ(Λ(ϕ))(Λ(v),Λ(v)) for all v ∈ U . Thus,

D2Ψ̃(ϕ)(v, v) = D2Ψ(Λ(ϕ))(Λ(v),Λ(v)) ≥ β ‖Λ(v)‖2 .

Since ‖Λ(v)‖2 ≥
∑

x∈X ‖(m− 1)vx‖2 we finally get

D2Ψ̃(ϕ)(v, v) ≥ α ‖v‖2 ,

with α = β(m− 1)2 > 0, proving the α−strong convexity of Ψ̃. �

Remark 10. The α obtained in the Lemma above is not optimal; indeed
we would have obtained a better lower bound on the eigenvalues of D2

ϕ,ϕΨ̃
by computing the smallest eigenvalue of Λ∗Λ. Moreover, in the previous
lemma we take, for simplicity, η = 1, otherwise the parameter α would
have taken the form α = e(−4C−3M)/η(m − 1)2. Notice now that α ap-
proaches to 0 as η → 0, meaning the the condition number of the Hessian
of Φ̃ explodes. Namely, this will produce numerical instabilities.

It easily follows from the previous lemma that D2
ϕ,ϕΦ̃ = D2

ϕ,ϕΨ̃ is
invertible on the set U ; we can then state the following result on the well
posedness of (21).

Theorem 11. Let be ϕ(ε) the solution to (16) for all ε ∈ [0, 1]. Then
ε 7→ ϕ(ε) is C1 and is the unique solution to the Cauchy problem

dϕ

dε
(ε) = −[D2

ϕ,ϕΦ̃(ϕ(ε), ε)]−1 ∂

∂ε
∇ϕΦ̃(ϕ(ε), ε),

ϕ(0) = ϕw,
(23)

where ϕw is the optimal solution to (8) with cost w and two marginals
equal to ρ.

Proof. As ϕ(ε) minimizes Φ̃(·, ε) for each fixed ε, we clearly have (19).
Since Φ̃ is clearly twice differentiable with respect to ϕ and ε and D2

ϕϕΦ̃
is invertible by Lemma 9, the Implicit Function Theorem then implies
that ε 7→ ϕ(ε) is C1 and satisfies (20), or equivalently, (23).
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Since D2
ϕ,ϕΦ̃ and ∂

∂ε
∇ϕΦ̃ are Lipschitz continuous with respect to ϕ on

U by Lemma 7 and clearly continuous with respect to ε, and since D2
ϕ,ϕΦ̃

is uniformly positive definite by Lemma 9, we have that

(ϕ, ε) 7→ −[D2
ϕ,ϕΦ̃(ϕ(ε), ε)]−1 ∂

∂ε
∇ϕΦ̃(ϕ(ε), ε)

is Lipschitz with respect to ϕ and continuous with respect to ε on U .
Since by Lemma 6 ϕ(ε) ∈ U for all ε, the Cauchy-Lipschitz Theorem
then implies uniqueness of the solution to (23) on U × [0, 1], as desired.

�

4. Algorithm and simulation

In this subsection we present some numerical simulations obtained by
discretizing the above ODE. The algorithm consists in discretizing (23)
by an explicit Euler scheme (notice that one could also use some high
order method for the ODEs). Let h be the step size and set ϕ(0) = ϕw
the solution of a 2 marginal problem with cost w, then the ϕ can be
defined inductively as follows.

(1) Let ϕ(k) the solution at step k, then compute

D(k) := D2
ϕ,ϕΦ̃(ϕ(k), kh), b(k) := − ∂

∂ε
∇ϕΦ̃(ϕ(k), kh).

(2) Solve the linear system D(k)z = b(k). We denote by z? the solu-
tion.

(3) Update the potential by setting

ϕ(k+1) = ϕ(k) + hz?.

Notice that by the regularity we have proved above, we can conclude
that the Euler scheme converges linearly. Moreover, the uniform error
between the discretized solution obtained via the scheme and the solu-
tion to the ODE is O(h). In Figure (left plot) 1 we plot the convergence
order for the Euler scheme described above. The error is computed with
respect to the solution to (16) computed via a gradient descent method
with backtracking. Notice that the regularity of the objective function
and the boundedness of the Hessian guarantee the convergence of the
method. For these simulations we have taken m = 3, the uniform mea-
sure on [0, 1] uniformily discretized with 100 gridpoints and the pairwise
interaction w(x, y) = − log(0.1 + |x − y|). Moreover, since the RHS in
(23) is regular one can try to apply an high order scheme to solve the
Cauchy problem. In figure (right plot)1 we compare the convergence of
the Euler method and a Runge-Kutta of order 3; notice that with 100
time steps the RK method converges to a solution with an error of or-
der 10−5 and by an estimation of the slope of the two lines we obtain 3
and 1.16, respectively for RK and Euler (as expected). In Figure 3 we
show the numerical result obtained with η = 0.006, h = 1/1000, m = 3,
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Figure 1. Convergence order for the ODE approach.
Left: Linear convergence for an explicit Euler scheme.
Right: comparison between explicit Euler (blue line) and
an explicit Runge-Kutta (red line) of order 3

ODE approach Sinkhorn
relative error 0.0097108 0.0097085

iterations 100 820
Table 1. Comparison between the ODE approach and Sinkhorn

the uniform measure on [0, 1] uniformily discretized with 100 gridpoints
and the pairwise interaction w(x, y) = − log(0.1 + |x − y|). Notice that
since we have developed our continuation method by the entropic reg-
ularization of optimal transport, we can easily reconstruct the optimal
plan at each k by using the potential ϕ(k). In Figure 2 we have compared
the potential computed by the ODE with the one obtained by solving
the regularized multi-marginal problem via Sinkhorn (at same η). Since
in this case the optimal solution to the unregularised dual problem (as
well as the primal) can be explicitly computed we compare the relative

error, that is ‖ϕ−ϕexact‖∞‖ϕexact‖∞ , between the ODE approach (in this case we

have used an 8th order Runge-Kutta) and Sinkhorn, with respect to the
number of iteration. By looking at Table 4, it is clear that both methods
achieve the same relative error, but the number of iterations to reach it
is smaller for the ODE approach. In Figures 2-4 we have kept the same
data as before, but we have chose the negative harmonic cost, that is
w(x, y) = −|x − y|2. We highlight that the solution at ε = 0 is −Id
and then the final coupling is supported, as expected, on the hyperplane
x+ y + z = 1.5.
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Figure 2. Optimal potential computed via Sinkhorn (red
line). Potential computed via the ODE (black dot-dashed
line). Left: Log cost. Right: Negative Harmonic cost
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his stay in November of 2019 as a missionaire scientifique invité, when
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Appendix A. Second derivatives of Φ̃

In this appendix we detail the second derivatives of Φ̃ with respect to
ϕ and ε. Let us consider firstly the term (20)

∂

∂ε
∇ϕΦ(ϕ, ε),

notice that ∇ϕΦ(ϕ, ε) it is a composition of an exponential with a linear
function in ε, meaning that it is differentiable with respect to ε. We
obtain then the following

∂

∂ε
(∇ϕΦ(ϕ, ε))ϕz = −exp(ϕz/η)

η

∑
x∈Xm−1

∂ε(cε(z, x)) exp

(∑m−1
i=1 ϕxi − cε(z, x)

η

)
,



AN ODE CHARACTERISATION OF MULTI-MARGINAL OPTIMAL TRANSPORT17

Figure 3. (Log cost) Left: support of the coupling γε1,2.
Center: surface of the coupling γε1,2. Right: potential ϕ(ε).
For ε = 0, 0.25, 0.5, 0.75, 1

∂

∂ε
∇ϕΦ(ϕ(ε), ε) := −1

η
exp(ϕ/η)ρ

( ∑
(x,y)∈Xm−1

∂εcε(x, z, y) exp
(∑m

i=3 ϕyi − cε(x, z, y)

η

)
ρ̃yρx

+
∑

(x,y)∈Xm−1

exp
(∑m

i=3 ϕyi − cε(x, z, y)

η

)
ρ̃y

∑
w∈Xm−1 ∂εcε(x,w) exp

(∑m
i=2 ϕwi−cε(x,w)

η

)
ρ̃w∑

w∈Xm−1 exp
(∑m

i=2 ϕwi−cε(x,w)

η

)
ρ̃w

ρx

)
,
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Figure 4. (Negative Harmonic cost) Left: support of the
coupling γε1,2. Center: surface of the coupling γε1,2. Right:
potential ϕ(ε). For ε = 0, 0.25, 0.5, 0.75, 1

where

∂εcε(z, x) =
m−1∑

i,j=2,i 6=j

c2(xi, xj).

Concerning the second derivative with respect to ϕ. it is again quite easy
to see that Φ is twice differentiable, then we have

D2
ϕ,ϕΦ̃ =

1

η
diag(I1) +

m− 2

η
(eϕ/ηρ)⊗ (eϕ/ηρ)I2 −

m− 1

η

∑
y∈X

Iy3 ⊗ I
y
3ρy,
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where

(I1)z = eϕz/ηρz
∑
y

∑
x∈Xm−2

exp

(∑m
i=3 ϕxi − cε(y, z, x)

η

)
(⊗m−2ρ)xρy,

(I2)z,w =
∑
y

∑
x∈Xm−3

exp

(∑m
i=4 ϕxi − cε(y, z, w, x)

η

)
(⊗m−3ρ)xρy,

(Iy3 )z =

eϕz/ηρz
∑

x∈Xm−2 exp

(∑m
i=3 ϕxi−cε(y,z,x)

η

)
(⊗m−2ρ)x

∑
x∈Xm−1 exp

(∑m
i=2 ϕxi−cε(y,x)

η

)
ρ̃x
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