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ON THE ASYMPTOTICS OF EXTREMAL ℓp−BLOCKS

CLUSTER INFERENCE

GLORIA BURITICÁ AND OLIVIER WINTENBERGER

Abstract. Extremes occur in stationary regularly varying time series
as short periods with several large observations, known as extremal
blocks. We study cluster statistics summarizing the behavior of func-
tions acting on these extremal blocks. Examples of cluster statistics are
the extremal index, cluster size probabilities, and other cluster indices.
The purpose of our work is twofold. First, we state the asymptotic
normality of block estimators for cluster inference based on consecutive
observations with large ℓp−norms, for p > 0. The case p = α, where
α > 0 is the tail index of the time series, has specific nice properties thus
we analyze the asymptotics of block estimators when approximating α
using the Hill estimator. Second, we verify the conditions we require
on classical models such as linear models and solutions of stochastic
recurrence equations. Regarding linear models, we prove that the as-
ymptotic variance of classical index cluster-based estimators is null as
first conjectured in [26]. We illustrate our findings on simulations.

1. Introduction

We study stationary heavy-tailed time series (Xt) in (Rd, | · |), with regu-
larly varying distributions, and tail index α > 0; cf. [4], a formal definition
is conferred to Section 2.2. In this framework, extremal observations cluster:
an extreme value triggers a short period with numerous large observations.
This behavior is known to perturb classical inference procedures tailored for
independent observations like high quantile inference; see [21]. This clus-
tering effect can be summarized by the extremal index, initially introduced
in [32] and [33]. We can interpret it as the inverse of the mean number of
consecutive exceedances above a high threshold in a short period of time.
In this article, we aim to infer statistics of the clustering effect by letting
functionals act on consecutive observations with extremal behavior. For ex-
ample, we can recover the extremal index from this setting and also other
important indices of the extremes of the series.

For extremal cluster inference, we consider a sample X[1,n] together with
a sequence (bn), and we define the sample of disjoint blocks (Bj)j=1,...,mn as
blocks of consecutive observations:

Bj := (X(j−1)bn+1, . . . ,Xjbn) = X(j−1)bn+[1,bn],(1.1)

2020 Mathematics Subject Classification. Primary 60G70 ; Secondary 60F10 62G32
60F05 60G57.

1



2 G. BURITICÁ AND O. WINTENBERGER

such that bn → ∞, mn = ⌊n/bn⌋ → ∞, as n→ ∞. Following the p−clusters
theory developed in [12], the extremal behavior of the series is modeled by
the conditional behavior of a block Bj given that its ℓp−norm is large:

P(B1/xbn ∈ A | ∥B1∥p > xbn)
w−→ P(YQ(p) ∈ A ), n→ ∞,(1.2)

such that Y is independent of the p−cluster Q(p) ∈ ℓp, P(Y > y) = y−α, for

y > 1, and ∥Q(p)∥p = 1 a.s., for p ∈ (0,∞]. The weak convergence holds
for a family of shift-invariant continuity sets A ⊂ ℓp, and (xn) is a suitable
sequence satisfying P(∥B1∥p > xbn) → 0, as n → ∞. The limit distribution
in the right-hand side of (1.2) summarizes the extremal behavior of regularly
varying ℓp−blocks. In a nutshell, the (α)−Pareto component Y models the

magnitude of the rescaled extremal block ∥B1∥p/xbn , and the p−cluster Q(p)

describes the extremal dependencies from the normalized block B1/∥B1∥p
when its ℓp−norm reaches extreme levels. In this way, Q(p) allows us to
describe the appearance of consecutive extremes in regularly varying time
series.

In this article we study the inference of p−cluster statistics of the form

fQ(p) = E[f(YQ(p))] ,(1.3)

for suitable ℓp−continuity functions f : ℓp → R which are invariant to
the shift operator of sequences. Examples of shift-invariant functions are
p−norms, and also coordinate-wise averages. These functions are typically
good summaries of the extremal clustering behavior of blocks. To stress
the relation of the functional f with the p−cluster statistic in (1.3) it is
convenient to write f = f(p). To infer these statistics, we use the disjoint
block estimators proposed in [12] defined as

f̂Q(p) :=
1

kn

mn∑
t=1

f(Bt/∥B∥p,(k+1))11(∥Bt∥p > ∥B∥p,(k+1)),(1.4)

where ∥B∥p,(1) ⩾ ∥B∥p,(2) ⩾ . . . ⩾ ∥B∥p,(mn), denotes the sequence of order
statistics of the ℓp−norms of blocks defined in (1.1), and (kn) is an inte-
ger sequence determining the number of extremal blocks that we select for
inference, and kn → ∞, as n→ ∞.

The case p = α is particularly relevant for two reasons. The first reason
is that under mixing and anti-clustering conditions, choosing (an) satisfying
nP(|X1| > an) → 1, as n→ ∞, [13] prove that

n∑
t=1

εa−1
n Xt

d→
∞∑
i=1

∞∑
j=−∞

ε
Γ
−1/α
i Qij

, n→ ∞ ,(1.5)

where Γ1 ⩽ Γ2 ⩽ · · · are the points of an homogeneous Poisson process,
(Qij)j are independent copies of the α−cluster process Q := Q(α) inde-
pendent of (Γi). The extremal cluster dependencies of the series are fully
modeled using the spectral cluster processQ, and from it one can recover the
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distribution of Q(p), for every p ∈ (0,∞], using the change-of-norms equa-
tion given by [12] and recalled in (2.13). In practice this means α−cluster
inference allows us to infer any statistic in the form of (1.3). Moreover, the
choice p = α is also ideal for selecting extremal blocks in (1.4) as it is less
susceptible to local serial dependencies; see [12] for a broader discussion.

The main goal of this article is to establish the asymptotic normality
of the block estimators from Equation (1.4), tailored for cluster inference.
We state moment, mixing and bias assumptions yielding the existence of a
sequence (kn), satisfying k = kn → ∞, mn/kn → ∞ such that

√
k
(
f̂Q(p)− fQ(p)

) d−→ N
(
0,Var(f(YQ(p)))

)
, n→ ∞,(1.6)

and the limit is a centered Gaussian distribution. Our inference methodology
can be viewed as a Peak Over Threshold over order statistics of blocks.
Moreover, for p = α, fixing k and letting first n → ∞ in (1.4) implies
heuristically from (1.5) that

f̂Q(α) ≈ 1

k

k∑
i=1

f((Γi/Γk+1)
−1/α(Qit)t) .

Then, the simple expression of the asymptotic variance in (1.6) follows as

(Γi/Γk+1)
d
= (Uk,i) where Uk,1 < · · · < Uk,k are the ordered statistics of

iid uniformly distributed Uj , 1 ⩽ j ⩽ k, and U−1/α
d
= Y . This heuristic

is extended to any p−cluster Q(p), p ∈ (0,∞], via the change-of-norms in
(2.13), and rigorously proved in this article using the theory of the tail
empirical process for time series; cf. [31].

In general, for p−cluster inference, the function f = f(p) can involve
the tail-index α in its expression, meaning f(p) = fα(p). Furthermore, we
already mentioned that the choice of p = α has the advantage of being
robust to serial dependencies and to fully characterize clusters of extreme
values (cf. [12]), thus to implement these procedures we replace α with
an estimate α̂. We then show the asymptotic normality of the p−cluster

estimator f̂Qα̂ (p) when we let 1/α̂ equal the classical Hill estimator, and we
extend the analysis to cover α̂−cluster inference. Furthermore, we conduct
simulations to illustrate that ℓα̂−block estimators are competitive both in
terms of bias and variance for finite sample sizes.

Our asymptotic results highlight how introducing ℓp−norm block order
statistics in (1.4), instead of order statistics of the sample (|Xt|) as in [20,
14], can lead to a better asymptotic variance for cluster inference. We
give examples of variance reduction in the case of linear models with short-
range dependence, for inference of classical indices. In our examples, the
asymptotic variance of linear models Var(f(YQ(p))) is null because of the
deterministic properties of the spectral p−cluster process of linear models.
For linear models, the advantage of replacing thresholds with block maxima
records was previously investigated in [26]. Existing works [18, 20, 14, 31]
following [26] focus on cluster of exceedances inference such that p = ∞.
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Our asymptotic result comforts and extends the heuristics presented in [26]
for p = ∞ and linear models to the case p < ∞ and general models. To
prove the asymptotic normality of block estimators, we rely on the theory of
empirical processes [42], but adapted to block estimators. For this purpose,
we build on the previous work of [18], and the modern overview in [31].
To handle the asymptotics of extremal ℓp−blocks, we build on the large
deviation principles studied in [12], and appeal to the p−cluster processes
theory therein.

The article is organized as follows. Preliminaries on mixing coefficients,
regular variation, and the p−cluster theory of stationary time series are
compiled in Section 2. In Section 3 we present our main result in Theo-
rem 3.2, stating the asymptotic normality of the block estimators introduced
in Equation (1.4). We work under mixing, moment, and bias conditions on
the series that we also present in Section 3. Section 4 studies examples
of extremal cluster inference such as estimation of the extremal index, the
cluster size probabilities, and the cluster index for sums. We conclude by
verifying our conditions on classical models such as linear processes and sto-
chastic recurrence equations in Section 5. In the case of linear models with
short-range dependence, Theorem 5.6 states that the ℓp−block estimators of
all the aforementioned quantities have null-asymptotic variance. Thereby,
they are super-efficient for cluster inference of important indices as conjec-
tured by [26] for p = ∞. We illustrate the finite-sample performances of our
estimators in Section 6. All proofs are deferred to Apendices A, B, C, D, E,
and F.

1.1. Notation. We consider stationary time series (Xt) taking values in Rd,
that we endow with a norm | · |. Let p ∈ (0,∞], and (xt) ∈ (Rd)Z. Define
the p−modulus function ∥ · ∥p : (Rd)Z → [0,∞] as

∥(xt)∥pp :=
∑
t∈Z

|xt|p ,

and define the sequential space ℓp as ℓp := {(xt) ∈ (Rd)Z : ∥(xt)∥pp < ∞} ,
with the convention that, for p = ∞, the space ℓ∞ refers to sequences with
finite supremum norm. For any p ∈ (0,∞], the p−modulus functions induce
a distance dp in ℓp, and for p ∈ [1,∞], it defines a norm. Abusing notation,

we call them all ℓp−norms. Let ℓ̃p = ℓp/ ∼ be the shift-invariant quotient
space where (xt) ∼ (yt) if and only if there exists k ∈ Z such that xt−k = yt,

t ∈ Z. We also consider the metric space (ℓ̃p, d̃p) such that for [x], [y] ∈ ℓ̃p,

d̃p([x], [y]) := inf
k∈Z

{dp(xt−k,yt), (xt) ∈ [x], (yt) ∈ [y]},

and without loss of generality, we write an element [x] in ℓ̃p also as (xt).
Further details on the shift-invariant spaces are deferred to [12, 3].

The operator norm for d × d matrices, A ∈ Rd×d, is defined as |A|op :=
sup|x|=1 |Ax|. The truncation operations of (xt) at the level ϵ, for ϵ > 0, are
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defined by

(xεt ) := (xt11|xt|⩽ε) , (xtϵ) := (xt11|xt|>ε) .

The notation a∧b denotes the minimum between two constants a, b ∈ Z, and
a ∨ b denotes its maximum. We write log+(x) := log(x) ∨ 0, for x ∈ (0,∞).
We sometimes write x for the sequence x := (xt) ∈ (Rd)Z. Furthermore, for
a, b,∈ R, and a ⩽ b, we write as x[a,b] the vector (xt)t=a,...,b taking values in

(Rd)b−a+1. We write x[a,b] ∈ ℓ̃p, which means we take the natural embedding

of x[a,b] in ℓ̃
p defined by assigning zeros to undefined coefficients. It will be

convenient to write G+(ℓ̃
p) for the continuous non-negative functions on

(ℓ̃p, d̃p) which vanish in a neighborhood of the origin.

2. Preliminaries

2.1. Mixing coefficients. Let (Xt) be an Rd−valued strictly stationary
time series defined over a probability space ((Rd)Z,A,P). The properties of
stationary sequences are usually studied through mixing coefficients. Denote
the past and future σ−algebras by

Ft⩽0 := σ((Xt)t⩽0), Ft⩾h := σ((Xt)t⩾h), h ⩾ 1 ,

respectively. We recall the definition of the mixing coefficients (βh) below

βh := dTV
(
PFt⩽0⊗Ft⩾h

, PFt⩽0
⊗ PFt⩾h

)
,

where dTV (·, ·) is the total variation distance between two probability mea-
sures: ((Rd)Z,A,P1), ((Rd)Z,A,P2), and P1 ⊗ P2(A × B) := P1(A)P2(B),
for A,B ∈ A. For a summary on mixing conditions see [8, 17, 39].

Remark 2.1. A detailed interpretation of the β−mixing coefficients (βt)
in terms of the total variation distance can be found in Chapter 1.2 in
[17]. These mixing coefficients are well adapted while working with Markov
processes. Indeed, a strictly stationary Harris recurrent Markov chain (Xt),
satisfies βt → 0 exponentially fast as t→ ∞; see Theorem 3.5 in [8].

2.2. Regular variation. We consider stationary time series (Xt) taking
values in (Rd, | · |) and regularly varying with tail index α > 0: all its finite-
dimensional vectors are multivariate regularly varying of the same index.
In this case we write (Xt) satisfies RVα. Borrowing the ideas in [4], (Xt)
satisfies RVα if and only if, for all h ⩾ 0, there exists a vector (ΘΘΘt)|t|⩽h,

taking values in (Rd)2h+1 such that

P(x−1(Xt)|t|⩽h ∈ · | |X0| > x)
d−→ P(Y (ΘΘΘt)|t|⩽h ∈ ·), x→ ∞,(2.7)

where Y is independent of (ΘΘΘt)|t|⩽h and P(Y > y) = y−α, y > 1. We call

the sequence (ΘΘΘt), taking values in (Rd)Z, the spectral tail process.
The time series (ΘΘΘt) does not inherit the stationarity property of the

series. Instead, the time-change formula of [4] holds: for any s, t ∈ Z, s ⩽
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0 ⩽ t and for any measurable bounded function f : (Rd)t−s+1 → R,

E[f(ΘΘΘs−i, . . . ,ΘΘΘt−i)11(|ΘΘΘ−i| ≠ 0)] = E[|ΘΘΘi|α f(ΘΘΘs/|ΘΘΘi|, . . . ,ΘΘΘt/|ΘΘΘi|)].
(2.8)

2.3. ℓp−cluster processes. Let (Xt) be a stationary time series satisfying

RVα. For p ∈ (0,∞], we say the series admits a p−cluster process Q(p) ∈ ℓ̃p

if there exists a sequence (xn), satisfying

P(∥X[1,n]∥p > xn) ∼ n c(p)P(|X1| > xn), n→ ∞,(2.9)

with c(p) ∈ (0,∞), nP(|X1| > xn) → 0, and

P(X[1,n]/xn ∈ · | ∥X[1,n]∥p > xn)
w−→ P(YQ(p) ∈ · ), n→ ∞,(2.10)

where Y is independent ofQ(p) ∈ ℓ̃p, P(Y > y) = y−α, for y > 1, ∥Q(p)∥p = 1

a.s., and the limit in (2.10) holds in (ℓ̃p, d̃p). We study below the anti-
clustering and vanishing-small values conditions denoted AC, CSp, respec-
tively, which guarantee the existence of ℓp−clusters. We rephrase next the
Theorem 2.1. of [12].

Proposition 2.2. Let (Xt) be a stationary time series satisfying RVα. Let
(xn) be a sequence such that nP(|X1| > xn) → 0, as n → ∞, and p > 0.
For all δ > 0, assume

AC : lims→∞ lim supn→∞ P(∥X[s,n]∥∞ > ϵxn | |X1| > ϵxn ) = 0, ϵ > 0,

CSp: limϵ↓0 lim supn→∞
P(∥X[1,n]/xn

ϵ∥pp>δ)
nP(|X1|>xn) = 0.

Then, if p ⩾ α, Equation (2.9) holds with c(∞) ⩽ c(p) ⩽ c(α) = 1, and (Xt)

admits a p−cluster process Q(p) in the sense of (2.10). If p < α, existence of

the p−cluster process holds if E[∥Q(α)∥αp ] <∞. In this case, Equation (2.9)

holds with c(p) = E[∥Q(α)∥αp ].

We see from Proposition 2.2 assuming AC and CSα implies the time
series (Xt) admits an α−cluster Q(α), where α > 0, denotes the tail index.
In this case, appealing to Proposition 3.1. in [12], we have

Q := Q(α) d
= ΘΘΘ/∥ΘΘΘ∥α, ∈ ℓ̃α ,(2.11)

where (ΘΘΘt) is the spectral tail process from Equation (2.7). Moreover, if
CSp, CSp′ , and E[∥Q∥αp ] + E[∥Q∥αp′ ] < ∞ also hold, then the p, p′−clusters
exist and are related by the change-of-norms formula below

P(Q(p) ∈ ·) = c(p)−1E[∥Q∥αp 11(Q/∥Q∥p ∈ ·)](2.12)

=
c(p′)

c(p)
E[∥Q(p′)∥αp 11(Q(p′)/∥Q(p′)∥p ∈ ·)].(2.13)

Since ∥Q(p)∥p = 1 a.s. for any p ∈ (0,∞], then c(α) = 1, and E[∥Q(p′)∥αp ] =
c(p)/c(p′), where c(p), c(p′), are as in Equation (2.9). In the following we
denote by Q the α−cluster as in (2.11).
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Remark 2.3. Using the monotonicty of norms, we see CSp implies CSp′,
for p′ > p > 0. If p > α, condition CSp is always satisfied for sequences
(xn) such that nP(|X1| > xn) → 0, as n → ∞. If α/2 < p ⩽ α, CSp still
holds for short-range dependence models and sequences (xn) such that there

exists κ′ > 0, satisfying n/x
p∧(α−κ′)
n → 0, as n → ∞ (see remarks 5.1. and

5.2. in [12]). We verify this condition for classical models in Section 5.

2.4. Tail-index estimation. To estimate the tail-index α of the regularly
varying series (see (2.7)), we consider the Hill estimator:

1

α̂n
:=

1

α̂n(k′)
:=

1

k′

n∑
t=1

log+(|Xt|/|X|(k′+1)),(2.14)

where |X|(1) ⩾ |X|(2) ⩾ · · · ⩾ |X|(n), and k′ = k′n is a tuning sequence for
(2.14) satisfying k′ → ∞, n/k′ → ∞, as n → ∞. To study the asymptotic
properties of the Hill estimator, we write it as a cluster statistic and consider
the functional h : ℓ̃∞ → [0,∞) given by

h(x) =
∑
t∈Z

log(|xt|)11(|xt| > 1).(2.15)

It is easy to see h(x) = h(x)11(∥x∥p > 1) for every p ∈ (0,∞], and

hQ(p) =

∫ ∞
0

E
[∑

t∈Z log(y|Qt|)11(y|Qt| > 1)
]
d(−y−α) =

1

α
.

We also introduce the counts of exceedances functional e : ℓ̃∞ → [0,∞)
given by

e(x) :=
∑
j∈Z

11(|xt| > 1),(2.16)

which also satisfies e(x) = e(x)11(∥x∥p > 1) for every p ∈ (0,∞], and

eQ(p) =

∫ ∞
0

E
[∑

t∈Z11(y|Qt| > 1)
]
d(−y−α) = 1.

3. Asymptotics of p−cluster block estimators

3.1. Block estimators. Let (Xt) be an Rd−valued stationary time series
satisfying RVα. For p > 0 fixed, assume the conditions of Proposition 2.2
hold for p, thus the series admits a p−cluster process Q(p) ∈ ℓ̃p, and (2.10)
holds for a sequence of high levels (xn) satisfying P(∥X[1,n]∥p > xn) → 0,
as n → ∞. Recall the ℓp−block estimator in (1.4) is tuned with the block
lengths (bn), and the number (kn) of extremal blocks. The total number
of disjoint blocks in a sample is denoted (mn) with mn = ⌊n/bn⌋. To
study the asymptotics of block estimators we assume the following relation
between (kn), (xn) and (bn):

k := kn(p) =
⌊
mnP(∥B1∥p > xbn)

⌋
∼ n c(p)P(|X1| > xbn), n→ ∞,(3.17)
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holds, where c(p) ∈ (0,∞) are as in (2.9), and c(α) = 1. Similarly we
consider a sequence (x′n) satisfying (2.10) for p = ∞, and we assume the
sequence (k′n) satisfies the following relation

k′ := k′n = ⌊nP(|X1| > x′bn)⌋, n→ ∞.(3.18)

Implementing the Hill estimator in (2.14) for p = ∞ imposes minimal re-
strictions on the sequences (k′n) and (x′n) compared to the case p < ∞ in
view of the conditions from Proposition 2.2. In what follows, the sequences
(xn), (bn), (mn), (kn), (x

′
n), (k

′
n) that appear in this article satisfy conditions

(3.17), (3.18) above.

Let f : ℓ̃p → R be a functional defining the p−cluster statistic in (1.3). To
stress its relation with p it will be convenient to write f = f(p). In numerous
examples, the functional f(p) might also depend on α in its expression,
meaning f(p) = fα(p). Hence, it will also be useful to consider the family

of functions fq(p) : ℓ̃
p → R, indexed by q, for q in a neighborhood of α. In

addition, we define the functional 1(p) as

1(p)(x) := 11(∥x∥p > 1),(3.19)

which satisfies 1Q(p) = P(Y ∥Q(p)∥p > 1) = 1. Recall also the function-
als h, e in (2.15) and (2.16) defining the Hill and exceedances estimator,
respectively.

3.2. Consistency of block estimators. We start by stating the consis-
tency of the ℓα̂−block estimators in (1.4) where we choose extremal blocks
as those with the largest ℓα̂−norm, and α̂ is an estimate of the tail-index
α. This is the purpose of Lemma 3.1 for which we require the assumptions
below. The consistency of ℓp−block estimators has already been shown in
Theorem 4.2. in [12].

C: Let f = fα(p) ∈ G+(ℓ̃
p). Assume there exists ϵ, δ > 0, such that

lim sup
n→∞

E
[
supq∈[α−ϵ,α+ϵ]

u∈[1−ϵ,1+ϵ]

(
fq(X[1,n]/(uxn))

)1+δ
11(∥X[1,n]∥p > uxn)

]
P(∥X[1,n]∥p > xn)

<∞,

and supq∈[α−ϵ,α+ϵ]

u∈[1−ϵ,1+ϵ],

E[fq(YQ/u)] < ∞, with p replaced by q in the numerator

if p = α.

S: Let f = fα(p) ∈ G+(ℓ̃
p). Assume there exists ϵ > 0 such that, for

q ∈ [α− ϵ, α+ ϵ], for all x ∈ ℓ̃p \ {0}, fq admits the Taylor development:

fq(x) = fα(x) + (q − α)
∂fq
∂q |q=α(x) +

1

2
(q − α)2

∂2fq
∂q2

|q=ξ(x),(3.20)

where ξ = ξ(x) is a real value in [α−q, α+q], and here ∂fq/∂q and ∂
2fq/∂q

2

denote the first and second-order derivatives of the function q 7→ fq.
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In the following, if we assume that the consistency and smoothness as-
sumptions: C,S hold, then we let ϵ > 0, δ > 0 be such that both statements
stay true. The proof of the next Lemma is deferred to Appendix A.

Lemma 3.1. Let (Xt) be a stationary time series satisfying RVα. Assume
the conditions of Proposition 2.2 hold for p = α and the series admits an
α−cluster process Q ∈ ℓ̃α. Consider the mixing-coefficients (βt) and assume
there exists a sequence (ℓn) satisfying ℓn → ∞, mnβℓn/kn → 0, and ℓn/bn →
0, as n → ∞. Let f = fα(α) : ℓ̃

α → R, assume C holds for ϵ, δ > 0, and
c(q) = E[∥Q∥αq ] satisfies c(q) <∞, for q ∈ [α− ϵ, α+ ϵ]. Moreover, assume

α̂
P−→ α, and ∥Bt∥α̂,(k+1)/xbn

P−→ 1, as n→ ∞. Then,

f̂Q(α̂)
P−→ fQ(α), n→ ∞.

Furthermore, if S holds and ∂fq/∂q satisfies C, then f̂Qα̂ (α̂)
P−→ fQα (α), as

n→ ∞.

3.3. Assumptions for asymptotic normality. Our main result is pre-
sented in Theorem 3.2 stating the asymptotic normality of the ℓp−block
estimators in (1.4) under the Lindeberg, bias, moment and mixing assump-
tions below. We extend the result to ℓα̂−block estimators where 1/α̂ is the
Hill estimator. We also cover the implementation of block estimators for
functionals fα(p) where we plug-in α̂ at the place of α.

L: Let f = fα(p) ∈ G+(ℓ̃
p) such that u 7→ f((xt)/u) is non-increasing, and

there exists δ > 0 such that, for all u > 0, the following Lindeberg-type
condition holds

lim sup
n→∞

E[
(
f(X[1,n]/(uxn))

)2+δ
11(∥X[1,n]/xn∥p > u)]

P(∥X[1,n]∥p > xn)
< ∞.(3.21)

Assume E[
(
f(YQ(p))

)2+δ
] <∞, and if p = α assume there exists ϵ > 0 such

that supq∈[α−ϵ,α+ϵ] E[
(
f(YQ(q))

)2+δ
] <∞.

B(kn) : Consider f satisfying L, and assume there exists ϵ > 0 such that
the bias condition:

lim
n→∞

√
kn sup

u∈[1−ε,1+ε]

∣∣ E[f(B1/(uxbn))11(∥B1/xbn∥p > u)]

P(∥B1∥p > xbn)
− u−α fQ(p)

∣∣
= 0,(3.22)

holds where fQ(p) is as in (1.3).
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Bα(kn) : Consider f satisfying L, and assume there exists ϵ > 0 such that

lim
n→∞

√
kn sup

u∈[1−ε,1+ε],
q∈[α−ε,α+ε]

∣∣ E[f(B1/(uxbn))11(∥B1/xbn∥q > u)]

P(∥B1∥q > xbn)
− u−α fQ(q)

∣∣
= 0.(3.23)

M: Assume there exists ϵ > 0 such that the moment condition below holds

E
[
∥Q∥2αα−ε

]
<∞ .

MXβ: Consider f satisfying L, and let δ be such that (3.21) hold. Assume
that the mixing coefficients (βt) satisfy for some sequence (ℓn) satisfying
ℓn → ∞, and ℓn/bn → 0, mnβℓn/kn → 0, as n→ ∞,

lim
n→∞

mn∑
t=2

(mnβtbn/kn)
δ

2+δ = 0.(3.24)

If f is bounded, note it is enough to assume
∑mn

t=2mnβtbn/kn → 0, n→ ∞.

In the remainder of the article, if we assume that certain of the consistency
and smoothness assumptions: C,S hold or if the Lindeberg, bias, moment,
and mixing assumptions: L,B,M,MXβ hold, then we let ϵ > 0, δ > 0 be
such that all previous statements stay true.

3.4. Asymptotic normality of block estimators. We state next the
asymptotic normality of the ℓp−block estimators in (1.4). We defer its proof
to Section B.

Theorem 3.2. Let (Xt) be a stationary time series satisfying RVα. Assume
the conditions of Proposition 2.2 hold and the series admits a p−cluster
process Q(p) ∈ ℓ̃p. Consider f = f(p) : ℓ̃p → R satisfying L, and if
f(p) = fα(p), assume M and S hold, and ∂fq/∂q, and ∂2fq/∂q

2 satisfy
C, for values ϵ, δ > 0. Assume f(p) and 1(p) satisfy B(kn), and h, e, in
(2.15), (2.16) satisfy L and B(k′n). Moreover, assume MXβ holds. Then, if
kn/k

′
n → κ, with κ ⩾ 0,√

kn

(
f̂Qα̂ (p)− fQα (p)

)
d−→ N

(
0, σ2(κ)

)
, n→ ∞.(3.25)

The limiting variance can be computed in terms of κ, Q(p), as

σ2(κ) := Var(fα(YQ(p))) + κα2 (f ′Qα )2σ2α + 2κα f ′Qα σf,α(κ),

where

σ2α := E[(αh(YQ(p))− e(YQ(p)))2],

σf,α(κ) := E[fα(YQ(p))(αh(YQ(p)κ1/α)− e(YQ(p)κ1/α))],

and Y is independent of Q(p), and P(Y > y) = y−α, for y > 1. Moreover,
if fα(x) = fα(x/∥x∥α), then, for all κ > 0, σf,α(κ) = 0, and in all cases,
σf,α(κ) → 0, as κ ↓ 0. Furthermore, if p = α, assume M holds and assume
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f(α) and 1(α) satisfy Bα(kn). Then, (3.25) continues to hold replacing p by
α̂ in the block estimator.

The choice of kn, k
′
n are subject to the bias conditions B(kn) and B(k′n).

Actually, it is common practice to choose k′n larger than kn, and the numer-
ical results from Section 6 support this practice. When we use fewer blocks
kn for p−cluster inference, compared to the number of records k′n we use
to tune the Hill estimator, precisely if kn/k

′
n → 0, as n → ∞, the variance

term simplifies to
√
k
(
f̂Qα̂ (p)− fQα (p)

)
d−→ N

(
0,Var

(
fα(YQ(p))

) )
, n→ ∞.

This expression also holds when the functional f doesn’t include α in its
expression.

Remark 3.3. To plug-in α̂ in the place of α for p−cluster inference we
require the bias condition B(k′n) for h, e. To do so, the Hill estimator is
seen as a block estimator as in (1.4) that evaluates the block functional h on
(Bt/x′bn), t = 1, . . . ,mn, replacing the high threshold level (x′bn) by k

′−order
statistic from the sample (|Xt|) where

k′n(α) ∼ nP(|X1| > x′bn), n→ ∞.

Then the bias condition B(k′n) can be rewritten as

lim
n→∞

√
k′n sup

u∈[1−ϵ,1+ϵ]

∣∣∣E[log(|X1|/(ux′bn))11(|X1| > (ux′bn))]

P(|X1| > x′bn)
− u−α

1

α

∣∣∣ = 0,

which is no longer a condition on blocks, but on |X1|. This type of condi-
tion was considered in [19, 15]. Notice that the dependence of the threshold
x′bn with bn is an artifact of our notation for B which is common for (kn)

extremal blocks or (k′n) extremal components.

Remark 3.4. The mixing condition MXβ is comparable to the classical
mixing conditions for central limit theory for block estimators, notably, (B1)
and (B2) in [18]. In our notation we can write kn = nvn, bn = rn/kn, and
in both cases we can take ℓn = o(bn), as n → ∞. Then, their assumption
reads as nβℓn/(knbn) → 0, as n → ∞, which is the first part of MXβ.
Actually, in the models we consider in Section 5, this is the leading term
of our mixing assumption. Instead, our gain comes from the way we deal
with the entropy of the cluster functionals, which is novel here. In [18], the
authors require additionally (D2) or (D2′). In this case, for example, to deal
with the extremal index (see e.g. [20]), the authors also require bn

√
kn → 0,

as n → ∞, which is no longer an assumption in our theory. Instead, we
show in Section 5 that in the classical model, we can take kn as in (5.38),
provided that the bias assumptions are met.
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4. Cluster statistics

In view of Theorem 3.2, we derive asymptotic normality of the classical
cluster index estimators in extreme value theory.

4.1. The extremal index. Let (Xt) be a stationary time series in (Rd, | · |)
satisfying RVα. The extremal index θ|X| of the series (|Xt|) is a measure of
serial clustering introduced in [32] and [33]. We recall the extremal index
estimator proposed in [13], based on extremal ℓα−blocks.

Corollary 4.1. Consider fα : ℓ̃α → R to be the function x 7→ ∥x∥α∞/∥x∥αα.
Assume the conditions of Theorem 3.2 hold for p = α, and k/k′ → 0, as
n→ ∞. Let θ|X| = E[∥Q∥α∞], hence we deduce an estimator

θ̂|X| :=
1

k

m∑
t=1

∥Bt∥α̂∞
∥Bt∥α̂α̂

11(∥Bt∥α̂ > ∥B∥α̂,(k+1)),(4.26)

such that
√
k
(
θ̂|X| − θ|X|

) d−→ N (0,Var(∥Q∥α∞)), n→ ∞ .

Proof. The proof of Corollary 4.1 follows directly from an application of
Theorem 3.2 to the function f̃α(x) = fα(x)11(∥x∥α > 1) satisfying f̃α ∈
G+(ℓ̃

α) and f̃α is a bounded a.s. continuous function satisfying L. □

For comparison, we also review the block estimator based on extremal
ℓ∞−blocks proposed in [25]:

θ̂B|X| :=
1

k

mn∑
t=1

11(∥Bt∥∞ > |X|(k+1)) .(4.27)

Direct computations from Example 10.4.2 in [31] yield
√
k(θ̂B|X| − θ|X|)

d−→ N (0, σ2θ), n→ ∞,

where σ2θ ∈ [0,∞), and

σ2θ := θ2|X|
∑
j∈Z

E[|ΘΘΘj |α ∧ 1]− θ|X|

= θ2|X|
∑
j∈Z

∑
t∈Z

E[|Qj+t|α ∧ |Qt|α]− θ|X|.(4.28)

The last equality follows appealing to the time-change formula in (2.8) and
Equation (2.11). As a result, we can compare the asymptotic variances of

θ̂|X| and θ̂
B
|X| in the cases where Q is known. This is the topic of Section 5.

Remark 4.2. An alternative α−cluster estimator of the extremal index cor-
responds to the block functional f ′(x) = 11(∥x∥∞ > 1). A similar asymptotic
normality result applies but with an asymptotic variance Var(f ′(YQ)) larger
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than Var(fα(YQ)). It motivates the use of θ̂|X| although it requires the es-
timation of α. The latter using Hill’s estimator is harmless choosing k′

sufficiently large with respect to k, which is always the case in practice.

Remark 4.3. To check condition S for the functional fα(x) = ∥x∥α∞/∥x∥αα,
note the Taylor expansions:

∥x∥qq − ∥x∥αα

= (q − α)
∑
t∈Z

|xt|α log(|xt|) +
1

2
(q − α)2

∑
t∈Z

|xt|q
′
log2(|xt|),

∥x∥q∞ − ∥x∥α∞

= (q − α) ∥x∥α∞ log(∥x∥∞) +
1

2
(q − α)2 ∥x∥q′′∞ log2(∥x∥∞),

hold for some q′, q′′ ∈ [α ∧ q, α ∨ q]. Hence, fq satisfies

fq(x)− fα(x)

= (q − α)
∥x∥α∞
∥x∥αα

∑
t∈Z

|xt|α

∥x∥αα
log(∥x∥∞/|xt|)︸ ︷︷ ︸

=∂fq/∂q|q=α

+
1

2
(q − α)2

∥x∥q
′
∞

∥x∥q
′

q′

∑
t∈Z

∑
j∈Z

|xt|q
′

∥x∥q
′

q′

|xj |q
′

∥x∥q
′

q′

log(∥x∥∞/|xj |) log(|xj |/|xt|).︸ ︷︷ ︸
=∂2fq/∂q2|q=q′

As mentioned, this expansion is helpful to verify condition S on the models
from Section 5.

4.2. The cluster index for sums. Let (Xt) be a stationary time series
with values in (Rd, |·|) satisfyingRVα. We recall that when α < 2 [37] coined
the constant c(1) in (2.9) as the cluster index for sums. We review a cluster-
based estimator of it, introduced in [12], based on extremal ℓα−blocks.

Corollary 4.4. Consider fα : ℓ̃α → R to be the function x 7→ ∥x∥α1 /∥x∥αα.
Assume the conditions of Theorem 3.2 hold for p = α∧ 1, and k/k′ → 0, as
n→ ∞. Let c(1) = E[∥Q∥α1 ] <∞, hence one deduces an estimator

ĉ(1) :=
1

k

m∑
t=1

∥Bt∥α̂1
∥Bt∥α̂α̂

11(∥Bt∥α̂ > ∥B∥α̂,(k+1)),(4.29)

such that
√
k
(
ĉ(1)− c(1)

) d−→ N (0,Var(∥Q∥α1 )) , n→ ∞,

and c(1) is as in (2.9) with p = 1.

Proof. The proof of Corollary 4.4 follows directly from Theorem 3.2 the
function f̃α(x) = fα(x)11(∥x∥p > 1) satisfies f̃α ∈ G+(ℓ̃

α) where f̃α is a
bounded a.s. continuous function satisfying L. □
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Another sums index cluster-based estimator we can consider is the one
proposed in [31] based on extremal ℓ∞−blocks:

ĉB(1) =
1

kbn

mn∑
t=1

11(∥Bt∥1 > |X|(k+1)).(4.30)

Then, relying on Example 10.4.2 in [31],
√
k(ĉB − c(1))

d−→ N (0, σ2c(1)), n→ ∞,

for a constant σ2c(1) ∈ [0,∞) defined by

σ2c(1) = c(1)2
∑
j∈Z

∑
t∈Z

E[|Qj+t|α ∧ |Qt|α]− c(1).(4.31)

Similarly as in Example 4.1, whenever Q is known, we can directly compare
the asymptotic variances relative to the estimators ĉ(1) and ĉB(1). Section 5
covers this topic for classical models where the cluster process is known.

Moreover, we can use the computations in Remark 4.3 to verify condi-
tion S holds. In this case it suffices to replace ∥x∥∞ by ∥x∥1 in all its
appearances.

4.3. The cluster sizes. In general, a classical approach to model serial
exceedances is using point processes as in [33] and [26]. For the levels (an),
satisfying nP(|X1| > an) → 1, as n→ ∞, and for every fixed x > 0 consider
the point process of exceedances with state space (0, 1]:

ηn,x(·) := Nn

(
{y ∈ ℓ̃∞ : |y| > x} × ·

)
=

n∑
i=1

εi/n(·) 11(|Xi| > xan) .

Under mixing and anti-clustering conditions, for fixed x > 0, we can express
the limiting point process in [26] such as

ηn,x(·)
d→ ηx(·) := N

(
{y ∈ ℓ̃∞ : |y| > x} × ·

)
=

∞∑
i=1

∑
j∈Z

11
(
Γ
−1/α
i |Qji| > x

)
εUi(·) ,

where the points (Ui) are iid uniformly distributed on (0, 1), (Γi) are the
points of a standard homogeneous Poisson process, and (Q·i) are iid copies of
the cluster process Q. Using the independence among these three processes,
one can easily rewrite the limit as

ηx((0, t]) :=

Nx(t)∑
i=1

ξi , 0 < t ⩽ 1 ,(4.32)

where

• Nx is a homogeneous Poisson process on (0, 1] with intensity x−α,
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• for an iid sequence (Yi) of Pareto(α)−distributed random variables
which is also independent of (Qi),

ξi :=
∑
j∈Z

11(Yi |Qji| > 1) ,

• Nx, (ξi) are independent.

Relying on the point process of exceedances representation in (4.32), the
random variables (ξi) can be interpreted as counts of serial exceedances from
one cluster. Furthermore, we deduce the relation P(ξ1 > 0) = E[∥Q∥α∞] =
θ|X|, and also get an expression for the cluster size probabilities

P(ξ1 = j) = E[|Q|α(j) − |Q|α(j+1)] = πj , j ⩾ 1 .(4.33)

The statistic πj can be understood as the probability of recording a cluster of
length j. The block estimators provide natural estimators of these quantities

π̂j :=
1

k

m∑
t=1

|Bt|α̂(j) − |Bt|α̂(j+1)

∥Bt∥α̂α̂
11(∥Bt∥α̂ > ∥B∥α̂,(k+1)),(4.34)

|Bt|(1) ⩾ |Bt|(2) ⩾ . . . ⩾ |Bt|(m) are the order statistics of Bt, the t−th block.

Corollary 4.5. Consider the function πj : ℓ̃α → R defined by πj(x) :=
(|x|α(j) − |x|α(j+1))/∥x∥

α
α, where |x|(1) ⩾ |x|(2) ⩾ . . . . Assume the conditions

of Theorem 3.2 hold for p = α and k/k′ → 0, as n → ∞. Then, for all
j ⩾ 1 we have

√
k
(
π̂j − πj

) d−→ N (0,Var(πQj (Q))) , n→ ∞ .(4.35)

Proof. The proof of Corollary 4.4 follows directly from Theorem 3.2 the
function π̃j(x) = πj(x)11(∥x∥α > 1) satisfies π̃j ∈ G+(ℓ̃

α) and π̃j is a bounded
a.s. continuous function satisfying L. □

Corollary 4.5 provides a novel procedure for estimating cluster size prob-
abilities based on extremal ℓα−blocks. As in the previous examples, the
asymptotic variance can be computed as long as Q is known. This allows
for comparison with the other cluster-based inference procedures provided
in [25, 22, 41]. One advantage of our methodology is that we can straight-
forwardly infer the asymptotic variances of cluster sizes since we express
them as cluster statistics in (4.35). Moreover, inference through extremal
ℓα−blocks has already proven to be useful in [12] for fine-tuning the hyper-
parameters of the estimators, see also the discussion in Section 6.

As before, we can use the computations in Remark 4.3 to verify condition
S, it suffices to replace ∥x∥∞ by (|x|(j) − |x|(j+1)) in the equations therein.

5. Models

5.1. Linear m0–dependent sequences. We consider (Xt) to be a m0–
dependent time series with values in (Rd, | · |) satisfying RVα.
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Example 5.1. The time series (Xt) is a linear moving average of order
m0 ⩾ 1 if it satisfies

Xt := Zt + φ1Zt−1 + · · ·+ φm0Zt−m0 , t ∈ Z,(5.36)

with Rd−variate iid innovations (Zt) satisfying RVα, and (φj) ∈ Rm0.
Alternatively, the max-moving average of order m0 ⩾ 1 satisfies

Xt := max{Zt, φ1Zt−1, . . . , φm0Zt−m0}, t ∈ Z,(5.37)

with R+−variate iid innovations (Zt) satisfying RVα, and (φj) ∈ Rm0
+ .

Then both moving averages satisfy RVα with |Q| admitting the same deter-

ministic expression (|φt|/∥(φj)∥α) in ℓ̃α, see for instance Proposition 3.1.
in [12] and Chapter 5 of [31].

Let p > α/2. For all κ′ > 0, a sequence satisfying xn = O(b
κ′+1/(p∧α)
n )

verifies AC and CSp. This is a consequence of Remark 2.3. Choosing (xn)
in this way implies there exist κ′′ > 0, and (kn) satisfying

kn = O(n b−κ
′′−α/(p∧α)

n ),(5.38)

as n → ∞, such that Equation (3.17) holds from an application of Potter’s
bound. Since κ′ can be chosen arbitrarily small, κ′′ can also be arbitrarily
close to zero.

Keeping this in mind, we can state the Proposition below. The proof is
postponed to Section F.

Proposition 5.2. Consider (Xt) to be an m0–dependent time series with
values in (Rd, |·|). Consider p > α/2, and sequence (kn) and (k′n) satisfying

(5.38), such that mn/kn → ∞, and kn/k
′
n → 0. Consider fα(p) : ℓ̃

p → R,
and assume L, S hold. Then,

√
k
(
f̂Qα̂ (p)− fQα (p)

) d−→ N
(
0,Var( fα(YQ(p)) )

)
, n→ ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂−cluster
inference. In particular the α̂−cluster based estimators from Section 4 in
(4.26) (4.29), and (4.34) are asymptotically normally distributed, and in the
case of the moving averages of Example 5.1

√
k
(
f̂Qα̂ (α̂)− fQα (α)

) P−→ 0, n→ ∞.

5.2. Linear processes. In this section we consider stationary linear pro-
cesses (Xt) with values in (Rd, | · |) satisfying RVα.

Example 5.3. Consider (Xt) to be an Rd−variate sequence satisfying

Xt =
∑
t∈Z

φjZt−j , t ∈ Z,(5.39)

for a sequence of iid innovations (Zt) satisfying RVα, and a sequence (φj)
in RZ. Moreover, assume there exists κ′ > 0 such that ∥(φj)∥(α−κ′)∧2 <∞.
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In the setting of Example 5.3, a stationary solution (Xt) exists and sat-
isfies RVα (c.f. [16, 35, 27]). Proposition 5.4 below demonstrates condi-
tions AC, CSp hold for p > α/2, and a suitable sequence (xn) such that
nP(|X1| > xn) → 0 as n → ∞. Therefore, the time series (Xt) admits
an α−cluster process Q, which we can compute in terms of the filter (φj),

and the spectral measure of the random variable Z0, denoted by ΘΘΘZ
0 , with

|ΘΘΘZ
0 | = 1 a.s. We obtain the expression, cf. Chapter 5 of [31],

Q
d
= (φt/∥(φj)∥α)ΘΘΘZ

0 , ∈ ℓ̃α.(5.40)

Note again that the norm of the α−cluster process, i.e., |Q|, is deterministic

in ℓ̃α. Assuming ∥(φj)∥p <∞, we can compute the indices c(p) in (2.9) by

c(p) = E[∥Q∥αp ] = ∥(φj)∥αp /∥(φj)∥αα < ∞.(5.41)

Classic examples of these heavy-tailed linear models are auto-regressive mov-
ing averages, i.e., ARMA processes, with iid regularly varying noise; cf. [10].

The proposition below guarantees that the assumptions of Proposition 2.2
hold. We defer its proof to Section F.2.

Proposition 5.4. Consider (Xt) to be a linear process with values in (Rd, | ·
|), as in Example 5.3. Consider p > α/2, and a sequence (xn) such that

n/x
p∧(α−κ′)
n → 0, n→ ∞, for some κ′ > 0. Then it holds for all δ > 0

lim
s→∞

lim sup
n→∞

P(∥X[1,n]/xn −X
(s)
[1,n]/xn∥

p
p > δ)

nP(|X1| > xn)
= 0,(5.42)

where X
(s)
t :=

∑
|j|⩽s φjZt−j. Thus AC and CSp are satisfied.

We now review the mixing properties of a linear process. We recall below
the statement in Theorem 2.1. in [38] (see Lemma 15.3.1. in [31]).

Proposition 5.5. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3 with φj = 0, for j < 0. Assume the distribution

of Z0 is absolutely continuous with respect to the Lebesgue measure in Rd,
and has a density gZ satisfying

i)
∫
|g(x− y)− g(x)|dx = O(|y|), for all y ∈ Rd,

ii) φt = O(t−ρ), for t ⩾ 0, and ρ > 2 + 1/α,
iii)

∑∞
j=0 φjx

j ̸= 0, for all x ∈ Rd with |x| < 1,

Then, for all 0 < ε < α, the mixing coefficients (βt) satisfy

βt = O
(
t
1− (ρ−1)(α−ε)

1+α−ε
)
.(5.43)

Combining Propositions 5.4 and 5.5, we state below the asymptotic nor-
mality of the p−cluster based estimators for linear processes in Theorem 5.6.
We defer its proof to Section F.3.

Theorem 5.6. Consider (Xt) to be a causal linear process with values in
(Rd, | · |), as in Example 5.3. Let ρ > 0, and assume the conditions of
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Proposition 5.5 hold with φt = O(t−ρ), for t > 0. Consider p > α/2,
and sequences (kn) and (k′n) satisfying (5.38), such that mn/kn → ∞, and

kn/k
′
n → 0, as n → ∞. Consider fα(p) : ℓ̃p → R, and assume L, S hold.

Assume that for δ > 0 as in (3.21),

ρ > 3 + 2
α + 2

δ (1 +
1
α) .(5.44)

If fα(p) is bounded, condition (5.44) can be replaced by ρ > 3+2/α. Then,
√
k
(
f̂Qα̂ (p)− fQα (p)

) d−→ N
(
0,Var( fα(YQ(p)) )

)
, n→ ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂−cluster
inference. In particular the α̂−cluster based estimators from Section 4 in
(4.26) (4.29), and (4.34), satisfy

√
k
(
f̂Qα̂ (α̂)− fQα (α)

) P−→ 0, n→ ∞.

Regarding cluster inference in the case of linear models, the α−cluster
approach has an optimal asymptotic variance for shift-invariant function-
als since we use the ℓα−norm order statistics. For this reason, it compares
favourably with state-of-the-art block estimator. For example, for the ex-
tremal index, the super-efficient estimator in (4.26) has a lower asymptotic
variance than the block estimator in (4.27). Indeed the asymptotic variance
σ2θ of the latter, computed in (4.28), is not necessarily null. For example,
for the autoregressive process of order one AR(1) one has σ2θ = 1− θ|X| > 0.

5.3. Affine stochastic recurrence equation solution under Kesten’s
conditions. In this section we focus on the causal solution to the affine
stochastic recurrence equation SRE under Kesten’s conditions. To guarantee
the existence of a solution (Xt), with values in (Rd, |·|) as in (5.45) satisfying
RVα, we rely on Theorem 2.1. and Theorem 2.4 in [1]. For an overview, we
refer to [11]. In what follows, we study time series (Xt) as in the Example 5.7
below.

Example 5.7. Consider (Xt) to be a sequence with values in Rd satisfying

Xt = AtXt−1 +Bt, t ∈ Z,(5.45)

where ((At,Bt)) is an iid sequence of non-negative random d × d matri-
ces with generic element A, and non-negative random vectors with generic
element B taking values in Rd. For the existence of a causal stationary
solution, we assume

i) E[log+ |A|op] + E[log+ |B|] < ∞,
ii) under i), assume the Lyapunov exponent of (At), denoted γ, satisfies

γ := lim
n→∞

n−1 log |An · · ·A1|op < 0, a.s.

To guarantee the heavy-tailedness condition RVα, we also assume

iii) B ̸= 0 a.s., and A has no zero rows a.s.
iv) there exists κ > 0 such that E[|A|κop] < 1,
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v) the set Γ from Equation (5.46) generates a dense group on R,
Γ = {log |an · · ·a1|op : n ⩾ 1, an · · ·a1 > 0,

an, . . . ,a1 are in the support of A’s distribution },(5.46)

vi) there exists κ1 > 0 such that E[(mini=1,...,d
∑d

t=1Aij)
κ1 ] ⩾ dκ1/2, and

E[|A|k1op log+ |A|op] <∞.
vii) under i)− vi), there exists a unique α > 0 such that

lim
n→∞

n−1 logE
[
|An · · ·A1|αop

]
= 0,(5.47)

and E[|B|α] <∞. If d > 1 assume α is not an even integer.

The Rd−variate series (Xt), satisfying (5.45) and i)− vii), admits a causal
stationary solution and satisfies RVα, with α > 0 as in Equation (5.47).

The previous example is motivated by the seminal Kesten’s paper [30].
We follow Theorem 2.1. in [1] to state conditions i) − ii) of Example 5.7.
Under the conditions i)− ii), the unique solution (Xt) of (5.45) has the a.s.
causal representation

Xt =
∑
i⩾0

At−i+1 . . .AtBt−i, t ∈ Z,(5.48)

where the first summand is Bt for i = 0 by convention; for an overview see
[11].

One of the main reasons why the solutions to SRE as in Example 5.7
have received strong interest, is because (Xt) satisfies RVα even when the
innovations ((At,Bt)) are light-tailed. This feature was first noticed in [30]
where the original Kesten’s assumptions were introduced. In Kesten’s frame-
work, a causal stationary solution to the SRE exists as in (5.48), and the
extremes of the series occur due to the sums of infinitely many terms of
growing length products appearing in (5.48); see [5] for a review. Further,
the community adopted the simplified Kesten’s conditions stated by Goldie
in [23] for univariate SRE. These conditions also aim to capture the heavy-
tailed feature under lighter-tailed innovations. In Example 5.7, we borrow
the conditions iii)− vii) established for the multivariate setting from The-
orem 2.4 and Corollary 2.7. in [1]; see also [2]. Then, a solution (Xt) as
in Example 5.7 satisfies RVα, for α > 0, and the index of regular variation
α is the unique solution to the Equation (5.47). We are also interested in
Example 5.7 because it models classic econometric time series such as the
squared ARCH(p), and the volatility of GARCH(p, q) processes; see [11].

Concerning the extremes of (Xt) in Example 5.7, the forward spectral tail
process satisfies the relation

ΘΘΘt = At · · ·A1ΘΘΘ0, t ⩾ 0,

where (At) is an iid sequence distributed as A; see [29]. The backward
spectral tail process has a cumbersome representation that we omit here;
c.f. [29]. We state in Proposition 5.8 sufficient conditions on (A,B) yielding
assumptions AC, CSp hold for p > α/2, and a suitable sequence (xn) such
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that nP(|X1| > xn) → 0 as n→ ∞. In this case the time series (Xt) admits
an α−cluster process Q. We recall the identity from Equation (8.6) of [12]:
c(p) = E[∥Q∥αp ] = E[∥(ΘΘΘt)t⩾0∥αp − ∥(ΘΘΘt)t⩾1∥αp ], for c(p) as in (2.9). Then,
letting p = α/2, a straightforward computation yields

c(p) ⩽ 2E[∥(ΘΘΘt)t⩾0∥α−pp ] = 2E[
∑

t⩾0|At · · ·A1ΘΘΘ0|p]
⩽ 2 s

∑
t⩾0(E[|As · · ·A1|pop])t,

and E[|As · · ·A1|pop] < 1, for p < α and s ⩾ 1 fixed sufficiently large in the
setting of Example 5.7. Hence, for p ∈ (α/2, α), c(p) <∞ in (2.9), and then

the series admits a p−cluster process Q(p).
We state now Proposition 5.8 which verifies conditions AC, CSp for the

SRE equation. The proof is postponed to Section F.4.

Proposition 5.8. Let (Xt) be a stationary time series with values in (Rd, | ·
|), as in Example 5.7. Let p > α/2, and consider (xn) such that there

exists κ′ > 0 satisfying n/x
p∧(α−κ′)
n → 0, as n → ∞. Then, (xn) satisfies

conditions AC and CSp.

In the setting of SRE equations, conditionAC has been shown in Theorem
4.17 in [36]. In [36], the authors already considered a condition similar to
CSp. Parallel to their setting, we propose a proof of Proposition 5.8 which
shows CSp holds over uniform regions Λn = (xn,∞) such that n/xpn → 0,
as n → ∞, in the sense of (F.114). Thereby, our proof extends Theorem
4.17 in [36] to uniform regions Λn not having an upper bound.

Concerning the mixing properties of (Xt)t⩾0 as in Example 5.7, we use
that it is a Markov chain and that X0 has the stationary distribution. As
mentioned in Remark 2.1, we can then use Markov chain’s theory to compute
its mixing coefficients; cf. [34]. We review Theorem 2.8. in [1], yielding an
exponential decay of the mixing-coefficients (βt) of the series. For a general
treatment see Chapter 4.2 in [11].

Proposition 5.9. Consider a time series (Xt) with values in (Rd, | · |), as
in Example 5.7. Assume there exists a Borel measure µ on (Rd, | · |), such
that the Markov chain (Xt)t⩾0 is µ−irreducible, i.e., for all C ⊂ Rd with
µ(C) > 0,

∞∑
t=0

P(Xt ∈ C |X0 = x) > 0, x ∈ R.(5.49)

Then (Xt) has mixing coefficients (βt) satisfying βt = O(ρt) for some ρ ∈
(0, 1), and we say it is strongly mixing with geometric rate. Moreover,
(Xt)t⩾0 is irreducible with respect to the Lebesgue measure if (A,B) admits
a density.

We can now state the asymptotic normality of cluster-based estimator for
SRE solutions in Theorem 5.10 below. The proof is postponed to Section
F.5.
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Theorem 5.10. Consider (Xt) to be the causal solution to the SRE in
(5.45) with values in (Rd, | · |), as in Example 5.7. Assume the conditions
of Proposition 5.9 hold. Consider p > α/2, and sequences (kn) and (k′n)
satisfying (5.38), such that mn/kn → ∞, and kn/k

′
n → 0, as n → ∞.

Consider fα(p) : ℓ̃
p → R, and assume L, S hold. Then,

√
k
(
f̂Qα̂ (p)− fQα (p)

) d−→ N
(
0,Var( fα(YQ(p)) )

)
, n→ ∞,

under the bias conditions Bα(k), B(k′), and the result extends to α̂−cluster
inference. In particular, the α̂−cluster based estimators from Section 4 in
(4.26) (4.29), and (4.34), are asymptotically normally distributed.

Remark 5.11. In this example, the asymptotic variances of the α−cluster
based estimators from Section 4 in (4.26) (4.29), and (4.34) are non-null.
The limiting variances in Theorem 5.10 are difficult to compare with the
existing ones in the literature because of the complexity of the distribution
of Q(p). However, we provide simple ℓα−block estimators of the asymptotic
variances in Section 6.

6. Numerical experiments

This section aims to illustrate the finite-sample performance of the α̂−cluster
estimators on time series (Xt) with tail-index α > 0. In all the models we
consider in Section 5, we work under the assumption that the tuning pa-
rameters of the α−cluster satisfy (5.38). We take κ′ = 1 in (5.38) which

yields b =
√
n/k. In this case, the implementation of our estimators can be

written solely as a function of k and k′. Recall k = kn must satisfy k → ∞,
m/k → ∞ with m = [n/b], n/k′ → ∞, and k/k′ → 0 as n→ ∞. Numerical
comparisons of our α̂−cluster based approach with other existing estimators
for the extremal index and the cluster index are at the advantage of our ap-
proach; see [13] and [12]. The code of all numerical experiments is available
at: https://github.com/GBuritica/cluster_functionals.git.

6.1. Tuning the Hill estimator. We recommend choosing the tuning se-
quence of the tail-index and of the cluster estimators as (k′n), (kn), respec-
tively, such that k/k′ → 0. Roughly speaking, the cluster statistics capture
the block extremal behavior whereas the tail-index recovers an extremal
property of margins. In this section, we illustrate that the α cluster-based
estimators perform well in simulation when we use the Hill estimator 1/α̂(k′)
with k′ larger than k. To illustrate this point, we simulate 500 samples
(Xt)t=1,...,n of an AR(φ) model with absolute value student(α) noise for
n = 12 000, α = 1 and φ ∈ {0.5, 0.7}, and for samples of Example 5.7. We

estimate the extremal index θ̂X(k) as in (4.26) where we replace α̂ by α̂(k′).
Recall that for an AR(φ) model the asymptotic variances of the extremal
index estimator are asymptotically null when k/k′ → 0 as n→ ∞. We see in
Figures 1, 2 and 3 that in practice we have to choose k small to reduce the
bias of the estimator. Moreover, the estimation procedure is robust with

https://github.com/GBuritica/cluster_functionals.git
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Figure 1. Heatmap with contour curves of standard devia-
tions and mean squared errors for estimates of the extremal

index k1 = k 7→ θ̂X(k) in (4.26), using a Hill-type estima-
tor k2 = k′ 7→ α̂(k′). We simulate 500 samples (Xt)t=1,...,n

of an AR(φ) model with absolute value student(α) noise for
n = 12 000, φ = 0.5, α = 1, such that θX = 0.5.

Figure 2. Heatmap with contour curves as in Figure 1.
Here we simulate 500 samples (Xt)t=1,...,n of an AR(φ) model
with absolute value student(α) noise for n = 12 000, φ = 0.7,
α = 1, such that θX = 0.3.

respect to k′ therefore we recommend taking k′ large to reduce variance.
Similar results were found for n = 3000, n = 5000, and n = 8000 and
these are available upon request. To conclude, we see in Figures 1, 2 and 3
that standard deviations are small, and thus the error of cluster inference is
mainly due to bias. For this reason, we recommend choosing k small and k′

larger in all settings.

6.2. Cluster size probabilities. We reviewed in Section 4.3 how cluster
sizes play a key role to model the serial behavior of exceedances. In this
section, we implement the cluster size probabilites estimation procedure
from Equation (4.34) in an example of a solution to the SRE under Kesten’s
conditions.
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Figure 3. Heatmap with contour curves as in Figure 1.
Here we simulate 500 samples (Xt)t=1,...,n of Example (6.1)
for n = 12 000 such that θX ≈ 0.2792.

Example 6.1. Consider the non-negative univariate random variables A,
B, defined by logA = N−0.5, where N denotes a standard Gaussian random
variable, and B is uniformly distributed in [0, 1]. Let (Xt) be the solution
to the SRE in (5.45). Then, (Xt) satisfies RVα with α = 1. If (Aj) is a
sequence of iid random variables with generic element A, then

Qt
d
= Πt/∥(Πj)∥α , t ∈ Z ,

with

Πt
d
=


At · · ·A1 if t ⩾ 1,

At · · ·A−1 if t ⩽ −1,

1 if t = 0 .

This follows by Example 6.1 in [29], and Proposition 3.1 in [12]. Then,
for p > α/2, the p−cluster based estimators (4.26) (4.29), and (4.34) are
asymptotically normally distributed.

Recall the cluster sizes π1, π2, . . . , defined in (4.33). We infer the clus-
ter sizes of Example 6.1 using α−cluster estimates. To illustrate Theo-
rem 5.10, we run a Monte–Carlo simulation experiment based on 1 000 sam-
ples (Xt)t=1,...,n of length n = 12 000 from Example 6.1. For each sampled
trajectory, we obtain estimates π̂1, π̂2, . . . , letting k = 10 and b = 38 in
(4.34). For the implementation we use Hill-based estimates of the tail-index
α̂(k′) with k′ = 1000. We also estimate the extremal index θX of the series
from Equation (4.26). Theorem 5.10 yields, for j ⩾ 0,

Var(
√
k (π̂j − πQj )) → Var(πQj (Q)), n→ ∞,(6.50)

where πQj are the cluster functional yielding the cluster sizes πj with the

notation in (4.35). Notice that the asymptotic variance of our cluster sizes
estimate is again a cluster statistic that we can infer. We compute an es-
timate of the asymptotic variance in (6.50) using cluster-based estimates,
and compare this estimate with the empirical variance obtained from the
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Monte-Carlo simulation study. Figure 4 plots the profile of the limit Gauss-
ian distribution where the asymptotic variance is computed in these two
ways. As expected from Equation (6.50), the curves overlap, even if k is
small. In our simulation, a clear bias appears when we choose k larger.

In the case of SRE equations, the cluster sizes were studied in detail in
[24]. The authors proposed a method to approximate the true values when
the tail-index α, and the random variable A are known. We approximate
true values using Equation 3.5 in [24], and a Monte-Carlo study with 10 000
samples of length 500 000. The obtained values are pointed out in red in
Figure 4. We see that this choice of k yields estimates centered around the
true value.

6.3. Conclusion. Our main theoretical result in Theorem 3.2 states asymp-

totic normality of α cluster-based disjoint block estimators f̂Qα (α̂), based on
k extremal ℓα̂−blocks, where α̂ is an estimate of the tail index of the series.
The advantage of α̂ cluster-based methods is that the choice of k is robust
to time dependencies and that it fully describes clusters of extreme values;
see [12]. Equation (3.25) characterizes their asymptotic variance in terms of
a cluster statistic that we can also infer. We further show in Section 4 that
many important indices in extremes can be written in terms of an α−cluster
statistic, e.g., the extremal index and cluster sizes. Section 5 verifies that
our assumptions hold for numerous models like causal linear models and
SRE solutions under Kesten’s conditions. For linear models, we obtain esti-
mators with null asymptotic variance for classical indices as first conjectured
in [26]. In the examples we considered, our estimators have a small variance
that can also be estimated. To illustrate the performance of our α−cluster
inference methodology, we run finite-sample simulations in Section 6. Our
simulations support that replacing α by α̂(k′) as in Section 6.1 does not have
a big impact on the asymptotic variance. This is because in practice k needs
to be chosen small to obtain unbiased estimates, whereas k′ can be chosen
larger. Then, even if we choose k small, the uncertainty of our procedure
is well quantified by plugging an estimate of the asymptotic variance in the
Gaussian limit. Finally, a complete study of the tuning parameters k, k′

requires a careful analysis of the bias conditions for blocks: Bα,B, as we
pointed out in Remark 3.3, which we see as a road for future research.
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[12] Buriticá, G., Mikosch, T. and Wintenberger, O. (2023) Large deviations of
ℓp−blocks of regularly varying time series and applications to cluster inference Sto-
chastic Process. Appl. 161, 68–101.

[13] Buriticá, G. Mikosch, T. Meyer, N. and Wintenberger, O. (2021) Some vari-
ations on the extremal index. Zap. Nauchn. Semin. POMI. Volume 501, Probability
and Statistics. 30, 52—77. To be translated in J.Math.Sci. (Springer).

[14] Cissokho, Y. and Kulik, R. (2021) Estimation of cluster functionals for regularly
varying time series: sliding block estimators. Electron. J. Stat. 15, 2777–2831.

[15] Cissokho, Y. and Kulik, R. (2022) Estimation of cluster functionals for regularly
varying time series: Runs estimators. Electron. J. Stat. 16, 3561–3607.

[16] Cline, D. B. (1983) Estimation and linear prediction for regression, autoregression
and ARMA with infinite variance data. PhD Diss. Colorado State University.

[17] Dedecker, J., Doukhan, P., Lang, G., Rafael, L. R. J., Louhichi, S. and
Prieur, C. (2007) Weak dependence: With examples and applications. Springer,
New York.

[18] Drees, H. and Rootzén, H. (2010) Limit theorems for empirical processes of cluster
functionals. Ann. Statist. 38, 2145–2186.

[19] Drees, H. Janssen, A. and Neblung, S. (2021) Cluster based inference for ex-
tremes of time series. Stochastic Process. Appl.. 142, 1–33.

[20] Drees, H. and Neblung, S. (2021) Asymptotics for sliding block estimators of rare
events. Bernoulli 27, 1239–1269.
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Appendix A. Consistency of block estimators

In the following proofs, we assume the conditions of Proposition 2.2 hold.
In this setting, the time series (Xt) admits a p−cluster Q(p) ∈ ℓ̃p and (2.9),
(2.10) hold for (xn). For inference purposes, we fix the sequence of block
lengths (bn), and we write mn = ⌊n/bn⌋, such that bn → ∞, mn → ∞.
Given p ∈ (0,∞] fixed, we assume that the relation

k := kn(p) =
⌊
mnP(∥B1∥p > xbn)

⌋
(A.51)

∼ n c(p)P(|X1| > xbn), n→ ∞,(A.52)

holds, where c(p) ∈ (0,∞) are as in (2.9). We can verify mn/kn → ∞ using
the relation nP(|X1| > xn) → 0, as n→ ∞.

In addition, to infer the tail-index of the series α we implement the Hill
estimator in (2.14), hence we consider sequences (x′n) and (k′n) such that
(x′n) verifies (2.9) for p = ∞, and we assume

k′ := k′n = ⌊nP(|X1| > x′bn)⌋,(A.53)

holds. Similarly as before we can verify mn/k
′
n → ∞, as n → ∞. The

sequences (bn), (mn), (xn), (kn), and (x′n), (k
′
n) that we consider henceforth

are the ones fixed here.

A.1. Proof of Lemma 3.1. We start by showing that the conditions in
Lemma 3.1 on the mixing coefficients of the series (see (A.54)) entail (A.55)
below. This last condition was already introduced in Equation (4.1) in [12]
to show consistency of ℓp−block estimators. The proof of the next lemma
is provided in Appendix C.1.

Lemma A.1. Let p ∈ (0,∞], let f = f(p) ∈ G+(ℓ̃
p) be a bounded Lipschitz

continuous function. If there exists a sequence (ℓn), satisfying ℓn → ∞, as
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n→ ∞, such that the mixing coefficients (βt) satisfy

lim
n→∞

mnβℓn/kn = lim
n→∞

ℓn/bn = 0 ,(A.54)

then the sequences (xn) and (bn) satisfy, for all u > 0, the relation∣∣E[e−k−1
∑m

t=1 f((uxb)
−1Bt)11(∥Bt∥p>uxb)

]
− E

[
e−k

−1f((uxb)
−1B1)11(∥B1∥p>uxb)

]m]∣∣
→ 0,(A.55)

as n→ ∞, where (kn) is chosen as in (A.52).

Next, we state the consistency of ℓp−block estimators for arbitrary p, and
we cover the case of ℓα̂−block estimators. The proof of the next Lemma is
deferred to Appendix C.2.

Lemma A.2. Assume the mixing condition in (A.55) holds. Consider a

function f = fα(p) ∈ G+(ℓ̃
p), not necessarily bounded, and assume E[f(YQ(p))] <

∞. Moreover, assume

lim sup
n→∞

E
[(
f(X[1,n]/xn)

)1+δ
11(∥X[1,n]∥p > xn)

]
P(∥X[1,n]∥p > xn)

<∞.(A.56)

Then, the ℓp−block estimator in (1.4) satisfies

f̂Q(p)
P−→ fQ(p), n→ ∞.

Moreover, for p = α assume α̂
P−→ α, and ∥Bt∥α̂,(k+1)/xbn

P−→ 1, as n → ∞,
hold. Furthermore, assume C holds for ϵ, δ > 0, and c(q) = E[∥Q∥αq ] satisfies
c(q) <∞, for q ∈ [α− ϵ, α+ ϵ]. Then, we also have

f̂Q(α̂)
P−→ fQ(α), n→ ∞.

Assuming S and assuming ∂fq/∂q satisfies C in addition, yields

f̂Qα̂ (α̂)
P−→ fQα (α), n→ ∞.

Proof of Lemma 3.1. The proof consists in applying Lemma A.2. For this
purpose, notice Lemma 3.1 already assumes C holds for ϵ, δ > 0 and c(q) <
∞, for q ∈ [α − ϵ, α + ϵ]. In addition, Lemma A.1 entails condition (A.55)
which we require to apply Lemma A.2. This verifies all the assumptions of
Lemma A.2 and thus this concludes the proof. □

Appendix B. Asymptotic normality of block estimators

In the following sections it will be useful to consider the deterministic
threshold estimators defined by

f̃Qα (u, q) :=
1

kn

mn∑
t=1

fα(Bt/(uxbn))11(∥Bt∥q > uxbn) , u, q > 0,(B.57)

h̃Q(u) :=
1

k′n

mn∑
t=1

h(Bt/(ux′bn))11(∥Bt∥∞ > ux′bn), u > 0,(B.58)



ON THE ASYMPTOTICS OF EXTREMAL ℓp−BLOCKS CLUSTER INFERENCE 29

where fα(p) : ℓ̃p → R is a cluster functional that can depend on α in its

expression and h : ℓ̃∞ → R is as in (2.15). The sequences (xn), (bn),
(mn), (kn) that we consider, defining the block estimator are the ones fixed
in (A.52), and (x′n), (k

′
n) are as in (A.53). Similarly to (B.57), we define

1̃Q(u, q) to be the deterministic threshold estimator for the cluster functional

x 7→ 1(q)(x) of (3.19), and we define ẽQ(u) as in (B.58) where e : ℓ̃∞ → R
is the exceedances functional in (2.16).

In addition, we assume k/k′ → κ, for κ ⩾ 0, or equivalently x′bn/xbn →
κ1/α, as n→ ∞. Indeed, if we denote |X|′s distribution by F|X| and its left
inverse by F←|X|, then the relations (A.52) and (A.53) imply

x′bn
xbn

∼
F←|X|

(
1− k′n

n

)
F←|X|

(
1− kn

n

) ∼
(
k′n
kn

)−1/α
→ κ1/α,(B.59)

as n→ ∞, such that the last relation follows by regular variation of |X| and
[40, Proposition 2.6 (v)].

Let Ff ⊆ G+(ℓ̃
p) be the set including the functions: x 7→ fα(x), x 7→ 1(x),

and Fh ⊆ G+(ℓ̃
∞) the set containing x 7→ h(x) and x 7→ e(x) as in (2.15),

(2.16), and define

F = Ff ∪ Fh.(B.60)

Recall the deterministic threshold estimators in (B.57), then, let ϵ, δ > 0 be
such that the conditions of Theorem 3.2 are satisfied and define

Tf := {g̃Q(u, q)}{g(·/u): g∈Ff ,u∈[1−ϵ,1+ϵ],q∈[α−ϵ,α+ϵ]},

Th := {g̃Q(u)}{g(·/u): g∈Fh,u∈[1−ϵ,1+ϵ]}.

We are interested in the family

T = Tf ∪ Th ,(B.61)

indexed by four functions fα, 1, h, e, and the values of (u, q) ∈ [1− ϵ, 1+ ϵ]×
[α− ϵ, α+ ϵ]. Here

(u, q) 7→ g̃Q(u, q), g ∈ Ff ∪ Fh,(B.62)

is a stochastic process taking values in the multivariate Skorohod space
D([1− ϵ, 1 + ϵ])× [α − ϵ, α+ ϵ]) endowed with the product J1−topology of
the metric space of càdlàg functions.

Let (B∗t ) denote a triangular array of iid blocks distributed as B1, and
define the independent-block estimators on this sequence as

g̃Q,∗ (u, q) =
1

kn

mn∑
t=1

g(B∗t /(uxb))11(∥B∗t ∥q > uxb) , g ∈ Ff ,(B.63)

g̃Q,∗ (u) =
1

k′n

mn∑
t=1

g(B∗t /(ux′b))11(∥B∗t ∥∞ > ux′b), g ∈ Fh.
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Also, define Tf,∗ and Th,∗ consisting of the union of these independent-block
estimators on Ff and Fh, respectively, and similarly as in (B.61) we define

T,∗ = Tf,∗ ∪ Th,∗ .(B.64)

B.1. Proof sketch. To prove the uniform central limit theorem on the
family T in (B.61) we follow the plan below:

(1) We start by showing that, asymptotically, we can replace (Bt) by
an array (B∗t ) of iid blocks meaning it suffices to show the uniform
central limit theorem on T,∗,

(2) we then compute the covariance structure of the independent-block
estimators (B.63) evaluated on (B∗t ),

(3) and finally we establish how to control the complexity of the family
F defined in (B.60).

Bearing this in mind, Section B.2 tackles (1), then Section B.3 studies
(2), and Section B.4 discusses the uniform entropy theory to assess (3). The
proof of Theorem 3.2 is deferred to Section B.5. The proofs of auxiliary
results are deferred to Appendix D.

B.2. Coupling theory. The following Proposition tackles part number (1)
from the proof sketch in Section B.1, and its proof is deferred to Section D.2.

Proposition B.1. Consider a cluster functional g ∈ G+(ℓ̃
p) satisfying L,

and assume M, MXβ are satisfied. Then, there exists an array (B∗t )1⩽t⩽mn

of iid blocks distributed as B1 such that, for all δ > 0,

lim
n→∞

P
(

sup
u∈[1−ϵ,1+ϵ],
q∈[α−ϵ,α+ϵ]

√
kn |g̃Q(u, q)− g̃Q,∗ (u, q)| > δ

)
= 0 , g ∈ Ff ,

lim
n→∞

P
(

sup
u∈[1−ϵ,1+ϵ]

√
k′n |g̃Q(u)− g̃Q,∗ (u)| > δ

)
= 0 , g ∈ Fh.

We conclude from the Proposition above that it suffices to show the uni-
form central limit theorem of the independent-block estimators (B.63) on
T,∗. Indeed, since the family is indexed by only a finite number of functions,
it is enough to check it separately, for each g ∈ F (see (B.60)).

B.3. Covariance structure. The covariance structure of the deterministic
threshold estimators is determined by the Lemma below whose proof is
postponed to Section D.1. Moreover, this Lemma studies the step (2) of the
proof plan in Section B.1.

Lemma B.2. Consider g, f : ℓ̃p → R to be cluster functional satisfying L,
and let h, e : ℓ̃∞ → R be the cluster functional for the Hill estimator and the
exceedances estimator in (2.15) and (2.16). Then, for q, q′ ∈ [p − ϵ, p + ϵ]
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and u, v ∈ [1− ϵ, 1 + ϵ],

knCov
(
g̃Q,∗ (v, q), f̃

Q
,∗ (u, q

′)
)

→ v−α
c(q)

c(p)
E[g(YQ(q))f(YQ(q)v/u)11(∥YQ(q)∥q′ > v/u)],(B.65)

as n→ ∞. Moreover, if kn/k
′
n → κ > 0, then

knCov
(
g̃Q,∗ (v, q), h̃

Q
,∗(u)

)
→ v−ακ

c(q)

c(p)
E[g(YQ(q))h(YQ(q)κ1/αv/u)],(B.66)

knCov
(
h̃Q,∗(v), ẽ

Q
,∗(u)

)
→ v−ακ

c(q)

c(p)
E[h(YQ(q))e(YQ(q)v/u)],(B.67)

as n→ ∞. Furthermore, the previous limits continue to hold replacing h by
e in the previous equalities, or e by h.

B.4. Uniform entropy theory. In this section we discuss how we assess
the step (3) of the proof plan (see Section B.1 for details). Theorem 3.2
states asymptotic normality of ℓα̂−block estimators in (1.4). Our proof
considers a family of independent-block estimators indexed by q, for q in a
neighborhood of α, and relies on Lemma B.3 below showing this family has
low complexity in terms of entropy numbers. We review the classical results
of the theory of Vapnik-Cervonenkis below to measure the complexity of
classes of functions. We refer to [42, Section 2.6] for a detailed treatment.

Let X be a measurable space and let V be a collection of sets from this
space. The VC–dimension of V is the smallest number s such that for
every set containing s elements, we can find a subset that is not picked
out by the class V. We say that V is a VC–class if its VC–dimension is
finite. A VC-class of functions F is such that the collections of all the
subgraphs {(x, u) : ϕ(x) > u} of real-valued functions ϕ ∈ F is a VC-
class. The entropy number of a VC-class has a polynomial expression on
the VC-dimension (see Theorem 2.6.7. in [42]). Moreover, given a VC-class
of functions F , the VC-Hull of F is the collection of functions G such that for
every g ∈ G there exists a symmetric convex combination fm =

∑m
i=1 αifi,

with
∑m

i=1 |αi| ⩽ 1, fi ∈ F , such that g is the pointwise limit of the sequence
(fm)m∈N. Moreover, by Corollary 2.6.12 in [42] the entropy number of a VC-
hull also has a polynomial expression on the VC-dimension of the underlying
VC-class.

It is often easier to check that F is a VC-major class of functions F , i.e.,
that {x : ϕ(x) > u}, for every u ∈ R, is a VC-class. We can construct new
VC-major classes using classical operations: addition, products. If F is VC-
major, then the class of function h ◦ ϕ, with h ranging over the monotone
functions h : R → R, with ϕ ∈ F , is VC-major. This is Lemma 2.6.19 in [42].
One example are functions x 7→ f(x/u)11(ϕ(x) > u), where u 7→ f(x/u) is a
non-increasing function. Moreover, a bounded VC-major class satisfies the
uniform entropy condition by Lemma 2.6.13 in [42].
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In particular, we show that ℓq−norms constitute a VC-major class. This
is the purpose of the next Lemma whose proof is postponed to Section D.3.

Lemma B.3. Consider the class containing all sets of the form {x ∈ ℓ̃q0 :
∥x∥q > u}, where q ∈ (q0, q

′
0), and u ∈ R. Then, this is a VC-class of

dimension 3. This implies that the classes of functions

F := {∥ · ∥q : ℓ̃q0 7→ [0,∞), q ∈ (q0, q
′
0)},

are VC-major for every q′0 > q0 > 0.

B.5. Proof of Theorem 3.2. We focus on showing the asymptotic result
for the block estimator implemented with p = α. The general result on
p−cluster inference, for p ∈ (0,∞], follows the same lines of this proof by
fixing q = p during the proof, instead of considering q in a neighborhood of
α, thus we omit the details.

Let g ∈ G+(ℓ̃
q) be a cluster functional, let gQ(q) be its q−cluster statistic

given by

gQ(q) = E[g(YQ(q))],(B.68)

and to simplify notation we write gQ(α) = gQ. We consider the centered
Gaussian process

G =
(
Gq(g(·/u))

)
(B.69)

for q, q′ ∈ [α − ϵ, α + ϵ] and u, v ∈ [1 − ϵ, 1 + ϵ], g ∈ F as in (B.60) with
covariance structure

Cov
(
Gq(g(·/u)),Gq′(f(·/v))

)
= c(q)u−α E[g(YQ(q))f(YQ(q)u/v)11(∥YQ(q)u/v∥q′ > 1)],(B.70)

Cov
(
Gq(g(·/u)),G(h(·/v))

)
= κc(q)u−α E[g(YQ(q))h(YQ(q)κ1/αu/v)],(B.71)

Cov
(
G(e(·/u)),G(h(·/v))

)
= κu−α E[e(YQ)h(YQu/v)],(B.72)

for u, v ∈ [1−ϵ, 1+ϵ], q, q′ ∈ [α−ϵ, α+ϵ], and g, f ∈ F , such that Q(q) ∈ ℓ̃q,
is the q−cluster process of the series. We can replace h by e in the previous
equalities or e by h to obtain the full covariance structure of this Gaussian
process.

B.5.1. Asymptotic equicontinuity. In view of the discussion after Proposi-
tion B.1, it suffices to establish asymptotic equicontinuity for the independent-
block estimators in (B.63). To simplify notation, we denote

g(B∗t /(uxbn))11(∥B∗t ∥q > (uxbn)) = g(B∗t /xbn)(u, q),

where g̃Q,∗ (u, q) is as in (B.63), and we consider the family Tg,∗ of stochastic
processes defined by the independent-block estimators in (B.63), namely,

Tg,∗ = {g̃Q,∗ (u, q)}u∈[u0,s0],q∈[q0,q′0].
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As we mentioned, this process is indexed by [u0, s0] × [q0, q
′
0]. Define the

random metric dn(·, ·) on this family by(
dn((u, q), (v, q

′))
)2

=
1

kn

mn∑
t=1

[
g(B∗t /xbn)(u, q)− g(B∗t /xbn)(v, q′)

]2
.(B.73)

In the remaining of the proof, we verify the sequence of processes Tg,∗ satisfies
the Lindeberg condition (i), continuity condition (ii), and entropy condition
(iii) from Theorem C.4.5 in [31] hold.

B.5.2. Lindeberg condition (i). Since u 7→ g(x/u) is a non-increasing func-
tion, then we it suffices to verify, for every η > 0, q ∈ [q0, q

′
0], u ∈ [u0, s0],

I =
mn

kn
E
[
(g(B1/xbn)(u, q))

2 11
(
g(B1/xbn)(u, q) >

√
ηkn

)]
→ 0, n→ ∞.

Indeed, we have

I ⩽
mn

kn
E
[
(g(B1/xbn)(u, q))

2+δ
] 2

2+δ P
(
g(B1/xbn)(u, q) >

√
ηkn

) δ
2+δ

⩽ (η kn)
−δ/2mn

kn
E
[
(g(B1/xbn)(u, q))

2+δ
]
.

where δ here follows the notation in (3.21). Then, appealing to assumption
L, we deduce I → 0, as n→ ∞.

B.5.3. Continuity condition (ii). Let s > u, q, q′, and denote

c((u, q), (s, q′)) = Cov
(
Gq(g(·/u)),Gq′(g(·/v))

)
,(B.74)

and c(u, q) = c((u, q), (u, q)), and c(q) is as in (2.9). Then, applying Lemma B.2,

E
[(
dn((u, q), (s, q

′))
)2]

=
mn

kn
E
[(
g(B1/xbn)(u, q)− g(B1/xbn)(s, q

′)
)2]

−→ c(u, q) + c(s, q′)− 2c((u, q), (s, q′))

= u−αc(q)(g2)Q(q) + s−αc(q′)(g2)Q(q′)

−2u−αc(q)E[g(YQ(q))g(YQ(q)u/v)11(∥YQ(q)u/v∥q′ > 1)].

We now use the fact that v 7→ g(·/v) is a non-increasing function, for u > v,

c(u, q) + c(s, q′)− 2c((u, q), (s, q′))

⩽ u−αc(q)(g2)Q(q) + s−αc(q′)(g2)Q(q′)

−2u−αc(q)E[g(YQ(q))211(∥YQ(q)∥q′ > 1)]

= s−αc(q′)(g2)Q(q′)− u−α(g2)Q(q)

+2u−αc(q)E[g(YQ(q))211(∥YQ(q)∥q′ ⩽ 1)].(B.75)
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We now focus on the last term. Notice that for q ⩾ q′, the last term equals
zero. We consider the case q < q′,

E[g(YQ(q))211(∥YQ(q)∥q′ ⩽ 1)]

⩽ E[g(YQ(q))2+δ]2/(2+δ)P(∥YQ(p)∥q′ ⩽ 1)δ/(2+δ).(B.76)

Furthermore, for q < q′,

P(Y ∥Q(q)∥q′ ⩽ 1)

⩽ P(Y q(∥Q(q)∥qq − (q − q′)
∑

t∈Z|Q
(q)
t |q′ log 1/|Q(q)

t |) ⩽ 1)

= P(Y q(1− (q − q′)
∑

t∈Z|Q
(q)
t |q log 1/|Q(q)

t |) ⩽ 1)

⩽ 1− E[(1− (q − q′)
∑

t∈Z|Q
(q)
t |q′ log 1/|Q(q)

t |))α/q]

⩽ (q − q′)αq−1 E[
∑

t∈Z|Q
(q)
t |q′ log 1/|Q(q)

t |].
Therefore, as q < q′, we obtain

P(Y ∥Q(q)∥q′ ⩽ 1) ⩽ (q − q′)αq−1 E
[∑
t∈Z

|Q(q)
t |q log 1/|Q(q)

t |
]
.

Then, notice that by the change-of-norms in Equation (2.12)

E
[∑
t∈Z

|Q(q)
t |q log 1/|Q(q)

t |
]

= c(q)−1E
[∥Q∥αq
∥Q∥qq

∑
t∈Z

|Qt|q log
∥Q∥q
|Qt|

]
⩽ (ϵc(q))−1E[∥Q∥α+ϵα−ϵ].

and the last relation follows by the monotonicity of ℓp−norms and the fact
that for every chosen 0 < η < 1 we have

log(1/x) = 1/η log(1/xη) ⩽ 1/ηx−η , 0 < x ⩽ 1 ,(B.77)

Hence, appealing to conditions M and L the term in (B.76) is bounded by
constant C <∞. We can now conclude the following bound for (B.75)

c(u, q) + c(s, q′)− 2c((u, q), (s, q′))

⩽ s−αc(q′)(g2)Q(q′)− u−αc(q)(g2)Q(q) + 2u−αc(q)(q − q′)αq−1C.

Finally, recall from Proposition 2.2 that

c(q) = E[∥Q∥αq ] = (E[1/∥Q(q)∥αα])−1,
and then it is easy to see by monotone convergence that q 7→ c(q) is a
continuous function at α. Finally, this implies

lim
η↓0

lim sup
n→∞

sup
u,s∈[u0,s0],
q,q′∈[q0,q′0],

d((u,q),(s,q′))<η

E
[(
dn((u, q), (s, q

′))
)2]

= 0.

From this we conclude that (ii) holds.

B.5.4. Entropy condition (iii). Recall F is the set with four functions: x 7→
f(x), x 7→ 1, x 7→ h(x) and x 7→ e(x) (see (3.19), (2.15), (2.16)). We can
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assume without loss of generality that g takes non-negative values. Denote
Tg the class of functions

(x, u, q) 7→ g(x/u)11(∥x∥q > u),

indexed by [u0, s0]× [q0, q
′
0]. It is sufficient to show that for each g ∈ F , the

class Tg satisfies the entropy condition in (iii) with respect to the random
metric introduced in (B.73). We argue separately for each function g ∈ F .
In what follows we denote the envelope of the class Tg as

Gg(x) := sup
(u,q)∈[u0,s0]×[q0,q′0]

|g(x/u)11(∥x∥q > u)|

= g(x/u0)11(∥x∥q0 > u0).

Moreover, notice we can apply Lemma C.4.8 in [31]. Indeed, we can verify
condition C.4.8 using Lemma (B.2), as n→ ∞,

mn

kn
E
[(
g(B1/xbn)(u, q)− g(B1/xbn)(s, q

′)
)2]

−→ c(u, q) + c(s, q′)− 2c((u, q), (s, q′)) <∞.

This means that it is enough to check that Tg is a VC-hull class, as introduced
in Section B.4, and then apply Corollary 2.6.12 in [42] giving a satisfactory
bound on the entropy. In the following we treat separately the case g equal
to fα or 1 and the case g equal to h or e.

Case g = fα and g = 1. Consider the class of functions ∥x∥q : x 7→ ∥x∥q,
for elements x ∈ ℓ̃q0 , and q ∈ [q0, q

′
0]. By Lemma B.3, this class of functions

is a VC-major class, as the sets {x ∈ ℓ̃q0 : ∥x∥q > u}, for q ∈ [q0, q
′
0], and

u > 0, forms a VC-class of dimension 3. Finally, applying Lemma 2.6.19 for
the monotone functions ψu : R → R defined by:

u 7→ g(x/u)11(∥x∥q > u),

indexed by u, we see that Tg is a VC-major. Finally, Lemma 2.6.13 states
that bounded VC-major classes are VC-hull classes and this yields the de-
sired result.

Case g = h, e. This case has been studied previously, for example, we can
borrow the results in [31]. Here by an applications of Lemma C.4.18 in [31]
and Lemma c.4.19 we conclude the entropy condition is satisfied.

To sum up, we have verified the sequence of processes T ∗g satisfies the
Lindeberg condition (i), the continuity condition (ii), and the entropy con-
dition (iii) from Theorem C.4.5. in [31]. Therefore, we conclude the uniform
asymptotic normality of the estimators indexed by T and this concludes the
proof of Theorem 3.25.

B.5.5. Uniform central limit theorem. Consider a function fα : ℓ̃α → R
satisfying L. Recall the family F in (B.60). Note that by the assumptions on
Theorem 3.2 we have that Proposition B.1 and Lemma B.2 hold. Asymptotic
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equicontinuity of the family{√
k
(
g̃Q(u, q)− c(q)u−αgQ(q)

) }
u∈[u0,s0],
q∈[q0,q′0],
g∈F

,(B.78)

holds by the calculations from Section (B.5.1), then it remains to verify
the asymptotic normality of the finite-dimensional parts of the family in
(B.78). Applying the Wold device it is enough to check that every linear
combination of deterministic threshold estimators in (B.57) is asymptotically
normal distributed. Moreover, note any such a linear combination g is again
a cluster functional satisfying L. We thus apply Proposition B.1 to g.

Hence, for such a linear combination g denote by g̃Q,∗ its independent-
block estimator corresponding to the linear combination of independent-
block estimators in (B.63), and denote gQ(p) its cluster-statistic with the
notation in (B.68). Then, it is enough to check that the real-valued variable:

√
k
(
g̃Q,∗ − gQ(p)

)
,(B.79)

admits a Gaussian limit, as n → ∞. Moreover, note we can replace gQ(p)

by the expectation of g̃Q,∗ in (B.79) thanks to the bias assumptions Bα(kn)
and B(k′n). In addition, note that (B.79) is the sum of independent ran-
dom variables, hence we can apply the Lindeberg central limit theorem for
triangular arrays [6, Section 18]. Finally, Lemma B.2 allow us to compute
the asymptotic variance of (B.79) recentering by its expectation, and this is
enough for the convergence of (B.79) to a normal distribution as n → ∞.
Then, we conclude the uniform asymptotic normality of the family in (B.78)
towards the Gaussian process G defined in (B.69).

B.6. Variance calculations. We now focus on establishing the asymptotic
variance in (3.25). Recall that when f depends on α, i.e., f = fα, we impose
a smoothness assumption S on the function q 7→ fq. More precisely, we
assume

fq(x) = fα(x) + (q − α)f ′α(x) +
1

2
(q − α)2Rα(x),

where f ′α is the derivative of fa with respect to a, i.e., f ′α =
∂fq
∂q

∣∣
q=α

, and

Rα(x) ⩽ sup
q∈(α−ϵ,α+ϵ)

∣∣∣∂2fq
∂q2

(x)
∣∣∣.

Then, we see by Lemma 3.1 that f ′α, supq∈(α−ϵ,α+ϵ) |∂2fq/∂q2| admit consis-

tent ℓα̂−cluster estimates. Moreover we have

√
k
(
f̂Qα̂ (α̂)− fQα

)
=

√
k
(
f̂Qα (α̂)− fQα ) +

√
k√
k′

√
k′
(
α− α̂

)
f̂ ′

Q

α (α̂)(B.80)

+

√
k√
k′

√
k′
(
α− α̂

)2
R̂Q
α (α̂).
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as n → ∞, where k′ is the tuning parameter for the Hill estimator whereas
k is used to tune the extremal cluster estimator.

Recall k/k′ → κ ⩾ 0. Then, we consider separately the cases κ = 0 and
κ > 0. We start with the case κ > 0. Applying Lemma E.1 we obtain

√
k(α− α̂)

d−→ αGα

(
αh(·/1)− e(·/1)

)
,

as n→ ∞. Moreover, an application of Lemma E.2 yields
√
k
(
f̂Qα (α̂)− fQα

) d−→ fQα Gα( fα(·/1)/fQα − 1(·/1) ).
Then, we can conclude from Equation (B.80) that

√
k
(
f̂Qα̂ (α̂)− fQα

)
d−→ Gα

(
(fα(·/1)− fQα 1(·/1)) + (f ′Qα )α(αh(·/1)− e(·/1))

)
= N (0, σ2(κ)).

The limit variance σ2(κ) can be computed from the covariance structure
in (B.70) and is given explicitly in (B.81). Notice that it depends on the
parameter κ > 0. More precisely,

σ2(κ) = Var(fα(YQ)) + κα2(f ′Qα )2σ2α + 2κα f ′Qα σf,α(κ),(B.81)

where

σ2f = E[(fα(·/1)− fQα 1(·/1))2] = Var(fα(YQ)),

σ2α = E[(αh(YQ)− e(YQ))2],

σf,α(κ) = E[fα(YQ)(αh(YQκ1/α)− e(YQκ1/α))].

Furthermore, notice that if fα(x) = fα(x/∥x∥α), then σf,α(κ) = 0, for all
κ > 0. Otherwise, notice that by Jensen’s inequality we have

(σf,α(κ))
2 ⩽ E[(fα(YQ)− fQα )2]E[(αh(YQκ1/α)− e(YQκ1/α))2],

such that E[fα(YQ)2] < ∞. Then, we focus on the right-hand term in the
previous equation. Then, relying on the properties of h and e as defined in
(2.15), (2.16), we obtain that for κ < 1,

(σf,α(κ))
2/Var(fα(YQ))

⩽ E
[
(αh(YQκ1/α)− e(YQκ1/α))2

]
= E

[
(αh(YQκ1/α)− e(YQκ1/α))211(∥YQκ1/α∥α > 1)

]
= κ

∫ ∞
0

E[(αh(yQ)− e(yQ))211(y > max{k1/α, 1})]d(−y−α)

= κσ2α.

Hence, we conclude that, for κ < 1,

(σf,α(κ))
2 ⩽ κσ2αVar(fα(YQ)).

In particular this implies σ2(κ) → Var(fα(YQ)), as κ→ 0.
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If κ = 0, then under the assumption of Theorem 3.2, similar steps as for
the proof provided in Section B.5, but now restricting the family F to Fh
with the notation in (B.61), allow us to conclude the following

√
k′
(
α− α̂

) d−→ αN
(
0,E[(αh(YQ)− e(YQ))2]

)
,

as n → ∞. Hence, we see
√
k√
k′

√
k′
(
α − α̂

) P−→ 0, as n → ∞. Then, Equa-

tion (B.80) together with the previous limit implies
√
k
(
f̂Qα̂ (α̂)− fQα

)
=

√
k
(
f̂Qα (α̂)− fQα ) + o(1)

d−→ Gα

(
(fα(·/1)− fQα 1(·/1))

)
= N

(
0,Var(fα(YQ))

)
,

as n→ ∞, where the last limit follows again from Lemma E.2.
Overall, this calculations demonstrate the expression of the asymptotic

variance in (3.25), and this concludes the proof of Theorem 3.2.

Appendix C. Proofs of Appendix A

C.1. Proof of Lemma A.1. We start by denoting disjoint blocks as

Bt := X(t−1)b+[1,b], B∗t := X∗(t−1)b+[1,b],(C.82)

t = 1, . . . ,m , such that (B∗t )t=1,...,m is a sequence of iid blocks, distributed
as B1, independent of (Bt)t=1,...,m. We also denote ℓ := ℓn → ∞, and disjoint
blocks as

Bt,ℓ := X(t−1)b+[1,b−ℓ], t = 1, . . . ,m.

such that for ℓ = 0 we keep the notation in (C.82). Notice that for all δ >

0, ϵ > 0, and for every bounded Lipschitz-continuous function f ∈ G+(ℓ̃
p)∣∣E[ exp{− 1

k

∑m
t=1f(x

−1
b Bt)

}]
− E

[
exp

{
− 1

k

∑m
t=1f(x

−1
b Bt

ϵ
)
}]∣∣

⩽ E
[∣∣ 1
k

∑m
t=1f(x

−1
b Bt)− 1

k

∑m
t=1f(x

−1
b Bt

ϵ
)
∣∣]

⩽ E
[
1
k

∑m
t=1

∣∣f(x−1b Bt)− f(x−1b Bt
ϵ
)
∣∣]

= o
(
mP(∥B1/xb

ϵ∥p > δ)/k
)
, n→ ∞.

This term vanishes by condition CSp. Moreover, define

I =
∣∣E[ exp{− 1

k

∑m
t=1fϵ(x

−1
b Bt)

}]
− E

[
exp

{
− 1

k

∑m
t=1fϵ(x

−1
b Bt,ℓ)

}]∣∣,
where fϵ(xt) := f(xtϵ). Then, there exists a constant c > 0 such that

I ⩽ c
1

k
P
(
max
1⩽j⩽m

max
1⩽i⩽ℓ

|X(j−1)b−i+1| > ϵxb
)

⩽ c
m

k
P(∥B1,ℓ∥∞ > ϵxb)

⩽ c
mℓ

k
P(|X0| > ϵxb) = O(ℓ/b),
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as n → ∞. Thus, we conclude that limn→∞ ℓn/bn = 0 is a sufficient con-
dition yielding I → 0, as n → ∞. Recall the definition of the mixing
coefficients (βt) in Section 2.1. Moreover, applying the mean value theorem
we have |e−x − e−y| ⩽ |x− y|, thus∣∣E[ exp{− 1

k

∑m
t=1fε(x

−1
b Bt)

}]
− E

[
exp

{
− 1

k

∑m
t=1fε(x

−1
b B∗t )

}]∣∣
⩽ 1

k

m∑
t=1

E
[∣∣fε(x−1b Bt)− fε(x

−1
b B∗t )

∣∣]
⩽

m

k
∥f∥∞2 dTV

(
L(Bt,l)⊗ L(X1)⊗ · · · ⊗ L(X1)︸ ︷︷ ︸

ℓ times

, L(Bt)
)

⩽ 2
m

k
∥f∥∞βℓn → 0, n→ ∞.

We use first the definition of the total variation distance, and second a
reformulation of the distance in terms of the mixing coefficients (βt). This
last relation allows to conclude that (A.55) holds under the conditions of
Lemma A.1.

C.2. Proof of Lemma A.2. Consider a non-negative continuous function
fq : ℓ̃

p → R satisfying the assumptions of Lemma A.2. We follow a similar
argument as in the proof of Lemma 8.5 in [12] to show

|f̃Qq (u, q)− fQα (α)| P−→ 0,

as (n, u, q) → (∞, 1, α). Fix η > 0, and denote g = fα ∧ η, then

|f̃Qq (u, q)− fQα (α)|

⩽ |f̃Qq (u, q)− f̃Qα (u, q)|+ |f̃Qα (u, q)− g̃Q(u, q)|+ |g̃Q(u, q)− gQ(α)|
+|gQ(α)− fQα (α)|

= I + II + III + IV.(C.83)

We treat the four terms in (C.83) separately.
Regarding term III in (C.83), note that

|g̃Q(u, q)− gQ(α)|
⩽ |g̃Q(u, q)− g̃Q(1, q)|+ |g̃Q(1, q)− g̃Q(1, α)|+ |g̃Q(1, α)− gQ(α)|
= |g̃Q(u, q)− g̃Q(1, q)|+ |g̃Q(1, q)− g̃Q(1, α)|+ oP(1), n→ ∞,

such that the last relation holds by an application of Lemma 8.5. in [12].
Moreover, note that g is a bounded function and with probability zero YQ
belongs to the points of discontinuity of g. Moreover, this implies that
g can be approximated by a monotone sequence of Lipschitz-continuous
functions. Therefore, we can assume without loss of generality that g is
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Lipschitz-continuous. In this case note

|g̃Q(u, q)− gQ(α)|
⩽ (g̃Q(u, q)− g̃Q(1, q)) + (g̃Q(1, q)− g̃Q(1, α)) + |g̃Q(u, q)− g̃Q(1, q)|
⩽ η(u−α0 − 1)1̃Q(u0, q0) + (g̃Q(1, q0)− g̃Q(1, α)) + |g̃Q(u, q)− g̃Q(1, q)|,

where we have also used here the monotonicty of the function q 7→ 11(∥xt∥q >
1). Then there exists u0, q0, such that 0 < u−α0 −1 < η−1ϵ/3 and 0 < c(α)−
c(q0) < ϵ/3, u−α0 c(q0) < 2, and 1 > u > u0, α > q > q0. This last assertion
follows by continuity and monotonicity of the functions u 7→ u−α, and also
of q 7→ c(q). This last is granted by the fact that c(q) = E[∥Q∥αq ] < ∞
and monotonicty of the ℓp−norms yields the continuity of this last function.
Similarly, we can find n0 ∈ N such that, for 1 > u > u0, 1 > q > q0, and
n > n0,

|g̃Q(u, q)− gQ(α)|
⩽ η(u−α0 − 1)1̃Q(u0, q0) + (gQ(1, q0)− gQ(1, α)) + ϵ/3

⩽ η(u−α0 − 1)(u−α0 c(q0) + oP(1)) + (c(q0)− 1) + ϵ/2

⩽ ϵ.

where the second inequality holds by an application of Lemma 8.5 in [12].

Since ϵ was chosen aribitrarily, then we conclude |g̃Q(u, q)− gQ(α)| P−→ 0, as
(n, u, q) → (∞, 1, α).

We now turn our attention to the approximations in II and IV in (C.83),
which are the two of them of a similar nature. In this case, note

E
[

sup
u⩾u0,q⩾q0

|f̃Qα (u, q)− g̃Q(u, q)|
]

⩽
mn

kn
E
[
sup
u,q

fα(Bt/(uxbn))11(∥Bt∥q > (uxbn))

×11
(
fα(Bt/(uxbn))11(∥Bt∥q > (uxbn)) > η

)]
⩽

mn

kn
E
[
(fα(Bt/(u0xbn)))

1+δ 11(∥Bt∥q0 > (u0xbn))
] 1

1+δ

×P(fα(Bt/(u0xbn)11(∥Bt∥q0 > (u0xbn)) > η)
δ

1+δ

⩽
mn

kn
η−δE

[
(fα(Bt/(u0xbn)))

1+δ 11(∥Bt∥q0 > (u0xbn))
]
.

This implies II
P−→ 0 letting (n, u, q) → (∞, 1, α), and then letting η → ∞

in the previous inequality by the Lindeberg-type condition in (A.56). A
similar argument implies IV → 0 letting (n, u, q) → (∞, 1, α), and then
letting η → ∞.
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To conclude, we now show that I in (C.83) also converges to zero. In this
case, notice that by assumption S we have

I = |f̃Qq (u, q)− f̃Qα (u, q)| ⩽ |q − α| sup
q∈[α−ϵ,α+ϵ]
u∈[1−ϵ,1+ϵ]

∂̃gq
∂q |

Q
q=q(u, q).

Therefore,

E[I] = E[|f̃Qq (u, q)− f̃Qα (u, q)|]

⩽
mn

kn
|q − α|P(∥Bt∥q0 > u0)

δ
1+δ

×E
[

sup
q∈[α−ϵ,α+ϵ]
u∈[1−ϵ,1+ϵ]

(
∂gq
∂q |q=q

)1+δ
(Bt/(uxb))11(∥Bt∥q > uxb)

] 1
1+δ

.

Then, applying assumption C we conclude I
P−→ 0 as (n, u, q) → (∞, 1, α).

Then, this shows,

|f̃Qq (u, q)− fQα (α)| P−→ 0,

as (n, u, q) → (∞, 1, α). Recall we assumed that α̂
P−→ α, and ∥Bt∥α̂,(k+1)/xbn

P−→
1. Then, the continuous mapping Theorem implies

|f̃Qα̂ (∥Bt∥α̂,(k+1)/xbn , α̂)− fQα (α)| = |f̂Qα̂ − fQα | P−→ 0,

as n→ ∞, and this gives the desired result. □

Appendix D. Proofs of auxiliary results

D.1. Proof of Proposition B.2. We start by showing that if g : ℓ̃p → R
satisfies L then

mn

kn
E[g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
] → v−α

c(q)

c(p)
E[g(YQ(q))],(D.84)

as n→ ∞. Note that if g is a bounded function, then the previous relation
follows straightforwardly from Proposition 2.2. If g is not bounded, then
note that for δ > 0 as in (3.21), and for all η > 0,
mn

kn
E[g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
]

=
mn

kn
E[g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
11(g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
> η)]

+η
mn

kn
P(g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
> η)

+
mn

kn
E[g ∧ η

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
]

= I + II + III.(D.85)
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Applying Proposition 2.2 we have III → c(q)v−α E[g ∧ η(Q(q))], as n→ ∞,
and letting η → ∞ we obtain the right-hand side term in (D.84). Hence, it
remains to show that I + II → 0, letting n→ ∞, and then η → ∞.

Regarding term I in (D.85),

I

= E
[
g
(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
11(g

(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
> η)

]
⩽

mn

kn
E
[(
g
(
B1/(vxbn)

))1+δ
11]

1
1+δP

(
g
(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
> η

) δ
1+δ

⩽
mn

kn
η−δE

[(
g
(
B1/(vxbn)

)
)1+δ11

(
∥B1∥q > vxbn

)
] ,

and we see that by assumption L that I → 0 letting first n→ ∞ and lastly
η → ∞. Finally, for term II in (D.85), we apply a Markov inequality which
yields

II = η
mn

kn
P
(
g
(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

)
> η

)
⩽ η−δ

mn

kn
E
[(
g
(
B1/(vxbn)

)
)1+δ11

(
∥B1∥q > vxbn

)
],

and we conclude also for term II that II → 0 letting n → ∞ and then
η → ∞. Overall this shows (D.84) holds.

We now consider the functional h in (2.15) defining the Hill estimator.
Assume that kn/k

′
n → κ and κ > 0. In this case notice that since (kn) and

(k′n) satisfy (A.51) and (3.18), respectively, then

mn

k′n
∼ kn
k′nP(∥B1∥p > xbn)

∼ kn
k′n

P(|X1| > x′bn)

c(p)P(|X1| > xbn)

1

bnP(|X1| > x′bn)

∼ 1

bnc(p)P(|X1| > x′bn)
, n→ ∞,

and this holds since kn/k
′
n → κ, and P(|X1| > x′bn)/P(|X1| > xbn) → κ−1,

as n→ ∞, due to (B.59), and regular variation of the variable |X1|. Then,
mn

k′n
E[h

(
B1/(vx

′
bn)

)
] =

mn

k′n
E[h

(
B1/(vx

′
bn)

)
11
(
∥B1∥∞ > vx′bn

)
]

→ v−α
c(∞)

c(p)
E[h(YQ(∞))], n→ ∞,

=
v−α

c(p)
E[h(YQ)].(D.86)

such that the first limit holds applying Proposition 2.2, and the last equality
follows from the change-of-norms equation in (2.12). Moreover by similar ar-
guments we can also show that mnE[e(B1/(vx

′
bn
)]/k′n → v−αE[e(YQ)]/c(p),

for the exceedances functional in (2.16), and alsomnP(∥B1∥q > (vxbn))/k
′
n →

v−αc(q)/c(p), as n→ ∞.
We now focus on computing the covariance of blocks. Denote κn = kn/k

′
n,

and denote cn = xbn/x
′
xn . Note that by our assumptions κn → κ > 0 and by
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Equation (B.59) we also have cn → κ−1/α. We start by considering the case

where g : ℓ̃p → R is a functional satisfying L, and h is the functional defining
the Hill estimator in (2.15). Now, since (B∗t ) is a sequence of independent
blocks distributed as B1 we have

knCov
(
g̃Q,∗ (v, q), h̃

Q
,∗(v)

)
=

knmn

knk′n
E
[
g
(
B1/(vxbn)

)
h
(
B1/(ux

′
bn)

)
11
(
∥B1∥q > vxbn

)]
− knmn

knk′n
E
[
g
(
B1/(vxbn)

)
11
(
∥B1∥q > vxbn

))]
E
[
h
(
B1/(ux

′
bn)

)]
,

=
mnκn
kn

E
[
g
(
B1/(vxbn)

)
h
(
B1/(ux

′
bn)

)
11
(
∥B1∥q > vxbn

)]
+ o(1),(D.87)

as n → ∞, where the last equality follows from (D.84) and (D.86) and the
fact that kn/mn ∼ P(∥B∥p > xbn) → 0, as n → ∞. Moreover, by similar
calculations as in (D.85) we can see that it suffices to show, for all η > 0,

mnκn
kn

E
[
g ∧ η

(
B1/(vxbn)

)
h ∧ η

(
B1/(ux

′
bn)

)
11
(
∥B1∥q > vxbn

)]
→ v−ακ

c(q)

c(p)
E[g ∧ η(YQ(q))h ∧ η(YQ(q)κ1/αv/u)],(D.88)

as n→ ∞, and then we conclude by monotone convergence by letting η → ∞
in the right-hand side of the previous equation.

We now focus on showing (D.88) holds. For this note that the function
c 7→ h ∧ η((xt)/c) is a non-increasing function. Then, relying on (B.59) we
obtain that, for all ϵ > 0, and for n sufficiently large,
mn

kn
E
[
g ∧ η

(
B1/(vxbn)

)
h ∧ η

(
B1/(ux

′
bn)

)
11
(
∥B1∥q > vxbn

)]
=

mn

kn
E
[
g ∧ η

(
B1/(vxbn)

)
h ∧ η

(
B1/(ucnxbn)

)
11
(
∥B1∥q > vxbn

)]
⩽

mn

kn
E
[
g ∧ η

(
B1/(vxbn)

)
h ∧ η

(
B1(κ

1/α + ϵ)/(uxbn)
)
11
(
∥B1∥q > vxbn

)]
→ v−α

c(q)

c(p)
E[g ∧ η(YQ(q))h ∧ η(YQ(q)v(κ1/α + ϵ)/u)],

as n → ∞, where the last limit is again an application of Proposition 2.2.
In a similar manner we can also obtain a lower bound with respect to ϵ.
Finally, notice these bounds hold for arbitrary ϵ, thus, letting ϵ ↓ 0 we can
conclude that (D.88) holds. To sum up, the relation in (D.87) together with
similar calculations as in (D.85) allow us to establish that (B.66) holds.
Furthermore, the calculations for (B.65) and (B.67) follow the same line of
arguments thus we omit the details.

□

D.2. Proof of Proposition B.1. The proof of Proposition B.1 relies on
the following auxiliary results.
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Lemma D.1. Consider functions g, h : ℓ̃p → R satisfying L. Assume that
there exists a sequences (ℓn), satisfying ℓn → ∞, and

lim
n→∞

mnβℓn/kn = lim
n→∞

ℓn/bn = 0.

Then, for all t = 2, 3, . . . , the relation below holds

lim
n→∞

m

k
Cov( g(x−1b B1), f(x

−1
b Bt) ) = 0.(D.89)

Proposition D.2. Consider g, f : ℓ̃α → R such that L holds. Assume
Bα(kn),B(k′n), and condition MXβ hold. Then,

kCov
(
g̃Q(u, q), f̃Q(v, q′)

)
−→ Cov

(
Gq(g(·/u)),Gq′(f(·/v))

)
,

as n→ ∞.

Proof of Lemma D.1. We assume without loss of generality that the func-
tions g, f : ℓ̃p → R satisfying L take non-negative values. Notice that for all
t > 0

m

k
Cov(g(x−1b B1)f(x

−1
b Bt)) =

m

k
E[g(x−1b B1)f(x

−1
b Bt)] + o(1),(D.90)

as n → ∞, since mE[f2(x−1b B1)]/k → E[f2(YQ(p))], as n → ∞, by the
moment assumption in (3.21). Moreover,

I =
m

k
E[g(x−1b B1)11(g(x

−1
b B1) > η)f(x−1b Bt)]

⩽
m

k
E[g(x−1b B1)

211(g(x−1b B1) > η)]1/2E[f(x−1b B1)
2]1/2

⩽
m

k
(η)−δ/2E[g(x−1b B1)

2+δ]
1

2+δE[g(x−1b B1)
2+δ]

δ
2(2+δ)E[f(x−1b B1)

2]1/2.

We deduce from Equation (3.21) that I = O(η−δ/2), as n → ∞, thus this
term is negligible letting n→ ∞, and then η → ∞. Therefore,

lim
n→∞

m

k
E[g(x−1b B1)f(x

−1
b Bt)]

= lim
η→∞

lim
n→∞

m

k
E[(g ∧ η)(x−1b B1)(f ∧ η)(x−1b Bt)].(D.91)

We conclude that it suffices to establish (D.89) for continuous bounded func-

tions. We consider Lipschitz-continuous bounded functions f, f ′ : ℓ̃p → R in
G+(ℓ̃p). The extension to continuous bounded functions then holds following
a Portmanteau argument. Now notice
m

k
E[f(x−1b B1)f

′(x−1b Bt)]

=
m

k
E[f(x−1b B1

ϵ
)f ′(x−1b Bt)] +

m

k
E[(f(x−1b B1)− f(x−1b B1

ϵ
))f ′(x−1b Bt)]

For the second term, we rely on condition CSp since f, f ′ are bounded
Lipschitz-continuous functions. In this case, the second term is negligeable
letting first n → ∞ and then ϵ ↓ 0. Similarly, we deduce from condition
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CSp that for t = 2, 3, . . . , and for all ϵ > 0,
m

k
E[f(x−1b B1)f

′(x−1b Bt)] ∼ m

k
E[f(x−1b B1

ϵ
)f ′(x−1b Bt

ϵ
)],(D.92)

if we let n→ ∞, and then ϵ ↓ 0. Thus it suffices to show that

lim
n→∞

m

k
Cov(fϵ(x

−1
b B1), f

′
ϵ(x
−1
b Bt)) = 0 , t = 2, 3, . . . .

Consider the sequence (ℓn) satisfying the condition of Lemma D.1, and recall
the notation Bt,ℓ = X(t−1)b+[1,b−ℓ]. We can use similar steps as in the proof
of Lemma A.1 and replace B1 by B1,ℓ inside the covariance term. For this
step we require ℓn/bn → 0 as n→ ∞. Moreover,

m

k
Cov(fϵ(x

−1
b B1,ℓ), f

′
ϵ(x
−1
b Bt)) ⩽ 2∥f∥∞∥f ′∥∞

m

k
βℓ+(t−2)b.

Finally, we have mnβℓn/kn → 0, as n → ∞. In the case where g or both
g, h, equal one of the functionals defining the Hill and exceedances estimator,
i.e., h, e, in (2.15) and (2.16), the proof follows similar steps and thus we
omit the details. In this case we use (D.88) instead of (D.91) in the first
step of the proof. □

Proof of Proposition D.2. Let g, f : ℓ̃p → R, be two functions verifying L.
Then,

kCov
(
1
k

∑m
t=1g(x

−1
b Bt), 1k

∑m
t=1f(x

−1
b Bt)

)
=

m

k
Cov[g(x−1b B1), f(x

−1
b B1)] +

2

k

∑
1⩽t<j⩽mCov

(
g(x−1b Bt), f(x−1b Bj)

)
=: I + II.

A direct corollary of Theorem 1.1. in [39], directly stated in equation (1.12b)
therein, yields for j = 3, 4, . . . , and δ > 0,

m
k Cov(g(x

−1
b B1)f(x

−1
b Bj))

⩽ 2mk β

δ
(2+δ)
(j−2)bnE[g(x

−1
b B1)

2+δ]
1

2+δE[f(x−1b B1)
2+δ]

1
2+δ ,

= O((mk β(j−2)bn)
δ

(2+δ) ), n→ ∞.

The last equality holds by condition (3.21). The above inequality can be
extended to bounded random variables letting δ ↑ ∞. Finally, for j = 2
we use the result in Lemma D.1. To sum up, we have also shown that if∑mn

t=1(mnβtbn/kn)
δ/(2+δ) → 0 then II → 0, as n→ ∞.

Therefore this shows

I =
m

k
Var(g(x−1b B1)f(x

−1
b B1))

→ c(g, h) :=

∫ ∞
0

g(yQ(p))f(yQ(p))d(−y−α), n→ ∞ .
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To conclude, we now consider the functions g(x) = g(xt/u)11(∥xt∥q > u) and
f(x) = f(xt/v)11(∥xt∥q > v). Then, an application of the change-of-norms
formula in Equation (2.12) yields the limit covariance in Equation (B.70).

Finally, the case where g or both g, h, equal one of the functionals defining
the Hill and exceedances estimator, i.e., h, e, in (2.15) and (2.16), follows in
a similar manner now relying on (D.88) thus we omit the details.

□

Proof of Proposition B.1. We show the result for g ∈ Ff as the proof in the
case g ∈ Fh follows the same line of arguments. Let u0 = 1 − ϵ < 1 <
1 + ϵ = s0 and q0 = α − ϵ < α < α + ϵ = q′0. We argue using a copuling
argument and design recursively coupled blocks (B∗t )1⩽t⩽mn as follows: for
every t = 1, . . . ,mn, we apply the maximal coupling Theorem 5.1 in [39] to
create the block (B∗t ) independent of the past blocks (Bj ,B∗j )j<t, distributed
as B1, and such that

P
(
Bt,ℓ ̸= B∗t,ℓ

)
= βℓn , t = 1, 2, . . . ,mn ,(D.93)

with the notation Bt,ℓ = X[tb+ℓ,(t+1)b].
Now, applying the Markov inequality of order 2 yields

P
(
sup
u,q

√
kn |g̃Q(u, q)− g̃Q,∗ (u, q)| > δ

)
⩽

1

knδ2
E
[
sup
u,q

( mn∑
t=1

(g(Bt/(uxb))11(∥Bt∥q > (uxb))

−g(B∗t /(uxb))11(∥B∗t ∥q > (uxb)))
)2]

.

We develop the square and obtain a diagonal term
mn

kn
E
[
sup
u,q

(g(B1/(uxb))11(∥B1∥q > (uxb))− g(B∗1/(uxb))11(∥B∗1∥q > (uxb)))
2
]
.

Note that, denoting G the envelop function,

G(B1/xb) := sup
u∈[u0,s0],q∈[q0,q′0]

g(B1/(uxb))11(∥B1∥q > (uxb))(D.94)

= g(B1/(u0xb))11(∥B1∥q0 > (u0xb)).

Then, by a similar argument as in the proof of Lemma D.1, we can assume
the function g is non-negative bounded and thus we can truncate g to gε.
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This means we now need to control
mn

kn
E
[
sup
u,q

(gε(B1/(uxb))11(∥B1∥q > (uxb))

−gε(B∗1/(uxb))11(∥B∗1∥q > (uxb)))
2
]

=
mn

kn
E
[
sup
u,q

(gε(B1,ℓ/(uxb))11(∥B1,ℓ∥q > (uxb))

−gε(B∗1,ℓ/(uxb))11(∥B∗1,ℓ∥q > (uxb)))
2
]
+ o(1)

=
mn

kn
E[Gϵ(B1,ℓ/xb)

211(B1,ℓ ̸= B∗1,ℓ)] + o(1),

as n → ∞, here the second to-last relation holds with the notation B1,ℓ =
X[ℓ,b], again relying on the calculation of Lemma D.1. In the last equa-
tion, Gϵ is again the envelope function in (D.94), but for the function gϵ.
The gap of length ℓ allows to use the maximal coupling theorem, notably,
Equation (D.93). Thus

E[Gε(B1/xb)
211(B1,ℓ ̸= B∗1,ℓ)]

⩽
mn

kn
E[Gε(B1/xb)

2+δ]2/(2+δ)P(B1,ℓ ̸= B∗1,ℓ)δ/(2+δ)

⩽
mn

kn
P(∥B1∥ > xbn)

2/(2+δ)β
δ/(2+δ)
ℓ ∼ (mnβℓ/kn)

δ/(2+δ),

as n→ ∞, if G satisfies the assumption L.
We now focus on the crossed terms in the development of the square. Note

we assume without loss of generality that g is non-negative by considering
separately the positive and negative parts. Then note that for j ̸= t,

E
[
sup
u,q

(
g(Bt/(uxb))11(∥Bt∥q > (uxb))− g(B∗t /(uxb))11(∥B∗t ∥q > (uxb))

)
×
(
g(Bj/(uxb))11(∥Bj∥q > (uxb))− g(B∗j /(uxb))11(∥B∗j ∥q > (uxb))

)]
⩽ E

[
sup
u,q

(
g(Bt/(uxb))11(∥Bt∥q > (uxb))g(Bj/(uxb))11(∥Bj∥q > (uxb))

)
+
(
g(B∗t /(uxb))11(∥B∗t ∥q > (uxb))g(B∗j /(uxb))11(∥B∗j ∥q > (uxb))

)]
= E

[
sup
u,q

(
g(Bt/(uxb))11(∥Bt∥q > (uxb))g(B∗j /(uxb))11(∥B∗j ∥q > (uxb))

)]
,

where the last equality follows by the independence of blocks B∗t and B∗j for
j ̸= t. Finally, the remaining term of the development on the crossed-terms
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is of the form
1

kn

∑
1⩽j ̸=t⩽m

E
[
sup
u,q

g(Bt/(uxb))11(∥Bt∥q > (uxb))

× sup
u,q

g(Bj/(uxb))11(∥Bj∥q > (uxb))
]

⩽
mn

kn

m∑
t=2

E[G(Bt/xb)G(B1/xb)] .

This term is a bounded by
∑mn

t=1(mnβtbn/kn)
δ/(2+δ) in a similar way as the

covariance term is handled in the proof of Proposition D.2. Then, to sum
up, provided MXβ holds, we obtain

P
(
sup
u,q

√
kn |g̃Q(u, q)− g̃Q,∗ (u, q)| > δ

)
→ 0, n→ ∞,

and this yields the desired result and concludes the proof of Proposition B.1.
□

D.3. Proof of Lemma B.3. An application of Riesz-Thorin Theorem im-
plies that for every fixed x ∈ ℓ̃q0 , the map

1/q 7→ log ∥x∥q, q ∈ (q0, q
′
0).(D.95)

is convex. Denote x 7→ ψq(x) the derivative of the function 1/q 7→ log ∥x∥q
which is defined by

ψq(x) = log(∥x∥qq)−
∑
t∈Z

|xt|q log(|xt|q)
∥x∥qq

=
∑
t∈Z

|xt|q log(∥x∥qq/|xt|q)
∥x∥qq

,

which corresponds to the derivative of the log ℓq−norm function as in (D.95).
It is easy to see that ψq(x) ⩾ 0. Moreover, 1/q 7→ ψq(x) is a non-decreasing
function. To verify this, it is enough to compute the derivative of the func-
tion 1/q 7→ ψq(x). Moreover, the convexity of the mapping in (D.95) implies,
for all q1, q2 ∈ (q0, q

′
0),

log ∥x∥q1 ⩾ log ∥x∥q2 + (q−11 − q2
−1)ψq2(x).

Then, rewriting this previous relation yields

∥x∥q1 ⩾ ∥x∥q2 exp{(q1−1 − q2
−1)ψq2(x)}.(D.96)

It is easy to see that the VC-dimension of our class is larger than two.
For example, we can take the point with x1t = 1, only if t = 0, and the
point x2t = 1/m, only if t = 0, 1, and 21/q0 < m < 21/q0′. Then, we check
readily that ∥x1∥q = 1 for all q ∈ R, and ∥x2∥q0 > 1 > ∥x2∥q1 . Therefore,
we conclude that our class of sets separates these two points.

We now show that our class of sets can’t shatter three different points.
Consider the points x1, x2, and x3 with values in ℓ̃q0 . Assume that there
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exists q1, q2 ∈ [q0, q
′
0] such that ∥x1∥q1 > ∥x2∥q1 and ∥x2∥q2 > ∥x1∥q2 . This

means our class picks out the sets {x1} and {x2}. Assume also, without
loss of generality, q1 < q2. Actually, this means that for all q such that
q1 < q2 ⩽ q, then ∥x2∥q > ∥x1∥q. Indeed, for q ⩾ q2 Equation (D.96)
implies

∥x1∥q ⩾ ∥x1∥q1 exp{(q−1 − q1
−1)ψq1(x

1)}
⩾ ∥x2∥q1 exp{(q−1 − q1

−1)ψq1(x
1}

⩾ ∥x2∥q exp{(q−1 − q1
−1)(ψq1(x

1)− ψq(x
2))}

⩾ ∥x2∥q exp{(q−1 − q1
−1)(ψq1(x

1)− ψq2(x
2))},

where the last equality holds since 1/q 7→ ψq is a non-decreasing function and
q1 < q2 ⩽ q. In particular, letting q = q2 then the relation ∥x2∥q2 > ∥x1∥q2
implies

(ψq1(x
1)− ψq2(x

2)) > 0,

Moreover, we also have

∥x2∥q ⩾ ∥x2∥q2 exp{(q−1 − q2
−1)ψq2(x

2)}
⩾ ∥x1∥q2 exp{(q−1 − q2

−1)ψq2(x
2)}

⩾ ∥x1∥q exp{(q−1 − q2
−1)(ψq2(x

2)− ψq(x
1))}

⩾ ∥x1∥q exp{(q−1 − q2
−1)(ψq2(x

2)− ψq1(x
1))},

but this implies ∥x2∥q > ∥x1∥q, for all q satisfying q1 < q2 ⩽ q. Similarly
∥x2∥q < ∥x1∥q, for all q satisfying q ⩽ q1 < q2. Assume we can shatter the
points x1, x2, and x3. Then there exist qi > 0 satisfying

∥xi∥qi > max{∥xj∥qi , ∥xl∥qi , l, j ̸= i},
for every permutation {i, l, j} = {1, 2, 3}. Then, eventually renaming the
points, we can suppose without loss of generality q1 < q2 < q3. In this case,
we claim we can’t pick out the set {x1,x3}. Indeed, for q ⩾ q2 > q1 then
∥x1∥q < ∥x2∥q and for q ⩽ q2 < q3 then ∥x2∥q < ∥x3∥q. □

Appendix E. Appendix on variance calculations

In this Section we compute the Gaussian limit of the Hill and ℓα̂−cluster
block estimators under the assumptions of Theorem 3.2. All proofs are
deferred to the end of this Section. Recall the Gaussian process

G =
(
Gq(g(·/u)

)
,

defined in (B.69), and indexed by (u, q, g) such that u ∈ [1 − ϵ, 1 + ϵ],
q ∈ [α − ϵ, α + ϵ], and g ∈ F as in (B.60). Under the assumptions of
Theorem 3.2, and assuming k/k′ → κ and κ > 0, as n → ∞, then we have
shown in Section B.5 that{√

k(g̃Q(u, q)− c(q)u−αgQ(q))
}
u∈[1−ϵ,1+ϵ],
q∈[α−ϵ,α+ϵ],

g∈F

d−→ Gα(g(·/u)),(E.97)
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uniformly, as n → ∞. Instead, if k/k′ → 0, as n → ∞, then the previous
result continues to hold with F replaced by Ff (see (B.60)) in the previous
limit.

The next Lemmas allow us to compute the variance of the Gaussian limit
of the Hill and ℓα̂−block estimator.

Lemma E.1 (Asymptotics of the Hill estimator 1/α̂). Assume the condi-
tions of Theorem 3.2 are satisfied and k/k′ → κ, for κ > 0. Recall the
Hill estimator 1/α̂ in (2.14), and the functionals h, e, in (2.15) and (2.16).
Then,

√
k (α̂− α)

d−→ αGα(αh(·/1)− e(·/1)),(E.98)

as n→ ∞.

Lemma E.2 (Asymptotics of the random threshold ∥B1∥α̂,(k)). Assume the
conditions of Theorem 3.2 are satisfied and k/k′ → κ, for κ ⩾ 0.

√
k
(
f̂Qα (α̂)− fQα

) d−→ fQα Gα( fα(·/1)/fQα − 1(·/1) ),
as n→ ∞.

E.1. Proof of Lemma E.1. Uniform convergence of the independent-block
estimators towards the Gaussian process entails

√
k
(
(h̃Q(u), ẽQ(1))− (u−αhQ, 1)

) d−→
(
Gα(h(·/u)),Gα(e(·/1))

)
,

as n→ ∞. Now notice the identity
√
k
(
|X/x′bn |(⌊k′u⌋) − u−1/α

)
=

√
k(ẽQ(u)← − (u−α)←), u ∈ [1− ϵ, 1 + ϵ],

where |X/x′bn |(1) ⩾ |X/x′bn |(2) ⩾ · · · ⩾ |X/x′bn |(n), are the order statistics of

the sample (|Xt/x
′
bn
|). Then, by an application of Vervaat’s lemma,

√
k
(
|X/x′bn |(⌊k′⌋) − 1

) d−→ −α−1Gα

(
e(·/1)

)
,

as n→ ∞, in particular, |X/x′bn |(⌊k′⌋)
P−→ 1. Furthermore, denoting 1/α̂ the

Hill estimator in Equation (2.14),
√
k
( 1

α̂
− 1

α

)
=

√
k α−1

(
αh̃Q( |X|⌊k′⌋/x′bn )− 1

)
=

√
k α−1

(
αh̃Q(|X/x′bn |⌊k′⌋)− (|X/x′bn |⌊k′⌋)

−α )
+
√
k α−1

(
(|X|⌊k′⌋/x′bn |)

−α − 1
)

d−→ α−1Gα(αh(·/1)− e(·/1)), n→ ∞.

Finally, an application of the Delta method yields Equation (E.98) allow us
to conclude.

□

E.2. Proof of Lemma E.2. The following Lemma will be useful to proof
to complete the proof of Lemma E.2. We defer its proof to the end of this
Section.
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Lemma E.3 (Asymptotics of c(α̂)). Assume the conditions of Theorem 3.2
are satisfied and k/k′ → κ, for κ > 0,

√
k(c(α̂)− 1)

d−→ −αψQ
α Gα(h(·/1)− α−1e(·/1)), n→ ∞,

and, for κ = 0,
√
k(c(α̂)− 1)

P−→ 0, as n→ ∞. Here

ψQ
α = E

[∑
t∈Z

|Qt|α log
(∥Q∥α
|Qt|

)]
,(E.99)

and ψQ
α <∞ due to condition M.

Under the assumptions of Theorem 3.2 we have α̂
P−→ α, as n → ∞.

Moreover, the uniform limit in (E.97) entails
√
k(1̃Q(u, α̂)− u−αc(α̂))

d−→ Gα

(
1(·/u)), n→ ∞.

Hence, if k/k′ → κ and κ > 0, an application of Lemma E.3 implies
√
k(1̃Q(u, α̂)− u−α)

=
√
k(1̃Q(u, α̂)− u−αc(α̂))− u−α

√
k(1− c(α̂))

d−→ Gα

(
1(·/u)− u−ααψQ

α (h(·/1)− α−1e(·/1))
)
, n→ ∞ .

Instead, if k/k′ → 0, we conclude
√
k(1̃Q(u, α̂)− u−α)

d−→ Gα

(
1(·/u)) , n→ ∞ .

In addition, recall the sequence (xbn) satisfies the assumptions of Propo-
sition 2.2, and (kn) satisfies k = k(α) ∼ bnP(|X1| > xbn), as n → ∞. We
derive the relation, as n→ ∞,
√
k(1̃Q(u, α̂)← − (u−α)←) =

√
k
(
∥B1/xbn∥α̂,(⌊ku⌋) − u−1/α

)
+ oP(1),

for u ∈ [1− ϵ, 1 + ϵ]. Then, by an application of Vervaat’s lemma,
√
k
(
∥B1/xbn∥α̂,(⌊k⌋) − 1

) d−→ −α−1Gα

(
1(·/1))− αψQ

α (·/1)− α−1e(·/1))
)
,

as n → ∞. These calculations hold in the case k/k′ → κ and κ > 0.
Instead, if k/k′ → 0 a similar argument allow as to conclude

√
k
(
∥B1/xbn∥α̂,(⌊k⌋) − 1

) d−→ −α−1Gα(1(·/1)), n→ ∞.

In particular, ∥B1∥α̂,(⌊k⌋)/xbn
P−→ 1 for every κ ⩾ 0.

Moreover, since fα is a continuous non-increasing function, and c(α̂)
P−→ 1,

similar calculations entail
√
k( f̃Qα (u, α̂)− u−αfQα )
d−→ Gα

(
fα(·/u)− fQα u

−ααψQ
α (h(·/1)− α−1e(·/1))

)
.(E.100)
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Overall, we conclude
√
k
(
f̂Qα (α̂)− fQα

)
=

√
k
(
f̃Qα ( ∥B1∥α̂,(⌊k⌋)/xbn , α̂)− fQα 1

)
=

√
k
(
f̃Qα ( ∥B1∥α̂,(⌊k⌋)/xbn , α̂)− fQα (∥B1∥α̂,(⌊k⌋)/xbn)−α

)
+
√
k fQα

(
(∥B1∥α̂,(⌊k⌋)/xbn)−α − 1

)
d−→ Gα( fα(·/1)− fQα 1(·/1) ) , n→ ∞ ,

and this yields the desired result. □

E.3. Proof of Lemma E.3. To study the function q 7→ c(q) in a neighbor-
hood of α we write it as

c(q) = E[∥Q∥αq ] = (E[1/∥Q(q)∥αα])−1.(E.101)

Borrowing the Taylor expansions from Remark 4.3 we have

(1/c(q)− 1)

= E[∥Q(q)∥qq − ∥Q(q)∥αα/∥Q(q)∥αα]

= (q − α)E
[∑
t∈Z

|Q(q)
t |α log

(
1/|Q(q)

t |
)
/∥Q(q)∥αα

]
+

1

2
(q − α)2

×E
[ 1

∥Q(q)∥q
′

q′

∑
t∈Z

∑
j∈Z

|Q(q)
t |q′

∥Q(q)∥q
′

q′

|Q(q)
t |q′

∥Q(q)∥q
′

q′

log
( 1

|Q(q)
t |

)
log

( |Q(q)
t |

|Q(q)
j |

)]
,

for q′ ∈ [q∨α, q∧α], q ∈ [α−ϵ, α+ϵ], and ϵ > 0 such thatM holds. Moreover,
an application of the change-of-norms from Equation (2.12) yields

(1/c(q)− 1)

= (q − α)E
[
∥Q∥αq

∑
t∈Z

|Qt|α log
(∥Q∥q
|Qt|

)
︸ ︷︷ ︸

:=ψq,α(Q)

]
/c(q) +

1

2
(q − α)2

×E
[
∥Q∥αq

∥Q∥q
′
q

∥Q∥q
′

q′

∑
t∈Z

∑
j∈Z

|Qt|q
′

∥Q∥q
′

q′

|Qt|q
′

∥Q∥q
′

q′

log
(∥Q∥q
|Qt|

)
log

( |Qt|
|Qj |

)
︸ ︷︷ ︸

:=ψ′
q,q′ (Q)

]
/c(q)

= (q − α)E[ψq,α(Q)]/c(q) +
1

2
(q − α)2E[ψ′q,q′(Q)]/c(q).

(E.102)

We start by noting that by an application of Equation (B.77) we can derive
the bound

0 < E[ sup
q∈[α−ϵ,α+ϵ]

ψq,α(Q)] ⩽ ϵ−1 E[∥Q∥2αα−ϵ] < ∞,
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and this last term is finite due to Assumption M.
In what follows we verify that E[supq,q′ |ψ′q,q′ |] < ∞ for q and q′ close to

α. First note that |ψ′q,q′ | is non-increasing in q. Thus it is enough to check
that

E
[

sup
q∈[α−ε,α+ε]

∥Q∥q+αα−ϵ
∥Q∥qq

∣∣∣∑
t∈Z

∑
j∈Z

|Qt|q

∥Q∥qq
|Qj |q

∥Q∥qq
log

(∥Q∥α−ϵ
|Qt|

)
log

( |Qt|
|Qj |

)∣∣∣] <∞,

for ε > 0 sufficiently small. Moreover Hölder’s inequality provides
∞∑

t=−∞
|Qt|α−ε =

∞∑
t=−∞

|Qt|(α−ε)q/(q+α)|Qt|(α−ε)α/(q+α)

⩽
( ∞∑
t=−∞

|Qt|q
)(α−ε)/(q+α)( ∞∑

t=−∞
|Qt|(α−ε)α/(q+ε)

)(q+ε)/(q+α)
.

Thus ∥Q∥q+αα−ε ⩽ ∥Q∥qq∥Q∥α(α−ε)α/(q+ε). For every chosen 0 < δ < 1 we have

from Equation (B.77), and assuming that every |Qt| ⩽ 1 a.s.,∑
t∈Z

|Qt|q

∥Q∥qq
| log(|Qt|)|2 ⩽

∑
t∈Z

|Qt|q−δ

∥Q∥qq

⩽

(∑
t∈Z |Qt|q

)q/(q−δ)
∥Q∥qq

⩽
(∑
t∈Z

|Qt|q
)δ/(q−δ)

.

Squaring both sides of the last inequality we obtain an upper bound(∑
t∈Z

|Qt|q

∥Q∥qq
| log(|Qt|)|2

)2
⩽

(∑
t∈Z

|Qt|q
)2δ/(q−δ)

⩽ ∥Q∥q2δ/(q−δ)q

⩽ ∥Q∥(α+ε)2δ/(α−ε−δ)α−δ .

This upper bound is also valid for | log(∥Q∥q)|, q−ε < q+ε, up to constant.
Combining these inequalities we conclude the sufficient condition

E
[
∥Q∥α(α−ε)α/(q+ε)∥Q∥(α+ε)2δ/(α−ε−δ)α−δ

]
<∞ .

Since ε and δ can be taken arbitrarily small this allows to conclude

0 < E[ sup
q,q′∈[α−ϵ,α+ϵ]

ψ′q,q′(Q)] ⩽ E[∥Q∥α+ϵα−ϵ] < ∞,

where the last equality follows again from M choosing ϵ sufficiently small.
Now let k, k′ be such that k/k′ → κ, for κ > 0. Recall the asymptotic

development of q 7→ c(q) and the definition of ψq,α in (E.102). We write

ψQ
α = E[ψα,α(Q)] = E

[∑
t∈Z

|Qt|α log
(∥Q∥α
|Qt|

)]
,
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which corresponds to the constant in (E.99). Moreover, notice q 7→ E[ψq,α(Q)]
is a continuous function at α under condition M. Therefore, applying (E.98)
and (E.102) we obtain

√
k(1− c(α̂))

d−→ αψQ
α Gα(h(·/1)− α−1e(·/1)),

We notice in particular c(α̂)
P−→ 1, as n→ ∞.

Moreover, if k/k′ → 0, as n→ ∞, then
√
k′(1− c(α̂))

d−→ αψQ
α N (0,E[(h(YQ)− α−1e(YQ))2]) , n→ ∞.

We omit the details here as this mimics the proof provided in Section B.5,
but here we restrict the family F to Fh following the notation in (B.61).

This last equation implies
√
k(1 − c(α̂))

P−→ 0, as n → ∞. Finally, this
concludes the proof of Lemma E.3.

□

Appendix F. Proofs of the results of Section 5

F.1. Proof of Proposition 5.2. From the discussion in Section 5.1, we
can see that all assumptions in Theorem 3.2 are satisfied. Note that if
p = α, then |Q| has a deterministic expression in the shift-invariant space.
Moreover, Q has at most m0 non-zero coordinates. Thereby, condition M
is satisfied. Moreover, the index estimators in (4.26), (4.29), and (4.34),
with fα : x 7→ ∥x∥α∞/∥x∥αα, fα : x 7→ ∥x∥α1 /∥x∥αα, and fα : x 7→ (|x|α(j) −
|x|α(j+1))/∥x∥

α
α, respectively, satisfy Var(fα(YQ)) = 0. In addition, appeal-

ing to Remark 4.3, ∂fq/∂q|q=α and supq∈[α−ϵ,α+ϵ] ∂
2fq/∂q

2|q=q′ are bounded
continuous functions in G+(ℓ

α), and this proves S holds. Finally, using the

change of norms formula in (2.12), we can also show Var(fα(YQ(p))) = 0,
for any p ∈ (0,∞], and this concludes the proof. □

F.2. Proof of Proposition 5.4. We start by noticing that Equation (5.42)
rewrites as: for all δ > 0,

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 |
∑
|j|>s φjZt−j/xn|p > δ)

nP(|X1| > x)
= 0.(F.103)

Assuming (5.42) holds, AC and CSp follow straightforwardly since for all

s > 0, the series (X
(s)
t ) is a linearm0−dependent sequence withm0 = 2s+1,

such that X
(s)
t =

∑
|j|⩽s φjZt−j . The former satisfies AC,CSp, for p > α/2,

as in Example 5.1.
We now turn to the verification of Equation (F.103). Actually, by mono-

tonicity of the ℓp−norms, if (F.103) holds for α/2 < p < α, then it also
holds for p ⩾ α. In the following we assume α/2 < p < α.

For p ⩽ 1, the subadditivity property yields

|
∑
|j|>sφjZt−j |

p ⩽
∑
|j|>s|φjZt−j |

p =: I1,t.
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That the partial sums of (I1,t) satisfy (F.103) for 0 < α < 1 follows from
standard arguments, see for instance Section 6.1 of [28]. We provide an
alternative prove below, also valid for every α > 0.

For p > 1, a Taylor decomposition of functional | · |p : R → R entails, for
all a, b,∈ R,

|a+ b|p = |a|p + p sign(a)|a|p−1b+ p(p− 1)

2
|a|p−2b2 + · · ·+R[p](a, b),

where the remaining term satisfies

R[p] = R[p](a, b) ⩽
p(p− 1) · · · (p− [p])

[p]!
|b− ξa|p−[p]b[p],

for one ξ ∈ [0, 1]. To simplify notation, in the remaining lines of the proof
we denote (|Zt|) by (Zt). Then, the Taylor expression above yields

|
∑
|j|>sφjZt−j/xn|

p

⩽ |φsZt−s/xn|p + p |φsZt−s/xn|p−1(
∑
|j|⩾s
j ̸=s

|φjZt−j/xn|)

+ · · ·+R[p].

Moreover, to handle the remaining term R[p], we use subadditivity of the

real function x 7→ xp−[p]. Hence,

|
∑
|j|⩾sφjZt−j/xn|

p

⩽ |φsZt−s/xn|p + c|φsZt−s/xn|p−1
(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
)

+ · · ·+ c|φsZt−s/xn|p−[p]
(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
)[p]

+c
∑
|j|⩾s
j ̸=s

||φj |Zt−j/xn|p−[p]
(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
)[p]

≤ c (I0,t + I1,t + · · ·+ I[p],t + I[p]+1,t) ,

where c > 0 is a constant of no interest, only depending on p. Relying on the
bound above, we require to control the previous [p]+2 terms. We argue using
a truncation argument. Our goal is to prove that for all l = 0, . . . , [p] + 1,
for all ϵ, δ > 0

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,t
ϵ
> δ)

nP(|X1| > xn)
+

P(
∑n

t=1 Il,tϵ
> δ)

nP(|X1| > xn)
= 0,(F.104)
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where the truncated terms are defined as follows: for l = 0, . . . , [p]

Il,t
ϵ

:= |φsZt−s/xn
ϵ|p−l

(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
ϵ)l
,

I[p]+1,t
ϵ

:=
∑
|j|⩾s
j ̸=s

|φjZt−j/xn
ϵ|p−[p]

(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
ϵ)[p]

,

Il,t
ϵ

:= |φsZt−s/xnϵ|
p−l(∑

|j|⩾s
j ̸=s

|φj |Zt−j/xn
ϵ

)l
,

I[p]+1,t
ϵ

:=
∑
|j|⩾s
j ̸=s

|φjZt−j/xn
ϵ
|p−[p]

(∑
|j|⩾s
j ̸=s

|φj |Zt−j/xn
ϵ

)[p]
.

To study each term, we write for q ∈ N, J ⊆ N, (ψj) ∈ R|J |,
(
∑

j∈Jψj)
q =

∑
i1,...,iq
ij∈J

ψi1 · · ·ψiq .(F.105)

We start by analyzing the terms corresponding to the truncation from be-
low. An application of Markov’s inequality together with Equation (F.105)
yield

P(
∑n

t=1 I[p]+1,t
ϵ
> δ)

⩽ δ−1nE[I[p]+1,t
ϵ
]

⩽ δ−1n
∑

i1,··· ,i[p]+1

|ij |⩾s
|φi1 · · ·φi[p] ||φi[p]+1

|p−[p]

×E[|Z−i1/xnϵφ−1
i1

| · · · |Z−i[p]/xn
ϵφ−1

i[p]

||Z−i[p]+1
/xn

ϵφ−1
i[p]+1

|p−[p]].

Moreover, recall the noise sequence (Zt) are iid random variables satis-
fying RVα. Therefore, for the expectation we can factor the independent
noise terms as the product of at most [p]+1 terms. For each term, the noise
random variable Z−ij will be raised to the power at most p. As p < α, we
can use Karamata’s theorem on each of these terms.

Finally, an application of Karamata’s theorem and Potter’s bound yield
there exists κ > 0, such that for all ϵ, δ > 0

P(
∑n

t=1 I[p]+1,t
ϵ
> δ)

nP(|Z1| > xn)
⩽

α

α− p
O(δ−1 ϵ−(α−κ) (

∑
|j|⩾s|φj |

α−κ)p).

We conclude that this term is negligible by letting first n → ∞, and then
s→ ∞.

We can follow similar steps as before to study the truncation from below
terms Il,t, l = 0, . . . , [p]. An application of Markov’s inequality entails there
exists κ > 0 such that

P(
∑n

t=1 Il,tϵ
> δ)

nP(|Z1| > xn)
⩽ δ−1

E
[
|φsZ1/xnϵ|

p−l]
P(|Z1| > xn)

E
[(∑

|j|>s
j ̸=s

|φj |Zt−j/xn
ϵ

)l]
=

α

α− p+ l
O(δ−1|φs|α−κϵ−(α−κ)(

∑
|j|⩾s|φj |

α−κ)l),
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as n → ∞, where the last relation holds by Karamata’s theorem and an
application of Potter’s bound. Hence, for l = 0, . . . , [p], [p] + 1, we conclude
letting first n→ ∞, and then s→ ∞. To sum up we have shown that

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,tϵ
> δ)

nP(|X1| > xn)
= 0.

We now turn to the terms relative to the truncation from above. In
this case, the assumption n/xpn → 0, entails nE[Il,t

ϵ
] → 0, as n → ∞, for

l = 0, . . . , [p], [p] + 1. Therefore, to establish Equation (F.104), it suffices to
check the following relation holds:

lim
s→∞

lim sup
n→∞

P(
∑n

t=1 Il,t
ϵ − E[Il,t

ϵ
] > δ)

nP(|X1| > xn)
= 0.(F.106)

We apply Chebychev’s inequality, which together with the stationarity of
the series (Zt), yields

P(
∑n

t=1 Il,t
ϵ − E[Il,t

ϵ
] > δ) ⩽ 2 δ−2 n

∑n
t=0Cov(Il,0

ϵ
, Il,t

ϵ
)

As in the arguments for the truncation from above, we start by showing that
the term in (F.106) is negligible for l = [p] + 1. This reasoning can again be
extended for l = 0, . . . , [p]. Computation of the covariances then yields

Cov(I[p]+1,0
ϵ
, I[p]+1,t

ϵ
)

=
∑

i1,··· ,i[p]+1

|ij |⩾s,ij ̸=s

∑
ℓ1,··· ,ℓ[p]+1

|ℓj |⩾s,ℓj ̸=s
|φi1 · · ·φi[p] ||φi[p]+1

|p−[p]|φℓ1 · · ·φℓ[p] ||φℓ[p]+1
|p−[p]

×Cov(|Z−i1/xn
ϵφ−1

i1 · · ·Z−i[p]/xn
ϵφ−1

i[p] ||Z−i[p]+1
/xn

ϵφ−1
i[p]+1 |p−[p]

|Zt−ℓ1/xn
ϵφ−1

ℓ1 · · ·Zt−ℓ[p]/xn
ϵφ−1

ℓ[p] ||Zt−ℓ[p]+1
/xn

ϵφ−1
ℓ[p]+1 |p−[p]).

Actually, all but a finite number of terms vanish in the previous double sum
because the noise sequence (Zt) are independent random variables. More
precisely,

Cov(I[p]+1,0
ϵ
, I[p]+1,t

ϵ
)

=
∑

i1,··· ,i[p]+1

|ij |⩾s,ij ̸=s

∑
ℓ1,··· ,ℓ[p]+1

ℓj∈{i1−t,...,i[p]+1−t}

×|φi1 . . . φi[p] ||φi[p]+1
|p−[p]|φℓ1 . . . φℓ[p] ||φℓ[p]+1

|p−[p]

×Cov(|Z−i1/xn
ϵφ−1

i1 · · ·Z−i[p]/xn
ϵφ−1

i[p] ||Z−i[p]+1
/xn

ϵφ−1
i[p]+1 |p−[p]

|Zt−ℓ1/xn
ϵφ−1

ℓ1 · · ·Zt−ℓ[p]/xn
ϵφ−1

ℓ[p] ||Zt−ℓ[p]+1
/xn

ϵφ−1
ℓ[p]+1 |p−[p]).
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Moreover, regarding the last covariance term, we notice that it is sufficient
to bound the expectation of the product as

Cov(|Z−i1/xn
ϵφ−1

i1 · · ·Z−i[p]/xn
ϵφ−1

i[p] ||Z−i[p]+1
/xn

ϵφ−1
i[p]+1 |p−[p],

|Zt−ℓ1/xn
ϵφ−1

ℓ1 · · ·Zt−ℓ[p]/xn
ϵφ−1

ℓ[p] ||Zt−ℓ[p]+1
/xn

ϵφ−1
ℓ[p]+1 |p−[p])

⩽ E[|Z−i1/xn
ϵφ−1

i1 · · ·Z−i[p]/xn
ϵφ−1

i[p] ||Z−i[p]+1
/xn

ϵφ−1
i[p]+1 |p−[p]

×|Zt−ℓ1/xn
ϵφ−1

ℓ1 · · ·Zt−ℓ[p]/xn
ϵφ−1

ℓ[p] ||Zt−ℓ[p]+1
/xn

ϵφ−1
ℓ[p]+1 |p−[p]].

Since (Zt) are iid random variable, the expectation term above can be writ-
ten as the product of expectations as follows

|φi1 . . . φi[p] ||φi[p]+1
|p−[p]|φℓ1 . . . φℓ[p] ||φℓ[p]+1

|p−[p]

E(|Z−i1/xn
ϵφ−1

i1 | · · · |Z−i[p]/xn
ϵφ−1

i[p] ||Z−i[p]+1
/xn

ϵφ−1
i[p]+1 |p−[p]

×|Zt−ℓ1/xn
ϵφ−1

ℓ1 | · · · |Zt−ℓ[p]/xn
ϵφ−1

ℓ[p] ||Zt−ℓ[p]+1
/xn

ϵφ−1
ℓ[p]+1 |p−[p])

=
∏
γ1+···+γr=p,
γ′1+···+γ′r′=p

|φiγj |
γj |φiγj−t|

γ′jE[|Z0/xn
ϵφ−1

iγj |γj |Z0/xn
ϵφ−1

iγj−t |γ
′
j ],

where γj , γ
′
j ∈ {0, 1, . . . , [p]}, γr, γ′r′ ∈ {0, p − [p], p − [p] + 1, . . . , p} and

1 ⩽ r, r′ ⩽ [p] + 1. The product above is a factorization with respect to
independent noise terms. We have also used the stationarity of (Zt). The
new indices γ1, . . . , γr are defined recursively in terms of the sequence (it).
Similarly, we define γ′1, . . . γ

′
r′ from (ℓt). To define γ1, first we count the

number of times the index i1 appears in I = {i1, . . . , i[p]}. If i1 ̸= i[p]+1,
we put γ1 equal to this count, otherwise, we set γ1 equal to this count plus
p − [p]. Then, we look for the next index different than i1, say ij , and set
γ2 as the number of repetitions of ij in I plus p − [p] if ij ̸= i[p]+1. We
continue in this way until the indices ir and γr are defined as previously.
We stop as we recognize that all the indices ir, ir+1, · · · , i[p]+1 have already
been considered. Therefore, γ1 + · · · + γr = p. In an identical fashion, we
define γ′1, . . . γ

′
r′ from (ℓt). Moreover, notice that for every γ ∈ {γ1, . . . , γr}

and γ′ ∈ {γ′1, . . . , γ′r}

|φiγ |γ |φiγ−t|γ
′
E[|Z0/xn

ϵφ−1
iγ |γ |Z0/xn

ϵφ−1
iγ−t |γ′ ]

⩽ (|φiγ |2γ |φiγ−t|2γ
′
E[|Z0/xn

ϵφ−1
iγ |2γ ]E[|Z0/xn

ϵφ−1
iγ−t |2γ′ ])1/2

⩽ (|φiγ |2pE[|Z0/xn
ϵφ−1

iγ |2p])γ/2p (|φiγ−t|2pE[|Z0/xn
ϵφ−1

iγ−t |2p])γ′/2p.
The key property γ1 + · · ·+ γr + γ′1 + · · ·+ γ′r = 2p yields

P(Z0 > xn) =
∏

γ1+···+γr=p
γ′1+···+γ′r′=p

(P(Z0 > xn))
(γ+γ′)/2p .
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In this case, we can apply Karamata’s Theorem to each one of the expecta-
tion terms. Readily,∑n

t=1Cov(I[p]+1,0
ϵ
, I[p]+1,t

ϵ
)/P(Z0 > xn)

⩽
∑n

t=1

∑
i1,··· ,i[p]+1

|ij |⩾s,ij ̸=s

∑
ℓ1,··· ,ℓ[p]+1

ℓj∈{i1−t,...,i[p]+1−t}

∏
γ1+···+γr=p
γ′1+···+γ′r′=p

(|φiγ |2pE[|Z0/xn
ϵφ−1

iγ |2p])γ/2p (|φiγ−t|2pE[|Z0/xn
ϵφ−1

iγ−t |2p])γ′/2p

(P(Z0 > xn))(γ+γ
′)/2p

⩽ c
∑

i1,··· ,i[p]+1

|ij |⩾s,ij ̸=s

∑
ℓ1,··· ,ℓ[p]+1

ℓj∈{i1−t,...,i[p]+1−t}

∑n
t=1∏

γ1+···+γr=p
γ′1+···+γ′r′=p

|φiγ |γ(α−κ)|φiγ−t|γ
′(α−κ)

= c
∑

i1,··· ,i[p]+1

|ij |⩾s,ij ̸=s

∑
ℓ1,··· ,ℓ[p]+1

ℓj∈{i1−t,...,i[p]+1−t}

∑n
t=1|φij |

(α−κ)|φℓj−t|
(α−κ)

⩽ c (p+ 1)(
∑
|i|⩾s |φi|

(α−κ))p(
∑

j∈Z|φj |
(α−κ))p.

where c > 0, is a constant of no interest. We conclude by letting s → ∞
that (F.106) holds for l = [p]+1. Similarly, this arguments can be extended
for l = 1, . . . , [p]. Overall, this shows (F.104) holds, and this concludes the
proof. □

F.3. Proof of Theorem 5.6. For p > α/2, we aim to apply Theorem 3.2.
First, notice condition (5.44) yields ∥φt∥p < ∞. For any κ′ > 0, consider

a sequence (xn) such that xn ∈ (nκ
′+1/(p∧α),+∞). Proposition 5.4 implies

then that conditions AC, CSp, hold, and nP(|X0| > xn) → 0, as n → ∞.

Fix κ′ > 0, and xn = O(nκ
′+1/(p∧α)), as n→ ∞.

Furthermore, since there exists ϵ such that ∥(φj)∥α−ϵ < ∞, then condi-
tion M is automatically satisfied by definition of Q. In addition, for the
α̂−cluster based estimators from Section 4 in (4.26) (4.29), and (4.34) we
need to check S holds. For this we verify the conditions of Lemma F.1. Ac-
tually, Equation (F.117) has already been demonstrated in Proposition 5.4;
and it suffices to follow the lines of the proof of Equation (F.106). We can
therefore conclude that S holds for the α̂−cluster based estimators from
Section 4 in (4.26) (4.29), and (4.34).

Finally, to apply Theorem 3.2 it suffices to verify the β−mixing conditions
MXβ holds. Next, we show MXβ also holds. Choose (kn) as in (A.51).
Then, there exists ϵ, ϵ′ > 0, and a constant c > 0, such that

mn/kn = 1/(c(p)bnP(|X0| > xbn))(F.107)

⩽ c x
(α+ϵ)
bn

/bn = c b
−1+ α

α∧p+
ϵ

α∧p+κ
′(α+ϵ)

n

⩽ c b
−1+ α

p∧α+ϵ′

n .
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This follows using Potter’s bounds. Let ℓn = b
(1−ϵ)
n such that ℓn/bn → 0.

Finally, applying Proposition 5.5, we can find ϵ′ > 0 such that the relation
below holds

mnβℓn/kn = O(b
− (ρ−1)α

1+α +
α
α∧p+ϵ

′

n ), n→ ∞.

Then, taking ρ > 1 + 1+α
α∧p + ϵ yields mnβℓn/kn → 0. In this argument, we

can choose ϵ′ > 0 to be arbitrarily small. Then, assuming (5.44) entails
mnβℓn/kn → 0.

Moreover, let δ > 0 be as in (3.21). Since ρ > 2
δ (1 + 1

α) + 3 + 2
α , equa-

tion (5.43) yields
∑∞

t=1 β
δ/(2+δ)
t < ∞. In this case, there exist ϵ > 0 such

that
mn∑
t=1

(mnβtbn/kn)
δ

2+δ = O
(
b

(
− (ρ−1)α

1+α +
α
α∧p+ϵ

)
δ

(2+δ)
n

)
.

Furthermore, for p > α/2, notice ρ > 3 + 2/α > 1 + (1 + α)/(α ∧ p). Sim-
ilarly as before, notice ϵ > 0 can be made arbitrarily small. Putting ev-
erything together, we conclude that (3.24) holds. This completes the proof
that MXβ holds. Since MXβ holds we can apply Theorem 3.2. Finally, in
our setting notice that the sequence (kn) satisfies

kn ∼ c(p)nP(|X0| > xbn) = o(n b
− α

p∧α
n ), n→ ∞.

This last relation follows using Potter’s bounds. This concludes the proof
of Theorem 5.6.

□

F.4. Proof of Proposition 5.8. Let (Xt) be the stationary solution to
the SRE (5.45) as in Example 5.7, satisfying RVα, for α > 0. Then, (Xt)
admits the causal representation in (5.48), where ((At,Bt)) is a sequence of
iid innovations. Then, backward computations yield

Xt = ΠtX0 +Rt, t ⩾ 1,(F.108)

where for 1 ⩽ i ⩽ t

Πi,t := Ai · · ·At, Rt :=

t∑
j=1

Πj+1,tBj ,(F.109)

with the conventions: Π1,t = Πt, and Πt+1,t = Id. Notice that the remaining
term Rt is measurable with respect to σ

(
(Ai,Bi)1⩽i⩽t

)
, and is independent

of the sigma-field σ
(
(Xt)t⩽0

)
.

Condition AC has been shown for Theorem 4.17 in [36]. We focus on
showing CSp holds for p ∈ (α/2, α).

To begin, note condition CSp was borrowed from Equation (5.2) in [12].
For p ∈ (0, α), and sequences (xn) such that n/xpn → 0, as n → ∞, we
have nE[|X0/xn|p] → 0, thus our condition CSp and Equation (5.2) in [12]
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coincide. More precisely, we show

lim
ϵ↓0

lim
n→∞

P
(∣∣∥X[1,n]/xn

ϵ∥pp − E[∥X[1,n]/xn
ϵ∥pp

∣∣ > δ
)

nP(|X1| > xn)
= 0.(F.110)

For this reason, we focus on showing (F.110) holds. Actually, we show
below that, for (xn) as in Proposition 5.8, condition CSp holds over uniform
regions Λn = (xn,∞) in the sense of (F.115). Further, for the purposes of
completeness, we show (F.115) holds generally for sequences (xn) such that
nP(|X0| > xn) → 0, as n→ ∞ in the setting of Example 5.7.

Let p ∈ (α/2, α), and consider a sequence (xn) satisfying the assumptions
of Proposition 5.8. Consider the region Λn = (xn,∞), and consider x ∈ Λn.
An application of Chebychev’s inequality yields

P
(∣∣∥X[1,n]/x

ϵ∥pp − E[∥X[1,n]/x
ϵ∥pp

∣∣ > δ
)

⩽ 2n δ−2
n∑
t=0

It ,(F.111)

such that we denote It = Cov(|X0/x
ϵ|p, |Xt/x

ϵ|p).
Let (Πt) and (Rt) be as in (F.109) such that (Xt) satisfies Equation (5.48).

We define a new Markov chain (X′t)t⩾0 satisfying

X′t := ΠtX
′
0 +Rt ,(F.112)

with X′0 independent of (Xt) and identically distributed as X0. We can
see (X′t) as the solution of the SRE (5.45) for the sequence of innovations(
(A′t,B

′
t)
)
where (A′t,B

′
t) = (At,Bt) for t ⩽ 0 and (A′t,B

′
t)t⩾1 is an iid

sequence independent of (At,Bt), distributed as the generic element (A,B).
Then, following the notation in (F.111), we can rewrite It as

It = E
[
|X0/x

ϵ|p|Xt/x
ϵ|p

]
− E

[
|X0/x

ϵ|p|X′t/x
ϵ|p

]
⩽ E

[
|X0/x

ϵ|p
(
|Xt/x

ϵ|p − |X′t/x
ϵ|p

)
+

]
⩽ E

[
|X0/x

ϵ|p
(
|Xt/x|p − |X′t/x|p

)
+
11(|Xt/x| ⩽ ϵ)11(|X′t/x| ⩽ ϵ)

]
+E

[
|X0/xn

ϵ|p |Xt/x
ϵ|p11(|X′t/x| > ϵ)

]
= It,1 + It,2.

We show that It,1 is negligible letting first n→ ∞, and then ϵ ↓ 0. For this,
we consider two cases. First, assume p > 1. Then, for the first term It,1, a
Taylor decomposition yields

It,1

⩽ pE
[
|X0/x

ϵ|p|X′t/x−Xt/x
2 ϵ||X′t/x

ϵ
+ ξ

(
X′t/x−Xt/x

2ϵ)|p−1 ]
= pE

[
|X0/x

ϵ|p|ΠtX′0/x−ΠtX0/x
2 ϵ|

×|X′t/x
ϵ
+ ξ

(
ΠtX′0/x−ΠtX0/x

2ϵ)|p−1 ],
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for some random variable ξ ∈ (0, 1) a.s. In the last equality, we have used
the definition of (X′) in (F.112). Moreover, we can bound It,1 by

It,1 ⩽ p20∨(p−1) E
[
|X0/x

ϵ|p|ΠtX′0/x−ΠtX0/x
2 ϵ||X′t/x

ϵ|p−1
]

+ p20∨(p−1) E
[
|X0/x

ϵ|p|ΠtX′0/x−ΠtX0/x
2 ϵ|p

]
Now, an application of Jenssen’s inequality, Potter’s bounds, and Kara-
mata’s theorem, yield

It,1 ⩽ cE
[
|X0/x

ϵ|2p]1/2E
[
|ΠtX′0/x

4 ϵ|2p
]1/2

⩽ c
(
E
[
|X0/x

ϵ|2p]E
[
|Πt|α−δop

]
P(|X0| > x)

)1/2
.

= O
((
ϵ2p−αE[|Πt|α−δop

])1/2P(|X0| > x)
)
, xn > x0,

for constants c > 0, x0 > 0. Moreover, under the assumptions of Example 5.7
we have E[|Πt|α−δop ] < 1 for t sufficiently large. Thereby, we conclude

lim
ϵ↓0

lim sup
n→∞

n∑
t=1

It,1/P(|X0| > x) = 0.(F.113)

We now come back to the case where p < 1. In this case we can use
a subadditivity argument and we conclude by similar steps that relation
(F.113) holds for all p ∈ (α/2, α).

Now, concerning the second term It,2 we have

It,2 := E
[
|X0/x

ϵ|p |Xt/x
ϵ|p11(|X′t/x| > ϵ)

]
⩽ E

[
|X0/x

ϵ|p |ΠtX0/x
ϵ|p11(|X′t/x| > ϵ)

]
+E

[
|X0/x

ϵ|p |Rt/x
ϵ|p11(|X′t/x| > ϵ)

]
+E

[
|X0/x

ϵ|p 11(|ΠtX0/x| > ϵ)11(|X′t/x| > ϵ)
]

= O(E
[
|X0/x

ϵ|p
]
E
[
|Rt/x

ϵ|p11(|X′t/x| > ϵ)
]
) .

Therefore we have,
n∑
t=1

It,2/P(|X0| > x) = O
(
nE

[
|X0/x

ϵ|p
])
.

Assume (xn) is such that there exists κ′ > 0 satisfying n/x
p∧(α−κ′)
n → 0, as

n→ ∞. Then,

lim
ϵ↓0

lim
n→∞

sup
x∈Λn

P
(∣∣∥X[1,n]/x

ϵ∥pp − E[∥X[1,n]/x
ϵ∥pp

∣∣ > δ
)

nP(|X1| > x)
= 0.(F.114)

Moreover, if n/xpn → 0 then E[∥X[1,n]/x
ϵ∥pp] → 0 for p ∈ (α/2, α). In this

case, CSp holds uniformly over the region Λn.



ON THE ASYMPTOTICS OF EXTREMAL ℓp−BLOCKS CLUSTER INFERENCE 63

On the other hand, note that we also have It = O(βt). Therefore, if we
consider a sequence (ℓn) such that ℓn → ∞, n→ ∞, then we can have

P
(∣∣∥X[1,n]/xn

ϵ∥pp − E[∥X[1,n]/xn
ϵ∥pp

∣∣ > δ
)
/nP(|X0| > xn)(F.115)

⩽ 2n δ−2(

ℓn∑
t=0

It +
n∑

t=ℓn+1

It)/nP(|X0| > xn)

⩽ O(ℓnE[|X0/xn
ϵ|p] +

n∑
t=ℓn+1

It/P(|X0| > xn))

⩽ O(ℓnE[|X0/xn
ϵ|p] +

n∑
t=ℓn+1

βt/P(|X0| > xn) ) = J1 + J2.(F.116)

where in the last bound we use the covariance inequality for the (βt) mixing
coefficients. Furthermore, the bound in (F.115) consists of two terms as
(F.115) ⩽ J1 + J2. If we want J1 to go to zero as n → ∞ we can choose

ℓn := xp−δn , for some δ > 0. Now, for the second term J2, we first note
that it is null if ℓn > n by convention. Otherwise we recall that the mixing-
coefficients (βt) have a geometric decaying rate. Thereby, there exists ρ ∈
(0, 1) such that we can bound the second term J2 by

J2 = O
(∑n

t=ℓn+1ρ
t/P(|X0| > xn)

)
= O(ρℓn/P(|X0| > xn))

⩽ O(ρℓnx(α+δ)n ).

Therefore, J2 → 0 as n→ ∞ by plugging in the value we set for ℓn. Overall,
we conclude that for all sequences (xn) such that nP(|Xn| > xn) → 0, then
limn→∞ (F.115) = 0 and this shows (F.110). Moreover, we also saw this
convergence holds over uniform regions Λn = (xn,∞), in the sense (F.114),

if we assume in addition n/x
p∧(α−κ′)
n → 0, as n → ∞. Finally, this shows

that CSp holds and this concludes the proof of Proposition 5.8.

F.5. Proof of Theorem 5.10. Our goal it to verify that we can apply
Theorem 3.2 as we combine Proposition 5.8 and 5.9. First, notice for any
κ′ > 0, if we consider a sequence (xn) such that xn ∈ (nκ

′+1/(p∧α),+∞),
then conditions AC, CSp hold thanks to Proposition 5.8. Since c(p) < ∞
in (2.9), Proposition 2.2 holds and the time series admits a p−cluster process

Q(p). Fix κ′ > 0, and xn = O(nκ
′+1/(p∧α)).

We focus now on the verification of the mixing condition MXβ in The-
orem 3.2. Applying Proposition 5.9, there exists ρ ∈ (0, 1) such that the
coefficients (βt) satisfy βt = O(ρt). Moreover, if we choose (kn) according to
(A.51) as in the linear model case then there exists ϵ, ϵ′ > 0, and a constant
c > 0, such that

mn/kn ⩽ c b
−1+ α

p∧α+ϵ′

n ,
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and thus
∑mn

t=1(mnβbn/kn)
δ/(2+δ) = O(ρbnδ/(2+δ)(bn)

ϵ), which goes to zero as
n→ ∞. Moreover, for all η ∈ (0, 1), choosing ℓn = bηn, we have mnβℓn/kn →
0, bn/ℓn → 0, as n → 0. Therefore, we have verified MXβ holds. This
concludes the proof of Theorem 5.10 since all assumptions of Theorem 3.2
are verified.

It remains to verify thatM and S hold. To verify M we check E[∥Q∥2αα−ε] <
∞. We use the definition of Q, a telescoping sum argument and the time-
change formula to obtain

E
[
∥Q∥2αα−ε

]
= E

[(∑t∈Z |ΘΘΘt|α−ε)2α/(α−ε)

∥ΘΘΘ∥2αα

]
=

∑
j∈Z

E
[(∑t⩾j |ΘΘΘt|α−ε)2α/(α−ε) − (

∑
t⩾j+1 |ΘΘΘt|α−ε)2α/(α−ε)

∥ΘΘΘ∥2αα

]
=

∑
j∈Z

E
[
|ΘΘΘj |α

(
∑

t⩾0 |ΘΘΘt|α−ε)2α/(α−ε) − (
∑

t⩾1 |ΘΘΘt|α−ε)2α/(α−ε)

∥ΘΘΘ∥2αα

]
= E

[(∑t⩾0 |ΘΘΘt|α−ε)2α/(α−ε) − (
∑

t⩾1 |ΘΘΘt|α−ε)2α/(α−ε)

∥ΘΘΘ∥αα

]
By convexity of the function g(x) = x2α/(α−ε) we obtain(

1 +
∑
t⩾1

|ΘΘΘt|α−ε
)2α/(α−ε)

−
(∑
t⩾1

|ΘΘΘt|α−ε
)2α/(α−ε)

⩽
2α

α− ε

(∑
t⩾1

|ΘΘΘt|α−ε
)α+ϵ/(α−ε)

⩽
2α

α− ε

∑
t⩾1

|ΘΘΘt|α+ϵ .

Then,

E[∥Q∥2αα−ϵ] ⩽
2α

α− ε
E
[∑
t⩾1

|ΘΘΘt|α+ϵ

∥ΘΘΘ∥αα

]
⩽

2α

α− ε
E
[∑
t⩾1

|ΘΘΘt|ϵ
]
.

The latter expression is integrable because E[|A|κ′op] < 1 and E[|ΘΘΘt|ε] =

E[|A1 · · ·At|εop] ⩽ E[|A|κ′op]t/κ
′
for every ε < κ′. Thus M holds in Exam-

ple 5.7.
Finally, to verify S we rely on Lemma F.1. Actually, Equation (F.117)

has already been demonstrated in Proposition 5.8; and it suffices to follow
the lines of the proof of Equation (F.111). We can therefore conclude that
S holds for the α̂−cluster based estimators from Section 4 in (4.26) (4.29),
and (4.34).

□
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Lemma F.1. Consider (Xt) to be a time series with values in (Rd, | · |), and
consider the α̂−cluster based estimators from Section 4 in (4.26) (4.29), and
(4.34). Assume there exists η > 0 such that α− ϵ− η > ϵ/2 and

lim
n→∞

E[(∥X[1,n]/xn
δ∥α−ϵα−ϵ − E[∥X[1,n]/xn

δ∥α−ϵα−ϵ])
2]

nP(|X1| > xn)
<∞.(F.117)

Then, condition S holds.

Proof. Proof of Lemma F.1 For this we appeal to Remark 4.3, which shows
the functionals ∂fq/∂q|q=α and supq′∈[α−ϵ,α+ϵ] ∂

2fq/∂q
2|q=q′ are continuous

functions in G+(ℓ
α). Moreover, we take the example of the extremal index

in (4.26) with f(x) = ∥x∥α∞/∥x∥αα, as for (4.29), and (4.34) similar calcu-
lations yield the desired result. Then, to verify S note that on the event
{∥X[1,n]∥q′ > xbn} we have, for q′ > α− ϵ,

0 <
∂fq(X[1,n])

∂q

∣∣
q=q′

=
∥X[1,n]∥

q
∞

∥X[1,n]∥
q′

q′

n∑
t=1

|Xt|q
′

∥X[1,n]∥
q′

q′

log(∥X[1,n]∥∞/|Xt|)

⩽
n∑
t=1

|Xt|α−ϵ

∥X[1,n]∥α−ϵq′

=
∥X[1,n]/xn∥α−ϵα−ϵ

∥X[1,n]/xn∥α−ϵq′
⩽ ∥X[1,n]/xn∥α−ϵα−ϵ.

Similar calculations yield∣∣∣∂2fq(X[1,n])

∂q2
∣∣
q=q′

∣∣
=

∥X[1,n]∥
q
∞

∥X[1,n]∥
q′

q′

n∑
t=1

n∑
j=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xj |q
′

∥X[1,n]∥
q′

q′

log(∥X[1,n]∥∞/|Xj |)| log(|Xj |/|Xt|)|

⩽
n∑
t=1

n∑
j=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xj |α−ϵ

∥X[1,n]∥α−ϵq′
| log(|Xj |/|Xt|)|

⩽ ∥X[1,n]/xn∥α−ϵα−ϵ

−
n∑
t=1

n∑
j=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xj |α−ϵ

∥X[1,n]∥α−ϵq′
log(|Xt|/|Xj |)11(|Xj |/|Xt| < 1).

= ∥X[1,n]/xn∥α−ϵα−ϵ +R

(F.118)
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To study (F.118) , we handle separately the two remaining terms. Regarding
the remaining term R in (F.118), note,

0 < R

=

n∑
t=1

n∑
j=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xj |α−ϵ

∥X[1,n]∥α−ϵq′
log(|Xt|/|Xj |)11(|Xt|/|Xj | > 1)

⩽
n∑
t=1

n∑
j=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xj |α−ϵ

∥X[1,n]∥α−ϵq′

(
|Xt|
|Xj |

)ϵ
11(|Xj |/|Xt| > 1)

=
∥X[1,n]∥α−2ϵα−2ϵ
∥X[1,n]∥α−ϵq′

n∑
t=1

|Xt|q
′

∥X[1,n]∥
q′

q′

|Xt|ϵ.

Then, by an application of Hölder’s inequality, we obtain

R ⩽
∥X[1,n]∥α−2ϵα−2ϵ
∥X[1,n]∥α−ϵq′

 n∑
j=1

|Xt|pq
′

∥X[1,n]∥
pq′

q′

1/p n∑
j=1

|Xt|p
′ϵ

1/p′

.

=
∥X[1,n]∥α−2ϵα−2ϵ
∥X[1,n]∥α−ϵq′

∥X[1,n]∥
q′

pq′

∥X[1,n]∥
q′

q′

∥X[1,n]∥ϵp′ϵ

⩽
∥X[1,n]∥α−2ϵα−2ϵ
∥X[1,n]∥α−ϵq′

∥X[1,n]∥ϵp′ϵ

for p > 1, and 1/p + 1/p′ = 1. Then, we see it is enough to show that for
η < ϵ < 1,

lim
n→∞

E
[(
∥X[1,n]/xn∥α−2ϵα−2ϵ∥X[1,n]/xn∥ϵϵ

)1+η
11(∥X[1,n]∥q′ > xn)

]
P(∥X[1,n]∥q′ > xn)

<∞.

Moreover, by an application of Hölder’s inequality,

E
[(
∥X[1,n]/xn∥α−2ϵα−2ϵ∥X[1,n]/xn∥ϵϵ

)1+η
11(∥X[1,n]∥q′ > xn)

]
⩽ E

[(
∥X[1,n]/xn∥α−ϵα−ϵ

)1+η]
⩽ E

[
∥X[1,n]/xn∥

α−ϵ+η
α−ϵ+η

]
,

where the last inequality follow by subadditivity when η < 1. Therefore, it
is enough to show there exists ϵ, η > 0 such that α− ϵ− η > ϵ/2,

lim
n→∞

E[∥X[1,n]/xn∥α−ϵα−ϵ11(∥X[1,n]∥α−ϵ−η > xn)]

P(∥X[1,n]∥α−ϵ > xn)
<∞.(F.119)

We verify that for all ϵ, η > 0 such that α− ϵ− η > ϵ/2, and (F.119) holds
and an application of Lemma F.1 yields the desired result. Indeed, notice
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for all δ > 0,

E[∥X[1,n]/xn∥α−ϵα−ϵ11(∥X[1,n]∥α−ϵ−η > xn)]

P(∥X[1,n]∥α−ϵ > xn)

=
E[∥X[1,n]/xn

δ∥α−ϵα−ϵ11(∥X[1,n]∥α−ϵ−η > xn)]

P(∥X[1,n]∥α−ϵ > xn)

+
E[∥X[1,n]/xn

δ
∥α−ϵα−ϵ11(∥X[1,n]∥α−ϵ−η > xn)]

P(∥X[1,n]∥α−ϵ > xn)

= I + II,(F.120)

and here we recall the notation X[1,n]/xn
δ
= (X1/xn

δ
, . . . ,Xn/xn

δ
), and

X[1,n]/xn
δ
= (X1/xnδ, . . . ,Xn/xnδ). Next, we treat I and II separately.

For II it is easy to see

I ⩽ n
E[|X1/xnδ|

α−ϵ]

P(∥X[1,n]∥α−ϵ > xn)
=

nP(|X1| > xn)

P(∥X[1,n]∥α−ϵ > xn)

E[|X1/xnδ|
α−ϵ]

P(|X1| > xn)
.

Then, by an application of Karamata’s theorem we see limn→∞ II < ∞.
Now to treat I, recall E[∥X[1,n]/xn

δ
∥α−ϵα−ϵ] → 0, as n→ ∞ since E[|X1|α−ϵ] <

∞ and n/xα−ϵn → 0, as n → ∞. Hence, by Equation (F.117), we conclude
limn→∞(I + II) <∞, following the notation in (F.120), and this completes
the proof. □
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