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ON THE ASYMPTOTICS OF EXTREMAL ℓp-BLOCKS

CLUSTER INFERENCE

GLORIA BURITICÁ AND OLIVIER WINTENBERGER

Abstract. Extremes occur in stationary regularly varying time series
as short periods with several large observations, known as extremal
blocks. We study cluster statistics summarizing the behavior of func-
tions acting on these extremal blocks. Examples of cluster statistics are
the extremal index, cluster size probabilities, and other cluster indices.
The purpose of our work is twofold. First, we state the asymptotic
normality of block estimators for cluster inference based on consecutive
observations with large ℓp-norms, for p > 0. Second, we verify the condi-
tions we require on classic models such as linear models and solutions of
stochastic recurrence equations. Regarding linear models, we prove that
the asymptotic variance of classical index cluster-based estimators is null
as first conjectured in [26]. We illustrate our findings on simulations.

1. Introduction

We study stationary heavy-tailed time series with regularly varying dis-
tributions; cf. [5]. In this framework, extremal observations cluster: an
extreme value triggers a short period with numerous large observations.
This behavior is known to perturb classical inference procedures tailored for
independent observations like high quantile inference; see [20]. This cluster-
ing effect can be summarized with the extremal index, initially introduced
in [34] and [35]. We can interpret it as the inverse of the mean number of
consecutive exceedances above a high threshold in a short period of time.
In this article, we aim to infer such properties of the clustering effect by
letting functionals act on consecutive observations with extremal behavior.
For example, we can recover the extremal index from this setting and other
important indices of the extremes of the series.

We consider cluster statistics of regularly varying time series (Xt) with
values in (Rd, | · |), and tail index α > 0; a formal definition is conferred to
Section 2.2. For cluster inference, we consider a sample X[1,n] together with
the sequence (bn), and we define the sample of disjoint blocks (Bj)j=1,...,mn

as blocks of consecutive observations with

Bj := (X(j−1)bn+1, . . . ,Xjbn) = X(j−1)bn+[1 : bn],(1.1)

such that bn → ∞, mn = n/bn → ∞, as n → ∞. We follow the p-clusters
theory developed in [12] for a fixed p ∈ (0,∞]. The extremal behavior of

2020 Mathematics Subject Classification. Primary 60G70 ; Secondary 60F10 62G32
60F05 60G57.

1
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regularly varying time series is modeled by the conditional behavior of a
block Bj given that its ℓp-norm is large:

P(B1/xbn ∈ A | ‖B1‖p > xbn)
w−→ P(YQ(p) ∈ A ), n → ∞,(1.2)

such that Y is independent of Q(p) ∈ ℓp, P(Y > y) = y−α, for y > 1,

‖Q(p)‖p = 1 a.s. The weak convergence holds for a family of shift-invariant
continuity sets A ⊂ ℓp, and (xn) is a suitable sequence satisfying P(‖B1‖p >

xbn) → 0, as n → ∞. The spectral p−cluster process Q(p) models the short
period’s behavior under the rare event that its ℓp-norm is large. We study
p-cluster statistics of the form

fQ
p = E[fp(YQ(p))] ,(1.3)

for suitable ℓp-continuity functions fp : ℓ
p → R, invariant to the shift opera-

tor. To infer the cluster statistic (1.3), we use the disjoint blocks estimators
proposed in [12], and defined as

f̂Q
p :=

1

k

mn∑

t=1

fp(Bt/‖B‖p,(k+1))11(‖Bt‖p > ‖B‖p,(k+1)),(1.4)

where ‖B‖p,(1) > ‖B‖p,(2) > . . . > ‖B‖p,(mn), denotes the sequence of order
statistics of the ℓp-norms of blocks defined in (1.1).

The main goal of this article is to establish the asymptotic normality of the
block estimators in Equation (1.4), tailored for cluster inference. We state
moment, mixing and bias assumptions yielding the existence of a sequence
(kn), satisfying k = kn → ∞, mn/kn → ∞ such that

√
k
(
f̂Q
p − fQ

p

) d−→ N (0,Var(fp(YQ(p))) ) , n → ∞,(1.5)

and the limit is a centered Gaussian distribution. As a result, we see that the
asymptotic variance of the blocks estimator can be computed in terms of the
p−cluster Q(p). In general, it is possible to obtain numerous representations
of one cluster statistics in (1.3) combining the choice of p with fp. This
follows by the change-of-norms equation given in [12] that we recall in (2.12).
For example, the extremal index admits distinct p−clusters representations
in the form of (1.3) if we use p = ∞ or p = α, the tail-index of the series;
cf. [13]. This strategy points to new inference methodologies to estimate
the same statistic. The asymptotic result in (1.5) allows us to compare the
variances of these inference procedures tuned with different p.

We show that introducing ℓp−norm block order statistics in (1.4), in-
stead of order statistics of the sample (|Xt|) as in [18, 14], can lead to a
better asymptotic variance for cluster inference. We give examples of vari-
ance reduction in the case of linear models with short-range dependence,
for inference of classical indices. In our examples, the asymptotic variance
Var(fp(YQ(p))) is null because of the deterministic properties of the spec-
tral p-cluster process of linear models. For linear models, the advantage of
replacing thresholds with block maxima records was previously investigated
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in [26]. Existing works [17, 18, 14, 33] following [26] focus on cluster of ex-
ceedances inference such that p = ∞. Our asymptotic result comforts and
extends the heuristics presented in [26] for p = ∞ and linear models to the
case p < ∞ and general models. To prove the asymptotic normality of block
estimators, we rely on the asymptotics of disjoint block estimators studied
in Theorem 2.10. in [17], and the theory of empirical processes therein. We
also follow the modern overview in [33]. To handle the asymptotics of ex-
tremal ℓp-blocks, we build on the large deviation principles studied in [12],
and appeal to the p-cluster processes theory therein.

The blocks estimator in Equation (1.4) compares favourably to state-of-
the-art methodologies for cluster inference in terms of asymptotic variance.
Considering inference through extremal ℓp-blocks with p < ∞ has already
proven in [12] to be advantageous in terms of bias. Choosing p = α can be
useful in practice to make tuning the parameters in the blocks estimator less
susceptible to time dependencies; see [12]. We illustrate on simulations that
the ℓα–block estimator is competitive both in terms of bias and variance for
finite sample sizes. This approach performs well even when the tail index
α > 0 has to be estimated with a Hill-type procedure.

The article is organized as follows. Preliminaries on mixing coefficients,
regular variation, and the p-clusters theory of stationary time series are
compiled in Section 2. In Section 3 we present our main result in Theo-
rem 3.2, stating the asymptotic normality of the block estimators introduced
in Equation (1.4). We work under mixing, moment, and bias conditions on
the series that we also present in Section 3. Section 4 studies examples
of extremal cluster inference such as estimation of the extremal index, the
cluster size probabilities, and the cluster index for sums. We conclude by
verifying our conditions on classical models such as linear processes and sto-
chastic recurrence equations in Section 5. In the case of linear models with
short-range dependence, Theorem 5.6 states that the ℓp-block estimators of
all the aforementioned quantities have null-asymptotic variance. Thereby,
they are super-efficient for cluster inference of important indices as conjec-
tured by [26] for p = ∞. We illustrate the finite-sample performances of our
estimators in Section 6. All proofs are deferred to Section A.

1.1. Notation. We consider stationary time series (Xt) taking values in
R
d, that we endow with a norm | · |. Let p > 0, and (xt) ∈ (Rd)Z. Define

the p-modulus function ‖ · ‖p : (Rd)Z → [0,+∞] as

‖(xt)‖pp :=
∑

t∈Z|xt|p ,
and define the sequential space ℓp as

ℓp := {(xt) ∈ (Rd)Z : ‖(xt)‖pp < +∞} ,
with the convention that, for p = ∞, the space ℓ∞ refers to sequences with
finite supremum norm. For any p ∈ (0,+∞], the p-modulus functions induce
a distance dp in ℓp, and for p ∈ [1,+∞), it defines a norm. Abusing notation,

we call them ℓp-norms for p ∈ (0,+∞]. Let ℓ̃p = ℓp/ ∼ be the shift-invariant
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quotient space where: (xt) ∼ (yt) if and only if there exists k ∈ Z such that

xt−k = yt, t ∈ Z. We also consider the metric space (ℓ̃p, d̃p) such that for

[x], [y] ∈ ℓ̃p,

d̃p([x], [y]) = inf
k∈Z

{dp(xt−k,yt), (xt) ∈ [x], (yt) ∈ [y]},

and without loss of generality, we write an element [x] in ℓ̃p also as (xt).
Further details on the shift-invariant spaces are deferred to [12, 4].

The operator norm for d × d matrices, A ∈ R
d×d, is defined as |A|op :=

sup|x|=1 |Ax|. The truncation operations of (xt) at the level ǫ, for ǫ > 0, are
defined by

(xε
t ) = (xt11|xt|6ε) , (xtǫ

) = (xt11|xt|>ε) .

The notation a∧b denotes the minimum between two constants a, b ∈ Z, and
a ∨ b denotes its maximum. We write log+(x) = log(x) ∨ 0, for x ∈ (0,∞).
We sometimes write x for the sequence x := (xt) ∈ (Rd)Z. Furthermore, for
a, b,∈ R, and a 6 b, we write as x[a,b] the vector (xt)t=a,··· ,b taking values

in (Rd)b−a+1. We sometimes write x[a,b] ∈ ℓ̃p, which means we take the

natural embedding of x[a,b] in ℓ̃p defined by assigning zeros to undefined

coefficients. It will be convenient to write G+(ℓ̃
p) for the continuous non-

negative functions on (ℓ̃p, d̃p) which vanish in a neighborhood of the origin.

2. Preliminaries

2.1. Mixing coefficients. Let (Xt) be an R
d-valued strictly stationary

time series defined over a probability space ((Rd)Z,A,P). The properties
of stationary sequences are usually studied through mixing coefficients. De-
note the past and future σ−algebras by

Ft60 := σ((Xt)t60), Ft>h := σ((Xt)t>h), h > 1 ,

respectively. We recall the definition of mixing coefficients (ρh), (βh), below

ρh = sup
f∈L2(Ft60 ), g∈L2(Ft>h )

|Corr(f, g)|,

βh = dTV

(
PFt60⊗Ft>h

, PFt60
⊗ PFt>h

)
,

where dTV (·, ·) is the total variation distance between two probability mea-
sures: ((Rd)Z,A,P1), ((R

d)Z,A,P2), and P1⊗P2(A×B) = P1(A)P2(B), for
A,B ∈ A. For a summary on mixing conditions see [8, 16, 42].

Remark 2.1. The ρ−mixing coefficients (ρt)t>0 were introduced in [32],
and popularized due to the Ibragimov central limit theorem for dependent
stationary sequences in [28]. This theorem states that sufficient conditions
for the central limit of stationary sequences to hold are the mixing condition:∑∞

t=1 ρ2t < ∞, together with a moment assumption of order κ > 2. The
aforementioned mixing condition was studied in detail in [7, 40, 46, 48];
see [8] for a review. However, aside from the m0-dependent case and the
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Gaussian case (where ρt = 0 for t > m0 and ρt 6 πβt, respectively) there is
no general recipe for computing ρ–mixing rates.

Remark 2.2. A detailed interpretation of the β−mixing coefficients (βh)
in terms of the total variation distance can be found in Chapter 1.2 in
[16]. These mixing coefficients are well adapted while working with Markov
processes. Indeed, a strictly stationary Harris recurrent Markov chain (Xt),
satisfies βt → 0 as t → ∞; see Theorem 3.5 in [8].

2.2. Regular variation. We consider stationary time series (Xt) taking
values in (Rd, | · |) and that it is regularly varying with tail index α > 0: all
its finite-dimensional vectors are multivariate regularly varying of the same
index. In this case we write (Xt) satisfies RVα. Borrowing the ideas in [5],
(Xt) satisfies RVα if and only if, for all h > 0, there exists a vector (ΘΘΘt)|t|6h,

taking values in (Rd)2h+1 such that

P(x−1(Xt)|t|6h ∈ · | |X0| > x)
d−→ P(Y (ΘΘΘt)|t|6h ∈ ·), x → +∞,(2.6)

where Y is independent of (ΘΘΘt)|t|6h and P(Y > y) = y−α, y > 1. We call

the sequence (ΘΘΘt), taking values in (Rd)Z, the spectral tail process.
The time series (ΘΘΘt) does not inherit the stationarity property of the

series. Instead, the time-change formula of [5] holds: for any s, t ∈ Z, s 6

0 6 t and for any measurable bounded function f : (Rd)t−s+1 → R,

E[f(ΘΘΘs−i, . . . ,ΘΘΘt−i)11(|ΘΘΘ−i| 6= 0)] = E[|ΘΘΘi|α f(ΘΘΘs/|ΘΘΘi|, . . . ,ΘΘΘt/|ΘΘΘi|)].
(2.7)

2.3. p-cluster processes. Let (Xt) be a stationary time series satisfying

RVα. For p > 0, we say the series admits a p-cluster process Q(p) ∈ ℓ̃p if
there exists a well-chosen sequence (xn), satisfying

P(‖X[1,n]‖p > xn) ∼ n c(p)P(|X1| > xn), n → ∞(2.8)

with c(p) ∈ (0,∞), nP(|X1| > xn) → 0, and

P(X[1,n]/xn ∈ · | ‖X[1,n]‖p > xn)
w−→ P(YQ(p) ∈ · ), n → ∞,(2.9)

where Y is independent ofQ(p) ∈ ℓ̃p, P(Y > y) = y−α, for y > 1, ‖Q(p)‖p = 1

a.s., and the limit in (2.9) holds in (ℓ̃p, d̃p). We study below the anti-
clustering and vanishing-small values conditions noted AC, CSp, respec-
tively, which guarantee the existence of p−clusters. We rephrase next the
Theorem 2.1. of [12].

Proposition 2.3. Let (Xt) be a stationary time series satisfying RVα. Let

(xn) be a sequence such that nP(|X1| > xn) → 0, as n → ∞ and p > 0. For

all δ > 0, assume

AC : lims→∞ lim supn→∞ P(‖X[s,n]‖∞ > ǫxn | |X1| > ǫxn ) = 0, ǫ > 0,

CSp: limǫ↓0 lim supn→∞
P

(
‖X[1,n]/xn

ǫ
‖pp>δ

)
nP(|X1|>xn)

= 0.
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Then, if p > α, Equation (2.8) holds with c(∞) 6 c(p) 6 c(α) = 1, and (Xt)

admits a p−cluster process Q(p) in the sense of (2.9). If p < α, existence of

the p−cluster process holds if E[‖Q(α)‖αp ] < ∞. In this case, Equation (2.8)

holds with c(p) = E[‖Q(α)‖αp ].

From Proposition 2.3 we see that assuming AC, and CSα, the time series
(Xt) admits an α-cluster Q(α), where α > 0, denotes the tail index. In this
case, appealing to Proposition 3.1. in [12], we have

Q(α) d
= ΘΘΘ/‖ΘΘΘ‖α, ∈ ℓ̃α ,(2.10)

where (ΘΘΘt) is the spectral tail process from Equation (2.6). Moreover, if

CSp, CSp′ , and E[‖Q(α)‖αp ] + E[‖Q(α)‖αp′ ] < ∞ also hold, then the p, p′-
clusters exist and are related by the change-of-norms formula below

P(Q(p) ∈ ·)
= c(p)−1

E[‖Q(α)‖αp11(Q(α)/‖Q(α)‖p ∈ ·)](2.11)

=
c(p′)

c(p)
E[‖Q(p′)‖αp 11(Q(p′)/‖Q(p′)‖p ∈ ·)].(2.12)

Since ‖Q(p)‖p = 1 a.s. for any p > 0, then c(α) = 1, and E[‖Q(p′)‖αp ] =
c(p)/c(p′), where c(p), c(p′), are as in Equation (2.8).

Remark 2.4. We can check readily that if
∑∞

t=1 ρt < ∞, then AC holds

for all sequences of levels (xn) satisfying nP(|X1| > xn) → 0, as n → ∞.

Remark 2.5. Using the monotonicty of norms, we see straightforwardly

that CSp implies the condition CSp′, for p′ > p > 0. If p > α, where α
is the tail index, the condition CSp is always satisfied for sequences (xn)
such that nP(|X1| > xn) → 0, as n → ∞. In the case α/2 < p 6 α,
if

∑∞
t=0 ρt < ∞, then condition CSp holds for sequences (xn) such that

there exists κ > 0, satisfying n/x
p∧(α−κ)
n → 0, as n → ∞. This follows by

Remarks 5.1. and 5.2. in [12].

3. Asymptotic normality

3.1. Main result. Let (Xt) be an R
d-valued stationary time series satisfy-

ing RVα. Assume the conditions of Proposition 2.3 hold for p > 0, the series
admits a p-cluster process Q(p) ∈ ℓ̃p, and (2.9) holds for a sequence of high
levels (xn) satisfying P(‖X[1,n]‖p > xn) → 0. Recall the block estimator in
(1.4) is tuned with the block lengths (bn), and the number (kn) of extremal
blocks. The total number of disjoint blocks in a sample is denoted (mn)
with mn = ⌊n/bn⌋. We assume the relation between (kn) and (bn)

k := kn =
⌊
mnP(‖X[1,bn]‖p > xbn)

⌋

∼ n c(p)P(|X1| > xbn), n → ∞,(3.13)
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holds, where c(p) ∈ (0,∞) are as in (2.8). In what follows, if the sequences
(xn), (bn), (kn), (mn), appear then they coincide with the ones mentioned
here.

Our main result is presented in this section in Theorem 3.2. It establishes
the asymptotic normality of the block estimator in (1.4) under the moment,
bias, and mixing assumptions that we introduce below.

L: Let fp : ℓ̃p → R, be such that fp ∈ G+(ℓ̃
p). Moreover assume u 7→

fp((xt)/u) is a non-increasing function, and assume there exists δ > 0 such
that for all u > 0,

mn

kn
E[fp(B1/uxbn)

2+δ] = O(1),(3.14)

as n → ∞, and E[fp(YQ(p))2] < ∞.

B: Let fp : ℓ̃
p → R satisfy L. Fix ǫ > 0, and assume the bias conditions

0 = lim
n→∞

√
k sup
u∈[1−ε,1+ε]

∣∣ E[fp(B1/uxbn)11(‖B1/xbn‖p > u)]

P(‖B1‖p > xbn)
− u−α fQ

p

∣∣ ,

(3.15)

0 = lim
n→∞

√
k sup
u∈[1−ε,1+ε]

∣∣ P(‖B1/xbn‖p > u)

P(‖B1‖p > xbn)
− u−α

∣∣ ,

(3.16)

where fQ
p is as in (1.3).

MX: Assume the mixing coefficients (βt) satisfy the condition

lim
n→∞

mnβbn = 0.(3.17)

MXβ: Let fp : ℓ̃p → R satisfy L, and let δ > 0 be such that (3.14) hold.
Assume there exists a sequences (ℓn), satisfying ℓn → ∞, and the mixing
coefficients (βt) satisfy mnβℓn/kn → 0, ℓn/bn → 0, as n → ∞, and

lim
n→∞

∑mn

t=1(mnβtbn/kn)
δ

2+δ = 0.(3.18)

If fp is bounded, we assume
∑mn

t=1 mnβtbn/kn → 0 instead of (3.18).

MXρ: Assume the correlation coefficients (ρt) satisfy
∑mn

t=1 ρtbn → 0 and

lim
s→∞

lim
bn→∞

∑bn
t=sP(|Xt| > ǫxbn | |X0| > ǫxbn) = 0.(3.19)

We state in Theorem 3.2 below our main result on the asymptotic nor-
mality of the blocks estimator. We defer its proof to Section A.

Theorem 3.1. Let (Xt) be a stationary time series satisfying RVα. Assume

the conditions of Proposition 2.3 hold, such that the series admits a p-cluster
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process Q(p) ∈ ℓ̃p. Consider fp : ℓ̃p → R such that L and B hold. Assume

also MX holds, and assume either MXβ or MXρ hold for the same sequence

(kn). Then we have

√
k
(
f̂Q
p − fQ

p

) d−→ N (0,Var(fp(YQ(p))) ) , n → ∞.(3.20)

Here we follow the notation from equations (1.3) and (1.4).

Theorem 3.2. Assume in addition that for q ∈ [α− ǫ, α+ ǫ],

E

[
‖Q(α)‖2αq

∑
t∈Z

‖Q
(α)
t |q∧α

‖Q(α)‖q∧α
q

log
(‖Q(α)‖q

|Q
(α)
t |

)]
< ∞.

Then, if α̂ is the Hill estimator of the series tuned with kh higher order

statistics of the sample (|Xt|), then
√
k
(
f̂Q

α̂ − fQ
α

) d−→ N (0,Var(fα(YQ(α))) + chσ
2
α ) , n → ∞,(3.21)

where
√

k/kh → ch, and σ2
α > 0. Here we follow the notation from equations

(1.3) and (1.4).

Remark 3.3. The proof of Theorem 3.2 follows the functional central limit

theorem stated in Theorem C.4.5 in [33]. Condition L restricts the family of

functions we can consider for inference. Equation (3.14) entails a Lindeberg-

type condition holds.

4. Cluster statistics

In view of Theorem 3.2, we derive asymptotic normality of classical cluster
index estimators in extreme value theory.

4.1. The extremal index. Let (Xt) be a stationary time series in (Rd, | · |)
satisfying RVα. The extremal index θ|X| of the series (|Xt|) is a measure of
serial clustering introduced in [34] and [35]. We recall the extremal index
estimator proposed in [13], based on extremal ℓα−blocks.

Corollary 4.1. Consider fp : ℓ̃p → R to be the function x 7→ ‖x‖α∞/‖x‖αα.
Assume the conditions of Theorem 3.2 hold for p = α. Let θ|X| = E[‖Q(α)‖α∞],
hence we deduce an estimator

θ̂|X| =
1

k

m∑

t=1

‖Bt‖α∞
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1)),(4.22)

such that
√
k
(
θ̂|X| − θ|X|

) d−→ N (0,Var(‖Q(α)‖α∞)), n → ∞ .

Proof. The proof of Corollary 4.1 follows directly as fp ∈ G+(ℓ̃
p) is a bounded

continuous function satisfying L. �
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For comparison we review the blocks estimator based on extremal ℓ∞−blocks
proposed in [25]:

θ̂B|X| =
1

k

mn∑

t=1

11(‖Bt‖∞ > |X|(k+1)) .(4.23)

Direct computations from Example 10.4.2 in [33] yield
√
k(θ̂B|X| − θ|X|)

d−→ N (0, σ2
θ ), n → ∞,

where σ2
θ ∈ [0,+∞), and

σ2
θ = θ2|X|

∑

j∈Z

E[|ΘΘΘj|α ∧ 1]− θ|X|

= θ2|X|

∑

j∈Z

∑

t∈Z

E[|Q(α)
j+t|α ∧ |Q(α)

t |α]− θ|X|.(4.24)

The last equality follows appealing to the time-change formula in (2.7) and
Equation (2.10). As a result, we can compare the asymptotic variances of

θ̂|X| and θ̂B|X| in the cases where Q(α) is known. This is the topic of Section 5.

4.2. The cluster index for sums. Let (Xt) be a stationary time series
with values in (Rd, | · |) satisfying RVα. We recall [39] coined the constant
c(1) in (2.8) as the cluster index for sums. We review a cluster-based esti-
mator of it, introduced in [12], based on extremal ℓα-blocks.

Corollary 4.2. Consider fp : ℓ̃p → R to be the function x 7→ ‖x‖α1 /‖x‖αα.
Assume the conditions of Theorem 3.2 hold for p = α ∧ 1, and α < 2. Let

c(1) = E[‖Q(α)‖α1 ] < ∞, hence one deduces an estimator

ĉ(1) =
1

k

m∑

t=1

‖Bt‖α1
‖Bt‖αα

11(‖Bt‖α > ‖B‖α,(k+1)),(4.25)

such that
√
k
(
ĉ(1)− c(1)

) d−→ N (0,Var(‖Q(α)‖α1 )) , n → ∞,

and c(1) is as in (2.8) with p = 1.

Proof. The proof of Corollary 4.2 follows directly from Theorem 3.2 as fp ∈
G+(ℓ̃

p) is a bounded continuous function satisfying L. �

Another sums index cluster-based estimator we can consider is the one
proposed in [33] based on extremal ℓ∞-blocks:

ĉB(1) =
1

kbn

mn∑

t=1

11(‖Bt‖1 > |X|(k+1)).(4.26)

Then, relying on Example 10.4.2 in [33],
√
k(ĉB − c(1))

d−→ N (0, σ2
c(1)), n → ∞.
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for a constant σ2
c(1) ∈ [0,+∞) defined by

σ2
c(1) = c(1)2

∑

j∈Z

∑

t∈Z

E[|Q(α)
j+t|α ∧ |Q(α)

t |α]− c(1).(4.27)

Similarly as in Example 4.1, whenever Q(α) is known, we can compare di-
rectly the asymptotic variances relative to the estimators ĉ(1) and ĉB(1).
Section 5 covers this topic for classical models where the cluster process is
known.

4.3. The cluster sizes. In general, a classical approach to model serial
exceedances is using point processes as in [35] and [26]. For the levels (an),
satisfying nP(|X1| > an) → 1, as n → ∞, and for every fixed x > 0 consider
the point process of exceedances with state space (0, 1]:

ηn,x(·) := Nn

(
{y : |y| > x} × ·

)
=

n∑

i=1

εi/n(·) 11(|Xi| > xan) .

Under mixing and anti-clustering conditions, for fixed x > 0, we can express
the limiting point process in [26] such as

ηn,x(·) d→ ηx(·) := N
(
{y : |y| > x} × ·

)

=

∞∑

i=1

∑

j∈Z

11
(
Γ
−1/α
i |Q(α)

ji | > x
)
εUi

(·) ,

where the points (Ui) are iid uniformly distributed on (0, 1), (Γi) are the

points of a standard homogeneous Poisson process, and (Q
(α)
·i ) are iid copies

of the cluster process Q(α). Using the independence among these three
processes, one can easily rewrite the limit as

ηx((0, t]) =

Nx(t)∑

i=1

ξi , 0 < t 6 1 ,(4.28)

where

• Nx is a homogeneous Poisson process on (0, 1] with intensity x−α,
• for an iid sequence (Yi) of Pareto(α)-distributed random variables

which is also independent of (Q
(α)
i ),

ξi =
∑

j∈Z

11(Yi |Q(α)
ij | > 1) ,

• Nx, (ξi) are independent.

Relying on the point process of exceedances representation in (4.28), the
random variables (ξi) can be interpreted as counts of serial exceedances from

one cluster. Furthermore, we deduce the relation P(ξ1 > 0) = E[‖Q(α)‖α∞] =
θ|X|, and also get an expression for the cluster size probabilities

P(ξ1 = j) = E[|Q(α)|α(j) − |Q(α)|α(j+1)] = πj , j > 1 .(4.29)
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The statistic πj can be understood as the probability of recording a cluster
of length j. The blocks estimator provide natural estimators

π̂j =
1

k

m∑

t=1

|Bt|α(j) − |Bt|α(j+1)

‖Bt‖αα
11(‖Bt‖α > ‖B‖α,(k+1)),(4.30)

|Bt|(1) > |Bt|(2) > . . . > |Bt|(b) are the order statistics of Bt, the t-th block.

Corollary 4.3. Consider the function πQ
j : ℓ̃p → R defined by πQ

j (x) :=

(|x|α(j) − |x|α(j+1))/‖x‖αα, where |x|(1) > |x|(2) > . . . . Assume the conditions

of Theorem 3.2 hold for p = α. Then, for all j > 1 we have
√
k
(
π̂j − πj

) d−→ N (0,Var(πQ
j (Q(α)))) , n → ∞ .(4.31)

Corollary 4.3 provides a novel procedure for estimating cluster size prob-
abilities based on extremal ℓα−blocks. As in the previous examples, the
asymptotic variance can be computed as long as Q(α) is known. This allows
for comparison with the other cluster-based inference procedures provided
in [25, 21, 45]. One advantage of our methodology is that we can straight-
forwardly infer the asymptotic variances of cluster sizes since we express
them as cluster statistics in (4.31). Moreover, inference through extremal
ℓα-blocks has already proven to be useful in [12] for fine-tuning the hyper-
parameters of the estimators, see also the discussion in Section 6.

5. Models

5.1. Linear m0–dependent sequences. We consider (Xt) to be a m0–
dependent time series with values in (Rd, | · |) satisfying RVα.

Example 5.1. The time series (Xt) is a linear moving average of order

m0 > 1 if it satisfies

Xt := Zt + ϕ1Zt−1 + · · · + ϕm0Zt−m0 , t ∈ Z,(5.32)

with R
d-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ R

m0 .

Alternatively, the max-moving average of order m0 > 1 satisfies

Xt := max{Zt, ϕ1Zt−1, . . . , ϕm0Zt−m0}, t ∈ Z,(5.33)

with R+-variate iid innovations (Zt) satisfying RVα, and (ϕj) ∈ R
m0
+ .

Then both moving averages satisfy RVα with |Q(α)| admitting the same

deterministic expression (|ϕt|/‖(ϕj)‖α) in ℓ̃α, see for instance Proposition

3.1. in [12] and Chapter 5 of [33].

Let p > α/2. For all κ > 0, a sequence satisfying xn = O(b
κ+1/(p∧α)
n )

verifies AC and CSp. This is a consequence of Remark 2.5. Choosing (xn)
in this way implies there exist κ′ > 0, and (kn) satisfying

kn = O(n b−κ′−α/(p∧α)
n ),(5.34)

such that Equation (3.13) holds from an application of Potter’s bound. Since
κ can be chosen arbitrarily small, κ′ can also be chosen arbitrarily close to
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zero. Keeping this in mind, we can state the Proposition below. The proof
is postponed to Section B.

Proposition 5.2. Consider (Xt) to be a m0–dependent time series with

values in (Rd, | · |). Consider p > α/2, and a sequence (kn) satisfying (5.34),

such that k = kn → ∞, mn/kn → ∞. Consider fp : ℓ̃p → R, and assume L

and B hold. Then,
√
k(f̂Q

p − fQ
p )

d−→ N (0,Var( fp(YQ(p)) )), n → ∞.

In particular, the α-cluster based estimators from Section 4 in (4.22) (4.25),
and (4.30), are asymptotically normally distributed. Their asymptotic vari-

ances are null in the case of the moving averages of Example 5.1.

5.2. Linear processes. In this section we consider stationary linear pro-
cesses (Xt) with values in (Rd, | · |) satisfying RVα.

Example 5.3. Consider (Xt) to be an R
d−variate sequence satisfying

Xt =
∑

t∈Z

ϕjZt−j , t ∈ Z,(5.35)

for a sequence of iid innovations (Zt) satisfying RVα, and a sequence (ϕj)

in R
Z. Moreover, assume there exists κ > 0 such that ‖(ϕj)‖(α−κ)∧2 < ∞.

In the setting of Example 5.3, a stationary solution (Xt) exists and
satisfies RVα (c.f. [15, 37]). Proposition 5.4 below demonstrates condi-
tions AC, CSp hold for p > α/2, and a suitable sequence (xn) such that
nP(|X1| > xn) → 0 as n → ∞. Therefore, the time series (Xt) admits an

α−cluster process Q(α), which we can compute in terms of the filter (ϕj),

and the spectral measure of the random variable Z0, denoted by ΘΘΘZ
0 , with

|ΘΘΘZ
0 | = 1 a.s. We obtain the expression, cf. Chapter 5 of [33],

Q(α) d
= (ϕt/‖(ϕj)‖α)ΘΘΘZ

0 , ∈ ℓ̃α.(5.36)

Note again that the norm of the α−cluster process, i.e., |Q(α)|, is determin-

istic in ℓ̃α. Assuming ‖(ϕj)‖p < ∞, we can compute the indices c(p) in (2.8)
by

c(p) = E[‖Q(α)‖αp ] = ‖(ϕj)‖αp /‖(ϕj)‖αα < ∞.(5.37)

Classic examples of these heavy-tailed linear models are auto-regressive mov-
ing averages, i.e., ARMA processes, with iid regularly varying noise; cf. [10].

The proposition below guarantees that the assumptions of Proposition 2.3
hold. We defer its proof to Section B.1.

Proposition 5.4. Consider (Xt) to be a linear process with values in (Rd, | ·
|), as in Example 5.3. Consider p > α/2, and a sequence (xn) such that

n/x
p∧(α−κ)
n → 0, n → ∞, for some κ > 0. Then it holds for all δ > 0

lim
s→∞

lim sup
n→∞

P(‖X[1,n]/xn −X
(s)
[1,n]/xn‖

p
p > δ)

nP(|X1| > xn)
= 0,(5.38)
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where X
(s)
t :=

∑
|j|6s ϕjZt−j. Thus AC and CSp are satisfied.

We now review the mixing properties of a linear process. We recall below
the statement in Theorem 2.1. in [41] (see Lemma 15.3.1. in [33]).

Proposition 5.5. Consider (Xt) to be a causal linear process with values in

(Rd, | · |), as in Example 5.3 with ϕj = 0, for j < 0. Assume the distribution

of Z0 is absolutely continuous with respect to the Lebesgue measure in R
d,

and has a density gZ satisfying

i)
∫
|g(x − y)− g(x)|dx = O(|y|), for all y ∈ R

d,

ii) ϕt = O(t−ρ), for t > 0, and ρ > 2 + 1/α,
iii)

∑∞
j=0 ϕjx

j 6= 0, for all x ∈ R
d with |x| < 1,

Then, for all 0 < κ < α, the mixing coefficients (βt) satisfy

βt = O
(
t
1−

(ρ−1)(α−κ)
1+α−κ

)
.(5.39)

Combining Propositions 5.4 and 5.5, we state below the asymptotic nor-
mality of the p-cluster based estimators for linear processes in Theorem 5.6.
We defer its proof to Section B.2.

Theorem 5.6. Consider (Xt) to be a causal linear process with values in

(Rd, | · |), as in Example 5.3. Let ρ > 0, and assume the conditions of

Proposition 5.5 hold with ϕt = O(t−ρ), for t > 0. Consider p > α/2, and
a sequence (kn) satisfying (5.34), such that k = kn → ∞, mn/kn → ∞.

Consider fp : ℓ̃
p → R, and assume L and B hold. Furthermore, assume

i) for δ > 0 as in (3.14),

ρ > 3 + 2
α + 2

δ (1 +
1
α),

ii) for all κ > 0, n b
−
(ρ−1)(α−κ)

1+α−κ
n → 0, as n → ∞.

If fp is bounded, condition i) can be replaced by ρ > 3 + 2/α. Then,

√
k(f̂Q

p − fQ
p )

d−→ N
(
0,Var( fp(YQ(p)) )

)
, n → ∞.

In particular, the α-cluster based estimators from Section 4 in (4.22) (4.25),
and (4.30), are asymptotically normally distributed and their asymptotic

variances are null.

Regarding cluster inference in the case of linear models, the α-cluster
approach has an optimal asymptotic variance for shift-invariant function-
als since we use the ℓα−norm order statistics. For this reason, it compares
favourably with state-of-the-art blocks estimator. For example, for the ex-
tremal index, the super-efficient estimator in (4.22) has a lower asymptotic
variance than the blocks estimator in (4.23). Indeed the asymptotic variance
σ2
θ of the latter, computed in (4.24), is not necessarily null. For example,

for the autoregressive process of order one AR(1) one has σ2
θ = 1− θ|X| > 0.
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The main drawback of the α-cluster estimator is that we must infer α. We
propose to use a consistent and unbiased Hill estimator of 1/α; see [25, 44].
Numerical experiments in Section 6 show this works fine in practice.

5.3. Affine stochastic recurrence equation solution under Kesten’s

conditions. In this section we focus on the causal solution to the affine
stochastic recurrence equation SRE under Kesten’s conditions. To guarantee
the existence of a solution (Xt), with values in (Rd, |·|) as in (5.40) satisfying
RVα, we rely on Theorem 2.1. and Theorem 2.4 in [2]. For an overview, we
refer to [11]. In what follows, we study time series (Xt) as in the Example 5.7
below.

Example 5.7. Consider (Xt) to be a sequence with values in R
d satisfying

Xt = AtXt−1 +Bt, t ∈ Z,(5.40)

where ((At,Bt)) is an iid sequence of non-negative random d × d matri-

ces with generic element A, and non-negative random vectors with generic

element B taking values in R
d. For the existence of a causal stationary

solution, we assume

i) E[log+ |A|op] + E[log+ |B|] < ∞,
ii) under i), assume the Lyapunov exponent of (At), denoted γ, satisfies

γ := lim
n→∞

n−1 log |At · · ·A1|op < 0, a.s.

To guarantee the heavy-tailedness condition RVα, we also assume

iii) B 6= 0 a.s., and A has no zero rows a.s.

iv) there exists κ > 0 such that E[|A|κop] < 1,
v) the set Γ from Equation (5.41) generates a dense group on R,

Γ = {log |an · · · a1|op : n > 1, an · · · a1 > 0,

an, . . . ,a1 are in the support of A’s distribution },(5.41)

vi) there exists κ1 > 0 such that E[(mini=1,...,d
∑d

t=1 Aij)
κ1 ] > dκ1/2, and

E[|A|k1op log+ |A|op] < ∞.

vii) under i)− vi), there exists a unique α > 0 such that

lim
n→∞

n−1 logE
[
|An · · ·A1|αop

]
= 0,(5.42)

and E[|B|α] < ∞. If d > 1 assume α is not an even integer.

The R
d-variate series (Xt), satisfying (5.40) and i) − vii), admits a causal

stationary solution and satisfies RVα, with α > 0 as in Equation (5.42).

The previous example is motivated by the seminal Kesten’s paper [31].
We follow Theorem 2.1. in [2] to state conditions i) − ii) of Example 5.7.
Under the conditions i)− ii), the unique solution (Xt) of (5.40) has the a.s.
causal representation

Xt =
∑

i>0

At−i+1 . . .AtBt−i, t ∈ Z,(5.43)
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where the first summand is Bt for i = 0 by convention; for an overview see
[11].

One of the main reasons why the solutions to SRE as in Example 5.7 have
received strong interest, is because (Xt) satisfies RVα even when the innova-
tions ((At,Bt)) are light-tailed. This feature was first noticed in [31] where
the original Kesten’s assumptions were introduced. In Kesten’s framework,
a causal stationary solution to the SRE exists as in (5.43), and the extremes
of the series occur due to the sums of infinitely many terms of growing length
products appearing in (5.43); see [6] for a review. Further, the community
adopted the simplified Kesten’s conditions stated by Goldie in [22] for uni-
variate SRE. These conditions also aim to capture the heavy-tailed feature
under lighter-tailed innovations. In Example 5.7, we borrow the conditions
iii) − vii) established for the multivariate setting from Theorem 2.4 and
Corollary 2.7. in [2]. Then, a solution (Xt) as in Example 5.7 satisfies RVα,
for α > 0, and the index of regular variation α is the unique solution to
the Equation (5.42). We are also interested in Example 5.7 because it mod-
els classic econometric time series such as the squared ARCH(p), and the
volatility of GARCH(p, q) processes; see [11].

Concerning the extremes of (Xt) in Example 5.7, the forward spectral tail
process satisfies the relation

ΘΘΘt = At · · ·A1ΘΘΘ0, t > 0,

where (At) is an iid sequence distributed as A; see [30]. The backward
spectral tail process has a cumbersome representation that we omit here;
c.f. [30]. We state in Proposition 5.8 sufficient conditions on (A,B) yielding
assumptions AC, CSp hold for p > α/2, and a suitable sequence (xn) such
that nP(|X1| > xn) → 0 as n → ∞. In this case the time series (Xt) admits

an α−cluster process Q(α). We recall the identity from Equation (8.6) of

[12]: c(p) = E[‖Q(α)‖αp ] = E[‖(ΘΘΘt)t>0‖αp − ‖(ΘΘΘt)t>1‖αp ], for c(p) as in (2.8).
Then, letting p = α/2, a straightforward computation yields

c(p) 6 2E[‖(ΘΘΘt)t>0‖α−p
p ] = 2E[

∑
t>0|At · · ·A1ΘΘΘ0|p]

6 2 s
∑

t>0(E[|As · · ·A1|pop])t,
and E[|As · · ·A1|pop] < 1, for p < α and s > 1 fixed sufficiently large in the
setting of Example 5.7. Hence, for p ∈ (α/2, α), c(p) < ∞ in (2.8), and then

the series admits a p−cluster process Q(p).
We state now Proposition 5.8 which verifies conditions AC, CSp for the

SRE equation. The proof is postponed to Section B.3.

Proposition 5.8. Let (Xt) be a stationary time series with values in (Rd, | ·
|), as in Example 5.7. Let p > α/2, and consider (xn) such that there exists

κ > 0 satisfying n/x
p∧(α−κ)
n → 0, as n → ∞. Then, (xn) satisfies conditions

AC and CSp.

In the setting of SRE equations, conditionAC has been shown in Theorem
4.17 in [38]. In [38], the authors already considered a condition similar to
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CSp. Parallel to their setting, we propose a proof of Proposition 5.8 which
shows CSp holds over uniform regions Λn = (xn,∞) such that n/xpn → 0,
as n → ∞, in the sense of (2.77). Thereby, our proof extends Theorem 4.17
in [38] to uniform regions Λn not having an upper bound.

Concerning the mixing properties of (Xt)t>0 as in Example 5.7, we use
that it is a Markov chain and that X0 has the stationary distribution. As
mentioned in Remark 2.2, we can then use Markov chain’s theory to compute
its mixing coefficients; cf. [36]. We review Theorem 2.8. in [2], yielding an
exponential decay of the mixing-coefficients (βt) of the series. For a general
treatment see Chapter 4.2 in [11].

Proposition 5.9. Consider a time series (Xt) with values in (Rd, | · |), as
in Example 5.7. Assume there exists a Borel measure µ on (Rd, | · |), such
that the Markov chain (Xt)t>0 is µ-irreducible, i.e., for all C ⊂ R

d with

µ(C) > 0,
∑∞

t=0P(Xt ∈ C |X0 = x) > 0, x ∈ R.(5.44)

Then (Xt) has mixing coefficients (βt) satisfying βt = O(ρt) for some ρ ∈
(0, 1), and we say it is strongly mixing with geometric rate. Moreover,

(Xt)t>0 is irreducible with respect to the Lebesgue measure if (A,B) admits

a density.

We can now state the asymptotic normality of cluster-based estimator for
SRE solutions in Theorem 5.10 below. The proof is postponed to Section
2.4.

Theorem 5.10. Consider (Xt) to be the causal solution to the SRE in

(5.40) with values in (Rd, | · |), as in Example 5.7. Assume the conditions

of Proposition 5.9 hold. Consider p > α/2, and a sequence (kn) satisfy-

ing (5.34), such that k = kn → ∞, mn/kn → ∞. Consider fp : ℓ̃
p → R, and

assume L and B hold. Assume log(n)/bn → 0, as n → ∞, Then,

√
k(f̂Q

p − fQ
p )

d−→ N (0,Var(f(YQ(p)))), n → ∞.

In particular, the α-cluster based estimators from Section 4 in (4.22) (4.25),
and (4.30), are asymptotically normally distributed.

Remark 5.11. In this example, the asymptotic variances of the α-cluster
based estimators from Section 4 in (4.22) (4.25), and (4.30) are non-null.
The limiting variances in Theorem 5.10 are difficult to compare with the
existing ones in the literature because of the complexity of the distribution
of Q(p). However, we provide simple ℓα-block estimators of the asymptotic
variances in Section 6.

6. Numerical experiments

This section aims to illustrate the finite-sample performance of the α-
cluster estimators on time series (Xt) with tail-index α > 0. In all the
models we consider in Section 5, we work under the assumption that the
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tuning parameters of the α-cluster satisfy (5.34). We take κ′ = 1 in (5.34)

which yields b =
√

n/k. In this case, the implementation of our estima-
tors can be written solely as a function of k. Recall k = kn must sat-
isfy k → ∞ and m/k → ∞ with m = [n/b]. Numerical comparisons
of our α-cluster based approach with other existing estimators for the ex-
tremal index and the cluster index are at the advantage of our approach;
see [13] and [12]. The code of all numerical experiments is available at:
https://github.com/GBuritica/cluster_functionals.git.

6.1. Cluster size probabilities. We reviewed in Section 4.3 how cluster
sizes play a key role to model the serial behavior of exceedances. In this
section, we implement the cluster size probabilites estimation procedure
from Equation (4.30) in an example of a solution to the SRE under Kesten’s
conditions.

Example 6.1. Consider the non-negative univariate random variables A,
B, defined by logA = N−0.5, where N denotes a standard Gaussian random

variable, and B is uniformly distributed in [0, 1]. Let (Xt) be the solution

to the SRE in (5.40). Then, (Xt) satisfies RVα with α = 1. If (Aj) is a

sequence of iid random variables with generic element A, then

Q
(α)
t

d
= Πt/‖(Πj)‖α , t ∈ Z ,

with

Πt
d
=





At · · ·A1 if t > 1,

At · · ·A−1 if t 6 −1,

1 if t = 0 .

This follows by Example 6.1 in [30], and Proposition 3.1 in [12]. Then,

for p > α/2, the p-cluster based estimators (4.22) (4.25), and (4.30) are

asymptotically normally distributed.

Recall the cluster sizes π1, π2, . . . , defined in (4.29). We infer the clus-
ter sizes of Example 6.1 using α-cluster estimates. To illustrate Theo-
rem 5.10, we run a Monte–Carlo simulation experiment based on 1 000 sam-
ples (Xt)t=1,...,n of length n = 12000 from Example 6.1. For each sampled
trajectory, we obtain estimates π̂1, π̂2, . . . , letting k = 8 and b = 38 in (4.30).
We use the known value of the tail-index α = 1. We also estimate the ex-
tremal index θX of the series from Equation (4.22). Theorem 5.10 yields,
for j > 0,

Var(
√
k (π̂j − πQ

j )) → Var(πQ
j (Q(α))), n → ∞,(6.45)

where πQ
j are the cluster functional yielding the cluster sizes πj with the

notation in (4.31). Notice that the asymptotic variance of our cluster sizes
estimate is again a cluster statistic that we can infer. We compute an es-
timate of the asymptotic variance in (6.45) using cluster-based estimates,
and compare this estimate with the empirical variance obtained from the

https://github.com/GBuritica/cluster_functionals.git
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Monte-Carlo simulation study. Figure 1 plots the profile of the limit Gauss-
ian distribution where the asymptotic variance is computed in these two
ways. As expected from Equation (6.45), the curves overlap, even if k is
small.

In the case of SRE equations, the cluster sizes were studied in detail in
[24]. The authors proposed a method to approximate the true values when
the tail-index α, and the random variable A are known. We approximate
true values using Equation 3.5 in [24], and a Monte-Carlo study with 10 000
samples of length 500 000. The obtained values are pointed out in red in
Figure 1. We see that this choice of k yields estimates centered around the
true value.

6.2. Replacing α by α̂. So far we have used known values of α. In this
section, we illustrate that the α−cluster-based estimators perform well in
simulation when we replace α with a Hill-type estimator α̂. We use the
bias-correction procedure in [23] and write an estimator of the tail-index as
k′ 7→ α̂(k′) where the tuning parameter k′ is the number of higher order
statistics of (|Xt|) that we use for inference. For consistency of the tail-
index estimator, we must take k′ = k′n satisfying k′ → ∞ and n/k′ → ∞.
Therefore, we recommend choosing the tuning sequence of the tail-index
and of the cluster estimators as (k′n), (kn), respectively, such that k′/k →
∞. Roughly speaking, the cluster statistics capture the block extremal
behavior whereas the tail-index points to an extremal property of margins.
As a consequence, the variance of the Hill procedure should not affect the
variance of the cluster estimates asymptotically. To illustrate this point, we
simulate 500 samples (Xt)t=1,...,n of an AR(ϕ) model with absolute value
student(α) noise for n = 12000, α = 1 and ϕ ∈ {0.5, 0.7}, and for samples

of Example 5.7. We estimate the extremal index θ̂X(k) as in (4.22) where
we replace α by α̂(k′). Recall that for an AR(ϕ) model the asymptotic
variances of the extremal index estimator are null. We see in Figures 2, 3
and 4 that in practice we have to choose k small to reduce the bias of the
estimator. Moreover, the estimation procedure is robust with respect to k′

therefore we recommend taking k′ large to reduce variance. Similar results
were found for n = 3000, n = 5000, and n = 8000 and these are available
upon request. To conclude, we see in Figures 2, 3 and 4 that standard
deviations are small, and thus the error of cluster inference is mainly due to
bias. We recommend choosing k small and k′ larger in all settings.

6.3. Conclusion. Our main theoretical result in Theorem 3.2 states asymp-

totic normality of α-cluster-based disjoint blocks estimators f̂Q
α (k), based on

k extremal ℓα-blocks, where α is the tail index of the series. The advan-
tage of α-cluster-based methods is that the choice of k is robust to time

dependencies; see [12] who have shown already consistency of f̂Q
α estima-

tors. Equation (3.21) characterizes their asymptotic variance in terms of a
cluster statistic that we can infer. We further show in Section 4 that many


	1. Introduction
	1.1. Notation

	2. Preliminaries
	2.1. Mixing coefficients
	2.2. Regular variation
	2.3. p-cluster processes

	3. Asymptotic normality
	3.1. Main result

	4. Cluster statistics
	4.1. The extremal index
	4.2. The cluster index for sums
	4.3. The cluster sizes

	5. Models
	5.1. Linear m0–dependent sequences.
	5.2. Linear processes
	5.3. Affine stochastic recurrence equation solution under Kesten's conditions

	6. Numerical experiments
	6.1. Cluster size probabilities
	6.2. Replacing  by "0362.
	6.3. Conclusion

	References
	Appendix A. Proof of the main result
	A.1. Consistency of p-cluster based blocks estimators
	A.2. Covariance p-cluster based blocks estimators
	A.3. Proof of Theorem 3.2
	A.4. Proof of Proposition A.3
	A.5. Proof of Lemma A.1
	A.6. Proof of Lemma A.6

	Appendix B. Proofs of the results of Section 5
	B.1. Proof of Proposition 5.4
	B.2. Proof of Theorem 5.6
	B.3. Proof of Proposition 5.8
	2.4. Proof of Theorem 5.10


